51
|
Sanyaolu A, Ayodele O, Likaj L, Marinkovic A, Locke J, Ahmed M, Akanbi O, Orish V, Okorie C, Badaru O. Changing Epidemiology, Treatment, and Vaccine Update on Chikungunya, Dengue, and Zika Viruses. CURRENT TROPICAL MEDICINE REPORTS 2019; 6:145-159. [DOI: 10.1007/s40475-019-00181-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
52
|
Harapan H, Michie A, Mudatsir M, Nusa R, Yohan B, Wagner AL, Sasmono RT, Imrie A. Chikungunya virus infection in Indonesia: a systematic review and evolutionary analysis. BMC Infect Dis 2019; 19:243. [PMID: 30866835 PMCID: PMC6417237 DOI: 10.1186/s12879-019-3857-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/27/2019] [Indexed: 11/13/2022] Open
Abstract
Background Despite the high number of chikungunya cases in Indonesia in recent years, comprehensive epidemiological data are lacking. The systematic review was undertaken to provide data on incidence, the seroprevalence of anti-Chikungunya virus (CHIKV) IgM and IgG antibodies, mortality, the genotypes of circulating CHIKV and travel-related cases of chikungunya in the country. In addition, a phylogenetic and evolutionary analysis of Indonesian CHIKV was conducted. Methods A systematic review was conducted to identify eligible studies from EMBASE, MEDLINE, PubMed and Web of Science as of October 16th 2017. Studies describing the incidence, seroprevalence of IgM and IgG, mortality, genotypes and travel-associated chikungunya were systematically reviewed. The maximum likelihood phylogenetic and evolutionary rate was estimated using Randomized Axelerated Maximum Likelihood (RAxML), and the Bayesian Markov chain Monte Carlo (MCMC) method identified the Time to Most Recent Common Ancestors (TMRCA) of Indonesian CHIKV. The systematic review was registered in the PROSPERO database (CRD42017078205). Results Chikungunya incidence ranged between 0.16-36.2 cases per 100,000 person-year. Overall, the median seroprevalence of anti-CHIKV IgM antibodies in both outbreak and non-outbreak scenarios was 13.3% (17.7 and 7.3% for outbreak and non-outbreak events, respectively). The median seroprevalence of IgG antibodies in both outbreak and non-outbreak settings was 18.5% (range 0.0–73.1%). There were 130 Indonesian CHIKV sequences available, of which 120 (92.3%) were of the Asian genotype and 10 (7.7%) belonged to the East/Central/South African (ECSA) genotype. The ECSA genotype was first isolated in Indonesia in 2008 and was continually sampled until 2011. All ECSA viruses sampled in Indonesia appear to be closely related to viruses that caused massive outbreaks in Southeast Asia countries during the same period. Massive nationwide chikungunya outbreaks in Indonesia were reported during 2009–2010 with a total of 137,655 cases. Our spatio-temporal, phylogenetic and evolutionary data suggest that these outbreaks were likely associated with the introduction of the ECSA genotype of CHIKV to Indonesia. Conclusions Although no deaths have been recorded, the seroprevalence of anti-CHIKV IgM and IgG in the Indonesian population have been relatively high in recent years following re-emergence in early 2001. There is sufficient evidence to suggest that the introduction of ECSA into Indonesia was likely associated with massive chikungunya outbreaks during 2009–2010. Electronic supplementary material The online version of this article (10.1186/s12879-019-3857-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Harapan Harapan
- Medical Research Unit, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia. .,School of Biomedical Sciences, University of Western Australia, 35 Stirling Highway, Crawley, 6009, Australia.
| | - Alice Michie
- School of Biomedical Sciences, University of Western Australia, 35 Stirling Highway, Crawley, 6009, Australia
| | - Mudatsir Mudatsir
- Medical Research Unit, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia. .,Department of Microbiology, School of Medicine, Universitas Syiah Kuala, Jl. T. Tanoeh Abe, Darussalam, Banda Aceh, 23111, Indonesia.
| | - Roy Nusa
- Vector Borne Disease Control, Research and Development Council, Ministry of Health of the Republic of Indonesia, Jakarta, Indonesia
| | | | | | | | - Allison Imrie
- School of Biomedical Sciences, University of Western Australia, 35 Stirling Highway, Crawley, 6009, Australia. .,Pathwest Laboratory Medicine Western Australia, Nedlands, Western Australia, Australia.
| |
Collapse
|
53
|
Reveillaud J, Bordenstein SR, Cruaud C, Shaiber A, Esen ÖC, Weill M, Makoundou P, Lolans K, Watson AR, Rakotoarivony I, Bordenstein SR, Eren AM. The Wolbachia mobilome in Culex pipiens includes a putative plasmid. Nat Commun 2019; 10:1051. [PMID: 30837458 PMCID: PMC6401122 DOI: 10.1038/s41467-019-08973-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 02/06/2019] [Indexed: 12/21/2022] Open
Abstract
Wolbachia is a genus of obligate intracellular bacteria found in nematodes and arthropods worldwide, including insect vectors that transmit dengue, West Nile, and Zika viruses. Wolbachia's unique ability to alter host reproductive behavior through its temperate bacteriophage WO has enabled the development of new vector control strategies. However, our understanding of Wolbachia's mobilome beyond its bacteriophages is incomplete. Here, we reconstruct near-complete Wolbachia genomes from individual ovary metagenomes of four wild Culex pipiens mosquitoes captured in France. In addition to viral genes missing from the Wolbachia reference genome, we identify a putative plasmid (pWCP), consisting of a 9.23-kbp circular element with 14 genes. We validate its presence in additional Culex pipiens mosquitoes using PCR, long-read sequencing, and screening of existing metagenomes. The discovery of this previously unrecognized extrachromosomal element opens additional possibilities for genetic manipulation of Wolbachia.
Collapse
Affiliation(s)
- Julie Reveillaud
- ASTRE, INRA, CIRAD, University of Montpellier, Montpellier, 34398, France.
| | - Sarah R Bordenstein
- Department of Biological Sciences, Vanderbilt University, Nashville, 37235, TN, USA
| | - Corinne Cruaud
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Institut de Biologie François Jacob, Genoscope, Evry, 91057, France
| | - Alon Shaiber
- Graduate Program in the Biophysical Sciences, University of Chicago, Chicago, IL, 60637, USA
- Department of Medicine, University of Chicago, Chicago, 60637, IL, USA
| | - Özcan C Esen
- Department of Medicine, University of Chicago, Chicago, 60637, IL, USA
| | - Mylène Weill
- Institut des Sciences de l'Evolution de Montpellier (ISEM), UMR CNRS-IRD-EPHE-Université de Montpellier, Montpellier, 34095, France
| | - Patrick Makoundou
- Institut des Sciences de l'Evolution de Montpellier (ISEM), UMR CNRS-IRD-EPHE-Université de Montpellier, Montpellier, 34095, France
| | - Karen Lolans
- Department of Medicine, University of Chicago, Chicago, 60637, IL, USA
| | - Andrea R Watson
- Department of Medicine, University of Chicago, Chicago, 60637, IL, USA
| | | | - Seth R Bordenstein
- Department of Biological Sciences, Vanderbilt University, Nashville, 37235, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, 37235, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University, Nashville, 37235, TN, USA
| | - A Murat Eren
- Graduate Program in the Biophysical Sciences, University of Chicago, Chicago, IL, 60637, USA.
- Department of Medicine, University of Chicago, Chicago, 60637, IL, USA.
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, 02543, MA, USA.
| |
Collapse
|
54
|
Suesdek L. Microevolution of medically important mosquitoes - A review. Acta Trop 2019; 191:162-171. [PMID: 30529448 DOI: 10.1016/j.actatropica.2018.12.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/08/2018] [Accepted: 12/06/2018] [Indexed: 12/25/2022]
Abstract
This review intends to discuss central issues regarding the microevolution of mosquito (Culicidae) vectors of several pathogens and how this process impacts vector biology, disease transmission, and vector control attempts. On the microevolutionary context, it comparatively discusses the current knowledge on the population genetics of representatives of the genera Aedes, Anopheles and Culex, and comments on insecticide resistance of culicids. It also discusses other biological aspects of culicids that are not usually addressed in microevolutionary studies, such as vectorial competence, endosymbiosis, and wing morphology. One conclusion is that mosquitoes are highly genetically variable, adaptable, fast evolving, and have versatile vectorial competence. Unveiling microevolutionary patterns is fundamental for the design and maintenance of all control programs. Sampling methods for assessing microevolution must be standardized and must follow meaningful guidelines, such as those of "landscape genetics". A good understanding of microevolution requires more than a collection of case studies on population genetics and resistance. Future research could deal not only with the microevolution sensu stricto, but also with evolutionarily meaningful issues, such as inheritable characters, epigenetics, physiological cost-free plasticity, vector immunity, symbiosis, pathogen-mosquito co-evolution and environmental variables. A genotyping panel for seeking adaptive phenotypes as part of the standardization of population genetics methods is proposed. The investigative paradigm should not only be retrospective but also prospective, despite the unpredictability of evolution. If we integrate all suggestions to tackle mosquito evolution, a global revolution to counter vector-borne diseases can be provoked.
Collapse
|
55
|
Genetic Determinants of the Re-Emergence of Arboviral Diseases. Viruses 2019; 11:v11020150. [PMID: 30759739 PMCID: PMC6410223 DOI: 10.3390/v11020150] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/03/2019] [Accepted: 02/06/2019] [Indexed: 01/06/2023] Open
Abstract
Mosquito-borne diseases constitute a large portion of infectious diseases, causing more than 700,000 deaths annually. Mosquito-transmitted viruses, such as yellow fever, dengue, West Nile, chikungunya, and Zika viruses, have re-emerged recently and remain a public health threat worldwide. Global climate change, rapid urbanization, burgeoning international travel, expansion of mosquito populations, vector competence, and host and viral genetics may all together contribute to the re-emergence of arboviruses. In this brief review, we summarize the host and viral genetic determinants that may enhance infectivity in the host, viral fitness in mosquitoes and viral transmission by mosquitoes.
Collapse
|
56
|
Azar SR, Rossi SL, Haller SH, Yun R, Huang JH, Plante JA, Zhou J, Olano JP, Roundy CM, Hanley KA, Weaver SC, Vasilakis N. ZIKV Demonstrates Minimal Pathologic Effects and Mosquito Infectivity in Viremic Cynomolgus Macaques. Viruses 2018; 10:v10110661. [PMID: 30469417 PMCID: PMC6267344 DOI: 10.3390/v10110661] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/13/2018] [Accepted: 11/19/2018] [Indexed: 12/15/2022] Open
Abstract
To evaluate the effects of ZIKV infection on non-human primates (NHPs), as well as to investigate whether these NHPs develop sufficient viremia to infect the major urban vector mosquito, Aedes aegypti, four cynomolgus macaques (Macaca fascicularis) were subcutaneously infected with 5.0 log10 focus-forming units (FFU) of DNA clone-derived ZIKV strain FSS13025 (Asian lineage, Cambodia, 2010). Following infection, the animals were sampled (blood, urine, tears, and saliva), underwent daily health monitoring, and were exposed to Ae. aegypti at specified time points. All four animals developed viremia, which peaked 3⁻4 days post-infection at a maximum value of 6.9 log10 genome copies/mL. No virus was detected in urine, tears, or saliva. Infection by ZIKV caused minimal overt disease: serum biochemistry and CBC values largely fell within the normal ranges, and cytokine elevations were minimal. Strikingly, the minimally colonized population of Ae. aegypti exposed to viremic animals demonstrated a maximum infection rate of 26% during peak viremia, with two of the four macaques failing to infect a single mosquito at any time point. These data indicate that cynomolgus macaques may be an effective model for ZIKV infection of humans and highlights the relative refractoriness of Ae. aegypti for ZIKV infection at the levels of viremia observed.
Collapse
Affiliation(s)
- Sasha R Azar
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Shannan L Rossi
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA.
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Sherry H Haller
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Ruimei Yun
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Jing H Huang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Jessica A Plante
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Jiehua Zhou
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Juan P Olano
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Christopher M Roundy
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Kathryn A Hanley
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA.
| | - Scott C Weaver
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA.
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA.
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA.
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
57
|
Oliva LO, La Corte R, Santana MO, Albuquerque CMRD. Quiescence in Aedes aegypti: Interpopulation Differences Contribute to Population Dynamics and Vectorial Capacity. INSECTS 2018; 9:insects9030111. [PMID: 30200417 PMCID: PMC6164356 DOI: 10.3390/insects9030111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/19/2018] [Accepted: 08/23/2018] [Indexed: 12/03/2022]
Abstract
The strategy of Aedes aegypti to prolong embryonic viability by quiescence has severe implications for geographic expansion and maintenance of mosquito populations in areas under control measures. We evaluated the effects of quiescence on biological parameters directly or indirectly associated with population dynamics and vectorial capacity in populations of this mosquito species from two Brazilian municipalities characterized as dengue, chikungunya, and Zika transmission areas. Egg viability, initial hatching time, post-embryonic development time, adult emergence rate, sexual proportion, adult size, fecundity, and fertility were analyzed using eggs stored for 10, 40, 70, 100, 130, and 160 d. Quiescence time reduced overall egg viability and post-embryonic development time in both municipalities but was more costly in Aracaju (100 d, 8 d) than in Recife (130 d, 7.5 d). Emergence rates increased in Recife when the eggs were older, but not in Aracaju. Significant deviations in sexual proportion, with male predominance, were observed in both populations. Initial hatch, fecundity, fertility, and adult size did not significantly influence egg quiescence time. These results indicate intrinsic and differential characteristics for each A. aegypti population, suggesting a differential cost of quiescence for population dynamics parameters that can indirectly affect vectorial capacity and control measures.
Collapse
Affiliation(s)
- Luciana O Oliva
- Departamento de Zoologia, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Recife 50670-901, Brazil.
- Departamento de Morfologia, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Sergipe (UFS), São Cristóvão 49100-000, Brazil.
| | - Roseli La Corte
- Departamento de Morfologia, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Sergipe (UFS), São Cristóvão 49100-000, Brazil.
| | - Marcelo O Santana
- Departamento de Educação em Saúde, Universidade Federal de Sergipe (UFS), Lagarto 49400-000, Brazil.
| | - Cleide M R de Albuquerque
- Departamento de Zoologia, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Recife 50670-901, Brazil.
| |
Collapse
|
58
|
Huang CC, Tam TYT, Chern YR, Lung SCC, Chen NT, Wu CD. Spatial Clustering of Dengue Fever Incidence and Its Association with Surrounding Greenness. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E1869. [PMID: 30158475 PMCID: PMC6163306 DOI: 10.3390/ijerph15091869] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 08/21/2018] [Accepted: 08/27/2018] [Indexed: 11/25/2022]
Abstract
With more than 58,000 cases reported by the country's Centers for Disease Control, the dengue outbreaks from 2014 to 2015 seriously impacted the southern part of Taiwan. This study aims to assess the spatial autocorrelation of the dengue fever (DF) outbreak in southern Taiwan in 2014 and 2015, and to further understand the effects of green space (such as forests, farms, grass, and parks) allocation on DF. In this study, two different greenness indexes were used. The first green metric, the normalized difference vegetation index (NDVI), was provided by the long-term NASA MODIS satellite NDVI database, which quantifies and represents the overall vegetation greenness. The latest 2013 land use survey GIS database completed by the National Land Surveying and Mapping Center was obtained to access another green metric, green land use in Taiwan. We first used Spearman's rho to find out the relationship between DF and green space, and then three spatial autocorrelation methods, including Global Moran's I, high/low clustering, and Hot Spot were employed to assess the spatial autocorrelation of DF outbreak. In considering the impact of social and environmental factors in DF, we used generalized linear mixed models (GLMM) to further clarify the relationship between different types of green land use and dengue cases. Results of spatial autocorrelation analysis showed a high aggregation of dengue epidemic in southern Taiwan, and the metropolitan areas were the main hotspots. Results of correlation analysis and GLMM showed a positive correlation between parks and dengue fever, and the other five green space metrics and land types revealed a negative association with DF. Our findings may be an important asset for improving surveillance and control interventions for dengue.
Collapse
Affiliation(s)
- Chi-Chieh Huang
- Department of Forestry and Natural Resources, National Chiayi University, Chiayi 60004, Taiwan.
| | - Tuen Yee Tiffany Tam
- Department of Forestry and Natural Resources, National Chiayi University, Chiayi 60004, Taiwan.
| | - Yinq-Rong Chern
- Department of Forestry and Natural Resources, National Chiayi University, Chiayi 60004, Taiwan.
| | - Shih-Chun Candice Lung
- Research Center for Environmental Changes, Academia Sinica, Taipei 11529, Taiwan.
- Department of Atmospheric Sciences, National Taiwan University, Taipei 10617, Taiwan.
- Institute of Environmental Health, National Taiwan University, Taipei 10055, Taiwan.
| | - Nai-Tzu Chen
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli 35053, Taiwan.
| | - Chih-Da Wu
- Department of Geomatics, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
59
|
Estimating the effects of variation in viremia on mosquito susceptibility, infectiousness, and R0 of Zika in Aedes aegypti. PLoS Negl Trop Dis 2018; 12:e0006733. [PMID: 30133450 PMCID: PMC6122838 DOI: 10.1371/journal.pntd.0006733] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 09/04/2018] [Accepted: 08/06/2018] [Indexed: 11/19/2022] Open
Abstract
Zika virus (ZIKV) is an arbovirus primarily transmitted by Aedes mosquitoes. Like most viral infections, ZIKV viremia varies over several orders of magnitude, with unknown consequences for transmission. To determine the effect of viral concentration on ZIKV transmission risk, we exposed field-derived Ae. aegypti mosquitoes to four doses (103, 104, 105, 106 PFU/mL) representative of potential variation in the field. We demonstrate that increasing ZIKV dose in the blood-meal significantly increases the probability of mosquitoes becoming infected, and consequently disseminating virus and becoming infectious. Additionally, we observed significant interactions between dose and days post-infection on dissemination and overall transmission efficiency, suggesting that variation in ZIKV dose affects the rates of midgut escape and salivary gland invasion. We did not find significant effects of dose on mosquito mortality. We also demonstrate that detecting virus using RT-qPCR approaches rather than plaque assays potentially over-estimates key transmission parameters, including the time at which mosquitoes become infectious and viral burden. Finally, using these data to parameterize an R0 model, we showed that increasing viremia from 104 to 106 PFU/mL increased relative R0 3.8-fold, demonstrating that variation in viremia substantially affects transmission risk. The number of people at risk for contracting Zika virus (ZIKV) is difficult to estimate accurately because most infected hosts are asymptomatic and the relationship between variation in host viremia and transmission to local mosquitoes is unclear. Controlling ZIKV transmission remains a major challenge due to lack of basic information on transmission mechanisms and gaps in mechanistic models. Therefore, our study highlights the importance of variation in viral concentration that current modeling efforts ignore, which will enhance our ability to predict the number of people at risk for arbovirus infection, overall disease transmission, and the efficacy of current and future intervention strategies. We demonstrated that increased concentration of ZIKV in the blood significantly increases the probability and the rate at which mosquitoes become infectious, which increases the risk of ZIKV transmission.
Collapse
|
60
|
Culler LE, Ayres MP, Virginia RA. Spatial heterogeneity in the abundance and fecundity of Arctic mosquitoes. Ecosphere 2018. [DOI: 10.1002/ecs2.2345] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Lauren E. Culler
- Environmental Studies Program Dartmouth College 113 Steele Hall Hanover New Hampshire 03755 USA
- Institute of Arctic Studies The Dickey Center for International Understanding Dartmouth College 6214 Haldeman Center Hanover New Hampshire 03755 USA
- Department of Biological Sciences Dartmouth College 78 College Street Hanover New Hampshire 03755 USA
| | - Matthew P. Ayres
- Institute of Arctic Studies The Dickey Center for International Understanding Dartmouth College 6214 Haldeman Center Hanover New Hampshire 03755 USA
- Department of Biological Sciences Dartmouth College 78 College Street Hanover New Hampshire 03755 USA
| | - Ross A. Virginia
- Environmental Studies Program Dartmouth College 113 Steele Hall Hanover New Hampshire 03755 USA
- Institute of Arctic Studies The Dickey Center for International Understanding Dartmouth College 6214 Haldeman Center Hanover New Hampshire 03755 USA
| |
Collapse
|
61
|
A mathematical model for Zika virus transmission dynamics with a time-dependent mosquito biting rate. Theor Biol Med Model 2018; 15:11. [PMID: 30064447 PMCID: PMC6069545 DOI: 10.1186/s12976-018-0083-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/04/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Mathematical modeling has become a tool used to address many emerging diseases. One of the most basic and popular modeling frameworks is the compartmental model. Unfortunately, most of the available compartmental models developed for Zika virus (ZIKV) transmission were designed to describe and reconstruct only past, short-time ZIKV outbreaks in which the effects of seasonal change to entomological parameters can be ignored. To make an accurate long-term prediction of ZIKV transmission, the inclusion of seasonal effects into an epidemic model is unavoidable. METHODS We developed a vector-borne compartmental model to analyze the spread of the ZIKV during the 2015-2016 outbreaks in Bahia, Brazil and to investigate the impact of two vector control strategies, namely, reducing mosquito biting rates and reducing mosquito population size. The model considered the influences of seasonal change on the ZIKV transmission dynamics via the time-varying mosquito biting rate. The model was also validated by comparing the model prediction with reported data that were not used to calibrate the model. RESULTS We found that the model can give a very good fit between the simulation results and the reported Zika cases in Bahia (R-square = 0.9989). At the end of 2016, the total number of ZIKV infected people was predicted to be 1.2087 million. The model also predicted that there would not be a large outbreak from May 2016 to December 2016 due to the decrease of the susceptible pool. Implementing disease mitigation by reducing the mosquito biting rates was found to be more effective than reducing the mosquito population size. Finally, the correlation between the time series of estimated mosquito biting rates and the average temperature was also suggested. CONCLUSIONS The proposed ZIKV transmission model together with the estimated weekly biting rates can reconstruct the past long-time multi-peak ZIKV outbreaks in Bahia.
Collapse
|
62
|
Mulatier M, Ahoua Alou LP, Chandre F, Pennetier C, Dormont L, Cohuet A. Effect of DEET-multiple exposures on behavior and life history traits in the malaria mosquito Anopheles gambiae (s.s.). Parasit Vectors 2018; 11:432. [PMID: 30045761 PMCID: PMC6060454 DOI: 10.1186/s13071-018-3024-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/18/2018] [Indexed: 11/10/2022] Open
Abstract
Background Vector-borne diseases are major public health concerns, and their control is threatened by the spread of insecticide resistance in vector populations. In this context, the use of repellents is an alternative approach to limit vector-host interactions. However, prior exposure to repellents is suspected to affect mosquito behavior at the subsequent exposure, possibly reducing the efficacy of the compound. Despite this, the effect of mosquito experience on repellent efficacy remains poorly documented. In the present study, we tested whether a first blood meal successfully obtained upon a DEET-treated net would affect the success at taking a second blood meal in spite of DEET in the malaria mosquito Anopheles gambiae (s.s.). The impact of DEET on mosquito life history traits after the first and the second exposure was also measured, in order to assess the long-term consequences of multiple exposures to DEET in vector insects. Results A first blood meal obtained upon a DEET-treated net did not influence the success of An. gambiae females to take a second blood meal in spite of DEET. However, data showed that a prior exposure to DEET negatively affected all life history traits tested in this study related to fecundity and fertility. DEET pre-exposed females displayed a reduction in blood engorgement at the second exposure, as well as a reduction in the number of eggs laid and in the proportion of offspring that reach adult stage. Also, an increase of mosquito activity was observed during the second blood meal in DEET-pre-exposed females. Taken together, these data suggest an overall impact of DEET exposure on mosquito fitness. Conclusions Our results did not evidence any effect of a prior exposure to DEET on its efficacy during the second exposure. However, data show a negative impact of DEET exposure on mosquito fitness. These results give insights to understand the long-term efficacy of the most used mosquito repellent, and highlight that DEET induces deleterious effects on mosquito fitness in addition to repellency, potentially increasing its efficacy for controlling vector-borne diseases.
Collapse
Affiliation(s)
- Margaux Mulatier
- MIVEGEC, IRD, CNRS, University of Montpellier, Montpellier, France. .,CEFE, University Paul Valéry Montpellier 3, CNRS, University of Montpellier, EPHE, IRD, Montpellier, France.
| | | | - Fabrice Chandre
- MIVEGEC, IRD, CNRS, University of Montpellier, Montpellier, France
| | - Cédric Pennetier
- MIVEGEC, IRD, CNRS, University of Montpellier, Montpellier, France.,Institut Pierre Richet, Bouaké, Côte d'Ivoire
| | - Laurent Dormont
- CEFE, University Paul Valéry Montpellier 3, CNRS, University of Montpellier, EPHE, IRD, Montpellier, France
| | - Anna Cohuet
- MIVEGEC, IRD, CNRS, University of Montpellier, Montpellier, France
| |
Collapse
|
63
|
Moretti R, Yen PS, Houé V, Lampazzi E, Desiderio A, Failloux AB, Calvitti M. Combining Wolbachia-induced sterility and virus protection to fight Aedes albopictus-borne viruses. PLoS Negl Trop Dis 2018; 12:e0006626. [PMID: 30020933 PMCID: PMC6066253 DOI: 10.1371/journal.pntd.0006626] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 07/30/2018] [Accepted: 06/21/2018] [Indexed: 11/19/2022] Open
Abstract
Among the strategies targeting vector control, the exploitation of the endosymbiont Wolbachia to produce sterile males and/or invasive females with reduced vector competence seems to be promising. A new Aedes albopictus transinfection (ARwP-M) was generated by introducing wMel Wolbachia in the ARwP line which had been established previously by replacing wAlbA and wAlbB Wolbachia with the wPip strain. Various infection and fitness parameters were studied by comparing ARwP-M, ARwP and wild-type (SANG population) Ae. albopictus sharing the same genetic background. Moreover, the vector competence of ARwP-M related to chikungunya, dengue and zika viruses was evaluated in comparison with ARwP. ARwP-M showed a 100% rate of maternal inheritance of wMel and wPip Wolbachia. Survival, female fecundity and egg fertility did not show to differ between the three Ae. albopictus lines. Crosses between ARwP-M males and SANG females were fully unfertile regardless of male age while egg hatch in reverse crosses increased from 0 to about 17% with SANG males aging from 3 to 17 days. When competing with SANG males for SANG females, ARwP-M males induced a level of sterility significantly higher than that expected for an equal mating competitiveness (mean Fried index of 1.71 instead of 1). The overall Wolbachia density in ARwP-M females was about 15 fold higher than in ARwP, mostly due to the wMel infection. This feature corresponded to a strongly reduced vector competence for chikungunya and dengue viruses (in both cases, 5 and 0% rates of transmission at 14 and 21 days post infection) with respect to ARwP females. Results regarding Zika virus did not highlight significant differences between ARwP-M and ARwP. However, none of the tested ARwP-M females was capable at transmitting ZIKV. These findings are expected to promote the exploitation of Wolbachia to suppress the wild-type Ae. albopictus populations.
Collapse
Affiliation(s)
- Riccardo Moretti
- Biotechnology and Agroindustry Division, ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), Casaccia Research Center, Rome, Italy
- * E-mail:
| | - Pei-Shi Yen
- Department of Virology, Institut Pasteur, Arboviruses and Insect Vectors Unit, Paris, France
| | - Vincent Houé
- Department of Virology, Institut Pasteur, Arboviruses and Insect Vectors Unit, Paris, France
| | - Elena Lampazzi
- Biotechnology and Agroindustry Division, ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), Casaccia Research Center, Rome, Italy
| | - Angiola Desiderio
- Biotechnology and Agroindustry Division, ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), Casaccia Research Center, Rome, Italy
| | - Anna-Bella Failloux
- Department of Virology, Institut Pasteur, Arboviruses and Insect Vectors Unit, Paris, France
| | - Maurizio Calvitti
- Biotechnology and Agroindustry Division, ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), Casaccia Research Center, Rome, Italy
| |
Collapse
|
64
|
Hatala AJ, Harrington LC, Degner EC. Age and Body Size Influence Sperm Quantity in Male Aedes albopictus (Diptera: Culicidae) Mosquitoes. JOURNAL OF MEDICAL ENTOMOLOGY 2018; 55:1051-1054. [PMID: 29618076 PMCID: PMC6025233 DOI: 10.1093/jme/tjy040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Indexed: 06/08/2023]
Abstract
Aedes albopictus (Skuse) (Diptera: Culicidae) is a vector of several arboviruses impacting human health, including dengue, chikungunya, and potentially Zika. Vector control strategies that deploy modified males into the field are in use or under development and require a solid understanding of male biology; unfortunately, there has been limited effort to understand male Ae. albopictus reproductive biology, including sperm production and capacity. We tested whether body size and age affect spermatogenesis in Ae. albopictus. In general, older and larger males produced more sperm than their younger or smaller counterparts. Large males continued spermatogenesis well after 10-d post-eclosion (dpe), augmenting their reserves by 39%. By contrast, small males stopped producing sperm at 10 dpe. These results contribute to a deeper understanding of Ae. albopictus reproductive physiology. We discuss the usefulness of these findings in the context of Ae. albopictus life history and their utility in optimizing male mosquito release strategies.
Collapse
Affiliation(s)
- A J Hatala
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, NY
| | - L C Harrington
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, NY
| | - E C Degner
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, NY
| |
Collapse
|
65
|
Ishwarya R, Vaseeharan B, Subbaiah S, Nazar AK, Govindarajan M, Alharbi NS, Kadaikunnan S, Khaled JM, Al-Anbr MN. Sargassum wightii-synthesized ZnO nanoparticles - from antibacterial and insecticidal activity to immunostimulatory effects on the green tiger shrimp Penaeus semisulcatus. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2018; 183:318-330. [PMID: 29754050 DOI: 10.1016/j.jphotobiol.2018.04.049] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 04/19/2018] [Accepted: 04/30/2018] [Indexed: 11/17/2022]
Abstract
The green synthesis of metal nanoparticles using phytochemical from marine seaweeds is a fast-growing research field in nanotechnology. Here, the biosynthesis of zinc oxide nanoparticles was achieved using the hot water extract of Sargassum wightii. The hot water extract prepared from S. wightii (H Sw) and ZnO NPs were studied by UV-visible and FTIR spectroscopy, SEM and XRD. Then, both products were evaluated for antibiofilm activity towards aquatic pathogens. The nanoparticles' immunostimulating potential on green tiger prawns, Penaeus semisulcatus was studied through immersion and dietary administration. Shrimp immune parameters (i.e., total hemocytes count (THC), respiratory bursts (RBs), phenoloxidase (PO) and superoxide dismutase (SOD) activity) were significantly affected by exposure or ingestion of ZnO nanoparticles. In addition, the hot water extract and ZnO nanoparticles had high antibiofilm activity against Gram-positive (B. subtilis, S. aureus) and Gram-negative (S. sonnei, P. aeruginosa) microbial pathogens. It was accomplished that the ZnO nanoparticles can be used as the bacteriostatic and immunostimulant agents through immersion and dietary administration enhancing immunity of green tiger shrimp. Furthermore, the toxicity effects of ZnO nanoparticles were 100% at 24 h on Aedes aegypti 3 rd instar larvae at the concentration of 100 μg/mL and the greatest efficacy was accomplished by H Sw ZnO NPs against the Ae. aegypti after 24 h (LC50 49.22; LC90 86.96 mg/mL), if compared to the seaweed extract alone. Morphological and histological damages triggered by nanoexposure were investigated.
Collapse
Affiliation(s)
- Ramachandran Ishwarya
- Nanobiosciences and Nanopharmacology Division, Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Science Block, 6th Floor, Burma Colony, Karaikudi 630004, Tamil Nadu, India
| | - Baskaralingam Vaseeharan
- Nanobiosciences and Nanopharmacology Division, Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Science Block, 6th Floor, Burma Colony, Karaikudi 630004, Tamil Nadu, India.
| | - Suganya Subbaiah
- Nanobiosciences and Nanopharmacology Division, Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Science Block, 6th Floor, Burma Colony, Karaikudi 630004, Tamil Nadu, India
| | - Abdul Khudus Nazar
- Mandapam Regional Centre, Central Marine Fisheries Research Institute, Mandapam, Tamil Nadu, India
| | - Marimuthu Govindarajan
- Unit of Vector Control, Phytochemistry and Nanotechnology, Department of Zoology, Annamalai University, Annamalainagar 608 002, Tamil Nadu, India; Department of Zoology, Government College for Women, Kumbakonam 612 001, Tamil Nadu, India
| | - Naiyf S Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Shine Kadaikunnan
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Jamal M Khaled
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed N Al-Anbr
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
66
|
Stone CM, Schwab SR, Fonseca DM, Fefferman NH. Human movement, cooperation and the effectiveness of coordinated vector control strategies. J R Soc Interface 2018; 14:rsif.2017.0336. [PMID: 28855386 DOI: 10.1098/rsif.2017.0336] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/03/2017] [Indexed: 12/22/2022] Open
Abstract
Vector-borne disease transmission is often typified by highly focal transmission and influenced by movement of hosts and vectors across different scales. The ecological and environmental conditions (including those created by humans through vector control programmes) that result in metapopulation dynamics remain poorly understood. The development of control strategies that would most effectively limit outbreaks given such dynamics is particularly urgent given the recent epidemics of dengue, chikungunya and Zika viruses. We developed a stochastic, spatial model of vector-borne disease transmission, allowing for movement of hosts between patches. Our model is applicable to arbovirus transmission by Aedes aegypti in urban settings and was parametrized to capture Zika virus transmission in particular. Using simulations, we investigated the extent to which two aspects of vector control strategies are affected by human commuting patterns: the extent of coordination and cooperation between neighbouring communities. We find that transmission intensity is highest at intermediate levels of host movement. The extent to which coordination of control activities among neighbouring patches decreases the prevalence of infection is affected by both how frequently humans commute and the proportion of neighbouring patches that commits to vector surveillance and control activities. At high levels of host movement, patches that do not contribute to vector control may act as sources of infection in the landscape, yet have comparable levels of prevalence as patches that do cooperate. This result suggests that real cooperation among neighbours will be critical to the development of effective pro-active strategies for vector-borne disease control in today's commuter-linked communities.
Collapse
Affiliation(s)
- Chris M Stone
- Illinois Natural History Survey, University of Illinois at Urbana-Champaign, Champaign, IL, USA .,Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, USA
| | - Samantha R Schwab
- Program in Ecology and Evolutionary Biology, Rutgers University, New Brunswick, NJ, USA
| | - Dina M Fonseca
- Center for Vector Biology, Rutgers University, New Brunswick, NJ, USA
| | - Nina H Fefferman
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
67
|
Borlase A, Webster JP, Rudge JW. Opportunities and challenges for modelling epidemiological and evolutionary dynamics in a multihost, multiparasite system: Zoonotic hybrid schistosomiasis in West Africa. Evol Appl 2018; 11:501-515. [PMID: 29636802 PMCID: PMC5891036 DOI: 10.1111/eva.12529] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 08/01/2017] [Indexed: 01/01/2023] Open
Abstract
Multihost multiparasite systems are evolutionarily and ecologically dynamic, which presents substantial trans-disciplinary challenges for elucidating their epidemiology and designing appropriate control. Evidence for hybridizations and introgressions between parasite species is gathering, in part in line with improvements in molecular diagnostics and genome sequencing. One major system where this is becoming apparent is within the Genus Schistosoma, where schistosomiasis represents a disease of considerable medical and veterinary importance, the greatest burden of which occurs in sub-Saharan Africa. Interspecific hybridizations and introgressions bring an increased level of complexity over and above that already inherent within multihost, multiparasite systems, also representing an additional source of genetic variation that can drive evolution. This has the potential for profound implications for the control of parasitic diseases, including, but not exclusive to, widening host range, increased transmission potential and altered responses to drug therapy. Here, we present the challenging case example of haematobium group Schistosoma spp. hybrids in West Africa, a system involving multiple interacting parasites and multiple definitive hosts, in a region where zoonotic reservoirs of schistosomiasis were not previously considered to be of importance. We consider how existing mathematical model frameworks for schistosome transmission could be expanded and adapted to zoonotic hybrid systems, exploring how such model frameworks can utilize molecular and epidemiological data, as well as the complexities and challenges this presents. We also highlight the opportunities and value such mathematical models could bring to this and a range of similar multihost, multi and cross-hybridizing parasites systems in our changing world.
Collapse
Affiliation(s)
- Anna Borlase
- Department of Pathobiology and Population SciencesCentre for Emerging, Endemic and Exotic DiseasesRoyal Veterinary CollegeUniversity of LondonLondonUK
- Department of Infectious Disease EpidemiologyLondon Centre for Neglected Tropical Disease ResearchSchool of Public HealthImperial College LondonLondonUK
| | - Joanne P. Webster
- Department of Pathobiology and Population SciencesCentre for Emerging, Endemic and Exotic DiseasesRoyal Veterinary CollegeUniversity of LondonLondonUK
- Department of Infectious Disease EpidemiologyLondon Centre for Neglected Tropical Disease ResearchSchool of Public HealthImperial College LondonLondonUK
| | - James W. Rudge
- Department of Infectious Disease EpidemiologyLondon Centre for Neglected Tropical Disease ResearchSchool of Public HealthImperial College LondonLondonUK
- Communicable Diseases Policy Research GroupLondon School of Hygiene and Tropical MedicineLondonUK
- Faculty of Public HealthMahidol UniversityBangkokThailand
| |
Collapse
|
68
|
Asad H, Carpenter DO. Effects of climate change on the spread of zika virus: a public health threat. REVIEWS ON ENVIRONMENTAL HEALTH 2018; 33:31-42. [PMID: 29500926 DOI: 10.1515/reveh-2017-0042] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 11/09/2017] [Indexed: 05/18/2023]
Abstract
Zika is a vector-borne viral disease transmitted to humans primarily by Aedes aegypti mosquitoes. The increased climate instability has contributed to the emergence of infections carried by mosquitoes like dengue, chikungunya and zika. While infection with the zika virus is not new, the recent epidemic of microcephaly in Brazil and other countries in South America resulting from the infection of pregnant women with the zika virus raise a number of serious public health concerns. These include the question of how climate change affects the range of zika vectors, what can we do to shorten the length of mosquito season, how and why the symptoms of zika infection have changed and what can be done to reduce the burden of human disease from this infection? Another important question that needs to be answered is what are the factors that caused the zika virus to leave the non-human primates and/or other mammals and invade the human population?
Collapse
Affiliation(s)
- Hina Asad
- Institute for Health and the Environment, University at Albany, Rensselaer, NY, USA
| | - David O Carpenter
- Institute for Health and the Environment, University at Albany, Rensselaer, NY, USA
| |
Collapse
|
69
|
Prow NA, Liu L, Nakayama E, Cooper TH, Yan K, Eldi P, Hazlewood JE, Tang B, Le TT, Setoh YX, Khromykh AA, Hobson-Peters J, Diener KR, Howley PM, Hayball JD, Suhrbier A. A vaccinia-based single vector construct multi-pathogen vaccine protects against both Zika and chikungunya viruses. Nat Commun 2018; 9:1230. [PMID: 29581442 PMCID: PMC5964325 DOI: 10.1038/s41467-018-03662-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 03/01/2018] [Indexed: 01/09/2023] Open
Abstract
Zika and chikungunya viruses have caused major epidemics and are transmitted by Aedes aegypti and/or Aedes albopictus mosquitoes. The “Sementis Copenhagen Vector” (SCV) system is a recently developed vaccinia-based, multiplication-defective, vaccine vector technology that allows manufacture in modified CHO cells. Herein we describe a single-vector construct SCV vaccine that encodes the structural polyprotein cassettes of both Zika and chikungunya viruses from different loci. A single vaccination of mice induces neutralizing antibodies to both viruses in wild-type and IFNAR−/− mice and protects against (i) chikungunya virus viremia and arthritis in wild-type mice, (ii) Zika virus viremia and fetal/placental infection in female IFNAR−/− mice, and (iii) Zika virus viremia and testes infection and pathology in male IFNAR−/− mice. To our knowledge this represents the first single-vector construct, multi-pathogen vaccine encoding large polyproteins, and offers both simplified manufacturing and formulation, and reduced “shot burden” for these often co-circulating arboviruses. Zika and chikungunya virus are co-circulating in many regions and currently there is no approved vaccine for either virus. Here, the authors engineer one vaccinia virus based vaccine for both, Zika and chikungunya, and show protection from infection and pathogenesis in mice.
Collapse
Affiliation(s)
- Natalie A Prow
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia.,Australian Infectious Disease Research Centre, Brisbane, QLD, 4029 and 4072, Australia
| | - Liang Liu
- Experimental Therapeutics Laboratory, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Eri Nakayama
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia.,Department of Virology I, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Tamara H Cooper
- Experimental Therapeutics Laboratory, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Kexin Yan
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia
| | - Preethi Eldi
- Experimental Therapeutics Laboratory, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | | | - Bing Tang
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia
| | - Thuy T Le
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia
| | - Yin Xiang Setoh
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Alexander A Khromykh
- Australian Infectious Disease Research Centre, Brisbane, QLD, 4029 and 4072, Australia.,School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Jody Hobson-Peters
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Kerrilyn R Diener
- Experimental Therapeutics Laboratory, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, 5000, Australia.,Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia
| | | | - John D Hayball
- Experimental Therapeutics Laboratory, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, 5000, Australia. .,Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia.
| | - Andreas Suhrbier
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia. .,Australian Infectious Disease Research Centre, Brisbane, QLD, 4029 and 4072, Australia.
| |
Collapse
|
70
|
Rothan HA, Bidokhti MRM, Byrareddy SN. Current concerns and perspectives on Zika virus co-infection with arboviruses and HIV. J Autoimmun 2018; 89:11-20. [PMID: 29352633 DOI: 10.1016/j.jaut.2018.01.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/30/2017] [Accepted: 01/08/2018] [Indexed: 12/21/2022]
Abstract
Dissemination of vector-borne viruses, such as Zika virus (ZIKV), in tropical and sub-tropical regions has a complicated impact on the immunopathogenesis of other endemic viruses such as dengue virus (DENV), chikungunya virus (CHIKV) and human immunodeficiency virus (HIV). The consequences of the possible co-infections with these viruses have specifically shown significant impact on the treatment and vaccination strategies. ZIKV is a mosquito-borne flavivirus from African and Asian lineages that causes neurological complications in infected humans. Many of DENV and CHIKV endemic regions have been experiencing outbreaks of ZIKV infection. Intriguingly, the mosquitoes, Aedes Aegypti and Aedes Albopictus, can simultaneously transmit all the combinations of ZIKV, DENV, and CHIKV to the humans. The co-circulation of these viruses leads to a complicated immune response due to the pre-existence or co-existence of ZIKV infection with DENV and CHIKV infections. The non-vector transmission of ZIKV, especially, via sexual intercourse and placenta represents an additional burden that may hander the treatment strategies of other sexually transmitted diseases such as HIV. Collectively, ZIKV co-circulation and co-infection with other viruses have inevitable impact on the host immune response, diagnosis techniques, and vaccine development strategies for the control of these co-infections.
Collapse
Affiliation(s)
- Hussin A Rothan
- Department of Human Biology, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia.
| | - Mehdi R M Bidokhti
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Centre (UNMC), Omaha, NE 68198-5800, USA.
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Centre (UNMC), Omaha, NE 68198-5800, USA.
| |
Collapse
|
71
|
Ang LW, Kam YW, Lin C, Krishnan PU, Tay J, Ng LC, James L, Lee VJM, Goh KT, Ng LFP, Lin RTP. Seroprevalence of antibodies against chikungunya virus in Singapore resident adult population. PLoS Negl Trop Dis 2017; 11:e0006163. [PMID: 29281644 PMCID: PMC5760101 DOI: 10.1371/journal.pntd.0006163] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/09/2018] [Accepted: 12/12/2017] [Indexed: 11/24/2022] Open
Abstract
Objectives We determined the seroprevalence of chikungunya virus (CHIKV) infection in the adult resident population in Singapore following local outbreaks of chikungunya fever (CHIKF) in 2008–2009. Methods Our cross-sectional study involved residual sera from 3,293 adults aged 18–79 years who had participated in the National Health Survey in 2010. Sera were tested for IgG antibodies against CHIKV and dengue virus (DENV) and neutralizing antibodies against CHIKV. Results The prevalence of CHIKV-neutralizing antibodies among Singapore residents aged 18–79 years was 1.9% (95% confidence interval: 1.4%– 2.3%). The CHIKV seroprevalence was highest in the elderly aged 70–79 years at 11.5%, followed by those aged 30–39 years at 3.1%. Men had significantly higher CHIKV seroprevalence than women (2.5% versus 1.3%, p = 0.01). Among the three main ethnic groups, Indians had the highest seroprevalence (3.5%) compared to Chinese (1.6%) and Malays (0.7%) (p = 0.02 and p = 0.01, respectively). Multivariable logistic regression identified adults aged 30–39 years and 70–79 years, men, those of Indian ethnicity and ethnic minority groups, and residence on ground floor of public and private housing apartments as factors that were significantly associated with a higher likelihood of exposure to CHIKV. The overall prevalence of anti-DENV IgG antibodies was 56.8% (95% CI: 55.1%– 58.5%), while 1.5% (95% CI: 1.1%– 2.0%) of adults possessed both neutralizing antibodies against CHIKV and IgG antibodies against DENV. Conclusions Singapore remains highly susceptible to CHIKV infection. There is a need to maintain a high degree of vigilance through disease surveillance and vector control. Findings from such serological study, when conducted on a regular periodic basis, could supplement surveillance to provide insights on CHIKV circulation in at-risk population. The prevalence of neutralizing antibodies against chikungunya virus (CHIKV) was low at 1.9% among resident adults in Singapore after local outbreaks in 2008–2009. Adults aged 30–39 years and 70–79 years, men, those of Indian ethnicity and ethnic minority groups, and residence on ground floor of public and private housing apartments were significantly associated with a higher likelihood of exposure to CHIKV.
Collapse
Affiliation(s)
- Li Wei Ang
- Public Health Group, Ministry of Health, Singapore
- * E-mail:
| | - Yiu Wing Kam
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Cui Lin
- Public Health Group, Ministry of Health, Singapore
| | - Prabha Unny Krishnan
- Public Health Group, Ministry of Health, Singapore
- Department of Laboratory Medicine, Tan Tock Seng Hospital, Singapore
| | - Joanne Tay
- Public Health Group, Ministry of Health, Singapore
| | - Lee Ching Ng
- Environmental Health Institute, National Environment Agency, Singapore
| | - Lyn James
- Public Health Group, Ministry of Health, Singapore
| | | | - Kee Tai Goh
- Public Health Group, Ministry of Health, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Lisa F. P. Ng
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore
| | | |
Collapse
|
72
|
Willard KA, Demakovsky L, Tesla B, Goodfellow FT, Stice SL, Murdock CC, Brindley MA. Zika Virus Exhibits Lineage-Specific Phenotypes in Cell Culture, in Aedes aegypti Mosquitoes, and in an Embryo Model. Viruses 2017; 9:v9120383. [PMID: 29258204 PMCID: PMC5744157 DOI: 10.3390/v9120383] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/07/2017] [Accepted: 12/13/2017] [Indexed: 12/16/2022] Open
Abstract
Zika virus (ZIKV) has quietly circulated in Africa and Southeast Asia for the past 65 years. However, the recent ZIKV epidemic in the Americas propelled this mosquito-borne virus to the forefront of flavivirus research. Based on historical evidence, ZIKV infections in Africa were sporadic and caused mild symptoms such as fever, skin rash, and general malaise. In contrast, recent Asian-lineage ZIKV infections in the Pacific Islands and the Americas are linked to birth defects and neurological disorders. The aim of this study is to compare replication, pathogenicity, and transmission efficiency of two historic and two contemporary ZIKV isolates in cell culture, the mosquito host, and an embryo model to determine if genetic variation between the African and Asian lineages results in phenotypic differences. While all tested isolates replicated at similar rates in Vero cells, the African isolates displayed more rapid viral replication in the mosquito C6/36 cell line, yet they exhibited poor infection rates in Aedes aegypti mosquitoes compared to the contemporary Asian-lineage isolates. All isolates could infect chicken embryos; however, infection with African isolates resulted in higher embryo mortality than infection with Asian-lineage isolates. These results suggest that genetic variation between ZIKV isolates can significantly alter experimental outcomes.
Collapse
Affiliation(s)
- Katherine A Willard
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA.
| | - Leah Demakovsky
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA.
| | - Blanka Tesla
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA.
| | - Forrest T Goodfellow
- Department of Animal and Dairy Science, Regenerative Bioscience Center, College of Agriculture and Environmental Science, University of Georgia, Athens, GA 30602, USA.
| | - Steven L Stice
- Department of Animal and Dairy Science, Regenerative Bioscience Center, College of Agriculture and Environmental Science, University of Georgia, Athens, GA 30602, USA.
| | - Courtney C Murdock
- Department of Infectious Diseases, Odum School of Ecology, College of Veterinary Medicine, Center for Tropical Emerging and Global Diseases, Center for Ecology of Infectious Diseases, Center for Vaccines and Immunology, Riverbasin Center, University of Georgia, Athens, GA 30602, USA.
| | - Melinda A Brindley
- Department of Infectious Diseases, Department of Population Health, Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
73
|
Leta S, Beyene TJ, De Clercq EM, Amenu K, Kraemer MUG, Revie CW. Global risk mapping for major diseases transmitted by Aedes aegypti and Aedes albopictus. Int J Infect Dis 2017; 67:25-35. [PMID: 29196275 DOI: 10.1016/j.ijid.2017.11.026] [Citation(s) in RCA: 271] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/21/2017] [Accepted: 11/23/2017] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVES The objective of this study was to map the global risk of the major arboviral diseases transmitted by Aedes aegypti and Aedes albopictus by identifying areas where the diseases are reported, either through active transmission or travel-related outbreaks, as well as areas where the diseases are not currently reported but are nonetheless suitable for the vector. METHODS Data relating to five arboviral diseases (Zika, dengue fever, chikungunya, yellow fever, and Rift Valley fever (RVF)) were extracted from some of the largest contemporary databases and paired with data on the known distribution of their vectors, A. aegypti and A. albopictus. The disease occurrence data for the selected diseases were compiled from literature dating as far back as 1952 to as recent as 2017. The resulting datasets were aggregated at the country level, except in the case of the USA, where state-level data were used. Spatial analysis was used to process the data and to develop risk maps. RESULTS Out of the 250 countries/territories considered, 215 (86%) are potentially suitable for the survival and establishment of A. aegypti and/or A. albopictus. A. albopictus has suitability foci in 197 countries/territories, while there are 188 that are suitable for A. aegypti. There is considerable variation in the suitability range among countries/territories, but many of the tropical regions of the world provide high suitability over extensive areas. Globally, 146 (58.4%) countries/territories reported at least one arboviral disease, while 123 (49.2%) reported more than one of the above diseases. The overall numbers of countries/territories reporting autochthonous vector-borne occurrences of Zika, dengue, chikungunya, yellow fever, and RVF, were 85, 111, 106, 43, and 39, respectively. CONCLUSIONS With 215 countries/territories potentially suitable for the most important arboviral disease vectors and more than half of these reporting cases, arboviral diseases are indeed a global public health threat. The increasing proportion of reports that include multiple arboviral diseases highlights the expanding range of their common transmission vectors. The shared features of these arboviral diseases should motivate efforts to combine interventions against these diseases.
Collapse
Affiliation(s)
- Samson Leta
- Addis Ababa University, College of Veterinary Medicine, PO Box 34, Bishoftu, Ethiopia.
| | - Tariku Jibat Beyene
- Addis Ababa University, College of Veterinary Medicine, PO Box 34, Bishoftu, Ethiopia
| | - Eva M De Clercq
- Research Fellow FNRS, George Lemaître Institute for Earth and Climate Research, Université Catholique de Louvain, Place Louis Pasteur 3, 1348 Louvain-la-Neuve, Belgium
| | - Kebede Amenu
- Addis Ababa University, College of Veterinary Medicine, PO Box 34, Bishoftu, Ethiopia
| | - Moritz U G Kraemer
- Harvard Medical School, Boston, United States; Computational Epidemiology Lab, Boston Children's Hospital, Boston, United States; Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Crawford W Revie
- University of Prince Edward Island, Department of Health Management, Charlottetown, Canada
| |
Collapse
|
74
|
Öncü C, Brinkmann A, Günay F, Kar S, Öter K, Sarıkaya Y, Nitsche A, Linton YM, Alten B, Ergünay K. West Nile virus, Anopheles flavivirus, a novel flavivirus as well as Merida-like rhabdovirus Turkey in field-collected mosquitoes from Thrace and Anatolia. INFECTION GENETICS AND EVOLUTION 2017; 57:36-45. [PMID: 29128516 DOI: 10.1016/j.meegid.2017.11.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/04/2017] [Accepted: 11/06/2017] [Indexed: 11/30/2022]
Abstract
Mosquitoes are involved in the transmission and maintenance of several viral diseases with significant health impact. Biosurveillance efforts have also revealed insect-specific viruses, observed to cocirculate with pathogenic strains. This report describes the findings of flavivirus and rhabdovirus screening, performed in eastern Thrace and Aegean region of Anatolia during 2016, including and expanding on locations with previously-documented virus activity. A mosquito cohort of 1545 individuals comprising 14 species were collected and screened in 108 pools via generic and specific amplification and direct metagenomics by next generation sequencing. Seven mosquito pools (6.4%) were positive in the flavivirus screening. West Nile virus lineage 1 clade 1a sequences were characterized in a pool Culex pipiens sensu lato specimens, providing the initial virus detection in Aegean region following 2010 outbreak. In an Anopheles maculipennis sensu lato pool, sequences closely-related to Anopheles flaviviruses were obtained, with similarities to several African and Australian strains of this new insect-specific flavivirus clade. In pools comprising Uranotaenia unguiculata (n=3), Cx. pipiens s.l. (n=1) and Aedes caspius (n=1) mosquitoes, sequences of a novel flavivirus, distantly-related to Flavivirus AV2011, identified previously in Spain and Turkey, were characterized. Moreover, DNA forms of the novel flavivirus were detected in two Ur. unguiculata pools. These sequences were highly-similar to the sequences amplified from viral RNA, with undisrupted reading frames, suggest the occurrence of viral DNA forms in natural conditions within mosquito hosts. Rhabdovirus screening revealed sequences of a recently-described novel virus, named the Merida-like virus Turkey (MERDLVT) in 5 Cx. pipiens s.l. pools (4.6%). Partial L and N gene sequences of MERDLVT were well-conserved among strains, with evidence for geographical clustering in phylogenetic analyses. Metagenomics provided the near-full genomic sequence in a specimen, revealing an identical genome organization and limited divergence from the prototype MERDLVT isolate.
Collapse
Affiliation(s)
- Ceren Öncü
- Hacettepe University, Faculty of Sciences, Department of Biology, Division of Ecology, Ankara, Turkey
| | - Annika Brinkmann
- Robert Koch Institute, Center for Biological Threats and Special Pathogens 1 (ZBS-1), Berlin, Germany
| | - Filiz Günay
- Hacettepe University, Faculty of Sciences, Department of Biology, Division of Ecology, Ankara, Turkey
| | - Sırrı Kar
- Namık Kemal University, Faculty of Arts and Sciences, Department of Biology, Tekirdağ, Turkey
| | - Kerem Öter
- Istanbul University, Faculty of Veterinary Medicine, Department of Parasitology, Turkey
| | - Yasemen Sarıkaya
- Hacettepe University, Faculty of Sciences, Department of Biology, Division of Ecology, Ankara, Turkey
| | - Andreas Nitsche
- Robert Koch Institute, Center for Biological Threats and Special Pathogens 1 (ZBS-1), Berlin, Germany
| | - Yvonne-Marie Linton
- Walter Reed Biosystematics Unit, Museum Support Center MRC-534, Smithsonian Institution, MD, USA; Department of Entomology, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Bülent Alten
- Hacettepe University, Faculty of Sciences, Department of Biology, Division of Ecology, Ankara, Turkey
| | - Koray Ergünay
- Robert Koch Institute, Center for Biological Threats and Special Pathogens 1 (ZBS-1), Berlin, Germany; Hacettepe University, Faculty of Medicine, Department of Medical Microbiology, Virology Unit, Ankara, Turkey.
| |
Collapse
|
75
|
Diallo D, Diallo M. Why is Zika virus so rarely detected during outbreaks and how can detection be improved? BMC Res Notes 2017; 10:524. [PMID: 29084593 PMCID: PMC5661906 DOI: 10.1186/s13104-017-2854-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/23/2017] [Indexed: 01/27/2023] Open
Abstract
Objective Even during outbreaks, detection of Zika virus (ZIKV; genus Flavivirus, family Flaviviridae) in its mosquito vectors is surprisingly uncommon. Here we explore the reason for this apparent paradox and suggest strategies for improving the efficacy of ZIKV detection. Results There are several likely explanations for the rarity of ZIKV detection in field-collected mosquitoes during outbreaks, including the lag between the period when people are clinically ill and the initiation of entomological investigations, the prompt spraying of houses of identified cases, the difficulty of identifying some of the households of ZIKV infected cases, and the low efficiency of the sampling methods currently available. Thus, timely entomological investigation of suspected cases before the intervention of the vector control squad would enhance ZIKV detection from mosquitoes. For this to happen, administrative, financial and logistical issues must be solved before the beginning of outbreaks, and routine entomological surveillance must be conducted in foci of ZIKV amplification. Improving ZIKV detection during outbreaks is of paramount importance because identification of the mosquito species and population involved as vector in a given outbreak is a key element to a comprehensive and effective vector control strategy.
Collapse
Affiliation(s)
- Diawo Diallo
- Unité d'Entomologie Médicale, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal.
| | - Mawlouth Diallo
- Unité d'Entomologie Médicale, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal
| |
Collapse
|