51
|
Kariya T, Hasegawa Y. Scallop mantle toxin induces apoptosis in liver tissues of mice. Food Sci Nutr 2020; 8:3308-3316. [PMID: 32724595 PMCID: PMC7382190 DOI: 10.1002/fsn3.1608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 11/16/2022] Open
Abstract
We had previously shown that the intake of scallop mantle tissue resulted in the death of mice and rats. In this study, we investigated the liver injury caused by mantle tissue to clarify the mechanism behind its toxicity. Mantle toxin increased lipid peroxidation and decreased the reductive thiol content as well as the DPPH radical scavenging activity, catalase activity, and glutathione content in the liver of the mice. These results suggested that the mantle tissue diet caused oxidative stress through the decrease in antioxidants. In addition, mantle toxin increased the mRNA expression of endoplasmic reticulum (ER) stress- and inflammation-induced genes and the protein expression of caspase-3 and Bax (which induce apoptosis), suggesting that the mantle tissue diet causes apoptosis through oxidative stress, ER stress, and inflammation in the liver tissue. Such liver injury may be an essential cause of the rodent demise.
Collapse
Affiliation(s)
- Takahide Kariya
- College of Environmental TechnologyMuroran Institute of TechnologyMuroranJapan
| | - Yasushi Hasegawa
- College of Environmental TechnologyMuroran Institute of TechnologyMuroranJapan
| |
Collapse
|
52
|
Abbas WT, Ibrahim TBED, Elgendy MY, Zaher MFA. Effect of Curcumin on Iron Toxicity and Bacterial Infection in Catfish (<i>Clarias gariepinus</i>). Pak J Biol Sci 2020; 22:510-517. [PMID: 31930829 DOI: 10.3923/pjbs.2019.510.517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND OBJECTIVE Iron is an essential element that involved in many vital physiological functions in fish, while excess iron concentration causes many toxic effects. Curcumin is a natural popular spice that used as a dietary supplementation and has iron chelating properties. This study was conducted to evaluate the effect of curcumin on iron toxicity in catfish (Clarias gariepinus). Also this study assess the antibacterial effect of curcumin against Vibrio anguillarum infection. MATERIALS AND METHODS Clarias gariepinus were orally exposed to low and high doses of curcumin (40, 80 mg kg-1 fish) for 3 weeks. Fish were then exposed to 25 mg L-1 of ferric chloride as a source of iron toxicity for another 3 weeks. Some hematological parameters (Total and differential white blood cells count, total red blood cells count, hemoglobin concentration and hematocrit %) and biochemical parameters (Serum ferritin, transferrin, ALT, AST, protein and albumin) were assessed before and after exposure to iron. Iron residues in gills, spleen, liver, kidney, abdominal fats, gonads and muscles were also determined. Moreover the determination of fish survivability after bacterial challenge with Vibrio anguillarum was recorded. RESULTS Iron caused decrease in total white blood cells count (WBCs), increase in ferritin level and elevation in liver function enzymes (ALT and AST). However, the pretreatment of fish with curcumin significantly increased WBCs, lymphocyte percentage, ferritin level and protein and albumin concentrations with significantly decreased transferrin, ALT and AST levels. Also there were significant decreases in iron concentration in serum, kidney, gonads and muscle in both low and high curcumin pretreated groups compared to Fe group. CONCLUSION Results indicated a modulatory effect of curcumin against iron toxicity in catfish, also curcumin had an immune-stimulant effect against Vibrio anguillarum infection.
Collapse
|
53
|
Ceccherini E, Cecchettini A, Morales MA, Rocchiccioli S. The Potentiality of Herbal Remedies in Primary Sclerosing Cholangitis: From In Vitro to Clinical Studies. Front Pharmacol 2020; 11:813. [PMID: 32587513 PMCID: PMC7298067 DOI: 10.3389/fphar.2020.00813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022] Open
Abstract
Primary sclerosing cholangitis is a complex pathological condition, characterized by chronic inflammation and fibrosis of the biliary epithelium. Without proper clinical management, progressive bile ducts and liver damage lead to cirrhosis and, ultimately, to liver failure. The known limited role of current drugs for treating this cholangiopathy has driven researchers to assess alternative therapeutic options. Some herbal remedies and their phytochemicals have shown anti-fibrotic properties in different experimental models of hepatic diseases and, occasionally, in clinical trials in primary sclerosing cholangitis patients; however their mechanism of action is not completely understood. This review briefly examines relevant studies focusing on the potential anti-fibrotic properties of Silybum marianum, Curcuma longa, Salvia miltiorrhiza, and quercetin. Each natural product is individually reviewed and the possible mechanisms of action discussed.
Collapse
Affiliation(s)
- Elisa Ceccherini
- Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy
| | - Antonella Cecchettini
- Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Silvia Rocchiccioli
- Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy
| |
Collapse
|
54
|
Xu W, Xiao M, Li J, Chen Y, Sun Q, Li H, Sun W. Hepatoprotective effects of Di Wu Yang Gan: A medicinal food against CCl 4-induced hepatotoxicity in vivo and in vitro. Food Chem 2020; 327:127093. [PMID: 32470802 DOI: 10.1016/j.foodchem.2020.127093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/11/2020] [Accepted: 05/16/2020] [Indexed: 12/28/2022]
Abstract
The development of functional foods based on medicinal food ingredients has become a hot topic in China. Di Wu Yang Gan (DWYG) is a Chinese medicinal food that contains five dietary plants. Various health benefits, including anti-inflammation, liver regeneration regulation, have been reported, though the mechanism is not clear. This study aimed to investigate the protective effect of DWYG on carbon tetrachloride-induced acute liver injury (ALI) in embryonic liver L-02 cells and mice model. DWYG-medicated serum protected L-02 cells from carbon tetrachloride-induced damage, reduced the levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in the culture medium, decreased the expression of Bax and increased the expression of Bcl-2. Mice study suggested that DWYG decreased the levels of malondialdehyde, ALT and AST. Together, these results suggest the hepatoprotective effects of DWYG against ALI and provide an experimental basis for the utilization of DWYG to treat liver damage.
Collapse
Affiliation(s)
- Weidong Xu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China; Department of Traditional Chinese Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang 212013, China
| | - Mingzhong Xiao
- Hepatic Disease Institute, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430061, China; Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan 430074, China
| | - Jiayao Li
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Yu Chen
- Clinical College of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Quancai Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Hanmin Li
- Hepatic Disease Institute, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430061, China; Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan 430074, China.
| | - Wencai Sun
- Army Hospital of the 81st Army Group, Zhangjiakou, China
| |
Collapse
|
55
|
Novel Combinatorial Regimen of Garcinol and Curcuminoids for Non-alcoholic Steatohepatitis (NASH) in Mice. Sci Rep 2020; 10:7440. [PMID: 32366854 PMCID: PMC7198554 DOI: 10.1038/s41598-020-64293-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 04/12/2020] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is a progressive form of Non-alcoholic fatty liver disease (NAFLD), a chronic liver disease with a significant unmet clinical need. In this study, we examined the protective effects of Garcinia indica extract standardized to contain 20% w/w of Garcinol (GIE) and 95% Curcuminoids w/w from Curcuma longa (Curcuminoids) in a Stelic animal model (STAM) of NASH. The STAM mice developed steatosis, hepatocyte ballooning, and inflammation, which were significantly reduced by the combination of GIE and Curcuminoids, resulting in a lower NAFLD activity score. The treatment reduced fibrosis as observed by Sirius red staining, liver hydroxyproline content and mRNA levels of TGF- β and collagen in the liver. Immunostaining with alpha-smooth muscle actin (α SMA) revealed a significant reduction in hepatic stellate cells. Intriguingly, the combination regimen markedly decreased the mRNA levels of MCP1 and CRP and both mRNA and protein levels of TNF-α. NF-kB, reduced the hepatic and circulating FGF21 levels and altered the nonenzymatic (glutathione) and enzymatic antioxidant markers (Glutathione peroxidase, and superoxide dismutase). Our results suggest that the combination of GIE and Curcuminoids can reduce the severity of NASH by reducing steatosis, fibrosis, oxidative stress, and inflammation. The results suggest that the combinatorial regimen could be an effective supplement to prevent the progression of liver steatosis to inflammation and fibrosis in NASH.
Collapse
|
56
|
Abdelhamid FM, Mahgoub HA, Ateya AI. Ameliorative effect of curcumin against lead acetate-induced hemato-biochemical alterations, hepatotoxicity, and testicular oxidative damage in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:10950-10965. [PMID: 31953765 DOI: 10.1007/s11356-020-07718-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/10/2020] [Indexed: 06/10/2023]
Abstract
Lead, toxic heavy metal of global concern, induces toxicity in various organs via oxidative stress. Thereby, in this study, the protective role of curcumin against lead acetate-induced toxicity was evaluated. Thirty-two male albino rats were allocated equally into four groups and orally administered with corn oil as a vehicle (Cont.), curcumin (CUR) (400 mg/kg bw), lead acetate (LA) (100 mg/kg bw), and lead acetate plus curcumin (LA + CUR). All rats had received their treatments daily for 4 weeks. The results revealed that LA toxicity induced normocytic normochromic anemia with significant leukocytosis and lymphocytosis. Moreover, LA-intoxicated rats showed a marked elevation in the liver enzyme activities, serum cholesterol, and triglyceride levels. In contrast, sero-immunological parameters, total protein, albumin, globulin, and testosterone levels were significantly reduced compared to the control rats. Additionally, LA-induced hepatic and testicular oxidative damage revealed by marked increased in MDA level with prominent reduction in the antioxidant system. The gene expression of the hepatic pro-inflammatory markers and testicular steroidogenic biomarkers including LHR and aromatase were significantly upregulated; meanwhile, the expressions of testicular StAR, CYP17a, 3B-HDS, SR-B1, and P450SCC were significantly downregulated in the LA-intoxicated group. Curcumin treatment could partially improve the hematological, biochemical, and histopathological alterations induced by LA. Also, it was observed that curcumin significantly restored hepatic pro-inflammatory markers and testicular steroidogenic enzymes. In conclusion, curcumin has antioxidant, anti-inflammatory, and immunomodulatory effects and is able to minimize the LA-induced oxidative damage in rats.
Collapse
Affiliation(s)
- Fatma M Abdelhamid
- Clinical Pathology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt.
| | - Hebatallah A Mahgoub
- Pathology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Ahmed I Ateya
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
57
|
Vallée A, Lecarpentier Y. Curcumin and Endometriosis. Int J Mol Sci 2020; 21:E2440. [PMID: 32244563 PMCID: PMC7177778 DOI: 10.3390/ijms21072440] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/17/2020] [Accepted: 03/23/2020] [Indexed: 12/14/2022] Open
Abstract
Endometriosis is one of the main common gynecological disorders, which is characterized by the presence of glands and stroma outside the uterine cavity. Some findings have highlighted the main role of inflammation in endometriosis by acting on proliferation, apoptosis and angiogenesis. Oxidative stress, an imbalance between reactive oxygen species and antioxidants, could have a key role in the initiation and progression of endometriosis by resulting in inflammatory responses in the peritoneal cavity. Nevertheless, the mechanisms underlying this disease are still unclear and therapies are not currently efficient. Curcumin is a major anti-inflammatory agent. Several findings have highlighted the anti-oxidant, anti-inflammatory and anti-angiogenic properties of curcumin. The purpose of this review is to summarize the potential action of curcumin in endometriosis by acting on inflammation, oxidative stress, invasion and adhesion, apoptosis and angiogenesis.
Collapse
Affiliation(s)
- Alexandre Vallée
- Diagnosis and Therapeutic Center, Hypertension and Cardiovascular Prevention Unit, Hôtel-Dieu Hospital, AP-HP, Paris-Descartes University, 75004 Paris, France
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l’Est Francilien (GHEF), 77100 Meaux, France;
| |
Collapse
|
58
|
Prasad KN, Bondy SC. Oxidative and Inflammatory Events in Prion Diseases: Can They Be Therapeutic Targets? Curr Aging Sci 2020; 11:216-225. [PMID: 30636622 PMCID: PMC6635421 DOI: 10.2174/1874609812666190111100205] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 10/17/2018] [Accepted: 12/10/2018] [Indexed: 01/15/2023]
Abstract
Prion diseases are a group of incurable infectious terminal neurodegenerative diseases caused by the aggregated misfolded PrPsc in selected mammals including humans. The complex physical interaction between normal prion protein PrPc and infectious PrPsc causes conformational change from the α- helix structure of PrPc to the β-sheet structure of PrPsc, and this process is repeated. Increased oxidative stress is one of the factors that facilitate the conversion of PrPc to PrPsc. This overview presents evidence to show that increased oxidative stress and inflammation are involved in the progression of this disease. Evidence is given for the participation of redoxsensitive metals Cu and Fe with PrPsc inducing oxidative stress by disturbing the homeostasis of these metals. The fact that some antioxidants block the toxicity of misfolded PrPc peptide supports the role of oxidative stress in prion disease. After exogenous infection in mice, PrPsc enters the follicular dendritic cells where PrPsc replicates before neuroinvasion where they continue to replicate and cause inflammation leading to neurodegeneration. Therefore, reducing levels of oxidative stress and inflammation may decrease the rate of the progression of this disease. It may be an important order to reduce oxidative stress and inflammation at the same time. This may be achieved by increasing the levels of antioxidant enzymes by activating the Nrf2 pathway together with simultaneous administration of dietary and endogenous antioxidants. It is proposed that a mixture of micronutrients could enable these concurrent events thereby reducing the progression of human prion disease.
Collapse
Affiliation(s)
- Kedar N Prasad
- Engage Global, 245 El Faison Drive, San Rafael, CA, United States
| | - Stephen C Bondy
- Center for Occupational and Environmental Health, Department of Medicine, University of California, Irvine, CA 92697, United States
| |
Collapse
|
59
|
Nouri-Vaskeh M, Afshan H, Malek Mahdavi A, Alizadeh L, Fan X, Zarei M. Curcumin ameliorates health-related quality of life in patients with liver cirrhosis: A randomized, double-blind placebo-controlled trial. Complement Ther Med 2020; 49:102351. [PMID: 32147077 DOI: 10.1016/j.ctim.2020.102351] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/16/2020] [Accepted: 02/18/2020] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES Current study aimed to find the effects of curcumin on quality of life (QoL) in liver cirrhotic patients. DESIGN In this randomized double-masked placebo-controlled trial, 70 cases with liver cirrhosis aged 20-70 years were randomly divided into two groups to receive 1000 mg/day curcumin (n = 35) or placebo (n = 35) for 12 weeks. The health-related QoL (HRQoL) was assessed by CLDQ, LDSI 2.0, and SF-36. RESULTS Fifty-eight patients (28 in curcumin and 30 in placebo groups) finished the research. Compared with baseline, overall scores as well as most of CLDQ domains (e.g. Fatigue, Emotional Function, Worry, Abdominal Symptoms, and Systemic Symptoms) and the Physical and Mental health (Total) scores and most of SF-36 domains (e.g. Physical Functioning, Bodily Pain, Vitality, Social Functioning, and Mental Health) increased considerably (P < 0.05) after curcumin administration. Furthermore, curcumin reduced most of LDSI 2.0 domains (e.g. Itch, Joint pain, Pain in the right upper abdomen, Sleeping during the day, Decreased appetite, Depression, Fear of complication, Jaundice, Hindrance in Financial Affairs, Change in use of time, Decreased sexual interest, and Decreased sexual activity) significantly (P < 0.05). Significant differences were noticed between two groups in CLDQ domains and overall scores, LDSI 2.0 domains and overall scores, SF-36 Physical and Mental health (total) scores and all its domains scores (P < 0.05), adjusting for baseline values and disease duration. CONCLUSIONS Curcumin improved QoL in liver cirrhotic patients according to CLDQ, LDSI 2.0, and SF-36 domains. Additional studies are warranted to consider curcumin as a safe, accessible, and low-cost complementary therapeutic option in cirrhosis.
Collapse
Affiliation(s)
- Masoud Nouri-Vaskeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Afshan
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aida Malek Mahdavi
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Leila Alizadeh
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Xiude Fan
- Department of Infectious Diseases, The First Affiliated Hospital of Xi 'an Jiaotong University, Xi'an, 710061 China; Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, 44195, USA
| | - Mohammad Zarei
- Departrment of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA; Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, USA
| |
Collapse
|
60
|
Lu Y, Wu S, Xiang B, Li L, Lin Y. Curcumin Attenuates Oxaliplatin-Induced Liver Injury and Oxidative Stress by Activating the Nrf2 Pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:73-85. [PMID: 32021093 PMCID: PMC6956999 DOI: 10.2147/dddt.s224318] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/13/2019] [Indexed: 12/21/2022]
Abstract
Purpose Oxaliplatin (OXA)-induced liver injury is one of the main limiting factors affecting the efficacy of OXA-based chemotherapy in patients with colorectal liver metastases. In addition, oxidative stress is an important pathophysiological mechanism of OXA-induced liver injury. Therefore, dietary antioxidants may decrease or prevent hepatic toxicity in vivo and be beneficial to OXA-based chemotherapy. Methods An experimental OXA-induced liver injury animal model was established, and the protective effects of curcumin (CUR) against OXA-induced liver injury were investigated. ELISA was used to determine the levels of MDA, SOD, CAT, and GSH in liver tissue. The effect of CUR treatment on the expression of cytokines and the Nrf2 pathway was determined by real-time PCR and Western blotting. Results CUR treatment alleviated OXA-induced hepatic pathological damage and splenomegaly. The protective effect of CUR was demonstrated to be correlated with inhibition of oxidative stress, inflammation, and the coagulation system. Furthermore, Western blotting revealed that CUR treatment reverses the suppression of Nrf2 nuclear translocation and increases the expression of HO-1 and NOQ1 in mice with OXA-induced liver injury. Moreover, the Nrf2 activation and hepatoprotective effect of CUR were abolished by brusatol. Conclusion Curcumin attenuates oxaliplatin-induced liver injury and oxidative stress by activating the Nrf2 pathway, which suggests that CUR may be potentially used in the prevention and treatment of OXA-induced liver injury.
Collapse
Affiliation(s)
- Yulei Lu
- Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, People's Republic of China
| | - Shengming Wu
- Departments of Pathology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, People's Republic of China
| | - Bangde Xiang
- Departments of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, People's Republic of China
| | - Lequn Li
- Departments of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, People's Republic of China
| | - Youzhi Lin
- Departments of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, People's Republic of China
| |
Collapse
|
61
|
Dalvand H, Hematfar A, Behpoor N. Interactive Effects of Exhaustive Exercise Training and Curcumin Supplementation on PDGF-BB and TGF-β1 Gene Expressions in Alcoholic Rats. NUTRITION AND FOOD SCIENCES RESEARCH 2020. [DOI: 10.29252/nfsr.7.1.33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
62
|
Inflammation and Oxidative Stress in Chronic Kidney Disease-Potential Therapeutic Role of Minerals, Vitamins and Plant-Derived Metabolites. Int J Mol Sci 2019; 21:ijms21010263. [PMID: 31906008 PMCID: PMC6981831 DOI: 10.3390/ijms21010263] [Citation(s) in RCA: 280] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/23/2019] [Accepted: 12/27/2019] [Indexed: 02/07/2023] Open
Abstract
Chronic kidney disease (CKD) is a debilitating pathology with various causal factors, culminating in end stage renal disease (ESRD) requiring dialysis or kidney transplantation. The progression of CKD is closely associated with systemic inflammation and oxidative stress, which are responsible for the manifestation of numerous complications such as malnutrition, atherosclerosis, coronary artery calcification, heart failure, anemia and mineral and bone disorders, as well as enhanced cardiovascular mortality. In addition to conventional therapy with anti-inflammatory and antioxidative agents, growing evidence has indicated that certain minerals, vitamins and plant-derived metabolites exhibit beneficial effects in these disturbances. In the current work, we review the anti-inflammatory and antioxidant properties of various agents which could be of potential benefit in CKD/ESRD. However, the related studies were limited due to small sample sizes and short-term follow-up in many trials. Therefore, studies of several anti-inflammatory and antioxidant agents with long-term follow-ups are necessary.
Collapse
|
63
|
Akhtar S, Khan Q, Anwar S, Ali G, Maqbool M, Khan M, Karim S, Gao L. A Comparative Study of the Toxicity of Polyethylene Glycol-Coated Cobalt Ferrite Nanospheres and Nanoparticles. NANOSCALE RESEARCH LETTERS 2019; 14:386. [PMID: 31858281 PMCID: PMC6923315 DOI: 10.1186/s11671-019-3202-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/31/2019] [Indexed: 06/10/2023]
Abstract
We present a comparative study of the toxicity of polyethylene glycol (PEG)-coated cobalt ferrite nanoparticles and nanospheres. Nanoparticles were prepared by hydrothermal method while nanospheres were prepared by solvothermal technique. The surface of nanomaterials was successfully modified with polyethylene glycol. To investigate the morphology of the prepared samples, X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, thermogravimetric analysis (TGA), and electron microscopy techniques were employed. Structural analyses confirmed the formation of polycrystalline cobalt ferrite nanoparticles with diameters in the range 20-25 nm and nanospheres in the range 80-100 nm, respectively. Kunming SPF mice (female, 6-8 weeks old) were used to investigate the toxicity induced by cobalt ferrite nanoparticles and nanospheres in different organs of the mice. Biodistribution studies, biochemical indices, histopathological assessments, inflammatory factors, oxidation and antioxidant levels, and cytotoxicity tests were performed to assess the toxicity induced by cobalt ferrite nanoparticles and nanospheres in mice. Cobalt ferrite nanospheres were found to be more toxic than the nanoparticles and curcumin was proved to be a good healing agent for the toxicity induced by PEG-coated cobalt ferrite nanomaterials in mice.
Collapse
Affiliation(s)
- Shahnaz Akhtar
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, PR China
| | - Qasim Khan
- Shenzhen Key Laboratory of Flexible Memory Materials and Devices, College of Electronic Science and Technology, Shenzhen University, Shenzhen, 518000, China
| | - Shahzad Anwar
- Department of Physics, Islamia College Peshawar (Chartered University), Peshawar, 25120, Pakistan
| | - Ghafar Ali
- Nanomaterials Research Group, Physics Division PINSTECH, Nilore, Islamabad, 45650, Pakistan
| | - Muhammad Maqbool
- Department of Clinical & Diagnostic Sciences, The University of Alabama at Birmingham, Birmingham, AL, 35294-1212, USA
| | - Maaz Khan
- Nanomaterials Research Group, Physics Division PINSTECH, Nilore, Islamabad, 45650, Pakistan
| | - Shafqat Karim
- Nanomaterials Research Group, Physics Division PINSTECH, Nilore, Islamabad, 45650, Pakistan
| | - Lan Gao
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, PR China.
| |
Collapse
|
64
|
Prasad KN, Bondy SC. Increased oxidative stress, inflammation, and glutamate: Potential preventive and therapeutic targets for hearing disorders. Mech Ageing Dev 2019; 185:111191. [PMID: 31765645 DOI: 10.1016/j.mad.2019.111191] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/30/2019] [Accepted: 11/20/2019] [Indexed: 12/17/2022]
Abstract
Hearing disorders constitute one of the major health concerns in the USA. Decades of basic and clinical studies have identified numerous ototoxic agents and investigated their modes of action on the inner ear, utilizing tissue culture as well as animal and human models. Current preventive and therapeutic approaches are considered unsatisfactory. Therefore, additional modalities should be developed. Many studies suggest that increased levels of oxidative stress, chronic inflammation, and glutamate play an important role in the initiation and progression of damage to the inner ear leading to hearing impairments. To prevent these cellular deficits, antioxidants, anti-inflammatory agents, and antagonists of glutamate receptor have been used individually or in combination with limited success. It is essential, therefore, to simultaneously enhance the levels of antioxidant enzymes by activating the Nrf2 (a nuclear transcriptional factor) pathway, dietary and endogenous antioxidant compounds, and B12-vitamins in order to reduce the levels of oxidative stress, chronic inflammation, and glutamate at the same time. This review presents evidence to show that increased levels of these cellular metabolites, biochemical or factors are involved in the pathogenesis of cochlea leading to hearing impairments. It presents scientific rationale for the use of a mixture of micronutrients that may decrease the levels of oxidative damage, chronic inflammation, and glutamate at the same time. The benefits for using oral administration of proposed micronutrient mixture in humans are presented. Animal and limited human studies indirectly suggest that orally administered micronutrients can accumulate in the inner ear. Therefore, this route of administration may be useful in prevention, and in combination with standard care, in improved management of hearing problems following exposure to well-recognized and studied ototoxic agents, such as noise, cisplatin, aminoglycoside antibiotics, and advanced age.
Collapse
Affiliation(s)
- Kadar N Prasad
- Engage Global, 245 El Faisan Drive, San Rafael, CA, 94903, United States.
| | - Stephen C Bondy
- Center for Occupational and Environmental Health, Department of Medicine, University of California, Irvine, CA, 92697-1830, United States
| |
Collapse
|
65
|
Han XQ, Xu SQ, Lin JG. Curcumin Recovers Intracellular Lipid Droplet Formation Through Increasing Perilipin 5 Gene Expression in Activated Hepatic Stellate Cells In Vitro. Curr Med Sci 2019; 39:766-777. [DOI: 10.1007/s11596-019-2104-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/02/2019] [Indexed: 02/06/2023]
|
66
|
Buonomo AR, Scotto R, Nappa S, Arcopinto M, Salzano A, Marra AM, D’Assante R, Zappulo E, Borgia G, Gentile I. The role of curcumin in liver diseases. Arch Med Sci 2019; 15:1608-1620. [PMID: 31749891 PMCID: PMC6855174 DOI: 10.5114/aoms.2018.73596] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/20/2017] [Indexed: 01/11/2023] Open
Affiliation(s)
- Antonio Riccardo Buonomo
- Department of Clinical Medicine and Surgery – Section of Infectious Diseases, University of Naples “Federico II”, Naples, Italy
| | - Riccardo Scotto
- Department of Clinical Medicine and Surgery – Section of Infectious Diseases, University of Naples “Federico II”, Naples, Italy
| | - Salvatore Nappa
- Department of Clinical Medicine and Surgery – Section of Infectious Diseases, University of Naples “Federico II”, Naples, Italy
| | - Michele Arcopinto
- Department of Translational Medical Science, University of Naples “Federico II”, Naples, Italy
| | - Andrea Salzano
- Department of Translational Medical Science, University of Naples “Federico II”, Naples, Italy
- Department of Cardiovascular Sciences and NIHR Leicester Biomedical Research Centre, University of Leicester, Glenfield Hospital, Groby Road, Leicester, UK
| | | | | | - Emanuela Zappulo
- Department of Clinical Medicine and Surgery – Section of Infectious Diseases, University of Naples “Federico II”, Naples, Italy
| | - Guglielmo Borgia
- Department of Clinical Medicine and Surgery – Section of Infectious Diseases, University of Naples “Federico II”, Naples, Italy
| | - Ivan Gentile
- Department of Clinical Medicine and Surgery – Section of Infectious Diseases, University of Naples “Federico II”, Naples, Italy
| |
Collapse
|
67
|
Ben Hsouna A, Gargouri M, Dhifi W, Saibi W. Antioxidant and hepato-preventive effect of Citrus aurantium extract against carbon tetrachloride-induced hepatotoxicity in rats and characterisation of its bioactive compounds by HPLC-MS. Arch Physiol Biochem 2019; 125:332-343. [PMID: 29663826 DOI: 10.1080/13813455.2018.1461233] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The objective of this study is to explore the preventive effects of ethyl acetate fraction from Citrus aurantium leaf extract (EACA), associated with its phytochemical content, against the toxic impacts of acute exposure to carbon tetrachloride (CCl4) in the liver of adult rats. HPLC analysis of ethyl acetate fraction from extract C. aurantium revealed eight compounds. Administration of a single dose of CCl4 caused hepatoxicity as monitored by an increase in lipid peroxidation (thiobarbituric acid reactive substances) and in protein carbonyl level but a decrease in antioxidant markers in the liver tissue. The pre-treatment with EACA; significantly prevented the increased plasma levels of hepatic markers and lipid levels induced by CCl4 in rats. Furthermore, this fraction ameliorated biochemical and histological parameters as compared to CCl4-treated group. Our results suggest that C. aurantium contains promising substances to counteract the CCl4 intoxication and can be efficient in the prevention of hepatotoxicity complications.
Collapse
Affiliation(s)
- Anis Ben Hsouna
- a Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax , Sfax , Tunisia
| | - Manel Gargouri
- b Laboratory of Animal Ecophysiology, Faculty of Sciences, University of Sfax , Sfax , Tunisia
| | - Wissal Dhifi
- c Laboratory of Biotechnology and Valorisation of Bio-GeoRessources (BVBGR), Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Biotechpole Sidi Thabet , Ariana , Tunisia
| | - Walid Saibi
- a Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax , Sfax , Tunisia
| |
Collapse
|
68
|
Ali I, Suhail M, Naqshbandi MF, Fazil M, Ahmad B, Sayeed A. Role of Unani Medicines in Cancer Control and Management. CURRENT DRUG THERAPY 2019. [DOI: 10.2174/1574885513666180907103659] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Background:Cancer is a havoc and killer disease. Several ways including allopathic chemotherapy have been used in the cancer treatment. Allopathic chemotherapy has several limitations and side effects. Unani medicine is also one of the therapies to cure cancer.Objective:In this type of treatment, herbal drugs are used for the treatment and prevention of cancer. The main attractive thing about herbal drug is no side effect as compared to allopathic chemotherapy.Methods:Actually, herbal drugs are the extracts of medicinal plants. The plant extracts are obtained by crushing and heating the main part of the plants; showing anticancer activity. The main plants used in the treatment of cancer are oroxylum indicum, dillenia indica, terminalia arjuna etc.Results:Mainly the cancers treated are of digestive system, breast, cervical, brain, blood, bone, lungs, thyroid, uterine, bladder, throat etc.Conclusion:The present review article discusses the importance of Unani system of medicine for the treatment of cancer. Besides, the future perspectives of Unani medicine in cancer treatment are also highlighted.
Collapse
Affiliation(s)
- Imran Ali
- Department of Chemistry, Jamia Millia Islamia (Central University), New Delhi-110025, India
| | - Mohd. Suhail
- Department of Chemistry, Jamia Millia Islamia (Central University), New Delhi-110025, India
| | - Mohd. Farooq Naqshbandi
- Department of Biotechnology, Jamia Millia Islamia (Central University), New Delhi- 110025, India
| | - Mohd. Fazil
- Hakim Ajmal Khan Institute for Literary & Historical Research in Unani Medicine, Dr. M. A. Ansari Health Centre, Jamia Millia Islamia (Central University), Jamia Nagar, New Delhi-110025, India
| | - Bilal Ahmad
- Hakim Ajmal Khan Institute for Literary & Historical Research in Unani Medicine, Dr. M. A. Ansari Health Centre, Jamia Millia Islamia (Central University), Jamia Nagar, New Delhi-110025, India
| | - Ahmad Sayeed
- Hakim Ajmal Khan Institute for Literary & Historical Research in Unani Medicine, Dr. M. A. Ansari Health Centre, Jamia Millia Islamia (Central University), Jamia Nagar, New Delhi-110025, India
| |
Collapse
|
69
|
Pickich MB, Hargrove MW, Phillips CN, Healy JC, Moore AN, Roberts MD, Martin JS. Effect of curcumin supplementation on serum expression of select cytokines and chemokines in a female rat model of nonalcoholic steatohepatitis. BMC Res Notes 2019; 12:496. [PMID: 31399137 PMCID: PMC6688243 DOI: 10.1186/s13104-019-4540-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/03/2019] [Indexed: 12/24/2022] Open
Abstract
Objective We recently reported that curcumin supplementation in a metabolically (i.e., Western diet [WD]) and chemically (i.e., CCl4) induced female rat model of non-alcoholic steatohepatitis (NASH) was associated with lower liver pathology scores and molecular markers of inflammation. This occurred when curcumin was given during induction of disease (preventative arm; 8-week WD with or without curcumin [8WD + C vs. 8WD]) as well as when given after disease development (treatment arm; 12-week WD with or without curcumin during weeks 9–12 [12WD + C vs. 12WD]). Herein, we sought to extend our findings from that study by determining the effects of curcumin supplementation on cytokine/chemokine expression in serum collected from these same rats. Results 24 cytokines/chemokines were assayed. IL-2 (+ 80%) and IL-13 (+ 83%) were greater with curcumin supplementation in the prevention arm. IL-2 (+ 192%), IL-13 (+ 87%), IL-17A (+ 81%) and fractalkine (+ 121%) were higher while RANTES was lower (− 22%) with curcumin supplementation in the treatment arm (p < 0.05 for all). RANTES concentrations also correlated significantly with hepatic pathology scores of inflammation (r = 0.417, p = 0.008). Select serum cytokines/chemokines were affected with curcumin supplementation in this female rat model of NASH. Moreover, curcumin’s effect(s) on RANTES and its association with liver disease pathogenesis and progression may warrant further investigation.
Collapse
Affiliation(s)
- Matthew B Pickich
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine-Auburn Campus, Auburn, AL, 36832, USA
| | - Mark W Hargrove
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine-Auburn Campus, Auburn, AL, 36832, USA
| | - C Niles Phillips
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine-Auburn Campus, Auburn, AL, 36832, USA
| | - James C Healy
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine-Auburn Campus, Auburn, AL, 36832, USA
| | - Angelique N Moore
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine-Auburn Campus, Auburn, AL, 36832, USA
| | - Michael D Roberts
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine-Auburn Campus, Auburn, AL, 36832, USA. .,School of Kinesiology, Auburn University, Auburn, AL, 36849, USA.
| | - Jeffrey S Martin
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine-Auburn Campus, Auburn, AL, 36832, USA. .,School of Kinesiology, Auburn University, Auburn, AL, 36849, USA. .,Department of Basic Medical Sciences, Debusk College of Osteopathic Medicine, Knoxville, TN, 37932, USA.
| |
Collapse
|
70
|
Ahmad MM, Rezk NA, Fawzy A, Sabry M. Protective effects of curcumin and silymarin against paracetamol induced hepatotoxicity in adult male albino rats. Gene 2019; 712:143966. [PMID: 31279711 DOI: 10.1016/j.gene.2019.143966] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 06/17/2019] [Accepted: 07/03/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Acute paracetamol (PCM) toxicity is a clinical problem; can result in a serious liver injury that finally may progress to acute liver failure. Curcumin (CUR) is a prevalent natural compound that can maintain prooxidant/antioxidant balance and thus can help in liver protection; also, Silymarin (SL) is a traditional antioxidant herb, used to treat liver disorders through scavenging free radicals. This study aimed to illustrate the histological, biochemical and molecular changes induced by acute PCM overdose on rats' liver to elucidate the effectiveness of CUR compared to SL in alleviating such changes. MATERIALS AND METHODS Male Wister Albino rats were divided into 6 groups each comprising 23 rats: control group, curcumin (CUR) treated group received (100 mg CUR/ kg), silymarin treated group received (100 mg SL/kg) for 7 successive days. Paracetamol (PCM) exposed group administered a single dose of PCM (200 mg/kg orally on 8th day). PCM + CUR group and PCM + SL group pretreated with CUR and SL respectively for 7 days then received single PCM dose (200 mg/kg) on the 8th day. Blood and liver tissues were collected for biochemical, histopathological and immunohistochemical analyses using anti-p53 antibody. In addition, real time polymerase chain reaction (RT- PCR) was used to measure Bax, bcl2 and Peroxisome proliferator-activated receptor-gamma (PPAR γ) mRNA expression levels. RESULTS In the paracetamol overdose group, the liver architecture showed necrotic changes, hydropic degeneration, congestion and dilatation of central veins. This hepatocellular damage was confirmed by a significant increase of AST, ALT levels and by an apparent increase in the number of p53 stained cells. PCM toxicity showed significant elevation of total oxidant status (TOS), oxidant status index (OSI) and decreased total antioxidant capacity (TAC) compared to controls (p < 0.001). Gene expression analysis showed that PCM caused an elevation of bcl2 and a reduction of both Bax and PPARγ mRNA expression. The histological alternation in the liver architecture was markedly improved in (PCM + CUR) group compared to (PCM+ SL) group, with an obvious decrease in the number of P53 stained cells. CUR pretreatment inhibited the elevation of TOS and OSI as well as the reduction of TAC caused by PCM toxicity compared to (PCM + SL) group. CONCLUSION Both SL and CUR pretreatment prevented the toxic effects of PCM, but CUR is more effective than SL in ameliorating acute PCM induced hepatotoxicity.
Collapse
Affiliation(s)
- Marwa M Ahmad
- Anatomy Department, Faculty of Medicine, Zagazig University, Egypt
| | - Noha A Rezk
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Egypt.
| | - Amal Fawzy
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Egypt
| | - Mohamed Sabry
- Anatomy Department, Faculty of Medicine, Zagazig University, Egypt
| |
Collapse
|
71
|
Laabbar W, Elgot A, Elhiba O, Gamrani H. Curcumin prevents the midbrain dopaminergic innervations and locomotor performance deficiencies resulting from chronic aluminum exposure in rat. J Chem Neuroanat 2019; 100:101654. [PMID: 31170442 DOI: 10.1016/j.jchemneu.2019.101654] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 05/06/2019] [Accepted: 05/24/2019] [Indexed: 10/26/2022]
Abstract
Aluminum (Al) among the abundant metals on the earth crust, is able to cross the biological barriers via the gastrointestinal and lung tissues. Once in the body, this heavy metal accumulates in different organs, especially the central nervous system. Though its influence is evidently shown in the substantia nigra of Parkinson's disease patients and other brain areas in other neurodegenerative diseases, few studies have demonstrated that Al could trigger profound changes in neurotransmission systems including the dopaminergic (DAergic) system. A variety of medicinal plants may be prescribed in such contamination, including some culinary spices such as Curcumin (Cur). Several studies have proven Cur to exhibit a wide variety of biological and pharmacological activities, especially its antioxidant potential. Using the immunohistochemistry, of tyrosine hydroxylase (TH), in the midbrain substantia nigra pars compact (SNc) and the ventral tegmental area (VTA) and the open field test, we examined the DAergic system together with the locomotor behavior respectively in rats exposed chronically to Al (0,3%) in drinking water during 4 months since the intra-uterine age, as well as the neuroprotective effect of the concomitant administration of Cur I (30 mg/kg B.W) of chronic Al exposed rats. Our results have shown a significant decrease of TH immureactivity in both SNc and VTA associated to a loss of the number of crossed boxes, leading to a difficient locomotor performance in the Al group while Cur I prevents such TH immunoreactivity impairment and maintains a higher locomotor activity in the Al-CurI group. Our findings lead to suppose a powerful and obvious neuroprotective potential of CurI against Al-induced neurotoxicity of the DAergic system involved in the control of the locomotor behavior.
Collapse
Affiliation(s)
- Wafaa Laabbar
- Equip Neurosciences, Pharmacology and Environment, Cadi Ayyad University, Faculty of Sciences Semlalia, B.P. 2390, Marrakesh, Morocco
| | - Abdeljalil Elgot
- Equip Neurosciences, Pharmacology and Environment, Cadi Ayyad University, Faculty of Sciences Semlalia, B.P. 2390, Marrakesh, Morocco; Laboratoire des Sciences et Technologies de la Santé, Unité des Sciences biomédicales, Institut Supérieur des Sciences de la santé, Université Hassan I, Settat, Morocco
| | - Omar Elhiba
- Equip Neurosciences, Pharmacology and Environment, Cadi Ayyad University, Faculty of Sciences Semlalia, B.P. 2390, Marrakesh, Morocco; Nutrition and Food Sciences laboratory, Nutritional Physiopathologies Team, Faculty of Sciences, Chouaib Doukkali University El Jadida,Route Ben Maachou, B.P. 20, Avenue des Facultés, El Jadida, Morocco
| | - Halima Gamrani
- Equip Neurosciences, Pharmacology and Environment, Cadi Ayyad University, Faculty of Sciences Semlalia, B.P. 2390, Marrakesh, Morocco.
| |
Collapse
|
72
|
Esmaeilzadeh E, Soleimani M, Zare-Abdollahi D, Jameie B, Khorram Khorshid HR. Curcumin ameliorates experimental autoimmune encephalomyelitis in a C57BL/6 mouse model. Drug Dev Res 2019; 80:629-636. [PMID: 31033006 DOI: 10.1002/ddr.21540] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/09/2019] [Accepted: 04/12/2019] [Indexed: 02/06/2023]
Abstract
Multiple sclerosis (MS) is a common inflammatory disease of the central nervous system. Although the exact etiology of the disease is largely unknown, it is identified that cytokines may play an important role in the pathogenesis of MS. In this study, the effects of curcumin has been investigated on the expression levels of selected cytokine coding genes as well as the extent of demyelination in the corpus callosum of C57BL/6 experimental autoimmune encephalomyelitis (EAE) model of MS. Gene expression analyses revealed that treatment with curcumin could lead to a significant reduction in the expression levels of pro-inflammatory cytokine coding genes including IL-6 (p = 0.001), IL-17 (p = 0.001), tumor necrosis factor (TNF)-α (p = 0.008), and interferon (IFN)-γ (p = 0.033) as well as a significant increase in the expression level of transforming growth factor (TGF)-β (p = 0.006) as an anti-inflammatory cytokine. Moreover, the expression of glutathione peroxidase (GPX)-1 gene and the activity of anti-oxidant enzymes were significantly higher (p < 0.001) in curcumin-treated mice. Luxol fast blue staining also confirmed a significant reduction in the extent of demyelination in the curcumin-treated group (p < 0.001). Our results have confirmed that curcumin is an effective therapeutic agent that could ameliorate the severity of EAE.
Collapse
Affiliation(s)
- Emran Esmaeilzadeh
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Maryam Soleimani
- Department of basic science, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Davood Zare-Abdollahi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Behnamedin Jameie
- Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
73
|
Bellassoued K, Ghrab F, Hamed H, Kallel R, van Pelt J, Lahyani A, Ayadi FM, El Feki A. Protective effect of essential oil of Cinnamomum verum bark on hepatic and renal toxicity induced by carbon tetrachloride in rats. Appl Physiol Nutr Metab 2019; 44:606-618. [PMID: 30994004 DOI: 10.1139/apnm-2018-0246] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The inner bark of cinnamon (Cinnamomum verum) is widely used as a spice. Cinnamon plants are also a valuable source of essential oil used for medicinal purposes. The present study aimed to investigate the composition and in vitro antioxidant activity of essential oil of C. verum bark (CvEO) and its protective effects in vivo on CCl4-induced hepatic and renal toxicity in rats. Groups of animals were pretreated for 7 days with CvEO (70 or 100 mg/kg body weight) or received no treatment and on day 7 a single dose of CCl4 was used to induce oxidative stress. Twenty-four hours after CCl4 administration, the animals were euthanized. In the untreated group, CCl4 induced an increase in serum biochemical parameters and triggered oxidative stress in both liver and kidneys. CvEO (100 mg/kg) caused significant reductions in CCl4-elevated levels of alanine transaminase, aspartate transaminase, alkaline phosphatase, γ-glutamyl transferase, lactate dehydrogenase, total cholesterol, triglycerides, low-density lipoprotein, urea, and creatinine and increased the level of high-density lipoprotein compared with the untreated group. Moreover, pretreatment with CvEO at doses of 70 and 100 mg/kg before administration of CCl4 produced significant reductions in thiobarbituric acid reactive substances and protein carbonyl levels in liver and kidney tissues compared with the untreated group. The formation of pathological hepatic and kidney lesions induced by the administration of CCl4 was strongly prevented by CvEO at a dose of 100 mg/kg. Overall, this study suggests that administration of CvEO has high potential to quench free radicals and alleviate CCl4-induced hepatorenal toxicity in rats.
Collapse
Affiliation(s)
- Khaled Bellassoued
- a Department of Life Sciences, Animal Ecophysiology Laboratory, Faculty of Sciences of Sfax, University of Sfax, BP 1171, 3000 Sfax, Tunisia
| | - Ferdaws Ghrab
- b Coastal and Urban Environments, National Engineering School of Sfax, University of Sfax, BP 1173, 3038 Sfax, Tunisia
| | - Houda Hamed
- a Department of Life Sciences, Animal Ecophysiology Laboratory, Faculty of Sciences of Sfax, University of Sfax, BP 1171, 3000 Sfax, Tunisia
| | - Rim Kallel
- c Anatomopathology Laboratory, Habib Bourguiba University Hospital, Faculty of Medicine of Sfax, University of Sfax, 3029 Sfax, Tunisia
| | - Jos van Pelt
- d Laboratory of Clinical Digestive Oncology, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Amina Lahyani
- e Biochemistry Laboratory, Habib Bourguiba University Hospital, 3029 Sfax, Tunisia
| | - Fatma Makni Ayadi
- e Biochemistry Laboratory, Habib Bourguiba University Hospital, 3029 Sfax, Tunisia
| | - Abdelfattah El Feki
- a Department of Life Sciences, Animal Ecophysiology Laboratory, Faculty of Sciences of Sfax, University of Sfax, BP 1171, 3000 Sfax, Tunisia
| |
Collapse
|
74
|
Mohammadi A, Blesso CN, Barreto GE, Banach M, Majeed M, Sahebkar A. Macrophage plasticity, polarization and function in response to curcumin, a diet-derived polyphenol, as an immunomodulatory agent. J Nutr Biochem 2019; 66:1-16. [PMID: 30660832 DOI: 10.1016/j.jnutbio.2018.12.005] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/04/2018] [Accepted: 12/12/2018] [Indexed: 12/19/2022]
Abstract
Monocytes and macrophages are important cells of the innate immune system that have diverse functions, including defense against invading pathogens, removal of dead cells by phagocytosis, antigen presentation in the context of MHC class I and class II molecules, and production of various pro-inflammatory cytokines and chemokines such as IL-1β, IL-6, TNF-α and MCP-1. In addition, pro-inflammatory (M1) and anti-inflammatory (M2) macrophages clearly play important roles in the progression of several inflammatory diseases. Therefore, therapies that target macrophage polarization and function by either blocking their trafficking to sites of inflammation, or skewing M1 to M2 phenotype polarization may hold clinical promise in several inflammatory diseases. Dietary-derived polyphenols have potent natural anti-oxidative properties. Within this group of polyphenols, curcumin has been shown to suppress macrophage inflammatory responses. Curcumin significantly reduces co-stimulatory molecules and also inhibits MAPK activation and the translocation of NF-κB p65. Curcumin can also polarize/repolarize macrophages toward the M2 phenotype. Curcumin-treated macrophages have been shown to be highly efficient at antigen capture and endocytosis via the mannose receptor. These novel findings provide new perspectives for the understanding of the immunopharmacological role of curcumin, as well as its therapeutic potential for impacting macrophage polarization and function in the context of inflammation-related disease. However, the precise effects of curcumin on the migration, differentiation, polarization and immunostimulatory functions of macrophages remain unknown. Therefore, in this review, we summarized whether curcumin can influence macrophage polarization, surface molecule expression, cytokine and chemokine production and their underlying pathways in the prevention of inflammatory diseases.
Collapse
Affiliation(s)
- Asadollah Mohammadi
- Cellular & Molecular Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | | | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia; Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Maciej Banach
- Department of Hypertension, WAM University Hospital in Lodz, Medical University of Lodz, Zeromskiego 113, Lodz, Poland; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| | | | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, University of Western Australia, Perth, Australia.
| |
Collapse
|
75
|
Wang C, Song X, Shang M, Zou W, Zhang M, Wei H, Shao H. Curcumin exerts cytotoxicity dependent on reactive oxygen species accumulation in non-small-cell lung cancer cells. Future Oncol 2019; 15:1243-1253. [PMID: 30843426 DOI: 10.2217/fon-2018-0708] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AIM Curcumin induces cytotoxic cell death in several human cancer cells. Here, we have investigated the effects of curcumin on non-small-cell lung cancer (NSCLC) with an aim to identify underlying mechanisms of its cytotoxic effect. MATERIALS & METHODS The effects of various concentrations of curcumin on the NSCLC cell lines A549 and SPC-A1 were evaluated by MTT assay, colony-forming assay and flow cytometry. Additionally, protein expression associated with different signaling pathways was assessed using western blotting. RESULTS Curcumin exhibited cytotoxicity against NSCLC, evident from the inhibition of cell proliferation, G2/M arrest, DNA damage, endoplasmic reticulum stress and mitochondrial apoptosis. The anticancer effect was related to reactive oxygen species (ROS) accumulation and could be reversed by ROS scavengers, catalase and N-acetyl-l-cysteine. Curcumin decreased mitochondrial transmembrane potential and induced ROS production, thereby activating the DNA damage/repair pathway and mitochondrial apoptosis. CONCLUSION These results indicate that curcumin could be an effective therapeutic candidate for NSCLC.
Collapse
Affiliation(s)
- Cuijuan Wang
- Key Laboratory of Public Health, Shandong Academy of Occupational Health & Occupational Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong, PR China
| | - Xingguo Song
- Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong, PR China
| | - Ming Shang
- Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong, PR China
| | - Wei Zou
- Key Laboratory of Public Health, Shandong Academy of Occupational Health & Occupational Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong, PR China
| | - Mengping Zhang
- Key Laboratory of Public Health, Shandong Academy of Occupational Health & Occupational Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong, PR China
| | - Haiyan Wei
- Key Laboratory of Public Health, Shandong Academy of Occupational Health & Occupational Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong, PR China
| | - Hua Shao
- Key Laboratory of Public Health, Shandong Academy of Occupational Health & Occupational Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong, PR China
| |
Collapse
|
76
|
Schwörer S, Vardhana SA, Thompson CB. Cancer Metabolism Drives a Stromal Regenerative Response. Cell Metab 2019; 29:576-591. [PMID: 30773467 PMCID: PMC6692899 DOI: 10.1016/j.cmet.2019.01.015] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/12/2018] [Accepted: 01/20/2019] [Indexed: 01/07/2023]
Abstract
The metabolic reprogramming associated with malignant transformation has led to a growing appreciation of the nutrients required to support anabolic cell growth. Less well studied is how cancer cells satisfy those demands in vivo, where they are dispersed within a complex microenvironment. Tumor-associated stromal components can support tumor growth by providing nutrients that supplement those provided by the local vasculature. These non-malignant stromal cells are phenotypically similar to those that accumulate during wound healing. Owing to their immediate proximity, stromal cells are inevitably affected by the metabolic activity of their cancerous neighbors. Until recently, a role for tumor cell metabolism in influencing the cell fate decisions of neighboring stromal cells has been underappreciated. Here, we propose that metabolites consumed and released by tumor cells act as paracrine factors that regulate the non-malignant cellular composition of a developing tumor by driving stromal cells toward a regenerative response that supports tumor growth.
Collapse
Affiliation(s)
- Simon Schwörer
- Memorial Sloan Kettering Cancer Center, Cancer Biology and Genetics Program, New York, NY 10065, USA
| | - Santosha A Vardhana
- Memorial Sloan Kettering Cancer Center, Cancer Biology and Genetics Program, New York, NY 10065, USA
| | - Craig B Thompson
- Memorial Sloan Kettering Cancer Center, Cancer Biology and Genetics Program, New York, NY 10065, USA.
| |
Collapse
|
77
|
Liposomal Curcumin is Better than Curcumin to Alleviate Complications in Experimental Diabetic Mellitus. Molecules 2019; 24:molecules24050846. [PMID: 30818888 PMCID: PMC6429477 DOI: 10.3390/molecules24050846] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/19/2019] [Accepted: 02/26/2019] [Indexed: 01/14/2023] Open
Abstract
Curcumin (CC) is known to have anti-inflammatory and anti-oxidative properties and has already been tested for its efficiency in different diseases including diabetes mellitus (DM). New formulations and route administration were designed to obtain products with higher bioavailability. Our study aimed to test the effect of intraperitoneal (i.p.) administration of liposomal curcumin (lCC) as pre-treatment in streptozotocin(STZ)-induced DM in rats on oxidative stress, liver, and pancreatic functional parameters. Forty-two Wistar-Bratislava rats were randomly divided into six groups (seven animals/group): control (no diabetes), control-STZ (STZ-induced DM —60 mg/100g body weight a single dose intraperitoneal administration, and no CC pre-treatment), two groups with DM and CC pre-treatment (1mg/100g bw—STZ + CC1, 2 mg/100g bw—STZ + CC2), and two groups with DM and lCC pre-treatment (1 mg/100g bw—STZ + lCC1, 2 mg/100g bw—STZ + lCC1). Intraperitoneal administration of Curcumin in diabetic rats showed a significant reduction of nitric oxide, malondialdehyde, total oxidative stress, and catalase for both evaluated formulations (CC and lCC) compared to control group (p < 0.005), with higher efficacy of lCC formulation compared to CC solution (p < 0.002, excepting catalase for STZ + CC2vs. STZ + lCC1when p = 0.0845). The CC and lCC showed hepatoprotective and hypoglycemic effects, a decrease in oxidative stress and improvement in anti-oxidative capacity status against STZ-induced DM in rats (p < 0.002). The lCC also proved better efficacy on MMP-2, and -9 plasma levels as compared to CC (p < 0.003, excepting STZ + CC2 vs. STZ + lCC1 comparison with p = 0.0553). The lCC demonstrated significantly better efficacy as compared to curcumin solution on all serum levels of the investigated markers, sustaining its possible use as adjuvant therapy in DM.
Collapse
|
78
|
Li H, Huang MH, Jiang JD, Peng ZG. Hepatitis C: From inflammatory pathogenesis to anti-inflammatory/hepatoprotective therapy. World J Gastroenterol 2018; 24:5297-5311. [PMID: 30598575 PMCID: PMC6305530 DOI: 10.3748/wjg.v24.i47.5297] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/27/2018] [Accepted: 12/01/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) infection commonly causes progressive liver diseases that deteriorate from chronic inflammation to fibrosis, cirrhosis and even to hepatocellular carcinoma. A long-term, persistent and uncontrolled inflammatory response is a hallmark of these diseases and further leads to hepatic injury and more severe disease progression. The levels of inflammatory cytokines and chemokines change with the states of infection and treatment, and therefore, they may serve as candidate biomarkers for disease progression and therapeutic effects. The mechanisms of HCV-induced inflammation involve classic pathogen pattern recognition, inflammasome activation, intrahepatic inflammatory cascade response, and oxidative and endoplasmic reticulum stress. Direct-acting antivirals (DAAs) are the first-choice therapy for effectively eliminating HCV, but DAAs alone are not sufficient to block the uncontrolled inflammation and severe liver injury in HCV-infected individuals. Some patients who achieve a sustained virologic response after DAA therapy are still at a long-term risk for progression to liver cirrhosis and hepatocellular carcinoma. Therefore, coupling with anti-inflammatory/hepatoprotective agents with anti-HCV effects is a promising therapeutic regimen for these patients during or after treatment with DAAs. In this review, we discuss the relationship between inflammatory mediators and HCV infection, summarize the mechanisms of HCV-induced inflammation, and describe the potential roles of anti-inflammatory/hepatoprotective drugs with anti-HCV activity in the treatment of advanced HCV infection.
Collapse
Affiliation(s)
- Hu Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Meng-Hao Huang
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Jian-Dong Jiang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zong-Gen Peng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
79
|
Protective Effect of Phaleria macrocarpa Water Extract (Proliverenol) against Carbon Tetrachloride-Induced Liver Fibrosis in Rats: Role of TNF- α and TGF- β1. J Toxicol 2018; 2018:2642714. [PMID: 30631351 PMCID: PMC6304574 DOI: 10.1155/2018/2642714] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 10/27/2018] [Accepted: 11/11/2018] [Indexed: 01/25/2023] Open
Abstract
Phaleria macrocarpa is one of the Indonesian herbal plants which has been shown to have a hepatoprotective effect. This study was conducted to evaluate the protective effect of water extract of mahkota dewa (Phaleria macrocarpa) in liver fibrosis and to elucidate its mechanism of action. Male Sprague-Dawley rats were treated with carbon tetrachloride (CCl4) for 8 weeks to induce liver fibrosis. Rats were randomly divided into 6 groups (n=5), i.e., control group, CCl4 group, CCl4 + NAC group, CCl4 + various doses of water extract of Phaleria macrocarpa (50, 100, and 150 mg/kg body weight). Aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), liver histopathology, malondialdehyde (MDA), ratio GSH/GSSG, Tumor Necrosis Factor- (TNF-) α, and Transforming Growth Factor- (TGF-) β 1 were analyzed. This study demonstrated that water extract of Phaleria macrocarpa and NAC significantly protected CCl4-induced liver injury as demonstrated by reduced AST, ALT, ALP, and fibrosis percentage compared with the CCl4-only group. In addition, water extract of Phaleria macrocarpa and NAC significantly reduced the levels of MDA, TNF-α, and TGF-β 1 as well as increasing the ratio of GSH/GSSG. Water extract of Phaleria macrocarpa prevents CCl4-induced fibrosis in rats. The prevention of liver fibrosis was at least in part through its antioxidant and anti-inflammatory activities and through its capacity to inhibit hepatic stellate cells (HSC) activation by reducing fibrogenic cytokine TGF-β 1.
Collapse
|
80
|
Pavlovic S, Jovic Z, Karan R, Krtinic D, Rankovic G, Golubovic M, Lilic J, Pavlovic V. Modulatory effect of curcumin on ketamine-induced toxicity in rat thymocytes: Involvement of reactive oxygen species (ROS) and the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) pathway. Bosn J Basic Med Sci 2018; 18:320-327. [PMID: 29579407 DOI: 10.17305/bjbms.2018.2607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/08/2017] [Accepted: 12/08/2017] [Indexed: 12/27/2022] Open
Abstract
Ketamine is a widely used anesthetic in pediatric clinical practice. Previous studies have demonstrated that ketamine induces neurotoxicity and has a modulatory effect on the cells of the immune system. Here, we evaluated the potential protective effect and underlying mechanisms of natural phenolic compound curcumin against ketamine-induced toxicity in rat thymocytes. Rat thymocytes were exposed to 100 µM ketamine alone or combined with increasing concentrations of curcumin (0.3, 1, and 3 μM) for 24 hours. Cell viability was analyzed with CCK-8 assay kit. Apoptosis was analyzed using flow cytometry and propidium iodide as well as Z-VAD-FMK and Z-LEHD-FMK inhibitors. Reactive oxygen species (ROS) production and mitochondrial membrane potential [MMP] were measured by flow cytometry. Colorimetric assay with DEVD-pNA substrate was used for assessing caspase-3 activity. Involvement of phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway was tested with Wortmannin inhibitor. Ketamine induced toxicity in cells, increased the number of hypodiploid cells, caspase-3 activity and ROS production, and inhibited the MMP. Co-incubation of higher concentrations of curcumin (1 and 3 μM) with ketamine markedly decreased cytotoxicity, apoptosis rate, caspase-3 activity, and ROS production in rat thymocytes, and increased the MMP. Application of Z-VAD-FMK (a pan caspase inhibitor) or Z-LEHD-FMK (caspase-9 inhibitor) with ketamine effectively attenuated the ketamine-induced apoptosis in rat thymocytes. Administration of Wortmannin (a PI3K inhibitor) with curcumin and ketamine significantly decreased the protective effect of curcumin on rat thymocytes. Our results indicate that ketamine-induced toxicity in rat thymocytes mainly occurs through the mitochondria-mediated apoptotic pathway and that the PI3K/Akt signaling pathway is involved in the anti-apoptotic effect of curcumin.
Collapse
Affiliation(s)
- Svetlana Pavlovic
- Department of Anesthesiology, Medical Faculty University of Nis, Nis, Serbia.
| | | | | | | | | | | | | | | |
Collapse
|
81
|
Curcumin and allopurinol ameliorate fructose-induced hepatic inflammation in rats via miR-200a-mediated TXNIP/NLRP3 inflammasome inhibition. Pharmacol Res 2018; 137:64-75. [DOI: 10.1016/j.phrs.2018.09.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/01/2018] [Accepted: 09/20/2018] [Indexed: 12/17/2022]
|
82
|
Ansar S, Abudawood M, Alaraj ASA, Hamed SS. Hesperidin alleviates zinc oxide nanoparticle induced hepatotoxicity and oxidative stress. BMC Pharmacol Toxicol 2018; 19:65. [PMID: 30340509 PMCID: PMC6195725 DOI: 10.1186/s40360-018-0256-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 10/03/2018] [Indexed: 01/23/2023] Open
Abstract
Background Nanoparticles are widely utilized in many products such as cosmetics and sunscreens. The present study was undertaken to evaluate the effect of hesperidin (HSP) on nano zinc oxide particles (nZnO) induced oxidative stress in rat livers. Methods Rats were randomly divided into 4 groups of 6 rats each and exposed to single administration of nZnO intraperitoneally (600 mg/kg bwt) and HSP (100 mg/kg bwt) by gavage. Group I served as the control; group II was given nZnO only; groups III received HSP only and group IV received nZnO 1 h after pretreatment with HSP for 7 days. Results Compared to the controls, nZnO administration enhanced alanine aminotransferase (AST) and aspartate aminotransferase (ALT) levels (p < 0.05) with reduction in the levels of glutathione (GSH), catalase (CAT), glutathione peroxidase (GPx), superoxide dismutase (SOD) and increase in levels of malondialdehyde (MDA) while HSP attenuated nZnO-induced hepatotoxicity for above mentioned parameters. Conclusions The induced toxicity in the liver was corrected by pretreatment with HSP. The findings of this study suggest that HSP pretreatment can potentially be used to prevent nZnO-induced biochemical alterations toxicity. Further, protection by HSP on biochemical results was confirmed by histopathological changes. The present study suggests that HSP can protect against nZnO-induced oxidative damage in the rat livers.
Collapse
Affiliation(s)
- Sabah Ansar
- Clinical Laboratory Sciences, Applied Medical Science, King Saud University, Riyadh, Saudi Arabia.
| | - Manal Abudawood
- Clinical Laboratory Sciences, Applied Medical Science, King Saud University, Riyadh, Saudi Arabia
| | - Amal S A Alaraj
- Clinical Laboratory Sciences, Applied Medical Science, King Saud University, Riyadh, Saudi Arabia
| | - Sherifa S Hamed
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia.,Zoology Department, Faculty of Science, University of Alexandria, Moharram Bey, Alexandria, 21511, Egypt
| |
Collapse
|
83
|
Grouix B, Sarra-Bournet F, Leduc M, Simard JC, Hince K, Geerts L, Blais A, Gervais L, Laverdure A, Felton A, Richard J, Ouboudinar J, Gagnon W, Leblond FA, Laurin P, Gagnon L. PBI-4050 Reduces Stellate Cell Activation and Liver Fibrosis through Modulation of Intracellular ATP Levels and the Liver Kinase B1/AMP-Activated Protein Kinase/Mammalian Target of Rapamycin Pathway. J Pharmacol Exp Ther 2018; 367:71-81. [PMID: 30093459 DOI: 10.1124/jpet.118.250068] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/12/2018] [Indexed: 12/30/2022] Open
Abstract
Hepatic fibrosis is a major cause of morbidity and mortality for which there is currently no effective therapy. We previously showed that 2-(3-pentylphenyl)acetic acid (PBI-4050) is a dual G protein-coupled receptor GPR40 agonist/GPR84 antagonist that exerts antifibrotic, anti-inflammatory, and antiproliferative action. We evaluated PBI-4050 for the treatment of liver fibrosis in vivo and elucidated its mechanism of action on human hepatic stellate cells (HSCs). The antifibrotic effect of PBI-4050 was evaluated in carbon tetrachloride (CCl4)- and bile duct ligation-induced liver fibrosis rodent models. Treatment with PBI-4050 suppressed CCl4-induced serum aspartate aminotransferase levels, inflammatory marker nitric oxide synthase, epithelial to mesenchymal transition transcription factor Snail, and multiple profibrotic factors. PBI-4050 also decreased GPR84 mRNA expression in CCl4-induced injury, while restoring peroxisome proliferator-activated receptor γ (PPARγ) to the control level. Collagen deposition and α-smooth muscle actin (α-SMA) protein levels were also attenuated by PBI-4050 treatment in the bile duct ligation rat model. Transforming growth factor-β-activated primary HSCs were used to examine the effect of PBI-4050 and its mechanism of action in vitro. PBI-4050 inhibited HSC proliferation by arresting cells in the G0/G1 cycle phase. Subsequent analysis demonstrated that PBI-4050 signals through a reduction of intracellular ATP levels, activation of liver kinase B1 (LKB1) and AMP-activated protein kinase (AMPK), and blockade of mammalian target of rapamycin (mTOR), resulting in reduced protein and mRNA levels of α-SMA and connective tissue growth factor and restored PPARγ mRNA expression. Our findings suggest that PBI-4050 may exert antifibrotic activity in the liver through a novel mechanism of action involving modulation of intracellular ATP levels and the LKB1/AMPK/mTOR pathway in stellate cells, and PBI-4050 may be a promising agent for treating liver fibrosis.
Collapse
Affiliation(s)
| | | | - Martin Leduc
- Prometic BioSciences Inc., Laval, Québec, Canada
| | | | - Kathy Hince
- Prometic BioSciences Inc., Laval, Québec, Canada
| | | | | | | | | | | | | | | | | | | | | | - Lyne Gagnon
- Prometic BioSciences Inc., Laval, Québec, Canada
| |
Collapse
|
84
|
Brachychiton populneus (Schott & Endl.) R.Br. ameliorate carbon tetrachloride induced oxidative stress through regulation of endoplasmic reticulum stress markers and inflammatory mediators in Sprague-Dawley male rats. Biomed Pharmacother 2018; 107:1601-1610. [PMID: 30257378 DOI: 10.1016/j.biopha.2018.09.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/03/2018] [Accepted: 09/03/2018] [Indexed: 12/14/2022] Open
Abstract
In this study hepatoprotective aptitude of Brachychiton populneus against carbon tetrachloride (CCl4) instigated liver injuries in rats was investigated. High-performance liquid chromatography (HPLC) with a diode array detector (DAD) analysis of methanol extract of B. populneus (BPM) indicated existence of rutin, catechin and myricetin. Administration of CCl4 to rat decreased (p < 0.01) the level of catalase (CAT), total superoxide dismutase (SOD), peroxidase (POD), soluble protein and reduced glutathione (GSH) whereas elevated the concentration of H2O2, thiobarbituric acid reactive substances and nitrite in hepatic samples. In serum the level of hepatic markers; aspartate transaminase, alanine transaminase, alkaline phosphatase and total bilirubin increased with CCl4 treatment against control animals. In hepatic samples the expression level of endoplasmic reticulum stress associated genes like glucose regulated protein (GRP78), x-box binding protein- 1 total (XBP-1 t), x-box binding protein- 1 spliced (XBP-1 s), x-box binding protein- 1 unspliced (XBP-1 u), glutamate-cysteine ligase catalytic subunit (GCLC) and pro-inflammatory cytokines; tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and monocyte chemoattractant protein-1 (MCP-1) was elevated many fold with CCl4 administration to rat. Co-administration of BPM along with CCl4 to rats decreased (p < 0.05) the expression of above genes except GCLC where expression level was enhanced as compared to CCl4 treatment. Histopathology of liver showed injuries of hepatocytes, infiltration of leukocytes and damaged central lobule in CCl4 treated rats. However, BPM administration to CCl4 intoxicated rats restored the altered parameters towards the control rats. These results suggested the presence of antioxidant and anti-inflammatory constituents in methanol extract of B. populneus.
Collapse
|
85
|
Hu J, Lin S, Tan BK, Hamzah SS, Lin Y, Kong Z, Zhang Y, Zheng B, Zeng S. Photodynamic inactivation of Burkholderia cepacia by curcumin in combination with EDTA. Food Res Int 2018; 111:265-271. [DOI: 10.1016/j.foodres.2018.05.042] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 05/14/2018] [Accepted: 05/18/2018] [Indexed: 10/16/2022]
|
86
|
Tabeshpour J, Hashemzaei M, Sahebkar A. The regulatory role of curcumin on platelet functions. J Cell Biochem 2018; 119:8713-8722. [PMID: 30098070 DOI: 10.1002/jcb.27192] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 05/24/2018] [Indexed: 12/12/2022]
Abstract
Curcumin, the main ingredient of Curcuma longa L., has been used as a spice and as a herbal medicine with different therapeutic characteristics for centuries in Asian countries. This phytochemical has been shown to possess beneficial antiplatelet activity that has introduced it as a promising candidate for the treatment of thromboembolism, atherothrombosis, and inflammatory diseases. Platelet dysfunction under different circumstances may lead to cardiovascular disease, and curcumin has been shown to have beneficial effects on platelet dysfunction in several studies. Therefore, this narrative review is aimed to summarize available evidence on the antiplatelet activity of curcumin and related molecular mechanisms for this activity.
Collapse
Affiliation(s)
- Jamshid Tabeshpour
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Hashemzaei
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
87
|
Wang J, Pan W, Wang Y, Lei W, Feng B, Du C, Wang XJ. Enhanced efficacy of curcumin with phosphatidylserine-decorated nanoparticles in the treatment of hepatic fibrosis. Drug Deliv 2018; 25:1-11. [PMID: 29214887 PMCID: PMC6058669 DOI: 10.1080/10717544.2017.1399301] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatic macrophages have been considered as a therapeutic target for liver fibrosis treatment, and phosphatidylserine (PS)-containing nanoparticles are commonly used to mimic apoptotic cells that can specifically regulate macrophage functions, resulting in anti-inflammatory effects. This study was designed to test the efficacy of PS-modified nanostructured lipid carriers (mNLCs) containing curcumin (Cur) (Cur-mNLCs) in the treatment of liver fibrosis in a rat model. Carbon tetrachloride-induced liver fibrosis in rats was used as an experimental model, and the severity of the disease was examined by both biochemical and histological methods. Here, we showed that mNLCs were spherical nanoparticles with decreased negative zeta potentials due to PS decoration, and significantly increased both mean residence time and area under the curve of Cur. In the rats with liver fibrosis, PS-modification of NLCs enhanced the nanoparticles targeting to the diseased liver, which was evidenced by their highest accumulation in the liver. As compared to all the controls, Cur-mNLCs were significantly more effective at reducing the liver damage and fibrosis, which were indicated by in Cur-mNLCs-treated rats the least increase in liver enzymes and pro-inflammatory cytokines in the circulation, along with the least increase in collagen fibers and alpha smooth muscle actin and the most increased hepatocyte growth factors (HGF) and matrix metalloprotease (MMP) two in the livers. In conclusion, PS-modified NLCs nanoparticles prolonged the retention time of Cur, and enhanced its bioavailability and delivery efficiency to the livers, resulting in reduced liver fibrosis and up-regulating hepatic expression of HGF and MMP-2.
Collapse
Affiliation(s)
- Ji Wang
- a State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Pharmacy , School of Stomatology, The Fourth Military Medical University , Xi'an , PR China
| | - Wen Pan
- a State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Pharmacy , School of Stomatology, The Fourth Military Medical University , Xi'an , PR China
| | - Ying Wang
- a State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Pharmacy , School of Stomatology, The Fourth Military Medical University , Xi'an , PR China
| | - Wan Lei
- a State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Pharmacy , School of Stomatology, The Fourth Military Medical University , Xi'an , PR China
| | - Bin Feng
- a State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Pharmacy , School of Stomatology, The Fourth Military Medical University , Xi'an , PR China
| | - Caigan Du
- b Department of Urologic Sciences , University of British Columbia, Jack Bell Research Centre , Vancouver , BC , Canada
| | - Xiao-Juan Wang
- a State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Pharmacy , School of Stomatology, The Fourth Military Medical University , Xi'an , PR China
| |
Collapse
|
88
|
Farzaei MH, Zobeiri M, Parvizi F, El-Senduny FF, Marmouzi I, Coy-Barrera E, Naseri R, Nabavi SM, Rahimi R, Abdollahi M. Curcumin in Liver Diseases: A Systematic Review of the Cellular Mechanisms of Oxidative Stress and Clinical Perspective. Nutrients 2018; 10:855. [PMID: 29966389 PMCID: PMC6073929 DOI: 10.3390/nu10070855] [Citation(s) in RCA: 268] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/23/2018] [Accepted: 06/28/2018] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress has been considered a key causing factor of liver damage induced by a variety of agents, including alcohol, drugs, viral infections, environmental pollutants and dietary components, which in turn results in progression of liver injury, non-alcoholic steatohepatitis, non-alcoholic liver disease, liver fibrosis and cirrhosis. During the past 30 years and even after the major progress in the liver disease management, millions of people worldwide still suffer from an acute or chronic liver condition. Curcumin is one of the most commonly used indigenous molecules endowed by various shielding functionalities that protects the liver. The aim of the present study is to comprehensively review pharmacological effects and molecular mechanisms, as well as clinical evidence, of curcumin as a lead compound in the prevention and treatment of oxidative associated liver diseases. For this purpose, electronic databases including “Scopus,” “PubMed,” “Science Direct” and “Cochrane library” were extensively searched with the keywords “curcumin or curcuminoids” and “hepatoprotective or hepatotoxicity or liver” along with “oxidative or oxidant.” Results showed that curcumin exerts remarkable protective and therapeutic effects of oxidative associated liver diseases through various cellular and molecular mechanisms. Those mechanisms include suppressing the proinflammatory cytokines, lipid perodixation products, PI3K/Akt and hepatic stellate cells activation, as well as ameliorating cellular responses to oxidative stress such as the expression of Nrf2, SOD, CAT, GSH, GPx and GR. Taking together, curcumin itself acts as a free radical scavenger over the activity of different kinds of ROS via its phenolic, β-diketone and methoxy group. Further clinical studies are still needed in order to recognize the structure-activity relationships and molecular mechanisms of curcumin in oxidative associated liver diseases.
Collapse
Affiliation(s)
- Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Mahdi Zobeiri
- Internal Medicine Department, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Fatemeh Parvizi
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Fardous F El-Senduny
- Biochemistry division, Chemistry Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt.
| | - Ilias Marmouzi
- Laboratory of Pharmacology and Toxicology Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat 10100, Morocco.
| | - Ericsson Coy-Barrera
- Bioorganic Chemistry Laboratory, Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Campus Nueva Granada, Cajicá 250247, Colombia.
| | - Rozita Naseri
- Internal Medicine Department, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baghyatollah University of Medical Sciences, Tehran 1435916471, Iran.
| | - Roja Rahimi
- Department of Persian Pharmacy, School of Traditional Medicine, Tehran University of Medical Sciences, Tehran 1416663361, Iran.
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS) and Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran.
| |
Collapse
|
89
|
Cunningham RP, Moore MP, Moore AN, Healy JC, Roberts MD, Rector RS, Martin JS. Curcumin supplementation mitigates NASH development and progression in female Wistar rats. Physiol Rep 2018; 6:e13789. [PMID: 30009570 PMCID: PMC6046645 DOI: 10.14814/phy2.13789] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/12/2018] [Accepted: 06/17/2018] [Indexed: 02/07/2023] Open
Abstract
Curcumin, a naturally occurring plant polyphenolic compound, may have beneficial effects in nonalcoholic steatohepatitis (NASH) development. We examined whether curcumin supplementation could be used in both prevention and treatment of NASH with fibrosis. Female Wistar rats were provided ad libitum access to a "western diet" (WD) high in fat (43% kcal), sucrose (29% kcal), and cholesterol (2% w/v), as well as 15% fructose drinking water. Intraperitoneal CC14 injections (0.5 mL/kg) were also administered at weeks 1, 2, 4, and 6 to accelerate development of a NASH with fibrosis phenotype. Rats were randomized to four groups (n = 9-12/group) and fed ad libitum: (1) WD for 8-weeks (8WD), (2) WD enriched with curcumin for 8-weeks (8WD+C; 0.2% curcumin, BCM-95, DolCas Biotech) to assess prevention, (3) WD for 12-weeks (12WD), (4) WD for 8-weeks followed by 4-weeks WD+C (12WD+C) to assess treatment. Curcumin prevention (8WD vs. 8WD+C) attenuated (P < 0.05) histological liver inflammation, molecular markers of fibrosis (Col1a1 mRNA) and a serum marker of liver injury (AST). Curcumin treatment (12WD vs. 12WD+C) reduced (P < 0.05) hepatocellular inflammation, steatosis, NAFLD Activity Scores, and serum markers of liver injury (AST, ALP). Moreover, curcumin treatment also increased hepatic pACC/ACC, ApoB100, and SOD1 protein, and decreased hepatic FGF-21 levels; whereas, curcumin prevention increased hepatic glutathione levels. Both curcumin prevention and treatment reduced molecular markers of hepatic fibrosis (Col1a1 mRNA) and inflammation (TNF-α, SPP1 mRNA). Curcumin supplementation beneficially altered the NASH phenotype in female Wistar rats, particularly the reversal of hepatocellular inflammation.
Collapse
Affiliation(s)
- Rory P. Cunningham
- Research Service‐Harry S Truman Memorial VA HospitalColumbiaMissouri
- Department of Nutrition and Exercise PhysiologyUniversity of MissouriColumbiaMissouri
| | - Mary P. Moore
- Research Service‐Harry S Truman Memorial VA HospitalColumbiaMissouri
- Department of Nutrition and Exercise PhysiologyUniversity of MissouriColumbiaMissouri
| | - Angelique N. Moore
- Department of Biomedical SciencesEdward Via College of Osteopathic Medicine – Auburn CampusAuburnAlabama
| | - James C. Healy
- Department of Biomedical SciencesEdward Via College of Osteopathic Medicine – Auburn CampusAuburnAlabama
| | - Michael D. Roberts
- Department of Biomedical SciencesEdward Via College of Osteopathic Medicine – Auburn CampusAuburnAlabama
- School of KinesiologyAuburn UniversityAuburnAlabama
| | - R. Scott Rector
- Research Service‐Harry S Truman Memorial VA HospitalColumbiaMissouri
- Department of Nutrition and Exercise PhysiologyUniversity of MissouriColumbiaMissouri
- Department of Medicine‐GIUniversity of MissouriColumbiaMissouri
| | - Jeffrey S. Martin
- Department of Biomedical SciencesEdward Via College of Osteopathic Medicine – Auburn CampusAuburnAlabama
- School of KinesiologyAuburn UniversityAuburnAlabama
| |
Collapse
|
90
|
Yoshioka H, Ichimaru Y, Fukaya S, Nagatsu A, Nonogaki T. Potentiating effect of acetaminophen and carbon tetrachloride-induced hepatotoxicity is mediated by activation of receptor interaction protein in mice. Toxicol Mech Methods 2018; 28:615-621. [PMID: 29873576 DOI: 10.1080/15376516.2018.1485804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
When multiple drugs or chemicals are used in combination, it is important to understand the risk of their interactions and predict potential additive effects. The aim of the current study was to investigate the molecular mechanism(s) accounting for the additive/synergistic effect of combination treatment with acetaminophen (APAP) and carbon tetrachloride (CCl4). Mice were intraperitoneally administered vehicle or 100 mg/kg (5 mL/kg) APAP and 30 min after vehicle or 15 mg/kg (5 mL/kg) CCl4. Sixteen hours after treatment, mice from each group were sacrificed and the livers were removed. CCl4 administration caused slight glycogen depletion; this effect was more pronounced following co-administration of APAP and CCl4. ATP and NADPH levels showed the same trend as glycogen levels. The levels of receptor interacting protein 1 and 3 increased following combination treatment with APAP and CCl4. In contrast, levels of the glutamate cysteine ligase catalytic subunit and glutamate cysteine ligase modifier subunits were not significantly affected by combination treatment. APAP and CCl4 co-administration potentiated the phosphorylation of c-Jun N-terminal kinase and p38 kinases, although phosphorylated activation of extracellular signal-regulated kinase was not changed. Our results suggest that APAP and CCl4 co-administration potentiates hepatotoxicity in an additive/synergistic manner via receptor interacting protein activation.
Collapse
Affiliation(s)
- Hiroki Yoshioka
- a Department of Pharmacy, College of Pharmacy , Kinjo Gakuin University , Nagoya , Japan
| | - Yoshimi Ichimaru
- a Department of Pharmacy, College of Pharmacy , Kinjo Gakuin University , Nagoya , Japan
| | - Shiori Fukaya
- a Department of Pharmacy, College of Pharmacy , Kinjo Gakuin University , Nagoya , Japan
| | - Akito Nagatsu
- a Department of Pharmacy, College of Pharmacy , Kinjo Gakuin University , Nagoya , Japan
| | - Tsunemasa Nonogaki
- a Department of Pharmacy, College of Pharmacy , Kinjo Gakuin University , Nagoya , Japan
| |
Collapse
|
91
|
Sadeghi A, Rostamirad A, Seyyedebrahimi S, Meshkani R. Curcumin ameliorates palmitate-induced inflammation in skeletal muscle cells by regulating JNK/NF-kB pathway and ROS production. Inflammopharmacology 2018; 26:1265-1272. [PMID: 29644554 DOI: 10.1007/s10787-018-0466-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 03/12/2018] [Indexed: 12/14/2022]
Abstract
Curcumin, a natural polyphenol compound, has the beneficial effects on several diseases such as metabolic syndrome, cancer, and diabetes. The anti-inflammatory property of curcumin has been demonstrated in different cells; however, its role in prevention of palmitate-induced inflammation in skeletal muscle C2C12 cells is not known. In this study, we examined the effect of curcumin on the inflammatory responses stimulated by palmitate in C2C2 cells. The results showed that palmitate upregulated the mRNA expression and protein release of IL-6 and TNF-α cytokines in C2C12 cells, while pretreatment with curcumin was able to attenuate the effect of palmitate on inflammatory cytokines. The anti-inflammatory effect of curcumin was associated with the repression of phosphorylation of IKKα-IKKβ, and JNK. Palmitate also caused an increase in reactive oxygen species (ROS) level that curcumin abrogated it. Collectively, these findings suggest that curcumin may represent a promising therapy for prevention of inflammation in skeletal muscle cells.
Collapse
Affiliation(s)
- Asie Sadeghi
- Department of Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Islamic Republic of Iran
| | - Atefeh Rostamirad
- Department of Clinical Biochemistry, Faculty of Medicine Sciences, Tarbiat Modares University, Tehran, Islamic Republic of Iran
| | - Shadisadat Seyyedebrahimi
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Reza Meshkani
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran. .,Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran.
| |
Collapse
|
92
|
Elburki MS, Rossa C, Guimarães-Stabili MR, Lee HM, Curylofo-Zotti FA, Johnson F, Golub LM. A Chemically Modified Curcumin (CMC 2.24) Inhibits Nuclear Factor κB Activation and Inflammatory Bone Loss in Murine Models of LPS-Induced Experimental Periodontitis and Diabetes-Associated Natural Periodontitis. Inflammation 2018; 40:1436-1449. [PMID: 28534138 DOI: 10.1007/s10753-017-0587-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The purpose of this study was to assess the effect of a novel chemically modified curcumin (CMC 2.24) on NF-κB and MAPK signaling and inflammatory cytokine production in two experimental models of periodontal disease in rats. Experimental model I: Periodontitis was induced by repeated injections of LPS into the gingiva (3×/week, 3 weeks); control rats received vehicle injections. CMC 2.24, or the vehicle, was administered by daily oral gavage for 4 weeks. Experimental model II: Diabetes was induced in adult male rats by streptozotocin injection; periodontal breakdown then results as a complication of uncontrolled hyperglycemia. Non-diabetic rats served as controls. CMC 2.24, or the vehicle, was administered by oral gavage daily for 3 weeks to the diabetics. Hemimaxillae and gingival tissues were harvested, and bone loss was assessed radiographically. Gingival tissues were pooled according to the experimental conditions and processed for the analysis of matrix metalloproteinases (MMPs) and bone-resorptive cytokines. Activation of p38 MAPK and NF-κB signaling pathways was assessed by western blot. Both LPS and diabetes induced an inflammatory process in the gingival tissues associated with excessive alveolar bone resorption and increased activation of p65 (NF-κB) and p38 MAPK. In both models, the administration of CMC 2.24 produced a marked reduction of inflammatory cytokines and MMPs in the gingival tissues, decreased bone loss, and decreased activation of p65 (NF-κB) and p38 MAPK. Inhibition of these cell signaling pathways by this novel tri-ketonic curcuminoid (natural curcumin is di-ketonic) may play a role in its therapeutic efficacy in locally and systemically associated periodontitis.
Collapse
Affiliation(s)
- Muna S Elburki
- Department of Periodontics, Faculty of Dentistry, University of Benghazi, Jamal Abdel Nasser Street, Benghazi, Libya.
| | - Carlos Rossa
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara-UNESP, Araraquara, Brazil
| | | | - Hsi-Ming Lee
- Department of Oral Biology and Pathology, School of Dental Medicine, SUNY at Stony Brook, Stony Brook, NY, USA
| | - Fabiana A Curylofo-Zotti
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara-UNESP, Araraquara, Brazil
| | - Francis Johnson
- Department of Chemistry and Pharmacological Sciences, SUNY at Stony Brook, Stony Brook, NY, USA
| | - Lorne M Golub
- Department of Oral Biology and Pathology, School of Dental Medicine, SUNY at Stony Brook, Stony Brook, NY, USA
| |
Collapse
|
93
|
Akhtar S, An W, Niu X, Li K, Anwar S, Maaz K, Maqbool M, Gao L. Toxicity of PEG-Coated CoFe 2O 4 Nanoparticles with Treatment Effect of Curcumin. NANOSCALE RESEARCH LETTERS 2018; 13:52. [PMID: 29445876 PMCID: PMC5812961 DOI: 10.1186/s11671-018-2468-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 02/04/2018] [Indexed: 05/16/2023]
Abstract
In this work, CoFe2O4 nanoparticles coated with polyethylene glycol (PEG) were successfully synthesized via a hydrothermal technique. Morphological studies of the samples confirmed the formation of polycrystalline pure-phase PEG-CoFe2O4 nanoparticles with sizes of about 24 nm. Toxicity induced by CoFe2O4 nanoparticles was investigated, and biological assays were performed to check the toxicity effects of CoFe2O4 nanoparticles. Moreover, the healing effect of toxicity induced in living organisms was studied using curcumin and it was found that biochemical indexes detoxified and improved to reach its normal level after curcumin administration. Thus, PEG-coated CoFe2O4 synthesized through a hydrothermal method can be utilized in biomedical applications and curcumin, which is a natural chemical with no side effects, can be used for the treatment of toxicity induced by the nanoparticles in living organisms.
Collapse
Affiliation(s)
- Shahnaz Akhtar
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000 People’s Republic of China
| | - Wenzhen An
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000 People’s Republic of China
| | - Xiaoying Niu
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou, Gansu 730000 China
| | - Kang Li
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000 People’s Republic of China
| | - Shahzad Anwar
- Department of Physics, Islamia College Peshawar (Chartered University), Peshawar, 25120 Pakistan
| | - Khan Maaz
- Nanomaterials Research Group, Physics Division, PINSTECH, Nilore, Islamabad, 45650 Pakistan
| | - Muhammad Maqbool
- Department of Clinical and Diagnostic Sciences, The University of Alabama, Birmingham, AL 35294-1212 USA
| | - Lan Gao
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000 People’s Republic of China
| |
Collapse
|
94
|
Wu X, Zhi F, Lun W, Deng Q, Zhang W. Baicalin inhibits PDGF-BB-induced hepatic stellate cell proliferation, apoptosis, invasion, migration and activation via the miR-3595/ACSL4 axis. Int J Mol Med 2018; 41:1992-2002. [PMID: 29393361 PMCID: PMC5810201 DOI: 10.3892/ijmm.2018.3427] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 12/22/2017] [Indexed: 12/15/2022] Open
Abstract
Hepatic fibrosis is a physiological response to liver injury that includes a range of cell types. The pathogenesis of hepatic fibrosis currently focuses on hepatic stellate cell (HSC) activation into muscle fiber cells and fibroblasts. Baicalin is a flavone glycoside. It is the glucuronide of baicalein, which is extracted from the dried roots of Scutellaria baicalensis Georgi. Previous work focused on the anti-viral, -inflammatory and -tumor properties of baicalin. However, the potential anti-fibrotic effects and mechanisms of baicalin are not known. The present study demonstrated that baicalin influenced the activation, proliferation, apoptosis, invasion and migration of platelet-derived growth factor-BB-induced activated HSC-T6 cells in a dose-dependent manner. To investigate the anti-fibrotic effect of baicalin, a one-color micro (mi)RNA array and reverse transcription-quantitative polymerase chain reaction analyses were used. Results demonstrated that baicalin increased the expression of the miRNA, miR-3595. In addition, the inhibition of miR-3595 substantially reversed the anti-fibrotic effect of baicalin. The present data also suggested that miR-3595 negatively regulates the long-chain-fatty-acid-CoA ligase 4 (ACSL4). Furthermore, ACSL4 acted in a baicalin-dependent manner to exhibit anti-fibrotic effects. Taken together, it was concluded that baicalin induces miR-3595 expression that modulates the expression levels of ACSL4. To the best of our knowledge, the present study is the first to demonstrate that baicalin induces overexpression of human miR-3595, and subsequently decreases the expression of ACSL4, resulting in an anti-fibrotic effect.
Collapse
Affiliation(s)
- Xiongjian Wu
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Fachao Zhi
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Weijian Lun
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Qiliang Deng
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Wendi Zhang
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
95
|
Lin J, Zheng S, Attie AD, Keller MP, Bernlohr DA, Blaner WS, Newberry EP, Davidson NO, Chen A. Perilipin 5 and liver fatty acid binding protein function to restore quiescence in mouse hepatic stellate cells. J Lipid Res 2018; 59:416-428. [PMID: 29317465 DOI: 10.1194/jlr.m077487] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 12/07/2017] [Indexed: 12/23/2022] Open
Abstract
Hepatic stellate cell (HSC) activation occurs along with decreased Perilipin5 (Plin5) and liver fatty acid-binding protein (L-Fabp) expression and coincident lipid droplet (LD) depletion. Conversely, the activated phenotype is reversible in WT HSCs upon forced expression of Plin5. Here, we asked if L-Fabp expression is required for Plin5-mediated rescue of the quiescent phenotype. Lentiviral Plin5 transduction of passaged L-Fabp-/- HSCs failed to reverse activation markers or restore lipogenic gene expression and LD formation. However, adenoviral L-Fabp infection of lentiviral Plin5 transduced L-Fabp-/- HSCs restored both the quiescent phenotype and LD formation, an effect also mediated by adenoviral intestine-Fabp or adipocyte-Fabp. Expression of exogenous Plin5 in activated WT HSCs induced a transcriptional program of lipogenic gene expression including endogenous L-Fabp, but none of the other FABPs. We further demonstrated that selective, small molecule inhibition of endogenous L-Fabp also eliminated the ability of exogenous Plin5 to rescue LD formation and reverse activation of WT HSCs. This functional coordination of L-Fabp with Plin5 was 5'-AMP-activated protein kinase (AMPK)-dependent and was eliminated by AMPK inhibition. Taken together, our results indicate that L-Fabp is required for Plin5 to activate a transcriptional program that restores LD formation and reverses HSC activation.
Collapse
Affiliation(s)
- Jianguo Lin
- Department of Pathology, School of Medicine, Saint Louis University, St. Louis, MO.,Department of Neurology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Shizhong Zheng
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Alan D Attie
- Department of Biochemistry, Molecular Biology and Biophysics, University of Wisconsin, Madison, WI, 53706
| | - Mark P Keller
- Department of Biochemistry, Molecular Biology and Biophysics, University of Wisconsin, Madison, WI, 53706
| | - David A Bernlohr
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455
| | | | - Elizabeth P Newberry
- Gastroenterology Division, Washington University School of Medicine, St. Louis, MO 63110
| | - Nicholas O Davidson
- Gastroenterology Division, Washington University School of Medicine, St. Louis, MO 63110
| | - Anping Chen
- Department of Pathology, School of Medicine, Saint Louis University, St. Louis, MO
| |
Collapse
|
96
|
Limaye A, Yu RC, Chou CC, Liu JR, Cheng KC. Protective and Detoxifying Effects Conferred by Dietary Selenium and Curcumin against AFB1-Mediated Toxicity in Livestock: A Review. Toxins (Basel) 2018; 10:E25. [PMID: 29301315 PMCID: PMC5793112 DOI: 10.3390/toxins10010025] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 12/28/2017] [Accepted: 12/28/2017] [Indexed: 12/21/2022] Open
Abstract
Aflatoxin B1 (AFB1), among other aflatoxins of the aflatoxin family, is the most carcinogenic and hazardous mycotoxin to animals and human beings with very high potency leading to aflatoxicosis. Selenium is an essential trace mineral possessing powerful antioxidant functions. Selenium is widely reported as an effective antioxidant against aflatoxicosis. By preventing oxidative liver damage, suppressing pro-apoptotic proteins and improving immune status in AFB1 affected animals; selenium confers specific protection against AFB1 toxicity. Meticulous supplementation of animal feed by elemental selenium in the organic and inorganic forms has proven to be effective to ameliorate AFB1 toxicity. Curcumin is another dietary agent of importance in tackling aflatoxicosis. Curcumin is one of the major active ingredients in the tubers of a spice Curcuma longa L., a widely reported antioxidant, anticarcinogenic agent with reported protective potential against aflatoxin-mediated liver damage. Curcumin restricts the aflatoxigenic potential of Aspergillusflavus. Curcumin inhibits cytochrome P450 isoenzymes, particularly CYP2A6 isoform; thereby reducing the formation of AFB1-8, 9-epoxide and other toxic metabolites causing aflatoxicosis. In this review, we have briefly reviewed important aflatoxicosis symptoms among animals. With the main focus on curcumin and selenium, we have reviewed their underlying protective mechanisms in different animals along with their extraction and production methods for feed applications.
Collapse
Affiliation(s)
- Aniket Limaye
- Institute of Biotechnology, National Taiwan University, Taipei 10617, Taiwan.
| | - Roch-Chui Yu
- Graduate Institute of Food Science Technology, National Taiwan University, Taipei 10617, Taiwan.
| | - Cheng-Chun Chou
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan.
| | - Je-Ruei Liu
- Institute of Biotechnology, National Taiwan University, Taipei 10617, Taiwan.
| | - Kuan-Chen Cheng
- Institute of Biotechnology, National Taiwan University, Taipei 10617, Taiwan.
- Graduate Institute of Food Science Technology, National Taiwan University, Taipei 10617, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan.
| |
Collapse
|
97
|
Pérez-Cabeza de Vaca R, Domínguez-López M, Guerrero-Celis N, Rodríguez-Aguilera JR, Chagoya de Sánchez V. Inflammation is regulated by the adenosine derivative molecule, IFC-305, during reversion of cirrhosis in a CCl4 rat model. Int Immunopharmacol 2018; 54:12-23. [DOI: 10.1016/j.intimp.2017.10.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 10/03/2017] [Accepted: 10/17/2017] [Indexed: 02/07/2023]
|
98
|
Arablou T, Kolahdouz-Mohammadi R. Curcumin and endometriosis: Review on potential roles and molecular mechanisms. Biomed Pharmacother 2017; 97:91-97. [PMID: 29080464 DOI: 10.1016/j.biopha.2017.10.119] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 10/13/2017] [Accepted: 10/21/2017] [Indexed: 11/26/2022] Open
Abstract
Endometriosis, an estrogen-dependent inflammatory disease, is one of the most common chronic gynecological disorders affecting women in reproductive age. It is characterized by the presence of endometrial-like tissue outside the uterus. The exact pathophysiology of endometriosis is not still well-known, but the immune system and inflammation have been considered as pivotal factors in disease progression. Turmeric, an important spice all around the world, is obtained from the rhizomes of Curcuma longa, a member of the Zingiberaceae family. It has been used in the prevention and treatment of many diseases since ancient times. Curcumin is the principal polyphenol isolated from turmeric. Several evidences have shown the anti-inflammatory, antioxidant, anti-tumor, anti-angiogenesis, and anti-metastatic activities of curcumin. In this review, relevant articles on the effect of curcumin on endometriosis and possible molecular mechanisms are discussed.
Collapse
Affiliation(s)
- Tahereh Arablou
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Roya Kolahdouz-Mohammadi
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
99
|
Zhang C, Bian M, Chen X, Jin H, Zhao S, Yang X, Shao J, Chen A, Guo Q, Zhang F, Zheng S. Oroxylin A prevents angiogenesis of LSECs in liver fibrosis via inhibition of YAP/HIF-1α signaling. J Cell Biochem 2017; 119:2258-2268. [PMID: 28857294 DOI: 10.1002/jcb.26388] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 08/23/2017] [Indexed: 12/19/2022]
Abstract
Angiogenesis of liver sinusoidal endothelial cells (LSECs) accompanies with hypoxia in liver fibrosis and they are of mutual promotion, which has raised wide concern. Here we established murine model of liver fibrosis and found that oroxylin A (40 mg/kg) could ameliorate angiogenesis in liver fibrosis may related to hypoxia inducible factor 1α (HIF-1α). The underlying mechanism was further investigated by isolating and culturing murine primary LSECs. Hypoxia induced vascular endothelial growth factor A (VEGF-A), angiopoietin 2 (Ang-2), and platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) elevated in LSECs were reduced by oroxylin A or acriflavine (ACF, an HIF-1α inhibitor), indicating HIF-1α involved the angiogenesis of LSECs. Additionally, interference with Yes-associated protein (YAP) significant downregulated the protein expression of HIF-1α and VEGF-A, while YAP plasmid exhibited an opposite effect. We next found that oroxylin A inhibited hypoxia-induced nuclear translocation of YAP, which may influence the accumulation of HIF-1α and subsequently decrease transcription of downstream target gene including VEGF-A and Ang-2, thereby exerting an anti-angiogenic activity.
Collapse
Affiliation(s)
- Chenxi Zhang
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Mianli Bian
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xingran Chen
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Huanhuan Jin
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Shifeng Zhao
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xiang Yang
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jiangjuan Shao
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Anping Chen
- Department of Pathology, School of Medicine, Saint Louis University, St Louis, Missouri
| | - Qinglong Guo
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Feng Zhang
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Shizhong Zheng
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
100
|
Mahmoud AM, Hozayen WG, Ramadan SM. Berberine ameliorates methotrexate-induced liver injury by activating Nrf2/HO-1 pathway and PPARγ, and suppressing oxidative stress and apoptosis in rats. Biomed Pharmacother 2017; 94:280-291. [DOI: 10.1016/j.biopha.2017.07.101] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 07/20/2017] [Accepted: 07/20/2017] [Indexed: 12/30/2022] Open
|