51
|
Pannucci P, Van Daele M, Cooper SL, Wragg ES, March J, Groenen M, Hill SJ, Woolard J. Role of endothelin ET A receptors in the hypertension induced by the VEGFR-2 kinase inhibitors axitinib and lenvatinib in conscious freely-moving rats. Biochem Pharmacol 2024; 228:116007. [PMID: 38145828 DOI: 10.1016/j.bcp.2023.116007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023]
Abstract
Receptor tyrosine kinase inhibitors (RTKIs) suppress tumour growth by targeting vascular endothelial growth factor receptor 2 (VEGFR-2) which is an important mediator of angiogenesis. Here, we demonstrate that two potent RTKIs, axitinib and lenvatinib, are associated with hypertensive side effects. Doppler flowmetry was used to evaluate regional haemodynamic profiles of axitinib and lenvatinib. Male Sprague Dawley rats (350-500 g) were instrumented with Doppler flow probes (renal and mesenteric arteries and descending abdominal aorta) and catheters (jugular vein and distal abdominal aorta, via the caudal artery). Rats were dosed daily with axitinib (3 or 6 mg.kg-1) or lenvatinib (1 or 3 mg.kg-1) and regional haemodynamics were recorded over a maximum of 4 days. Both RTKIs caused significant (p < 0.05) increases in mean arterial pressure (MAP), which was accompanied by significant (p < 0.05) vasoconstriction in both the mesenteric and hindquarters vascular beds. To gain insight into the involvement of endothelin-1 (ET-1) in RTKI-mediated hypertension, we also monitored heart rate (HR) and MAP in response to axitinib or lenvatinib in animals treated with the ETA receptor selective antagonist sitaxentan (5 mg.kg-1) or the mixed ETA/ETB receptor antagonist bosentan (15 mg.kg-1) over two days. Co-treatment with bosentan or sitaxentan markedly reduced the MAP effects mediated by both RTKIs (p < 0.05). Bosentan, but not sitaxentan, also attenuated ET-1 mediated increases in HR. These data suggest that selective antagonists of ETA receptors may be appropriate to alleviate the hypertensive effects of axitinib and lenvatinib.
Collapse
Affiliation(s)
- Patrizia Pannucci
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors, University of Birmingham and Nottingham, The Midlands, UK
| | - Marieke Van Daele
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors, University of Birmingham and Nottingham, The Midlands, UK
| | - Samantha L Cooper
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors, University of Birmingham and Nottingham, The Midlands, UK
| | - Edward S Wragg
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors, University of Birmingham and Nottingham, The Midlands, UK
| | - Julie March
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Marleen Groenen
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Stephen J Hill
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors, University of Birmingham and Nottingham, The Midlands, UK.
| | - Jeanette Woolard
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors, University of Birmingham and Nottingham, The Midlands, UK.
| |
Collapse
|
52
|
Hautiere M, Vivier D, Dorval P, Pineau D, Kereselidze D, Denis C, Herbet A, Costa N, Bernhard C, Goncalves V, Selingue E, Larrat B, Dancer PA, Hugnot JP, Boquet D, Truillet C, Denat F. Preoperative PET imaging and fluorescence-guided surgery of human glioblastoma using dual-labeled antibody targeting ET A receptors in a preclinical mouse model: A theranostic approach. Theranostics 2024; 14:6268-6280. [PMID: 39431005 PMCID: PMC11488107 DOI: 10.7150/thno.98163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/08/2024] [Indexed: 10/22/2024] Open
Abstract
Rationale: Glioblastoma (GBM) poses significant challenges regarding complete tumor removal due to its heterogeneity and invasiveness, emphasizing the need for effective therapeutic options. In the last two decades, fluorescence-guided surgery (FGS), employing fluorophores such as 5-aminolevulinic acid (5-ALA) to enhance tumor delineation, has gained attraction among neurosurgeons. However, some low-grade tumors do not show any accumulation of the tracers, and the lack of patient stratification represents an important limitation. Since 2000, endothelin axis has been extensively investigated for its role in cancer progression. More specifically, our team has identified endothelin A receptors (ETA), overexpressed in glioblastoma cancer stem cells, as a target of interest for GBM imaging. This study aims to evaluate the efficacy of a novel preclinical bimodal imaging agent, [89Zr]Zr-axiRA63-MOMIP, as a theranostic approach to: i) detect ETA + cells in an orthotopic model of human GBM, ii) achieve complete tumoral resection. Methods: Monomolecular multimodal imaging platform (MOMIP) - containing both a fluorophore (IRDye800CW) and a chelator for a positron-emitting radiometal (desferroxamine B, DFO) - was conjugated to the axiRA63 antibody targeting ETA receptors, overexpressed on the surface of GBM stem cells. Mice bearing orthotopic human GBM were imaged 48 h post injection of [89Zr]Zr-axiRA63-MOMIP via positron emission tomography (PET) and optical imaging. Subsequently, post-mortem proof-of-concept FGS was implemented as well as ex vivo analyses (H&E staining, autoradiography, serial block face imaging) on brains with resected or unresected tumor to assess the correlation between PET and fluorescence signals. Results: PET imaging of [89Zr]Zr-axiRA63-MOMIP enabled a clear detection of ETA + cells in an orthotopic model of human GBM. Intraoperative optical imaging allowed a near-complete tumor resection together with the visualization of a weak fluorescence signal, after a prolonged exposure time, that was attributed to residual tumor cells via H&E staining. Besides, a qualitative correlation between the signals of both modalities was observed. Conclusions: The use of [89Zr]Zr-axiRA63-MOMIP provides an effective theranostic approach to detect and treat GBM by surgery in a preclinical mouse model. Thanks to the high correlation between PET and fluorescence signal allowing patients stratification, this bimodal agent should have a great potential for clinical translation and should present a significant advantage over non-targeted fluorophores already used in the clinic.
Collapse
Affiliation(s)
- Marie Hautiere
- Université Paris-Saclay, CEA, INRAE, Médicaments et Technologies pour la Santé (MTS), SPI, Laboratoire d'Etude de l'Unité Neurovasculaire et Innovation Thérapeutique (LENIT), 91191 Gif-sur-Yvette, France
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Orsay, 91401, France
| | - Delphine Vivier
- Université de Bourgogne, ICMUB UMR CNRS 6302, Dijon, 21000, France
| | | | - Donovan Pineau
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | | | - Caroline Denis
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Orsay, 91401, France
| | - Amaury Herbet
- Université Paris-Saclay, CEA, INRAE, Médicaments et Technologies pour la Santé (MTS), SPI, Laboratoire d'Etude de l'Unité Neurovasculaire et Innovation Thérapeutique (LENIT), 91191 Gif-sur-Yvette, France
| | - Narciso Costa
- Université Paris-Saclay, CEA, INRAE, Médicaments et Technologies pour la Santé (MTS), SPI, Laboratoire d'Etude de l'Unité Neurovasculaire et Innovation Thérapeutique (LENIT), 91191 Gif-sur-Yvette, France
| | - Claire Bernhard
- Université de Bourgogne, ICMUB UMR CNRS 6302, Dijon, 21000, France
| | - Victor Goncalves
- Université de Bourgogne, ICMUB UMR CNRS 6302, Dijon, 21000, France
| | - Erwan Selingue
- Université Paris-Saclay, CEA, CNRS, NeuroSpin/BAOBAB, Gif sur Yvette, France
| | - Benoit Larrat
- Université Paris-Saclay, CEA, CNRS, NeuroSpin/BAOBAB, Gif sur Yvette, France
| | | | - Jean-Philippe Hugnot
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Didier Boquet
- Université Paris-Saclay, CEA, INRAE, Médicaments et Technologies pour la Santé (MTS), SPI, Laboratoire d'Etude de l'Unité Neurovasculaire et Innovation Thérapeutique (LENIT), 91191 Gif-sur-Yvette, France
| | - Charles Truillet
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Orsay, 91401, France
| | - Franck Denat
- Université de Bourgogne, ICMUB UMR CNRS 6302, Dijon, 21000, France
| |
Collapse
|
53
|
Sági B, Vas T, Gál C, Horváth-Szalai Z, Kőszegi T, Nagy J, Csiky B, Kovács TJ. The Relationship between Vascular Biomarkers (Serum Endocan and Endothelin-1), NT-proBNP, and Renal Function in Chronic Kidney Disease, IgA Nephropathy: A Cross-Sectional Study. Int J Mol Sci 2024; 25:10552. [PMID: 39408883 PMCID: PMC11476882 DOI: 10.3390/ijms251910552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/25/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
IgA nephropathy (IgAN) is the most common primary glomerular disease. Endothelin-1 (ET-1) is one of the strongest vasoconstrictor materials in the blood. The N-terminal prohormone of brain natriuretic peptide (NT-proBNP) is associated with renal function and poor outcomes in chronic kidney disease (CKD). Serum endocan is a biomarker associated with proinflammatory cytokines, and the increase in the serum level plays a critical role in inflammatory, proliferative, and neovascularization processes and is associated with poor cardiovascular outcomes in patients with CKD too. Identifying high-risk patients using biomarkers could help to optimize their treatment. Ninety patients with biopsy-confirmed IgAN were included in the study (50 males/40 females, mean age: 54.9 ± 14.4 years). Serum endocan, ET-1, and NT-proBNP were measured by enzyme-linked immunosorbent assay kits. Echocardiography was performed, and carotid-femoral pulse wave velocity (cfPWV) was measured by SphygmoCor in this cross-sectional study. Patients were divided into two groups based on serum endocan median level (cut-off: 44 ug/L). There was significantly higher aorta systolic blood pressure (SBPao) (p = 0.013), NT-proBNP (p = 0.028), albumin/creatinine ratio (p = 0.036), and uric acid (p = 0.045) in the case of the higher endocan group compared to the lower. There was also significantly higher SBPao (p = 0.037) and NT-proBNP (p = 0.038) in the case of higher endothelin-1 (ET-1) levels compared to the lower (cut-off: 231 pg/mL) group by the two-sample t-test. Then, we divided the patients into two groups based on the eGFR (CKD 1-2 vs. CKD 3-5). The levels of serum endocan, NT-proBNP, cfPWV, SBPao, left ventricular mass index (LVMI), uric acid, and albuminuria were significantly higher in the CKD 3-5 group compared to the CKD 1-2 group. The serum endocan and NT-proBNP levels were significantly higher in the diastolic dysfunction group (p = 0.047, p = 0.015). There was a significant increase in serum endocan levels (CKD 1 vs. CKD 5; p = 0.008) with decreasing renal function. In IgAN, vascular biomarkers (endocan, ET-1) may play a role in endothelial dysfunction through vascular damage and elevation of SBPao. Serum endocan, ET-1, and NT-proBNP biomarkers may help to identify IgAN patients at high risk.
Collapse
Affiliation(s)
- Balázs Sági
- 2nd Department of Internal Medicine and Nephrology, Diabetes Center, Clinical Centre, Medical School, University of Pécs, 7624 Pécs, Hungary; (T.V.); (J.N.); (B.C.); (T.J.K.)
- National Dialysis Center Pécs, 7624 Pécs, Hungary
| | - Tibor Vas
- 2nd Department of Internal Medicine and Nephrology, Diabetes Center, Clinical Centre, Medical School, University of Pécs, 7624 Pécs, Hungary; (T.V.); (J.N.); (B.C.); (T.J.K.)
| | - Csenge Gál
- Department of Laboratory Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (C.G.); (Z.H.-S.); (T.K.)
- Molecular Medicine Research Group, Szentágothai Research Center, University of Pécs, 7624 Pécs, Hungary
| | - Zoltán Horváth-Szalai
- Department of Laboratory Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (C.G.); (Z.H.-S.); (T.K.)
- Molecular Medicine Research Group, Szentágothai Research Center, University of Pécs, 7624 Pécs, Hungary
| | - Tamás Kőszegi
- Department of Laboratory Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (C.G.); (Z.H.-S.); (T.K.)
- Molecular Medicine Research Group, Szentágothai Research Center, University of Pécs, 7624 Pécs, Hungary
| | - Judit Nagy
- 2nd Department of Internal Medicine and Nephrology, Diabetes Center, Clinical Centre, Medical School, University of Pécs, 7624 Pécs, Hungary; (T.V.); (J.N.); (B.C.); (T.J.K.)
| | - Botond Csiky
- 2nd Department of Internal Medicine and Nephrology, Diabetes Center, Clinical Centre, Medical School, University of Pécs, 7624 Pécs, Hungary; (T.V.); (J.N.); (B.C.); (T.J.K.)
- National Dialysis Center Pécs, 7624 Pécs, Hungary
| | - Tibor József Kovács
- 2nd Department of Internal Medicine and Nephrology, Diabetes Center, Clinical Centre, Medical School, University of Pécs, 7624 Pécs, Hungary; (T.V.); (J.N.); (B.C.); (T.J.K.)
| |
Collapse
|
54
|
V Manek P, Srivastava A, Shrivastava R, Bhatt M, Pattnaik N, Kumar M. Validation of endothelin-1 and interleukin-1β as a biomarker for diagnosing peri-implant disorders. Bioinformation 2024; 20:1148-1153. [PMID: 39917223 PMCID: PMC11795484 DOI: 10.6026/9732063002001148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 02/09/2025] Open
Abstract
Endothelin-1 (ET-1) and interleukin-1β (IL-1β) is increased in periodontitis and is linked to inflammatory cytokines among other variables. The purpose of this study was to ascertain if ET-1 and IL-1β are utilized as an early indicator for peri-implant mucositis (PM) and peri-implantitis (PI), as well as to look into the relationship between ET-1 and IL-1β levels and peri-implant illnesses. 58 patients (30 males and 28 females) with a total of 152 implants were included for final analyses. Three groups were formed from the 152 qualifying implants. A plastic probe was used at low pressure of 0.25N to assess the peri-implant parameters like probing pocket depth (PPD), modified gingival index (mGI), BOP being present or absent and modified plaque index (mPI). Mean bone loss (MBL) and the average annual bone loss (ABL) were evaluated. The values were significantly greater in PI group and PM group as compared to healthy subjects. ET-1 and IL-1β levels are significantly increased in peri-implant illnesses. ET-1 and IL-1β may be utilized as diagnostic indicator for peri-implant disorders.
Collapse
Affiliation(s)
- Pranav V Manek
- Department of Oral Medicine and Radiology, Pacific Dental College and Research Centre, Udaipur, Rajasthan, India
| | - Arpita Srivastava
- Department of Oral Medicine and Radiology, Government College of Dentistry Indore, M.P, India
| | - Rahul Shrivastava
- Private Practitioner, Department of Prosthodontics, Revti Dental Clinic, Indore, MP, India
| | - Miloni Bhatt
- Department of Prosthodontics, Karnavati school of dentistry, Karnavati University, Gujarat, India
| | - Naina Pattnaik
- Department of Periodontics and Oral Implantology, Kalinga Institute of Dental Science, KIIT Deemed to be University Patia, Bhubaneswar, Odisha, India
| | - Manish Kumar
- Department of Dentistry, Dr. Laxminarayan Pandey Government Medical College & Hospital, Ratlam, M.P, India
| |
Collapse
|
55
|
Astashev ME, Serov DA, Tankanag AV, Knyazeva IV, Dorokhov AA, Simakin AV, Gudkov SV. Study of the Synchronization and Transmission of Intracellular Signaling Oscillations in Cells Using Bispectral Analysis. BIOLOGY 2024; 13:685. [PMID: 39336112 PMCID: PMC11428995 DOI: 10.3390/biology13090685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024]
Abstract
The oscillation synchronization analysis in biological systems will expand our knowledge about the response of living systems to changes in environmental conditions. This knowledge can be used in medicine (diagnosis, therapy, monitoring) and agriculture (increasing productivity, resistance to adverse effects). Currently, the search is underway for an informative, accurate and sensitive method for analyzing the synchronization of oscillatory processes in cell biology. It is especially pronounced in analyzing the concentration oscillations of intracellular signaling molecules in electrically nonexcitable cells. The bispectral analysis method could be applied to assess the characteristics of synchronized oscillations of intracellular mediators. We chose endothelial cells from mouse microvessels as model cells. Concentrations of well-studied calcium and nitric oxide (NO) were selected for study in control conditions and well-described stress: heating to 40 °C and hyperglycemia. The bispectral analysis allows us to accurately evaluate the proportion of synchronized cells, their synchronization degree, and the amplitude and frequency of synchronized calcium and NO oscillations. Heating to 40 °C increased cell synchronization for calcium but decreased for NO oscillations. Hyperglycemia abolished this effect. Heating to 40 °C changed the frequencies and increased the amplitudes of synchronized oscillations of calcium concentration and the NO synthesis rate. The first part of this paper describes the principles of the bispectral analysis method and equations and modifications of the method we propose. In the second part of this paper, specific examples of the application of bispectral analysis to assess the synchronization of living cells in vitro are presented. The discussion compares the capabilities of bispectral analysis with other analytical methods in this field.
Collapse
Affiliation(s)
- Maxim E Astashev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Institute of Cell Biophysics of the Russian Academy of Sciences, 3 Institutskaya St., 142290 Pushchino, Russia
| | - Dmitriy A Serov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Institute of Cell Biophysics of the Russian Academy of Sciences, 3 Institutskaya St., 142290 Pushchino, Russia
| | - Arina V Tankanag
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Institute of Cell Biophysics of the Russian Academy of Sciences, 3 Institutskaya St., 142290 Pushchino, Russia
| | - Inna V Knyazeva
- Federal Scientific Agroengineering Center VIM, 1st Institutsky Proezd 5, 109428 Moscow, Russia
| | - Artem A Dorokhov
- Federal Scientific Agroengineering Center VIM, 1st Institutsky Proezd 5, 109428 Moscow, Russia
| | - Alexander V Simakin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia
| | - Sergey V Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia
- Federal Scientific Agroengineering Center VIM, 1st Institutsky Proezd 5, 109428 Moscow, Russia
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod Institute, Gagarin av. 23, 603105 Nizhny Novgorod, Russia
| |
Collapse
|
56
|
Pugh D, Patel D, Macnaught G, Czopek A, Bruce L, Donachie J, Gallacher PJ, Tan S, Ahlman M, Grayson PC, Basu N, Dhaun N. 18F-FDG-PET/MR imaging to monitor disease activity in large vessel vasculitis. Nat Commun 2024; 15:7314. [PMID: 39183340 PMCID: PMC11345444 DOI: 10.1038/s41467-024-51613-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 08/14/2024] [Indexed: 08/27/2024] Open
Abstract
Disease-monitoring in large vessel vasculitis (LVV) is challenging. Simultaneous 18F-fluorodeoxyglucose positron emission tomography with magnetic resonance imaging (PET/MRI) provides functional assessment of vascular inflammation alongside high-definition structural imaging with a relatively low burden of radiation exposure. Here, we investigate the ability of PET/MRI to monitor LVV disease activity longitudinally in a prospective cohort of patients with active LVV. We demonstrate that both the PET and MRI components of the scan can distinguish active from inactive disease using established quantification methods. Using logistic-regression modelling of PET/MRI metrics, we devise a novel PET/MRI-specific Vasculitis Activity using MR PET (VAMP) score which is able to distinguish active from inactive disease with more accuracy than established methods and detects changes in disease activity longitudinally. These findings are evaluated in an independent validation cohort. Finally, PET/MRI improves clinicians' assessment of LVV disease activity and confidence in disease management, as assessed via clinician survey. In summary, PET/MRI may be useful in tracking disease activity and assessing treatment-response in LVV. Based on our findings, larger, prospective studies assessing PET/MRI in LVV are now warranted.
Collapse
Affiliation(s)
- Dan Pugh
- BHF/University Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Dilip Patel
- Department of Radiology, Royal Infirmary of Edinburgh, Edinburgh, UK
| | | | - Alicja Czopek
- BHF/University Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Lorraine Bruce
- BHF/University Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - James Donachie
- BHF/University Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Peter J Gallacher
- BHF/University Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Sovira Tan
- National Institute of Arthritis & Musculoskeletal & Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mark Ahlman
- Department of Radiology & Imaging, Medical College of Georgia, Georgia, USA
| | - Peter C Grayson
- National Institute of Arthritis & Musculoskeletal & Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Neil Basu
- Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, UK
| | - Neeraj Dhaun
- BHF/University Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
57
|
Totaro P, Tirelli C, De Amici M, Grosjean F, Testa G, Sacchi L, De Silvestri A, Alloni A, Kushta E, Albertini R, Rampino T, D'Armini AM. Circulating Endothelin 1 but Not Transforming Growth Factor-β Levels Are Reduced after Pulmonary Endarterectomy in Subjects Affected by Chronic Thromboembolic Pulmonary Hypertension: A Prospective Cohort Study. J Clin Med 2024; 13:4977. [PMID: 39274190 PMCID: PMC11396395 DOI: 10.3390/jcm13174977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024] Open
Abstract
Background and objectives: Endothelin-1 (ET-1) and transforming growth factor-β (TGF-β) play a pivotal role in the pathophysiology and vascular remodeling of chronic thromboembolic pulmonary hypertension (CTEPH) which is an under-diagnosed complication of acute pulmonary embolism (PE). Currently, pulmonary endarterectomy (PEA) is still the treatment of choice for selected patients suffering from CTEPH. The aim of this study was to evaluate the preoperative and postoperative circulating levels of ET-1 and TGF-β in subjects affected by CTEPH undergoing successful surgical treatment by PEA. Methods: The data from patients diagnosed with CTEPH who underwent PEA at the Foundation IRCCS Policlinico San Matteo Hospital (Pavia, Italy) were prospectively recorded in the Institutional database. Circulating ET-1 and TGF-β levels were assessed by an ELISA commercial kit before PEA, at 3 months and 1 year after PEA. The demographic data, preoperatory mean pulmonary arterial pressure (mPAP), cardiac output (CO), and pulmonary vascular resistance (PVR) were also recorded. Univariate and multivariate analyses were performed. Results: The analysis included 340 patients with complete ET-1 measurements and 206 patients with complete TGF-β measurements. ET-1 significantly decreased both at 3 months (p < 0.001) and at 1 year (p = 0.009) after PEA. On the other hand, preoperatory TGF-β levels did not significantly change after PEA. Furthermore, ET-1, but not TGF-β, was a good predictor for increased mPAP in multivariate analyses (p < 0.05). Conclusions: ET-1 but not TGF β was significantly modulated by PEA in subjects affected by CTEPH up to 1 year after surgery. The mechanisms leading to prolonged elevated circulating TGF-β levels and their clinical significance have to be further elucidated.
Collapse
Affiliation(s)
- Pasquale Totaro
- Division of Cardiac Surgery 2,Pulmonary Hypertension Center, Foundation I.R.C.C.S. Policlinico San Matteo, 27100 Pavia, Italy
| | - Claudio Tirelli
- Respiratory Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Mara De Amici
- Immuno-Allergology Laboratory of Clinical Chemistry, Foundation I.R.C.C.S. Policlinico San Matteo, 27100 Pavia, Italy
| | - Fabrizio Grosjean
- Unit of Nephrology, Dialysis-Transplantation, Foundation I.R.C.C.S. Policlinico San Matteo, 27100 Pavia, Italy
| | - Giorgia Testa
- Pediatrics Clinic, Foundation I.R.C.C.S. Policlinico San Matteo, 27100 Pavia, Italy
| | - Lucia Sacchi
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, 27100 Pavia, Italy
| | - Annalisa De Silvestri
- Scientific Direction, Clinical Epidemiology & Biometric Unit, Foundation I.R.C.C.S. Policlinico San Matteo, 27100 Pavia, Italy
| | - Alessia Alloni
- Unit of Nephrology, Dialysis-Transplantation, Foundation I.R.C.C.S. Policlinico San Matteo, 27100 Pavia, Italy
| | - Eraldo Kushta
- Division of Cardiac Surgery 2,Pulmonary Hypertension Center, Foundation I.R.C.C.S. Policlinico San Matteo, 27100 Pavia, Italy
| | - Riccardo Albertini
- Immuno-Allergology Laboratory of Clinical Chemistry, Foundation I.R.C.C.S. Policlinico San Matteo, 27100 Pavia, Italy
| | - Teresa Rampino
- Unit of Nephrology, Dialysis-Transplantation, Foundation I.R.C.C.S. Policlinico San Matteo, 27100 Pavia, Italy
| | - Andrea Maria D'Armini
- Division of Cardiac Surgery 2,Pulmonary Hypertension Center, Foundation I.R.C.C.S. Policlinico San Matteo, 27100 Pavia, Italy
| |
Collapse
|
58
|
Wang CH, Tsuji T, Wu LH, Yang CY, Huang TL, Sato M, Shamsi F, Tseng YH. Endothelin 3/EDNRB signaling induces thermogenic differentiation of white adipose tissue. Nat Commun 2024; 15:7215. [PMID: 39174539 PMCID: PMC11341701 DOI: 10.1038/s41467-024-51579-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/12/2024] [Indexed: 08/24/2024] Open
Abstract
Thermogenic adipose tissue, consisting of brown and beige fat, regulates nutrient utilization and energy metabolism. Human brown fat is relatively scarce and decreases with obesity and aging. Hence, inducing thermogenic differentiation of white fat offers an attractive way to enhance whole-body metabolic capacity. Here, we show the role of endothelin 3 (EDN3) and endothelin receptor type B (EDNRB) in promoting the browning of white adipose tissue (WAT). EDNRB overexpression stimulates thermogenic differentiation of human white preadipocytes through cAMP-EPAC1-ERK activation. In mice, cold induces the expression of EDN3 and EDNRB in WAT. Deletion of EDNRB in adipose progenitor cells impairs cold-induced beige adipocyte formation in WAT, leading to excessive weight gain, glucose intolerance, and insulin resistance upon high-fat feeding. Injection of EDN3 into WAT promotes browning and improved whole-body glucose metabolism. The findings shed light on the mechanism of WAT browning and offer potential therapeutics for obesity and metabolic disorders.
Collapse
Affiliation(s)
- Chih-Hao Wang
- Graduate Institute of Cell Biology, China Medical University, Taichung City, Taiwan.
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung City, Taiwan.
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA.
| | - Tadataka Tsuji
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Li-Hong Wu
- Graduate Institute of Cell Biology, China Medical University, Taichung City, Taiwan
| | - Cheng-Ying Yang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung City, Taiwan
| | - Tian Lian Huang
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Mari Sato
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Farnaz Shamsi
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, USA
| | - Yu-Hua Tseng
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
59
|
Edgerton-Fulton M, Abdul Y, Jamil S, Ergul A. Endothelin-1 (ET-1) contributes to senescence and phenotypic changes in brain pericytes in diabetes-mimicking conditions. Clin Sci (Lond) 2024; 138:1009-1022. [PMID: 39106080 DOI: 10.1042/cs20240328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/03/2024] [Accepted: 08/06/2024] [Indexed: 08/07/2024]
Abstract
Diabetes mediates endothelial dysfunction and increases the risk of Alzheimer's disease and related dementias. Diabetes also dysregulates the ET system. ET-1-mediated constriction of brain microvascular pericytes (BMVPCs) has been shown to contribute to brain hypoperfusion. Cellular senescence, a process that arrests the proliferation of harmful cells and instigates phenotypical changes and proinflammatory responses in endothelial cells that impact their survival and function. Thus, we hypothesized that ET-1 mediates BMVPC senescence and phenotypical changes in diabetes-like conditions. Human BMVPCs were incubated in diabetes-like conditions with or without ET-1 (1 µmol/L) for 3 and 7 days. Hydrogen peroxide (100 µmol/L H2O2) was used as a positive control for senescence and to mimic ischemic conditions. Cells were stained for senescence-associated β-galactosidase or processed for immunoblotting and quantitative real-time PCR analyses. In additional experiments, cells were stimulated with ET-1 in the presence or absence of ETA receptor antagonist BQ-123 (20 μmol/L) or ETB receptor antagonist BQ-788 (20 μmol/L). ET-1 stimulation increased β-galactosidase accumulation which was prevented by BQ-123. ET-1 also increased traditional senescence marker p16 protein and pericyte-specific senescence markers, TGFB1i1, PP1CA, and IGFBP7. Furthermore, ET-1 stimulated contractile protein α-SMA and microglial marker ostepontin in high glucose suggesting a shift toward an ensheathing or microglia-like phenotype. In conclusion, ET-1 triggers senescence, alters ETA and ETB receptors, and causes phenotypical changes in BMVPCs under diabetes-like conditions. These in vitro findings need to be further studied in vivo to establish the role of ETA receptors in the progression of pericyte senescence and phenotypical changes in VCID.
Collapse
Affiliation(s)
- Mia Edgerton-Fulton
- Department of Pathology & Laboratory Medicine, Medical University of South Carolina, Charleston, SC, U.S.A
| | - Yasir Abdul
- Department of Pathology & Laboratory Medicine, Medical University of South Carolina, Charleston, SC, U.S.A
| | - Sarah Jamil
- Department of Pathology & Laboratory Medicine, Medical University of South Carolina, Charleston, SC, U.S.A
| | - Adviye Ergul
- Department of Pathology & Laboratory Medicine, Medical University of South Carolina, Charleston, SC, U.S.A
- Ralph H Johnson VA Health Care System, Medical University of South Carolina, Charleston, SC, U.S.A
| |
Collapse
|
60
|
Patel M, Harris N, Kasztan M, Hyndman K. Comprehensive analysis of the endothelin system in the kidneys of mice, rats, and humans. Biosci Rep 2024; 44:BSR20240768. [PMID: 38904098 PMCID: PMC11249498 DOI: 10.1042/bsr20240768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 06/22/2024] Open
Abstract
The intrarenal endothelin (ET) system is an established moderator of kidney physiology and mechanistic contributor to the pathophysiology and progression of chronic kidney disease in humans and rodents. The aim of the present study was to characterize ET system by combining single cell RNA sequencing (scRNA-seq) data with immunolocalization in human and rodent kidneys of both sexes. Using publicly available scRNA-seq data, we assessed sex and kidney disease status (human), age and sex (rats), and diurnal expression (mice) on the kidney ET system expression. In normal human biopsies of both sexes and in rodent kidney samples, the endothelin-converting enzyme-1 (ECE1) and ET-1 were prominent in the glomeruli and endothelium. These data agreed with the scRNA-seq data from these three species, with ECE1/Ece1 mRNA enriched in the endothelium. However, the EDN1/Edn1 gene (encodes ET-1) was rarely detected, even though it was immunolocalized within the kidneys, and plasma and urinary ET-1 excretion are easily measured. Within each species, there were some sex-specific differences. For example, in kidney biopsies from living donors, men had a greater glomerular endothelial cell endothelin receptor B (Ednrb) compared with women. In mice, females had greater kidney endothelial cell Ednrb than male mice. As commercially available antibodies did not work in all species, and RNA expression did not always correlate with protein levels, multiple approaches should be considered to maintain required rigor and reproducibility of the pre- and clinical studies evaluating the intrarenal ET system.
Collapse
Affiliation(s)
- Margi Patel
- Department of Medicine, Division of Nephrology, Section of Cardio-Renal Physiology and Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, U.K
| | - Nicholas Harris
- Department of Medicine, Division of Nephrology, Section of Cardio-Renal Physiology and Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, U.K
| | - Malgorzata Kasztan
- Department of Pediatrics, Division of Hematology-Oncology, Section of Cardio-Renal Physiology and Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, U.K
| | - Kelly A. Hyndman
- Department of Medicine, Division of Nephrology, Section of Cardio-Renal Physiology and Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, U.K
| |
Collapse
|
61
|
Owen NE, Williams TL, Maguire JJ, Kuc RE, Davenport EE, Davenport AP. Microarray analysis demonstrates up-regulation of the endothelin-1 gene with compensatory down-regulation of the ETA receptor gene in human portal vein. Biosci Rep 2024; 44:BSR20240528. [PMID: 38860875 DOI: 10.1042/bsr20240528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 05/28/2024] [Accepted: 06/11/2024] [Indexed: 06/12/2024] Open
Abstract
High blood pressure in the portal vein, portal hypertension (PH), is the final common pathway in liver cirrhosis regardless of aetiology. Complications from PH are the major cause of morbidity and mortality in these patients. Current drug therapy to reduce portal pressure is mainly limited to β-adrenergic receptor blockade but approximately 40% of patients do not respond. Our aim was to use microarray to measure the expression of ∼20,800 genes in portal vein from patients with PH undergoing transplantation for liver cirrhosis (PH, n=12) versus healthy vessels (control, n=9) to identify potential drug targets to improve therapy. Expression of 9,964 genes above background was detected in portal vein samples. Comparing PH veins versus control (adjusted P-value < 0.05, fold change > 1.5) identified 548 up-regulated genes and 1,996 down-regulated genes. The 2,544 differentially expressed genes were subjected to pathway analysis. We identified 49 significantly enriched pathways. The endothelin pathway was ranked the tenth most significant, the only vasoconstrictive pathway to be identified. ET-1 gene (EDN1) was significantly up-regulated, consistent with elevated levels of ET-1 peptide previously measured in PH and cirrhosis. ETA receptor gene (EDNRA) was significantly down-regulated, consistent with an adaptive response to increased peptide levels in the portal vein but there was no change in the ETB gene (EDNRB). The results provide further support for evaluating the efficacy of ETA receptor antagonists as a potential therapy in addition to β-blockers in patients with PH and cirrhosis.
Collapse
Affiliation(s)
- Nicola E Owen
- Experimental Medicine and Immunotherapeutics, Department of Medicine, University of Cambridge, CB2 0QQ, U.K
| | - Thomas L Williams
- Experimental Medicine and Immunotherapeutics, Department of Medicine, University of Cambridge, CB2 0QQ, U.K
| | - Janet J Maguire
- Experimental Medicine and Immunotherapeutics, Department of Medicine, University of Cambridge, CB2 0QQ, U.K
| | - Rhoda E Kuc
- Experimental Medicine and Immunotherapeutics, Department of Medicine, University of Cambridge, CB2 0QQ, U.K
| | - Emma E Davenport
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, U.K
| | - Anthony P Davenport
- Experimental Medicine and Immunotherapeutics, Department of Medicine, University of Cambridge, CB2 0QQ, U.K
| |
Collapse
|
62
|
Hou J, Liu S, Zhang X, Tu G, Wu L, Zhang Y, Yang H, Li X, Liu J, Jiang L, Tan Q, Bai F, Liu Z, Miao C, Hua T, Luo Z. Structural basis of antagonist selectivity in endothelin receptors. Cell Discov 2024; 10:79. [PMID: 39075075 PMCID: PMC11286772 DOI: 10.1038/s41421-024-00705-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/30/2024] [Indexed: 07/31/2024] Open
Abstract
Endothelins and their receptors, ETA and ETB, play vital roles in maintaining vascular homeostasis. Therapeutically targeting endothelin receptors, particularly through ETA antagonists, has shown efficacy in treating pulmonary arterial hypertension (PAH) and other cardiovascular- and renal-related diseases. Here we present cryo-electron microscopy structures of ETA in complex with two PAH drugs, macitentan and ambrisentan, along with zibotentan, a selective ETA antagonist, respectively. Notably, a specialized anti-ETA antibody facilitated the structural elucidation. These structures, together with the active-state structures of ET-1-bound ETA and ETB, and the agonist BQ3020-bound ETB, in complex with Gq, unveil the molecular basis of agonist/antagonist binding modes in endothelin receptors. Key residues that confer antagonist selectivity to endothelin receptors were identified along with the activation mechanism of ETA. Furthermore, our results suggest that ECL2 in ETA can serve as an epitope for antibody-mediated receptor antagonism. Collectively, these insights establish a robust theoretical framework for the rational design of small-molecule drugs and antibodies with selective activity against endothelin receptors.
Collapse
Affiliation(s)
- Junyi Hou
- Cardiac Intensive Care Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shenhui Liu
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xiaodan Zhang
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Guowei Tu
- Cardiac Intensive Care Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lijie Wu
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Yijie Zhang
- Cardiac Intensive Care Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hao Yang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Xiangcheng Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Junlin Liu
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Longquan Jiang
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Qiwen Tan
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Fang Bai
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Zhijie Liu
- iHuman Institute, ShanghaiTech University, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China.
| | - Tian Hua
- iHuman Institute, ShanghaiTech University, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Zhe Luo
- Cardiac Intensive Care Center, Zhongshan Hospital, Fudan University, Shanghai, China.
- Department of Critical Care Medicine, Shanghai Xuhui Central Hospital, Zhongshan Xuhui Hospital, Fudan University, Shanghai, China.
- Shanghai Key Lab of Pulmonary Inflammation and Injury, Shanghai, China.
| |
Collapse
|
63
|
Tai Y, Han D, Yang X, Cai G, Li H, Li J, Deng X. Endothelin-3 Suppresses Luteinizing Hormone Receptor Expression by Regulating the cAMP-PKA Pathway in Hen Granulosa Cells. Curr Issues Mol Biol 2024; 46:7832-7845. [PMID: 39194681 DOI: 10.3390/cimb46080464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 08/29/2024] Open
Abstract
Previous research identified the expression of EDN3 in granulosa cells of preovulatory follicles in chickens. Notably, the expression level of EDN3 in Silky Fowl with low egg-laying performance was significantly higher than that in high-yield laying breed White Leghorn. Given the crucial role of granulosa cells in follicular development and maturation, it is very important to study the effect of EDN3 on the biological function of granular cells. In this study, an EDN3 overexpression plasmid was constructed and transfected into granular cells. The viability of these cells was detected using quantiative (qPCR), Cell Counting Kit-8 (CCK8), and 5-Ethynyl-2'-deoxyuridine (EdU) assays. Gonadal hormone synthesis was detected using enzyme-linked immunosorbent assay (ELISA) techniques. Finally, transcriptome sequencing was employed to identify differentially expressed genes. Result showed thatoverexpression of EDN3 was observed to promote cell viability. In addition, it significantly inhibits the expressions of LHR and cAMP-PKA signaling pathways. Cell transcriptome sequencing data displayed that EDN3 can upregulate energy metabolism and immune-related signaling pathways, whereas follicle maturation and the GnRH signaling pathway were downregulated. In conclusion, this study demonstrates that EDN3 can enhance granulosa cell viability and inhibit the expression of LHCGR, a process likely mediated through the cAMP-PKA signaling pathway. However, further evidence is required to substantiate the regulatory relationship between EDN3 and the cAMP-PKA signaling pathway.
Collapse
Affiliation(s)
- Yurong Tai
- Sanya Institute, China Agricultural University, Sanya, 572000, China
- Hainan Seed Industry Laboratory, Yazhou 572024, China
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory For Animal Breeding, China Agricultural University, Beijing 100000, China
| | - Deping Han
- Sanya Institute, China Agricultural University, Sanya, 572000, China
| | - Xue Yang
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory For Animal Breeding, China Agricultural University, Beijing 100000, China
| | - Ganxian Cai
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory For Animal Breeding, China Agricultural University, Beijing 100000, China
| | - Huaiyu Li
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory For Animal Breeding, China Agricultural University, Beijing 100000, China
| | - Junying Li
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory For Animal Breeding, China Agricultural University, Beijing 100000, China
| | - Xuemei Deng
- Sanya Institute, China Agricultural University, Sanya, 572000, China
- Hainan Seed Industry Laboratory, Yazhou 572024, China
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory For Animal Breeding, China Agricultural University, Beijing 100000, China
| |
Collapse
|
64
|
Thai BS, Chia LY, Nguyen ATN, Qin C, Ritchie RH, Hutchinson DS, Kompa A, White PJ, May LT. Targeting G protein-coupled receptors for heart failure treatment. Br J Pharmacol 2024; 181:2270-2286. [PMID: 37095602 DOI: 10.1111/bph.16099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 04/26/2023] Open
Abstract
Heart failure remains a leading cause of morbidity and mortality worldwide. Current treatment for patients with heart failure include drugs targeting G protein-coupled receptors such as β-adrenoceptor antagonists (β-blockers) and angiotensin II type 1 receptor antagonists (or angiotensin II receptor blockers). However, many patients progress to advanced heart failure with persistent symptoms, despite treatment with available therapeutics that have been shown to reduce mortality and mortality. GPCR targets currently being explored for the development of novel heart failure therapeutics include adenosine receptor, formyl peptide receptor, relaxin/insulin-like family peptide receptor, vasopressin receptor, endothelin receptor and the glucagon-like peptide 1 receptor. Many GPCR drug candidates are limited by insufficient efficacy and/or dose-limiting unwanted effects. Understanding the current challenges hindering successful clinical translation and the potential to overcome existing limitations will facilitate the future development of novel heart failure therapeutics. LINKED ARTICLES: This article is part of a themed issue Therapeutic Targeting of G Protein-Coupled Receptors: hot topics from the Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists 2021 Virtual Annual Scientific Meeting. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.14/issuetoc.
Collapse
Affiliation(s)
- Bui San Thai
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Ling Yeong Chia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Anh T N Nguyen
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Chengxue Qin
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Rebecca H Ritchie
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Dana S Hutchinson
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Andrew Kompa
- Department Medicine and Radiology, University of Melbourne, St Vincent's Hospital, Fitzroy, Victoria, Australia
| | - Paul J White
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Lauren T May
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
65
|
Barbaresi P, Fabri M, Lorenzi T, Sagrati A, Morroni M. Intrinsic organization of the corpus callosum. Front Physiol 2024; 15:1393000. [PMID: 39035452 PMCID: PMC11259024 DOI: 10.3389/fphys.2024.1393000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/16/2024] [Indexed: 07/23/2024] Open
Abstract
The corpus callosum-the largest commissural fiber system connecting the two cerebral hemispheres-is considered essential for bilateral sensory integration and higher cognitive functions. Most studies exploring the corpus callosum have examined either the anatomical, physiological, and neurochemical organization of callosal projections or the functional and/or behavioral aspects of the callosal connections after complete/partial callosotomy or callosal lesion. There are no works that address the intrinsic organization of the corpus callosum. We review the existing information on the activities that take place in the commissure in three sections: I) the topographical and neurochemical organization of the intracallosal fibers, II) the role of glia in the corpus callosum, and III) the role of the intracallosal neurons.
Collapse
Affiliation(s)
- Paolo Barbaresi
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Marche Polytechnic University, Ancona, Italy
| | - Mara Fabri
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Teresa Lorenzi
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Marche Polytechnic University, Ancona, Italy
| | - Andrea Sagrati
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Manrico Morroni
- Electron Microscopy Unit, Azienda Ospedaliero-Universitaria, Ancona, Italy
| |
Collapse
|
66
|
Saito Y, Nodai T, Munemasa T, Mukaibo T, Kondo Y, Masaki C, Hosokawa R. Diagnostic potential of endothelin-1 in peri-implant diseases: a cross-sectional study. Int J Implant Dent 2024; 10:32. [PMID: 38874661 PMCID: PMC11178717 DOI: 10.1186/s40729-024-00551-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/28/2024] [Indexed: 06/15/2024] Open
Abstract
PURPOSE This study aimed to evaluate the potential of Endothelin-1 (ET-1), a peptide derived from vascular endothelial cells, as a biomarker for diagnosing peri-implant diseases. METHODS A cohort of 29 patients with a total of 76 implants was included in this study and subsequently divided into three groups based on peri-implant clinical parameters and radiographic examination: healthy (peri-implant health) (n = 29), mucositis (n = 22), and peri-implantitis (n = 25) groups. The levels of ET-1 (ρg/site) and interleukin (IL)-1β (ρg/site) in peri-implant sulcus fluid (PISF) samples were determined using enzyme immunoassay. Statistical analyses were conducted using Kruskal-Wallis and Steel-Dwass tests. Logistic regression and receiver operating characteristic (ROC) curve analyses were performed to evaluate the diagnostic performance of the biomarkers. RESULTS ET-1 levels were significantly elevated in the peri-implantitis group compared to those in the healthy group, and were highest in the peri-implant mucositis group. Additionally, IL-1β levels were significantly higher in the peri-implantitis group than those in the healthy group. ROC curve analysis indicated that ET-1 exhibited superior area under the curve values, sensitivity, and specificity compared to those of IL-1β. CONCLUSIONS Our findings suggest that the presence of ET-1 in PISF plays a role in peri-implant diseases. Its significantly increased expression in peri-implant mucositis indicates its potential for enabling earlier and more accurate assessments of peri-implant inflammation when combined with conventional examination methods.
Collapse
Affiliation(s)
- Yoshiki Saito
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu, Fukuoka, 803-8580, Japan
| | - Tomotaka Nodai
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu, Fukuoka, 803-8580, Japan.
| | - Takashi Munemasa
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu, Fukuoka, 803-8580, Japan
| | - Taro Mukaibo
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu, Fukuoka, 803-8580, Japan
| | - Yusuke Kondo
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu, Fukuoka, 803-8580, Japan
| | - Chihiro Masaki
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu, Fukuoka, 803-8580, Japan
| | - Ryuji Hosokawa
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu, Fukuoka, 803-8580, Japan
| |
Collapse
|
67
|
Sakata H, Kanoke A, Uchida H, Haryu S, Omodaka S, Kimura N, Yoshida M, Niizuma K, Tominaga T, Endo H. Prophylactic management of cerebral vasospasm with clazosentan in real clinical practice: a single-center retrospective cohort study. Front Neurol 2024; 15:1413632. [PMID: 38903164 PMCID: PMC11187092 DOI: 10.3389/fneur.2024.1413632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/23/2024] [Indexed: 06/22/2024] Open
Abstract
Introduction Clazosentan, a selective endothelin receptor subtype A antagonist, reduces vasospasm-related morbidity and all-cause mortality following aneurysmal subarachnoid hemorrhage (SAH) in the Japanese population, as demonstrated by a recent randomized phase 3 trial. However, evidence to suggest clazosentan should be prioritized over the current standard of care to prevent cerebral vasospasm is still lacking. Therefore, we investigated the efficacy and safety of clazosentan in comparison with conventional postoperative management in real-world clinical practice. Methods We conducted a single-center, retrospective, observational cohort study using prospectively collected data from consecutive patients with aneurysmal SAH. After clazosentan was approved for use in Japan, the conventional postoperative management protocol, composed of intravenous fasudil chloride and oral cilostazol (control group, April 2021 to March 2022), was changed to the clazosentan protocol (clazosentan group, April 2022 to March 2023). The primary endpoint was the incidence of vasospasm-related symptomatic infarction. The secondary endpoints were favorable functional outcomes (modified Rankin scale score < 3) at discharge, angiographic vasospasm, and the need for rescue therapy for delayed cerebral ischemia. Results The analysis included 100 and 81 patients in the control and clazosentan groups, respectively. The incidence of vasospasm-related symptomatic infarction was significantly lower in the clazosentan group than in the control group (6.2% vs. 16%, p = 0.032). Multiple logistic analyses demonstrated that the use of clazosentan was independently associated with fewer incidence of vasospasm-related symptomatic infarct (23.8% vs. 47.5%, odds ratio 0.34 [0.12-0.97], p = 0.032). Clazosentan was significantly associated with favorable outcomes at discharge (79% vs. 66%, p = 0.037). Moreover, both the incidence of angiographic vasospasm (25.9% vs. 44%, p = 0.013) and the need for rescue therapy (16.1% vs. 34%, p = 0.006) was lower in the clazosentan group. The occurrence of pulmonary edema was significantly higher with clazosentan use (19.8% vs. 5%, p = 0.002), which did not result in morbidity. Conclusion A postoperative management protocol centering on clazosentan was associated with the reduced vasospasm-related symptomatic infarction and improved clinical outcomes compared to the conventional management protocol in Japanese clinical practice. Clazosentan might be a promising treatment option for counteracting cerebral vasospasm after aneurysmal SAH.
Collapse
Affiliation(s)
- Hiroyuki Sakata
- Department of Neurosurgery, Kohnan Hospital, Sendai, Japan
- Department of Neuroendovascular Therapy, Kohnan Hospital, Sendai, Japan
| | - Atsushi Kanoke
- Department of Neurosurgery, Kohnan Hospital, Sendai, Japan
| | - Hiroki Uchida
- Department of Neurosurgery, Kohnan Hospital, Sendai, Japan
| | - Shinya Haryu
- Department of Neuroendovascular Therapy, Kohnan Hospital, Sendai, Japan
| | - Shunsuke Omodaka
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Naoto Kimura
- Department of Neurosurgery, Iwate Prefectural Central Hospital, Morioka, Japan
| | - Masahiro Yoshida
- Preemptive Medicine in the Community of the North Miyagi (Osaki Citizen Hospital), Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kuniyasu Niizuma
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
- Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
- Research Division of Advanced Diagnosis and Treatment for Subarachnoid Hemorrhage, Tohoku University Hospital, Sendai, Japan
| | - Teiji Tominaga
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
- Research Division of Advanced Diagnosis and Treatment for Subarachnoid Hemorrhage, Tohoku University Hospital, Sendai, Japan
| | - Hidenori Endo
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
- Research Division of Advanced Diagnosis and Treatment for Subarachnoid Hemorrhage, Tohoku University Hospital, Sendai, Japan
| |
Collapse
|
68
|
Ambery P, Greasley PJ, Menzies RI, Brynne L, Kulkarni S, Oscarsson J, Davenport AP. Targeting the endothelium by combining endothelin-1 antagonism and SGLT-2 inhibition: better together? Clin Sci (Lond) 2024; 138:687-697. [PMID: 38835256 DOI: 10.1042/cs20240605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/06/2024]
Abstract
Endothelin A and B receptors, together with sodium-glucose cotransporter-2 (SGLT-2) channels are important targets in improving endothelial function and intervention with inhibitors has been the subject of multiple mechanistic and clinical outcome trials over recent years. Notable successes include the treatment of pulmonary hypertension with endothelin receptor antagonists, and the treatment of heart failure and chronic kidney disease with SGLT-2 inhibitors. With distinct and complementary mechanisms, in this review, we explore the logic of combination therapy for a number of diseases which have endothelial dysfunction at their heart.
Collapse
Affiliation(s)
- Phil Ambery
- Clinical Late Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Peter J Greasley
- Early Clinical Development, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Robert I Menzies
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Lena Brynne
- Information Practice Late Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Spoorthy Kulkarni
- Department of Clinical Pharmacology and Therapeutics, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB20QQ, U.K
- Division of Experimental Medicine and Immunotherapeutics, University of Cambridge, Addenbrooke's Hospital, Cambridge, U.K
| | - Jan Oscarsson
- Clinical Late Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Anthony P Davenport
- Division of Experimental Medicine and Immunotherapeutics, University of Cambridge, Addenbrooke's Hospital, Cambridge, U.K
| |
Collapse
|
69
|
Schinzari F, Tesauro M, Cardillo C. Is endothelin targeting finally ready for prime time? Clin Sci (Lond) 2024; 138:635-644. [PMID: 38785409 DOI: 10.1042/cs20240607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
The endothelin family of peptides has long been recognized as a physiological regulator of diverse biological functions and mechanistically involved in various disease states, encompassing, among others, the cardiovascular system, the kidney, and the nervous system. Pharmacological blockade of the endothelin system, however, has encountered strong obstacles in its entry into the clinical mainstream, having obtained only a few proven indications until recently. This translational gap has been attributable predominantly to the relevant side effects associated with endothelin receptor antagonism (ERA), particularly fluid retention. Of recent, however, an expanding understanding of the pathophysiological processes involving endothelin, in conjunction with the development of new antagonists of endothelin receptors or adjustment of their doses, has driven a flourish of new clinical trials. The favorable results of some of them have extended the proven indications for ET targeting to a variety of clinical conditions, including resistant arterial hypertension and glomerulopathies. In addition, on the ground of strong preclinical evidence, other studies are ongoing to test the potential benefits of ERA in combination with other treatments, such as sodium-glucose co-transporter 2 inhibition in fluid retentive states or anti-cancer therapies in solid tumors. Furthermore, antibodies providing long-term blockade of endothelin receptors are under testing to overcome the short half-life of most small molecule endothelin antagonists. These efforts may yet bring new life to the translation of endothelin targeting strategies in clinical practice.
Collapse
Affiliation(s)
| | - Manfredi Tesauro
- Department of Systems Medicine, Università Tor Vergata, Roma, Italy
| | - Carmine Cardillo
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Roma, Italy
| |
Collapse
|
70
|
Arndt P, Turkowski K, Cekay M, Eul B, Grimminger F, Savai R. Endothelin and the tumor microenvironment: a finger in every pie. Clin Sci (Lond) 2024; 138:617-634. [PMID: 38785410 PMCID: PMC11130555 DOI: 10.1042/cs20240426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
The tumor microenvironment (TME) plays a central role in the development of cancer. Within this complex milieu, the endothelin (ET) system plays a key role by triggering epithelial-to-mesenchymal transition, causing degradation of the extracellular matrix and modulating hypoxia response, cell proliferation, composition, and activation. These multiple effects of the ET system on cancer progression have prompted numerous preclinical studies targeting the ET system with promising results, leading to considerable optimism for subsequent clinical trials. However, these clinical trials have not lived up to the high expectations; in fact, the clinical trials have failed to demonstrate any substantiated benefit of targeting the ET system in cancer patients. This review discusses the major and recent advances of the ET system with respect to TME and comments on past and ongoing clinical trials of the ET system.
Collapse
Affiliation(s)
- Philipp F. Arndt
- Lung Microenvironmental Niche in Cancerogenesis, Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Centre (UGMLC), Member of the Cardio-Pulmonary Institute (CPI), Member of the German Centre for Lung Research (DZL), Giessen, Germany
- Max Planck Institute for Heart and Lung Research, Member of the DZL, Member of the CPI, Bad Nauheim, Germany
| | - Kati Turkowski
- Lung Microenvironmental Niche in Cancerogenesis, Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Max Planck Institute for Heart and Lung Research, Member of the DZL, Member of the CPI, Bad Nauheim, Germany
| | - Michael J. Cekay
- Lung Microenvironmental Niche in Cancerogenesis, Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Centre (UGMLC), Member of the Cardio-Pulmonary Institute (CPI), Member of the German Centre for Lung Research (DZL), Giessen, Germany
| | - Bastian Eul
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Centre (UGMLC), Member of the Cardio-Pulmonary Institute (CPI), Member of the German Centre for Lung Research (DZL), Giessen, Germany
| | - Friedrich Grimminger
- Lung Microenvironmental Niche in Cancerogenesis, Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Centre (UGMLC), Member of the Cardio-Pulmonary Institute (CPI), Member of the German Centre for Lung Research (DZL), Giessen, Germany
| | - Rajkumar Savai
- Lung Microenvironmental Niche in Cancerogenesis, Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Centre (UGMLC), Member of the Cardio-Pulmonary Institute (CPI), Member of the German Centre for Lung Research (DZL), Giessen, Germany
- Max Planck Institute for Heart and Lung Research, Member of the DZL, Member of the CPI, Bad Nauheim, Germany
| |
Collapse
|
71
|
Selvarajan I, Kiema M, Huang RT, Li J, Zhu J, Pölönen P, Örd T, Õunap K, Godiwala M, Golebiewski AK, Ravindran A, Mäklin K, Toropainen A, Stolze LK, Arce M, Magnusson PU, White S, Romanoski CE, Heinäniemi M, Laakkonen JP, Fang Y, Kaikkonen MU. Coronary Artery Disease Risk Variant Dampens the Expression of CALCRL by Reducing HSF Binding to Shear Stress Responsive Enhancer in Endothelial Cells In Vitro. Arterioscler Thromb Vasc Biol 2024; 44:1330-1345. [PMID: 38602103 PMCID: PMC11111333 DOI: 10.1161/atvbaha.123.318964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/25/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND CALCRL (calcitonin receptor-like) protein is an important mediator of the endothelial fluid shear stress response, which is associated with the genetic risk of coronary artery disease. In this study, we functionally characterized the noncoding regulatory elements carrying coronary artery disease that risks single-nucleotide polymorphisms and studied their role in the regulation of CALCRL expression in endothelial cells. METHODS To functionally characterize the coronary artery disease single-nucleotide polymorphisms harbored around the gene CALCRL, we applied an integrative approach encompassing statistical, transcriptional (RNA-seq), and epigenetic (ATAC-seq [transposase-accessible chromatin with sequencing], chromatin immunoprecipitation assay-quantitative polymerase chain reaction, and electromobility shift assay) analyses, alongside luciferase reporter assays, and targeted gene and enhancer perturbations (siRNA and clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeat-associated 9) in human aortic endothelial cells. RESULTS We demonstrate that the regulatory element harboring rs880890 exhibits high enhancer activity and shows significant allelic bias. The A allele was favored over the G allele, particularly under shear stress conditions, mediated through alterations in the HSF1 (heat shock factor 1) motif and binding. CRISPR deletion of rs880890 enhancer resulted in downregulation of CALCRL expression, whereas HSF1 knockdown resulted in a significant decrease in rs880890-enhancer activity and CALCRL expression. A significant decrease in HSF1 binding to the enhancer region in endothelial cells was observed under disturbed flow compared with unidirectional flow. CALCRL knockdown and variant perturbation experiments indicated the role of CALCRL in mediating eNOS (endothelial nitric oxide synthase), APLN (apelin), angiopoietin, prostaglandins, and EDN1 (endothelin-1) signaling pathways leading to a decrease in cell proliferation, tube formation, and NO production. CONCLUSIONS Overall, our results demonstrate the existence of an endothelial-specific HSF (heat shock factor)-regulated transcriptional enhancer that mediates CALCRL expression. A better understanding of CALCRL gene regulation and the role of single-nucleotide polymorphisms in the modulation of CALCRL expression could provide important steps toward understanding the genetic regulation of shear stress signaling responses.
Collapse
Affiliation(s)
- Ilakya Selvarajan
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Miika Kiema
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Ru-Ting Huang
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Jin Li
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Jiayu Zhu
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Petri Pölönen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, P.O. Box 1627, FIN-70211, Kuopio, Finland
| | - Tiit Örd
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Kadri Õunap
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Mehvash Godiwala
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Anna Kathryn Golebiewski
- Department of Cellular and Molecular Medicine, The College of Medicine, The University of Arizona; Tucson, AZ 85721, USA
| | - Aarthi Ravindran
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Kiira Mäklin
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Anu Toropainen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Lindsey K. Stolze
- Department of Cellular and Molecular Medicine, The College of Medicine, The University of Arizona; Tucson, AZ 85721, USA
| | - Maximiliano Arce
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Peetra U. Magnusson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Stephen White
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle NE1 3BZ, UK
| | - Casey E. Romanoski
- Department of Cellular and Molecular Medicine, The College of Medicine, The University of Arizona; Tucson, AZ 85721, USA
| | - Merja Heinäniemi
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, P.O. Box 1627, FIN-70211, Kuopio, Finland
| | - Johanna P. Laakkonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Yun Fang
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Minna U Kaikkonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| |
Collapse
|
72
|
Dhalla NS, Mota KO, Elimban V, Shah AK, de Vasconcelos CML, Bhullar SK. Role of Vasoactive Hormone-Induced Signal Transduction in Cardiac Hypertrophy and Heart Failure. Cells 2024; 13:856. [PMID: 38786079 PMCID: PMC11119949 DOI: 10.3390/cells13100856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Heart failure is the common concluding pathway for a majority of cardiovascular diseases and is associated with cardiac dysfunction. Since heart failure is invariably preceded by adaptive or maladaptive cardiac hypertrophy, several biochemical mechanisms have been proposed to explain the development of cardiac hypertrophy and progression to heart failure. One of these includes the activation of different neuroendocrine systems for elevating the circulating levels of different vasoactive hormones such as catecholamines, angiotensin II, vasopressin, serotonin and endothelins. All these hormones are released in the circulation and stimulate different signal transduction systems by acting on their respective receptors on the cell membrane to promote protein synthesis in cardiomyocytes and induce cardiac hypertrophy. The elevated levels of these vasoactive hormones induce hemodynamic overload, increase ventricular wall tension, increase protein synthesis and the occurrence of cardiac remodeling. In addition, there occurs an increase in proinflammatory cytokines and collagen synthesis for the induction of myocardial fibrosis and the transition of adaptive to maladaptive hypertrophy. The prolonged exposure of the hypertrophied heart to these vasoactive hormones has been reported to result in the oxidation of catecholamines and serotonin via monoamine oxidase as well as the activation of NADPH oxidase via angiotensin II and endothelins to promote oxidative stress. The development of oxidative stress produces subcellular defects, Ca2+-handling abnormalities, mitochondrial Ca2+-overload and cardiac dysfunction by activating different proteases and depressing cardiac gene expression, in addition to destabilizing the extracellular matrix upon activating some metalloproteinases. These observations support the view that elevated levels of various vasoactive hormones, by producing hemodynamic overload and activating their respective receptor-mediated signal transduction mechanisms, induce cardiac hypertrophy. Furthermore, the occurrence of oxidative stress due to the prolonged exposure of the hypertrophied heart to these hormones plays a critical role in the progression of heart failure.
Collapse
Affiliation(s)
- Naranjan S. Dhalla
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R2H 2A6, Canada; (V.E.); (S.K.B.)
| | - Karina O. Mota
- Department of Physiology, Center of Biological and Health Sciences, Federal University of Sergipe, Sao Cristóvao 49100-000, Brazil; (K.O.M.); (C.M.L.d.V.)
| | - Vijayan Elimban
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R2H 2A6, Canada; (V.E.); (S.K.B.)
| | - Anureet K. Shah
- Department of Nutrition and Food Science, California State University, Los Angeles, CA 90032-8162, USA;
| | - Carla M. L. de Vasconcelos
- Department of Physiology, Center of Biological and Health Sciences, Federal University of Sergipe, Sao Cristóvao 49100-000, Brazil; (K.O.M.); (C.M.L.d.V.)
| | - Sukhwinder K. Bhullar
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R2H 2A6, Canada; (V.E.); (S.K.B.)
| |
Collapse
|
73
|
Li J, Haj Ebrahimi A, Ali AB. Advances in Therapeutics to Alleviate Cognitive Decline and Neuropsychiatric Symptoms of Alzheimer's Disease. Int J Mol Sci 2024; 25:5169. [PMID: 38791206 PMCID: PMC11121252 DOI: 10.3390/ijms25105169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Dementia exists as a 'progressive clinical syndrome of deteriorating mental function significant enough to interfere with activities of daily living', with the most prevalent type of dementia being Alzheimer's disease (AD), accounting for about 80% of diagnosed cases. AD is associated with an increased risk of comorbidity with other clinical conditions such as hypertension, diabetes, and neuropsychiatric symptoms (NPS) including, agitation, anxiety, and depression as well as increased mortality in late life. For example, up to 70% of patients diagnosed with AD are affected by anxiety. As aging is the major risk factor for AD, this represents a huge global burden in ageing populations. Over the last 10 years, significant efforts have been made to recognize the complexity of AD and understand the aetiology and pathophysiology of the disease as well as biomarkers for early detection. Yet, earlier treatment options, including acetylcholinesterase inhibitors and glutamate receptor regulators, have been limited as they work by targeting the symptoms, with only the more recent FDA-approved drugs being designed to target amyloid-β protein with the aim of slowing down the progression of the disease. However, these drugs may only help temporarily, cannot stop or reverse the disease, and do not act by reducing NPS associated with AD. The first-line treatment options for the management of NPS are selective serotonin reuptake inhibitors/selective noradrenaline reuptake inhibitors (SSRIs/SNRIs) targeting the monoaminergic system; however, they are not rational drug choices for the management of anxiety disorders since the GABAergic system has a prominent role in their development. Considering the overall treatment failures and side effects of currently available medication, there is an unmet clinical need for rationally designed therapies for anxiety disorders associated with AD. In this review, we summarize the current status of the therapy of AD and aim to highlight novel angles for future drug therapy in our ongoing efforts to alleviate the cognitive deficits and NPS associated with this devastating disease.
Collapse
Affiliation(s)
| | | | - Afia B. Ali
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (J.L.); (A.H.E.)
| |
Collapse
|
74
|
Adu-Gyamfi M, Goettsch C, Kamhieh-Milz J, Chen L, Pfefferkorn AM, Hofmann A, Brunssen C, Müller G, Walther T, Ashraf MI, Morawietz H, Witowski J, Catar R. The Role of NOX2-Derived Reactive Oxygen Species in the Induction of Endothelin-Converting Enzyme-1 by Angiotensin II. Antioxidants (Basel) 2024; 13:500. [PMID: 38671948 PMCID: PMC11047448 DOI: 10.3390/antiox13040500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Endothelin-1 is a key regulator of vascular tone and blood pressure in health and disease. We have recently found that ET-1 production in human microvascular endothelial cells (HMECs) can be promoted by angiotensin II (Ang II) through a novel mechanism involving octamer-binding transcription factor-1 (Oct-1), NADPH oxidase-2 (NOX2), and superoxide anions. As the formation of bioactive ET-1 also depends on endothelin-converting enzyme-1 (ECE-1), we investigated the transcriptional regulation of the ECE1 gene. We found that exposure of HMECs to Ang II resulted in a concentration- and time-dependent increase in ECE1 mRNA expression. Pharmacological inhibition of ECE-1 reduced Ang II-stimulated ET-1 release to baseline values. The effect of Ang II on ECE1 mRNA expression was associated with Oct-1 binding to the ECE1 promoter, resulting in its increased activity. Consequently, the Ang II-stimulated increase in ECE1 mRNA expression could be prevented by siRNA-mediated Oct-1 inhibition. It could also be abolished by silencing the NOX2 gene and neutralizing superoxide anions with superoxide dismutase. In mice fed a high-fat diet, cardiac expression of Ece1 mRNA increased in wild-type mice but not in Nox2-deficient animals. It can be concluded that Ang II engages Oct-1, NOX2, and superoxide anions to stimulate ECE1 expression in the endothelium.
Collapse
Affiliation(s)
- Michael Adu-Gyamfi
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany; (M.A.-G.); (L.C.)
| | - Claudia Goettsch
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (C.G.); (A.H.); (C.B.); (G.M.); (H.M.)
- Department of Internal Medicine I-Cardiology, Medical Faculty, RWTH Aachen University, 52072 Aachen, Germany
| | - Julian Kamhieh-Milz
- Institute of Transfusion Medicine, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany;
| | - Lei Chen
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany; (M.A.-G.); (L.C.)
- Department of Nephrology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519082, China
| | - Anna Maria Pfefferkorn
- Department of Surgery, Experimental Surgery, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany; (A.M.P.); (M.I.A.)
| | - Anja Hofmann
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (C.G.); (A.H.); (C.B.); (G.M.); (H.M.)
- Division of Vascular and Endovascular Surgery, Department of Visceral, Thoracic and Vascular Surgery, University Hospital, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Coy Brunssen
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (C.G.); (A.H.); (C.B.); (G.M.); (H.M.)
| | - Gregor Müller
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (C.G.); (A.H.); (C.B.); (G.M.); (H.M.)
| | - Thomas Walther
- Medical School Berlin (MSB), 14197 Berlin, Germany;
- Xitra Therapeutics GmbH, 17489 Greifswald, Germany
| | - Muhammad Imtiaz Ashraf
- Department of Surgery, Experimental Surgery, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany; (A.M.P.); (M.I.A.)
| | - Henning Morawietz
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (C.G.); (A.H.); (C.B.); (G.M.); (H.M.)
| | - Janusz Witowski
- Department of Pathophysiology, Poznan University of Medical Sciences, 60-535 Poznan, Poland
| | - Rusan Catar
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany; (M.A.-G.); (L.C.)
- Berlin Institute of Health, 10178 Berlin, Germany
| |
Collapse
|
75
|
Yu H, Greasley P, Lambers-Heerspink H, Boulton DW, Hamrén B, Hallow KM. Quantifying the integrated physiological effects of endothelin-1 on cardiovascular and renal function in healthy subjects: a mathematical modeling analysis. Front Pharmacol 2024; 15:1332394. [PMID: 38645552 PMCID: PMC11027018 DOI: 10.3389/fphar.2024.1332394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/21/2024] [Indexed: 04/23/2024] Open
Abstract
Endothelin-1 (ET-1) is a potent vasoconstrictor with strong anti-natriuretic and anti-diuretic effects. While many experimental studies have elucidated the mechanisms of ET-1 through its two receptors, ETA and ETB, the complexity of responses and sometimes conflicting data make it challenging to understand the effects of ET-1, as well as potential therapeutic antagonism of ET-1 receptors, on human physiology. In this study, we aimed to develop an integrated and quantitative description of ET-1 effects on cardiovascular and renal function in healthy humans by coupling existing experimental data with a mathematical model of ET-1 kinetics and an existing mathematical model of cardiorenal function. Using a novel agnostic and iterative approach to incorporating and testing potential mechanisms, we identified a minimal set of physiological actions of endothelin-1 through ETA and ETB receptors by fitting the physiological responses (changes in blood pressure, renal blood flow, glomerular filtration rate (GFR), and sodium/water excretion) to ET-1 infusion, with and without ETA/ETB antagonism. The identified mechanisms align with previous experimental studies on ET-1 and offer novel insights into the relative magnitude and significance of endothelin's effects. This model serves as a foundation for further investigating the mechanisms of ET-1 and its antagonists.
Collapse
Affiliation(s)
- Hongtao Yu
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Peter Greasley
- Early Clinical Development, Research, and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceutical R&D, AstraZeneca, Gothenburg, Sweden
| | - Hiddo Lambers-Heerspink
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, Groningen, Netherlands
- The George Institute for Global Health, Sydney, NSW, Australia
| | - David W. Boulton
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Bengt Hamrén
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - K. Melissa Hallow
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA, United States
- Department of Epidemiology and Biostatistics, University of Georgia, Athens, GA, United States
| |
Collapse
|
76
|
Schiffrin EL, Pollock DM. Endothelin System in Hypertension and Chronic Kidney Disease. Hypertension 2024; 81:691-701. [PMID: 38059359 PMCID: PMC10954415 DOI: 10.1161/hypertensionaha.123.21716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
ET (endothelin) is a powerful vasoconstrictor 21-amino acid peptide present in many tissues, which exerts many physiological functions across the body and participates as a mediator in many pathological conditions. ETs exert their effects through ETA and ETB receptors, which can be blocked by selective receptor antagonists. ETs were shown to play important roles among others, in systemic hypertension, particularly when resistant or difficult to control, and in pulmonary hypertension, atherosclerosis, cardiac hypertrophy, subarachnoid hemorrhage, chronic kidney disease, diabetic cardiovascular disease, scleroderma, some cancers, etc. To date, ET antagonists are only approved for the treatment of primary pulmonary hypertension and recently for IgA nephropathy and used in the treatment of digital ulcers in scleroderma. However, they may soon be approved for the treatment of patients with resistant hypertension and different types of nephropathy. Here, the role of ETs is reviewed with a special emphasis on participation in and treatment of hypertension and chronic kidney disease.
Collapse
Affiliation(s)
- Ernesto L. Schiffrin
- Lady Davis Institute for Medical Research, and Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital, McGill University
| | - David M. Pollock
- Section of Cardio-Renal Physiology and Medicine, Department of Medicine, Division of Nephrology, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
77
|
Zhu Q, Wang S, Huang X, Zhao C, Wang Y, Li X, Jia D, Ma C. Understanding the pathogenesis of coronary slow flow: Recent advances. Trends Cardiovasc Med 2024; 34:137-144. [PMID: 36516963 DOI: 10.1016/j.tcm.2022.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/24/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Coronary slow flow is taken to be indicative of delayed filling of terminal vessels of the coronary arteries in the absence of coronary stenosis, as detected using coronary angiography. Patients suffering from coronary slow flow typically experience recurrent chest pain, thereby markedly affecting their quality of life. The etiology and pathogenesis of coronary slow flow, which is gradually attracting clinical attention, have yet to be sufficiently established, although it is currently believed that they may be associated with endothelial dysfunction in the coronary arteries, inflammatory response, abnormalities in microvascular reserve function, subclinical atherosclerosis, blood cell and platelet abnormalities, and genetic factors. In this review, we provide a brief overview of recent progress in research on the pathogenesis of coronary slow flow with a view toward elucidating the possible underlying pathogenesis and identify targets and directions for the treatment of this condition.
Collapse
Affiliation(s)
- Qing Zhu
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang, China; Clinical Medical Research Center of Imaging in Liaoning Province, Shenyang, China
| | - Shitong Wang
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang, China; Clinical Medical Research Center of Imaging in Liaoning Province, Shenyang, China
| | - Xin Huang
- Department of Radiology, The First Hospital of China Medical University, Shenyang, China
| | - Cuiting Zhao
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang, China; Clinical Medical Research Center of Imaging in Liaoning Province, Shenyang, China
| | - Yonghuai Wang
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang, China; Clinical Medical Research Center of Imaging in Liaoning Province, Shenyang, China
| | - Xinxin Li
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang, China; Clinical Medical Research Center of Imaging in Liaoning Province, Shenyang, China
| | - Dalin Jia
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, China
| | - Chunyan Ma
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang, China; Clinical Medical Research Center of Imaging in Liaoning Province, Shenyang, China.
| |
Collapse
|
78
|
Carraro CC, Turck P, Bahr A, Donatti L, Corssac G, Lacerda D, da Rosa Araujo AS, de Castro AL, Koester L, Belló-Klein A. Effect of free and nanoemulsified β-caryophyllene on monocrotaline-induced pulmonary arterial hypertension. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119704. [PMID: 38462075 DOI: 10.1016/j.bbamcr.2024.119704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/06/2024] [Accepted: 02/29/2024] [Indexed: 03/12/2024]
Abstract
Pulmonary arterial hypertension (PAH) is characterized by increased pulmonary vascular resistance (PVR), right ventricular (RV) failure and premature death. Compounds with vasodilatory characteristics, such as β-caryophyllene, could be promising therapeutics for PAH. This study aimed to determine the effects of free and nanoemulsified β-caryophyllene in lung oxidative stress and heart function in PAH rats. Male Wistar rats (170 g, n = 6/group) were divided into four groups: control (CO), monocrotaline (MCT), monocrotaline + β-caryophyllene (MCT-Bcar) and monocrotaline + nanoemulsion with β-caryophyllene (MCT-Nano). PAH was induced by MCT (60 mg/kg i.p.), and 7 days later, treatment with β-caryophyllene, either free or in a nanoemulsion (by gavage, 176 mg/kg/day) or vehicle was given for 14 days. Echocardiographic and hemodynamic measurements were performed, and after, the RV was collected for morphometry and the lungs for evaluation of oxidative stress, antioxidant enzymes, total sulfhydryl compounds, nitric oxide synthase (NOS) activity and endothelin-1 receptor expression. RV hypertrophy, increased PVR and RV systolic and diastolic pressures (RVSP and RVEDP, respectively) and increased mean pulmonary arterial pressure (mPAP) were observed in the MCT group. Treatment with both free and nanoemulsified β-caryophyllene reduced RV hypertrophy, mPAP, RVSP and lipid peroxidation. The reduction in RVSP was more pronounced in the MCT-Nano group. Moreover, RVEDP decreased only in the MCT-Nano group. These treatments also increased superoxide dismutase, catalase and NOS activities and decreased endothelin-1 receptors expression. Both β-caryophyllene formulations improved mPAP, PVR and oxidative stress parameters. However, β-caryophyllene in a nanoemulsion was more effective in attenuating the effects of PAH.
Collapse
Affiliation(s)
| | - Patrick Turck
- Laboratório de Fisiologia Cardiovascular, UFRGS, Brazil
| | - Alan Bahr
- Laboratório de Fisiologia Cardiovascular, UFRGS, Brazil
| | - Luiza Donatti
- Laboratório de Fisiologia Cardiovascular, UFRGS, Brazil
| | - Giana Corssac
- Laboratório de Fisiologia Cardiovascular, UFRGS, Brazil
| | | | | | | | | | | |
Collapse
|
79
|
Xu L, Yang T, Wen M, Wen D, Jin C, An M, Wang L, Liu Y, Fan J. Frontiers in the Etiology and Treatment of Preterm Premature Rupture of Membrane: From Molecular Mechanisms to Innovative Therapeutic Strategies. Reprod Sci 2024; 31:917-931. [PMID: 37989803 DOI: 10.1007/s43032-023-01411-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/09/2023] [Indexed: 11/23/2023]
Abstract
Preterm premature rupture of membranes (pPROM) poses a significant threat to fetal viability and increases the risk for newborn morbidities. The perinatal period of preterm infants affected by pPROM is often characterized by higher rates of mortality and morbidity, with associated risks of cerebral palsy, developmental delays, compromised immune function, respiratory diseases, and sensory impairments. pPROM is believed to result from a variety of causes, including but not limited to microbially induced infections, stretching of fetal membranes, oxidative stress, inflammatory responses, and age-related changes in the fetal-placental interface. Maternal stress, nutritional deficiencies, and medically induced procedures such as fetoscopy are also considered potential contributing factors to pPROM. This comprehensive review explores the potential etiologies leading to pPROM, delves into the intricate molecular mechanisms through which these etiologies cause membrane ruptures, and provides a concise overview of diagnostic and treatment approaches for pPROM. Based on available therapeutic options, this review proposes and explores the possibilities of utilizing a novel composite hydrogel composed of amniotic membrane particles for repairing ruptured fetal membranes, thereby holding promise for its clinical application.
Collapse
Affiliation(s)
- Ludan Xu
- Institute of Biomedical Engineering, College of Biomedical Engineering, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Tiantian Yang
- Institute of Biomedical Engineering, College of Biomedical Engineering, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Meiling Wen
- Institute of Biomedical Engineering, College of Biomedical Engineering, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, Shanxi, China
- Research Center for Nanobiomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Dawei Wen
- Institute of Biomedical Engineering, College of Biomedical Engineering, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Chaoyang Jin
- Institute of Biomedical Engineering, College of Biomedical Engineering, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Meiwen An
- Institute of Biomedical Engineering, College of Biomedical Engineering, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Li Wang
- Institute of Biomedical Engineering, College of Biomedical Engineering, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Yang Liu
- Institute of Biomedical Engineering, College of Biomedical Engineering, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, Shanxi, China.
- Research Center for Nanobiomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, China.
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.
| | - Junmei Fan
- Department of Reproductive Medicine Center, Children's Hospital of Shanxi and Women Health Center of Shanxi, Affiliated of Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
80
|
Mochizuki T, Ryu B, Shima S, Kamijyo E, Ito K, Ando T, Kushi K, Sato S, Inoue T, Kawashima A, Kawamata T, Okada Y, Niimi Y. Comparison of efficacy between clazosentan and fasudil hydrochloride-based management of vasospasm after subarachnoid hemorrhage focusing on older and WFNS grade V patients: a single-center experience in Japan. Neurosurg Rev 2024; 47:113. [PMID: 38472507 DOI: 10.1007/s10143-024-02345-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/22/2024] [Accepted: 03/03/2024] [Indexed: 03/14/2024]
Abstract
Subarachnoid hemorrhage often leads to poor outcomes owing to vasospasm, even after successful aneurysm treatment. Clazosentan, an endothelin receptor inhibitor, has been proven to be an effective treatment for vasospasms in a Japanese randomized controlled trial. However, its efficacy in older patients (≥ 75 years old) and those with World Federation of Neurosurgical Societies (WFNS) grade V has not been demonstrated. We retrospectively evaluated the efficacy of clazosentan in older patients and those with WFNS grade V, using real-world data. Patients with subarachnoid hemorrhage treated before and after the introduction of clazosentan were retrospectively evaluated. The patients were categorized into two groups (clazosentan era versus pre-clazosentan era), in which vasospasm management and outcomes were compared. Vasospasms were managed with fasudil hydrochloride-based (pre-clazosentan era) or clazosentan-based treatment (clazosentan era). Seventy-eight patients were included in this study: the clazosentan era (n = 32) and pre-clazosentan era (n = 46). Overall, clazosentan significantly reduced clinical vasospasms (clazosentan era: 31.3% versus pre-clazosentan era: 60.9%, p = 0.01), delayed cerebral ischemia (DCI) (9.4% versus 39.1%, p = 0.004), and vasospasm-related morbidity and mortality (M/M) (3.1% versus 19.6%, p = 0.03). In subgroup analysis of older patients or those with WFNS grade V, no significant difference was observed in clinical outcomes, although both DCI and vasospasm-related M/M were lower in the clazosentan era. Clazosentan was more effective than fasudil-based management in preventing DCI and reducing vasospasm-related M/M. Clazosentan could be used safely in older patients and those with WFNS grade V, although clinical outcomes in these patients were comparable to those of conventional treatment.
Collapse
Affiliation(s)
- Tatsuki Mochizuki
- Department of Neurosurgery, St. Luke's International Hospital, 9-1 Akashi-cho, Chuo-ku, Tokyo, 104- 8560, Japan
| | - Bikei Ryu
- Department of Neurosurgery, St. Luke's International Hospital, 9-1 Akashi-cho, Chuo-ku, Tokyo, 104- 8560, Japan.
- Department of Neuroendovascular Therapy, St. Luke's International Hospital, 9-1 Akashi-cho, Chuo-ku, Tokyo, 104-8560, Japan.
- Department of Neurosurgery, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan.
| | - Shogo Shima
- Department of Neurosurgery, St. Luke's International Hospital, 9-1 Akashi-cho, Chuo-ku, Tokyo, 104- 8560, Japan
| | - Eriko Kamijyo
- Department of Neurosurgery, St. Luke's International Hospital, 9-1 Akashi-cho, Chuo-ku, Tokyo, 104- 8560, Japan
| | - Koki Ito
- Department of Neurosurgery, St. Luke's International Hospital, 9-1 Akashi-cho, Chuo-ku, Tokyo, 104- 8560, Japan
| | - Tamon Ando
- Department of Neurosurgery, St. Luke's International Hospital, 9-1 Akashi-cho, Chuo-ku, Tokyo, 104- 8560, Japan
- Department of Neurosurgery, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Kazuki Kushi
- Department of Neurosurgery, St. Luke's International Hospital, 9-1 Akashi-cho, Chuo-ku, Tokyo, 104- 8560, Japan
| | - Shinsuke Sato
- Department of Neurosurgery, St. Luke's International Hospital, 9-1 Akashi-cho, Chuo-ku, Tokyo, 104- 8560, Japan
- Department of Neuroendovascular Therapy, St. Luke's International Hospital, 9-1 Akashi-cho, Chuo-ku, Tokyo, 104-8560, Japan
| | - Tatsuya Inoue
- Department of Neurosurgery, St. Luke's International Hospital, 9-1 Akashi-cho, Chuo-ku, Tokyo, 104- 8560, Japan
| | - Akitsugu Kawashima
- Department of Neurosurgery, St. Luke's International Hospital, 9-1 Akashi-cho, Chuo-ku, Tokyo, 104- 8560, Japan
| | - Takakazu Kawamata
- Department of Neurosurgery, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Yoshikazu Okada
- Department of Neurosurgery, St. Luke's International Hospital, 9-1 Akashi-cho, Chuo-ku, Tokyo, 104- 8560, Japan
| | - Yasunari Niimi
- Department of Neuroendovascular Therapy, St. Luke's International Hospital, 9-1 Akashi-cho, Chuo-ku, Tokyo, 104-8560, Japan
| |
Collapse
|
81
|
Tan W, Zhang J, Dai F, Yang D, Gu R, Tang L, Liu H, Cheng YX. Insights on the NF-κB system in polycystic ovary syndrome, attractive therapeutic targets. Mol Cell Biochem 2024; 479:467-486. [PMID: 37097332 DOI: 10.1007/s11010-023-04736-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/07/2023] [Indexed: 04/26/2023]
Abstract
The nuclear factor κappa B (NF-κB) signaling plays a well-known function in inflammation and regulates a wide variety of biological processes. Low-grade chronic inflammation is gradually considered to be closely related to the pathogenesis of Polycystic ovary syndrome (PCOS). In this review, we provide an overview on the involvement of NF-κB in the progression of PCOS particularly, such as hyperandrogenemia, insulin resistance, cardiovascular diseases, and endometrial dysfunction. From a clinical perspective, progressive recognition of NF-κB pathway provides opportunities for therapeutic interventions aimed at inhibiting pathway-specific mechanisms. With the accumulation of basic experimental and clinical data, NF-κB signaling pathway was recognized as a therapeutic target. Although there have been no specific small molecule NF-κB inhibitors in PCOS, a plethora of natural and synthetic compound have emerged for the pharmacologic intervention of the pathway. The traditional herbs developed for NF-κB pathway have become increasingly popular in recent years. Abundant evidence elucidated that NF-κB inhibitors can significantly improve the symptoms of PCOS. Herein, we summarized evidence relating to how NF-κB pathway is involved in the development and progression of PCOS. Furthermore, we present an in-depth overview of NF-κB inhibitors for therapy interventions of PCOS. Taken together, the NF-κB signaling may be a futuristic treatment strategy for PCOS.
Collapse
Affiliation(s)
- Wei Tan
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, 430060, Hubei, People's Republic of China
| | - Jie Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, 430060, Hubei, People's Republic of China
| | - Fangfang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, 430060, Hubei, People's Republic of China
| | - Dongyong Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, 430060, Hubei, People's Republic of China
| | - Ran Gu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, 430060, Hubei, People's Republic of China
| | - Lujia Tang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, 430060, Hubei, People's Republic of China
| | - Hua Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, 430060, Hubei, People's Republic of China.
| | - Yan-Xiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, 430060, Hubei, People's Republic of China.
| |
Collapse
|
82
|
Liu Y, Wang W, Qian H, Gui Y, Wang Y, Song R, Chen Q, Rowinsky E, Wang S, Liang X, Gu K, Zhou B, Zhang W, Zhang L, Yu C, Jia J. Safety, pharmacokinetics, and pharmacodynamics in healthy Chinese volunteers treated with SC0062, a highly selective endothelin-A receptor antagonist. Clin Transl Sci 2024; 17:e13750. [PMID: 38451110 PMCID: PMC10919156 DOI: 10.1111/cts.13750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/24/2024] [Accepted: 02/07/2024] [Indexed: 03/08/2024] Open
Abstract
This study evaluated the safety, tolerability, pharmacokinetics (PK), pharmacodynamics (PD), and food effects (FE) of SC0062, a highly active endothelin-A (ETA ) receptor antagonist, in healthy subjects. The primary objectives of this first-in-human phase I study, comprised of single-ascending-dose, multiple-ascending-dose, and FE parts, were to characterize the safety and tolerability of SC0062, and FE. The secondary objectives were to determine the PK behavior of SC0062 and its major active metabolite M18, whereas exploratory objectives focused on PD effects, principally effects on endothelin-1 (ET-1) and total bile acids (TBA). Single doses of 10 to 100 mg and multiple daily doses of 20 and 50 mg for 6 days were well tolerated. SC0062 was rapidly absorbed and plasma exposure of SC0062 and M18 increased disproportionately with dose, achieving steady state by day 3, with accumulation ratios of 1.22 and 1.89 on day 6 for SC0062 and M18, respectively. The geometric mean (geometric standard deviation) terminal elimination half-life (t1/2 ) values of SC0062 and M18 were 7.25 (1.70) h and 13.73 (1.32) h, respectively. Plasma ET-1 concentrations were dose-proportional, whereas plasma TBA concentrations behaved erratically. Following a single 50 mg dose of SC0062 after a high-fat meal, Cmax values for SC0062 and M18 increased by 41% and 32%, respectively, and median Tmax values for SC0062 were 3 h longer than fasting values; exposure was unaffected. These favorable safety, PK, and PD results provide a foundation for further studies of SC0062 in pulmonary arterial hypertension, chronic kidney disease, and other relevant indications.
Collapse
Affiliation(s)
- Yun Liu
- Shanghai Xuhui Central Hospital/Zhongshan‐Xuhui HospitalFudan UniversityShanghaiChina
- Phase I Clinical Research and Quality Consistency Evaluation for Drugs, Shanghai Engineering Research CenterShanghaiChina
| | - Wei Wang
- Shanghai Xuhui Central Hospital/Zhongshan‐Xuhui HospitalFudan UniversityShanghaiChina
- Phase I Clinical Research and Quality Consistency Evaluation for Drugs, Shanghai Engineering Research CenterShanghaiChina
| | - Hongjie Qian
- Shanghai Xuhui Central Hospital/Zhongshan‐Xuhui HospitalFudan UniversityShanghaiChina
- Phase I Clinical Research and Quality Consistency Evaluation for Drugs, Shanghai Engineering Research CenterShanghaiChina
| | - Yuzhou Gui
- Shanghai Xuhui Central Hospital/Zhongshan‐Xuhui HospitalFudan UniversityShanghaiChina
- Phase I Clinical Research and Quality Consistency Evaluation for Drugs, Shanghai Engineering Research CenterShanghaiChina
| | - Yating Wang
- Shanghai Xuhui Central Hospital/Zhongshan‐Xuhui HospitalFudan UniversityShanghaiChina
- Phase I Clinical Research and Quality Consistency Evaluation for Drugs, Shanghai Engineering Research CenterShanghaiChina
| | - Rong Song
- Shanghai Xuhui Central Hospital/Zhongshan‐Xuhui HospitalFudan UniversityShanghaiChina
- Phase I Clinical Research and Quality Consistency Evaluation for Drugs, Shanghai Engineering Research CenterShanghaiChina
| | - Qian Chen
- Shanghai Xuhui Central Hospital/Zhongshan‐Xuhui HospitalFudan UniversityShanghaiChina
- Phase I Clinical Research and Quality Consistency Evaluation for Drugs, Shanghai Engineering Research CenterShanghaiChina
| | | | - Sheng Wang
- Biocity Biopharmaceutics Co., Ltd.WuxiChina
| | | | - Kaicun Gu
- Biocity Biopharmaceutics Co., Ltd.WuxiChina
| | - Bo Zhou
- Biocity Biopharmaceutics Co., Ltd.WuxiChina
| | | | | | - Chen Yu
- Shanghai Xuhui Central Hospital/Zhongshan‐Xuhui HospitalFudan UniversityShanghaiChina
- Phase I Clinical Research and Quality Consistency Evaluation for Drugs, Shanghai Engineering Research CenterShanghaiChina
| | - Jingying Jia
- Shanghai Xuhui Central Hospital/Zhongshan‐Xuhui HospitalFudan UniversityShanghaiChina
- Phase I Clinical Research and Quality Consistency Evaluation for Drugs, Shanghai Engineering Research CenterShanghaiChina
| |
Collapse
|
83
|
Heerspink HJL, Greasley PJ, Ahlström C, Althage M, Dwyer JP, Law G, Wijkmark E, Lin M, Mercier AK, Sunnåker M, Turton M, Wheeler DC, Ambery P. Efficacy and safety of zibotentan and dapagliflozin in patients with chronic kidney disease: study design and baseline characteristics of the ZENITH-CKD trial. Nephrol Dial Transplant 2024; 39:414-425. [PMID: 37632201 PMCID: PMC10899767 DOI: 10.1093/ndt/gfad183] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Sodium-glucose co-transporter 2 inhibitors (SGLT2is) are part of the standard of care for patients with chronic kidney disease (CKD), both with and without type 2 diabetes. Endothelin A (ETA) receptor antagonists have also been shown to slow progression of CKD. Differing mechanisms of action of SGLT2 and ETA receptor antagonists may enhance efficacy. We outline a study to evaluate the effect of combination zibotentan/dapagliflozin versus dapagliflozin alone on albuminuria and estimated glomerular filtration rate (eGFR). METHODS We are conducting a double-blind, active-controlled, Phase 2b study to evaluate the efficacy and safety of ETA receptor antagonist zibotentan and SGLT2i dapagliflozin in a planned 415 adults with CKD (Zibotentan and Dapagliflozin for the Treatment of CKD; ZENITH-CKD). Participants are being randomized (1:2:2) to zibotentan 0.25 mg/dapagliflozin 10 mg once daily (QD), zibotentan 1.5 mg/dapagliflozin 10 mg QD and dapagliflozin 10 mg QD alone, for 12 weeks followed by a 2-week off-treatment wash-out period. The primary endpoint is the change in log-transformed urinary albumin-to-creatinine ratio (UACR) from baseline to Week 12. Other outcomes include change in blood pressure from baseline to Week 12 and change in eGFR the study. The incidence of adverse events will be monitored. Study protocol-defined events of special interest include changes in fluid-related measures (weight gain or B-type natriuretic peptide). RESULTS A total of 447 patients were randomized and received treatment in placebo/dapagliflozin (n = 177), zibotentan 0.25 mg/dapagliflozin (n = 91) and zibotentan 1.5 mg/dapagliflozin (n = 179). The mean age was 62.8 years, 30.9% were female and 68.2% were white. At baseline, the mean eGFR of the enrolled population was 46.7 mL/min/1.73 m2 and the geometric mean UACR was 538.3 mg/g. CONCLUSION This study evaluates the UACR-lowering efficacy and safety of zibotentan with dapagliflozin as a potential new treatment for CKD. The study will provide information about an effective and safe zibotentan dose to be further investigated in a Phase 3 clinical outcome trial. CLINICAL TRIAL REGISTRATION NUMBER NCT04724837.
Collapse
Affiliation(s)
- Hiddo J L Heerspink
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- The George Institute for Global Health, Sydney, New South Wales, Australia
| | - Peter J Greasley
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Christine Ahlström
- DMPK, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Magnus Althage
- Translational Science & Experimental Medicine, Research and Early Development Cardiovascular, Renal, and Metabolism, Biopharmaceutical R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Jamie P Dwyer
- Division of Nephrology/Hypertension, University of Utah Health, Salt Lake City, UT, USA
| | - Gordon Law
- Early Biometrics & Statistical Innovation, Data Science and Artificial Intelligence, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Emma Wijkmark
- Biometrics Late Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Min Lin
- Biometrics Late Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Anne-Kristina Mercier
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Mikael Sunnåker
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Michelle Turton
- Biopharma Clinical Operations, Early CVRM, AstraZeneca, Cambridge, UK
| | - David C Wheeler
- Department of Renal Medicine, University College London, London, UK
| | - Philip Ambery
- Clinical Late Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
84
|
Caminiti R, Carresi C, Mollace R, Macrì R, Scarano F, Oppedisano F, Maiuolo J, Serra M, Ruga S, Nucera S, Tavernese A, Gliozzi M, Musolino V, Palma E, Muscoli C, Rubattu S, Volterrani M, Federici M, Volpe M, Mollace V. The potential effect of natural antioxidants on endothelial dysfunction associated with arterial hypertension. Front Cardiovasc Med 2024; 11:1345218. [PMID: 38370153 PMCID: PMC10869541 DOI: 10.3389/fcvm.2024.1345218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/15/2024] [Indexed: 02/20/2024] Open
Abstract
Arterial hypertension represents a leading cause of cardiovascular morbidity and mortality worldwide, and the identification of effective solutions for treating the early stages of elevated blood pressure (BP) is still a relevant issue for cardiovascular risk prevention. The pathophysiological basis for the occurrence of elevated BP and the onset of arterial hypertension have been widely studied in recent years. In addition, consistent progress in the development of novel, powerful, antihypertensive drugs and their appropriate applications in controlling BP have increased our potential for successfully managing disease states characterized by abnormal blood pressure. However, the mechanisms responsible for the disruption of endogenous mechanisms contributing to the maintenance of BP within a normal range are yet to be fully clarified. Recently, evidence has shown that several natural antioxidants containing active ingredients originating from natural plant extracts, used alone or in combination, may represent a valid solution for counteracting the development of arterial hypertension. In particular, there is evidence to show that natural antioxidants may enhance the viability of endothelial cells undergoing oxidative damage, an effect that could play a crucial role in the pathophysiological events accompanying the early stages of arterial hypertension. The present review aims to reassess the role of oxidative stress on endothelial dysfunction in the onset and progression of arterial hypertension and that of natural antioxidants in covering several unmet needs in the treatment of such diseases.
Collapse
Affiliation(s)
- Rosamaria Caminiti
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Cristina Carresi
- Department of Health Sciences, Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Rocco Mollace
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
- Department of Systems Medicine, University “Tor Vergata” of Rome, Rome, Italy
| | - Roberta Macrì
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Federica Scarano
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Francesca Oppedisano
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Jessica Maiuolo
- Laboratory of Pharmaceutical Biology, Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Maria Serra
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Stefano Ruga
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Saverio Nucera
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Annamaria Tavernese
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Micaela Gliozzi
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Vincenzo Musolino
- Laboratory of Pharmaceutical Biology, Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Ernesto Palma
- Department of Health Sciences, Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Carolina Muscoli
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
- IRCCS San Raffaele Roma, Rome, Italy
| | - Speranza Rubattu
- IRCCS Neuromed, Pozzilli, Italy
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University, Rome, Italy
| | | | - Massimo Federici
- Department of Systems Medicine, University “Tor Vergata” of Rome, Rome, Italy
| | | | - Vincenzo Mollace
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
- Renato Dulbecco Institute, Catanzaro, Italy
| |
Collapse
|
85
|
Azmy Nabeh O, Ahmed El-Batrawy F, Anwar Khorshid O, Farouk Soliman G. The potential effect of ambrisentan as monotherapy and combined with tadalafil on diabetic erectile dysfunction in rats. Urologia 2024; 91:159-169. [PMID: 37642474 DOI: 10.1177/03915603231192737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
INTRODUCTION This study investigated the role of ambrisentan; the selective endothelin type-A receptor (ETAR) blocker on experimental diabetic erectile dysfunction in rats. MATERIALS AND METHODS Eighty-four adult male Sprague Albino rats were divided randomly into 7 groups. Three control groups received 1 mL saline, 0.2 mg/kg/d ambrisentan and 1.5 mg/kg/d tadalafil, respectively orally for 4 weeks. The remaining four groups were fed high fat diet for 14 days. Diabetes was induced by a single intra-peritoneal injection of 40 mg/kg streptozotocin. After 72 h, diabetes was confirmed by plasma glucose level ⩾250 mg/dL. Diabetic rats were divided randomly into four groups, numbered from 4 to 7. The fourth group was the diabetic-control group, while the fifth and sixth groups received ambrisentan and tadalafil respectively. The seventh group received a combination of both drugs. Treatment continued for 4 weeks then, copulatory, intracavernous pressure measurement, and laboratory tests were conducted. RESULTS In diabetic rats, ambrisentan and tadalafil improved fasting glucose, insulin, insulin resistance, testosterone, nitric oxide, and rho kinase (ROCK) values compared to diabetic group with the maximum improvement achieved in ambrisentan/tadalafil group (p < 0.05). Ambrisentan also enhanced ICP and improved latency to erection and number of mounts with a tolerable SBP. Yet, ambrisentan/tadalafil combined therapy resulted in deterioration in SBP with consecutive worsening in ICP and mating indices. CONCLUSION Ambrisentan showed significant therapeutic potential to prevent and improve diabetic ED in rats comparable to tadalafil.
Collapse
Affiliation(s)
- Omnia Azmy Nabeh
- Medical Pharmacology, Kasr Alainy Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | - Omayma Anwar Khorshid
- Medical Pharmacology, Kasr Alainy Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ghada Farouk Soliman
- Medical Pharmacology, Kasr Alainy Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
86
|
Kotlyarov S. Identification of Important Genes Associated with the Development of Atherosclerosis. Curr Gene Ther 2024; 24:29-45. [PMID: 36999180 DOI: 10.2174/1566523223666230330091241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/06/2022] [Accepted: 01/26/2023] [Indexed: 04/01/2023]
Abstract
Atherosclerosis is one of the most important medical problems due to its prevalence and significant contribution to the structure of temporary and permanent disability and mortality. Atherosclerosis is a complex chain of events occurring in the vascular wall over many years. Disorders of lipid metabolism, inflammation, and impaired hemodynamics are important mechanisms of atherogenesis. A growing body of evidence strengthens the understanding of the role of genetic and epigenetic factors in individual predisposition and development of atherosclerosis and its clinical outcomes. In addition, hemodynamic changes, lipid metabolism abnormalities, and inflammation are closely related and have many overlapping links in regulation. A better study of these mechanisms may improve the quality of diagnosis and management of such patients.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University Named After Academician I.P. Pavlov, Russian Federation
| |
Collapse
|
87
|
Fayez H, Selim A, Shamma R, Rashed H. Intranasal Radioiodinated Ferulic Acid Polymeric Micelles as the First Nuclear Medicine Imaging Probe for ETRA Brain Receptor. Curr Radiopharm 2024; 17:209-217. [PMID: 38213167 DOI: 10.2174/0118744710269885231113070356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/17/2023] [Accepted: 09/27/2023] [Indexed: 01/13/2024]
Abstract
INTRODUCTION The aim of this work was to prepare a selective nuclear medicine imaging probe for the Endothelin 1 receptor A in the brain. MATERIAL AND METHODS Ferulic acid (an ETRA antagonist) was radiolabeled using 131I by direct electrophilic substitution method. The radiolabeled ferulic acid was formulated as polymeric micelles to allow intranasal brain delivery. Biodistribution was studied in Swiss albino mice by comparing brain uptake of 131I-ferulic acid after IN administration of 131I-ferulic acid polymeric micelles, IN administration of 131I-ferulic acid solution and IV administration of 131I-ferulic acid solution. RESULTS Successful radiolabeling was achieved with an RCY of 98 % using 200 μg of ferulic acid and 60 μg of CAT as oxidizing agents at pH 6, room temperature and 30 min reaction time. 131I-ferulic acid polymeric micelles were successfully formulated with the particle size of 21.63 nm and polydispersity index of 0.168. Radioactivity uptake in the brain and brain/blood uptake ratio for I.N 131I-ferulic acid polymeric micelles were greater than the two other routes at all periods. CONCLUSION Our results provide 131I-ferulic acid polymeric micelles as a hopeful nuclear medicine tracer for ETRA brain receptor.
Collapse
Affiliation(s)
- Hend Fayez
- Department of Labeled Compounds, Hot Laboratories Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Adli Selim
- Department of Labeled Compounds, Hot Laboratories Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Rehab Shamma
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, 11561, Egypt
| | - Hassan Rashed
- Department of Labeled Compounds, Hot Laboratories Center, Egyptian Atomic Energy Authority, Cairo, Egypt
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Sinai University, Kantara, Egypt
| |
Collapse
|
88
|
Pabary R, Jaffe A, Bush A. Macrolides and Cystic Fibrosis. PROGRESS IN INFLAMMATION RESEARCH 2024:59-92. [DOI: 10.1007/978-3-031-42859-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
89
|
Hautiere M, Maffucci I, Costa N, Herbet A, Essono S, Padiolleau-Lefevre S, Boquet D. The functionality of a therapeutic antibody candidate restored by a single mutation from proline to threonine in the variable region. Hum Vaccin Immunother 2023; 19:2279867. [PMID: 38012091 PMCID: PMC10760395 DOI: 10.1080/21645515.2023.2279867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/02/2023] [Indexed: 11/29/2023] Open
Abstract
mAbs play an essential role in the therapeutic arsenal. Our laboratory has patented the Rendomab-B49 mAb targeting the endothelin B receptor (ETB). This G protein-coupled receptor plays a driving role in the progression of numerous cancers. We chimerized our mAb (xiRB49) to evaluate its preclinical therapeutic efficacy in different ETB+ tumor models with an antibody drug conjugate approach. As previously reported, the chimerization process of an antibody can alter its functionality. In this article, we present the chimerization of RB49. xiRB49 purified by Protein A remained perfectly soluble and did not aggregate, but it lost all its ability to recognize ETB. A detailed analysis of its variable region using IMGT tools allowed us to identify an unusual proline at position 125. In silico mAb modeling and in vitro experiments were performed for a better understanding of xiRB49 structure-function relationships. Our results show that the proline in position 125 on the heavy chain alters the xiRB49 CDR3 light chain conformation and its mutation to threonine allows complete functional recovery.
Collapse
Affiliation(s)
- Marie Hautiere
- Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris-Saclay, CEA, Gif-sur-Yvette, France
| | - Irene Maffucci
- Centre de Recherche de Royallieu, CNRS UMR 7025, Génie Enzymatique et Cellulaire, Compiègne Cedex, France
- Centre de Recherche de Royallieu, Sorbonne Universités, Université de Technologie de Compiègne, Génie Enzymatique et Cellulaire, Compiègne Cedex, France
| | - Narciso Costa
- Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris-Saclay, CEA, Gif-sur-Yvette, France
| | - Amaury Herbet
- Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris-Saclay, CEA, Gif-sur-Yvette, France
| | | | - Séverine Padiolleau-Lefevre
- Centre de Recherche de Royallieu, CNRS UMR 7025, Génie Enzymatique et Cellulaire, Compiègne Cedex, France
- Centre de Recherche de Royallieu, Sorbonne Universités, Université de Technologie de Compiègne, Génie Enzymatique et Cellulaire, Compiègne Cedex, France
| | - Didier Boquet
- Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris-Saclay, CEA, Gif-sur-Yvette, France
| |
Collapse
|
90
|
Boutin G, Yuzugulen J, Pranjol MZI. Endothelin-based markers for endothelial dysfunction in chemotherapy-induced cardiotoxicity. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2023; 6:100053. [PMID: 39802623 PMCID: PMC11708141 DOI: 10.1016/j.jmccpl.2023.100053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/06/2023] [Accepted: 10/12/2023] [Indexed: 01/16/2025]
Abstract
Current cardiac biomarkers, troponins and brain natriuretic peptide, are primarily used to assist in the diagnosis or exclusion of myocardial damage and congestive heart failure, respectively. The use of these biomarkers in chemotherapy-induced cardiotoxicity has been evaluated by various studies. However, neither biomarker provides early predictive value, leaving many cancer survivors with irreversible cardiac injury. Assessing endothelial dysfunction could be an effective measure of chemotherapy-induced cardiotoxicity at the vascular level. Risk profiling and detection of vascular toxicities may offer predictive biomarkers to prevent chronic manifestation of irreversible cardiotoxicities. Emerging interest has developed in finding biomarkers that could ideally provide earlier prognostic value. Thus, the aim of this review is to give an overview of current blood-based cardiac biomarkers and discuss the potential of endothelin-1 (ET-1) and more stable peptide fragments of ET-1 synthesis as biomarkers of endothelial dysfunction. For instance, endothelin-like domain peptide (ELDP) and C-terminal pro-endothelin-1 (CT-proET-1) demonstrated high-sensitivity and longer clearance rate than ET-1. Thus, investigating their biomarker role in chemotherapy-induced cardiotoxicity is important and could provide additional insights for identifying patients at risk. Also, additional research is required to fully understand ELDP-mediated vasoconstriction. This review will discuss the future development of ET-1, ELDP and CT-proET-1 as prospective predictive biomarkers.
Collapse
Affiliation(s)
| | - Jale Yuzugulen
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, North Cyprus via Mersin 10, Turkey
| | | |
Collapse
|
91
|
O'Brien MW, Shivgulam ME. Mechanistic, participant, and movement-related factors that contribute to low-flow-mediated constriction. Eur J Appl Physiol 2023; 123:2687-2697. [PMID: 37804365 DOI: 10.1007/s00421-023-05332-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/21/2023] [Indexed: 10/09/2023]
Abstract
Endothelial function is commonly determined via the ultrasound-based flow-mediated dilation (FMD) technique which assesses arterial dilation in response to a hyperemia response following distal cuff occlusion. However, the low-flow-mediated constriction (L-FMC) response during cuff-induced ischemia is often overlooked. L-FMC provides unique information regarding endothelial function, but vascular researchers may be unclear on what this metric adds. Therefore, the objective of this review was to examine the mechanistic determinants and participant-level factors of L-FMC. Existing mechanistic studies have demonstrated that vasoreactivity to low flow may be mediated via non-nitric oxide vasodilators (i.e., endothelial hyperpolarizing factors and/or prostaglandins), inflammatory markers, and enhancement of vasoconstriction via endothelin-1. In general, participant-level factors such as aging and presence of cardiovascular conditions generally are associated with attenuated L-FMC responses. However, the influence of sex on L-FMC is unclear with divergent results between L-FMC in upper versus lower limb vessels. The ability of aerobic exercise to augment L-FMC (i.e., make more negative) is well supported, but there is a major gap in the literature concerning the mechanistic underpinnings of this observation. This review summarizes that while larger L-FMC responses are generally healthy, the impact of interventions to augment/attenuate L-FMC has not included mechanistic measures that would provide insight into non-nitric oxide-based endothelial function. Clarifications to terminology and areas of further inquiry as it relates to the specific pharmacological, individual-level factors, and lifestyle behaviors that impact L-FMC are highlighted. A greater integration of mechanistic work alongside applied lifestyle interventions is required to better understand endothelial cell function to reductions in local blood flow.
Collapse
Affiliation(s)
- Myles W O'Brien
- School of Physiotherapy (Faculty of Health) and Department of Medicine (Faculty of Medicine, Dalhousie University, Halifax, NS, Canada.
- Geriatric Medicine Research, Dalhousie University & Nova Scotia Health, Halifax, NS, B3H 4R2, Canada.
| | | |
Collapse
|
92
|
Rosa Teixeira-Alves L, Guimarães-Nobre CC, Mendonça-Reis E, Miranda-Alves L, Berto-Junior C. Bosentan attenuates sickle cell disease erythrocyte HbS polymerization and impaired deformability induced by endothelin-1. Can J Physiol Pharmacol 2023; 101:642-651. [PMID: 36821840 DOI: 10.1139/cjpp-2022-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
The effects of endothelin-1 (ET-1) on erythrocytes from sickle cell disease (SCD) patients have been described, but mechanisms of ET-1 regarding primary erythrocyte functions remain unknown. ET-1 is a vasoconstrictor peptide produced by endothelial cells, and the expression of ET-1 is increased in SCD. The present study used ex vivo experiments with sickle cell erythrocytes, ET-1, and bosentan, a dual antagonist of ETA and ETB receptors. We performed a hemoglobin S (HbS) polymerization assay with three concentrations of ET-1 (1, 20, and 50 pg/mL) and bosentan (100 nmol/L). ET-1 increased HbS polymerization at all concentrations, and this effect was suppressed by bosentan. For the deformability assay, red blood cells (RBCs) were incubated on a Sephacryl column with the same concentrations of ET-1 and bosentan. ET-1 decreased deformability, and this effect was reversed by bosentan. To observe erythrocyte adhesion, ET-1 and bosentan were incubated with RBCs in thrombospondin-coated 96-well plate, which demonstrated that ET-1 decreased adhesion but that bosentan enhanced adhesion. We also assessed erythrocyte apoptosis and observed decreased eryptosis induced by ET-1, and these effects were inhibited bosentan. Thus, these findings demonstrated that ET-1 modulates HbS polymerization, erythrocyte deformability, adhesion to thrombospondin, and eryptosis, and these effects were suppressed or enhanced by bosentan.
Collapse
Affiliation(s)
- Lyzes Rosa Teixeira-Alves
- Grupo de Pesquisa em Fisiologia Eritróide-GPFisEri, Universidade Federal do Rio de Janeiro, Campus Macaé, Brazil
- Programa de Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil
| | - Camila Cristina Guimarães-Nobre
- Grupo de Pesquisa em Fisiologia Eritróide-GPFisEri, Universidade Federal do Rio de Janeiro, Campus Macaé, Brazil
- Programa de Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil
| | - Evelyn Mendonça-Reis
- Grupo de Pesquisa em Fisiologia Eritróide-GPFisEri, Universidade Federal do Rio de Janeiro, Campus Macaé, Brazil
- Programa de Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil
| | - Leandro Miranda-Alves
- Programa de Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil
- Laboratório de Endocrinologia Experimental-LEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil
- Programa de Pós-graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil
| | - Clemilson Berto-Junior
- Grupo de Pesquisa em Fisiologia Eritróide-GPFisEri, Universidade Federal do Rio de Janeiro, Campus Macaé, Brazil
- Programa de Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil
- Laboratório de Endocrinologia Experimental-LEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Campus Macaé, Brazil
| |
Collapse
|
93
|
Sági B, Kun S, Jakabfi-Csepregi RK, Sulyok E, Csiky B. Acute Vascular Response to Hemodialysis as Measured by Serum Syndecan-1 and Endothelin-1 Levels as Well as Vascular Stiffness. J Clin Med 2023; 12:7384. [PMID: 38068435 PMCID: PMC10707344 DOI: 10.3390/jcm12237384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 10/08/2024] Open
Abstract
Background: Chronic hemodialysis (HD) patients have a very high cardiovascular risk. Acute vascular changes during dialysis mediated by factors of the endothelium may have a crucial role in this. The aim of this article is to study the acute vascular changes during HD. Methods: In 29 consecutive chronic HD patients (age: 65.6 ± 10.4 years), their pre-, mid-, and post-HD plasma syndecan-1 (SDC-1) and endothelin-1 (ET-1) levels were measured. Applanation tonometry was performed before HD. Results: Their SDC-1 levels increased during HD (p = 0.004). Males had higher ET-1 levels. The patients were divided into two groups based on their pre-HD pulse wave velocity (PWV): PWV ≥ 12 m/s and PWV < 12 m/s. The pre-HD and mid-HD SDC-1 levels were higher in the group with a PWV ≥ 12 m/s (10.174 ± 2.568 vs. 7.928 ± 1.794 ng/mL, p = 0.013, and 10.319 ± 3.482 vs. 8.248 ± 1.793 ng/mL, p = 0.044, respectively). The post-HD ET-1 levels were higher in the patient group with a PWV ≥ 12 m/s (10.88 ± 3.00 vs. 8.05 ± 3.48 pg/l, p = 0.027). Patients with a PWV ≥ 12 m/s had higher pre-HD peripheral and aortic systolic blood pressures (p < 0.05). The total cholesterol correlated with the SDC-1 decrease during HD (r = 0.539; p = 0.008). The pre-, mid-, and post-HD SDC-1 correlated with ultrafiltration (r = 0.432, p = 0.019; r = 0.377, p = 0.044; and r = 0.401, p = 0.012, respectively). Conclusion: SDC-1 and ET-1 contribute to the vascular changes observed during HD, and they have correlations with some cardiovascular risk factors.
Collapse
Affiliation(s)
- Balázs Sági
- 2nd Department of Internal Medicine and Nephrology, Diabetes Center, Clinical Center, Medical School, University of Pécs, 7624 Pécs, Hungary; (B.S.)
- Fresenius Medical Care Dialysis Centers, 7624 Pécs, Hungary
| | - Szilárd Kun
- 2nd Department of Internal Medicine and Nephrology, Diabetes Center, Clinical Center, Medical School, University of Pécs, 7624 Pécs, Hungary; (B.S.)
| | | | - Endre Sulyok
- Doctoral School of Health Sciences, University of Pécs, 7624 Pécs, Hungary;
| | - Botond Csiky
- 2nd Department of Internal Medicine and Nephrology, Diabetes Center, Clinical Center, Medical School, University of Pécs, 7624 Pécs, Hungary; (B.S.)
- Fresenius Medical Care Dialysis Centers, 7624 Pécs, Hungary
| |
Collapse
|
94
|
Heerspink HJL, Kiyosue A, Wheeler DC, Lin M, Wijkmark E, Carlson G, Mercier AK, Åstrand M, Ueckert S, Greasley PJ, Ambery P. Zibotentan in combination with dapagliflozin compared with dapagliflozin in patients with chronic kidney disease (ZENITH-CKD): a multicentre, randomised, active-controlled, phase 2b, clinical trial. Lancet 2023; 402:2004-2017. [PMID: 37931629 DOI: 10.1016/s0140-6736(23)02230-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND In patients with chronic kidney disease, SGLT2 inhibitors and endothelin A receptor antagonists (ERAs) can reduce albuminuria and glomerular filtration rate (GFR) decline. We assessed the albuminuria-lowering efficacy and safety of the ERA zibotentan combined with the SGLT2 inhibitor dapagliflozin. METHODS ZENITH-CKD was a multicentre, randomised, double-blind, active-controlled clinical trial, done in 170 clinical practice sites in 18 countries. Adults (≥18 to ≤90 years) with an estimated GFR (eGFR) of 20 mL/min per 1·73 m2 or greater and a urinary albumin-to-creatinine ratio (UACR) of 150-5000 mg/g were randomly assigned (2:1:2) to 12 weeks of daily treatment with zibotentan 1·5 mg plus dapagliflozin 10 mg, zibotentan 0·25 mg plus dapagliflozin 10 mg, or dapagliflozin 10 mg plus placebo, as adjunct to angiotensin-converting enzyme inhibitors or angiotensin receptor blockers if tolerated. The primary endpoint was a change from baseline in log-transformed UACR (zibotentan 1·5 mg plus dapagliflozin vs dapagliflozin plus placebo) at week 12. Fluid retention was an event of special interest, defined as an increase in bodyweight of at least 3% (at least 2·5% must have been from total body water) from baseline or an increase of at least 100% in B-type natriuretic peptide (BNP) and either a BNP concentration greater than 200 pg/mL if without atrial fibrillation or BNP greater than 400 pg/mL if with atrial fibrillation. This trial is registered with ClinicalTrials.gov, NCT04724837, and is completed. FINDINGS Between April 28, 2021, and Jan 17, 2023, we assessed 1492 participants for eligibility. For the main analysis, we randomly assigned 449 (30%) participants, 447 (99%) of whom (mean age 62·8 years [SD 12·1], 138 [31%] female, 309 [69%] male, 305 [68%] White, mean eGFR 46·7 mL/min per 1·73 m2 [SD 22·4], and median UACR 565·5 mg/g [IQR 243·0-1212·6]) received treatment with zibotentan 1·5 mg plus dapagliflozin (n=179 [40%]), zibotentan 0·25 mg plus dapagliflozin (n=91 [20%]), or dapagliflozin plus placebo (n=177 [40%]). Zibotentan 1·5 mg plus dapagliflozin and zibotentan 0·25 mg plus dapagliflozin reduced UACR versus dapagliflozin plus placebo throughout the treatment period of the study. At week 12, the difference in UACR versus dapagliflozin plus placebo was -33·7% (90% CI -42·5 to -23·5; p<0·0001) for zibotentan 1·5 mg plus dapagliflozin and -27·0% (90% CI -38·4 to -13·6; p=0·0022) for zibotentan 0·25 mg plus dapagliflozin. Fluid-retention events were observed in 33 (18%) of 179 participants in the zibotentan 1·5 mg plus dapagliflozin group, eight (9%) of 91 in the zibotentan 0·25 mg plus dapagliflozin group, and 14 (8%) of 177 in the dapagliflozin plus placebo group. INTERPRETATION Zibotentan combined with dapagliflozin reduced albuminuria with an acceptable tolerability and safety profile and is an option to reduce chronic kidney disease progression in patients already receiving currently recommended therapy. FUNDING AstraZeneca.
Collapse
Affiliation(s)
- Hiddo J L Heerspink
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands; The George Institute for Global Health, Sydney, NSW, Australia.
| | | | - David C Wheeler
- Department of Nephrology, University College London, London, UK
| | - Min Lin
- Biometrics Late Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Emma Wijkmark
- Biometrics Late Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Glenn Carlson
- Clinical Development, Late Cardiovascular, Renal and Metabolism, AstraZeneca, Gothenburg, Sweden
| | - Anne-Kristina Mercier
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Magnus Åstrand
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Sebastian Ueckert
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Peter J Greasley
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Phil Ambery
- Clinical Late Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
95
|
Cvetko Krajinović L, Bodulić K, Laškaj R, Žibrat B, Svoboda Karić P, Kurolt IC, Kordun M, Topić A, Čivljak R, Skuhala T, Markotić A. Hemorrhagic Fever with Renal Syndrome Patients Exhibit Increased Levels of Lipocalin-2, Endothelin-1 and NT-proBNP. Life (Basel) 2023; 13:2189. [PMID: 38004329 PMCID: PMC10672301 DOI: 10.3390/life13112189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Hemorrhagic fever with renal syndrome (HFRS) is an acute zoonotic disease caused by viruses of the Orthohantavirus genus. This syndrome is characterized by renal and cardiopulmonary implications detectable with different biomarkers. Here, we explored the role of serum and urine levels of lipocalin-2, endothelin-1 and N-terminal pro-brain natriuretic peptide (NT-proBNP) in HFRS pathology. A total of twenty-eight patients hospitalized due to a Puumala orthohantavirus infection were included, with serum and urine samples collected on patient admission (acute phase) and discharge (convalescent phase). In comparison to healthy individuals, patients exhibited significantly higher acute-phase serum and urine levels of lipocalin-2, serum levels of endothelin-1 and serum and urine levels of NT-proBNP. Patients in the convalescent phase showed a significant decrease in urine lipocalin-2, serum endothelin-1 and serum and urine NT-proBNP levels. We recorded a strong correlation between serum levels of lipocalin-2 and endothelin-1 and urine levels of lipocalin-2 with several kidney injury markers, such as serum creatinine, urea, urine white blood cell count and proteinuria. We also demonstrated an independent correlation of serum and urine lipocalin-2 levels with acute kidney injury in HFRS. All in all, our results show an involvement of NT-proBNP, lipocalin-2 and endothelin-1 in the renal and cardiac pathology of HFRS.
Collapse
Affiliation(s)
| | - Kristian Bodulić
- University Hospital for Infectious Diseases “Dr. Fran Mihaljević”, 10 000 Zagreb, Croatia
| | - Renata Laškaj
- University Hospital for Infectious Diseases “Dr. Fran Mihaljević”, 10 000 Zagreb, Croatia
| | - Branka Žibrat
- University Hospital for Infectious Diseases “Dr. Fran Mihaljević”, 10 000 Zagreb, Croatia
| | - Petra Svoboda Karić
- University Hospital for Infectious Diseases “Dr. Fran Mihaljević”, 10 000 Zagreb, Croatia
| | - Ivan-Christian Kurolt
- University Hospital for Infectious Diseases “Dr. Fran Mihaljević”, 10 000 Zagreb, Croatia
| | - Mihaela Kordun
- University Hospital for Infectious Diseases “Dr. Fran Mihaljević”, 10 000 Zagreb, Croatia
| | - Antea Topić
- University Hospital for Infectious Diseases “Dr. Fran Mihaljević”, 10 000 Zagreb, Croatia
| | - Rok Čivljak
- University Hospital for Infectious Diseases “Dr. Fran Mihaljević”, 10 000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia
| | - Tomislava Skuhala
- University Hospital for Infectious Diseases “Dr. Fran Mihaljević”, 10 000 Zagreb, Croatia
- School of Dental Medicine, University of Zagreb, 10 000 Zagreb, Croatia
| | - Alemka Markotić
- University Hospital for Infectious Diseases “Dr. Fran Mihaljević”, 10 000 Zagreb, Croatia
- Faculty of Medicine, University of Rijeka, 51 000 Rijeka, Croatia
- Faculty of Medicine, Catholic University of Croatia, 10 000 Zagreb, Croatia
| |
Collapse
|
96
|
Xu J, Jiang X, Xu S. Aprocitentan, a dual endothelin-1 (ET-1) antagonist for treating resistant hypertension: Mechanism of action and therapeutic potential. Drug Discov Today 2023; 28:103788. [PMID: 37742911 DOI: 10.1016/j.drudis.2023.103788] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/13/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2023]
Abstract
Hypertension is reaching epidemic proportions worldwide and is a significant public health concern. However, ∼15% of patients with hypertension continue to experience elevated blood pressure, even after taking antihypertensive medications [such as angiotensin II receptor blockers (ARBs), angiotensin-converting enzyme inhibitors (ACEIs), dihydropyridine calcium channel blockers (CCBs) and thiazide diuretics], a condition referred to as resistant hypertension (RH). Within the complex realm of blood pressure regulation and vascular function, endothelin-1 (ET-1), a potent vasoconstrictor, plays a pivotal role. Recent research, particularly a Phase III clinical trial (NCT03541174), has shed light on the potential of aprocitentan, a dual ET-1 receptor antagonist, in significantly lowering blood pressure in individuals with RH. In this review, we summarize the mechanism of action and therapeutic potential of aprocitentan as an innovative approach for treating RH.
Collapse
Affiliation(s)
- Jingjing Xu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China; Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Xiaohua Jiang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China.
| | - Suowen Xu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China.
| |
Collapse
|
97
|
Abraham GR, Williams TL, Maguire JJ, Greasley PJ, Ambery P, Davenport AP. Current and future strategies for targeting the endothelin pathway in cardiovascular disease. NATURE CARDIOVASCULAR RESEARCH 2023; 2:972-990. [PMID: 39196099 DOI: 10.1038/s44161-023-00347-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/07/2023] [Indexed: 08/29/2024]
Abstract
The first endothelin (ET)-1 receptor antagonist was approved for clinical use over 20 years ago, but to date this class of compounds has been limited to treating pulmonary arterial hypertension, a rare disease. Translational research over the last 5 years has reignited interest in the ET system as a therapeutic target across the spectrum of cardiovascular diseases including resistant hypertension, microvascular angina and post-coronavirus disease 2019 conditions. Notable developments include approval of a new ETA receptor antagonist and, intriguingly, combining the actions of ETA and an angiotensin II type 1 receptor antagonist within the same novel small molecule. Combinations of ET receptor blockers with other drugs, including phosphodiesterase-5 inhibitors and sodium-glucose co-transporter-2 antagonists, may drive synergistic benefits with the prospect of alleviating side effects. These new therapeutic strategies have the potential to dramatically widen the scope of indications targeting the ET-1 pathway.
Collapse
Affiliation(s)
- George R Abraham
- Division of Experimental Medicine and Immunotherapeutics, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
- Royal Papworth Hospital NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK
| | - Thomas L Williams
- Division of Experimental Medicine and Immunotherapeutics, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Janet J Maguire
- Division of Experimental Medicine and Immunotherapeutics, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Peter J Greasley
- Early Clinical Development, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Philip Ambery
- Late-Stage Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Anthony P Davenport
- Division of Experimental Medicine and Immunotherapeutics, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.
| |
Collapse
|
98
|
Jain A, Jain I. ET-traps: Potential therapeutics for preeclampsia. Drug Discov Today 2023; 28:103787. [PMID: 37742912 DOI: 10.1016/j.drudis.2023.103787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/05/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2023]
Abstract
Elevated endothelin-1 (ET-1) has been implicated in several diseases including preeclampsia, where it causes the induction of hypertension, oxidative stress, endoplasmic reticulum stress, microvascular dysfunction and tissue damage in different organs. ET-traps are Fc-fusion proteins with a design based on the physiological receptors of ET-1. This paper discusses the potential use of ET-traps as a therapeutic for preeclampsia. ET-traps potently bind and sequester pathologically elevated ET-1 to significantly reduce different markers of pathology to non-disease levels with no toxicity.
Collapse
Affiliation(s)
- Arjun Jain
- ET-traps, Cambridge, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, UK; Accelerate Cambridge, Judge Business School, University of Cambridge, UK; Imperial College London, UK
| | - Ira Jain
- ET-traps, Cambridge, UK; Indian Institute of Management, Ahmedabad, India; National University of Singapore, Singapore.
| |
Collapse
|
99
|
Trammell CE, Rowe EH, Char AB, Jones BJ, Fawcett S, Ahlers LRH, Goodman AG. Insulin-mediated endothelin signaling is antiviral during West Nile virus infection. J Virol 2023; 97:e0111223. [PMID: 37796127 PMCID: PMC10617537 DOI: 10.1128/jvi.01112-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/20/2023] [Indexed: 10/06/2023] Open
Abstract
IMPORTANCE Arboviruses, particularly those transmitted by mosquitoes, pose a significant threat to humans and are an increasing concern because of climate change, human activity, and expanding vector-competent populations. West Nile virus is of significant concern as the most frequent mosquito-borne disease transmitted annually within the continental United States. Here, we identify a previously uncharacterized signaling pathway that impacts West Nile virus infection, namely endothelin signaling. Additionally, we demonstrate that we can successfully translate results obtained from D. melanogaster into the more relevant human system. Our results add to the growing field of insulin-mediated antiviral immunity and identify potential biomarkers or intervention targets to better address West Nile virus infection and severe disease.
Collapse
Affiliation(s)
- Chasity E. Trammell
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Evelyn H. Rowe
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Aditya B. Char
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Brianne J. Jones
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Stephen Fawcett
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Laura R. H. Ahlers
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Alan G. Goodman
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| |
Collapse
|
100
|
Erlandsson L, Ohlsson L, Masoumi Z, Rehnström M, Cronqvist T, Edvinsson L, Hansson SR. Preliminary evidence that blocking the uptake of placenta-derived preeclamptic extracellular vesicles protects the vascular endothelium and prevents vasoconstriction. Sci Rep 2023; 13:18425. [PMID: 37891193 PMCID: PMC10611745 DOI: 10.1038/s41598-023-45830-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023] Open
Abstract
Preeclampsia (PE) is a pregnancy syndrome characterized by hypertension and organ damage manifesting after 20 gestational weeks. The etiology is of multifactorial origin, where placental stress causes increased levels of placenta-derived extracellular vesicles (STBEVs) in the maternal circulation, shown to cause inflammation, endothelial activation, vasoconstriction, and anti-angiogenic activity. General endothelial dysfunction is believed to be initiated by endothelial insult during pregnancy that alters vascular function resulting in increased arterial stiffness, cardiac dysfunction, and increased risk of cardiovascular disease later in life. We compared the effect of normal and PE derived STBEVs in vitro on vascular contractility of human subcutaneous arteries using wire myography. Cellular structures of exposed vessels were investigated by transmission electron microscopy. We explored strategies to pharmacologically block the effects of the STBEVs on human vessels. The PE STBEVs caused significantly stronger angiotensin II-mediated contractions and extended structural damage to human subcutaneous arteries compared to normal STBEVs. These negative effects could be reduced by blocking vesicle uptake by endothelial cells, using chlorpromazine or specific antibodies towards the LOX-1 receptor. The therapeutic potential of blocking vesicle uptake should be further explored, to reduce the permanent damage caused on the vasculature during PE pregnancy to prevent future cardiovascular risk.
Collapse
Affiliation(s)
- Lena Erlandsson
- Division of Obstetrics and Gynecology, Department of Clinical Sciences Lund, Lund University, BMC C14, Klinikgatan 28, 221 85, Lund, Sweden.
| | - Lena Ohlsson
- Experimental Vascular Research, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Zahra Masoumi
- Division of Obstetrics and Gynecology, Department of Clinical Sciences Lund, Lund University, BMC C14, Klinikgatan 28, 221 85, Lund, Sweden
| | - Mimmi Rehnström
- Division of Obstetrics and Gynecology, Department of Clinical Sciences Lund, Lund University, BMC C14, Klinikgatan 28, 221 85, Lund, Sweden
| | - Tina Cronqvist
- Division of Obstetrics and Gynecology, Department of Clinical Sciences Lund, Lund University, BMC C14, Klinikgatan 28, 221 85, Lund, Sweden
| | - Lars Edvinsson
- Experimental Vascular Research, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Skåne University Hospital, Lund, Sweden
| | - Stefan R Hansson
- Division of Obstetrics and Gynecology, Department of Clinical Sciences Lund, Lund University, BMC C14, Klinikgatan 28, 221 85, Lund, Sweden
- Skåne University Hospital, Lund, Sweden
| |
Collapse
|