51
|
Dash SR, Kundu CN. Promising opportunities and potential risk of nanoparticle on the society. IET Nanobiotechnol 2020; 14:253-260. [PMID: 32463015 PMCID: PMC8676294 DOI: 10.1049/iet-nbt.2019.0303] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 02/12/2020] [Accepted: 02/17/2020] [Indexed: 09/29/2023] Open
Abstract
The ever-promising opportunities and the uses of NP in our life are increasing but their present and future potential risks on the animals, plants and microorganisms are not well discussed elsewhere. In this review, the authors have systematically discussed the toxic effect of the uses of NP on animals, plants and microorganisms including human health. They have also discussed about the bioaccumulation of these NP in the food chain. Finally, they have provided some possible suggestions for the uses of NP to reduce the detrimental effect on the environment.
Collapse
Affiliation(s)
- Somya Ranjan Dash
- Cancer Biology Division, KIIT School of Biotechnology, KIIT (Deemed to be university), Campus-11, Patia, Bhubaneswar 751 024, Odisha, India
| | - Chanakya Nath Kundu
- Cancer Biology Division, KIIT School of Biotechnology, KIIT (Deemed to be university), Campus-11, Patia, Bhubaneswar 751 024, Odisha, India.
| |
Collapse
|
52
|
Wang C, Liu S, Hou J, Wang P, Miao L, Li T. Effects of silver nanoparticles on coupled nitrification-denitrification in suspended sediments. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:122130. [PMID: 31978824 DOI: 10.1016/j.jhazmat.2020.122130] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/05/2020] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
The effects of varying concentrations of Ag NPs on coupled nitrification and denitrification (CND) in two suspended sediments (SPSs) sizes were investigated using isotopic tracer method. In general, 0.5 and 5 mg/L Ag NPs had less effect on CND, while 2 and 10 mg/L Ag NPs exhibited the improvement and inhibition effect, respectively. The CND improvement by 2 mg/L NPs was mainly due to the enhanced nitrifying and denitrifying enzyme activity. However, 10 mg/L Ag NPs inhibited NH4+ oxidation by directly reducing the AMO activity and AOB abundance. The inhibition on NAR and NIR activity and their encoding narG and nirK gene abundance further inhibited NO3- and NO2- reduction, leading to a dramatic decrease in the 15N-N2 production. The above inhibition effects were attributed to the nano-effects of Ag NPs, which led to the excessive ROS amount and the decreased T-AOC level in microbial systems. But the connection between nitrification and denitrification was not broken after Ag NPs exposure. Moreover, the results indicated that N-cycling in clay and silt-type SPS systems could be more sensitive than sand-type SPS systems to NP exposure. The findings provide a basis for evaluating the environmental risks of Ag NPs in water-sediment systems.
Collapse
Affiliation(s)
- Chao Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Songqi Liu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China.
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China.
| | - Tengfei Li
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| |
Collapse
|
53
|
The effect of engineered PLGA nanoparticles on nitrifying bacteria in the soil environment. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
54
|
Zhao S, Su X, Wang Y, Yang X, Bi M, He Q, Chen Y. Copper oxide nanoparticles inhibited denitrifying enzymes and electron transport system activities to influence soil denitrification and N 2O emission. CHEMOSPHERE 2020; 245:125394. [PMID: 31862554 DOI: 10.1016/j.chemosphere.2019.125394] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/09/2019] [Accepted: 11/16/2019] [Indexed: 06/10/2023]
Abstract
Nanopesticides are widely applied in modern agricultural systems to replace traditional pesticides, which inevitably leads to their accumulation in soils. Nanopesticides based on copper oxide nanoparticles (CuO NPs) may affect the soil nitrogen cycle, such as the denitrification process; however, the mechanism remains unclear. Here, acute exposure experiments for 60 h were conducted to explore the effects of CuO NPs (10, 100, 500 mg kg-1) on denitrification. In this study, Cu speciation, activities of denitrifying enzymes, electron transport system activity (ETSA), expression of denitrifying functional genes, composition of bacterial communities and reactive oxygen species (ROS) were determined. In all treatments, Cu ions was the dominant form and responsible for the toxicity of CuO NPs. The results indicated that CuO NPs treatments at 500 mg kg-1 remarkably inhibited denitrification, led to an 11-fold increase in NO3- accumulation and N2O emission rates decrease by 10.2-24.1%. In the denitrification process, the activities of nitrate reductase and nitric oxide reductase reduced by 21.1-42.1% and 10.3-16.3%, respectively, which may be a reason for the negative effect of CuO NPs. In addition, ETSA was significantly inhibited with CuO NPs applications, which reflects the ability of denitrification to accept electrons. Denitrifying functional genes and bacterial communities composition were changed, thus further influencing the denitrification process. ROS analysis showed that there were no significant differences among NPs treatments. This research improves the understanding of CuO NPs impact on soil denitrification. Further attention should be paid to the nitrogen transformation in agricultural soils in the presence of nanopesticides.
Collapse
Affiliation(s)
- Shuyuan Zhao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Xiaoxuan Su
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Yiyu Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Xiangyu Yang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Mohan Bi
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Qiang He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Yi Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China.
| |
Collapse
|
55
|
Li Y, Zhao R, Wang L, Niu L, Wang C, Hu J, Wu H, Zhang W, Wang P. Silver nanoparticles and Fe(III) co-regulate microbial community and N 2O emission in river sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 706:135712. [PMID: 31785899 DOI: 10.1016/j.scitotenv.2019.135712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/20/2019] [Accepted: 11/21/2019] [Indexed: 06/10/2023]
Abstract
The effects of environmental concentration silver nanoparticles (ecAgNPs) on microbial communities and the nitrogen cycling in river sediments remain largely uncharacterized. As a fundamental component of sediments, Fe(III) can interact with AgNPs and participate in nitrogen transformation processes. N2O is an important intermediate in nitrogen transformation processes and can be a potent greenhouse gas with significant environmental effects. However, the impacts of the co-existence of AgNPs and Fe(III) on microbial communities and N2O emission in river sediments are still unclear. In the present study, mesocosm experiments were conducted to assess the changes of microbial communities and N2O emission in response to the co-existence of AgNPs and environmental concentration Fe(III). Our results revealed that the microbial community diversity and N2O emission in river sediments responded differently to ecAgNPs (0.05 mg/kg) and high-polluting concentration AgNPs (hcAgNPs, 5 mg/kg), which was further regulated by the environmental concentration Fe(III) (1 mg/g and 10 mg/g). After ecAgNPs treatments, a marked increase was observed in microbial diversity compared to hcAgNPs treatments, regardless of the Fe(III) concentration in the sediment. The β-NTI index indicated that AgNPs had stronger impacts on phylogenetic distance of bacterial communities in sediments containing 1 mg/g Fe(III) than that containing 10 mg/g Fe(III). In sediments containing 1 mg/g Fe(III), ecAgNPs did not affect N2O emission, but hcAgNPs significantly inhibited the emission of N2O. However, in sediments containing 10 mg/g Fe(III), N2O emission was significantly stimulated upon exposure to ecAgNPs, but the inhibition effect of hcAgNPs was barely observed. Functional prediction and real-time PCR analyses indicated that AgNPs and Fe(III) predominantly affected N2O emissions by affecting the abundance of the nirK gene. Our results provide new insights into the ecological impacts of the co-existence of environmental concentration AgNPs and Fe(III) in altering microbial communities and nitrogen transformation functions in river sediments.
Collapse
Affiliation(s)
- Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Ruiqi Zhao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Longfei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Lihua Niu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Chao Wang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China.
| | - Jiaxin Hu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Hainan Wu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
56
|
Lu T, Qu Q, Lavoie M, Pan X, Peijnenburg WJGM, Zhou Z, Pan X, Cai Z, Qian H. Insights into the transcriptional responses of a microbial community to silver nanoparticles in a freshwater microcosm. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 258:113727. [PMID: 31838393 DOI: 10.1016/j.envpol.2019.113727] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/18/2019] [Accepted: 12/03/2019] [Indexed: 05/08/2023]
Abstract
Silver nanoparticles (AgNPs) are widely used because of their excellent antibacterial properties. They are, however, easily discharged into the water environment, causing potential adverse environmental effects. Meta-transcriptomic analyses are helpful to study the transcriptional response of prokaryotic and eukaryotic aquatic microorganisms to AgNPs. In the present study, microcosms were used to investigate the toxicity of AgNPs to a natural aquatic microbial community. It was found that a 7-day exposure to 10 μg L-1 silver nanoparticles (AgNPs) dramatically affected the structure of the microbial community. Aquatic micro eukaryota (including eukaryotic algae, fungi, and zooplankton) and bacteria (i.e., heterotrophic bacteria and cyanobacteria) responded differently to the AgNPs stress. Meta-transcriptomic analyses demonstrated that eukaryota could use multiple cellular strategies to cope with AgNPs stress, such as enhancing nitrogen and sulfur metabolism, over-expressing genes related to translation, amino acids biosynthesis, and promoting bacterial-eukaryotic algae interactions. By contrast, bacteria were negatively affected by AgNPs with less signs of detoxification than in case of eukaryota; various pathways related to energy metabolism, DNA replication and genetic repair were seriously inhibited by AgNPs. As a result, eukaryotic algae (mainly Chlorophyta) dominated over cyanobacteria in the AgNPs treated microcosms over the 7-d exposure. The present study helps to understand the effects of AgNPs on aquatic microorganisms and provides insights into the contrasting AgNPs toxicity in eukaryota and bacteria.
Collapse
Affiliation(s)
- Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Qian Qu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Michel Lavoie
- Quebec-Ocean and Takuvik Joint International Research Unit, Université Laval, Québec, G1VOA6, Canada
| | - Xiangjie Pan
- Zhejiang Fangyuan Test Group Co Ltd, Hangzhou, 310013, Zhejiang, PR China
| | - W J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, 2300, RA, Leiden, the Netherlands; National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, P.O. Box 1, 3720, BA, Bilthoven, the Netherlands
| | - Zhigao Zhou
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Xiangliang Pan
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Zhiqiang Cai
- Laboratory of Applied Microbiology and Biotechnology, School of Pharmaceutical Engineering & Life Science, Changzhou University, Changzhou, Jiangsu, 213164, PR China.
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China; Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, PR China.
| |
Collapse
|
57
|
Agathokleous E, Calabrese EJ. A global environmental health perspective and optimisation of stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 704:135263. [PMID: 31836236 DOI: 10.1016/j.scitotenv.2019.135263] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/21/2019] [Accepted: 10/27/2019] [Indexed: 05/17/2023]
Abstract
The phrase "what doesn't kill us makes us stronger" suggests the possibility that living systems have evolved a spectrum of adaptive mechanisms resulting in a biological stress response strategy that enhances resilience in a targeted quantifiable manner for amplitude and duration. If so, what are its evolutionary foundations and impact on biological diversity? Substantial research demonstrates that numerous agents enhance biological performance and resilience at low doses in a manner described by the hormetic dose response, being inhibitory and/or harmful at higher doses. This Review assesses how environmental changes impact the spectrum and intensity of biological stresses, how they affect health, and how such knowledge may improve strategies in confronting global environmental change.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology (NUIST), Ningliu Rd. 219, Nanjing, Jiangsu 210044, China.
| | - Edward J Calabrese
- Professor of Toxicology, Department of Environmental Health Sciences, Morrill I, N344; University of Massachusetts, Amherst, MA 01003 USA
| |
Collapse
|
58
|
Li P, Su M, Wang X, Zou X, Sun X, Shi J, Zhang H. Environmental fate and behavior of silver nanoparticles in natural estuarine systems. J Environ Sci (China) 2020; 88:248-259. [PMID: 31862066 DOI: 10.1016/j.jes.2019.09.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 09/02/2019] [Accepted: 09/10/2019] [Indexed: 06/10/2023]
Abstract
Silver nanoparticles (AgNPs) are widely used in many consumer products, whereas their environmental behaviors in natural aquatic systems remain unknown, especially in natural brackish media. Therefore, it is urgent to investigate the environmental fate of AgNPs in natural brackish waters. Here, we investigated the stability of citrate-coated AgNPs in natural brackish water collected from 6 different sites with distinct salinities in the Xinglinwan Reservoir, located in Xiamen City, southeast China. The obtained results showed that AgNP colloids remained stable in low-salinity waters, which was mainly determined by the effects of dissolved organic matter (DOM) promoting the stability of the nanoparticles. However, the environmental fate of AgNPs in high-salinity waters was dominated by the salinity or ionic strength, especially the free ion concentrations of Cl-, SO42-, or S2-, resulting in rapid sedimentation and dissolution. In addition, both DOM and salinity contributed to the environmental behavior of AgNPs in moderate-salinity waters, ultimately resulting in either colloidal stability or sedimentation. Overall, these results may reveal that AgNPs remain relatively stable for a long period in low-salinity natural waters, and that the stability might gradually decrease as AgNPs are transferred from freshwaters through brackish waters and eventually end up in seawater along the bay. Our findings also further indicate that the toxicity and potential risks of AgNPs may present more serious threats to the environment and organisms in natural freshwaters than in natural estuarine systems or seawater.
Collapse
Affiliation(s)
- Penghui Li
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Su
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xiaodan Wang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xiaoyan Zou
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xia Sun
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Junpeng Shi
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Hongwu Zhang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
59
|
Altermatt F, Little CJ, Mächler E, Wang S, Zhang X, Blackman RC. Uncovering the complete biodiversity structure in spatial networks: the example of riverine systems. OIKOS 2020. [DOI: 10.1111/oik.06806] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Florian Altermatt
- Eawag, Swiss Federal Inst. of Aquatic Science and Technology, Dept of Aquatic Ecology Überlandstrasse 133 CH‐8600 Dübendorf Switzerland
- Dept of Evolutionary Biology and Environmental Studies, Univ. of Zurich Winterthurerstr. 190 CH‐8057 Zürich Switzerland
| | - Chelsea J. Little
- Eawag, Swiss Federal Inst. of Aquatic Science and Technology, Dept of Aquatic Ecology Überlandstrasse 133 CH‐8600 Dübendorf Switzerland
- Dept of Evolutionary Biology and Environmental Studies, Univ. of Zurich Winterthurerstr. 190 CH‐8057 Zürich Switzerland
| | - Elvira Mächler
- Eawag, Swiss Federal Inst. of Aquatic Science and Technology, Dept of Aquatic Ecology Überlandstrasse 133 CH‐8600 Dübendorf Switzerland
- Dept of Evolutionary Biology and Environmental Studies, Univ. of Zurich Winterthurerstr. 190 CH‐8057 Zürich Switzerland
| | - Shaopeng Wang
- Inst. of Ecology, College of Urban and Environmental Science, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking Univ. Beijing PR China
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing Univ. Nanjing PR China
| | - Rosetta C. Blackman
- Eawag, Swiss Federal Inst. of Aquatic Science and Technology, Dept of Aquatic Ecology Überlandstrasse 133 CH‐8600 Dübendorf Switzerland
- Dept of Evolutionary Biology and Environmental Studies, Univ. of Zurich Winterthurerstr. 190 CH‐8057 Zürich Switzerland
| |
Collapse
|
60
|
Mishra S, Yang X, Singh HB. Evidence for positive response of soil bacterial community structure and functions to biosynthesized silver nanoparticles: An approach to conquer nanotoxicity? JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 253:109584. [PMID: 31634747 DOI: 10.1016/j.jenvman.2019.109584] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 09/09/2019] [Accepted: 09/15/2019] [Indexed: 05/02/2023]
Abstract
The environmental impacts of biosynthesized nanoparticles on the soil bacterial community assemblage and functions are not sufficiently understood. Given the broad application of silver nanoparticles (AgNPs), the present study aims to reveal the effects of biosynthesized AgNPs (~12 nm) on the soil bacterial community structure and functions. Specifically, we used a quantitative real-time PCR (qPCR) approach to quantify the relative abundance of bacterial taxon/group and representative functional genes (AOA, AOB, NirK, NirS, NosZ, and PhoD). Results showed high relative abundance of Actinobacteria (1.53 × 107, p = 0.000) followed by Alphaproteobacteria (1.18 × 106, p = 0.000) and Betaproteobacteria (2.01 × 106, p = 0.000) in the soil exposed to biosynthesized AgNPs (100 mg/kg soil) after 30 days of treatment. Bacteroidetes group was observed to be negatively affected by AgNPs treatment. In the case of functional genes abundance, more pronounced impact was observed after 30 days of application. The biosynthesized AgNPs treatment accounted for significant increase in the relative abundance of all targeted functional genes except NirS. We conclude that the biosynthesized AgNPs did not cause toxic effects on nitrifiers, denitrifiers and organic phosphorus metabolizing bacterial community. While AgNO3 caused higher toxicity in the soil bacterial community structure and function. Based on our findings, we propose two key research questions for further studies; (i) is there any adaptation strategy or silver resistance embraced by the soil microbial community? and (ii) are biosynthesized nanoparticles environmentally safe and do not pose any risk to the soil microbial community? There is a necessity to address these questions to predict the environmental safety of biosynthesized AgNPs and to apply appropriate soil management policies to avoid nanotoxicity. Since this study provides preliminary evidence for the positive response of the soil bacterial community structure and functions to biosynthesized AgNPs, additional investigations under different soil conditions with varying soil physico-chemical properties are required to authenticate their environmental impact.
Collapse
Affiliation(s)
- Sandhya Mishra
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China.
| | - Xiaodong Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China.
| | - Harikesh Bahadur Singh
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
61
|
Feng JN, Guo XP, Chen YR, Lu DP, Niu ZS, Tou FY, Hou LJ, Xu J, Liu M, Yang Y. Time-dependent effects of ZnO nanoparticles on bacteria in an estuarine aquatic environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 698:134298. [PMID: 31505343 DOI: 10.1016/j.scitotenv.2019.134298] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/12/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
Many studies have examined the acute toxicity of nanoparticles (NPs) towards model bacteria. In this study, we report the time-dependent effects of ZnO NPs on native, selected Zn-resistant and dominant bacteria in estuarine waters. An initial inhibition of bacterial growth followed by a recovery at 24 h was observed, and this rebound phenomenon was particularly notable when the raw water samples were treated with relatively high ZnO NP concentrations (1 and 10 mg/L).By comparing the groups treated with Zn2+, Zn2+ was shown to largely explain the acute cytotoxic effect of ZnO NPs on bacteria in raw waters. Furthermore, similar to the native bacteria, especially the dominant bacteria, the viability of Escherichia coli (E. coli) decreased with the increasing treatments time and the concentrations of ZnO NPs in water with different salinities. Moreover, the expression of Zn-resistance genes including zntA and zntR in E. coli suggested that the Zn-resistance system in E. coli can be activated to defend against the stress of Zn2+ released from ZnO NPs, and salinity may promote this process in estuarine aquatic systems. Thus, the effect of ZnO NPs on bacteria in estuarine water bodies is likely determined by the synergistic effect of environmental salinity and dissolved Zn ions. As such, our findings are of high relevance and importance for understanding the ecological disturbances caused by anthropogenic NPs in estuarine environments.
Collapse
Affiliation(s)
- Jing-Nan Feng
- Key Laboratory of Geographic Information Science, Ministry of Education, School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Xing-Pan Guo
- Key Laboratory of Geographic Information Science, Ministry of Education, School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yu-Ru Chen
- Key Laboratory of Geographic Information Science, Ministry of Education, School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Da-Pei Lu
- Key Laboratory of Geographic Information Science, Ministry of Education, School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Zuo-Shun Niu
- Key Laboratory of Geographic Information Science, Ministry of Education, School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Fei-Yun Tou
- Key Laboratory of Geographic Information Science, Ministry of Education, School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Li-Jun Hou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Jiang Xu
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh 15213, USA
| | - Min Liu
- Key Laboratory of Geographic Information Science, Ministry of Education, School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; Institute of Eco-Chongming, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yi Yang
- Key Laboratory of Geographic Information Science, Ministry of Education, School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China.
| |
Collapse
|
62
|
Xu Y, Zhou F, Chen M, Hu H, Lin L, Wu J, Zhang M. Facile assembly of 2D α-zirconium phosphate supported silver nanoparticles: superior and recyclable catalysis. NEW J CHEM 2020. [DOI: 10.1039/d0nj01378a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A novel, efficient and durable two-dimensional ZrP@PDA/Ag nanocatalyst for the reduction of 4-nitrophenol.
Collapse
Affiliation(s)
- Yonghang Xu
- School of Materials Science and Energy Engineering
- Foshan University
- Foshan 528000
- China
| | - Fangya Zhou
- School of Materials Science and Energy Engineering
- Foshan University
- Foshan 528000
- China
| | - Min Chen
- School of Materials Science and Energy Engineering
- Foshan University
- Foshan 528000
- China
| | - Huawen Hu
- School of Materials Science and Energy Engineering
- Foshan University
- Foshan 528000
- China
| | - Limiao Lin
- School of Materials Science and Engineering
- Sun Yat-sen University
- Guangzhou 510275
- China
| | - Jingshu Wu
- School of Materials Science and Energy Engineering
- Foshan University
- Foshan 528000
- China
| | - Min Zhang
- School of Materials Science and Energy Engineering
- Foshan University
- Foshan 528000
- China
| |
Collapse
|
63
|
Peng MW, Yu XL, Guan Y, Liu P, Yan P, Fang F, Guo J, Chen YP. Underlying Promotion Mechanism of High Concentration of Silver Nanoparticles on Anammox Process. ACS NANO 2019; 13:14500-14510. [PMID: 31794189 DOI: 10.1021/acsnano.9b08263] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Silver nanoparticles (AgNPs) are largely discharged into sewers and mostly accumulated in the sediments and sludge. The toxicity of AgNPs to environmental microorganisms has attracted great attention. However, the effect of AgNPs on anaerobic ammonium-oxidizing (anammox) granules remains unknown. Here we present the underlying promotion mechanism of AgNPs on anammox granules from a morphological and molecular biology perspective. Our results demonstrate a positive effect of AgNPs on the proliferation of anammox bacteria. AgNPs resulted in a change in the three-dimensional structure of anammox granules and led to larger pore size and higher porosity. In addition, the diffusion capacity of the substrate and metal ions was enhanced. Furthermore, the expression of anammox-related enzymes, such as nitrite oxidoreductase (NirS), hydrazine dehydrogenase (Hdh), and hydrazine synthase (HZS), was upregulated. Therefore, the growth rate and the nitrogen removal performance of the anammox granules were improved. Our findings clarify the underlying mechanism of AgNPs on anammox granules and provide a promising method for the treatment of AgNPs-rich wastewater.
Collapse
Affiliation(s)
- Meng-Wen Peng
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE , Chongqing University , Chongqing 400045 , China
| | - Xiu-Ling Yu
- Zhejiang Provincial Key Laboratory of Agricultural Resource and Environment , Zhejiang University , Hangzhou 310058 , China
| | - Yong Guan
- National Synchrotron Radiation Laboratory , University of Science and Technology of China , Hefei 230026 , China
| | - Peng Liu
- School of Environmental Studies , China University of Geosciences , Wuhan 430074 , China
| | - Peng Yan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE , Chongqing University , Chongqing 400045 , China
| | - Fang Fang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE , Chongqing University , Chongqing 400045 , China
| | - Jinsong Guo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE , Chongqing University , Chongqing 400045 , China
| | - You-Peng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE , Chongqing University , Chongqing 400045 , China
| |
Collapse
|
64
|
Xuan X, Zhou Y, Chen A, Zheng S, An Y, He H, Huang W, Chen Y, Yang Y, Li S, Xuan T, Xiao J, Li X, Wu J. Silver crosslinked injectable bFGF-eluting supramolecular hydrogels speed up infected wound healing. J Mater Chem B 2019; 8:1359-1370. [PMID: 31840731 DOI: 10.1039/c9tb02331c] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Topical wound dressings with various silver compositions that exhibit effective bacterial inhibition properties are often used to treat infected wounds. However, a silver dressing with no bioactive functionality will typically delay subsequent wound repair processes. Therefore, development of a simple wound dressing containing silver and loaded with a bioactive drug is a very attractive solution. Herein, we developed a silver crosslinked injectable chitosan-silver hydrogel as a silver immobilization matrix, loaded with basic fibroblast growth factor (bFGF) as its cargo (namely, bFGF@CS-Ag) for treatment of both acute and infected wounds. The in vivo results showed that bFGF@CS-Ag significantly enhanced infectious wound regeneration compared to that of acute wounds. Further investigation demonstrated that the improved wound repair by bFGF@CS-Ag was ascribed to the effectiveness of bacterial inhibition, the promotion of granulation formation, collagen deposition, neovascularization and re-epithelization, and to the reduction of the inflammatory response through promotion of M2 macrophage polarization. These results proved that the immobilization of silver in the hydrogel not only reduced the side effects of silver on the bioactivity of bFGF but also allowed elution of bFGF in a controlled release manner. Thus, this novel system has promising therapeutic potential for topical treatment of wounds.
Collapse
Affiliation(s)
- Xuan Xuan
- Department of Dermatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P. R. China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Gao D, Liu M, Hou L, Derrick YFL, Wang W, Li X, Zeng A, Zheng Y, Han P, Yang Y, Yin G. Effects of shrimp-aquaculture reclamation on sediment nitrate dissimilatory reduction processes in a coastal wetland of southeastern China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113219. [PMID: 31539849 DOI: 10.1016/j.envpol.2019.113219] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/28/2019] [Accepted: 09/07/2019] [Indexed: 06/10/2023]
Abstract
The conversion of natural saltmarshes to shrimp aquaculture ponds can potentially influence the biogeochemical cycling of nutrients in coastal wetlands, but its impact on the dynamics of sediment dissimilatory nitrate (NO3-) reduction remains poorly understood. In this study, three sediment NO3- reduction processes including denitrification (DNF), anaerobic ammonium oxidation (ANAMMOX), and dissimilatory NO3- reduction to ammonium (DNRA) were examined simultaneously in a natural saltmarsh and two shrimp culture ponds (5- and 18-year-old) in July and November, using nitrogen (N) isotope-tracing experiments. Our results showed that sediment potential DNF, ANAMMOX and DNRA rates were generally higher in the shrimp culture ponds than the natural saltmarsh in the two seasons. The rates of all three processes generally increased with the age of shrimp ponds, with the magnitude of increase being less pronounced for DNF and ANAMMOX than DNRA. The contribution of DNRA to total NO3- reduction increased significantly following saltmarsh conversion to shrimp ponds, suggesting that DNRA became an increasingly important biogeochemical process under shrimp culture. DNRA competed with DNF and limited reactive N loss to some extent after natural saltmarshes converted to shrimp culture ponds. The results of redundancy analysis revealed that the availability of substrates and sulfides in sediments, rather than the bacteria gene abundance, were the most important factor influencing the NO3- reduction processes. Overall, our findings highlighted that shrimp-aquaculture reclamation may aggravate nitrogen loading in coastal wetlands by promoting the production of bioavailable ammonium.
Collapse
Affiliation(s)
- Dengzhou Gao
- College of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Min Liu
- College of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China.
| | - Y F Lai Derrick
- Department of Geography and Resource Management, Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Weiqi Wang
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, 8 Shangsan Road, Fuzhou, 350007, China
| | - Xiaofei Li
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, 8 Shangsan Road, Fuzhou, 350007, China
| | - Aying Zeng
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, 8 Shangsan Road, Fuzhou, 350007, China
| | - Yanling Zheng
- College of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Ping Han
- College of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Yi Yang
- College of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Guoyu Yin
- College of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| |
Collapse
|
66
|
An Assessment of the Effect of Green Synthesized Silver Nanoparticles Using Sage Leaves ( Salvia officinalis L.) on Germinated Plants of Maize ( Zea mays L.). NANOMATERIALS 2019; 9:nano9111550. [PMID: 31683686 PMCID: PMC6915364 DOI: 10.3390/nano9111550] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/16/2019] [Accepted: 10/18/2019] [Indexed: 11/29/2022]
Abstract
AgNPs have attracted considerable attention in many applications including industrial use, and their antibacterial properties have been widely investigated. Due to the green synthesis process employed, the nanoparticle surface can be coated with molecules with biologically important characteristics. It has been reported that increased use of nanoparticles elevates the risk of their release into the environment. However, little is known about the behaviour of AgNPs in the eco-environment. In this study, the effect of green synthesized AgNPs on germinated plants of maize was examined. The effects on germination, basic growth and physiological parameters of the plants were monitored. Moreover, the effect of AgNPs was compared with that of Ag(I) ions in the form of AgNO3 solution. It was found that the growth inhibition of the above-ground parts of plants was about 40%, and AgNPs exhibited a significant effect on photosynthetic pigments. Significant differences in the following parameters were observed: weights of the caryopses and fresh weight (FW) of primary roots after 96 h of exposure to Ag(I) ions and AgNPs compared to the control and between Ag compounds. In addition, the coefficient of velocity of germination (CVG) between the control and the AgNPs varied and that between the Ag(I) ions and AgNPs was also different. Phytotoxicity was proved in the following sequence: control < AgNPs < Ag(I) ions.
Collapse
|
67
|
Hassan D, Farghali M, Eldeek H, Gaber M, Elossily N, Ismail T. Antiprotozoal activity of silver nanoparticles against Cryptosporidium parvum oocysts: New insights on their feasibility as a water disinfectant. J Microbiol Methods 2019; 165:105698. [PMID: 31446036 DOI: 10.1016/j.mimet.2019.105698] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 02/04/2023]
Abstract
Cryptosporidium is a protozoan of extremely medical and veterinary impact; whose oocysts donate a considerable resistant to the water treatment processes. Therefore, this study aimed to explore the impacts of silver nanoparticles (AgNPs) on count and viability of the Cryptosporidium parvum (CP) isolated from different tap water samples. The oocysts were exposed to AgNPs at different dosages of 0.05, 0.1 and 1 ppm for several contact times (30 min to 4 h). The results showed a significant decrease in oocyst count and viability in a dose-dependent manner. Additionally, AgNPs at a conc. of 1 ppm for 30 min and 0.1 ppm for 1 h reduced the oocysts by 97.2 and 94.4%, respectively. Comparatively, there was a noticeable increase in the oocyst's viability at 2 and 4 h, which emphasized that the time of contact between AgNPs and CP was not a major influencing factor for successful application of AgNPs in the nano-water treatment.
Collapse
Affiliation(s)
- Dalia Hassan
- Department of Animal and Poultry Hygiene & Environmental Sanitation, Faculty of Veterinary Medicine, Assiut University, 71526, Egypt
| | - Mohamed Farghali
- Department of Animal and Poultry Hygiene & Environmental Sanitation, Faculty of Veterinary Medicine, Assiut University, 71526, Egypt.
| | - Hanan Eldeek
- Department of Parasitology, Faculty of Medicine, Assiut University, 71526, Egypt
| | - Mona Gaber
- Department of Parasitology, Faculty of Medicine, Assiut University, 71526, Egypt
| | - Nahed Elossily
- Department of Parasitology, Faculty of Medicine, Assiut University, 71526, Egypt
| | - Taghreed Ismail
- Public Health and Community Medicine Department, Assiut University, 71526, Egypt
| |
Collapse
|
68
|
Huang J, Cao C, Liu J, Yan C, Xiao J. The response of nitrogen removal and related bacteria within constructed wetlands after long-term treating wastewater containing environmental concentrations of silver nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 667:522-531. [PMID: 30833250 DOI: 10.1016/j.scitotenv.2019.02.396] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/21/2019] [Accepted: 02/25/2019] [Indexed: 06/09/2023]
Abstract
The wide application of consumer products containing silver nanoparticles (AgNPs) inevitably results in their release into sewer systems and wastewater treatment plants, where they would encounter (and cause potential negative impacts) constructed wetlands (CWs), a complex biological system containing plants, substrate and microorganisms. Herein, the long-term effects of environmental AgNPs concentrations on nitrogen removal, key enzymatic activities and nitrogen-related microbes in constructed wetlands (CWs) were investigated. The short-term exposure (40 d) to AgNPs significantly inhibited TN and NH4+-N removal, and the inhibition degree had a positive relationship with AgNPs levels. After about 450 d exposure, 200 μg/L AgNPs could slightly increase average TN removal efficiency, while presence of 50 μg/L AgNPs showed no difference, compared to control. The NH4+-N removal in all CWs had no difference. The present study indicated that short-term AgNPs loading evidently reduced nitrogen removal, whereas long-term exposure to AgNPs showed no adverse impacts on NH4+-N removal and slightly stimulated TN removal, which was related to the increase of corresponding enzymatic activities. After exposing AgNPs for 450 d, the abundance of relative functional genes and the composition of key community structure were determined by qPCR and high-throughput sequencing, respectively. The results showed that the abundance of amoA and nxrA dramatically higher than control, whereas the abundance of nirK, nirS, nosZ and anammox 16S rRNA was slightly higher than control, but had no statistical difference, which accorded with the TN removal performance. The microbial community analysis showed that different AgNPs concentrations could affect the microbial diversity and structure. The changes of the relative abundance of nitrogen-related genera were associated with the impacts of AgNPs on the nitrogen removal performance. Overall, the AgNPs loading had impacts on the key enzymatic activities, the abundance of nitrogen-related genes and microbial community, thus finally affected the treatment performance of CWs.
Collapse
Affiliation(s)
- Juan Huang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, China.
| | - Chong Cao
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, China
| | - Jialiang Liu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, China
| | - Chunni Yan
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, China
| | - Jun Xiao
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
69
|
Kong X, Jin D, Tai X, Yu H, Duan G, Yan X, Pan J, Song J, Deng Y. Bioremediation of dibutyl phthalate in a simulated agricultural ecosystem by Gordonia sp. strain QH-11 and the microbial ecological effects in soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 667:691-700. [PMID: 30849609 DOI: 10.1016/j.scitotenv.2019.02.385] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/21/2019] [Accepted: 02/24/2019] [Indexed: 06/09/2023]
Abstract
Bioremediation of organic pollutants has been identified as an economically efficient and environmentally friendly method. Here, a pot experiment was conducted to evaluate the bioremediation efficiency of dibutyl phthalate (DBP) by Gordonia phthalatica sp. nov. QH-11 in agricultural soils, along with the effect of this exogenous organism on the native microbial community and ecosystem functions during the bioremediation process. The results showed that inoculation with strain QH-11 accelerated DBP degradation in the soil and decreased DBP accumulation in plants, thereby reducing the health risks associated with vegetables grown in those soils. High-throughput sequencing demonstrated that both DBP contamination and the bioremediation process significantly altered prokaryotic community composition, structure, and network interactions; however, these effects were greatly reduced after 30 d. Dibutyl phthalate affected the prokaryotic community by influencing soil properties rather than directly impacting on microorganisms. In addition, ecosystem functions, like the nitrogen cycle, were significantly altered. Contamination with DBP promoted nitrogen fixation and the denitrification processes while inhibiting nitrification. Bioremediation may mitigate some of the changes to nitrogen cycling, helping to maintain the balance of prokaryotic community function. According to this study, bioremediation through highly efficient degradation bacteria may be a safe and promising method for reducing PAEs contamination in soil-vegetable systems.
Collapse
Affiliation(s)
- Xiao Kong
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Decai Jin
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xin Tai
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Environmental Science and Engineering, Liaoning Technical University, Fuxin 123000, China
| | - Hao Yu
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Environmental Science and Engineering, Liaoning Technical University, Fuxin 123000, China
| | - Guilan Duan
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiulan Yan
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiangang Pan
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Junhua Song
- Institute for the Control of Agrochemicals, China Ministry of Agriculture and Rural Affairs, Beijing 100026, China
| | - Ye Deng
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
70
|
Zhang X. Environmental DNA Shaping a New Era of Ecotoxicological Research. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:5605-5612. [PMID: 31009204 DOI: 10.1021/acs.est.8b06631] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Aquatic ecosystems, such as rivers and lakes, are exposed to multiple stressors from anthropogenic activity and changes in climate, which have resulted in a general decrease in biodiversity, alteration of community structures, and can ultimately result in reduction of resources provided by natural ecosystems. Adverse outcomes caused by pollutants to ecosystems are determined not only by toxic properties but also ecological contexts of ecosystems, including indigenous biodiversity and community composition. It is therefore important to identify key factors, such as diversity of species and traits that determine the vulnerability of structures and functions of ecosystems in response to toxic substances. Detection and quantification of biodiversity and its activities using environmental DNA (eDNA) is arguably one of the most important technical advances in ecology in recent years. A huge opportunity has appeared to allow more relevant approaches for assessments of risks posed to ecosystems by toxic substances. eDNA approaches provide effective and efficient tools to evaluate the effects of chemical pollutants on (1) the occurrences and population of wildlife, (2) communities, and (3) the function of ecosystem in the field. Here a conceptual framework of adverse outcome pathways to relate molecular initiating events to apical ecosystem-level responses is proposed to connecting laboratory-based prediction to observations under field conditions. Particularly, future research opportunities on effects on biodiversity, community structure, and ecosystem function by toxic substances will be discussed.
Collapse
Affiliation(s)
- Xiaowei Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , China
| |
Collapse
|
71
|
Kovel ES, Sachkova AS, Vnukova NG, Churilov GN, Knyazeva EM, Kudryasheva NS. Antioxidant Activity and Toxicity of Fullerenols via Bioluminescence Signaling: Role of Oxygen Substituents. Int J Mol Sci 2019; 20:ijms20092324. [PMID: 31083407 PMCID: PMC6539272 DOI: 10.3390/ijms20092324] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/04/2019] [Accepted: 05/09/2019] [Indexed: 12/17/2022] Open
Abstract
Fullerenols are nanosized water-soluble polyhydroxylated derivatives of fullerenes, a specific allotropic form of carbon, bioactive compounds, and perspective basis for drug development. Our paper analyzes the antioxidant activity and toxicity of a series of fullerenols with different number of oxygen substituents. Two groups of fullerenols were under investigation: (1) C60Oy(OH)x, C60,70Oy(OH)x, where x+y = 24–28 and (2) C60,70Oy(OH)x, Fe0,5C60Oy(OH)x, Gd@C82Oy(OH)x, where x+y = 40–42. Bioluminescent cellular and enzymatic assays (luminous marine bacteria and their enzymatic reactions, respectively) were applied to monitor toxicity in the model fullerenol solutions and bioluminescence was applied as a signaling physiological parameter. The inhibiting concentrations of the fullerenols were determined, revealing the fullerenols’ toxic effects. Antioxidant fullerenol’ ability was studied in solutions of model oxidizer, 1,4-benzoquinone, and detoxification coefficients of general and oxidative types (DGT and DOxT) were calculated. All fullerenols produced toxic effect at high concentrations (>0.01 g L−1), while their antioxidant activity was demonstrated at low and ultralow concentrations (<0.001 g L−1). Quantitative toxic and antioxidant characteristics of the fullerenols (effective concentrations, concentration ranges, DGT, and DOxT) were found to depend on the number of oxygen substituents. Lower toxicity and higher antioxidant activity were determined in solutions of fullerenols with fewer oxygen substituents (x+y = 24–28). The differences in fullerenol properties were attributed to their catalytic activity due to reversible electron acceptance, radical trapping, and balance of reactive oxygen species in aqueous solutions. The results provide pharmaceutical sciences with a basis for selection of carbon nanoparticles with appropriate toxic and antioxidant characteristics. Based on the results, we recommend, to reduce the toxicity of prospective endohedral gadolinium-fullerenol preparations Gd@C82Oy(OH)x, decreasing the number of oxygen groups to x+y = 24–28. The potential of bioluminescence methods to compare toxic and antioxidant characteristics of carbon nanostructures were demonstrated.
Collapse
Affiliation(s)
- Ekaterina S Kovel
- Institute of Biophysics SB RAS, FRC KSC SB RAS, 660036 Krasnoyarsk, Russia.
- Institute of Physics SB RAS, FRC KSC SB RAS, 660036 Krasnoyarsk, Russia.
| | - Anna S Sachkova
- National Research Tomsk Polytechnic University, 634050 Tomsk, Russia.
| | - Natalia G Vnukova
- Institute of Physics SB RAS, FRC KSC SB RAS, 660036 Krasnoyarsk, Russia.
- Siberian Federal University, 660041 Krasnoyarsk, Russia.
| | - Grigoriy N Churilov
- Institute of Physics SB RAS, FRC KSC SB RAS, 660036 Krasnoyarsk, Russia.
- Siberian Federal University, 660041 Krasnoyarsk, Russia.
| | - Elena M Knyazeva
- National Research Tomsk Polytechnic University, 634050 Tomsk, Russia.
| | - Nadezhda S Kudryasheva
- Institute of Biophysics SB RAS, FRC KSC SB RAS, 660036 Krasnoyarsk, Russia.
- Siberian Federal University, 660041 Krasnoyarsk, Russia.
| |
Collapse
|
72
|
Murakami T, Nambu Y, Koretsune T, Xiangyu G, Yamamoto T, Brown CM, Kageyama H. Realization of interlayer ferromagnetic interaction in MnSb 2Te 4 toward the magnetic Weyl semimetal state. PHYSICAL REVIEW. B 2019; 100:10.1103/PhysRevB.100.195103. [PMID: 33655090 PMCID: PMC7919059 DOI: 10.1103/physrevb.100.195103] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Magnetic properties of MnSb2Te4 were examined through magnetic susceptibility, specific-heat, and neutron-diffraction measurements. As opposed to isostructural MnBi2Te4 with the antiferromagnetic ground state, MnSb2Te4 develops a spontaneous magnetization below 25 K. From our first-principles calculations on the material in a ferromagnetic state, the state could be interpreted as a type-II Weyl semimetal state with broken time-reversal symmetry. Detailed structural refinements using x-ray-diffraction and neutron-diffraction data reveal the presence of site mixing between Mn and Sb sites, leading to the ferrimagnetic ground state. With theoretical calculations, we found that the presence of site mixing plays an important role for the interlayer Mn-Mn ferromagnetic interactions.
Collapse
Affiliation(s)
- Taito Murakami
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yusuke Nambu
- Institute for Materials Research, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Takashi Koretsune
- Department of Physics, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Gu Xiangyu
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Takafumi Yamamoto
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Craig M. Brown
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Hiroshi Kageyama
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
73
|
Wang R, Li X, Hou L, Liu M, Zheng Y, Yin G, Yang Y. Nitrogen fixation in surface sediments of the East China Sea: Occurrence and environmental implications. MARINE POLLUTION BULLETIN 2018; 137:542-548. [PMID: 30503466 DOI: 10.1016/j.marpolbul.2018.10.063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 06/09/2023]
Abstract
Sediment nitrogen fixation and associated functional gene in the East China Sea were investigated using nitrogen-isotope tracing and molecular techniques. Potential rates of nitrogen fixation were detected, with values of 0.06-5.51 nmol N g-1 h-1. Abundance of functional gene (nifH) ranged from 0.36 × 106 to 5.39 × 107 copies g-1. Nitrogen fixation rates were not related to the abundance of nifH gene but to temperature, salinity, sulfide, iron and C/N, indicating that the sediment properties rather than microbial abundance dominated the nitrogen fixation. It is also estimated that sediment nitrogen fixation annually contributed about 3.43 × 105 to 3.10 × 107 tons nitrogen to the East China Sea, which accounted for 8.2-22.6% of the total inorganic nitrogen input. Overall, this study highlights the importance of benthic nitrogen fixation in controlling nitrogen budget in the East China Sea and improves our knowledge on nitrogen cycling in the coastal marine environments.
Collapse
Affiliation(s)
- Rong Wang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Xiaofei Li
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou 350007, China
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China.
| | - Min Liu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Yanling Zheng
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Guoyu Yin
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Yi Yang
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
74
|
Yu J, Zhang J, Chen Q, Yu W, Hu L, Shi W, Zhong J, Yan W. Dramatic source-sink transition of N 2O in the water level fluctuation zone of the Three Gorges Reservoir during flooding-drying processes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:20023-20031. [PMID: 29744781 DOI: 10.1007/s11356-018-2190-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 04/30/2018] [Indexed: 06/08/2023]
Abstract
Biogeochemical cycling of nitrous oxide (N2O), a significant greenhouse gas (GHG), can influence global climate change. The production and emission of N2O mediated by hydrological regimes is particularly active in water level fluctuation zones (WLFZs). However, the hydrological mechanisms affecting N2O transformation and production across the water-sediment micro-interface remain unclear. In this study, intact sediment cores from the WLFZs of the Three Gorges Reservoir (TGR) were incubated for 24 days in a laboratory microcosm to identify the effects of the flooding-drying processes on the yield and emission of N2O. Results showed a source-sink transition of N2O in the first 1.5 days during the flooding period, with the water column subsequently acting as a sink relative to the atmosphere in the following experimental period. The source-sink transition was ascribed to changes in oxygen concentration in the water column and sediment regulation of NO3--N transformation, resulting in denitrification and N2O production. Preliminary estimates on the mass budget of N2O in a typical WLFZs of the TGR showed slight emission fluxes, ranging from 13.08 to 43.08 μmol m-2 from flooding period to drying process. Although these N2O emissions were relatively low, the emission peak detected during the initial period (first 1.5 days) of the flooding phase provides important knowledge on the mitigation of GHG emissions from hydropower sources, which should be incorporated into future reservoir operations.
Collapse
Affiliation(s)
- Juhua Yu
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing, 210029, China
- Center for Eco-Environmental Research, Nanjing Hydraulic Research Institute, Nanjing, 210029, China
| | - Jianyun Zhang
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing, 210029, China
- Center for Eco-Environmental Research, Nanjing Hydraulic Research Institute, Nanjing, 210029, China
| | - Qiuwen Chen
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing, 210029, China.
- Center for Eco-Environmental Research, Nanjing Hydraulic Research Institute, Nanjing, 210029, China.
| | - Wenyong Yu
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Liuming Hu
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing, 210029, China
- Center for Eco-Environmental Research, Nanjing Hydraulic Research Institute, Nanjing, 210029, China
| | - Wenqing Shi
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing, 210029, China
- Center for Eco-Environmental Research, Nanjing Hydraulic Research Institute, Nanjing, 210029, China
| | - Jicheng Zhong
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Number 73 Beijing East Road, Nanjing, 210008, China
| | - Weixia Yan
- Center for Eco-Environmental Research, Nanjing Hydraulic Research Institute, Nanjing, 210029, China
| |
Collapse
|
75
|
Abstract
The concept of hormesis, as an adaptive response of biological systems to moderate environmental challenges, has raised considerable nano-toxicological interests in view of the rapid pace of production and application of even more innovative nanomaterials and the expected increasing likelihood of environmental and human exposure to low-dose concentrations. Therefore, the aim of this review is to provide an update of the current knowledge concerning the biphasic dose-responses induced by nanoparticle exposure. The evidence presented confirmed and extended our previous findings, showing that hormesis is a generalized adaptive response which may be further generalized to nanoscale xenobiotic challenges. Nanoparticle physico-chemical properties emerged as possible features affecting biphasic relationships, although the molecular mechanisms underlining such influences remain to be fully understood, especially in experimental settings resembling long-term and low-dose realistic environmental exposure scenarios. Further investigation is necessary to achieve helpful information for a suitable assessment of nanomaterial risks at the low-dose range for both the ecosystem function and the human health.
Collapse
|