51
|
Marques V, Castagné P, Polanco A, Borrero-Pérez GH, Hocdé R, Guérin PÉ, Juhel JB, Velez L, Loiseau N, Letessier TB, Bessudo S, Valentini A, Dejean T, Mouillot D, Pellissier L, Villéger S. Use of environmental DNA in assessment of fish functional and phylogenetic diversity. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2021; 35:1944-1956. [PMID: 34224158 DOI: 10.1111/cobi.13802] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/19/2021] [Accepted: 05/03/2021] [Indexed: 06/13/2023]
Abstract
Assessing the impact of global changes and protection effectiveness is a key step in monitoring marine fishes. Most traditional census methods are demanding or destructive. Nondisturbing and nonlethal approaches based on video and environmental DNA are alternatives to underwater visual census or fishing. However, their ability to detect multiple biodiversity factors beyond traditional taxonomic diversity is still unknown. For bony fishes and elasmobranchs, we compared the performance of eDNA metabarcoding and long-term remote video to assess species' phylogenetic and functional diversity. We used 10 eDNA samples from 30 L of water each and 25 hr of underwater videos over 4 days on Malpelo Island (pacific coast of Colombia), a remote marine protected area. Metabarcoding of eDNA detected 66% more molecular operational taxonomic units (MOTUs) than species on video. We found 66 and 43 functional entities with a single eDNA marker and videos, respectively, and higher functional richness for eDNA than videos. Despite gaps in genetic reference databases, eDNA also detected a higher fish phylogenetic diversity than videos; accumulation curves showed how 1 eDNA transect detected as much phylogenetic diversity as 25 hr of video. Environmental DNA metabarcoding can be used to affordably, efficiently, and accurately census biodiversity factors in marine systems. Although taxonomic assignments are still limited by species coverage in genetic reference databases, use of MOTUs highlights the potential of eDNA metabarcoding once reference databases have expanded.
Collapse
Affiliation(s)
- Virginie Marques
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, Montpellier, France
- CEFE, Univ. Montpellier, CNRS, EPHE-PSL University, IRD, Univ Paul Valery Montpellier 3, Montpellier, France
| | - Paul Castagné
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Andréa Polanco
- Instituto de Investigaciones Marinas y Costeras-INVEMAR, Colombia, Museo de Historia Natural Marina de Colombia (MHNMC), Programa de Biodiversidad y Ecosistemas Marinos, Santa Marta, Colombia
| | - Giomar Helena Borrero-Pérez
- Instituto de Investigaciones Marinas y Costeras-INVEMAR, Colombia, Museo de Historia Natural Marina de Colombia (MHNMC), Programa de Biodiversidad y Ecosistemas Marinos, Santa Marta, Colombia
| | - Régis Hocdé
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Pierre-Édouard Guérin
- CEFE, Univ. Montpellier, CNRS, EPHE-PSL University, IRD, Univ Paul Valery Montpellier 3, Montpellier, France
| | | | - Laure Velez
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Nicolas Loiseau
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | | | - Sandra Bessudo
- Fundación Malpelo y Otros Ecosistemas Marinos, Bogotá, Colombia
| | | | | | - David Mouillot
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, Montpellier, France
- Institut Universitaire de France, Paris, France
| | - Loïc Pellissier
- Landscape Ecology, Institute of Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | | |
Collapse
|
52
|
Wang J, Liu P, Chang J, Li C, Xie F, Jiang J. Development of an eDNA metabarcoding tool for surveying the world’s largest amphibian. Curr Zool 2021; 68:608-614. [PMID: 36324541 PMCID: PMC9616075 DOI: 10.1093/cz/zoab094] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/04/2021] [Indexed: 11/18/2022] Open
Abstract
Due to the overexploitation of farming, as well as habitat destruction, the wild population of Chinese giant salamander (CGS) Andrias davidianus, a species with seven genetically distinct lineages, has decreased by over 80% in the past 70 years. Traditional survey methods have proven to be unsuitable for finding this rare and elusive species. We evaluated the efficacy of environmental DNA (eDNA) sampling to detect CGS indirectly from its aquatic environment. We developed several species-specific primer sets; validated their specificity and sensitivity; and assessed their utility in silico, in the laboratory, and at two field sites harboring released farm-bred CGS. We detected the presence of CGS DNA by using polymerase chain reaction and Sanger sequencing. We also sequenced an amplicon mixture of seven haplotype-represented samples using high-throughput sequencing. Our eDNA methods could detect the presence of CGS at moderate densities reported across its range, proving them as a cost-effective way to establish broad-scale patterns of occupancy for CGS. In addition, our primers enabled the detection of mitochondrial lineage mixture or introduced individuals from geographically isolated populations of CGS.
Collapse
Affiliation(s)
- Jie Wang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Ping Liu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Jiang Chang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Cheng Li
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Feng Xie
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Jianping Jiang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
53
|
Stauffer S, Jucker M, Keggin T, Marques V, Andrello M, Bessudo S, Cheutin M, Borrero‐Pérez GH, Richards E, Dejean T, Hocdé R, Juhel J, Ladino F, Letessier TB, Loiseau N, Maire E, Mouillot D, Mutis Martinezguerra M, Manel S, Polanco Fernández A, Valentini A, Velez L, Albouy C, Pellissier L, Waldock C. How many replicates to accurately estimate fish biodiversity using environmental DNA on coral reefs? Ecol Evol 2021; 11:14630-14643. [PMID: 34765130 PMCID: PMC8571620 DOI: 10.1002/ece3.8150] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/31/2021] [Accepted: 09/08/2021] [Indexed: 01/22/2023] Open
Abstract
Quantifying fish species diversity in rich tropical marine environments remains challenging. Environmental DNA (eDNA) metabarcoding is a promising tool to face this challenge through the filtering, amplification, and sequencing of DNA traces from water samples. However, because eDNA concentration is low in marine environments, the reliability of eDNA to detect species diversity can be limited. Using an eDNA metabarcoding approach to identify fish Molecular Taxonomic Units (MOTUs) with a single 12S marker, we aimed to assess how the number of sampling replicates and filtered water volume affect biodiversity estimates. We used a paired sampling design of 30 L per replicate on 68 reef transects from 8 sites in 3 tropical regions. We quantified local and regional sampling variability by comparing MOTU richness, compositional turnover, and compositional nestedness. We found strong turnover of MOTUs between replicated pairs of samples undertaken in the same location, time, and conditions. Paired samples contained non-overlapping assemblages rather than subsets of one another. As a result, non-saturated localized diversity accumulation curves suggest that even 6 replicates (180 L) in the same location can underestimate local diversity (for an area <1 km). However, sampling regional diversity using ~25 replicates in variable locations (often covering 10 s of km) often saturated biodiversity accumulation curves. Our results demonstrate variability of diversity estimates possibly arising from heterogeneous distribution of eDNA in seawater, highly skewed frequencies of eDNA traces per MOTU, in addition to variability in eDNA processing. This high compositional variability has consequences for using eDNA to monitor temporal and spatial biodiversity changes in local assemblages. Avoiding false-negative detections in future biomonitoring efforts requires increasing replicates or sampled water volume to better inform management of marine biodiversity using eDNA.
Collapse
Affiliation(s)
- Salomé Stauffer
- Landscape EcologyInstitute of Terrestrial EcosystemsDepartment of Environmental Systems ScienceETH ZürichZürichSwitzerland
| | - Meret Jucker
- Landscape EcologyInstitute of Terrestrial EcosystemsDepartment of Environmental Systems ScienceETH ZürichZürichSwitzerland
| | - Thomas Keggin
- Landscape EcologyInstitute of Terrestrial EcosystemsDepartment of Environmental Systems ScienceETH ZürichZürichSwitzerland
- Unit of Land Change ScienceSwiss Federal Research Institute WSLBirmensdorfSwitzerland
| | - Virginie Marques
- MARBECUniv. MontpellierCNRSIFREMERIRDMontpellierFrance
- CEFEUniv. MontpellierCNRSEPHE‐PSL UniversityIRDUniv. Paul Valéry Montpellier 3MontpellierFrance
| | - Marco Andrello
- Institute for the Study of Anthropic Impacts and Sustainability in the Marine EnvironmentNational Research CouncilRomeItaly
| | - Sandra Bessudo
- Fundación Malpelo y otros ecosistemas marinosBogotáColombia
| | | | - Giomar Helena Borrero‐Pérez
- Instituto de Investigaciones Marinas y Costeras‐INVEMAR Museo de Historia Natural Marina de Colombia (MHNMC)Santa MartaColombia
| | - Eilísh Richards
- Landscape EcologyInstitute of Terrestrial EcosystemsDepartment of Environmental Systems ScienceETH ZürichZürichSwitzerland
| | | | - Régis Hocdé
- MARBECUniv. MontpellierCNRSIFREMERIRDMontpellierFrance
| | | | - Felipe Ladino
- Fundación Malpelo y otros ecosistemas marinosBogotáColombia
| | - Tom B. Letessier
- Institute of ZoologyZoological Society of LondonLondonUK
- Marine Futures LabUniversity of Western AustraliaCrawleyWAAustralia
| | | | - Eva Maire
- Lancaster Environment CentreLancaster UniversityLancasterUK
| | | | - Maria Mutis Martinezguerra
- Instituto de Investigaciones Marinas y Costeras‐INVEMAR Museo de Historia Natural Marina de Colombia (MHNMC)Santa MartaColombia
| | - Stéphanie Manel
- CEFEUniv. MontpellierCNRSEPHE‐PSL UniversityIRDUniv. Paul Valéry Montpellier 3MontpellierFrance
| | - Andrea Polanco Fernández
- Instituto de Investigaciones Marinas y Costeras‐INVEMAR Museo de Historia Natural Marina de Colombia (MHNMC)Santa MartaColombia
| | | | - Laure Velez
- MARBECUniv. MontpellierCNRSIFREMERIRDMontpellierFrance
| | - Camille Albouy
- IFREMERunité Écologie et Modèles pour l’HalieutiqueNantesFrance
| | - Loïc Pellissier
- Landscape EcologyInstitute of Terrestrial EcosystemsDepartment of Environmental Systems ScienceETH ZürichZürichSwitzerland
- Unit of Land Change ScienceSwiss Federal Research Institute WSLBirmensdorfSwitzerland
| | - Conor Waldock
- Landscape EcologyInstitute of Terrestrial EcosystemsDepartment of Environmental Systems ScienceETH ZürichZürichSwitzerland
- Unit of Land Change ScienceSwiss Federal Research Institute WSLBirmensdorfSwitzerland
| |
Collapse
|
54
|
Guillaume MMM, Séret B. Observations of sharks (Elasmobranchii) at Europa Island, a remote marine protected area important for shark conservation in the southern Mozambique Channel. PLoS One 2021; 16:e0253867. [PMID: 34610033 PMCID: PMC8491881 DOI: 10.1371/journal.pone.0253867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 06/15/2021] [Indexed: 11/19/2022] Open
Abstract
Sharks have declined worldwide and remote sanctuaries are becoming crucial for shark conservation. The southwest Indian Ocean is a hotspot of both terrestrial and marine biodiversity mostly impacted by anthropogenic damage. Sharks were observed during surveys performed from April to June 2013 in the virtually pristine coral reefs around Europa Island, a remote Marine Protected Area located in the southern Mozambique Channel. Observation events comprised 67 1-hour scientific dives between 5 – 35m depth and 7 snorkeling inspections, as well as 4 dinghy-based observations in the shallow lagoon. In a period of 24 days, 475 sharks were tallied. Carcharhinus galapagensis was most encountered and contributed 20% of the abundance during diving, followed by C. albimarginatus (10%). Both species were more abundant between 11-14h, and on the exposed sides of the island. Numbers of Sphyrna lewini were highest with 370 individuals windward and leeward, mostly schooling. S. lewini aggregations in the area are hypothesized to be attracted to the seamount archipelago offering favorable conditions for deep incursions and of which Europa Island forms part. C. amblyrhynchos, Galeocerdo cuvier and S. mokarran were uncommon, while there was an additional observation of Rhincodon typus. The lagoon of Europa was a nursery ground for C. melanopterus where it was the only species present. A total of 8 species was recorded, contributing to the shark diversity of 15 species reported from Europa since 1952 in the scientific and gray literature. Overall, with the occurrence of several species of apex predators in addition to that of R. typus, large schools of S. lewini, fair numbers of reef sharks and a nursery of C. melanopterus, Europa’s sharks constitute a significant reservoir of biodiversity, which contributes to preserve the functioning of the ecosystem. Our observations highlight the relevance of Europa Island for shark conservation and the need for shark-targeted management in the EEZ of both Europa and Bassas da India.
Collapse
Affiliation(s)
- Mireille M. M. Guillaume
- Laboratoire BOrEA MNHN-SU-CNRS-IRD-UCN-UA EcoFunc, Aviv, Muséum National d’Histoire Naturelle, Paris, France
- Laboratoire d’Excellence CORAIL, Perpignan, France
- * E-mail:
| | | |
Collapse
|
55
|
Krasnov BR, Shenbrot GI, Khokhlova IS. Dark diversity of flea assemblages of small mammalian hosts: effects of environment, host traits and host phylogeny. Int J Parasitol 2021; 52:157-167. [PMID: 34560075 DOI: 10.1016/j.ijpara.2021.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 11/26/2022]
Abstract
An assemblage of species in a locality comprises two components, namely (i) species that are present (realised diversity) and (ii) species from the regional pool that may potentially inhabit this locality due to suitable ecological conditions, but that are absent (dark diversity). We investigated factors affecting the dark diversity of component communities of fleas parasitic on small mammals in the northern Palearctic at two scales. First, we considered the dark diversity of flea assemblages of the same host (for 13 host species) across regions and tested for the effects of environmental factors and the number of available host species on the dark diversity of within-region flea assemblages. Second, we considered the dark diversity of fleas across host species within a region (for 20 regions) and asked whether within-host dark diversity is associated with host phylogeny and/or traits. We found that the dark diversity of flea assemblages harboured by small mammals varied substantially (i) within the same host species across space (in 12 of 13 host species) and (ii) between host species within a region (in eight of 20 regions). The size of the dark diversity of flea assemblages of the same host across regions was generally affected by environmental factors (mainly by the amount of green vegetation), whereas the size of the dark diversity of flea assemblages of a host species within a region was affected by host traits (mainly by the degree of host sociality and the structure of its shelter and, to a lesser degree, by its geographic range size) but was not associated with host phylogenetic affinities. We conclude that application of the dark diversity concept to parasite communities across space or hosts allows a better understanding of the factors affecting the species richness and composition of these communities.
Collapse
Affiliation(s)
- Boris R Krasnov
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel.
| | - Georgy I Shenbrot
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
| | - Irina S Khokhlova
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
| |
Collapse
|
56
|
Ip YCA, Chang JJM, Lim KKP, Jaafar Z, Wainwright BJ, Huang D. Seeing through sedimented waters: environmental DNA reduces the phantom diversity of sharks and rays in turbid marine habitats. BMC Ecol Evol 2021; 21:166. [PMID: 34488638 PMCID: PMC8422768 DOI: 10.1186/s12862-021-01895-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/20/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sharks and rays are some of the most threatened marine taxa due to the high levels of bycatch and significant demand for meat and fin-related products in many Asian communities. At least 25% of shark and ray species are considered to be threatened with extinction. In particular, the density of reef sharks in the Pacific has declined to 3-10% of pre-human levels. Elasmobranchs are thought to be sparse in highly urbanised and turbid environments. Low visibility coupled with the highly elusive behaviour of sharks and rays pose a challenge to diversity estimation and biomonitoring efforts as sightings are limited to chance encounters or from carcasses ensnared in nets. Here we utilised an eDNA metabarcoding approach to enhance the precision of elasmobranch diversity estimates in urbanised marine environments. RESULTS We applied eDNA metabarcoding on seawater samples to detect elasmobranch species in the hyper-urbanised waters off Singapore. Two genes-vertebrate 12S and elasmobranch COI-were targeted and amplicons subjected to Illumina high-throughput sequencing. With a total of 84 water samples collected from nine localities, we found 47 shark and ray molecular operational taxonomic units, of which 16 had species-level identities. When data were compared against historical collections and contemporary sightings, eDNA detected 14 locally known species as well as two potential new records. CONCLUSIONS Local elasmobranch richness uncovered by eDNA is greater than the seven species sighted over the last two decades, thereby reducing phantom diversity. Our findings demonstrate that eDNA metabarcoding is effective in detecting shark and ray species despite the challenges posed by the physical environment, granting a more consistent approach to monitor these highly elusive and threatened species.
Collapse
Affiliation(s)
- Yin Cheong Aden Ip
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558, Singapore.
| | - Jia Jin Marc Chang
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558, Singapore
| | - Kelvin K P Lim
- Lee Kong Chian Natural History Museum, National University of Singapore, 2 Conservatory Drive, Singapore, 117377, Singapore
| | - Zeehan Jaafar
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558, Singapore
| | - Benjamin J Wainwright
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558, Singapore
- Yale-NUS College, National University of Singapore, 16 College Avenue West, Singapore, 138527, Singapore
| | - Danwei Huang
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558, Singapore
- Centre for Nature-based Climate Solutions, National University of Singapore, 16 Science Drive 4, Singapore, 117558, Singapore
- Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, Singapore, 119227, Singapore
| |
Collapse
|
57
|
Polanco F. A, Mutis Martinezguerra M, Marques V, Villa‐Navarro F, Borrero Pérez GH, Cheutin M, Dejean T, Hocdé R, Juhel J, Maire E, Manel S, Spescha M, Valentini A, Mouillot D, Albouy C, Pellissier L. Detecting aquatic and terrestrial biodiversity in a tropical estuary using environmental DNA. Biotropica 2021. [DOI: 10.1111/btp.13009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Andrea Polanco F.
- Instituto de Investigaciones Marinas y Costeras‐INVEMAR, Santa Marta, Colombia, Programa de Biodiversidad y Ecosistemas MarinosMuseo de Historia Natural Marina de Colombia (MHNMC Santa Marta Colombia)
| | - Maria Mutis Martinezguerra
- Instituto de Investigaciones Marinas y Costeras‐INVEMAR, Santa Marta, Colombia, Programa de Biodiversidad y Ecosistemas MarinosMuseo de Historia Natural Marina de Colombia (MHNMC Santa Marta Colombia)
| | - Virginie Marques
- MARBEC CNRS Ifremer IRD Univ. Montpellier Montpellier France
- CEFE Univ. Montpellier CNRS EPHE‐PSL University IRD Univ. Paul Valéry Montpellier Montpellier France
| | - Francisco Villa‐Navarro
- Grupo de Investigación en Zoología Facultad de Ciencias Universidad del Tolima Ibagué Colombia
| | - Giomar Helena Borrero Pérez
- Instituto de Investigaciones Marinas y Costeras‐INVEMAR, Santa Marta, Colombia, Programa de Biodiversidad y Ecosistemas MarinosMuseo de Historia Natural Marina de Colombia (MHNMC Santa Marta Colombia)
| | - Marie‐Charlotte Cheutin
- CEFE Univ. Montpellier CNRS EPHE‐PSL University IRD Univ. Paul Valéry Montpellier Montpellier France
| | | | - Régis Hocdé
- MARBEC CNRS Ifremer IRD Univ. Montpellier Montpellier France
| | | | - Eva Maire
- MARBEC CNRS Ifremer IRD Univ. Montpellier Montpellier France
- Lancaster Environment Centre Lancaster University Lancaster UK
| | - Stéphanie Manel
- MARBEC CNRS Ifremer IRD Univ. Montpellier Montpellier France
- CEFE Univ. Montpellier CNRS EPHE‐PSL University IRD Univ. Paul Valéry Montpellier Montpellier France
| | - Manuel Spescha
- Landscape Ecology Department of Environmental Systems Science Institute of Terrestrial Ecosystems ETH Zürich Zürich Switzerland
| | | | - David Mouillot
- MARBEC CNRS Ifremer IRD Univ. Montpellier Montpellier France
| | - Camille Albouy
- IFREMER Unité Écologie et Modèles pour l’Halieutique Nantes cedex 3 France
| | - Loïc Pellissier
- Landscape Ecology Department of Environmental Systems Science Institute of Terrestrial Ecosystems ETH Zürich Zürich Switzerland
- Unit of Land Change Science Swiss Federal Institute for Forest, Snow and Landscape Research WSL Birmensdorf Switzerland
| |
Collapse
|
58
|
Receveur A, Allain V, Menard F, Lebourges Dhaussy A, Laran S, Ravache A, Bourgeois K, Vidal E, Hare SR, Weimerskirch H, Borsa P, Menkes C. Modelling Marine Predator Habitat Using the Abundance of Its Pelagic Prey in the Tropical South-Western Pacific. Ecosystems 2021. [DOI: 10.1007/s10021-021-00685-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractUnderstanding the ecological mechanisms underpinning distribution patterns is vital in managing populations of mobile marine species. This study is a first step towards an integrated description of the habitats and spatial distributions of marine predators in the Natural Park of the Coral Sea, one of the world’s largest marine-protected areas at about 1.3 million km2, covering the entirety of New Caledonia’s pelagic waters. The study aims to quantify the benefit of including a proxy for prey abundance in predator niche modelling, relative to other marine physical variables. Spatial distributions and relationships with environmental data were analysed using catch per unit of effort data for three fish species (albacore tuna, yellowfin tuna and dolphinfish), sightings collected from aerial surveys for three cetacean guilds (Delphininae, Globicephalinae and Ziphiidae) and foraging locations identified from bio-tracking for three seabird species (wedge-tailed shearwater, Tahiti petrel and red-footed booby). Predator distributions were modelled as a function of a static covariate (bathymetry), oceanographic covariates (sea surface temperature, chlorophyll-a concentration and 20 °C-isotherm depth) and an acoustically derived micronekton preyscape covariate. While distributions were mostly linked to bathymetry for seabirds, and chlorophyll and temperature for fish and cetaceans, acoustically derived prey abundance proxies slightly improved distribution models for all fishes and seabirds except the Tahiti petrel, but not for the cetaceans. Predicted spatial distributions showed that pelagic habitats occupied by predator fishes did not spatially overlap. Finally, predicted habitats and the use of the preyscapes in predator habitat modelling were discussed.
Collapse
|
59
|
Gold Z, Curd EE, Goodwin KD, Choi ES, Frable BW, Thompson AR, Walker HJ, Burton RS, Kacev D, Martz LD, Barber PH. Improving metabarcoding taxonomic assignment: A case study of fishes in a large marine ecosystem. Mol Ecol Resour 2021; 21:2546-2564. [PMID: 34235858 DOI: 10.1111/1755-0998.13450] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 05/25/2021] [Accepted: 06/03/2021] [Indexed: 01/08/2023]
Abstract
DNA metabarcoding is an important tool for molecular ecology. However, its effectiveness hinges on the quality of reference sequence databases and classification parameters employed. Here we evaluate the performance of MiFish 12S taxonomic assignments using a case study of California Current Large Marine Ecosystem fishes to determine best practices for metabarcoding. Specifically, we use a taxonomy cross-validation by identity framework to compare classification performance between a global database comprised of all available sequences and a curated database that only includes sequences of fishes from the California Current Large Marine Ecosystem. We demonstrate that the regional database provides higher assignment accuracy than the comprehensive global database. We also document a tradeoff between accuracy and misclassification across a range of taxonomic cutoff scores, highlighting the importance of parameter selection for taxonomic classification. Furthermore, we compared assignment accuracy with and without the inclusion of additionally generated reference sequences. To this end, we sequenced tissue from 597 species using the MiFish 12S primers, adding 252 species to GenBank's existing 550 California Current Large Marine Ecosystem fish sequences. We then compared species and reads identified from seawater environmental DNA samples using global databases with and without our generated references, and the regional database. The addition of new references allowed for the identification of 16 additional native taxa representing 17.0% of total reads from eDNA samples, including species with vast ecological and economic value. Together these results demonstrate the importance of comprehensive and curated reference databases for effective metabarcoding and the need for locus-specific validation efforts.
Collapse
Affiliation(s)
- Zachary Gold
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, California, USA
| | - Emily E Curd
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, California, USA
| | - Kelly D Goodwin
- Ocean Chemistry and Ecosystems Division, Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Stationed at Southwest Fisheries Science Center, La Jolla, California, USA
| | - Emma S Choi
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Benjamin W Frable
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Andrew R Thompson
- Southwest Fisheries Science Center, National Oceanic and Atmospheric Administration, La Jolla, California, USA
| | - Harold J Walker
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Ronald S Burton
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Dovi Kacev
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Lucas D Martz
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Paul H Barber
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
60
|
Gervais CR, Champion C, Pecl GT. Species on the move around the Australian coastline: A continental-scale review of climate-driven species redistribution in marine systems. GLOBAL CHANGE BIOLOGY 2021; 27:3200-3217. [PMID: 33835618 PMCID: PMC8251616 DOI: 10.1111/gcb.15634] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 03/23/2021] [Indexed: 05/02/2023]
Abstract
Climate-driven changes in the distribution of species are a pervasive and accelerating impact of climate change, and despite increasing research effort in this rapidly emerging field, much remains unknown or poorly understood. We lack a holistic understanding of patterns and processes at local, regional and global scales, with detailed explorations of range shifts in the southern hemisphere particularly under-represented. Australian waters encompass the world's third largest marine jurisdiction, extending from tropical to sub-Antarctic climate zones, and have waters warming at rates twice the global average in the north and two to four times in the south. Here, we report the results of a multi-taxon continent-wide review describing observed and predicted species redistribution around the Australian coastline, and highlight critical gaps in knowledge impeding our understanding of, and response to, these considerable changes. Since range shifts were first reported in the region in 2003, 198 species from nine Phyla have been documented shifting their distribution, 87.3% of which are shifting poleward. However, there is little standardization of methods or metrics reported in observed or predicted shifts, and both are hindered by a lack of baseline data. Our results demonstrate the importance of historical data sets and underwater visual surveys, and also highlight that approximately one-fifth of studies incorporated citizen science. These findings emphasize the important role the public has had, and can continue to play, in understanding the impact of climate change. Most documented shifts are of coastal fish species in sub-tropical and temperate systems, while tropical systems in general were poorly explored. Moreover, most distributional changes are only described at the poleward boundary, with few studies considering changes at the warmer, equatorward range limit. Through identifying knowledge gaps and research limitations, this review highlights future opportunities for strategic research effort to improve the representation of Australian marine species and systems in climate-impact research.
Collapse
Affiliation(s)
- Connor R. Gervais
- Department of Biological SciencesMacquarie UniversitySydneyNSWAustralia
| | - Curtis Champion
- Fisheries ResearchNSW Department of Primary IndustriesCoffs HarbourNSWAustralia
- Southern Cross UniversityNational Marine Science CentreCoffs HarbourNSWAustralia
| | - Gretta T. Pecl
- Institute for Marine and Antarctic StudiesUniversity of TasmaniaHobartTasAustralia
- Centre for Marine SocioecologyUniversity of TasmaniaHobartTasAustralia
| |
Collapse
|
61
|
Valdez JW, Brunbjerg AK, Fløjgaard C, Dalby L, Clausen KK, Pärtel M, Pfeifer N, Hollaus M, Wimmer MH, Ejrnæs R, Moeslund JE. Relationships between macro-fungal dark diversity and habitat parameters using LiDAR. FUNGAL ECOL 2021. [DOI: 10.1016/j.funeco.2021.101054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
62
|
Loiseau N, Thuiller W, Stuart-Smith RD, Devictor V, Edgar GJ, Velez L, Cinner JE, Graham NAJ, Renaud J, Hoey AS, Manel S, Mouillot D. Maximizing regional biodiversity requires a mosaic of protection levels. PLoS Biol 2021; 19:e3001195. [PMID: 34010287 PMCID: PMC8133472 DOI: 10.1371/journal.pbio.3001195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/18/2021] [Indexed: 11/24/2022] Open
Abstract
Protected areas are the flagship management tools to secure biodiversity from anthropogenic impacts. However, the extent to which adjacent areas with distinct protection levels host different species numbers and compositions remains uncertain. Here, using reef fishes, European alpine plants, and North American birds, we show that the composition of species in adjacent Strictly Protected, Restricted, and Non-Protected areas is highly dissimilar, whereas the number of species is similar, after controlling for environmental conditions, sample size, and rarity. We find that between 12% and 15% of species are only recorded in Non-Protected areas, suggesting that a non-negligible part of regional biodiversity occurs where human activities are less regulated. For imperiled species, the proportion only recorded in Strictly Protected areas reaches 58% for fishes, 11% for birds, and 7% for plants, highlighting the fundamental and unique role of protected areas and their environmental conditions in biodiversity conservation. This study shows that the dissimilarity in species composition between sites with different levels of protection is consistently high, suggesting that adjacent and connected areas with different protection levels host very dissimilar species assemblages.
Collapse
Affiliation(s)
- Nicolas Loiseau
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Laboratoire d’Ecologie Alpine, F-38000 Grenoble, France
- CEFE, Univ. Montpellier, CNRS, EPHE-PSL University, IRD, Univ Paul Valéry Montpellier 3, Montpellier, France
- * E-mail:
| | - Wilfried Thuiller
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Laboratoire d’Ecologie Alpine, F-38000 Grenoble, France
| | - Rick D. Stuart-Smith
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Vincent Devictor
- CNRS, ISEM, Université de Montpellier, IRD, EPHE, Montpellier, France
| | - Graham J. Edgar
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Laure Velez
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Joshua E. Cinner
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia
| | | | - Julien Renaud
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Laboratoire d’Ecologie Alpine, F-38000 Grenoble, France
| | - Andrew S. Hoey
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia
| | - Stephanie Manel
- EPHE, PSL Research University, CNRS, UM, SupAgro, IRD, INRA, UMR 5175 CEFE, F-Montpellier, France
| | - David Mouillot
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
- Institut Universitaire de France, IUF, Paris, France
| |
Collapse
|
63
|
Farrell JA, Yetsko K, Whitmore L, Whilde J, Eastman CB, Ramia DR, Thomas R, Linser P, Creer S, Burkhalter B, Schnitzler C, Duffy DJ. Environmental DNA monitoring of oncogenic viral shedding and genomic profiling of sea turtle fibropapillomatosis reveals unusual viral dynamics. Commun Biol 2021; 4:565. [PMID: 33980988 PMCID: PMC8115626 DOI: 10.1038/s42003-021-02085-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 04/08/2021] [Indexed: 12/13/2022] Open
Abstract
Pathogen-induced cancers account for 15% of human tumors and are a growing concern for endangered wildlife. Fibropapillomatosis is an expanding virally and environmentally co-induced sea turtle tumor epizootic. Chelonid herpesvirus 5 (ChHV5) is implicated as a causative virus, but its transmission method and specific role in oncogenesis and progression is unclear. We applied environmental (e)DNA-based viral monitoring to assess viral shedding as a direct means of transmission, and the relationship between tumor burden, surgical resection and ChHV5 shedding. To elucidate the abundance and transcriptional status of ChHV5 across early, established, regrowth and internal tumors we conducted genomics and transcriptomics. We determined that ChHV5 is shed into the water column, representing a likely transmission route, and revealed novel temporal shedding dynamics and tumor burden correlations. ChHV5 was more abundant in the water column than in marine leeches. We also revealed that ChHV5 is latent in fibropapillomatosis, including early stage, regrowth and internal tumors; higher viral transcription is not indicative of poor patient outcome, and high ChHV5 loads predominantly arise from latent virus. These results expand our knowledge of the cellular and shedding dynamics of ChHV5 and can provide insights into temporal transmission dynamics and viral oncogenesis not readily investigable in tumors of terrestrial species.
Collapse
Affiliation(s)
- Jessica A Farrell
- The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, USA
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Kelsey Yetsko
- The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, USA
| | - Liam Whitmore
- The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, USA
- Department of Biological Sciences, School of Natural Sciences, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland
| | - Jenny Whilde
- The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, USA
| | - Catherine B Eastman
- The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, USA
| | - Devon Rollinson Ramia
- The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, USA
| | - Rachel Thomas
- The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, USA
| | - Paul Linser
- The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, USA
| | - Simon Creer
- Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, Bangor University, Bangor, Gwynedd, UK
| | - Brooke Burkhalter
- The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, USA
| | - Christine Schnitzler
- The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, USA
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - David J Duffy
- The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, USA.
- Department of Biology, University of Florida, Gainesville, FL, USA.
- Department of Biological Sciences, School of Natural Sciences, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland.
- Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, Bangor University, Bangor, Gwynedd, UK.
| |
Collapse
|
64
|
Boulanger E, Loiseau N, Valentini A, Arnal V, Boissery P, Dejean T, Deter J, Guellati N, Holon F, Juhel JB, Lenfant P, Manel S, Mouillot D. Environmental DNA metabarcoding reveals and unpacks a biodiversity conservation paradox in Mediterranean marine reserves. Proc Biol Sci 2021; 288:20210112. [PMID: 33906403 PMCID: PMC8080007 DOI: 10.1098/rspb.2021.0112] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/29/2021] [Indexed: 12/17/2022] Open
Abstract
Although we are currently experiencing worldwide biodiversity loss, local species richness does not always decline under anthropogenic pressure. This conservation paradox may also apply in protected areas but has not yet received conclusive evidence in marine ecosystems. Here, we survey fish assemblages in six Mediterranean no-take reserves and their adjacent fishing grounds using environmental DNA (eDNA) while controlling for environmental conditions. We detect less fish species in marine reserves than in nearby fished areas. The paradoxical gradient in species richness is accompanied by a marked change in fish species composition under different managements. This dissimilarity is mainly driven by species that are often overlooked by classical visual surveys but detected with eDNA: cryptobenthic, pelagic, and rare fishes. These results do not negate the importance of reserves in protecting biodiversity but shed new light on how under-represented species groups can positively react to fishing pressure and how conservation efforts can shape regional biodiversity patterns.
Collapse
Affiliation(s)
- Emilie Boulanger
- CEFE, Univ Montpellier, CNRS, EPHE-PSL University, IRD, Montpellier, France
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Nicolas Loiseau
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | | | - Véronique Arnal
- CEFE, Univ Montpellier, CNRS, EPHE-PSL University, IRD, Montpellier, France
| | - Pierre Boissery
- Agence de l'Eau Rhône-Méditerranée-Corse, Délégation de Marseille, Marseille, France
| | | | | | - Nacim Guellati
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | | | | | | | - Stéphanie Manel
- CEFE, Univ Montpellier, CNRS, EPHE-PSL University, IRD, Montpellier, France
| | - David Mouillot
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
65
|
Brandt MI, Trouche B, Quintric L, Günther B, Wincker P, Poulain J, Arnaud-Haond S. Bioinformatic pipelines combining denoising and clustering tools allow for more comprehensive prokaryotic and eukaryotic metabarcoding. Mol Ecol Resour 2021; 21:1904-1921. [PMID: 33835712 DOI: 10.1111/1755-0998.13398] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 12/31/2020] [Accepted: 03/29/2021] [Indexed: 12/13/2022]
Abstract
Environmental DNA metabarcoding is a powerful tool for studying biodiversity. However, bioinformatic approaches need to adjust to the diversity of taxonomic compartments targeted as well as to each barcode gene specificities. We built and tested a pipeline based on read correction with DADA2 allowing analysing metabarcoding data from prokaryotic (16S) and eukaryotic (18S, COI) life compartments. We implemented the option to cluster amplicon sequence variants (ASVs) into operational taxonomic units (OTUs) with swarm, a network-based clustering algorithm, and the option to curate ASVs/OTUs using LULU. Finally, taxonomic assignment was implemented via the Ribosomal Database Project Bayesian classifier (RDP) and BLAST. We validated this pipeline with ribosomal and mitochondrial markers using metazoan mock communities and 42 deep-sea sediment samples. The results show that ASVs and OTUs describe different levels of biotic diversity, the choice of which depends on the research questions. They underline the advantages and complementarity of clustering and LULU-curation for producing metazoan biodiversity inventories at a level approaching the one obtained using morphological criteria. While clustering removes intraspecific variation, LULU effectively removes spurious clusters, originating from errors or intragenomic variability. Swarm clustering affected alpha and beta diversity differently depending on genetic marker. Specifically, d-values > 1 appeared to be less appropriate with 18S for metazoans. Similarly, increasing LULU's minimum ratio level proved essential to avoid losing species in sample-poor data sets. Comparing BLAST and RDP underlined that accurate assignments of deep-sea species can be obtained with RDP, but highlighted the need for a concerted effort to build comprehensive, ecosystem-specific databases.
Collapse
Affiliation(s)
- Miriam I Brandt
- MARBEC, University of Montpellier, Ifremer, IRD, CNRS, Sète, France
| | - Blandine Trouche
- Laboratoire de Microbiologie des Environnements Extrêmes, University of Brest, Ifremer, CNRS, Plouzané, France
| | | | - Babett Günther
- MARBEC, University of Montpellier, Ifremer, IRD, CNRS, Sète, France
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université of Evry, Université Paris-Saclay, Evry, France.,Research Federation for the study of Global Ocean Systems Ecology and Evolution, Paris, France
| | - Julie Poulain
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université of Evry, Université Paris-Saclay, Evry, France.,Research Federation for the study of Global Ocean Systems Ecology and Evolution, Paris, France
| | | |
Collapse
|
66
|
Farrell JA, Whitmore L, Duffy DJ. The Promise and Pitfalls of Environmental DNA and RNA Approaches for the Monitoring of Human and Animal Pathogens from Aquatic Sources. Bioscience 2021. [PMCID: PMC8083301 DOI: 10.1093/biosci/biab027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Abstract
Novel forensics-inspired molecular approaches have revolutionized species detection in the wild and are particularly useful for tracing endangered or invasive species. These new environmental DNA or RNA (eDNA or eRNA)–based techniques are now being applied to human and animal pathogen surveillance, particularly in aquatic environments. They allow better disease monitoring (presence or absence and geographical spread) and understanding of pathogen occurrence and transmission, benefitting species conservation and, more recently, our understanding of the COVID-19 global human pandemic. In the present article, we summarize the benefits of eDNA-based monitoring, highlighted by two case studies: The first is a fibropapillomatosis tumor-associated herpesvirus (chelonid herpesvirus 5) driving a sea turtle panzootic, and the second relates to eRNA-based detection of the SARS-CoV-2 coronavirus driving the COVID-19 human pandemic. The limitations of eDNA- or eRNA-based approaches are also summarized, and future directions and recommendations of the field are discussed. Continuous eDNA- or eRNA-based monitoring programs can potentially improve human and animal health by predicting disease outbreaks in advance, facilitating proactive rather than reactive responses.
Collapse
Affiliation(s)
- Jessica A Farrell
- University of Florida's Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital (St. Augustine), and The University of Florida's Department of Biology in the College of Liberal Arts and Sciences (Gainesville), United States
| | - Liam Whitmore
- University of Limerick's Department of Biological Sciences in the School of Natural Sciences and Faculty of Science and Engineering, Limerick, Ireland
| | - David J Duffy
- University of Florida's Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital (St. Augustine), and The University of Florida's Department of Biology in the College of Liberal Arts and Sciences (Gainesville), United States
| |
Collapse
|
67
|
Juhel J, Marques V, Polanco Fernández A, Borrero‐Pérez GH, Mutis Martinezguerra M, Valentini A, Dejean T, Manel S, Loiseau N, Velez L, Hocdé R, Letessier TB, Richards E, Hadjadj F, Bessudo S, Ladino F, Albouy C, Mouillot D, Pellissier L. Detection of the elusive Dwarf sperm whale ( Kogia sima) using environmental DNA at Malpelo island (Eastern Pacific, Colombia). Ecol Evol 2021; 11:2956-2962. [PMID: 33841757 PMCID: PMC8019034 DOI: 10.1002/ece3.7057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/05/2020] [Accepted: 10/20/2020] [Indexed: 11/09/2022] Open
Abstract
Monitoring large marine mammals is challenging due to their low abundances in general, an ability to move over large distances and wide geographical range sizes.The distribution of the pygmy (Kogia breviceps) and dwarf (Kogia sima) sperm whales is informed by relatively rare sightings, which does not permit accurate estimates of their distribution ranges. Hence, their conservation status has long remained Data Deficient (DD) in the Red list of the International Union for Conservation of Nature (IUCN), which prevent appropriate conservation measures.Environmental DNA (eDNA) metabarcoding uses DNA traces left by organisms in their environments to detect the presence of targeted taxon, and is here proved to be useful to increase our knowledge on the distribution of rare but emblematic megafauna.Retrieving eDNA from filtered surface water provides the first detection of the Dwarf sperm whale (Kogia sima) around the remote Malpelo island (Colombia).Environmental DNA collected during oceanic missions can generate better knowledge on rare but emblematic animals even in regions that are generally well sampled for other taxa.
Collapse
Affiliation(s)
| | - Virginie Marques
- MARBECUniversity of MontpellierCNRS, Ifremer, IRDMontpellierFrance
- CEFEUniversity of MontpellierCNRSEPHE‐PSL UniversityIRDUniv Paul Valéry Montpellier 3MontpellierFrance
| | - Andrea Polanco Fernández
- Instituto de Investigaciones Marinas y Costeras‐INVEMARMuseo de Historia Natural Marina de Colombia (MHNMC)Santa MartaColombia
| | - Giomar H. Borrero‐Pérez
- Instituto de Investigaciones Marinas y Costeras‐INVEMARMuseo de Historia Natural Marina de Colombia (MHNMC)Santa MartaColombia
| | - Maria Mutis Martinezguerra
- Instituto de Investigaciones Marinas y Costeras‐INVEMARMuseo de Historia Natural Marina de Colombia (MHNMC)Santa MartaColombia
| | | | | | - Stéphanie Manel
- CEFEUniversity of MontpellierCNRSEPHE‐PSL UniversityIRDUniv Paul Valéry Montpellier 3MontpellierFrance
| | - Nicolas Loiseau
- MARBECUniversity of MontpellierCNRS, Ifremer, IRDMontpellierFrance
| | - Laure Velez
- MARBECUniversity of MontpellierCNRS, Ifremer, IRDMontpellierFrance
| | - Régis Hocdé
- MARBECUniversity of MontpellierCNRS, Ifremer, IRDMontpellierFrance
| | | | - Eilísh Richards
- Department of Environmental Systems ScienceLandscape EcologyInstitute of Terrestrial EcosystemsETHUniversitӓt ZürichZürichSwitzerland
| | - Florine Hadjadj
- MARBECUniversity of MontpellierCNRS, Ifremer, IRDMontpellierFrance
| | | | | | - Camille Albouy
- IFREMERUnité Ecologie et Modèles pour l'HalieutiqueEMHNantesFrance
| | - David Mouillot
- MARBECUniversity of MontpellierCNRS, Ifremer, IRDMontpellierFrance
| | - Loïc Pellissier
- Department of Environmental Systems ScienceLandscape EcologyInstitute of Terrestrial EcosystemsETHUniversitӓt ZürichZürichSwitzerland
- Unit of Land Change ScienceSwiss Federal Research Institute WSLBirmensdorfSwitzerland
| |
Collapse
|
68
|
Valdivia-Carrillo T, Rocha-Olivares A, Reyes-Bonilla H, Domínguez-Contreras JF, Munguia-Vega A. Integrating eDNA metabarcoding and simultaneous underwater visual surveys to describe complex fish communities in a marine biodiversity hotspot. Mol Ecol Resour 2021; 21:1558-1574. [PMID: 33683812 DOI: 10.1111/1755-0998.13375] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/13/2021] [Accepted: 03/02/2021] [Indexed: 12/01/2022]
Abstract
Marine biodiversity can be surveyed using underwater visual censuses and recently with eDNA metabarcoding. Although a promising tool, eDNA studies have shown contrasting results related to its detection scale and the number of species identified compared to other survey methods. Also, its accuracy relies on complete reference databases used for taxonomic assignment and, as other survey methods, species detection may show false-negative and false-positive errors. Here, we compared results from underwater visual censuses and simultaneous eDNA metabarcoding fish surveys in terms of observed species and community composition. We also assess the effect of a custom reference database in the taxonomic assignment, and evaluate occupancy, capture and detection probabilities, as well as error rates of eDNA survey data. We amplified a 12S rRNA fish barcode from 24 sampling sites in the gulf of California. More species were detected with eDNA metabarcoding than with UVC. Because each survey method largely detected different sets of species, the combined approach doubled the number of species registered. Both survey methods recovered a known biodiversity gradient and a biogeographic break, but eDNA captured diversity over a broader geographic and bathymetric scale. Furthermore, the use of a modest-sized custom reference database significantly increased taxonomic assignment. In a subset of species, occupancy models revealed eDNA surveys provided similar or higher detection probabilities compared to UVC. The occupancy value of each species had a large influence on eDNA detectability, and in the false positive and negative error. Overall, these results highlight the potential of eDNA metabarcoding in complementing other established ecological methods for studies of marine fishes.
Collapse
Affiliation(s)
- Tania Valdivia-Carrillo
- Laboratorio de Ecología Molecular, Departamento de Oceanografía Biológica, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Baja California Sur, México.,Lab Applied Genomics, La Paz, Baja California Sur, México
| | - Axayácatl Rocha-Olivares
- Laboratorio de Ecología Molecular, Departamento de Oceanografía Biológica, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Baja California Sur, México
| | - Héctor Reyes-Bonilla
- Laboratorio de Sistemas Arrecifales, Universidad Autónoma de Baja California Sur (UABCS), La Paz, Baja California Sur, México
| | | | - Adrian Munguia-Vega
- Conservation Genetics Laboratory & Desert Laboratory on Tumamoc Hill, The University of Arizona, Tucson, AZ, USA.,Lab Applied Genomics, La Paz, Baja California Sur, México
| |
Collapse
|
69
|
Mariani S, Fernandez C, Baillie C, Magalon H, Jaquemet S. Shark and ray diversity, abundance and temporal variation around an Indian Ocean Island, inferred by eDNA metabarcoding. CONSERVATION SCIENCE AND PRACTICE 2021. [DOI: 10.1111/csp2.407] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Stefano Mariani
- School of Biological & Environmental Sciences, Liverpool John Moores University Liverpool UK
| | | | - Charles Baillie
- School of Science, Engineering & Environment, University of Salford Salford UK
| | - Helene Magalon
- UMR Entropie, Université de La Réunion Saint‐Denis France
- Laboratoire d'Excellence CORAIL Perpignan France
| | | |
Collapse
|
70
|
Marques V, Milhau T, Albouy C, Dejean T, Manel S, Mouillot D, Juhel J. GAPeDNA: Assessing and mapping global species gaps in genetic databases for eDNA metabarcoding. DIVERS DISTRIB 2021. [DOI: 10.1111/ddi.13142] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Virginie Marques
- MARBEC Univ Montpellier CNRS Ifremer IRD Montpellier France
- CEFE EPHE CNRS UM UPV IRD PSL Research University Montpellier France
| | | | - Camille Albouy
- IFREMER Unité Ecologie et Modèles pour l’Halieutique Nantes cedex 3 Nantes France
| | | | - Stéphanie Manel
- CEFE EPHE CNRS UM UPV IRD PSL Research University Montpellier France
| | - David Mouillot
- MARBEC Univ Montpellier CNRS Ifremer IRD Montpellier France
- Australian Research Council Centre of Excellence for Coral Reef Studies James Cook University Townsville Qld Australia
| | | |
Collapse
|
71
|
Development and validation of a quantitative qPCR assay for detecting Natterjack toad (Epidalea calamita) eDNA samples. CONSERV GENET RESOUR 2021. [DOI: 10.1007/s12686-021-01199-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AbstractThe Natterjack toad (Epidalea calamita) is the rarest amphibian species in Ireland, regionally Red-Listed as Endangered. We applied an eDNA approach to detect species presence in breeding pond water samples. We developed a species-specific qPCR assay targeting the cytochrome c oxidase subunit I (COI). The assay was tested in silico, in vitro (DNA extracted from tissue) and in vivo (DNA extracted from water samples). Water samples were collected from five ponds with known Natterjack toad presence or absence to validate the sensitivity and specificity of the assay. The assay was shown to be highly specific to the Natterjack toad and tested positive only against toad tissue samples and eDNA samples from ponds with known species presence. We believe this method can be used for rapid assessment of species occurrence.
Collapse
|
72
|
Wang S, Yan Z, Hänfling B, Zheng X, Wang P, Fan J, Li J. Methodology of fish eDNA and its applications in ecology and environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142622. [PMID: 33059148 DOI: 10.1016/j.scitotenv.2020.142622] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/09/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
Fish environmental DNA (eDNA) studies have made substantial progress during the past decade, and significant advances in monitoring fishes have been gained by taking advantage of this technology. Although a number of reviews concerning eDNA are available and some recent fish eDNA reviews focused on fisheries or standard method have been published, a systematic review of methodology of fish eDNA and its applications in ecology and environment has not yet been published. To our knowledge, this is the first review of fish eDNA for solving ecological and environmental issues. First, the most comprehensive literature analysis of fish eDNA was presented and analyzed. Then, we systematically discuss the relevant experiments and analyses of fish eDNA, and infers that standard workflow is on the way to consensus. We additionally provide reference sequence databases and the primers used to amplify the reference sequences or detecting fish eDNA. The abiotic and biotic conditions affecting fish eDNA persistence are also summarized in a schematic diagram. Subsequently, we focus on the major achievements of fish eDNA in ecology and environment. We additionally highlight the exciting new tools, including in situ autonomous monitoring devices, CRISPR nucleic acid detection technology, and meta-omics technology for fish eDNA detection in future. Ultimately, methodology of fish eDNA will provide a wholly new paradigm for conservation actions of fishes, ecological and environmental management at a global scale.
Collapse
Affiliation(s)
- Shuping Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhenguang Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Bernd Hänfling
- School of Environmental Sciences, University of Hull, Hull HU6 7RX, UK
| | - Xin Zheng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Pengyuan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Juntao Fan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jianlong Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan 570228, China
| |
Collapse
|
73
|
Domingues RR, Bunholi IV, Pinhal D, Antunes A, Mendonça FF. From molecule to conservation: DNA-based methods to overcome frontiers in the shark and ray fin trade. CONSERV GENET RESOUR 2021. [DOI: 10.1007/s12686-021-01194-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
74
|
West K, Travers MJ, Stat M, Harvey ES, Richards ZT, DiBattista JD, Newman SJ, Harry A, Skepper CL, Heydenrych M, Bunce M. Large‐scale eDNA metabarcoding survey reveals marine biogeographic break and transitions over tropical north‐western Australia. DIVERS DISTRIB 2021. [DOI: 10.1111/ddi.13228] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Katrina West
- Trace and Environmental DNA (TrEnD) Laboratory School of Molecular and Life Sciences Curtin University Bentley WA Australia
| | - Michael J. Travers
- Western Australian Fisheries and Marine Research Laboratories Department of Primary Industries and Regional Development Government of Western AustraliaNorth Beach WA Australia
| | - Michael Stat
- School of Environmental and Life Sciences The University of Newcastle Callaghan NSW Australia
| | - Euan S. Harvey
- Trace and Environmental DNA (TrEnD) Laboratory School of Molecular and Life Sciences Curtin University Bentley WA Australia
| | - Zoe T. Richards
- Trace and Environmental DNA (TrEnD) Laboratory School of Molecular and Life Sciences Curtin University Bentley WA Australia
| | - Joseph D. DiBattista
- Trace and Environmental DNA (TrEnD) Laboratory School of Molecular and Life Sciences Curtin University Bentley WA Australia
- Australian Museum Australian Museum Research Institute Sydney NSW Australia
| | - Stephen J. Newman
- Western Australian Fisheries and Marine Research Laboratories Department of Primary Industries and Regional Development Government of Western AustraliaNorth Beach WA Australia
| | - Alastair Harry
- Western Australian Fisheries and Marine Research Laboratories Department of Primary Industries and Regional Development Government of Western AustraliaNorth Beach WA Australia
| | - Craig L. Skepper
- Western Australian Fisheries and Marine Research Laboratories Department of Primary Industries and Regional Development Government of Western AustraliaNorth Beach WA Australia
| | - Matthew Heydenrych
- Trace and Environmental DNA (TrEnD) Laboratory School of Molecular and Life Sciences Curtin University Bentley WA Australia
| | - Michael Bunce
- Trace and Environmental DNA (TrEnD) Laboratory School of Molecular and Life Sciences Curtin University Bentley WA Australia
- Environmental Protection Authority Wellington New Zealand
| |
Collapse
|
75
|
Jensen MR, Sigsgaard EE, Liu S, Manica A, Bach SS, Hansen MM, Møller PR, Thomsen PF. Genome-scale target capture of mitochondrial and nuclear environmental DNA from water samples. Mol Ecol Resour 2020; 21:690-702. [PMID: 33179423 PMCID: PMC7983877 DOI: 10.1111/1755-0998.13293] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/23/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023]
Abstract
Environmental DNA (eDNA) provides a promising supplement to traditional sampling methods for population genetic inferences, but current studies have almost entirely focused on short mitochondrial markers. Here, we develop one mitochondrial and one nuclear set of target capture probes for the whale shark (Rhincodon typus) and test them on seawater samples collected in Qatar to investigate the potential of target capture for eDNA‐based population studies. The mitochondrial target capture successfully retrieved ~235× (90× − 352× per base position) coverage of the whale shark mitogenome. Using a minor allele frequency of 5%, we find 29 variable sites throughout the mitogenome, indicative of at least five contributing individuals. We also retrieved numerous mitochondrial reads from an abundant nontarget species, mackerel tuna (Euthynnus affinis), showing a clear relationship between sequence similarity to the capture probes and the number of captured reads. The nuclear target capture probes retrieved only a few reads and polymorphic variants from the whale shark, but we successfully obtained millions of reads and thousands of polymorphic variants with different allele frequencies from E. affinis. We demonstrate that target capture of complete mitochondrial genomes and thousands of nuclear loci is possible from aquatic eDNA samples. Our results highlight that careful probe design, taking into account the range of divergence between target and nontarget sequences as well as presence of nontarget species at the sampling site, is crucial to consider. eDNA sampling coupled with target capture approaches provide an efficient means with which to retrieve population genomic data from aggregating and spawning aquatic species.
Collapse
Affiliation(s)
| | | | - Shenglin Liu
- Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Andrea Manica
- Department of Zoology, University of Cambridge, Cambridge, UK
| | | | | | - Peter Rask Møller
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen Ø, Denmark
| | | |
Collapse
|
76
|
Martel CM, Sutter M, Dorazio RM, Kinziger AP. Using environmental DNA and occupancy modelling to estimate rangewide metapopulation dynamics. Mol Ecol 2020; 30:3340-3354. [PMID: 33063415 DOI: 10.1111/mec.15693] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 09/26/2020] [Accepted: 10/07/2020] [Indexed: 11/29/2022]
Abstract
We demonstrate the power of combining two emergent tools for resolving rangewide metapopulation dynamics. First, we employed environmental DNA (eDNA) surveys to efficiently generate multiseason rangewide site occupancy histories. Second, we developed a novel dynamic, spatial multiscale occupancy model to estimate metapopulation dynamics. The model incorporates spatial relationships, explicitly accounts for non-detection bias and allows direct evaluation of the drivers of extinction and colonization. We applied these tools to examine metapopulation dynamics of endangered tidewater goby, a species endemic to California estuarine habitats. We analysed rangewide eDNA data from 190 geographically isolated sites (813 total water samples) surveyed from 2 years (2016 and 2017). Rangewide estimates of the proportion of sites that were occupied varied little between 2016 (0.52) and 2017 (0.51). However, there was evidence of extinction and colonization dynamics. The probability of extinction of an occupied site (0.106) and probability of colonization of an unoccupied site (0.085) were nearly equal. Stability in site occupancy proportions combined with nearly equal rates of extinction and colonization suggests a dynamic equilibrium between the 2 years surveyed. Assessment of covariate effects revealed that colonization probability increased as the number of occupied neighbouring sites increased and as distance between occupied sites decreased. We show that eDNA surveys can rapidly provide a snapshot of a species distribution over a broad geographic range and, when these surveys are paired with occupancy modelling, can uncover metapopulation dynamics and their drivers.
Collapse
Affiliation(s)
- Chad M Martel
- Department of Fisheries Biology, Humboldt State University, Arcata, CA, USA
| | - Michael Sutter
- Department of Fisheries Biology, Humboldt State University, Arcata, CA, USA
| | | | - Andrew P Kinziger
- Department of Fisheries Biology, Humboldt State University, Arcata, CA, USA
| |
Collapse
|
77
|
Aglieri G, Baillie C, Mariani S, Cattano C, Calò A, Turco G, Spatafora D, Di Franco A, Di Lorenzo M, Guidetti P, Milazzo M. Environmental DNA effectively captures functional diversity of coastal fish communities. Mol Ecol 2020; 30:3127-3139. [PMID: 33078500 DOI: 10.1111/mec.15661] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/25/2020] [Accepted: 09/02/2020] [Indexed: 01/04/2023]
Abstract
Robust assessments of taxonomic and functional diversity are essential components of research programmes aimed at understanding current biodiversity patterns and forecasting trajectories of ecological changes. Yet, evaluating marine biodiversity along its dimensions is challenging and dependent on the power and accuracy of the available data collection methods. Here we combine three traditional survey methodologies (underwater visual census strip transects [UVCt], baited underwater videos [BUV] and small-scale fishery catches [SSFc]), and one novel molecular technique (environmental DNA metabarcoding [eDNA]-12S rRNA and cytochrome oxidase subunit 1 [COI]) to investigate their efficiency and complementarity in assessing fish diversity. We analysed 1,716 multimethod replicates at a basin scale to measure the taxonomic and functional diversity of Mediterranean fish assemblages. Taxonomic identities were investigated at species, genus and family levels. Functional identities were assessed using combinations of morphological, behavioural and trophic traits. We show that: (a) SSFc provided the higher taxonomic diversity estimates followed by eDNA, and then UVCt and BUV; (b) eDNA was the only method able to gather the whole spectrum of considered functional traits, showing the most functionally diversified and least redundant fish assemblages; and (c) the effectiveness of eDNA in describing functional structure reflected its lack of selectivity towards any considered functional trait. Our findings suggest that the reach of eDNA analysis stretches beyond taxon detection efficiency and provides new insights into the potential of metabarcoding in ecological studies.
Collapse
Affiliation(s)
- Giorgio Aglieri
- Department of Earth and Marine Sciences (DiSTeM), University of Palermo, Palermo, Italy.,Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Rome, Italy
| | - Charles Baillie
- School of Environment and Life Sciences, University of Salford, Salford, UK
| | - Stefano Mariani
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| | - Carlo Cattano
- Department of Earth and Marine Sciences (DiSTeM), University of Palermo, Palermo, Italy.,Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Rome, Italy.,Department of Integrative Marine Ecology, Sicily, Stazione Zoologica Anton Dohrn, Lungomare Cristoforo Colombo (complesso Roosevelt), Palermo, Italy
| | - Antonio Calò
- Department of Earth and Marine Sciences (DiSTeM), University of Palermo, Palermo, Italy.,UMR 7035 ECOSEAS, CNRS, Université Côte d'Azur, Nice, France
| | - Gabriele Turco
- Department of Earth and Marine Sciences (DiSTeM), University of Palermo, Palermo, Italy.,Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Rome, Italy
| | - Davide Spatafora
- Department of Earth and Marine Sciences (DiSTeM), University of Palermo, Palermo, Italy.,Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Rome, Italy
| | - Antonio Di Franco
- Department of Integrative Marine Ecology, Sicily, Stazione Zoologica Anton Dohrn, Lungomare Cristoforo Colombo (complesso Roosevelt), Palermo, Italy.,UMR 7035 ECOSEAS, CNRS, Université Côte d'Azur, Nice, France
| | - Manfredi Di Lorenzo
- Institute for Biological Resources and Marine Biotechnologies, National Research Council (IRBIM-CNR), Mazara del Vallo, Italy
| | - Paolo Guidetti
- Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Rome, Italy.,UMR 7035 ECOSEAS, CNRS, Université Côte d'Azur, Nice, France.,Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Marco Milazzo
- Department of Earth and Marine Sciences (DiSTeM), University of Palermo, Palermo, Italy.,Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Rome, Italy
| |
Collapse
|
78
|
Lopes CM, Baêta D, Valentini A, Lyra ML, Sabbag AF, Gasparini JL, Dejean T, Haddad CFB, Zamudio KR. Lost and found: Frogs in a biodiversity hotspot rediscovered with environmental DNA. Mol Ecol 2020; 30:3289-3298. [PMID: 32786119 DOI: 10.1111/mec.15594] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/25/2020] [Accepted: 08/05/2020] [Indexed: 12/31/2022]
Abstract
Declines and extinctions are increasing globally and challenge conservationists to keep pace with biodiversity monitoring. Organisms leave DNA traces in the environment, e.g., in soil, water, and air. These DNA traces are referred to as environmental DNA (eDNA). The analysis of eDNA is a highly sensitive method with the potential to rapidly assess local diversity and the status of threatened species. We searched for DNA traces of 30 target amphibian species of conservation concern, at different levels of threat, using an environmental DNA metabarcoding approach, together with an extensive sequence reference database to analyse water samples from six montane sites in the Atlantic Coastal Forest and adjacent Cerrado grasslands of Brazil. We successfully detected DNA traces of four declined species (Hylodes ornatus, Hylodes regius, Crossodactylus timbuhy, and Vitreorana eurygnatha); two locally disappeared (Phasmahyla exilis and Phasmahyla guttata); and one species that has not been seen since 1968 (putatively assigned to Megaelosia bocainensis). We confirm the presence of species undetected by traditional methods, underscoring the efficacy of eDNA metabarcoding for biodiversity monitoring at low population densities, especially in megadiverse tropical sites. Our results support the potential application of eDNA in conservation biology, to evaluate persistence and distribution of threatened species in surveyed habitats or sites, and improve accuracy of red lists, especially for species undetected over long periods.
Collapse
Affiliation(s)
- Carla Martins Lopes
- Departamento de Biodiversidade e Centro de Aquicultura, I.B., Universidade Estadual Paulista (UNESP), Rio Claro, SP, Brazil
| | - Délio Baêta
- Departamento de Biodiversidade e Centro de Aquicultura, I.B., Universidade Estadual Paulista (UNESP), Rio Claro, SP, Brazil
| | | | - Mariana Lúcio Lyra
- Departamento de Biodiversidade e Centro de Aquicultura, I.B., Universidade Estadual Paulista (UNESP), Rio Claro, SP, Brazil
| | - Ariadne Fares Sabbag
- Departamento de Biodiversidade e Centro de Aquicultura, I.B., Universidade Estadual Paulista (UNESP), Rio Claro, SP, Brazil
| | - João Luiz Gasparini
- Núcleo em Ecologia e Desenvolvimento Socioambiental de Macaé, Universidade Federal do Rio de Janeiro (UFRJ), Macaé, RJ, Brazil
| | | | - Célio Fernando Baptista Haddad
- Departamento de Biodiversidade e Centro de Aquicultura, I.B., Universidade Estadual Paulista (UNESP), Rio Claro, SP, Brazil
| | - Kelly Raquel Zamudio
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
79
|
Suter L, Polanowski AM, Clarke LJ, Kitchener JA, Deagle BE. Capturing open ocean biodiversity: Comparing environmental DNA metabarcoding to the continuous plankton recorder. Mol Ecol 2020; 30:3140-3157. [PMID: 32767849 DOI: 10.1111/mec.15587] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/24/2020] [Accepted: 07/29/2020] [Indexed: 12/20/2022]
Abstract
Environmental DNA (eDNA) metabarcoding is emerging as a novel, objective tool for monitoring marine metazoan biodiversity. Zooplankton biodiversity in the vast open ocean is currently monitored through continuous plankton recorder (CPR) surveys, using ship-based bulk plankton sampling and morphological identification. We assessed whether eDNA metabarcoding (2 L filtered seawater) could capture similar Southern Ocean zooplankton biodiversity as conventional CPR bulk sampling (~1,500 L filtered seawater per CPR sample). We directly compared eDNA metabarcoding with (a) conventional morphological CPR sampling and (b) bulk DNA metabarcoding of CPR collected plankton (two transects for each comparison, 40 and 44 paired samples, respectively). A metazoan-targeted cytochrome c oxidase I (COI) marker was used to characterize species-level diversity. In the 2 L seawater eDNA samples, this marker amplified large amounts of non-metazoan picoplanktonic algae, but eDNA metabarcoding still detected up to 1.6 times more zooplankton species than morphologically analysed bulk CPR samples. COI metabarcoding of bulk DNA samples mostly avoided nonmetazoan amplifications and recovered more zooplankton species than eDNA metabarcoding. However, eDNA metabarcoding detected roughly two thirds of metazoan species and identified similar taxa contributing to community differentiation across the subtropical front separating transects. We observed a diurnal pattern in eDNA data for copepods which perform diel vertical migrations, indicating a surprisingly short temporal eDNA signal. Compared to COI, a eukaryote-targeted 18S ribosomal RNA marker detected a higher proportion, but lower diversity, of metazoans in eDNA. With refinement and standardization of methodology, eDNA metabarcoding could become an efficient tool for monitoring open ocean biodiversity.
Collapse
Affiliation(s)
- Leonie Suter
- Australian Antarctic Division, Department of Agriculture, Water and the Environment, Kingston, Tas., Australia
| | - Andrea Maree Polanowski
- Australian Antarctic Division, Department of Agriculture, Water and the Environment, Kingston, Tas., Australia
| | - Laurence John Clarke
- Australian Antarctic Division, Department of Agriculture, Water and the Environment, Kingston, Tas., Australia.,Institute of Marine and Antarctic Studies, University of Tasmania, Hobart, Tas., Australia
| | - John Andrew Kitchener
- Australian Antarctic Division, Department of Agriculture, Water and the Environment, Kingston, Tas., Australia
| | - Bruce Emerson Deagle
- Australian Antarctic Division, Department of Agriculture, Water and the Environment, Kingston, Tas., Australia.,Commonwealth Scientific and Industrial Research Organisation, Battery Point, Tas., Australia
| |
Collapse
|
80
|
McElroy ME, Dressler TL, Titcomb GC, Wilson EA, Deiner K, Dudley TL, Eliason EJ, Evans NT, Gaines SD, Lafferty KD, Lamberti GA, Li Y, Lodge DM, Love MS, Mahon AR, Pfrender ME, Renshaw MA, Selkoe KA, Jerde CL. Calibrating Environmental DNA Metabarcoding to Conventional Surveys for Measuring Fish Species Richness. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00276] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
81
|
Postaire BD, Bakker J, Gardiner J, Wiley TR, Chapman DD. Environmental DNA detection tracks established seasonal occurrence of blacktip sharks (Carcharhinus limbatus) in a semi-enclosed subtropical bay. Sci Rep 2020; 10:11847. [PMID: 32678294 PMCID: PMC7367289 DOI: 10.1038/s41598-020-68843-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 06/29/2020] [Indexed: 11/27/2022] Open
Abstract
The integration of eDNA analysis into the population assessment and monitoring of sharks could greatly improve temporal and spatial data used for management purposes. This study aimed to compare eDNA detection against well-established seasonal changes in blacktip shark (Carcharhinus limbatus) abundance in Terra Ceia Bay (FL, USA). We used a species-specific real-time PCR approach to detect C. limbatus eDNA in the bay on a near monthly basis from spring through mid-fall in 2018 and 2019. Previous studies have shown that C. limbatus give birth in the bay in early summer and immature sharks occur there until late fall, when decreasing water temperatures cause them to move offshore and southwards. Water samples (2 L) were collected (4–6 per month) and filtered in the field, with each then being subjected to real-time PCR. Carcharhinus limbatus ‘positive’ filters were significantly more commonly collected during the April-July sampling period than during the August-October sampling period. While following the predicted pattern, eDNA concentration was generally too low for accurate quantification. Our results show that C. limbatus eDNA detection follows known seasonal residency patterns consistently over 2 years of monitoring. Species-specific eDNA analysis using real-time PCR could therefore represent a cost-effective, scalable sampling tool to facilitate improved shark population monitoring in semi-enclosed marine habitats.
Collapse
Affiliation(s)
- Bautisse D Postaire
- Department of Biological Sciences, Florida International University, 3000 NE 151st Street, North Miami, FL, 33181, USA.
| | - Judith Bakker
- Department of Biological Sciences, Florida International University, 3000 NE 151st Street, North Miami, FL, 33181, USA
| | - Jayne Gardiner
- Division of Natural Sciences, New College of Florida, 5800 Bayshore Rd, Sarasota, FL, 34243, USA
| | - Tonya R Wiley
- Havenworth Coastal Conservation, 5120 Beacon Road, Palmetto, FL, 34221, USA
| | - Demian D Chapman
- Department of Biological Sciences, Florida International University, 3000 NE 151st Street, North Miami, FL, 33181, USA
| |
Collapse
|
82
|
Juhel JB, Utama RS, Marques V, Vimono IB, Sugeha HY, Kadarusman, Pouyaud L, Dejean T, Mouillot D, Hocdé R. Accumulation curves of environmental DNA sequences predict coastal fish diversity in the coral triangle. Proc Biol Sci 2020; 287:20200248. [PMID: 32635874 DOI: 10.1098/rspb.2020.0248] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Environmental DNA (eDNA) has the potential to provide more comprehensive biodiversity assessments, particularly for vertebrates in species-rich regions. However, this method requires the completeness of a reference database (i.e. a list of DNA sequences attached to each species), which is not currently achieved for many taxa and ecosystems. As an alternative, a range of operational taxonomic units (OTUs) can be extracted from eDNA metabarcoding. However, the extent to which the diversity of OTUs provided by a limited eDNA sampling effort can predict regional species diversity is unknown. Here, by modelling OTU accumulation curves of eDNA seawater samples across the Coral Triangle, we obtained an asymptote reaching 1531 fish OTUs, while 1611 fish species are recorded in the region. We also accurately predict (R² = 0.92) the distribution of species richness among fish families from OTU-based asymptotes. Thus, the multi-model framework of OTU accumulation curves extends the use of eDNA metabarcoding in ecology, biogeography and conservation.
Collapse
Affiliation(s)
| | - Rizkie S Utama
- Research Center for Oceanography, Indonesian Institute of Sciences, Jl. Pasir Putih 1, Ancol Timur, Jakarta Utara, Indonesia
| | - Virginie Marques
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Indra B Vimono
- Research Center for Oceanography, Indonesian Institute of Sciences, Jl. Pasir Putih 1, Ancol Timur, Jakarta Utara, Indonesia
| | - Hagi Yulia Sugeha
- Research Center for Oceanography, Indonesian Institute of Sciences, Jl. Pasir Putih 1, Ancol Timur, Jakarta Utara, Indonesia
| | - Kadarusman
- Politeknik Kelautan dan Perikanan Sorong, KKD BP Sumberdaya Genetik, Konservasi dan Domestikasi, Papua Barat 98411, Indonesia
| | - Laurent Pouyaud
- Institut des Sciences de l'Evolution de Montpellier, Montpellier, France
| | | | - David Mouillot
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, Montpellier, France.,ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Australia
| | - Régis Hocdé
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| |
Collapse
|
83
|
Trindade DPF, Carmona CP, Pärtel M. Temporal lags in observed and dark diversity in the Anthropocene. GLOBAL CHANGE BIOLOGY 2020; 26:3193-3201. [PMID: 32282128 DOI: 10.1111/gcb.15093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 03/16/2020] [Indexed: 06/11/2023]
Abstract
Understanding biodiversity changes in the Anthropocene (e.g. due to climate and land-use change) is an urgent ecological issue. This important task is challenging because global change effects and species responses are dependent on the spatial scales considered. Furthermore, responses are often not immediate. However, both scale and time delay issues can be tackled when, at each study site, we consider dynamics in both observed and dark diversity. Dark diversity includes those species in the region that can potentially establish and thrive in the local sites' conditions but are currently locally absent. Effectively, dark diversity connects biodiversity at the study site to the regional scales and defines the site-specific species pool (observed and dark diversity together). With dark diversity, it is possible to decompose species gains and losses into two space-related components: one associated with local dynamics (species moving from observed to dark diversity and vice versa) and another related to gains and losses of site-specific species pool (species moving to and from the pool after regional immigration, regional extinction or change in local ecological conditions). Extinction debt and immigration credit are useful to understand dynamics in observed diversity, but delays might happen in species pool changes as well. In this opinion piece we suggest that considering both observed and dark diversity and their temporal dynamics provides a deeper understanding of biodiversity changes. Considering both observed and dark diversity creates opportunities to improve conservation by allowing to identify species that are likely to go regionally extinct as well as foreseeing which of the species that newly arrive to the region are more likely to colonize local sites. Finally, by considering temporal lags and species gains and losses in observed and dark diversity, we combine phenomena at both spatial and temporal scales, providing a novel tool to examine biodiversity change in the Anthropocene.
Collapse
Affiliation(s)
- Diego P F Trindade
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Carlos P Carmona
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Meelis Pärtel
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| |
Collapse
|
84
|
Sigsgaard EE, Torquato F, Frøslev TG, Moore ABM, Sørensen JM, Range P, Ben‐Hamadou R, Bach SS, Møller PR, Thomsen PF. Using vertebrate environmental DNA from seawater in biomonitoring of marine habitats. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2020; 34:697-710. [PMID: 31729081 PMCID: PMC7318234 DOI: 10.1111/cobi.13437] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 08/12/2019] [Accepted: 09/23/2019] [Indexed: 05/10/2023]
Abstract
Conservation and management of marine biodiversity depends on biomonitoring of marine habitats, but current approaches are resource-intensive and require different approaches for different organisms. Environmental DNA (eDNA) extracted from water samples is an efficient and versatile approach to detecting aquatic animals. In the ocean, eDNA composition reflects local fauna at fine spatial scales, but little is known about the effectiveness of eDNA-based monitoring of marine communities at larger scales. We investigated the potential of eDNA to characterize and distinguish marine communities at large spatial scales by comparing vertebrate species composition among marine habitats in Qatar, the Arabian Gulf (also known as the Persian Gulf), based on eDNA metabarcoding of seawater samples. We conducted species accumulation analyses to estimate how much of the vertebrate diversity we detected. We obtained eDNA sequences from a diverse assemblage of marine vertebrates, spanning 191 taxa in 73 families. These included rare and endangered species and covered 36% of the bony fish genera previously recorded in the Gulf. Sites of similar habitat type were also similar in eDNA composition. The species accumulation analyses showed that the number of sample replicates was insufficient for some sampling sites but suggested that a few hundred eDNA samples could potentially capture >90% of the marine vertebrate diversity in the study area. Our results confirm that seawater samples contain habitat-characteristic molecular signatures and that eDNA monitoring can efficiently cover vertebrate diversity at scales relevant to national and regional conservation and management.
Collapse
Affiliation(s)
- Eva Egelyng Sigsgaard
- Natural History Museum of DenmarkUniversity of CopenhagenUniversitetsparken 15DK‐2100Copenhagen ØDenmark
| | - Felipe Torquato
- Natural History Museum of DenmarkUniversity of CopenhagenUniversitetsparken 15DK‐2100Copenhagen ØDenmark
| | - Tobias Guldberg Frøslev
- Section for GeoGenetics, Globe Institute, University of Copenhagen, Øster Voldgade 5‐7, DK‐1350 Copenhagen K, Denmark (previously: Centre for GeoGenetics, Natural History Museum of Denmark)
| | - Alec B. M. Moore
- School of Ocean Sciences, Bangor UniversityMenai BridgeAngleseyLL59 5ABU.K.
| | - Johan Mølgård Sørensen
- Natural History Museum of DenmarkUniversity of CopenhagenUniversitetsparken 15DK‐2100Copenhagen ØDenmark
| | - Pedro Range
- Environmental Science CenterQatar UniversityP.O. Box 2713DohaQatar
| | - Radhouane Ben‐Hamadou
- Department of Biological and Environmental SciencesQatar UniversityP.O. Box 2713DohaQatar
| | - Steffen Sanvig Bach
- Maersk Oil Research and Technology CentreAl Jazi Tower, Building 20, Zone 60, Street 850, West BayDohaQatar
| | - Peter Rask Møller
- Natural History Museum of DenmarkUniversity of CopenhagenUniversitetsparken 15DK‐2100Copenhagen ØDenmark
| | - Philip Francis Thomsen
- Section for GeoGenetics, Globe Institute, University of Copenhagen, Øster Voldgade 5‐7, DK‐1350 Copenhagen K, Denmark (previously: Centre for GeoGenetics, Natural History Museum of Denmark)
| |
Collapse
|
85
|
Fløjgaard C, Valdez JW, Dalby L, Moeslund JE, Clausen KK, Ejrnæs R, Pärtel M, Brunbjerg AK. Dark diversity reveals importance of biotic resources and competition for plant diversity across habitats. Ecol Evol 2020; 10:6078-6088. [PMID: 32607214 PMCID: PMC7319157 DOI: 10.1002/ece3.6351] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 02/05/2020] [Accepted: 02/10/2020] [Indexed: 11/06/2022] Open
Abstract
Species richness is the most commonly used metric to quantify biodiversity. However, examining dark diversity, the group of missing species which can potentially inhabit a site, can provide a more thorough understanding of the processes influencing observed biodiversity and help evaluate the restoration potential of local habitats. So far, dark diversity has mainly been studied for specific habitats or large-scale landscapes, while less attention has been given to variation across broad environmental gradients or as a result of local conditions and biotic interactions. In this study, we investigate the importance of local environmental conditions in determining dark diversity and observed richness in plant communities across broad environmental gradients. Using the ecospace concept, we investigate how these biodiversity measures relate to abiotic gradients (defined as position), availability of biotic resources (defined as expansion), spatiotemporal extent of habitats (defined as continuity), and species interactions through competition. Position variables were important for both observed diversity and dark diversity, some with quadratic relationships, for example, plant richness showing a unimodal response to soil fertility corresponding to the intermediate productivity hypothesis. Interspecific competition represented by community mean Grime C had a negative effect on plant species richness. Besides position-related variables, organic carbon was the most important variable for dark diversity, indicating that in late-succession habitats such as forests and shrubs, dark diversity is generally low. The importance of highly competitive species indicates that intermediate disturbance, such as grazing, may facilitate higher species richness and lower dark diversity.
Collapse
Affiliation(s)
| | - Jose W. Valdez
- Department of Bioscience – KaløAarhus UniversityRøndeDenmark
| | - Lars Dalby
- Department of Bioscience – KaløAarhus UniversityRøndeDenmark
| | | | | | - Rasmus Ejrnæs
- Department of Bioscience – KaløAarhus UniversityRøndeDenmark
| | - Meelis Pärtel
- Department of BotanyInstitute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
| | | |
Collapse
|
86
|
DiBattista JD, Reimer JD, Stat M, Masucci GD, Biondi P, De Brauwer M, Wilkinson SP, Chariton AA, Bunce M. Environmental DNA can act as a biodiversity barometer of anthropogenic pressures in coastal ecosystems. Sci Rep 2020; 10:8365. [PMID: 32433472 PMCID: PMC7239923 DOI: 10.1038/s41598-020-64858-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 04/23/2020] [Indexed: 01/29/2023] Open
Abstract
Loss of biodiversity from lower to upper trophic levels reduces overall productivity and stability of coastal ecosystems in our oceans, but rarely are these changes documented across both time and space. The characterisation of environmental DNA (eDNA) from sediment and seawater using metabarcoding offers a powerful molecular lens to observe marine biota and provides a series of ‘snapshots’ across a broad spectrum of eukaryotic organisms. Using these next-generation tools and downstream analytical innovations including machine learning sequence assignment algorithms and co-occurrence network analyses, we examined how anthropogenic pressures may have impacted marine biodiversity on subtropical coral reefs in Okinawa, Japan. Based on 18 S ribosomal RNA, but not ITS2 sequence data due to inconsistent amplification for this marker, as well as proxies for anthropogenic disturbance, we show that eukaryotic richness at the family level significantly increases with medium and high levels of disturbance. This change in richness coincides with compositional changes, a decrease in connectedness among taxa, an increase in fragmentation of taxon co-occurrence networks, and a shift in indicator taxa. Taken together, these findings demonstrate the ability of eDNA to act as a barometer of disturbance and provide an exemplar of how biotic networks and coral reefs may be impacted by anthropogenic activities.
Collapse
Affiliation(s)
- Joseph D DiBattista
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Perth, WA, 6102, Australia. .,Australian Museum Research Institute, Australian Museum, 1 William St, Sydney, NSW, 2010, Australia.
| | - James D Reimer
- Molecular Invertebrate and Systematics Ecology Laboratory, Graduate School of Engineering and Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan.,Tropical Biosphere Research Center, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan
| | - Michael Stat
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Perth, WA, 6102, Australia.,School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Giovanni D Masucci
- Molecular Invertebrate and Systematics Ecology Laboratory, Graduate School of Engineering and Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan
| | - Piera Biondi
- Molecular Invertebrate and Systematics Ecology Laboratory, Graduate School of Engineering and Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan
| | - Maarten De Brauwer
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Perth, WA, 6102, Australia.,School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Shaun P Wilkinson
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand
| | - Anthony A Chariton
- Department of Biological Sciences, Macquarie University, North Ryde, 2113, Australia
| | - Michael Bunce
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Perth, WA, 6102, Australia.,Environmental Protection Authority, 215 Lambton Quay, Wellington, 6011, New Zealand
| |
Collapse
|
87
|
An environmental DNA tool for monitoring the status of the Critically Endangered Smalltooth Sawfish, Pristis pectinata, in the western Atlantic. CONSERV GENET RESOUR 2020. [DOI: 10.1007/s12686-020-01149-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
88
|
Limmon G, Delrieu-Trottin E, Patikawa J, Rijoly F, Dahruddin H, Busson F, Steinke D, Hubert N. Assessing species diversity of Coral Triangle artisanal fisheries: A DNA barcode reference library for the shore fishes retailed at Ambon harbor (Indonesia). Ecol Evol 2020; 10:3356-3366. [PMID: 32273993 PMCID: PMC7141007 DOI: 10.1002/ece3.6128] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/30/2020] [Accepted: 02/03/2020] [Indexed: 01/01/2023] Open
Abstract
The Coral Triangle (CT), a region spanning across Indonesia and Philippines, is home to about 4,350 marine fish species and is among the world's most emblematic regions in terms of conservation. Threatened by overfishing and oceans warming, the CT fisheries have faced drastic declines over the last decades. Usually monitored through a biomass-based approach, fisheries trends have rarely been characterized at the species level due to the high number of taxa involved and the difficulty to accurately and routinely identify individuals to the species level. Biomass, however, is a poor proxy of species richness, and automated methods of species identification are required to move beyond biomass-based approaches. Recent meta-analyses have demonstrated that species richness peaks at intermediary levels of biomass. Consequently, preserving biomass is not equal to preserving biodiversity. We present the results of a survey to estimate the shore fish diversity retailed at the harbor of Ambon Island, an island located at the center of the CT that display exceptionally high biomass despite high levels of threat, while building a DNA barcode reference library of CT shore fishes targeted by artisanal fisheries. We sampled 1,187 specimens and successfully barcoded 696 of the 760 selected specimens that represent 202 species. Our results show that DNA barcodes were effective in capturing species boundaries for 96% of the species examined, which opens new perspectives for the routine monitoring of the CT fisheries.
Collapse
Affiliation(s)
- Gino Limmon
- Pusat Kemaritiman dan Kelautan Universitas Pattimura (Maritime and Marine Science Center of Excellence) Ambon Indonesia
| | - Erwan Delrieu-Trottin
- Institut de Recherche pour le Développement UMR 226 ISEM (UM-CNRS-IRD-EPHE) Montpellier France
- Museum für Naturkunde Leibniz-Institut für Evolutions-und Biodiversitätsforschung an der Humboldt-Universität zu Berlin Berlin Germany
| | - Jesaya Patikawa
- Pusat Kemaritiman dan Kelautan Universitas Pattimura (Maritime and Marine Science Center of Excellence) Ambon Indonesia
| | - Frederik Rijoly
- Pusat Kemaritiman dan Kelautan Universitas Pattimura (Maritime and Marine Science Center of Excellence) Ambon Indonesia
| | - Hadi Dahruddin
- Division of Zoology Research Center for Biology Indonesian Institute of Sciences (LIPI) Cibinong Indonesia
| | - Frédéric Busson
- Institut de Recherche pour le Développement UMR 226 ISEM (UM-CNRS-IRD-EPHE) Montpellier France
- UMR 7208 BOREA (MNHN-CNRS-UPMC-IRD-UCBN) Muséum National d'Histoire Naturelle Paris France
| | - Dirk Steinke
- Department of Integrative Biology Centre for Biodiversity Genomics University of Guelph Guelph ON Canada
| | - Nicolas Hubert
- Institut de Recherche pour le Développement UMR 226 ISEM (UM-CNRS-IRD-EPHE) Montpellier France
| |
Collapse
|
89
|
Huerlimann R, Cooper MK, Edmunds RC, Villacorta‐Rath C, Le Port A, Robson HLA, Strugnell JM, Burrows D, Jerry DR. Enhancing tropical conservation and ecology research with aquatic environmental DNA methods: an introduction for non‐environmental DNA specialists. Anim Conserv 2020. [DOI: 10.1111/acv.12583] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- R. Huerlimann
- Centre for Sustainable Tropical Fisheries and Aquaculture College of Science and Engineering James Cook University Townsville QLD Australia
- Centre for Tropical Bioinformatics and Molecular Biology James Cook University Townsville QLD Australia
| | - M. K. Cooper
- Centre for Sustainable Tropical Fisheries and Aquaculture College of Science and Engineering James Cook University Townsville QLD Australia
- Centre for Tropical Bioinformatics and Molecular Biology James Cook University Townsville QLD Australia
| | - R. C. Edmunds
- Centre for Tropical Water and Aquatic Ecosystem Research (TropWATER) James Cook University Townsville QLD Australia
| | - C. Villacorta‐Rath
- Centre for Tropical Bioinformatics and Molecular Biology James Cook University Townsville QLD Australia
- Centre for Tropical Water and Aquatic Ecosystem Research (TropWATER) James Cook University Townsville QLD Australia
| | - A. Le Port
- Centre for Sustainable Tropical Fisheries and Aquaculture College of Science and Engineering James Cook University Townsville QLD Australia
| | - H. L. A. Robson
- Centre for Sustainable Tropical Fisheries and Aquaculture College of Science and Engineering James Cook University Townsville QLD Australia
| | - J. M. Strugnell
- Centre for Sustainable Tropical Fisheries and Aquaculture College of Science and Engineering James Cook University Townsville QLD Australia
- Centre for Tropical Bioinformatics and Molecular Biology James Cook University Townsville QLD Australia
| | - D. Burrows
- Centre for Tropical Water and Aquatic Ecosystem Research (TropWATER) James Cook University Townsville QLD Australia
| | - D. R. Jerry
- Centre for Sustainable Tropical Fisheries and Aquaculture College of Science and Engineering James Cook University Townsville QLD Australia
- Tropical Futures Institute James Cook University Singapore Singapore
| |
Collapse
|
90
|
Shea BD, Benson CW, de Silva C, Donovan D, Romeiro J, Bond ME, Creel S, Gallagher AJ. Effects of exposure to large sharks on the abundance and behavior of mobile prey fishes along a temperate coastal gradient. PLoS One 2020; 15:e0230308. [PMID: 32176723 PMCID: PMC7075566 DOI: 10.1371/journal.pone.0230308] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/26/2020] [Indexed: 12/23/2022] Open
Abstract
Top predators can exert strong influences on community structure and function, both via direct, consumptive effects, as well as through non-consumptive, fear-based effects (i.e. predation risk). However, these effects are challenging to quantify, particularly for mobile predators in marine ecosystems. To advance this field of research, here we used baited remote underwater video stations (BRUVs) to assess how the behavior of mobile fish species off Cape Cod, Massachusetts, was affected by exposure to large sharks. We categorized sites into three levels of differential shark predation exposure (white sharks, Carcharodon carcharias) and quantified the relative abundance and arrival times (elapsed time before appearing on screen) for six mobile fish prey groups to the BRUV stations. Increased large shark exposure was associated with a decrease in overall prey abundance, but the overall response was prey group-specific. Foraging of smooth dogfish, a likely important prey item for large sharks in the system, was significantly reduced in areas frequented by white sharks. Specifically, the predicted probabilities of smooth dogfish bait contacts or bite attempts occurring were reduced by factors of 5.7 and 8.4, respectively, in areas of high exposure as compared to low exposure. These modifications were underscored by a decrease in smooth dogfish abundance in areas of high exposure as well. Our results suggest that populations of large, roving sharks may induce food-related costs in prey. We discuss the implications of this work within the context of the control of risk (COR) hypothesis, for the purposes of advancing our understanding of the ecological role and effects of large sharks on coastal marine ecosystems.
Collapse
Affiliation(s)
- Brendan D. Shea
- Beneath the Waves, Herndon, Virginia, United States of America
- Three Seas Program, Northeastern University, Nahant, Massachusetts, United States of America
| | - Connor W. Benson
- Beneath the Waves, Herndon, Virginia, United States of America
- Three Seas Program, Northeastern University, Nahant, Massachusetts, United States of America
| | | | - Don Donovan
- Beneath the Waves, Herndon, Virginia, United States of America
- Thayer Academy, Braintree, Massachusetts, United States of America
| | - Joe Romeiro
- 333 Studios, Exeter, Rhode Island, United States of America
| | - Mark E. Bond
- Florida International University, North Miami, Florida, United States of America
| | - Scott Creel
- Department of Ecology, Montana State University, Bozeman, Montana, United States of America
| | - Austin J. Gallagher
- Beneath the Waves, Herndon, Virginia, United States of America
- Department of Marine and Environmental Sciences, Marine Science Center, Northeastern University, Nahant, Massachusetts, United States of America
| |
Collapse
|
91
|
West KM, Stat M, Harvey ES, Skepper CL, DiBattista JD, Richards ZT, Travers MJ, Newman SJ, Bunce M. eDNA metabarcoding survey reveals fine-scale coral reef community variation across a remote, tropical island ecosystem. Mol Ecol 2020; 29:1069-1086. [PMID: 32045076 DOI: 10.1111/mec.15382] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 01/30/2020] [Accepted: 02/06/2020] [Indexed: 01/10/2023]
Abstract
Environmental DNA (eDNA) metabarcoding, a technique for retrieving multispecies DNA from environmental samples, can detect a diverse array of marine species from filtered seawater samples. There is a growing potential to integrate eDNA alongside existing monitoring methods in order to establish or improve the assessment of species diversity. Remote island reefs are increasingly vulnerable to climate-related threats and as such there is a pressing need for cost-effective whole-ecosystem surveying to baseline biodiversity, study assemblage changes and ultimately develop sustainable management plans. We investigated the utility of eDNA metabarcoding as a high-resolution, multitrophic biomonitoring tool at the Cocos (Keeling) Islands, Australia (CKI)-a remote tropical coral reef atoll situated within the eastern Indian Ocean. Metabarcoding assays targeting the mitochondrial 16S rRNA and CO1 genes, as well as the 18S rRNA nuclear gene, were applied to 252 surface seawater samples collected from 42 sites within a 140 km2 area. Our assays successfully detected a wide range of bony fish and elasmobranchs (244 taxa), crustaceans (88), molluscs (37) and echinoderms (7). Assemblage composition varied significantly between sites, reflecting habitat partitioning across the island ecosystem and demonstrating the localisation of eDNA signals, despite extensive tidal and oceanic movements. In addition, we document putative new occurrence records for 46 taxa and compare the efficiency of our eDNA approach to visual survey techniques at CKI. Our study demonstrates the utility of a multimarker metabarcoding approach in capturing multitrophic biodiversity across an entire coral reef atoll and sets an important baseline for ongoing monitoring and management.
Collapse
Affiliation(s)
- Katrina M West
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| | - Michael Stat
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia.,School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| | - Euan S Harvey
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| | - Craig L Skepper
- Western Australian Fisheries and Marine Research Laboratories, Department of Primary Industries and Regional Development, Government of Western Australia, North Beach, WA, Australia
| | - Joseph D DiBattista
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia.,Australian Museum Research Institute, Australian Museum, Sydney, NSW, Australia
| | - Zoe T Richards
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| | - Michael J Travers
- Western Australian Fisheries and Marine Research Laboratories, Department of Primary Industries and Regional Development, Government of Western Australia, North Beach, WA, Australia
| | - Stephen J Newman
- Western Australian Fisheries and Marine Research Laboratories, Department of Primary Industries and Regional Development, Government of Western Australia, North Beach, WA, Australia
| | - Michael Bunce
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia.,Environmental Protection Authority, Wellington, New Zealand
| |
Collapse
|
92
|
Eble JA, Daly-Engel TS, DiBattista JD, Koziol A, Gaither MR. Marine environmental DNA: Approaches, applications, and opportunities. ADVANCES IN MARINE BIOLOGY 2020; 86:141-169. [PMID: 32600544 DOI: 10.1016/bs.amb.2020.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Environmental DNA (eDNA) is increasingly being used to document species distributions and habitat use in marine systems, with much of the recent effort focused on leveraging advances in next-generation DNA sequencing to assess and track biodiversity across taxonomic groups. Environmental DNA offers a number of important advantages over traditional survey techniques, including non-invasive sampling, sampling where traditional approaches are impractical or inefficient (e.g. deep oceans), reduced cost, and increased detection sensitivity. However, eDNA applications are currently limited because of an insufficient understanding of the influence of sample source, analytical approach, and marker type on eDNA detections. Because approaches vary considerably among eDNA studies, we present a summary of the current state of the field and emerging best practices. The impact of observed variation in rates of eDNA production, persistence, and transport are also discussed and future research needs are highlighted with the goal of expanding eDNA applications, including the development of statistical models to improve the predictability of eDNA detection and quantification.
Collapse
Affiliation(s)
- Jeff A Eble
- Ocean Engineering and Marine Sciences, Florida Institute of Technology, Melbourne, FL, United States.
| | - Toby S Daly-Engel
- Ocean Engineering and Marine Sciences, Florida Institute of Technology, Melbourne, FL, United States
| | - Joseph D DiBattista
- Australian Museum Research Institute, Australian Museum, Sydney, NSW, Australia; School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| | - Adam Koziol
- Evolutionary Genomics, GLOBE institute, University of Copenhagen, Copenhagen, Denmark
| | - Michelle R Gaither
- Genomics and Bioinformatics Cluster, Department of Biology, University of Central Florida, Orlando, FL, United States
| |
Collapse
|
93
|
|
94
|
|
95
|
Xiong W, Huang X, Chen Y, Fu R, Du X, Chen X, Zhan A. Zooplankton biodiversity monitoring in polluted freshwater ecosystems: A technical review. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2019; 1:100008. [PMCID: PMC9488063 DOI: 10.1016/j.ese.2019.100008] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/16/2019] [Accepted: 12/20/2019] [Indexed: 05/26/2023]
Abstract
Freshwater ecosystems harbor a vast diversity of micro-eukaryotes (rotifers, crustaceans and protists), and such diverse taxonomic groups play important roles in ecosystem functioning and services. Unfortunately, freshwater ecosystems and biodiversity therein are threatened by many environmental stressors, particularly those derived from intensive human activities such as chemical pollution. In the past several decades, significant efforts have been devoted to halting biodiversity loss to recover services and functioning of freshwater ecosystems. Biodiversity monitoring is the first and a crucial step towards diagnosing pollution impacts on ecosystems and making conservation plans. Yet, bio-monitoring of ubiquitous micro-eukaryotes is extremely challenging, owing to many technical issues associated with micro-zooplankton such as microscopic size, fuzzy morphological features, and extremely high biodiversity. Here, we review current methods used for monitoring zooplankton biodiversity to advance management of impaired freshwater ecosystems. We discuss the development of traditional morphology-based identification methods such as scanning electron microscope (SEM) and ZOOSCAN and FlowCAM automatic systems, and DNA-based strategies such as metabarcoding and real-time quantitative PCR. In addition, we summarize advantages and disadvantages of these methods when applied for monitoring impacted ecosystems, and we propose practical DNA-based monitoring workflows for studying biological consequences of environmental pollution in freshwater ecosystems. Finally, we propose possible solutions for existing technical issues to improve accuracy and efficiency of DNA-based biodiversity monitoring. Freshwater ecosystems and associated biodiversity have been highly degraded. Biodiversity monitoring is crucial for diagnosing degradation degrees. Here we review available methods for monitoring zooplankton biodiversity. We propose possible solutions for existing technical issues.
Collapse
Affiliation(s)
- Wei Xiong
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China
| | - Xuena Huang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China
| | - Yiyong Chen
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China
| | - Ruiying Fu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China
| | - Xun Du
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China
| | - Xingyu Chen
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China
- College of Resources, Environment and Tourism, Capital Normal University, 105 West Third Ring Road, Haidian District, Beijing, 100048, China
| | - Aibin Zhan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, China
| |
Collapse
|
96
|
Pierce MP. Filling in the Gaps: Adopting Ultraconserved Elements Alongside COI to Strengthen Metabarcoding Studies. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
97
|
Bakker J, Wangensteen OS, Baillie C, Buddo D, Chapman DD, Gallagher AJ, Guttridge TL, Hertler H, Mariani S. Biodiversity assessment of tropical shelf eukaryotic communities via pelagic eDNA metabarcoding. Ecol Evol 2019; 9:14341-14355. [PMID: 31938523 PMCID: PMC6953649 DOI: 10.1002/ece3.5871] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 10/31/2019] [Accepted: 11/03/2019] [Indexed: 01/12/2023] Open
Abstract
Our understanding of marine communities and their functions in an ecosystem relies on the ability to detect and monitor species distributions and abundances. Currently, the use of environmental DNA (eDNA) metabarcoding is increasingly being applied for the rapid assessment and monitoring of aquatic species. Most eDNA metabarcoding studies have either focussed on the simultaneous identification of a few specific taxa/groups or have been limited in geographical scope. Here, we employed eDNA metabarcoding to compare beta diversity patterns of complex pelagic marine communities in tropical coastal shelf habitats spanning the whole Caribbean Sea. We screened 68 water samples using a universal eukaryotic COI barcode region and detected highly diverse communities, which varied significantly among locations, and proved good descriptors of habitat type and environmental conditions. Less than 15% of eukaryotic taxa were assigned to metazoans, most DNA sequences belonged to a variety of planktonic "protists," with over 50% of taxa unassigned at the phylum level, suggesting that the sampled communities host an astonishing amount of micro-eukaryotic diversity yet undescribed or absent from COI reference databases. Although such a predominance of micro-eukaryotes severely reduces the efficiency of universal COI markers to investigate vertebrate and other metazoans from aqueous eDNA, the study contributes to the advancement of rapid biomonitoring methods and brings us closer to a full inventory of extant marine biodiversity.
Collapse
Affiliation(s)
- Judith Bakker
- Department of Biological Sciences Florida International University Miami FL USA
- School of Engineering & Environment University of Salford Salford UK
| | - Owen S Wangensteen
- Norwegian College of Fishery Science UiT The Arctic University of Norway Tromsø Norway
| | - Charles Baillie
- School of Engineering & Environment University of Salford Salford UK
| | - Dayne Buddo
- Discovery Bay Marine Laboratory and Field Station University of the West Indies St. Ann Jamaica
| | - Demian D Chapman
- Department of Biological Sciences Florida International University Miami FL USA
| | | | | | - Heidi Hertler
- The School for Field Studies Centre for Marine Resource Studies South Caicos Turks and Caicos Islands
| | - Stefano Mariani
- School of Engineering & Environment University of Salford Salford UK
| |
Collapse
|
98
|
Kumar G, Eble JE, Gaither MR. A practical guide to sample preservation and pre-PCR processing of aquatic environmental DNA. Mol Ecol Resour 2019; 20:29-39. [PMID: 31633859 DOI: 10.1111/1755-0998.13107] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 10/04/2019] [Accepted: 10/11/2019] [Indexed: 11/30/2022]
Abstract
Environmental DNA (eDNA) is rapidly growing in popularity as a tool for community assessments and species detection. While eDNA approaches are now widely applied, there is not yet agreement on best practices for sample collection and processing. Investigators looking to integrate eDNA approaches into their research programme are required to examine a growing collection of disparate studies to make an often uncertain decision about which protocols best fit their needs. To promote the application of eDNA approaches and to encourage the generation of high-quality data, here we review the most common techniques for the collection, preservation and extraction of metazoan eDNA from water samples. Specifically, we focus on experimental studies that compare various methods and outline the numerous challenges associated with eDNA. While the diverse applications of eDNA do not lend themselves to a one-size-fits-all recommendation, in most cases, capture/concentration of eDNA on cellulose nitrate filters (with pore size determined by water turbidity), followed by storage of filters in Longmire's buffer and extraction with a DNeasy Blood & Tissue Kit (or similar) has been shown to provide sufficient, high-quality DNA. However, we also emphasize the importance of testing and optimizing protocols for the system of interest.
Collapse
Affiliation(s)
- Girish Kumar
- Department of Biology, University of Central Florida, Genomics and Bioinformatics Cluster, Orlando, FL, USA
| | - Jeff E Eble
- Department of Ocean Engineering and Marine Sciences, Florida Institute of Technology, Melbourne, FL, USA
| | - Michelle R Gaither
- Department of Biology, University of Central Florida, Genomics and Bioinformatics Cluster, Orlando, FL, USA
| |
Collapse
|
99
|
Jo T, Arimoto M, Murakami H, Masuda R, Minamoto T. Particle Size Distribution of Environmental DNA from the Nuclei of Marine Fish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:9947-9956. [PMID: 31328917 DOI: 10.1021/acs.est.9b02833] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Environmental DNA (eDNA) analyses have enabled a more efficient surveillance of species distribution and composition than conventional methods. However, the characteristics and dynamics of eDNA (e.g., origin, state, transport, and fate) remain unknown. This is especially limited for the eDNA derived from nuclei (nu-eDNA), which has recently been used in eDNA analyses. Here, we compared the particle size distribution (PSD) of nu-eDNA from Japanese Jack Mackerel (Trachurus japonicus) with that of mt-eDNA (eDNA derived from mitochondria) reported in previous studies. We repeatedly sampled rearing water from the tanks under multiple temperatures and fish biomass levels, and quantified the copy numbers of size-fractioned nu-eDNA. We found that the concentration of nu-eDNA was higher than that of mt-eDNA at 3-10 μm size fraction. Moreover, at the 0.8-3 μm and 0.4-0.8 μm size fractions, eDNA concentrations of both types increased with higher temperature and their degradation tended to be suppressed. These results imply that the production of eDNA from large to small size fractions could buffer the degradation of small-sized eDNA, which could improve its persistence in water. Our findings will contribute to refine the difference between nu- and mt-eDNA properties, and assist eDNA analyses as an efficient tool for the conservation of aquatic species.
Collapse
Affiliation(s)
- Toshiaki Jo
- Graduate School of Human Development and Environment , Kobe University , 3-11 Tsurukabuto , Nada-ku, Kobe City , Hyogo 657-8501 , Japan
- Research Fellow of Japan Society for the Promotion of Science , 5-3-1 Kojimachi , Chiyoda-ku, Tokyo , 102-0083 , Japan
| | - Mio Arimoto
- Faculty of Human Development , Kobe University , 3-11 Tsurukabuto , Nada-ku, Kobe City , Hyogo 657-8501 , Japan
| | - Hiroaki Murakami
- Maizuru Fisheries Research Station, Field Science Education and Research Center , Kyoto University , Maizuru , Kyoto 625-0086 , Japan
| | - Reiji Masuda
- Maizuru Fisheries Research Station, Field Science Education and Research Center , Kyoto University , Maizuru , Kyoto 625-0086 , Japan
| | - Toshifumi Minamoto
- Graduate School of Human Development and Environment , Kobe University , 3-11 Tsurukabuto , Nada-ku, Kobe City , Hyogo 657-8501 , Japan
| |
Collapse
|
100
|
Mariani S, Baillie C, Colosimo G, Riesgo A. Sponges as natural environmental DNA samplers. Curr Biol 2019; 29:R401-R402. [DOI: 10.1016/j.cub.2019.04.031] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|