51
|
Zhao B, Zhuang J, Xu M, Liu T, Limpikirati P, Thayumanavan S, Vachet RW. Covalent Labeling with an α,β-Unsaturated Carbonyl Scaffold for Studying Protein Structure and Interactions by Mass Spectrometry. Anal Chem 2020; 92:6637-6644. [PMID: 32250591 PMCID: PMC7207043 DOI: 10.1021/acs.analchem.0c00463] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A new covalent labeling (CL) reagent based on an α,β-unsaturated carbonyl scaffold has been developed for studying protein structure and protein-protein interactions when coupled with mass spectrometry. We show that this new reagent scaffold can react with up to 13 different types of residues on protein surfaces, thereby providing excellent structural resolution. To illustrate the value of this reagent scaffold, it is used to identify the residues involved in the protein-protein interface that is formed upon Zn(II) binding to the protein β-2-microglobulin. The modular design of the α,β-unsaturated carbonyl scaffold allows facile variation of the functional groups, enabling labeling kinetics and selectivity to be tuned. Moreover, by introducing isotopically enriched functional groups into the reagent structure, labeling sites can be more easily identified by MS and MS/MS. Overall, this reagent scaffold should be a valuable CL reagent for protein higher order structure characterization by MS.
Collapse
Affiliation(s)
- Bo Zhao
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Jiaming Zhuang
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Miaowei Xu
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Tianying Liu
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | - S. Thayumanavan
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts 01003, USA
- Center for Bioactive Delivery – Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Richard W. Vachet
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts 01003, USA
- Center for Bioactive Delivery – Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, USA
| |
Collapse
|
52
|
Barolo L, Abbriano RM, Commault AS, George J, Kahlke T, Fabris M, Padula MP, Lopez A, Ralph PJ, Pernice M. Perspectives for Glyco-Engineering of Recombinant Biopharmaceuticals from Microalgae. Cells 2020; 9:E633. [PMID: 32151094 PMCID: PMC7140410 DOI: 10.3390/cells9030633] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 02/28/2020] [Accepted: 02/28/2020] [Indexed: 12/15/2022] Open
Abstract
Microalgae exhibit great potential for recombinant therapeutic protein production, due to lower production costs, immunity to human pathogens, and advanced genetic toolkits. However, a fundamental aspect to consider for recombinant biopharmaceutical production is the presence of correct post-translational modifications. Multiple recent studies focusing on glycosylation in microalgae have revealed unique species-specific patterns absent in humans. Glycosylation is particularly important for protein function and is directly responsible for recombinant biopharmaceutical immunogenicity. Therefore, it is necessary to fully characterise this key feature in microalgae before these organisms can be established as industrially relevant microbial biofactories. Here, we review the work done to date on production of recombinant biopharmaceuticals in microalgae, experimental and computational evidence for N- and O-glycosylation in diverse microalgal groups, established approaches for glyco-engineering, and perspectives for their application in microalgal systems. The insights from this review may be applied to future glyco-engineering attempts to humanize recombinant therapeutic proteins and to potentially obtain cheaper, fully functional biopharmaceuticals from microalgae.
Collapse
Affiliation(s)
- Lorenzo Barolo
- Climate Change Cluster, University of Technology Sydney, Broadway Campus, Ultimo NSW 2007, Sydney, Australia; (R.M.A.); (A.S.C.); (J.G.); (T.K.); (M.F.); (P.J.R.)
| | - Raffaela M. Abbriano
- Climate Change Cluster, University of Technology Sydney, Broadway Campus, Ultimo NSW 2007, Sydney, Australia; (R.M.A.); (A.S.C.); (J.G.); (T.K.); (M.F.); (P.J.R.)
| | - Audrey S. Commault
- Climate Change Cluster, University of Technology Sydney, Broadway Campus, Ultimo NSW 2007, Sydney, Australia; (R.M.A.); (A.S.C.); (J.G.); (T.K.); (M.F.); (P.J.R.)
| | - Jestin George
- Climate Change Cluster, University of Technology Sydney, Broadway Campus, Ultimo NSW 2007, Sydney, Australia; (R.M.A.); (A.S.C.); (J.G.); (T.K.); (M.F.); (P.J.R.)
| | - Tim Kahlke
- Climate Change Cluster, University of Technology Sydney, Broadway Campus, Ultimo NSW 2007, Sydney, Australia; (R.M.A.); (A.S.C.); (J.G.); (T.K.); (M.F.); (P.J.R.)
| | - Michele Fabris
- Climate Change Cluster, University of Technology Sydney, Broadway Campus, Ultimo NSW 2007, Sydney, Australia; (R.M.A.); (A.S.C.); (J.G.); (T.K.); (M.F.); (P.J.R.)
- CSIRO Synthetic Biology Future Science Platform, Brisbane, QLD 4001, Australia
| | - Matthew P. Padula
- School of Life Sciences and Proteomics Core Facility, Faculty of Science, University of Technology Sydney, Ultimo NSW 2007, Sydney, Australia;
| | - Angelo Lopez
- Department of Chemistry, University of York, York, YO10 5DD, UK;
| | - Peter J. Ralph
- Climate Change Cluster, University of Technology Sydney, Broadway Campus, Ultimo NSW 2007, Sydney, Australia; (R.M.A.); (A.S.C.); (J.G.); (T.K.); (M.F.); (P.J.R.)
| | - Mathieu Pernice
- Climate Change Cluster, University of Technology Sydney, Broadway Campus, Ultimo NSW 2007, Sydney, Australia; (R.M.A.); (A.S.C.); (J.G.); (T.K.); (M.F.); (P.J.R.)
| |
Collapse
|
53
|
Zhou C, Schulz BL. Glycopeptide variable window SWATH for improved data independent acquisition glycoprotein analysis. Anal Biochem 2020; 597:113667. [PMID: 32119847 DOI: 10.1016/j.ab.2020.113667] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 01/06/2023]
Abstract
N-glycosylation plays an essential role in regulating protein folding and function in eukaryotic cells. Sequential window acquisition of all theoretical fragment ion spectra mass spectrometry (SWATH) has proven useful as a data independent acquisition (DIA) MS method for analysis of glycoproteins and their glycan modifications. By separating the entire m/z range into consecutive isolation windows, DIA-MS allows comprehensive MS data acquisition and high-sensitivity detection of molecules of interest. Variable width DIA windows allow optimal analyte measurement, as peptide ions are not evenly distributed across the full m/z range. However, the m/z distribution of glycopeptides is different to that of unmodified peptides because of their large glycan structures. Here, we improved the performance of DIA glycoproteomics by using variable width windows optimized for glycopeptides. This method allocates narrow windows at m/z ranges rich in glycopeptides, improving analytical specificity and performance. We show that related glycoforms must fall in separate windows to allow accurate glycopeptide measurement. We demonstrate the utility of the method by comparing the cell wall glycoproteomes of wild-type and N-glycan biosynthesis deficient yeast and showing improved measurement of glycopeptides with different glycan structures. Our results highlight the importance of appropriately optimized DIA methods for measurement of post-translationally modified peptides.
Collapse
Affiliation(s)
- Chun Zhou
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, 4072, Queensland, Australia
| | - Benjamin L Schulz
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, 4072, Queensland, Australia; Australian Infectious Disease Research Centre, The University of Queensland, St Lucia, 4072, Queensland, Australia; Centre for Biopharmaceutical Innovation, Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, St Lucia, 4072, Queensland, Australia.
| |
Collapse
|
54
|
Han J, Chen Q, Jin W, Zou M, Lu Y, Liu Y, Wang C, Wang Z, Huang L. Purification of N- and O-glycans and their derivatives from biological samples by the absorbent cotton hydrophilic chromatographic column. J Chromatogr A 2020; 1620:461001. [PMID: 32151415 DOI: 10.1016/j.chroma.2020.461001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/30/2020] [Accepted: 02/26/2020] [Indexed: 11/30/2022]
Abstract
Mass spectrum (MS) is one of the most commonly used tools for qualitative and quantitative analysis of glycans. However, due to the complexity of biological samples and the low ionization efficiency of glycans, these need to be purified and derivatized prior to MS analysis. Existing purification strategies require a combination of multiple methods and are cumbersome to operate. Here, we propose a new method for the purification of glycoprotein N/O-glycans and their derivatives using a hand-packed absorbent cotton hydrophilic interaction chromatography column (HILIC). The method's reliability and applicability were verified by purifying N/O-glycans and the derivatives of standard glycoproteins, such as chicken albumin and porcine stomach mucin. Stable isotope labelling was used to compare the glycans' recovery following different purification methods. Absorbent cotton HILIC was also successfully applied for the analysis of human serum and fetal bovine serum glycoprotein N-glycans. Finally, testing revealed high binding capacity (9 mg/g-1 maltohexaose/absorbent cotton) and good recovery (average recovery was 91.7%) of glycans. Compared with traditional procedures, the proposed purification method offers considerable advantages, such as simplicity, high efficiency, economy, universality, and broad applicability for the pretreatment of glycans and their derivatives in biological samples prior to MS analysis.
Collapse
Affiliation(s)
- Jianli Han
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Qinghui Chen
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Wanjun Jin
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Meiyi Zou
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Yu Lu
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Yuxia Liu
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Chengjian Wang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Zhongfu Wang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China; College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Linjuan Huang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| |
Collapse
|
55
|
Huang SP, Hsu HC, Liew CY, Tsai ST, Ni CK. Logically derived sequence tandem mass spectrometry for structural determination of Galactose oligosaccharides. Glycoconj J 2020; 38:177-189. [PMID: 32062823 DOI: 10.1007/s10719-020-09915-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/30/2019] [Accepted: 02/03/2020] [Indexed: 12/30/2022]
Abstract
Mass spectrometry has high sensitivity and is widely used in the identification of molecular structures, however, the structural determination of oligosaccharides through mass spectrometry is still challenging. A novel method, namely the logically derived sequence (LODES) tandem mass spectrometry (MSn), for the structural determination of underivatized oligosaccharides was developed. This method, which is based on the dissociation mechanisms, involves sequential low-energy collision-induced dissociation (CID) of sodium ion adducts, a logical sequence for identifying the structurally decisive product ions for subsequent CID, and a specially prepared disaccharide CID spectrum database. In this work, we reported the assignment of the specially prepared galactose disaccharide CID spectra. We used galactose trisaccharides and tetrasaccharides as examples to demonstrate LODES/MSn is a general method that can be used for the structural determination of hexose oligosaccharides. LODES/MSn has the potential to be extended to oligosaccharides containing other monosaccharides provided the dissociation mechanisms are understood and the corresponding disaccharide database is available.
Collapse
Affiliation(s)
- Shih-Pei Huang
- Institute of Atomic and Molecular Sciences, Academia Sinica, P. O. Box 23-166, Taipei, 10617, Taiwan
| | - Hsu Chen Hsu
- Institute of Atomic and Molecular Sciences, Academia Sinica, P. O. Box 23-166, Taipei, 10617, Taiwan
| | - Chia Yen Liew
- Institute of Atomic and Molecular Sciences, Academia Sinica, P. O. Box 23-166, Taipei, 10617, Taiwan.,Molecular Science and Technology, Taiwan International Graduate Program, Academia Sinica and National Taiwan University, Taipei, 10617, Taiwan
| | - Shang-Ting Tsai
- Institute of Atomic and Molecular Sciences, Academia Sinica, P. O. Box 23-166, Taipei, 10617, Taiwan
| | - Chi-Kung Ni
- Institute of Atomic and Molecular Sciences, Academia Sinica, P. O. Box 23-166, Taipei, 10617, Taiwan. .,Department of Chemistry, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| |
Collapse
|
56
|
Kijewska M, Nuti F, Wierzbicka M, Waliczek M, Ledwoń P, Staśkiewicz A, Real-Fernandez F, Sabatino G, Rovero P, Stefanowicz P, Szewczuk Z, Papini AM. An Optimised Di-Boronate-ChemMatrix Affinity Chromatography to Trap Deoxyfructosylated Peptides as Biomarkers of Glycation. Molecules 2020; 25:E755. [PMID: 32050527 PMCID: PMC7037614 DOI: 10.3390/molecules25030755] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/03/2020] [Accepted: 02/07/2020] [Indexed: 01/08/2023] Open
Abstract
We report herein a novel ChemMatrix® Rink resin functionalised with two phenylboronate (PhB) moieties linked on the N-α and N-ε amino functions of a lysine residue to specifically capture deoxyfructosylated peptides, compared to differently glycosylated peptides in complex mixtures. The new PhB-Lys(PhB)-ChemMatrix® Rink resin allows for exploitation of the previously demonstrated ability of cis diols to form phenylboronic esters. The optimised capturing and cleavage procedure from the novel functionalised resin showed that only the peptides containing deoxyfructosyl-lysine moieties can be efficiently and specifically detected by HR-MS and MS/MS experiments. We also investigated the high-selective affinity to deoxyfructosylated peptides in an ad hoc mixture containing unique synthetic non-modified peptides and in the hydrolysates of human and bovine serum albumin as complex peptide mixtures. We demonstrated that the deoxyfructopyranosyl moiety on lysine residues is crucial in the capturing reaction. Therefore, the novel specifically-designed PhB-Lys(PhB)-ChemMatrix® Rink resin, which has the highest affinity to deoxyfructosylated peptides, is a candidate to quantitatively separate early glycation peptides from complex mixtures to investigate their role in diabetes complications in the clinics.
Collapse
Affiliation(s)
- Monika Kijewska
- Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland; (M.W.); (M.W.); (P.L.); (A.S.); (P.S.); (Z.S.)
| | - Francesca Nuti
- Laboratory of Peptide and Protein Chemistry and Biology, Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, Italy; (F.N.); (F.R.-F.); (G.S.)
| | - Magdalena Wierzbicka
- Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland; (M.W.); (M.W.); (P.L.); (A.S.); (P.S.); (Z.S.)
| | - Mateusz Waliczek
- Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland; (M.W.); (M.W.); (P.L.); (A.S.); (P.S.); (Z.S.)
| | - Patrycja Ledwoń
- Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland; (M.W.); (M.W.); (P.L.); (A.S.); (P.S.); (Z.S.)
- Laboratory of Peptide and Protein Chemistry and Biology, Department of Neurosciences, Psychology, Drug Research and Child Health—Section of Pharmaceutical Sciences and Nutraceutics, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy;
| | - Agnieszka Staśkiewicz
- Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland; (M.W.); (M.W.); (P.L.); (A.S.); (P.S.); (Z.S.)
- Laboratory of Peptide and Protein Chemistry and Biology, Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, Italy; (F.N.); (F.R.-F.); (G.S.)
| | - Feliciana Real-Fernandez
- Laboratory of Peptide and Protein Chemistry and Biology, Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, Italy; (F.N.); (F.R.-F.); (G.S.)
- Laboratory of Peptide and Protein Chemistry and Biology, Department of Neurosciences, Psychology, Drug Research and Child Health—Section of Pharmaceutical Sciences and Nutraceutics, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy;
| | - Giuseppina Sabatino
- Laboratory of Peptide and Protein Chemistry and Biology, Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, Italy; (F.N.); (F.R.-F.); (G.S.)
- CNR-IC Istituto di Cristallografia, Via Paolo Gaifami 18, 95126 Catania, Italy
| | - Paolo Rovero
- Laboratory of Peptide and Protein Chemistry and Biology, Department of Neurosciences, Psychology, Drug Research and Child Health—Section of Pharmaceutical Sciences and Nutraceutics, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy;
| | - Piotr Stefanowicz
- Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland; (M.W.); (M.W.); (P.L.); (A.S.); (P.S.); (Z.S.)
| | - Zbigniew Szewczuk
- Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland; (M.W.); (M.W.); (P.L.); (A.S.); (P.S.); (Z.S.)
| | - Anna Maria Papini
- Laboratory of Peptide and Protein Chemistry and Biology, Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, Italy; (F.N.); (F.R.-F.); (G.S.)
- PeptLab@UCP and Laboratory of Chemical Biology EA4505, CY Cergy Paris University, 5 Mail Gay-Lussac, 95031 Cergy-Pontoise, France
| |
Collapse
|
57
|
Sit HY, Yang B, Ka-Yan Kung K, Siu-Lun Tam J, Wong MK. Fluorescent Labelling of Glycans with FRET-Based Probes in a Gold(III)-Mediated Three-Component Coupling Reaction. Chempluschem 2020; 84:1739-1743. [PMID: 31943869 DOI: 10.1002/cplu.201900612] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Indexed: 01/18/2023]
Abstract
Single-site multifunctionalization of glycans is of importance in biological studies considering its crucial role in mediating biological events and human diseases. In this paper, a novel approach for multifunctional labelling of glycans has been developed featuring the use of fluorescence resonance energy transfer-based (FRET-based) probes for fluorescent labelling of glycans through a gold(III)-mediated three-component coupling reaction. Oxidation of glycans into aldehydes followed by the A3 -coupling reaction with FRET-based probes resulted in the single-site formation of fluorescent propargylamine products. The conversion of labelled glycans can be revealed by ratiometric analysis of the FRET signals. This labelling approach results in multifunctionalization of glycans with high selectivity and conversion between 66 and 69 %.
Collapse
Affiliation(s)
- Hoi-Yi Sit
- The Hong Kong Polytechnic University, Shenzhen Research Institute, Shenzhen, P. R. China.,State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China
| | - Bin Yang
- The Hong Kong Polytechnic University, Shenzhen Research Institute, Shenzhen, P. R. China.,State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China
| | - Karen Ka-Yan Kung
- The Hong Kong Polytechnic University, Shenzhen Research Institute, Shenzhen, P. R. China.,State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China
| | - John Siu-Lun Tam
- The Hong Kong Polytechnic University, Shenzhen Research Institute, Shenzhen, P. R. China.,State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China
| | - Man-Kin Wong
- The Hong Kong Polytechnic University, Shenzhen Research Institute, Shenzhen, P. R. China.,State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China
| |
Collapse
|
58
|
Structural characterization and antioxidant activity of a glycoprotein isolated from Camellia oleifera Abel seeds against D-galactose-induced oxidative stress in mice. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103594] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
59
|
Zhou Y, Xu Y, Zhang C, Emmer Å, Zheng H. Amino Acid-Functionalized Two-Dimensional Hollow Cobalt Sulfide Nanoleaves for the Highly Selective Enrichment of N-Linked Glycopeptides. Anal Chem 2019; 92:2151-2158. [DOI: 10.1021/acs.analchem.9b04740] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yuye Zhou
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry, Division of Applied Physical Chemistry, Analytical Chemistry, Stockholm SE−100 44, Sweden
| | - Yang Xu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Chaochao Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Åsa Emmer
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry, Division of Applied Physical Chemistry, Analytical Chemistry, Stockholm SE−100 44, Sweden
| | - Haoquan Zheng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| |
Collapse
|
60
|
Zhang L, Yue X, Li N, Shi H, Zhang J, Zhang Z, Dang F. One-step maltose-functionalization of magnetic nanoparticles based on self-assembled oligopeptides for selective enrichment of glycopeptides. Anal Chim Acta 2019; 1088:63-71. [DOI: 10.1016/j.aca.2019.08.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/14/2019] [Accepted: 08/19/2019] [Indexed: 01/19/2023]
|
61
|
Qin H, Dong X, Mao J, Chen Y, Dong M, Wang L, Guo Z, Liang X, Ye M. Highly Efficient Analysis of Glycoprotein Sialylation in Human Serum by Simultaneous Quantification of Glycosites and Site-Specific Glycoforms. J Proteome Res 2019; 18:3439-3446. [PMID: 31380653 DOI: 10.1021/acs.jproteome.9b00332] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Aberrant sialylation of glycoproteins is closely related to many malignant diseases, and analysis of sialylation has great potential to reveal the status of these diseases. However, in-depth analysis of sialylation is still challenging because of the high microheterogeneity of protein glycosylation, as well as the low abundance of sialylated glycopeptides (SGPs). Herein, an integrated strategy was fabricated for the detailed characterization of glycoprotein sialylation on the levels of glycosites and site-specific glycoforms by employing the SGP enrichment method. This strategy enabled the identification of up to 380 glycosites, as well as 414 intact glycopeptides corresponding to 383 site-specific glycoforms from only initial 6 μL serum samples, indicating the high sensitivity of the method for the detailed analysis of glycoprotein sialylation. This strategy was further employed to the differential analysis of glycoprotein sialylation between hepatocellular carcinoma patients and control samples, leading to the quantification of 344 glycosites and 405 site-specific glycoforms, simultaneously. Among these, 43 glycosites and 55 site-specific glycoforms were found to have significant change on the glycosite and site-specific glycoform levels, respectively. Interestingly, several glycoforms attached onto the same glycosite were found with different change tendencies. This strategy was demonstrated to be a powerful tool to reveal subtle differences of the macro- and microheterogeneity of glycoprotein sialylation.
Collapse
Affiliation(s)
- Hongqiang Qin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian 116023 , P. R. China
| | - Xuefang Dong
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian 116023 , P. R. China
| | - Jiawei Mao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian 116023 , P. R. China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yao Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian 116023 , P. R. China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Mingming Dong
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian 116023 , P. R. China
| | - Liming Wang
- The Second Affiliated Hospital of Dalian Medical University , Dalian 116027 , China
| | - Zhimou Guo
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian 116023 , P. R. China
| | - Xinmiao Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian 116023 , P. R. China
| | - Mingliang Ye
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian 116023 , P. R. China
| |
Collapse
|
62
|
Lee C, Ni CK. Soft Matrix-Assisted Laser Desorption/Ionization for Labile Glycoconjugates. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1455-1463. [PMID: 30993639 DOI: 10.1007/s13361-019-02208-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/24/2019] [Accepted: 03/25/2019] [Indexed: 06/09/2023]
Abstract
Since its introduction, matrix-assisted laser desorption/ionization (MALDI) has been widely used for the mass analysis of biomolecules. The "soft ionization" of MALDI enables accurate mass determination of intact biomolecules. However, the ionization and desorption processes of MALDI are not adequately soft as many labile biomolecules, such as glycoconjugates containing sialic acid or the sulfate functional group, easily dissociate into fragments and sometimes, no intact molecules are observed. In this study, we compared the conventional matrix of MALDI, namely 2,5-dihydroxybenzoic acid, to various soft matrices of MALDI-specifically, 5-methoxysalicylic acid, diamond nanoparticle trilayers, HgTe nanostructures, ionic liquid, and droplets of frozen solutions-by using three labile glycoconjugates as analytes: gangliosides, heparin, and pullulan. We demonstrated that droplets of frozen solution are the softest matrices for gangliosides and heparin. In particular, droplets of frozen solution do not generate fragments for gangliosides and can be used to determine the relative abundance of various gangliosides, whereas ionic liquid 2,5-dihydroxybenzoic acid butylamine is the most suitable matrix for pullulan mass analysis. Graphical Abstract.
Collapse
Affiliation(s)
- Chuping Lee
- Institute of Atomic and Molecular Sciences, Academia Sinica, P. O. Box 23-166, Taipei, 10617, Taiwan
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | - Chi-Kung Ni
- Institute of Atomic and Molecular Sciences, Academia Sinica, P. O. Box 23-166, Taipei, 10617, Taiwan.
- Department of Chemistry, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| |
Collapse
|
63
|
Tsai S, Liew CY, Hsu C, Huang S, Weng W, Kuo Y, Ni C. Automatic Full Glycan Structural Determination through Logically Derived Sequence Tandem Mass Spectrometry. Chembiochem 2019; 20:2351-2359. [DOI: 10.1002/cbic.201900228] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Shang‐Ting Tsai
- Institute of Atomic and Molecular SciencesAcademia Sinica P. O. Box 23-166 Taipei 10617 Taiwan
| | - Chia Yen Liew
- Institute of Atomic and Molecular SciencesAcademia Sinica P. O. Box 23-166 Taipei 10617 Taiwan
- Molecular Science and Technology International Graduate ProgramAcademia Sinica and National University Taipei 10617 Taiwan
| | - Chen Hsu
- Institute of Atomic and Molecular SciencesAcademia Sinica P. O. Box 23-166 Taipei 10617 Taiwan
| | - Shih‐Pei Huang
- Institute of Atomic and Molecular SciencesAcademia Sinica P. O. Box 23-166 Taipei 10617 Taiwan
| | - Wei‐Chien Weng
- Institute of Atomic and Molecular SciencesAcademia Sinica P. O. Box 23-166 Taipei 10617 Taiwan
| | - Yu‐Hsiang Kuo
- Institute of Atomic and Molecular SciencesAcademia Sinica P. O. Box 23-166 Taipei 10617 Taiwan
| | - Chi‐Kung Ni
- Institute of Atomic and Molecular SciencesAcademia Sinica P. O. Box 23-166 Taipei 10617 Taiwan
- Department of ChemistryNational Tsing Hua University Hsinchu 30013 Taiwan
| |
Collapse
|
64
|
Felz S, Vermeulen P, van Loosdrecht MCM, Lin YM. Chemical characterization methods for the analysis of structural extracellular polymeric substances (EPS). WATER RESEARCH 2019; 157:201-208. [PMID: 30953855 DOI: 10.1016/j.watres.2019.03.068] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 03/04/2019] [Accepted: 03/06/2019] [Indexed: 05/23/2023]
Abstract
Biofilm structure and functionality depend on extracellular polymeric substances (EPS), but analytical methods for EPS often lack specificity which limits progress of biofilm research. EPS were extracted from aerobic granular sludge and analyzed with frequently applied colorimetric methods. The colorimetric methods were evaluated based on their applicability for EPS analysis. EPS fractions of interest were proteins, sugars, uronic acids and phenolic compounds. The applied methods (Lowry method, bicinchoninic acid assay, phenol sulfuric acid method, carbazole sulfuric acid method) were investigated in terms of their sensitivity towards the selected standard compound. Interference of compounds present in EPS with the colorimetric methods was further evaluated. All methods showed to be highly depending on the choice of standard compound and susceptible towards interference by compounds present in EPS. This study shows that currently used colorimetric methods are not capable of accurately characterizing EPS. More advanced methods are needed to be able to draw conclusions about biofilm composition, structure and functionality.
Collapse
Affiliation(s)
- Simon Felz
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands.
| | - Pascalle Vermeulen
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Mark C M van Loosdrecht
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Yue Mei Lin
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
| |
Collapse
|
65
|
Mastrangeli R, Palinsky W, Bierau H. Glycoengineered antibodies: towards the next-generation of immunotherapeutics. Glycobiology 2019; 29:199-210. [PMID: 30289453 DOI: 10.1093/glycob/cwy092] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/23/2018] [Accepted: 10/04/2018] [Indexed: 12/31/2022] Open
Abstract
Monoclonal antibodies (mAbs) are currently the largest and fastest growing class of biopharmaceuticals, and they address unmet medical needs, e.g., in oncology and in auto-immune diseases. Their clinical efficacy and safety is significantly affected by the structure and composition of their glycosylation profile which is commonly heterogeneous, heavily dependent on the manufacturing process, and thus susceptible to variations in the cell culture conditions. Glycosylation is therefore considered a critical quality attribute for mAbs. Commonly, in currently marketed therapeutic mAbs, the glycosylation profile is suboptimal in terms of biological properties such as antibody-dependent cell-mediated cytotoxicity or may give rise to safety concerns due to the presence of non-human glycans. This article will review recent innovative developments in chemo-enzymatic glycoengineering, which allow generating mAbs carrying single, well-defined, uniform Fc glycoforms, which confers the desired biological properties for the target application. This approach offers significant benefits such as enhanced Fc effector functions, improved safety profiles, higher batch-to-batch consistency, decreased risks related to immunogenicity and manufacturing process changes, and the possibility to manufacture mAbs, in an economical manner, in non-mammalian expression systems. Overall, this approach could facilitate and reduce mAb manufacturing costs which in turn would translate into tangible benefits for both patients and manufacturers. The first glycoengineered mAbs are about to enter clinical trials and it is expected that, once glycoengineering reagents are available at affordable costs, and in-line with regulatory requirements, that targeted remodeling of antibody Fc glycosylation will become an integral part in manufacturing the next-generation of immunotherapeutics.
Collapse
Affiliation(s)
- Renato Mastrangeli
- Biotech Development Programme, CMC Science & Intelligence, Merck Serono SpA, an affiliate of Merck KgaA, Darmstadt, Germany. Via Luigi Einaudi, 11. Guidonia Montecelio (Roma), Italy
| | - Wolf Palinsky
- Biotech Development Programme, Merck Biopharma, an affiliate of Merck KgaA, Darmstadt, Germany. Zone Industrielle de l'Ouriettaz, Aubonne, Switzerland
| | - Horst Bierau
- Biotech Development Programme, CMC Science & Intelligence, Merck Serono SpA, an affiliate of Merck KgaA, Darmstadt, Germany. Via Luigi Einaudi, 11. Guidonia Montecelio (Roma), Italy
| |
Collapse
|
66
|
Morsa D, Baiwir D, La Rocca R, Zimmerman TA, Hanozin E, Grifnée E, Longuespée R, Meuwis MA, Smargiasso N, Pauw ED, Mazzucchelli G. Multi-Enzymatic Limited Digestion: The Next-Generation Sequencing for Proteomics? J Proteome Res 2019; 18:2501-2513. [DOI: 10.1021/acs.jproteome.9b00044] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Denis Morsa
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liege, Liege 4000, Belgium
- GIGA Proteomics Facility, University of Liege, Liege 4000, Belgium
| | - Dominique Baiwir
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liege, Liege 4000, Belgium
- GIGA Proteomics Facility, University of Liege, Liege 4000, Belgium
| | - Raphaël La Rocca
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liege, Liege 4000, Belgium
| | - Tyler A. Zimmerman
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liege, Liege 4000, Belgium
| | - Emeline Hanozin
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liege, Liege 4000, Belgium
| | - Elodie Grifnée
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liege, Liege 4000, Belgium
| | - Rémi Longuespée
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liege, Liege 4000, Belgium
| | - Marie-Alice Meuwis
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liege, Liege 4000, Belgium
- Department of Hepato-Gastroenterology and Digestive Oncology, CHU, Liege 4000, Belgium
- Laboratory of Translational Gastroenterology, GIGA, Liege 4000, Belgium
| | - Nicolas Smargiasso
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liege, Liege 4000, Belgium
| | - Edwin De Pauw
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liege, Liege 4000, Belgium
| | - Gabriel Mazzucchelli
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liege, Liege 4000, Belgium
| |
Collapse
|
67
|
Glycoproteomics and Glycomics in the Biomedical Area Special Issue. Proteomics Clin Appl 2019; 12:e1800122. [PMID: 30203442 DOI: 10.1002/prca.201800122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Indexed: 11/10/2022]
|
68
|
Sun W, Liu Y, Lajoie GA, Ma B, Zhang K. An Improved Approach for N-Linked Glycan Structure Identification from HCD MS/MS Spectra. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2019; 16:388-395. [PMID: 28489544 DOI: 10.1109/tcbb.2017.2701819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Glycosylation is a frequently observed post-translational modification on proteins. Currently, tandem mass spectrometry (MS/MS) serves as an efficient analytical technique for characterizing structures of oligosaccharides. However, developing effective computational approaches for identifying glycan structures from mass spectra is still a great challenge in glycoproteomics research. In this study, we proposed an approach for matching the input spectra with glycan structures acquired from a glycan structure database by incorporating a de novo sequencing assisted ranking scheme. The proposed approach is implemented as a software tool, GlycoNovoDB, for automated glycan structure identification from HCD MS/MS of glycopeptides. Experimental results showed that GlycoNovoDB can identify glycans effectively and has better performance than our previously proposed de novo sequencing algorithm as well as another software GlycoMaster DB.
Collapse
|
69
|
Chen J, Guo X, Zhu M, Chen C, Li D. Polysaccharide monooxygenase-catalyzed oxidation of cellulose to glucuronic acid-containing cello-oligosaccharides. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:42. [PMID: 30858879 PMCID: PMC6391835 DOI: 10.1186/s13068-019-1384-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/20/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Polysaccharide monooxygenases (PMOs) play an important role in the enzymatic degradation of cellulose. They have been demonstrated to able to C6-oxidize cellulose to produce C6-hexodialdoses. However, the biological function of C6 oxidation of PMOs remains unknown. In particular, it is unclear whether C6-hexodialdoses can be further oxidized to uronic acid (glucuronic acid-containing oligosaccharides). RESULTS A PMO gene, Hipmo1, was isolated from Humicola insolens and expressed in Pichia pastoris. This PMO (HiPMO1), belonging to the auxiliary activity 9 (AA9) family, was shown to able to cleave cellulose to yield non-oxidized and oxidized cello-oligosaccharides. The enzyme oxidizes C6 positions in cellulose to form glucuronic acid-containing cello-oligosaccharides, followed by hydrolysis with beta-glucosidase and beta-glucuronidase to yield glucose, glucuronic acid, and saccharic acid. This indicates that HiPMO1 can catalyze C6 oxidation of hydroxyl groups of cellulose to carboxylic groups. CONCLUSIONS HiPMO1 oxidizes C6 of cellulose to form glucuronic acid-containing cello-oligosaccharides followed by hydrolysis with beta-glucosidase and beta-glucuronidase to yield glucose, glucuronic acid, and saccharic acid, and even possibly by beta-eliminative cleavage to produce unsaturated cello-oligosaccharides. This study provides a new mechanism for cellulose cleavage by C6 oxidation of HiPMO1.
Collapse
Affiliation(s)
- Jinyin Chen
- Department of Mycology, Shandong Agricultural University, Taian, 271018 Shandong China
| | - Xiuna Guo
- Department of Mycology, Shandong Agricultural University, Taian, 271018 Shandong China
| | - Min Zhu
- Department of Mycology, Shandong Agricultural University, Taian, 271018 Shandong China
| | - Chen Chen
- Department of Mycology, Shandong Agricultural University, Taian, 271018 Shandong China
| | - Duochuan Li
- Department of Mycology, Shandong Agricultural University, Taian, 271018 Shandong China
| |
Collapse
|
70
|
Liu B, Lu Y, Wang B, Yan Y, Liang H, Yang H. Facile Preparation of Hydrophilic Dual Functional Magnetic Metal-Organic Frameworks as a Platform for Proteomics Research. ChemistrySelect 2019. [DOI: 10.1002/slct.201803527] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Bin Liu
- School of Materials Science and Chemical Engineering; Ningbo University, Ningbo; Zhejiang 315211 P. R. China
| | - Yujie Lu
- School of Materials Science and Chemical Engineering; Ningbo University, Ningbo; Zhejiang 315211 P. R. China
| | - Baichun Wang
- School of Materials Science and Chemical Engineering; Ningbo University, Ningbo; Zhejiang 315211 P. R. China
| | - Yinghua Yan
- School of Materials Science and Chemical Engineering; Ningbo University, Ningbo; Zhejiang 315211 P. R. China
| | - Hongze Liang
- School of Materials Science and Chemical Engineering; Ningbo University, Ningbo; Zhejiang 315211 P. R. China
| | - Huayan Yang
- Key Laboratory of Green Chemical Media and Reactions; School of Chemistry and Chemical Engineering; Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Ministry of Education; Henan Normal University; Xinxiang P. R. China
| |
Collapse
|
71
|
Zhang L, Ma S, Chen Y, Wang Y, Ou J, Uyama H, Ye M. Facile Fabrication of Biomimetic Chitosan Membrane with Honeycomb-Like Structure for Enrichment of Glycosylated Peptides. Anal Chem 2019; 91:2985-2993. [PMID: 30673210 DOI: 10.1021/acs.analchem.8b05215] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In the study of glycoproteomics with mass spectrometry, certain pretreatments of samples are required for eliminating the interference of nonglycopeptides and improving the efficiency of glycopeptides detection. Although hydrophilic interaction chromatography (HILIC) has been developed for enrichment of glycosylated peptides, a plethora of hydrophilic materials always suffered from large steric hindrance, great cost, and difficulty with modifications of high-density hydrophilic groups. In this work, a 1 mm thick biomimetic honeycomb chitosan membrane (BHCM) with honeycomb-like accessible macropores was directly prepared by the freeze-casting method as an adsorbent for HILIC. The N-glycopeptides from trypsin digests of immunoglobulin G (IgG), mixture of IgG and bovine serum albumin (BSA), and serum proteins were enriched using this material and compared with a commercial material ZIC-HILIC. The biomimetic membrane could identify as many as 32 N-glycopeptides from the IgG digest, exhibiting high sensitivity (about 50 fmol) and a wide scope for glycopeptide enrichment. A molar ratio of IgG trypsin digest to bovine serum albumin trypsin digest as low as 1/500 verified the outstanding specificity and efficiency for glycopeptide enrichment. In addition, 270 unique N-glycosylation sites of 400 unique glycopeptides from 146 glycosylated proteins were identified from the triplicate analysis of 2 μL human serum. Furthermore, 48 unique O-glycosylation sites of 278 unique O-glycopeptides were identified from the triplicate analysis of 30 μg deglycosylated fetuin digest. These results indicated that the chitosan-based membrane prepared in this work had great potential for pretreatment of samples in glycoproteomics.
Collapse
Affiliation(s)
- Luwei Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education , Northwest University , Xi'an , Shaanxi 710127 , China.,CAS Key Laboratory of Separation Science for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , China
| | - Shujuan Ma
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education , Northwest University , Xi'an , Shaanxi 710127 , China.,CAS Key Laboratory of Separation Science for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , China
| | - Yao Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yan Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education , Northwest University , Xi'an , Shaanxi 710127 , China.,CAS Key Laboratory of Separation Science for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , China
| | - Junjie Ou
- CAS Key Laboratory of Separation Science for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , China
| | - Hiroshi Uyama
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education , Northwest University , Xi'an , Shaanxi 710127 , China.,Department of Applied Chemistry, Graduate School of Engineering , Osaka University , Suita 565-0871 , Japan
| | - Mingliang Ye
- CAS Key Laboratory of Separation Science for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , China
| |
Collapse
|
72
|
Saeki T, Sunayama H, Kitayama Y, Takeuchi T. Orientationally Fabricated Zwitterionic Molecularly Imprinted Nanocavities for Highly Sensitive Glycoprotein Recognition. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1320-1326. [PMID: 29940727 DOI: 10.1021/acs.langmuir.8b01215] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Glycoprotein recognition has recently gained a lot of attention, since glycoproteins play important roles in a diverse range of biological processes. Robustly synthesized glycoprotein receptors, such as molecularly imprinted polymers (MIPs), which can be easily and sustainably handled, are highly attractive as antibody substitutes because of the difficulty in obtaining high-affinity antibodies specific for carbohydrate-containing antigens. Herein, molecularly imprinted nanocavities for glycoproteins have been fabricated via a bottom-up molecular imprinting approach using surface-initiated atom transfer radical polymerization (SI-ATRP). As a model glycoprotein, ovalbumin was immobilized in a specific orientation onto a surface plasmon resonance sensor chip by forming a conventional cyclic diester between boronic acid and cis-diol. Biocompatible polymer matrices were formed around the template molecule, ovalbumin, using SI-ATRP via a hydrophilic comonomer, 2-methacryloyloxyethyl phosphorylcholine, in the presence of pyrrolidyl acrylate (PyA), a functional monomer capable of electrostatically interacting with ovalbumin. The removal of ovalbumin left MIPs with binding cavities containing boronic acid and PyA residues located at suitable positions for specifically binding ovalbumin. Careful analysis revealed that strict control over the polymer significantly improved sensitivity and selectivity for ovalbumin recognition, with a limit of detection of 6.41 ng/mL. Successful detection of ovalbumin in an egg white matrix was demonstrated to confirm the practical utility of this approach. Thus, this strategy of using a polymer-based recognition of a glycoprotein through molecularly imprinted nanocavities precisely prepared using a bottom-up approach provides a potentially powerful approach for detection of other glycoproteins.
Collapse
|
73
|
Richards E, Bouché L, Panico M, Arbeloa A, Vinogradov E, Morris H, Wren B, Logan SM, Dell A, Fairweather NF. The S-layer protein of a Clostridium difficile SLCT-11 strain displays a complex glycan required for normal cell growth and morphology. J Biol Chem 2018; 293:18123-18137. [PMID: 30275012 PMCID: PMC6254364 DOI: 10.1074/jbc.ra118.004530] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/27/2018] [Indexed: 12/16/2022] Open
Abstract
Clostridium difficile is a bacterial pathogen that causes major health challenges worldwide. It has a well-characterized surface (S)-layer, a para-crystalline proteinaceous layer surrounding the cell wall. In many bacterial and archaeal species, the S-layer is glycosylated, but no such modifications have been demonstrated in C. difficile. Here, we show that a C. difficile strain of S-layer cassette type 11, Ox247, has a complex glycan attached via an O-linkage to Thr-38 of the S-layer low-molecular-weight subunit. Using MS and NMR, we fully characterized this glycan. We present evidence that it is composed of three domains: (i) a core peptide-linked tetrasaccharide with the sequence -4-α-Rha-3-α-Rha-3-α-Rha-3-β-Gal-peptide; (ii) a repeating pentasaccharide with the sequence -4-β-Rha-4-α-Glc-3-β-Rha-4-(α-Rib-3-)β-Rha-; and (iii) a nonreducing end-terminal 2,3 cyclophosphoryl-rhamnose attached to a ribose-branched sub-terminal rhamnose residue. The Ox247 genome contains a 24-kb locus containing genes for synthesis and protein attachment of this glycan. Mutations in genes within this locus altered or completely abrogated formation of this glycan, and their phenotypes suggested that this S-layer modification may affect sporulation, cell length, and biofilm formation of C. difficile In summary, our findings indicate that the S-layer protein of SLCT-11 strains displays a complex glycan and suggest that this glycan is required for C. difficile sporulation and control of cell shape, a discovery with implications for the development of antimicrobials targeting the S-layer.
Collapse
Affiliation(s)
- Emma Richards
- From the Department of Life Sciences, Imperial College London, SW7 2AZ London, United Kingdom
| | - Laura Bouché
- From the Department of Life Sciences, Imperial College London, SW7 2AZ London, United Kingdom
| | - Maria Panico
- From the Department of Life Sciences, Imperial College London, SW7 2AZ London, United Kingdom
| | - Ana Arbeloa
- From the Department of Life Sciences, Imperial College London, SW7 2AZ London, United Kingdom
| | - Evgeny Vinogradov
- the Vaccine Program, Human Health Therapeutics Research Centre, National Research Council, Ottawa, Ontario K1A 0R6, Canada
| | - Howard Morris
- From the Department of Life Sciences, Imperial College London, SW7 2AZ London, United Kingdom,; Biopharmaspec, Suite 3.1, Lido Medical Centre, St. Saviours Road, JE2 7LA Jersey, United Kingdom, and
| | - Brendan Wren
- the London School of Hygiene and Tropical Medicine, WC1E 7HT, London, United Kingdom
| | - Susan M Logan
- the Vaccine Program, Human Health Therapeutics Research Centre, National Research Council, Ottawa, Ontario K1A 0R6, Canada
| | - Anne Dell
- From the Department of Life Sciences, Imperial College London, SW7 2AZ London, United Kingdom,.
| | - Neil F Fairweather
- From the Department of Life Sciences, Imperial College London, SW7 2AZ London, United Kingdom,.
| |
Collapse
|
74
|
Narimatsu H, Kaji H, Vakhrushev SY, Clausen H, Zhang H, Noro E, Togayachi A, Nagai-Okatani C, Kuno A, Zou X, Cheng L, Tao SC, Sun Y. Current Technologies for Complex Glycoproteomics and Their Applications to Biology/Disease-Driven Glycoproteomics. J Proteome Res 2018; 17:4097-4112. [PMID: 30359034 DOI: 10.1021/acs.jproteome.8b00515] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Glycoproteomics is an important recent advance in the field of glycoscience. In glycomics, glycan structures are comprehensively analyzed after glycans are released from glycoproteins. However, a major limitation of glycomics is the lack of insight into glycoprotein functions. The Biology/Disease-driven Human Proteome Project has a particular focus on biological and medical applications. Glycoproteomics technologies aimed at obtaining a comprehensive understanding of intact glycoproteins, i.e., the kind of glycan structures that are attached to particular amino acids and proteins, have been developed. This Review focuses on the recent progress of the technologies and their applications. First, the methods for large-scale identification of both N- and O-glycosylated proteins are summarized. Next, the progress of analytical methods for intact glycopeptides is outlined. MS/MS-based methods were developed for improving the sensitivity and speed of the mass spectrometer, in parallel with the software for complex spectrum assignment. In addition, a unique approach to identify intact glycopeptides using MS1-based accurate masses is introduced. Finally, as an advance of glycomics, two approaches to provide the spatial distribution of glycans in cells are described, i.e., MS imaging and lectin microarray. These methods allow rapid glycomic profiling of different types of biological samples and thus facilitate glycoproteomics.
Collapse
Affiliation(s)
- Hisashi Narimatsu
- Biotechnology Research Institute for Drug Discovery , National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono , Tsukuba , Ibaraki 305-8568 , Japan
| | - Hiroyuki Kaji
- Biotechnology Research Institute for Drug Discovery , National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono , Tsukuba , Ibaraki 305-8568 , Japan
| | - Sergey Y Vakhrushev
- Copenhagen Center for Glycomics , University of Copenhagen , Blegdamsvej 3 , Copenhagen 2200 , Denmark
| | - Henrik Clausen
- Copenhagen Center for Glycomics , University of Copenhagen , Blegdamsvej 3 , Copenhagen 2200 , Denmark
| | - Hui Zhang
- Center for Biomarker Discovery and Translation , Johns Hopkins University , 400 North Broadway , Baltimore , Maryland 21205 , United States
| | - Erika Noro
- Biotechnology Research Institute for Drug Discovery , National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono , Tsukuba , Ibaraki 305-8568 , Japan
| | - Akira Togayachi
- Biotechnology Research Institute for Drug Discovery , National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono , Tsukuba , Ibaraki 305-8568 , Japan
| | - Chiaki Nagai-Okatani
- Biotechnology Research Institute for Drug Discovery , National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono , Tsukuba , Ibaraki 305-8568 , Japan
| | - Atsushi Kuno
- Biotechnology Research Institute for Drug Discovery , National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono , Tsukuba , Ibaraki 305-8568 , Japan
| | - Xia Zou
- Biotechnology Research Institute for Drug Discovery , National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono , Tsukuba , Ibaraki 305-8568 , Japan.,Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education) , Shanghai Jiao Tong University , 800 Dong Chuan Road , Minhang , Shanghai 200240 , P.R. China
| | - Li Cheng
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education) , Shanghai Jiao Tong University , 800 Dong Chuan Road , Minhang , Shanghai 200240 , P.R. China
| | - Sheng-Ce Tao
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education) , Shanghai Jiao Tong University , 800 Dong Chuan Road , Minhang , Shanghai 200240 , P.R. China
| | - Yangyang Sun
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education) , Shanghai Jiao Tong University , 800 Dong Chuan Road , Minhang , Shanghai 200240 , P.R. China
| |
Collapse
|
75
|
Singh SK, Nage N, Jagani H, Maiti M, Ranbhor RS. Glycan mapping of recombinant human follicle stimulating hormone by mass spectrometry. Reprod Biol 2018; 18:380-384. [PMID: 30344088 DOI: 10.1016/j.repbio.2018.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 10/03/2018] [Accepted: 10/05/2018] [Indexed: 11/25/2022]
Abstract
In humans, regulation of reproductive functions are carried out mainly by glycoprotein hormones namely follicle stimulating hormone (FSH), thyroid stimulating hormone (TSH), luteinizing hormone (LH) and chorionic gonadotropin (CG). Since glycans play an important role in binding of gonadotropins with their respective receptors, it is important to identify associated glycans and their pharmacological properties not only for the disease manipulation but also for making more efficacious and safer recombinant versions. With the advancement of mass spectrometry, it is possible to identify minute quantity of associated glycans. Here, we studied the N-glycans of the FSH based on mass spectrometry and report one more complex glycan species in addition to twenty four previously reported glycans. The new glycan was a tetra antennary species that may have important role in binding of FSH with receptor with higher biological activity as well as lower clearance rate and higher half-life.
Collapse
Affiliation(s)
- Sanjay Kumar Singh
- Sun Pharmaceutical Industries Limited, Tandalja, Vadodara, 390012, India
| | - Nitin Nage
- Sun Pharmaceutical Industries Limited, Tandalja, Vadodara, 390012, India
| | - Hitesh Jagani
- Sun Pharmaceutical Industries Limited, Tandalja, Vadodara, 390012, India
| | - Mukul Maiti
- Sun Pharmaceutical Industries Limited, Tandalja, Vadodara, 390012, India
| | | |
Collapse
|
76
|
Vreeker GM, Nicolardi S, Bladergroen MR, van der Plas CJ, Mesker WE, Tollenaar RAEM, van der Burgt YEM, Wuhrer M. Automated Plasma Glycomics with Linkage-Specific Sialic Acid Esterification and Ultrahigh Resolution MS. Anal Chem 2018; 90:11955-11961. [PMID: 30230816 PMCID: PMC6209171 DOI: 10.1021/acs.analchem.8b02391] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/19/2018] [Indexed: 12/17/2022]
Abstract
High-throughput mass spectrometry (MS) glycomics is an emerging field driven by technological advancements including sample preparation and data processing. Previously, we reported an automated protocol for the analysis of N-glycans released from plasma proteins that included sialic acid derivatization with linkage-specificity, namely, ethylation of α2,6-linked sialic acid residues and lactone formation of α2,3-linked sialic acids. In the current study, each step in this protocol was further optimized. Method improvements included minimizing the extent of side-reaction during derivatization, an adjusted glycan purification strategy and mass analysis of the released N-glycans by ultrahigh resolution matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance MS. The latter resolved peak overlap and simplified spectral alignment due to high mass measurement precision. Moreover, this resulted in more confident glycan assignments and improved signal-to-noise for low-abundant species. The performance of the protocol renders high-throughput applications feasible in the exciting field of clinical glycomics.
Collapse
Affiliation(s)
- Gerda
C. M. Vreeker
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, 2300 RC Leiden, The Netherlands
- Department
of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Simone Nicolardi
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, 2300 RC Leiden, The Netherlands
- Department
of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Marco R. Bladergroen
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, 2300 RC Leiden, The Netherlands
| | - Corné J. van der Plas
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, 2300 RC Leiden, The Netherlands
| | - Wilma E. Mesker
- Department
of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Rob A. E. M. Tollenaar
- Department
of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Yuri E. M. van der Burgt
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, 2300 RC Leiden, The Netherlands
| | - Manfred Wuhrer
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, 2300 RC Leiden, The Netherlands
| |
Collapse
|
77
|
Dong X, Huang Y, Cho BG, Zhong J, Gautam S, Peng W, Williamson SD, Banazadeh A, Torres-Ulloa KY, Mechref Y. Advances in mass spectrometry-based glycomics. Electrophoresis 2018; 39:3063-3081. [PMID: 30199110 DOI: 10.1002/elps.201800273] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 12/22/2022]
Abstract
The diversification of the chemical properties and biological functions of proteins is attained through posttranslational modifications, such as glycosylation. Glycans, which are covalently attached to proteins, play a vital role in cell activities. The microheterogeneity and complexity of glycan structures associated with proteins make comprehensive glycomic analysis challenging. However, recent advancements in mass spectrometry (MS), separation techniques, and sample preparation methods have primarily facilitated structural elucidation and quantitation of glycans. This review focuses on describing recent advances in MS-based techniques used for glycomic analysis (2012-2018), including ionization, tandem MS, and separation techniques coupled with MS. Progress in glycomics workflow involving glycan release, purification, derivatization, and separation will also be highlighted here. Additionally, the recent development of quantitative glycomics through comparative and multiplex approaches will also be described.
Collapse
Affiliation(s)
- Xue Dong
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Yifan Huang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Byeong Gwan Cho
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Jieqiang Zhong
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Sakshi Gautam
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Wenjing Peng
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Seth D Williamson
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Alireza Banazadeh
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Katya Y Torres-Ulloa
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
78
|
Darebna P, Spicka J, Kucera R, Topolcan O, Navratilova E, Ruzicka V, Volny M, Novak P, Pompach P. Detection and Quantification of Carbohydrate-Deficient Transferrin by MALDI-Compatible Protein Chips Prepared by Ambient Ion Soft Landing. Clin Chem 2018; 64:1319-1326. [DOI: 10.1373/clinchem.2017.285452] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 05/18/2018] [Indexed: 11/06/2022]
Abstract
Abstract
BACKGROUND
Transferrin is synthetized in the liver and is the most important iron-transport carrier in the human body. Severe alcohol consumption leads to alterations in glycosylation of transferrin. Mass spectrometry can provide fast detection and quantification of transferrin isoforms because they have different molecular masses. In this study, we used antibody chips in combination with MALDI-TOF MS for the detection and quantification of transferrin isoforms.
METHODS
Protein chips were prepared by functionalization of indium tin oxide glass using ambient ion soft landing of electrosprayed antitransferrin antibody. Two microliters of patient serum was applied on the antibody-modified spots, and after incubation, washing, and matrix deposition, transferrin isoforms were detected by MALDI-TOF MS. Peak intensities of each transferrin form were used to calculate total carbohydrate-deficient transferrin (CDT). The CDT values obtained by the MALDI chip method were compared with the results obtained by a standard capillary electrophoresis (CE).
RESULTS
The chip-based MALDI-TOF MS method was used for enrichment and detection of CDT from human serum. A sample cohort from 186 patients was analyzed. Of these samples, 44 were positively identified as belonging to alcoholic patients, whereas 142 were negative by the MALDI chip approach. The correlation of the data obtained by the CE and the chip-based MALDI was r = 0.986, 95% CI.
CONCLUSIONS
Functionalized MALDI chips modified by antitransferrin antibody prepared by ambient ion soft landing were successfully used for detection and quantification of CDT from human sera.
Collapse
Affiliation(s)
- Petra Darebna
- Institute of Microbiology, v.v.i., Czech Academy of Sciences, Prague, Czech Republic
- Faculty of Science, Charles University, Prague, Czech Republic
| | - Jan Spicka
- Department of Laboratory Diagnostics, University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Radek Kucera
- Department of Immunochemistry, University Hospital in Pilsen, Pilsen, Czech Republic
| | - Ondrej Topolcan
- Department of Immunochemistry, University Hospital in Pilsen, Pilsen, Czech Republic
| | | | | | - Michael Volny
- Institute of Microbiology, v.v.i., Czech Academy of Sciences, Prague, Czech Republic
- AffiPro, s.r.o., Mratin, Czech Republic
| | - Petr Novak
- Institute of Microbiology, v.v.i., Czech Academy of Sciences, Prague, Czech Republic
- Faculty of Science, Charles University, Prague, Czech Republic
- AffiPro, s.r.o., Mratin, Czech Republic
| | - Petr Pompach
- Institute of Microbiology, v.v.i., Czech Academy of Sciences, Prague, Czech Republic
- Faculty of Science, Charles University, Prague, Czech Republic
- AffiPro, s.r.o., Mratin, Czech Republic
| |
Collapse
|
79
|
Corfield AP. The Interaction of the Gut Microbiota with the Mucus Barrier in Health and Disease in Human. Microorganisms 2018; 6:microorganisms6030078. [PMID: 30072673 PMCID: PMC6163557 DOI: 10.3390/microorganisms6030078] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/25/2018] [Accepted: 07/30/2018] [Indexed: 02/07/2023] Open
Abstract
Glycoproteins are major players in the mucus protective barrier in the gastrointestinal and other mucosal surfaces. In particular the mucus glycoproteins, or mucins, are responsible for the protective gel barrier. They are characterized by their high carbohydrate content, present in their variable number, tandem repeat domains. Throughout evolution the mucins have been maintained as integral components of the mucosal barrier, emphasizing their essential biological status. The glycosylation of the mucins is achieved through a series of biosynthetic pathways processes, which generate the wide range of glycans found in these molecules. Thus mucins are decorated with molecules having information in the form of a glycocode. The enteric microbiota interacts with the mucosal mucus barrier in a variety of ways in order to fulfill its many normal processes. How bacteria read the glycocode and link to normal and pathological processes is outlined in the review.
Collapse
Affiliation(s)
- Anthony P Corfield
- Mucin Research Group, School of Clinical Sciences, Bristol Royal Infirmary, Level 7, Marlborough Street, Bristol BS2 8HW, UK.
| |
Collapse
|
80
|
Zhang W, Jiang L, Wang D, Jia Q. Preparation of copper tetra(N-carbonylacrylic) aminephthalocyanine functionalized zwitterionic-polymer monolith for highly specific capture of glycopeptides. Anal Bioanal Chem 2018; 410:6653-6661. [DOI: 10.1007/s00216-018-1278-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/21/2018] [Accepted: 07/17/2018] [Indexed: 01/05/2023]
|
81
|
Proteoform Analysis to Fulfill Unmet Clinical Needs and Reach Global Standardization of Protein Measurands in Clinical Chemistry Proteomics. Clin Lab Med 2018; 38:487-497. [PMID: 30115393 DOI: 10.1016/j.cll.2018.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In clinical testing of protein markers, structure variants of the measurand are often not taken into account. This heterogeneous character of protein measurands in immunoassays often renders test standardization impossible. Consequently, test results from different methods can lead to underdiagnosis or overdiagnosis and, thus, undertreatment or overtreatment of patients. The systematic structural analysis of protein isoforms has been coined proteoform profiling and is performed through mass spectrometry-based proteomics strategies. Knowledge on proteoforms allows refining existing uni-marker tests and moreover has great potential to contribute to the urgent need for new tests to predict prognosis and severity of diseases.
Collapse
|
82
|
Zahedi RP, Parker CE, Borchers CH. Immuno-MALDI-TOF-MS in the Clinic. Clin Chem 2018; 64:1271-1272. [PMID: 30018057 DOI: 10.1373/clinchem.2018.292136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 06/25/2018] [Indexed: 01/17/2023]
Affiliation(s)
- René P Zahedi
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Quebec, Canada.,Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University, Montréal, Quebec, Canada
| | - Carol E Parker
- University of Victoria-Genome British Columbia Proteomics Centre, University of Victoria, Victoria, British Columbia, Canada
| | - Christoph H Borchers
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Quebec, Canada; .,Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University, Montréal, Quebec, Canada.,University of Victoria-Genome British Columbia Proteomics Centre, University of Victoria, Victoria, British Columbia, Canada.,Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| |
Collapse
|
83
|
Xia C, Jiao F, Gao F, Wang H, Lv Y, Shen Y, Zhang Y, Qian X. Two-Dimensional MoS 2-Based Zwitterionic Hydrophilic Interaction Liquid Chromatography Material for the Specific Enrichment of Glycopeptides. Anal Chem 2018; 90:6651-6659. [PMID: 29742898 DOI: 10.1021/acs.analchem.8b00461] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mass spectrometry (MS)-based glycoproteomics research requires highly efficient sample preparation to eliminate interference from non-glycopeptides and to improve the efficiency of glycopeptide detection. In this work, a novel MoS2/Au-NP (gold nanoparticle)-L-cysteine nanocomposite was prepared for glycopeptide enrichment. The two-dimensional (2D) structured MoS2 nanosheets served as a matrix that could provide a large surface area for immobilizing hydrophilic groups (such as L-cysteine) with low steric hindrance between the materials and the glycopeptides. As a result, the novel nanomaterial possessed an excellent ability to capture glycopeptides. Compared to commercial zwitterionic hydrophilic interaction liquid chromatography (ZIC-HILIC) materials, the novel nanomaterials exhibited excellent enrichment performance with ultrahigh selectivity and sensitivity (approximately 10 fmol), high binding capacity (120 mg g-1), high enrichment recovery (more than 93%), satisfying batch-to-batch reproducibility, and good universality for glycopeptide enrichment. In addition, its outstanding specificity and efficiency for glycopeptide enrichment was confirmed by the detection of glycopeptides from an human serum immunoglobulin G (IgG) tryptic digest in quantities as low as a 1:1250 molar ratio of IgG tryptic digest to bovine serum albumin tryptic digest. The novel nanocomposites were further used for the analysis of complex samples, and 1920 glycopeptide backbones from 775 glycoproteins were identified in three replicate analyses of 50 μg of proteins extracted from HeLa cell exosomes. The resulting highly informative mass spectra indicated that this multifunctional nanomaterial-based enrichment method could be used as a promising tool for the in-depth and comprehensive characterization of glycoproteomes in MS-based glycoproteomics.
Collapse
Affiliation(s)
- Chaoshuang Xia
- Key Laboratory of Synthetic and Natural Function Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science , Northwest University , Xi'an 710069 , China.,State Key Laboratory of Proteomics, National Center for Protein Science Beijing , Beijing Institute of Life-omics , Beijing 102206 , China
| | - Fenglong Jiao
- State Key Laboratory of Proteomics, National Center for Protein Science Beijing , Beijing Institute of Life-omics , Beijing 102206 , China
| | - Fangyuan Gao
- State Key Laboratory of Proteomics, National Center for Protein Science Beijing , Beijing Institute of Life-omics , Beijing 102206 , China
| | - Heping Wang
- State Key Laboratory of Proteomics, National Center for Protein Science Beijing , Beijing Institute of Life-omics , Beijing 102206 , China.,School of Chemistry and Chemical Engineering , Ankang University , Ankang , Shaanxi 725000 , China
| | - Yayao Lv
- State Key Laboratory of Proteomics, National Center for Protein Science Beijing , Beijing Institute of Life-omics , Beijing 102206 , China
| | - Yehua Shen
- Key Laboratory of Synthetic and Natural Function Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science , Northwest University , Xi'an 710069 , China
| | - Yangjun Zhang
- State Key Laboratory of Proteomics, National Center for Protein Science Beijing , Beijing Institute of Life-omics , Beijing 102206 , China
| | - Xiaohong Qian
- State Key Laboratory of Proteomics, National Center for Protein Science Beijing , Beijing Institute of Life-omics , Beijing 102206 , China
| |
Collapse
|
84
|
Yang S, Chatterjee S, Cipollo J. The Glycoproteomics-MS for Studying Glycosylation in Cardiac Hypertrophy and Heart Failure. Proteomics Clin Appl 2018; 12:e1700075. [PMID: 29424483 DOI: 10.1002/prca.201700075] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 11/10/2017] [Indexed: 12/13/2022]
Abstract
With recent advancements of analytical techniques and mass spectrometric instrumentations, proteomics has been widely exploited to study the regulation of protein expression associated with disease states. Many proteins may undergo abnormal change in response to the stimulants, leading to regulation of posttranslationally modified proteins. In this review, the physiological and pathological roles of protein glycosylation in cardiac hypertrophy is discussed, and how the signal pathways regulate heart function and leading to heart failure. The analytical methods for analysis of protein glycosylation, including glycans, glycosite, occupancy, and heterogeneity is emphasized. The rationale on glycoproteins as disease biomarkers is also discussed. The authors also propose potential research in this field and challenges in the diagnosis and treatment of this disease.
Collapse
Affiliation(s)
- Shuang Yang
- Laboratory of Bacterial Polysaccharides, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Subroto Chatterjee
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - John Cipollo
- Laboratory of Bacterial Polysaccharides, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
85
|
Salah Ud-Din AIM, Roujeinikova A. Flagellin glycosylation with pseudaminic acid in Campylobacter and Helicobacter: prospects for development of novel therapeutics. Cell Mol Life Sci 2018; 75:1163-1178. [PMID: 29080090 PMCID: PMC11105201 DOI: 10.1007/s00018-017-2696-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/10/2017] [Accepted: 10/24/2017] [Indexed: 02/08/2023]
Abstract
Many pathogenic bacteria require flagella-mediated motility to colonise and persist in their hosts. Helicobacter pylori and Campylobacter jejuni are flagellated epsilonproteobacteria associated with several human pathologies, including gastritis, acute diarrhea, gastric carcinoma and neurological disorders. In both species, glycosylation of flagellin with an unusual sugar pseudaminic acid (Pse) plays a crucial role in the biosynthesis of functional flagella, and thereby in bacterial motility and pathogenesis. Pse is found only in pathogenic bacteria. Its biosynthesis via six consecutive enzymatic steps has been extensively studied in H. pylori and C. jejuni. This review highlights the importance of flagella glycosylation and details structural insights into the enzymes in the Pse pathway obtained via a combination of biochemical, crystallographic, and mutagenesis studies of the enzyme-substrate and -inhibitor complexes. It is anticipated that understanding the underlying structural and molecular basis of the catalytic mechanisms of the Pse-synthesising enzymes will pave the way for the development of novel antimicrobials.
Collapse
Affiliation(s)
- Abu Iftiaf Md Salah Ud-Din
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Anna Roujeinikova
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC, Australia.
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
86
|
Sun W, Liu Y, Zhang K. An approach for N-linked glycan identification from MS/MS spectra by target-decoy strategy. Comput Biol Chem 2018; 74:391-398. [PMID: 29580737 DOI: 10.1016/j.compbiolchem.2018.03.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 03/13/2018] [Indexed: 12/28/2022]
Abstract
Glycan structure determination serves as an essential step for the thorough investigation of the structure and function of protein. Currently, appropriate sample preparation followed by tandem mass spectrometry has emerged as the dominant technique for the characterization of glycans and glycopeptides. Although extensive efforts have been made to the development of computational approaches for the automated interpretation of glycopeptide spectra, the previously appeared methods lack a reasonable quality control strategy for the statistical validation of reported results. In this manuscript, we introduced a novel method that constructed a decoy glycan database based on the glycan structures in the target database, and searched the experimental spectra against both the target and decoy databases to find the best matched glycans. Specifically, a two-layer scoring scheme for calculating a normalized matching score is applied in the search procedure which enables the unbiased ranking of the matched glycans. Experimental analysis showed that our proposed method can report more structures with high confidence compared with previous approaches.
Collapse
Affiliation(s)
- Weiping Sun
- Department of Computer Science, University of Western Ontario, London, ON N6A5B7, Canada.
| | - Yi Liu
- Department of Computer Science, University of Western Ontario, London, ON N6A5B7, Canada
| | - Kaizhong Zhang
- Department of Computer Science, University of Western Ontario, London, ON N6A5B7, Canada
| |
Collapse
|
87
|
Konev AA, Serebryanaya DV, Koshkina EV, Rozov FN, Filatov VL, Kozlovsky SV, Kara AN, Katrukha AG, Postnikov AB. Glycosylated and non-glycosylated NT-IGFBP-4 in circulation of acute coronary syndrome patients. Clin Biochem 2018. [PMID: 29526675 DOI: 10.1016/j.clinbiochem.2018.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND N-terminal and C-terminal proteolytic fragments of IGF binding protein 4 (NT-IGFBP-4 and CT-IGFBP-4) were recently shown to predict adverse cardiac events in acute coronary syndrome (ACS) patients. NT-IGFBP-4 and CT-IGFBP-4 are products of the pregnancy-associated plasma protein-A (PAPP-A)-mediated cleavage of IGFBP-4. It has been demonstrated that circulating IGFBP-4 is partially glycosylated in its N-terminal region, although the influence of this glycosylation on PAPP-A-mediated proteolysis and the ratio of glycosylated/non-glycosylated IGFBP-4 fragments in human blood remain unrevealed. The aims of this study were to investigate i) the presence of glycosylated NT-IGFBP-4 in the circulation, ii) the influence of the glycosylation of IGFBP-4 on its susceptibility to PAPP-A-mediated cleavage, and iii) the influence of glycosylation on NT-IGFBP-4 immunodetection. METHODS Affinity purification was used for the extraction of IGFBP-4 and NT-IGFBP-4 from plasma samples. Purified proteins were quantified by Western blotting and specific sandwich immunoassays, while molecular masses were determined using mass spectrometry. RESULTS Glycosylated NT-IGFBP-4 was identified in the blood of ACS patients. The fraction of glycosylated NT-IGFBP-4 in individual plasma samples was 9.8%-23.5% of the total levels of NT-IGFBP-4. PAPP-A-mediated proteolysis of glycosylated IGFBP-4 was 3-4 times less efficient (p < 0.001) than proteolysis of non-glycosylated protein. A sandwich fluoroimmunoassay that was designed for quantitative NT-IGFBP-4 measurements recognized both protein forms with the same efficiency. CONCLUSIONS Although glycosylation suppresses PAPP-A-mediated IGFBP-4 cleavage, a considerable amount of glycosylated NT-IGFBP-4 is present in blood. Glycosylation does not influence NT-IGFBP-4 measurements using a specific sandwich immunoassay.
Collapse
Affiliation(s)
- Alexey A Konev
- HyTest Ltd, Turku, Finland; School of Biology, Moscow State University, Moscow, Russia.
| | - Daria V Serebryanaya
- HyTest Ltd, Turku, Finland; School of Biology, Moscow State University, Moscow, Russia
| | | | | | - Vladimir L Filatov
- HyTest Ltd, Turku, Finland; School of Biology, Moscow State University, Moscow, Russia
| | | | - Andrey N Kara
- School of Biology, Moscow State University, Moscow, Russia
| | - Alexey G Katrukha
- HyTest Ltd, Turku, Finland; School of Biology, Moscow State University, Moscow, Russia
| | - Alexander B Postnikov
- HyTest Ltd, Turku, Finland; School of Biology, Moscow State University, Moscow, Russia
| |
Collapse
|
88
|
Bi C, Liang Y, Shen L, Tian S, Zhang K, Li Y, He X, Chen L, Zhang Y. Maltose-Functionalized Hydrophilic Magnetic Nanoparticles with Polymer Brushes for Highly Selective Enrichment of N-Linked Glycopeptides. ACS OMEGA 2018; 3:1572-1580. [PMID: 30023808 PMCID: PMC6044954 DOI: 10.1021/acsomega.7b01788] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/24/2018] [Indexed: 05/15/2023]
Abstract
Efficient enrichment glycoproteins/glycopeptides from complex biological solutions are very important in the biomedical sciences, in particular biomarker research. In this work, the high hydrophilic polyethylenimine conjugated polymaltose polymer brushes functionalized magnetic Fe3O4 nanoparticles (NPs) denoted as Fe3O4-PEI-pMaltose were designed and synthesized via a simple two-step modification. The obtained superhydrophilic Fe3O4-PEI-pMaltose NPs displayed outstanding advantages in the enrichment of N-linked glycopeptides, including high selectivity (1:100, mass ratios of HRP and bovine serum albumin (BSA) digest), low detection limit (10 fmol), large binding capacity (200 mg/g), and high enrichment recovery (above 85%). The above-mentioned excellent performance of novel Fe3O4-PEI-pMaltose NPs was attributed to graft of maltose polymer brushes and efficient assembly strategy. Moreover, Fe3O4-PEI-pMaltose NPs were further utilized to selectively enrich glycopeptides from human renal mesangial cell (HRMC, 200 μg) tryptic digest, and 449 N-linked glycopeptides, representing 323 different glycoproteins and 476 glycosylation sites, were identified. It was expected that the as-synthesized Fe3O4-PEI-pMaltose NPs, possessing excellent performance (high binding capacity, good selectivity, low detection limit, high enrichment recovery, and easy magnetic separation) coupled to a facile preparation procedure, have a huge potential in N-glycosylation proteome analysis of complex biological samples.
Collapse
Affiliation(s)
- Changfen Bi
- Tianjin
Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine,
Institute of Radiation Medicine, Peking
Union Medical College & Chinese Academy of Medical Sciences, Tianjin 300192, China
| | - Yulu Liang
- Research
Center for Analytical Sciences, College of Chemistry, Tianjin Key
Laboratory of Biosensing and Molecular Recognition, State Key Laboratory
of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Collaborative Innovation
Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| | - Lijin Shen
- 2011
Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, Tianjin 300070, China
| | - Shanshan Tian
- 2011
Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, Tianjin 300070, China
| | - Kai Zhang
- 2011
Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, Tianjin 300070, China
| | - Yiliang Li
- Tianjin
Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine,
Institute of Radiation Medicine, Peking
Union Medical College & Chinese Academy of Medical Sciences, Tianjin 300192, China
| | - Xiwen He
- Research
Center for Analytical Sciences, College of Chemistry, Tianjin Key
Laboratory of Biosensing and Molecular Recognition, State Key Laboratory
of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Langxing Chen
- Research
Center for Analytical Sciences, College of Chemistry, Tianjin Key
Laboratory of Biosensing and Molecular Recognition, State Key Laboratory
of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Collaborative Innovation
Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| | - Yukui Zhang
- Research
Center for Analytical Sciences, College of Chemistry, Tianjin Key
Laboratory of Biosensing and Molecular Recognition, State Key Laboratory
of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Dalian
Institute of Chemical Physics, Chinese Academy
of Sciences, Dalian 116023, China
| |
Collapse
|
89
|
Fulton KM, Li J, Tomas JM, Smith JC, Twine SM. Characterizing bacterial glycoproteins with LC-MS. Expert Rev Proteomics 2018; 15:203-216. [PMID: 29400572 DOI: 10.1080/14789450.2018.1435276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Though eukaryotic glycoproteins have been studied since their discovery in the 1930s, the first bacterial glycoprotein was not identified until the 1970s. As a result, their role in bacterial pathogenesis is still not well understood and they remain an understudied component of bacterial virulence. In recent years, mass spectrometry has emerged as a leading technology for the study of bacterial glycoproteins, largely due to its sensitivity and versatility. Areas covered: Identification and comprehensive characterization of bacterial glycoproteins usually requires multiple complementary mass spectrometry approaches, including intact protein analysis, top-down analysis, and bottom-up methods used in combination with specialized liquid chromatography. This review provides an overview of liquid chromatography separation technologies, as well as current and emerging mass spectrometry approaches used specifically for bacterial glycoprotein identification and characterization. Expert commentary: Bacterial glycoproteins may have significant clinical utility as a result of their unique structures and exposure on the surface of the cells. Better understanding of these glycoconjugates is an essential first step towards that goal. These often unique structures, and by extension the key enzymes involved in their synthesis, represent promising targets for novel antimicrobials, while unique carbohydrate structures may be used as antigens in vaccines or as biomarkers.
Collapse
Affiliation(s)
- Kelly M Fulton
- a Human Health Therapeutics Portfolio , National Research Council Canada , Ottawa , Canada
| | - Jianjun Li
- a Human Health Therapeutics Portfolio , National Research Council Canada , Ottawa , Canada
| | - Juan M Tomas
- b Departament de Microbiologia, Facultat de Biologia , Universitat de Barcelona , Barcelona , Spain
| | - Jeffrey C Smith
- c Department of Chemistry , Carleton University , Ottawa , Canada
| | - Susan M Twine
- a Human Health Therapeutics Portfolio , National Research Council Canada , Ottawa , Canada
| |
Collapse
|
90
|
Advances in sample preparation strategies for MS-based qualitative and quantitative N-glycomics. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2017.11.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
91
|
Tauroursodeoxycholic Acid Protects against the Effects of P-Cresol-Induced Reactive Oxygen Species via the Expression of Cellular Prion Protein. Int J Mol Sci 2018; 19:ijms19020352. [PMID: 29370069 PMCID: PMC5855574 DOI: 10.3390/ijms19020352] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/16/2018] [Accepted: 01/22/2018] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal stem cells (MSCs) could be a promising solution in the treatment of various diseases including chronic kidney disease (CKD). However, endoplasmic reticulum (ER) stress induced by ischemia in the area of application limits the integration and survival of MSCs in patients. In our study, we generated ER stress-induced conditions in MSCs using P-cresol. As P-cresol is a toxic compound accumulated in the body of CKD patients and induces apoptosis and inflammation through reactive oxygen species (ROS), we observed ER stress-induced MSC apoptosis activated by oxidative stress, which in turn resulted from ROS generation. To overcome stress-induced apoptosis, we investigated the protective effects of tauroursodeoxycholic acid (TUDCA), a bile acid, on ER stress in MSCs. In ER stress, TUDCA treatment of MSCs reduced ER stress-associated protein activation, including GRP78, PERK, eIF2α, ATF4, IRE1α, and CHOP. Next, to explore the protective mechanism adopted by TUDCA, TUDCA-mediated cellular prion protein (PrPC) activation was assessed. We confirmed that PrPC expression significantly increased ROS, which was eliminated by superoxide dismutase and catalase in MSCs. These findings suggest that TUDCA protects from inflammation and apoptosis in ER stress via PrPC expression. Our study demonstrates that TUDCA protects MSCs against inflammation and apoptosis in ER stress by PrPC expression in response to P-cresol exposure.
Collapse
|
92
|
de Oliveira RM, Ornelas Ricart CA, Araujo Martins AM. Use of Mass Spectrometry to Screen Glycan Early Markers in Hepatocellular Carcinoma. Front Oncol 2018; 7:328. [PMID: 29379771 PMCID: PMC5775512 DOI: 10.3389/fonc.2017.00328] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 12/21/2017] [Indexed: 12/13/2022] Open
Abstract
Association between altered glycosylation patterns and poor prognosis in cancer points glycans as potential specific tumor markers. Most proteins are glycosylated and functionally arranged on cell surface and extracellular matrix, mediating interactions and cellular signaling. Thereby, aberrant glycans may be considered a pathological phenotype at least as important as changes in protein expression for cancer and other complex diseases. As most serum glycoproteins have hepatic origin, liver disease phenotypes, such as hepatocellular carcinoma (HCC), may present altered glycan profile and display important modifications. One of the prominent obstacles in HCC is the diagnostic in advanced stages when patients have several liver dysfunctions, limiting treatment options and life expectancy. The characterization of glycomic profiles in pathological conditions by means of mass spectrometry (MS) may lead to the discovery of early diagnostic markers using non-invasive approaches. MS is a powerful analytical technique capable of elucidating many glycobiological issues and overcome limitations of the serological markers currently applied in clinical practice. Therefore, MS-based glycomics of tumor biomarkers is a promising tool to increase early detection and monitoring of disease.
Collapse
Affiliation(s)
- Raphaela Menezes de Oliveira
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Carlos Andre Ornelas Ricart
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Aline Maria Araujo Martins
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil.,University Hospital Walter Cantídeo, Surgery Department, Federal University of Ceara, Fortaleza, Brazil
| |
Collapse
|
93
|
García-Díaz M, Birch D, Wan F, Nielsen HM. The role of mucus as an invisible cloak to transepithelial drug delivery by nanoparticles. Adv Drug Deliv Rev 2018; 124:107-124. [PMID: 29117511 DOI: 10.1016/j.addr.2017.11.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/03/2017] [Accepted: 11/01/2017] [Indexed: 01/05/2023]
Abstract
Mucosal administration of drugs and drug delivery systems has gained increasing interest. However, nanoparticles intended to protect and deliver drugs to epithelial surfaces require transport through the surface-lining mucus. Translation from bench to bedside is particularly challenging for mucosal administration since a variety of parameters will influence the specific barrier properties of the mucus including the luminal fluids, the microbiota, the mucus composition and clearance rate, and the condition of the underlying epithelia. Besides, after administration, nanoparticles interact with the mucosal components, forming a biomolecular corona that modulates their behavior and fate after mucosal administration. These interactions are greatly influenced by the nanoparticle properties, and therefore different designs and surface-engineering strategies have been proposed. Overall, it is essential to evaluate these biomolecule-nanoparticle interactions by complementary techniques using complex and relevant mucus barrier matrices.
Collapse
Affiliation(s)
- María García-Díaz
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Ditlev Birch
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Feng Wan
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Hanne Mørck Nielsen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| |
Collapse
|
94
|
Daskhan GC, Tran HTT, Meloncelli PJ, Lowary TL, West LJ, Cairo CW. Construction of Multivalent Homo- and Heterofunctional ABO Blood Group Glycoconjugates Using a Trifunctional Linker Strategy. Bioconjug Chem 2018; 29:343-362. [PMID: 29237123 DOI: 10.1021/acs.bioconjchem.7b00679] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The design and synthesis of multivalent ligands displaying complex oligosaccharides is necessary for the development of therapeutics, diagnostics, and research tools. Here, we report an efficient conjugation strategy to prepare complex glycoconjugates with 4 copies of 1 or 2 separate glycan epitopes, providing 4-8 carbohydrate residues on a tetravalent poly(ethylene glycol) scaffold. This strategy provides complex glycoconjugates that approach the size of glycoproteins (15-18 kDa) while remaining well-defined. The synthetic strategy makes use of three orthogonal functional groups, including a reactive N-hydroxysuccinimide (NHS)-ester moiety on the linker to install the first carbohydrate epitope via reaction with an amine. A masked amine functionality on the linker is revealed after the removal of a fluorenylmethyloxycarbonyl (Fmoc)-protecting group, allowing the attachment to the NHS-activated poly(ethylene glycol) (PEG) scaffold. An azide group in the linker was then used to incorporate the second carbohydrate epitope via catalyzed alkyne-azide cycloaddition. Using a known tetravalent PEG scaffold (PDI, 1.025), we prepared homofunctional glycoconjugates that display four copies of lactose and the A-type II or the B-type II human blood group antigens. Using our trifunctional linker, we expanded this strategy to produce heterofunctional conjugates with four copies of two separate glycan epitopes. These heterofunctional conjugates included Neu5Ac, 3'-sialyllactose, or 6'-sialyllactose as a second antigen. Using an alternative strategy, we generated heterofunctional conjugates with three copies of the glycan epitope and one fluorescent group (on average) using a sequential dual-amine coupling strategy. These conjugation strategies should be easily generalized for conjugation of other complex glycans. We demonstrate that the glycan epitopes of heterofunctional conjugates engage and cluster target B-cell receptors and CD22 receptors on B cells, supporting the application of these reagents for investigating cellular response to carbohydrate antigens of the ABO blood group system.
Collapse
Affiliation(s)
- Gour Chand Daskhan
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta , Edmonton, Alberta T6G 2G2, Canada
| | - Hanh-Thuc Ton Tran
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta , Edmonton, Alberta T6G 2G2, Canada
| | - Peter J Meloncelli
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta , Edmonton, Alberta T6G 2G2, Canada
| | - Todd L Lowary
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta , Edmonton, Alberta T6G 2G2, Canada.,Canadian National Transplant Research Program, University of Alberta , Edmonton, Alberta T6G 2E1, Canada
| | - Lori J West
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta , Edmonton, Alberta T6G 2G2, Canada.,Department of Pediatrics, Surgery, Medical Microbiology and Immunology, and Laboratory Medicine and Pathology, Alberta Transplant Institute, University of Alberta Edmonton, Alberta T6G 2E1, Canada.,Canadian National Transplant Research Program, University of Alberta , Edmonton, Alberta T6G 2E1, Canada
| | - Christopher W Cairo
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta , Edmonton, Alberta T6G 2G2, Canada.,Canadian National Transplant Research Program, University of Alberta , Edmonton, Alberta T6G 2E1, Canada
| |
Collapse
|
95
|
Fulzele A, Bennett EJ. Ubiquitin diGLY Proteomics as an Approach to Identify and Quantify the Ubiquitin-Modified Proteome. Methods Mol Biol 2018; 1844:363-384. [PMID: 30242721 PMCID: PMC6791129 DOI: 10.1007/978-1-4939-8706-1_23] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Protein ubiquitylation is one of the most prevalent posttranslational modifications (PTM) within cells. Ubiquitin modification of target lysine residues typically marks substrates for proteasome-dependent degradation. However, ubiquitylation can also alter protein function through modulation of protein complexes, localization, or activity, without impacting protein turnover. Taken together, ubiquitylation imparts critical regulatory control over nearly every cellular, physiological, and pathophysiological process. Affinity purification techniques coupled with quantitative mass spectrometry have been robust tools to identify PTMs on endogenous proteins. A peptide antibody-based affinity approach has been successfully utilized to enrich for and identify endogenously ubiquitylated proteins. These antibodies recognize the Lys-ϵ-Gly-Gly (diGLY) remnant that is generated following trypsin digestion of ubiquitylated proteins, and these peptides can then be identified by standard mass spectrometry approaches. This technique has led to the identification of >50,000 ubiquitylation sites in human cells and quantitative information about how many of these sites are altered upon exposure to diverse proteotoxic stressors. In addition, the diGLY proteomics approach has led to the identification of specific ubiquitin ligase targets. Here we provide a detailed method to interrogate the ubiquitin-modified proteome from any eukaryotic organism or tissue.
Collapse
Affiliation(s)
- Amit Fulzele
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Eric J Bennett
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
96
|
KOU W, ZHANG H, KONSTANTIN C, CHEN HW. Charged Bubble Extractive Ionization Mass Spectrometry for Protein Analysis. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2017. [DOI: 10.1016/s1872-2040(17)61060-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
97
|
Hong P, Sun H, Sha L, Pu Y, Khatri K, Yu X, Tang Y, Lin C. GlycoDeNovo - an Efficient Algorithm for Accurate de novo Glycan Topology Reconstruction from Tandem Mass Spectra. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:2288-2301. [PMID: 28786094 PMCID: PMC5647224 DOI: 10.1007/s13361-017-1760-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/03/2017] [Accepted: 07/09/2017] [Indexed: 05/15/2023]
Abstract
A major challenge in glycomics is the characterization of complex glycan structures that are essential for understanding their diverse roles in many biological processes. We present a novel efficient computational approach, named GlycoDeNovo, for accurate elucidation of the glycan topologies from their tandem mass spectra. Given a spectrum, GlycoDeNovo first builds an interpretation-graph specifying how to interpret each peak using preceding interpreted peaks. It then reconstructs the topologies of peaks that contribute to interpreting the precursor ion. We theoretically prove that GlycoDeNovo is highly efficient. A major innovative feature added to GlycoDeNovo is a data-driven IonClassifier which can be used to effectively rank candidate topologies. IonClassifier is automatically learned from experimental spectra of known glycans to distinguish B- and C-type ions from all other ion types. Our results showed that GlycoDeNovo is robust and accurate for topology reconstruction of glycans from their tandem mass spectra. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Pengyu Hong
- Department of Computer Science, Brandeis University, Waltham, MA, 02453, USA.
| | - Hui Sun
- Department of Computer Science, Brandeis University, Waltham, MA, 02453, USA
| | - Long Sha
- Department of Computer Science, Brandeis University, Waltham, MA, 02453, USA
| | - Yi Pu
- Department of Chemistry, Boston University, Boston, MA, 02215, USA
| | - Kshitij Khatri
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Xiang Yu
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Yang Tang
- Department of Chemistry, Boston University, Boston, MA, 02215, USA
| | - Cheng Lin
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, 02118, USA.
| |
Collapse
|
98
|
Zhou W, Ma H, Deng G, Tang L, Lu J, Chen X. Clinical significance and biological function of fucosyltransferase 2 in lung adenocarcinoma. Oncotarget 2017; 8:97246-97259. [PMID: 29228607 PMCID: PMC5722559 DOI: 10.18632/oncotarget.21896] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 09/05/2017] [Indexed: 11/25/2022] Open
Abstract
Fucosylation, which is catalyzed by fucosyltransferases (FUTs), is one of the most important glycosylation events involved in cancer. Studies have shown that fucosyltransferase 8 (FUT8) is overexpressed in NSCLC and promotes lung cancer progression. However, there are no reports about the pathological role of fucosyltransferase 2 (FUT2) in lung cancer. To identify FUT2 associated with lung cancer, the expression and clinical significance of FUT2 in lung cancer was investigated by Real-Time PCR, Immunohistochemistry and Western Blot. In addition, we investigated the effect of knockdown FUT2 in lung adenocarcinoma cells. The results showed that the expression of FUT2 in lung adenocarcinoma is higher than that in adjacent noncancerous tissues. Knocking down FUT2 in A549 and H1299 cells decreased cell proliferation, migration and invasion, and increased cell apoptosis compared to corresponding control cells. Furthermore, Western Blot showed that knockdown FUT2 can impact the expression of migration-associated and apoptosis-associated proteins in A549 cells. Our results suggest that FUT2 may be associated with lung adenocarcinoma development and thus is a potential biomarker or/and therapeutic target in lung adenocarcinoma.
Collapse
Affiliation(s)
- Wenyuan Zhou
- Institute of Glycobiological Engineering/School of Laboratory Medicine & Life Sciences, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine & Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Huijun Ma
- Institute of Glycobiological Engineering/School of Laboratory Medicine & Life Sciences, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine & Life Sciences, Wenzhou Medical University, Wenzhou, China.,Department of Laboratory, Women and Children's Hospital of Qingdao, Qingdao, China
| | - Guoqing Deng
- Institute of Glycobiological Engineering/School of Laboratory Medicine & Life Sciences, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine & Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Lili Tang
- Institute of Glycobiological Engineering/School of Laboratory Medicine & Life Sciences, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine & Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jianxin Lu
- Institute of Glycobiological Engineering/School of Laboratory Medicine & Life Sciences, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine & Life Sciences, Wenzhou Medical University, Wenzhou, China.,Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiaoming Chen
- Institute of Glycobiological Engineering/School of Laboratory Medicine & Life Sciences, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine & Life Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
99
|
Glycan profiling of proteins using lectin binding by Surface Plasmon Resonance. Anal Biochem 2017; 538:53-63. [PMID: 28947169 DOI: 10.1016/j.ab.2017.09.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 09/20/2017] [Accepted: 09/21/2017] [Indexed: 01/21/2023]
Abstract
Glycan profiling of proteins was studied through their lectin binding activity by Surface Plasmon Resonance (SPR). To validate the method, we monitored specific lectin binding with sequential removal of sugar moieties from human transferrin using specific glycosidases. The results clearly indicated that glycans on the protein can be identified by their selective binding activity to various lectins. Using this method, we characterized Fc glycosylation profiles of therapeutic peptibodies and antibodies expressed in mammalian cells (CHO and HEK 293 6E cells), with E. coli expressed proteins as the negative controls. We observed that antibodies expressed in CHO cells did not contain any sialic acid, while antibodies expressed in 293 6E cells contained sialic acid. CHO cell expressed antibodies were also more heavily fucosylated than the ones expressed by 293 6E cells. We further applied this method to measure the fucose composition of glycan engineered mouse antibodies, as well as to determine mannose composition of human antibody variants with depletion or enrichment of high mannose. The glycan profiles generated using this method were comparable to results from 2-AB labeled glycan analysis of normal-phase separated glycans, and Fc gamma receptor binding activity of the glycan engineered antibodies were consistent with their glycan profiles. Hence, we demonstrated that SPR lectin binding analysis can be a quick alternative method to profile protein glycosylation.
Collapse
|
100
|
Campbell MT, Chen D, Wallbillich NJ, Glish GL. Distinguishing Biologically Relevant Hexoses by Water Adduction to the Lithium-Cationized Molecule. Anal Chem 2017; 89:10504-10510. [DOI: 10.1021/acs.analchem.7b02647] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Matthew T. Campbell
- Department of Chemistry,
Caudill Laboratories, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Dazhe Chen
- Department of Chemistry,
Caudill Laboratories, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Nicholas J. Wallbillich
- Department of Chemistry,
Caudill Laboratories, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Gary L. Glish
- Department of Chemistry,
Caudill Laboratories, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|