51
|
Bikoff EK, Morgan MA, Robertson EJ. An expanding job description for Blimp-1/PRDM1. Curr Opin Genet Dev 2009; 19:379-85. [PMID: 19592232 DOI: 10.1016/j.gde.2009.05.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 05/19/2009] [Accepted: 05/19/2009] [Indexed: 12/13/2022]
Abstract
The master transcriptional regulator Blimp-1/PRDM1 contains an N-terminal PR/SET domain and five C2H2 zinc fingers located near its C-terminus that mediate DNA binding, nuclear import and recruitment of histone modifying enzymes. These activities account for its ability to control cell-fate decisions in the embryo and govern tissue homeostasis in multiple cell types in the adult organism. New experiments demonstrate an increasing degree of complexity associated with Blimp-1/PRDM1 target site selection and its associations with epigenetic modifiers. Our current understanding of how this single unique species within the family of structurally similar PRDM proteins regulates gene expression patterns and governs developmental programmes in different cell lineages is discussed.
Collapse
Affiliation(s)
- Elizabeth K Bikoff
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| | | | | |
Collapse
|
52
|
Corty MM, Matthews BJ, Grueber WB. Molecules and mechanisms of dendrite development in Drosophila. Development 2009; 136:1049-61. [PMID: 19270170 DOI: 10.1242/dev.014423] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Neurons are one of the most morphologically diverse cell types, in large part owing to their intricate dendrite branching patterns. Dendrites are structures that are specialized to receive and process inputs in neurons, thus their specific morphologies reflect neural connectivity and influence information flow through circuits. Recent studies in Drosophila on the molecular basis of dendrite diversity, dendritic guidance, the cell biology of dendritic branch patterning and territory formation have identified numerous intrinsic and extrinsic cues that shape diverse features of dendrites. As we discuss in this review, many of the mechanisms that are being elucidated show conservation in diverse systems.
Collapse
Affiliation(s)
- Megan M Corty
- Center for Neurobiology and Behavior, Columbia University Medical Center, New York, NY 10032, USA.
| | | | | |
Collapse
|
53
|
Prdm proto-oncogene transcription factor family expression and interaction with the Notch-Hes pathway in mouse neurogenesis. PLoS One 2008; 3:e3859. [PMID: 19050759 PMCID: PMC2585159 DOI: 10.1371/journal.pone.0003859] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Accepted: 11/07/2008] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Establishment and maintenance of a functional central nervous system (CNS) requires a highly orchestrated process of neural progenitor cell proliferation, cell cycle exit, and differentiation. An evolutionary conserved program consisting of Notch signalling mediated by basic Helix-Loop-Helix (bHLH) transcription factor activity is necessary for both the maintenance of neural progenitor cell character and the progression of neurogenesis; however, additional players in mammalian CNS neural specification remain largely unknown. In Drosophila we recently characterized Hamlet, a transcription factor that mediates Notch signalling and neural cell fate. METHODOLOGY/PRINCIPAL FINDINGS Hamlet is a member of the Prdm (PRDI-BF1 and RIZ homology domain containing) proto-oncogene transcription factor family, and in this study we report that multiple genes in the Prdm family (Prdm6, 8, 12, 13 and 16) are expressed in the developing mouse CNS in a spatially and temporally restricted manner. In developing spinal cord Prdm8, 12 and 13 are expressed in precise neuronal progenitor zones suggesting that they may specify discrete neuronal subtypes. In developing telencephalon Prdm12 and 16 are expressed in the ventricular zone in a lateral to medial graded manner, and Prdm8 is expressed in a complementary domain in postmitotic neurons. In postnatal brain Prdm8 additionally shows restricted expression in cortical layers 2/3 and 4, the hippocampus, and the amygdala. To further elucidate roles of Prdm8 and 16 in the developing telencephalon we analyzed the relationship between these factors and the bHLH Hes (Hairy and enhancer of split homolog) effectors of Notch signalling. In Hes null telencephalon neural differentiation is enhanced, Prdm8 expression is upregulated, and Prdm16 expression is downregulated; conversely in utero electroporation of Hes1 into the developing telencephalon upregulates Prdm16 expression. CONCLUSIONS/SIGNIFICANCE Our data demonstrate that Prdm genes are regulated by the Notch-Hes pathway and represent strong candidates to control neural class specification and the sequential progression of mammalian CNS neurogenesis.
Collapse
|
54
|
Stern MD, Aihara H, Roccaro GA, Cheung L, Zhang H, Negeri D, Nibu Y. CtBP is required for proper development of peripheral nervous system in Drosophila. Mech Dev 2008; 126:68-79. [PMID: 18992810 DOI: 10.1016/j.mod.2008.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 09/19/2008] [Accepted: 10/08/2008] [Indexed: 10/21/2022]
Abstract
C-terminal binding protein (CtBP) is an evolutionarily and functionally conserved transcriptional corepressor known to integrate diverse signals to regulate transcription. Drosophila CtBP (dCtBP) regulates tissue specification and segmentation during early embryogenesis. Here, we investigated the roles of dCtBP during development of the peripheral nervous system (PNS). Our study includes a detailed quantitative analysis of how altered dCtBP activity affects the formation of adult mechanosensory bristles. We found that dCtBP loss-of-function resulted in a series of phenotypes with the most prevalent being supernumerary bristles. These dCtBP phenotypes are more complex than those caused by Hairless, a known dCtBP-interacting factor that regulates bristle formation. The emergence of additional bristles correlated with the appearance of extra sensory organ precursor (SOP) cells in earlier stages, suggesting that dCtBP may directly or indirectly inhibit SOP cell fates. We also found that development of a subset of bristles was regulated by dCtBP associated with U-shaped through the PxDLS dCtBP-interacting motif. Furthermore, the double bristle with sockets phenotype induced by dCtBP mutations suggests the involvement of this corepressor in additional molecular pathways independent of both Hairless and U-shaped. We therefore propose that dCtBP is part of a gene circuitry that controls the patterning and differentiation of the fly PNS via multiple mechanisms.
Collapse
Affiliation(s)
- Mark D Stern
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY 10065, USA
| | | | | | | | | | | | | |
Collapse
|
55
|
Nano-opto-mechanical characterization of neuron membrane mechanics under cellular growth and differentiation. Biomed Microdevices 2008; 10:611-22. [DOI: 10.1007/s10544-008-9172-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
56
|
Moore AW. Intrinsic mechanisms to define neuron class-specific dendrite arbor morphology. Cell Adh Migr 2008; 2:81-2. [PMID: 19262120 DOI: 10.4161/cam.2.2.6395] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The class-specific transcription factors Knot and Cut act during dendrite arbor development to define the characteristic dendrite branching pattern of the Drosophila class IV dendritic arborisation sensory neurons. Knot mediates dendrite arbor outgrowth and branching via a microtubule-based program that includes upregulation of the microtubule severing protein Spastin. On the other hand, Cut promotes dendrite arbor outgrowth and branching through a filamentous-actin based program and additionally promotes filopodia formation. We discuss how differential regulation of the activity of the Rac1 small GTPase by Knot and Cut may underlie some of the different roles these transcription factors play during class-specific dendrite arbor morphogenesis.
Collapse
Affiliation(s)
- Adrian Walton Moore
- Molecular Neuropathology Group, RIKEN Brain Science Institute, Wako, Saitama, Japan.
| |
Collapse
|
57
|
Cline H, Haas K. The regulation of dendritic arbor development and plasticity by glutamatergic synaptic input: a review of the synaptotrophic hypothesis. J Physiol 2008; 586:1509-17. [PMID: 18202093 PMCID: PMC2375708 DOI: 10.1113/jphysiol.2007.150029] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2007] [Accepted: 01/10/2008] [Indexed: 01/15/2023] Open
Abstract
The synaptotropic hypothesis, which states that synaptic inputs control the elaboration of dendritic (and axonal) arbors was articulated by Vaughn in 1989. Today the role of synaptic inputs in controlling neuronal structural development remains an area of intense research activity. Several recent studies have applied modern molecular genetic, imaging and electrophysiological methods to this question and now provide strong evidence that maturation of excitatory synaptic inputs is required for the development of neuronal structure in the intact brain. Here we critically review data concerning the hypothesis with the expectation that understanding the circumstances when the data do and do not support the hypothesis will be most valuable. The synaptotrophic hypothesis contributes at both conceptual and mechanistic levels to our understanding of how relatively minor changes in levels or function of synaptic proteins may have profound effects on circuit development and plasticity.
Collapse
Affiliation(s)
- Hollis Cline
- Cold Spring Harbour Laboratory, 1 Bungtown Road, Cold Spring Harbour, NY 11724, USA.
| | | |
Collapse
|
58
|
Crozatier M, Vincent A. Control of multidendritic neuron differentiation in Drosophila: The role of Collier. Dev Biol 2008; 315:232-42. [DOI: 10.1016/j.ydbio.2007.12.030] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Revised: 12/20/2007] [Accepted: 12/21/2007] [Indexed: 10/22/2022]
|
59
|
Métais JY, Dunbar CE. The MDS1-EVI1 gene complex as a retrovirus integration site: impact on behavior of hematopoietic cells and implications for gene therapy. Mol Ther 2008; 16:439-49. [PMID: 18227842 DOI: 10.1038/sj.mt.6300372] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Gene therapy trials have been performed with virus-based vectors that have the ability to integrate permanently into genomic DNA and thus allow prolonged expression of corrective genes after transduction of hematopoietic stem and progenitor cells. Adverse events observed during the X-linked severe combined immunodeficiency gene therapy trial revealed a significant risk of genotoxicity related to retrovirus vector integration and activation of adjacent proto-oncogenes, with several cases of T-cell leukemia linked to vector activation of the LMO2 gene. In patients with chronic granulomatous disease (CGD), rhesus macaques, and mice receiving hematopoietic stem and progenitor cells transduced with retrovirus vectors, a highly non-random pattern of vector integration has been reported. The most striking finding has been overrepresentation of integrations in one specific genomic locus, a complex containing the MDS1 and the EVI1 genes. Most evidence suggests that this overrepresentation is primarily due to a modification of primitive myeloid cell behavior by overexpression of EVI1 or MDS1-EVI1, as opposed to a specific predilection for integration at this site. Three different proteins can be produced from this complex locus: MDS1, MDS1-EVI1, and EVI1. This review will summarize current knowledge regarding this locus and its gene products, with specific focus on issues with relevance to gene therapy, leukemogenesis, and hematopoiesis. Insights into the mechanisms that result in altered hematopoiesis and leukemogenesis when this locus is dysregulated could improve the safety of gene therapy in the future.
Collapse
Affiliation(s)
- Jean-Yves Métais
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
60
|
Hwang RY, Zhong L, Xu Y, Johnson T, Zhang F, Deisseroth K, Tracey WD. Nociceptive neurons protect Drosophila larvae from parasitoid wasps. Curr Biol 2007; 17:2105-2116. [PMID: 18060782 PMCID: PMC2225350 DOI: 10.1016/j.cub.2007.11.029] [Citation(s) in RCA: 325] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Revised: 11/08/2007] [Accepted: 11/09/2007] [Indexed: 11/22/2022]
Abstract
BACKGROUND Natural selection has resulted in a complex and fascinating repertoire of innate behaviors that are produced by insects. One puzzling example occurs in fruit fly larvae that have been subjected to a noxious mechanical or thermal sensory input. In response, the larvae "roll" with a motor pattern that is completely distinct from the style of locomotion that is used for foraging. RESULTS We have precisely mapped the sensory neurons that are used by the Drosophila larvae to detect nociceptive stimuli. By using complementary optogenetic activation and targeted silencing of sensory neurons, we have demonstrated that a single class of neuron (class IV multidendritic neuron) is sufficient and necessary for triggering the unusual rolling behavior. In addition, we find that larvae have an innately encoded preference in the directionality of rolling. Surprisingly, the initial direction of rolling locomotion is toward the side of the body that has been stimulated. We propose that directional rolling might provide a selective advantage in escape from parasitoid wasps that are ubiquitously present in the natural environment of Drosophila. Consistent with this hypothesis, we have documented that larvae can escape the attack of Leptopilina boulardi parasitoid wasps by rolling, occasionally flipping the attacker onto its back. CONCLUSIONS The class IV multidendritic neurons of Drosophila larvae are nociceptive. The nociception behavior of Drosophila melanagaster larvae includes an innately encoded directional preference. Nociception behavior is elicited by the ecologically relevant sensory stimulus of parasitoid wasp attack.
Collapse
Affiliation(s)
- Richard Y Hwang
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Lixian Zhong
- Department of Pharmacology, Duke University Medical Center, Durham, North Carolina 27710
| | - Yifan Xu
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Trevor Johnson
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Feng Zhang
- Department of Bioengineering, Duke University Medical Center, Durham, NC; 27710
- Department of Psychiatry, Stanford University, Stanford, California 94305
| | - Karl Deisseroth
- Department of Bioengineering, Duke University Medical Center, Durham, NC; 27710
- Department of Psychiatry, Stanford University, Stanford, California 94305
| | - W Daniel Tracey
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina 27710
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
61
|
Gunnersen JM, Kim MH, Fuller SJ, De Silva M, Britto JM, Hammond VE, Davies PJ, Petrou S, Faber EL, Sah P, Tan SS. Sez-6 Proteins Affect Dendritic Arborization Patterns and Excitability of Cortical Pyramidal Neurons. Neuron 2007; 56:621-39. [DOI: 10.1016/j.neuron.2007.09.018] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Revised: 01/25/2007] [Accepted: 09/11/2007] [Indexed: 10/22/2022]
|
62
|
Fumasoni I, Meani N, Rambaldi D, Scafetta G, Alcalay M, Ciccarelli FD. Family expansion and gene rearrangements contributed to the functional specialization of PRDM genes in vertebrates. BMC Evol Biol 2007; 7:187. [PMID: 17916234 PMCID: PMC2082429 DOI: 10.1186/1471-2148-7-187] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Accepted: 10/04/2007] [Indexed: 12/11/2022] Open
Abstract
Background Progressive diversification of paralogs after gene expansion is essential to increase their functional specialization. However, mode and tempo of this divergence remain mostly unclear. Here we report the comparative analysis of PRDM genes, a family of putative transcriptional regulators involved in human tumorigenesis. Results Our analysis assessed that the PRDM genes originated in metazoans, expanded in vertebrates and further duplicated in primates. We experimentally showed that fast-evolving paralogs are poorly expressed, and that the most recent duplicates, such as primate-specific PRDM7, acquire tissue-specificity. PRDM7 underwent major structural rearrangements that decreased the number of encoded Zn-Fingers and modified gene splicing. Through internal duplication and activation of a non-canonical splice site (GC-AG), PRDM7 can acquire a novel intron. We also detected an alternative isoform that can retain the intron in the mature transcript and that is predominantly expressed in human melanocytes. Conclusion Our findings show that (a) molecular evolution of paralogs correlates with their expression pattern; (b) gene diversification is obtained through massive genomic rearrangements; and (c) splicing modification contributes to the functional specialization of novel genes.
Collapse
Affiliation(s)
- Irene Fumasoni
- Department of Experimental Oncology, European Institute of Oncology, IFOM-IEO Campus, Via Adamello 16, 20139 Milan, Italy.
| | | | | | | | | | | |
Collapse
|
63
|
Gao FB. Molecular and cellular mechanisms of dendritic morphogenesis. Curr Opin Neurobiol 2007; 17:525-32. [PMID: 17933513 PMCID: PMC2237896 DOI: 10.1016/j.conb.2007.08.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Revised: 08/03/2007] [Accepted: 08/24/2007] [Indexed: 11/28/2022]
Abstract
Dendrites exhibit unique cell type-specific branching patterns and targeting specificity that are crucially important for neuronal function and connectivity. Recent evidence indicates that highly complex transcriptional regulatory networks dictate various aspects of dendritic outgrowth, branching, and routing. In addition to other intrinsic molecular pathways such as membrane protein trafficking, interactions between neighboring dendritic branches also contribute to the final specification of dendritic morphology. Nonredundant coverage by dendrites of same type of neurons, known as tiling, requires the actions of the Tricornered/Furry (Sax-1/Sax-2) signaling pathway. However, the dendrites of a neuron do not crossover each other, a process called self-avoidance that is mediated by Down's syndrome cell adhesion molecule (Dscam). Those exciting findings have enhanced significantly our understanding of dendritic morphogenesis and revealed the magnitude of complexity in the underlying molecular regulatory networks.
Collapse
Affiliation(s)
- Fen-Biao Gao
- Gladstone Institute of Neurological Disease, and Department of Neurology, University of California, San Francisco, CA 94158, United States.
| |
Collapse
|
64
|
Hattori Y, Sugimura K, Uemura T. Selective expression of Knot/Collier, a transcriptional regulator of the EBF/Olf-1 family, endows the Drosophila sensory system with neuronal class-specific elaborated dendritic patterns. Genes Cells 2007; 12:1011-22. [PMID: 17825045 DOI: 10.1111/j.1365-2443.2007.01107.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Dendritic tree morphology is a hallmark of cellular diversity in the nervous system, and Drosophila dendritic arborization (da) neurons provide an excellent model system to study its molecular basis. The da neurons are classified into four classes I-IV in the order of increasing branching complexity. A transcriptional regulator of the early B-cell factor (EBF)/olfactory 1 (Olf-1) family, Knot (Kn)/Collier (Col) is expressed selectively in class IV neurons, which generate the most expansive and complicated dendritic trees in the four classes. Loss of kn function in class IV neurons greatly reduced the number of their dendritic branches. Conversely mis-expression of kn in classes I and II produced supernumerary higher-order branches, whereas class III-specific short and straight terminal branches was hardly formed by kn mis-expression. Neither kn loss of function nor mis-expression were associated with dramatic alterations in the expression patterns of two other transcriptional regulators, Abrupt (Ab) and Cut (Ct), which play important roles in shaping dendritic trees with distinct class specificity from Kn. In contrast, Kn was necessary and sufficient to drive expression of a gene that encodes a class IV-specific channel protein. Collectively, all of our results suggest that Kn exerts its cell-autonomous function to control the formation, and possibly the function, of class IV-like elaborated dendritic arbors.
Collapse
Affiliation(s)
- Yukako Hattori
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | | | | |
Collapse
|
65
|
Wieser R. The oncogene and developmental regulator EVI1: expression, biochemical properties, and biological functions. Gene 2007; 396:346-57. [PMID: 17507183 DOI: 10.1016/j.gene.2007.04.012] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 03/14/2007] [Accepted: 04/09/2007] [Indexed: 01/16/2023]
Abstract
The EVI1 gene codes for a zinc finger transcription factor with important roles both in normal development and in leukemogenesis. Transcriptional activation of this gene through chromosome rearrangements or other, yet to be identified mechanisms leads to particularly aggressive forms of human myeloid leukemia. In vitro as well as in animal model systems, EVI1 affected cellular proliferation, differentiation, and apoptosis in cell type specific ways. Retroviral integrations into the EVI1 locus provided cells with increased abilities to engraft, survive, and proliferate in bone marrow transplantation experiments. Experimental overexpression of EVI1 by itself was insufficient to cause leukemia in animal model systems, but it cooperated with other genes in this process. This review summarizes the currently available experimental evidence for the proposed biochemical and biological functions of this important oncogene.
Collapse
Affiliation(s)
- Rotraud Wieser
- Department of Medical Genetics, Medical University of Vienna, Währingerstr, 10, A-1090 Wien, Austria.
| |
Collapse
|
66
|
Abstract
An RNA interference screen reveals roles for transcription factors in regulating the outgrowth and branching of the dendrites of Drosophila neurons. How the morphology of individual neurons is controlled remains poorly understood. A recent in vivo genome-wide screen based on RNA interference identified a large number of transcriptional factors that regulate the stereotyped growth and branching of dendrites on some Drosophila sensory neurons.
Collapse
Affiliation(s)
- Michel Tassetto
- Gladstone Institute of Neurological Disease, and Department of Neurology, University of California, San Francisco, CA 94158, USA
| | - Fen-Biao Gao
- Gladstone Institute of Neurological Disease, and Department of Neurology, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
67
|
Mukhopadhyay S, Lu Y, Qin H, Lanjuin A, Shaham S, Sengupta P. Distinct IFT mechanisms contribute to the generation of ciliary structural diversity in C. elegans. EMBO J 2007; 26:2966-80. [PMID: 17510633 PMCID: PMC1894762 DOI: 10.1038/sj.emboj.7601717] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2006] [Accepted: 04/09/2007] [Indexed: 01/18/2023] Open
Abstract
Individual cell types can elaborate morphologically diverse cilia. Cilia are assembled via intraflagellar transport (IFT) of ciliary precursors; however, the mechanisms that generate ciliary diversity are unknown. Here, we examine IFT in the structurally distinct cilia of the ASH/ASI and the AWB chemosensory neurons in Caenorhabditis elegans, enabling us to compare IFT in specific cilia types. We show that unlike in the ASH/ASI cilia, the OSM-3 kinesin moves independently of the kinesin-II motor in the AWB cilia. Although OSM-3 is essential to extend the distal segments of the ASH/ASI cilia, it is not required to build the AWB distal segments. Mutations in the fkh-2 forkhead domain gene result in AWB-specific defects in ciliary morphology, and FKH-2 regulates kinesin-II subunit gene expression specifically in AWB. Our results suggest that cell-specific regulation of IFT contributes to the generation of ciliary diversity, and provide insights into the networks coupling the acquisition of ciliary specializations with other aspects of cell fate.
Collapse
Affiliation(s)
- Saikat Mukhopadhyay
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, MA, USA
| | - Yun Lu
- Laboratory of Developmental Genetics, The Rockefeller University, New York, NY, USA
| | - Hongmin Qin
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Anne Lanjuin
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, MA, USA
| | - Shai Shaham
- Laboratory of Developmental Genetics, The Rockefeller University, New York, NY, USA
| | - Piali Sengupta
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, MA, USA
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, 415 South Street, Waltham, MA 2454, USA. Tel.: +1 781 736 2686; Fax: +1 781 736 3107; E-mail:
| |
Collapse
|
68
|
Hwang BJ, Meruelo AD, Sternberg PW. C. elegans EVI1 proto-oncogene, EGL-43, is necessary for Notch-mediated cell fate specification and regulates cell invasion. Development 2007; 134:669-79. [PMID: 17215301 DOI: 10.1242/dev.02769] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During C. elegans development, LIN-12 (Notch) signaling specifies the anchor cell (AC) and ventral uterine precursor cell (VU) fates from two equivalent pre-AC/pre-VU cells in the hermaphrodite gonad. Once specified, the AC induces patterned proliferation of vulva via expression of LIN-3 (EGF) and then invades into the vulval epithelium. Although these cellular processes are essential for the proper organogenesis of vulva and appear to be temporally regulated, the mechanisms that coordinate the processes are not well understood. We computationally identified egl-43 as a gene likely to be expressed in the pre-AC/pre-VU cells and the AC, based on the presence of an enhancer element similar to the one that transcribes lin-3 in the same cells. Genetic epistasis analyses reveal that egl-43 acts downstream of or parallel to lin-12 in AC/VU cell fate specification at an early developmental stage, and functions downstream of fos-1 as well as upstream of zmp-1 and him-4 to regulate AC invasion at a later developmental stage. Characterization of the egl-43 regulatory region suggests that EGL-43 is a direct target of LIN-12 and HLH-2 (E12/47), which is required for the specification of the VU fate during AC/VU specification. EGL-43 also regulates basement membrane breakdown during AC invasion through a FOS-1-responsive regulatory element that drives EGL-43 expression in the AC and VU cells at the later stage. Thus, egl-43 integrates temporally distinct upstream regulatory events and helps program cell fate specification and cell invasion.
Collapse
Affiliation(s)
- Byung Joon Hwang
- Howard Hughes Medical Institute and Division of Biology, 156-29, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | |
Collapse
|
69
|
Parrish JZ, Emoto K, Kim MD, Jan YN. Mechanisms that regulate establishment, maintenance, and remodeling of dendritic fields. Annu Rev Neurosci 2007; 30:399-423. [PMID: 17378766 DOI: 10.1146/annurev.neuro.29.051605.112907] [Citation(s) in RCA: 209] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although dendrite arborization patterns are hallmarks of neuronal type and critical determinants of neuronal function, how dendritic arbors take shape is still largely unknown. Transcription factors play important roles in specifying neuronal types and have a profound influence on dendritic arbor size and complexity. The space that a dendritic arbor occupies is determined largely by a combination of growth-promoting signals that regulate arbor size, chemotropic cues that steer dendrites into the appropriate space, and neurite-neurite contacts that ensure proper representation of the dendritic field and appropriate synaptic contacts. Dendritic arbors are largely maintained over the neuron's lifetime, but in some cases, dendritic arbors are refined, in large part as a result of neuronal activity. In this review, we summarize our current understanding of the cellular and molecular mechanisms that regulate dendritic field formation and influence the shaping of dendritic arbors.
Collapse
Affiliation(s)
- Jay Z Parrish
- Howard Hughes Medical Institute, Departments of Physiology, Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California 94143, USA
| | | | | | | |
Collapse
|
70
|
Grueber WB, Ye B, Yang CH, Younger S, Borden K, Jan LY, Jan YN. Projections of Drosophila multidendritic neurons in the central nervous system: links with peripheral dendrite morphology. Development 2007; 134:55-64. [PMID: 17164414 DOI: 10.1242/dev.02666] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Neurons establish diverse dendritic morphologies during development, and a major challenge is to understand how these distinct developmental programs might relate to, and influence, neuronal function. Drosophila dendritic arborization (da) sensory neurons display class-specific dendritic morphology with extensive coverage of the body wall. To begin to build a basis for linking dendrite structure and function in this genetic system, we analyzed da neuron axon projections in embryonic and larval stages. We found that multiple parameters of axon morphology, including dorsoventral position, midline crossing and collateral branching, correlate with dendritic morphological class. We have identified a class-specific medial-lateral layering of axons in the central nervous system formed during embryonic development, which could allow different classes of da neurons to develop differential connectivity to second-order neurons. We have examined the effect of Robo family members on class-specific axon lamination, and have also taken a forward genetic approach to identify new genes involved in axon and dendrite development. For the latter, we screened the third chromosome at high resolution in vivo for mutations that affect class IV da neuron morphology. Several known loci, as well as putative novel mutations, were identified that contribute to sensory dendrite and/or axon patterning. This collection of mutants, together with anatomical data on dendrites and axons, should begin to permit studies of dendrite diversity in a combined developmental and functional context, and also provide a foundation for understanding shared and distinct mechanisms that control axon and dendrite morphology.
Collapse
Affiliation(s)
- Wesley B Grueber
- Departments of Physiology and Biochemistry, University of California, San Francisco, Rock Hall, Room GD481, 1550 4th Street, San Francisco, CA 94143, USA
| | | | | | | | | | | | | |
Collapse
|
71
|
Alzuherri H, McGilvray R, Kilbey A, Bartholomew C. Conservation and expression of a novel alternatively spliced Evi1 exon. Gene 2006; 384:154-62. [PMID: 17014970 DOI: 10.1016/j.gene.2006.07.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Revised: 07/20/2006] [Accepted: 07/25/2006] [Indexed: 11/19/2022]
Abstract
The Evi1 transcriptional repressor protein is expressed in a developmentally regulated manner, is essential for normal development, participates in regulating cell proliferation and differentiation of cells of haemopoietic and neuronal origin and contributes to the progression of leukaemia. In this report we describe a new murine Evi1 gene transcript (Delta105) that contains two alternatively spliced regions encoding a 9 amino acid insertion (Rp+9) within the repressor domain (Rp) and a 105 amino acid C-terminal truncation. Abundant levels of the 105 amino acid truncated protein are observed in murine leukaemia cells. The combined primary sequence alterations do not affect the DNA binding, transcriptional repressor or CtBP2 protein binding properties of Evi1 but they do reduce its transforming and cell proliferation stimulating activities. Reduced transforming activity is most likely due to the C-terminal truncation as the activity of Evi1 containing either Rp or Rp+9 is indistinguishable. Both isoforms exist in all murine tissues and cell lines examined. However, only the Rp+9 alternative splice variant is also found in humans and other vertebrates. Murine and human forms of Evi1 with Rp or Rp+9 exist. The additional 9 amino acids are encoded by a conserved 27 nucleotide exon, the overall structural organisation of the gene being preserved in the two species. The function of the Rp+9 and Delta105 splice variants is unknown although the conservation of Rp+9 throughout evolution in vertebrate species suggests it is essential to the broad spectrum of biological activities attributed to this developmentally essential protein.
Collapse
Affiliation(s)
- Hadi Alzuherri
- Glasgow Caledonian University, Department of Biological and Biomedical Sciences, City Campus Cowcaddens Road Glasgow, G4 OBA, United Kingdom
| | | | | | | |
Collapse
|
72
|
Charych EI, Akum BF, Goldberg JS, Jörnsten RJ, Rongo C, Zheng JQ, Firestein BL. Activity-independent regulation of dendrite patterning by postsynaptic density protein PSD-95. J Neurosci 2006; 26:10164-76. [PMID: 17021172 PMCID: PMC6674632 DOI: 10.1523/jneurosci.2379-06.2006] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Dendritic morphology determines many aspects of neuronal function, including action potential propagation and information processing. However, the question remains as to how distinct neuronal dendrite branching patterns are established. Here, we report that postsynaptic density-95 (PSD-95), a protein involved in dendritic spine maturation and clustering of synaptic signaling proteins, plays a novel role in regulating dendrite outgrowth and branching, independent of its synaptic functions. In immature neurons, overexpression of PSD-95 decreases the proportion of primary dendrites that undergo additional branching, resulting in a marked reduction of secondary dendrite number. Conversely, knocking down PSD-95 protein in immature neurons increases secondary dendrite number. The effect of PSD-95 is activity-independent and is antagonized by cypin, a nonsynaptic protein that regulates PSD-95 localization. Binding of cypin to PSD-95 correlates with formation of stable dendrite branches. Finally, overexpression of PSD-95 in COS-7 cells disrupts microtubule organization, indicating that PSD-95 may modulate microtubules to regulate dendritic branching. Whereas many factors have been identified which regulate dendrite number, our findings provide direct evidence that proteins primarily involved in synaptic functions can also play developmental roles in shaping how a neuron patterns its dendrite branches.
Collapse
Affiliation(s)
| | - Barbara F. Akum
- Departments of Cell Biology and Neuroscience
- Molecular Biosciences Graduate Program, Rutgers University, Piscataway, New Jersey 08854-8082, and
| | | | | | | | - James Q. Zheng
- Neuroscience and Cell Biology, The University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854
| | | |
Collapse
|
73
|
Parrish JZ, Kim MD, Jan LY, Jan YN. Genome-wide analyses identify transcription factors required for proper morphogenesis of Drosophila sensory neuron dendrites. Genes Dev 2006; 20:820-35. [PMID: 16547170 PMCID: PMC1472285 DOI: 10.1101/gad.1391006] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2005] [Accepted: 02/01/2006] [Indexed: 01/18/2023]
Abstract
Dendrite arborization patterns are critical determinants of neuronal function. To explore the basis of transcriptional regulation in dendrite pattern formation, we used RNA interference (RNAi) to screen 730 transcriptional regulators and identified 78 genes involved in patterning the stereotyped dendritic arbors of class I da neurons in Drosophila. Most of these transcriptional regulators affect dendrite morphology without altering the number of class I dendrite arborization (da) neurons and fall primarily into three groups. Group A genes control both primary dendrite extension and lateral branching, hence the overall dendritic field. Nineteen genes within group A act to increase arborization, whereas 20 other genes restrict dendritic coverage. Group B genes appear to balance dendritic outgrowth and branching. Nineteen group B genes function to promote branching rather than outgrowth, and two others have the opposite effects. Finally, 10 group C genes are critical for the routing of the dendritic arbors of individual class I da neurons. Thus, multiple genetic programs operate to calibrate dendritic coverage, to coordinate the elaboration of primary versus secondary branches, and to lay out these dendritic branches in the proper orientation.
Collapse
Affiliation(s)
- Jay Z Parrish
- Department of Physiology, Howard Hughes Medical Institute, University of California, San Francisco, California 94143, USA
| | | | | | | |
Collapse
|
74
|
Niell CM. Theoretical analysis of a synaptotropic dendrite growth mechanism. J Theor Biol 2006; 241:39-48. [PMID: 16387325 DOI: 10.1016/j.jtbi.2005.11.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2005] [Revised: 11/01/2005] [Accepted: 11/03/2005] [Indexed: 11/19/2022]
Abstract
It is generally believed that the genome cannot encode explicit instructions to form each synaptic connection in the nervous system, but may provide general neurite growth mechanisms which will result in proper connectivity. Recent in vivo imaging has provided evidence for a synaptotropic growth mechanism, wherein synapses could influence dendrite growth by selectively stabilizing filopodia upon which they form. We undertook a theoretical investigation into the consequences of such a growth process. Discrete stochastic simulations demonstrate that the synaptotropic mechanism can result in decreased dendritic wiring length, is capable of searching for regions of high density pre-synaptic partners, and can recapitulate specific patterns of dendrite growth and connectivity. A mean-field analysis shows that growth by selective stabilization of filopodia can be approximated as a reaction-diffusion system, with a spatially varying diffusion constant that depends on the probability of synapse formation. Thus, growth will occur faster in regions of appropriate synaptic connections, and the net growth can be shown to climb a gradient of synaptic partner density. Synaptotropic growth thus presents a mechanism for the emergent development of connectivity based on local properties of the circuit elements, rather than explicit dependence on global guidance molecules or innate predetermined branching programs.
Collapse
Affiliation(s)
- Cristopher M Niell
- Department of Molecular and Cell Physiology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
75
|
Landgraf M, Evers JF. Control of dendritic diversity. Curr Opin Cell Biol 2005; 17:690-6. [PMID: 16226445 DOI: 10.1016/j.ceb.2005.09.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Accepted: 09/29/2005] [Indexed: 11/16/2022]
Abstract
The dendritic trees of different neuronal types display an astonishing diversity in structure and function. How this diversity is generated remains incompletely understood. However, recent studies have revealed some of the underlying mechanisms by which intrinsic programs of cell-type specification and extrinsic factors exert their effects on the dendritic cytoskeleton to regulate patterns of growth and branching.
Collapse
Affiliation(s)
- Matthias Landgraf
- University of Cambridge, Department of Zoology, Downing Street, Cambridge CB2 3EJ, UK.
| | | |
Collapse
|
76
|
Abstract
Neurons are highly polarized cells with some regions specified for information input--typically the dendrites--and others specialized for information output--the axons. By extending to a specific location and branching in a specific manner, the processes of neurons determine at a fundamental level how the nervous system is wired to produce behavior. Recent studies suggest that relatively small changes in neuronal morphology could conceivably contribute to striking behavioral distinctions between invertebrate species. We review recent data that begin to shed light on how neurons extend dendrites to their targets and acquire their particular branching morphologies, drawing primarily on data from genetic model organisms. We speculate about how and why the actions of these genes might facilitate the diversification of dendritic morphology.
Collapse
Affiliation(s)
- Wesley B Grueber
- Department of Physiology and Cellular Biophysics, Columbia University, 630 West 168th Street, New York, New York 10032,USA
| | | | | | | |
Collapse
|
77
|
Chen M, Lucas KG, Akum BF, Balasingam G, Stawicki TM, Provost JM, Riefler GM, Jörnsten RJ, Firestein BL. A novel role for snapin in dendrite patterning: interaction with cypin. Mol Biol Cell 2005; 16:5103-14. [PMID: 16120643 PMCID: PMC1266411 DOI: 10.1091/mbc.e05-02-0165] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Temporal and spatial assembly of signal transduction machinery determines dendrite branch patterning, a process crucial for proper synaptic transmission. Our laboratory previously cloned and characterized cypin, a protein that decreases PSD-95 family member localization and regulates dendrite number. Cypin contains zinc binding, collapsin response mediator protein (CRMP) homology, and PSD-95, Discs large, zona occludens-1 binding domains. Both the zinc binding and CRMP homology domains are needed for dendrite patterning. In addition, cypin binds tubulin via its CRMP homology domain to promote microtubule assembly. Using a yeast two-hybrid screen of a rat brain cDNA library with cypin lacking the carboxyl terminal eight amino acids as bait, we identified snapin as a cypin binding partner. Here, we show by affinity chromatography and coimmunoprecipitation that the carboxyl-terminal coiled-coil domain (H2) of snapin is required for cypin binding. In addition, snapin binds to cypin's CRMP homology domain, which is where tubulin binds. We also show that snapin competes with tubulin for binding to cypin, resulting in decreased microtubule assembly. Subsequently, overexpression of snapin in primary cultures of hippocampal neurons results in decreased primary dendrites present on these neurons and increased probability of branching. Together, our data suggest that snapin regulates dendrite number in developing neurons by modulating cypin-promoted microtubule assembly.
Collapse
Affiliation(s)
- Maxine Chen
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854-8082, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Brumby A, Secombe J, Horsfield J, Coombe M, Amin N, Coates D, Saint R, Richardson H. A genetic screen for dominant modifiers of a cyclin E hypomorphic mutation identifies novel regulators of S-phase entry in Drosophila. Genetics 2005; 168:227-51. [PMID: 15454540 PMCID: PMC1448096 DOI: 10.1534/genetics.104.026617] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Cyclin E together with its kinase partner Cdk2 is a critical regulator of entry into S phase. To identify novel genes that regulate the G1- to S-phase transition within a whole animal we made use of a hypomorphic cyclin E mutation, DmcycEJP, which results in a rough eye phenotype. We screened the X and third chromosome deficiencies, tested candidate genes, and carried out a genetic screen of 55,000 EMS or X-ray-mutagenized flies for second or third chromosome mutations that dominantly modified the DmcycEJP rough eye phenotype. We have focused on the DmcycEJP suppressors, S(DmcycEJP), to identify novel negative regulators of S-phase entry. There are 18 suppressor gene groups with more than one allele and several genes that are represented by only a single allele. All S(DmcycEJP) tested suppress the DmcycEJP rough eye phenotype by increasing the number of S phases in the postmorphogenetic furrow S-phase band. By testing candidates we have identified several modifier genes from the mutagenic screen as well as from the deficiency screen. DmcycEJP suppressor genes fall into the classes of: (1) chromatin remodeling or transcription factors; (2) signaling pathways; and (3) cytoskeletal, (4) cell adhesion, and (5) cytoarchitectural tumor suppressors. The cytoarchitectural tumor suppressors include scribble, lethal-2-giant-larvae (lgl), and discs-large (dlg), loss of function of which leads to neoplastic tumors and disruption of apical-basal cell polarity. We further explored the genetic interactions of scribble with S(DmcycEJP) genes and show that hypomorphic scribble mutants exhibit genetic interactions with lgl, scab (alphaPS3-integrin--cell adhesion), phyllopod (signaling), dEB1 (microtubule-binding protein--cytoskeletal), and moira (chromatin remodeling). These interactions of the cytoarchitectural suppressor gene, scribble, with cell adhesion, signaling, cytoskeletal, and chromatin remodeling genes, suggest that these genes may act in a common pathway to negatively regulate cyclin E or S-phase entry.
Collapse
Affiliation(s)
- Anthony Brumby
- Peter MacCallum Cancer Centre, East Melbourne, Victoria, 3002, Australia
| | | | | | | | | | | | | | | |
Collapse
|
79
|
Abstract
Neurons extend long axons and highly branched dendrites, and our understanding of the essential regulators of these processes has advanced in recent years. In the past year, investigators have shown that transcriptional control, posttranslational degradation and signaling cascades may be master regulators of axon and dendrite elongation and branching. Thus, evidence is mounting for the importance of the intrinsic growth state of a neuron as a crucial determinant of its ability to grow, or to regenerate, axons and dendrites.
Collapse
Affiliation(s)
- Jeffrey L Goldberg
- Department of Ophthalmology, McKnight Vision Research Center, Bascom Palmer Eye Institute, 1638 NW 10th Ave, Miami, Florida 33136, USA.
| |
Collapse
|
80
|
Orgogozo V, Grueber WB. FlyPNS, a database of the Drosophila embryonic and larval peripheral nervous system. BMC DEVELOPMENTAL BIOLOGY 2005; 5:4. [PMID: 15717925 PMCID: PMC552318 DOI: 10.1186/1471-213x-5-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2004] [Accepted: 02/17/2005] [Indexed: 11/18/2022]
Abstract
Background The embryonic and larval peripheral nervous system of Drosophila melanogaster is extensively studied as a very powerful model of developmental biology. One main advantage of this system is the ability to study the origin and development of individual sensory cells. However, there remain several discrepancies regarding the organization of sensory organs in each abdominal segment A1-A7. Description We have constructed a web site called FlyPNS (for Fly Peripheral Nervous System) that consolidates a wide range of published and unpublished information about the embryonic and larval sensory organs. It communicates (1) a PNS pattern that solves the discrepancies that have been found in the recent literature, (2) the correspondence between the different nomenclatures that have been used so far, (3) a comprehensive description of each sensory organ, and (4) a list of both published and unpublished markers to reliably identify each PNS cell. Conclusions The FlyPNS database integrates disparate data and nomenclature and thus helps understanding the conflicting observations that have been published recently. Furthermore, it is designed to provide assistance in the identification and study of individual sensory cells. We think it will be a useful resource for any researcher with interest in Drosophila sensory organs.
Collapse
Affiliation(s)
- Virginie Orgogozo
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Wesley B Grueber
- HHMI, Genetics, Development, and Behavioral Sciences Building GD481, 1550 4th Street, University of California, San Francisco, CA 94143-0725, USA
| |
Collapse
|
81
|
Shepherd D, Perry VH. Self-destruct programs in the processes of developing neurons. Curr Top Dev Biol 2005; 65:149-67. [PMID: 15642382 DOI: 10.1016/s0070-2153(04)65005-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Affiliation(s)
- David Shepherd
- School of Biological Sciences, University of Southampton, Southampton SO16 7PX, United Kingdom
| | | |
Collapse
|
82
|
Sugimura K, Satoh D, Estes P, Crews S, Uemura T. Development of morphological diversity of dendrites in Drosophila by the BTB-zinc finger protein abrupt. Neuron 2004; 43:809-22. [PMID: 15363392 DOI: 10.1016/j.neuron.2004.08.016] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2004] [Revised: 07/15/2004] [Accepted: 08/10/2004] [Indexed: 10/26/2022]
Abstract
Morphological diversity of dendrites contributes to specialized functions of individual neurons. In the present study, we examined the molecular basis that generates distinct morphological classes of Drosophila dendritic arborization (da) neurons. da neurons are classified into classes I to IV in order of increasing territory size and/or branching complexity. We found that Abrupt (Ab), a BTB-zinc finger protein, is expressed selectively in class I cells. Misexpression of ab in neurons of other classes directed them to take the appearance of cells with smaller and/or less elaborated arbors. Loss of ab functions in class I neurons resulted in malformation of their typical comb-like arbor patterns and generation of supernumerary branch terminals. Together with the results of monitoring dendritic dynamics of ab-misexpressing cells or ab mutant ones, all of the data suggested that Ab endows characteristics of dendritic morphogenesis of the class I neurons.
Collapse
Affiliation(s)
- Kaoru Sugimura
- Laboratory of Molecular Genetics, The Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | | | | | | | | |
Collapse
|
83
|
Abstract
Synaptic specificity is the culmination of several processes, beginning with the establishment of neuronal subtype identity, followed by navigation of the axon to the correct subdivision of neuropil, and finally, the cell-cell recognition of appropriate synaptic partners. In this review we summarize the work on sensory neurons in crickets, cockroaches, moths, and fruit flies that establishes some of the principles and molecular mechanisms involved in the control of synaptic specificity. The identity of a sensory neuron is controlled by combinatorial expression of transcription factors, the products of patterning and proneural genes. In the nervous system, sensory axon projections are anatomically segregated according to modality, stimulus quality, and cell-body position. A variety of cell-surface and intracellular signaling molecules are used to achieve this. Synaptic target recognition is also controlled by transcription factors such as Engrailed and may be, in part, mediated by cadherin-like molecules.
Collapse
Affiliation(s)
- Jonathan M Blagburn
- Institute of Neurobiology, Department of Physiology, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico 00901-1123.
| | | |
Collapse
|
84
|
Broihier HT, Kuzin A, Zhu Y, Odenwald W, Skeath JB. Drosophila homeodomain protein Nkx6 coordinates motoneuron subtype identity and axonogenesis. Development 2004; 131:5233-42. [PMID: 15456721 DOI: 10.1242/dev.01394] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The regulatory networks acting in individual neurons to control their stereotyped differentiation, connectivity, and function are not well understood. Here, we demonstrate that homeodomain protein Nkx6 is a key member of the genetic network of transcription factors that specifies neuronal fates in Drosophila. Nkx6 collaborates with the homeodomain protein Hb9 to specify ventrally projecting motoneuron fate and to repress dorsally projecting motoneuron fate. While Nkx6 acts in parallel with hb9 to regulate motoneuron fate, we find that Nkx6 plays a distinct role to promote axonogenesis, as axon growth of Nkx6-positive motoneurons is severely compromised in Nkx6 mutant embryos. Furthermore, Nkx6 is necessary for the expression of the neural adhesion molecule Fasciclin III in Nkx6-positive motoneurons. Thus, this work demonstrates that Nkx6 acts in a specific neuronal population to link neuronal subtype identity to neuronal morphology and connectivity.
Collapse
Affiliation(s)
- Heather T Broihier
- Department of Genetics, Washington University School of Medicine, 4566 Scott Avenue, St Louis, MO 63110, USA.
| | | | | | | | | |
Collapse
|
85
|
Orgogozo V, Schweisguth F. Evolution of the larval peripheral nervous system in Drosophila species has involved a change in sensory cell lineage. Dev Genes Evol 2004; 214:442-52. [PMID: 15293048 DOI: 10.1007/s00427-004-0422-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2003] [Accepted: 06/15/2004] [Indexed: 10/26/2022]
Abstract
A key challenge in evolutionary biology is to identify developmental events responsible for morphological changes. To determine the cellular basis that underlies changes in the larval peripheral nervous system (PNS) of flies, we first described the PNS pattern of the abdominal segments A1-A7 in late embryos of several fly species using antibody staining. In contrast to the many variations reported previously for the adult PNS pattern, we found that the larval PNS pattern has remained very stable during evolution. Indeed, our observation that most of the analysed Drosophilinae species exhibit exactly the same pattern as Drosophila melanogaster reveals that the pattern observed in D. melanogaster embryos has remained constant for at least 40 million years. Furthermore, we observed that the PNS pattern in more distantly related flies (Calliphoridae and Phoridae) is only slightly different from the one in D. melanogaster. A single difference relative to D. melanogaster was identified in the PNS pattern of the Drosophilinae fly D. busckii, the absence of a specific external sensory organ. Our analysis of sensory organ development in D. busckii suggests that this specific loss resulted from a transformation in cell lineage, from a multidendritic-neuron-external-sensory-organ lineage to a multidendritic-neuron-solo lineage.
Collapse
Affiliation(s)
- Virginie Orgogozo
- Ecole Normale Supérieure, UMR 8542, 46 rue d'Ulm, 75005 Paris, France.
| | | |
Collapse
|
86
|
Li W, Wang F, Menut L, Gao FB. BTB/POZ-Zinc Finger Protein Abrupt Suppresses Dendritic Branching in a Neuronal Subtype-Specific and Dosage-Dependent Manner. Neuron 2004; 43:823-34. [PMID: 15363393 DOI: 10.1016/j.neuron.2004.08.040] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2004] [Revised: 08/24/2004] [Accepted: 08/30/2004] [Indexed: 01/03/2023]
Abstract
How dendrites of different neuronal subtypes exhibit distinct branching patterns during development remains largely unknown. Here we report the mapping and identification of loss-of-function mutations in the abrupt (ab) gene that increased the number of dendritic branches of multiple dendritic (MD) sensory neurons in Drosophila embryos. Ab encodes an evolutionarily conserved transcription factor that contains a BTB/POZ domain and C2H2 zinc finger motifs. We show that ab has a cell-autonomous function in postmitotic neurons to limit dendritic branching. Ab and the homeodomain protein Cut are expressed in distinct but complementary subsets of MD neurons, and Ab functions in a transcriptional program that does not require Cut. Deleting one copy of ab or overexpressing ab had opposite effects on the formation of higher-order dendritic branches, suggesting that the Ab level in a specific neuron directly regulates dendritic complexity. These results demonstrate that dendritic branching can be suppressed by neuronal subtype-specific transcription factors in a cell-autonomous and dosage-dependent manner.
Collapse
Affiliation(s)
- Wenjun Li
- Gladstone Institute of Neurological Disease, University of California, San Francisco, San Francisco, CA 94141, USA
| | | | | | | |
Collapse
|
87
|
Ye B, Petritsch C, Clark IE, Gavis ER, Jan LY, Jan YN. Nanos and Pumilio are essential for dendrite morphogenesis in Drosophila peripheral neurons. Curr Biol 2004; 14:314-21. [PMID: 14972682 DOI: 10.1016/j.cub.2004.01.052] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2003] [Revised: 10/15/2003] [Accepted: 12/30/2003] [Indexed: 11/23/2022]
Abstract
Much attention has focused on dendritic translational regulation of neuronal signaling and plasticity. For example, long-term memory in adult Drosophila requires Pumilio (Pum), an RNA binding protein that interacts with the RNA binding protein Nanos (Nos) to form a localized translation repression complex essential for anterior-posterior body patterning in early embryogenesis. Whether dendrite morphogenesis requires similar translational regulation is unknown. Here we report that nos and pum control the elaboration of high-order dendritic branches of class III and IV, but not class I and II, dendritic arborization (da) neurons. Analogous to their function in body patterning, nos and pum require each other to control dendrite morphogenesis, a process likely to involve translational regulation of nos itself. The control of dendrite morphogenesis by Nos/Pum, however, does not require hunchback, which is essential for body patterning. Interestingly, Nos protein is localized to RNA granules in the dendrites of da neurons, raising the possibility that the Nos/Pum translation repression complex operates in dendrites. This work serves as an entry point for future studies of dendritic translational control of dendrite morphogenesis.
Collapse
Affiliation(s)
- Bing Ye
- Howard Hughes Medical Institute, Department of Physiology, University of California, San Francisco, San Francisco, CA 94143-0725, USA
| | | | | | | | | | | |
Collapse
|
88
|
Moore AW, Roegiers F, Jan LY, Jan YN. Conversion of neurons and glia to external-cell fates in the external sensory organs of Drosophila hamlet mutants by a cousin-cousin cell-type respecification. Genes Dev 2004; 18:623-8. [PMID: 15075290 PMCID: PMC387238 DOI: 10.1101/gad.1170904] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The Drosophila external sensory organ forms in a lineage elaborating from a single precursor cell via a stereotypical series of asymmetric divisions. HAMLET transcription factor expression demarcates the lineage branch that generates two internal cell types, the external sensory neuron and thecogen. In HAMLET mutant organs, these internal cells are converted to external cells via an unprecedented cousin-cousin cell-fate respecification event. Conversely, ectopic HAMLET expression in the external cell branch leads to internal cell production. The fate-determining signals NOTCH and PAX2 act at multiple stages of lineage elaboration and HAMLET acts to modulate their activity in a branch-specific manner.
Collapse
Affiliation(s)
- Adrian W Moore
- Howard Hughes Medical Institute, Department of Physiology, University of California at San Francisco, CA 94143, USA
| | | | | | | |
Collapse
|
89
|
Abstract
Like axons, dendrites need guidance for proper orientation and positioning within the brain. Guidance determines synaptic connectivity as well as the strength of transmission. Recent in vivo studies have demonstrated that several cell-surface receptors, previously known as axon guidance molecules, are also responsible for the directed outgrowth of dendrites. Collectively, these studies reveal that the function of guidance molecules in individual neurons and individual processes is diverse and likely to be specifically regulated. Here, these studies are reviewed and emerging issues and implications are discussed.
Collapse
Affiliation(s)
- Susan Kim
- Department of Cell and Structural Biology, University of Illinois, Urbana, IL 61801, USA
| | | |
Collapse
|
90
|
Affiliation(s)
- Gregory S X E Jefferis
- Department of Biological Sciences and Neurosciences Program, Stanford University, Stanford, CA 94305, USA
| | | | | |
Collapse
|
91
|
Abstract
Dendrites show remarkable diversity in morphology and function, but the mechanisms that produce the characteristic forms is poorly understood. Insect systems offer a unique opportunity to manipulate and study identified neurons in otherwise undisturbed environments. Recent studies in Drosophila show that dendritic targeting, branching patterns, territories, and metamorphic remodeling are controlled in specific ways, by intrinsic genetic programs and extrinsic cues, with important implications for function. Here, we review some recent advances in our understanding of dendritic development in insects, focusing primarily on insights that have been gained from studies of Drosophila.
Collapse
Affiliation(s)
- Wesley B Grueber
- Howard Hughes Medical Institute, Department of Physiology, University of California, San Francisco, 533 Parnassus Avenue, Box 0725, San Francisco CA 94143, USA
| | | |
Collapse
|
92
|
Abstract
Dendrite development is an important and unsolved problem in neuroscience. The nervous system is composed of a vast number of neurons with strikingly different morphology. Neurons are highly polarized cells with distinct subcellular compartments, including one or multiple dendritic processes arising from the cell body, and a single, extended axon. Communications between neurons involve synapses formed between axons of the presynaptic neurons and dendrites of the postsynaptic neurons. Extensive studies over the past decade have identified many molecules underlying axonal outgrowth and pathfinding. In contrast, the control of dendrite development is still much less well understood. However, recent progress has begun to shed light on the molecular mechanisms that orchestrate dendrite growth, arborization, and guidance.
Collapse
Affiliation(s)
- Yuh-Nung Jan
- Howard Hughes Medical Institute, Department of Physiology, University of California at San Francisco, San Francisco, CA 94143, USA.
| | | |
Collapse
|
93
|
Ik Tsen Heng J, Tan SS. The role of class I HLH genes in neural development--have they been overlooked? Bioessays 2003; 25:709-16. [PMID: 12815726 DOI: 10.1002/bies.10299] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Helix-loop-helix (HLH) genes encode for transcription factors affecting a whole variety of developmental programs, including neurogenesis. At least seven functional classes (denoted I to VII) of HLH genes exist, (1) with subclass members exhibiting homo- and heterodimerisation for proper DNA binding and transcriptional regulation of downstream target genes. In the developing nervous system, members of class II, V and VI have been most extensively studied concerning their roles in neural programming. In contrast, the function of class I proteins (such as E12 and E47) is poorly defined and the orthodox view relegates them to general dimerisation duties that are necessary for the activity of the other classes. However, closer scrutiny of the spatiotemporal expression patterns of class I factors, combined with recent biochemical evidence, would suggest that class I proteins possess specific functions during early neural differentiation. This essay supports this possibility, in addition to putting forward the hypothesis that, outside their general dimerisation activity, class I genes have independent roles in regulating neurogenesis.
Collapse
Affiliation(s)
- Julian Ik Tsen Heng
- Brain Development Group, The Howard Florey Institute, University of Melbourne, Parkville VIC 3010, Melbourne Australia
| | | |
Collapse
|
94
|
Abstract
During development, the nervous system is confronted with a problem of enormous complexity; to progress from a large number of 'disconnected' neurons to a network of neuronal circuitry that is able to dynamically process sensory information and generate an appropriate output. To form these circuits, growing axons must make synapses with targets, usually the dendrites of postsynaptic neurons. Although a significant amount is known about the signals that regulate and guide developing axons, we are only now starting to understand how environmental cues like growth factors and activity regulate the formation and maintenance of dendrites in the developing and mature nervous system.
Collapse
Affiliation(s)
- Freda D Miller
- Developmental Biology and Cancer Research Program, 555 University Avenue, Hospital for Sick Children, Toronto, M5G 1X8, Canada.
| | | |
Collapse
|
95
|
Abstract
How the dendritic branching patterns of different neurons are specified is a fascinating question in developmental neurobiology. This question can now be addressed in detail in Drosophila, owing to technological advances that allow in vivo labeling of the dendrites of identifiable neurons. Recent genetic analyses in flies have uncovered several molecules, including transcription factors, cytoskeleton-associated proteins and membrane receptor-like molecules, that provide a glimpse into the complex regulatory network that controls dendritic morphogenesis.
Collapse
Affiliation(s)
- Fen-Biao Gao
- Gladstone Institute of Neurological Disease, Neuroscience Graduate Program, University of California, San Francisco, CA 94141-9100, USA.
| | | |
Collapse
|
96
|
Grueber WB, Ye B, Moore AW, Jan LY, Jan YN. Dendrites of distinct classes of Drosophila sensory neurons show different capacities for homotypic repulsion. Curr Biol 2003; 13:618-26. [PMID: 12699617 DOI: 10.1016/s0960-9822(03)00207-0] [Citation(s) in RCA: 216] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Understanding how dendrites establish their territory is central to elucidating how neuronal circuits are built. Signaling between dendrites is thought to be important for defining their territories; however, the strategies by which different types of dendrites communicate are poorly understood. We have shown previously that two classes of Drosophila peripheral da sensory neurons, the class III and class IV neurons, provide complete and independent tiling of the body wall. By contrast, dendrites of class I and class II neurons do not completely tile the body wall, but they nevertheless occupy nonoverlapping territories. RESULTS By developing reagents to permit high-resolution studies of dendritic tiling in living animals, we demonstrate that isoneuronal and heteroneuronal class IV dendrites engage in persistent repulsive interactions. In contrast to the extensive dendritic exclusion shown by class IV neurons, duplicated class III neurons showed repulsion only at their dendritic terminals. Supernumerary class I and class II neurons innervated completely overlapping regions of the body wall, and this finding suggests a lack of like-repels-like behavior. CONCLUSIONS These data suggest that repulsive interactions operate between morphologically alike dendritic arbors in Drosophila. Further, Drosophila da sensory neurons appear to exhibit at least three different types of class-specific dendrite-dendrite interactions: persistent repulsion by all branches, repulsion only by terminal dendrites, and no repulsion.
Collapse
Affiliation(s)
- Wesley B Grueber
- Howard Hughes Medical Institute, Departments of Physiology and Biochemistry, University of California-San Francisco, 533 Parnassus Avenue, Room U226, San Francisco, CA 94143, USA
| | | | | | | | | |
Collapse
|
97
|
Haas K. hamlet in dendrite morphology: ‘we know what we are, but know not what we may be’. Trends Neurosci 2002. [DOI: 10.1016/s0166-2236(02)02286-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
98
|
Wood H. To branch or not to branch? Nat Rev Neurosci 2002. [DOI: 10.1038/nrn943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|