51
|
Hirashima T. Mathematical study on robust tissue pattern formation in growing epididymal tubule. J Theor Biol 2016; 407:71-80. [PMID: 27396360 DOI: 10.1016/j.jtbi.2016.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 07/05/2016] [Indexed: 11/27/2022]
Abstract
Tissue pattern formation during development is a reproducible morphogenetic process organized by a series of kinetic cellular activities, leading to the building of functional and stable organs. Recent studies focusing on mechanical aspects have revealed physical mechanisms on how the cellular activities contribute to the formation of reproducible tissue patterns; however, the understanding for what factors achieve the reproducibility of such patterning and how it occurs is far from complete. Here, I focus on a tube pattern formation during murine epididymal development, and show that two factors influencing physical design for the patterning, the proliferative zone within the tubule and the viscosity of tissues surrounding to the tubule, control the reproducibility of epididymal tubule pattern, using a mathematical model based on experimental data. Extensive numerical simulation of the simple mathematical model revealed that a spatially localized proliferative zone within the tubule, observed in experiments, results in more reproducible tubule pattern. Moreover, I found that the viscosity of tissues surrounding to the tubule imposes a trade-off regarding pattern reproducibility and spatial accuracy relating to the region where the tubule pattern is formed. This indicates an existence of optimality in material properties of tissues for the robust patterning of epididymal tubule. The results obtained by numerical analysis based on experimental observations provide a general insight on how physical design realizes robust tissue pattern formation.
Collapse
Affiliation(s)
- Tsuyoshi Hirashima
- Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan; Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan.
| |
Collapse
|
52
|
Azizoglu DB, Cleaver O. Blood vessel crosstalk during organogenesis-focus on pancreas and endothelial cells. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2016; 5:598-617. [PMID: 27328421 DOI: 10.1002/wdev.240] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 03/23/2016] [Accepted: 04/16/2016] [Indexed: 01/02/2023]
Abstract
Blood vessels form a highly branched, interconnected, and largely stereotyped network of tubes that sustains every organ and tissue in vertebrates. How vessels come to take on their particular architecture, or how they are 'patterned,' and in turn, how they influence surrounding tissues are fundamental questions of organogenesis. Decades of work have begun to elucidate how endothelial progenitors arise and home to precise locations within tissues, integrating attractive and repulsive cues to build vessels where they are needed. Conversely, more recent findings have revealed an exciting facet of blood vessel interaction with tissues, where vascular cells provide signals to developing organs and progenitors therein. Here, we discuss the exchange of reciprocal signals between endothelial cells and neighboring tissues during embryogenesis, with a special focus on the developing pancreas. Understanding the mechanisms driving both sides of these interactions will be crucial to the development of therapies, from improving organ regeneration to efficient production of cell based therapies. Specifically, elucidating the interface of the vasculature with pancreatic lineages, including endocrine cells, will instruct approaches such as generation of replacement beta cells for Type I diabetes. WIREs Dev Biol 2016, 5:598-617. doi: 10.1002/wdev.240 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- D Berfin Azizoglu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ondine Cleaver
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
53
|
Ikeda A, Taketa H, Sathi GA, Hirano Y, Iida S, Matsumoto T. Functional peptide KP24 enhances submandibular gland tissue growth in vitro. Regen Ther 2016; 3:108-113. [PMID: 31245481 PMCID: PMC6581832 DOI: 10.1016/j.reth.2016.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 02/16/2016] [Accepted: 02/18/2016] [Indexed: 12/01/2022] Open
Abstract
Introduction Salivary gland hypofunction, also known as xerostomia, occurs as a result of radiotherapy for head and neck cancer, autoimmune diseases, or aging. Xerostomia leads to oral health problems and thus affects the quality of life. Biological salivary gland tissue generated in vitro would provide an alternative mode of treatment for this disease. Methods To develop a novel method for modulating salivary gland tissue growth in vitro, we prepared a KP24 peptide-immobilized hydrogel sheet, wherein the peptide comprised repeating proline and lysine sequences, and evaluated the effect of this peptide on salivary gland tissue growth. Results We found that the KP24 peptide has the potential to enhance glandular tissue growth in vitro. This enhancement is associated with neurite outgrowth and increasing neural innervation. Conclusion KP24 peptide modified material would be a promising material for the modulation of salivary gland tissue growth in vitro. KP24 immobilized hydrogel enhanced the growth of submandibular gland tissue in vitro. KP24 immobilized hydrogel is related to the neuronal innervasion and neurite outgrowth in growing submandibular gland tissue.
Collapse
Affiliation(s)
- Atsushi Ikeda
- Department of Biomaterials, Okayama University, 2-5-1 Shikata-Cho, Okayama, 700-8558, Japan.,Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University, 2-5-1 Shikata-Cho, Okayama, 700-8558, Japan
| | - Hiroaki Taketa
- Department of Biomaterials, Okayama University, 2-5-1 Shikata-Cho, Okayama, 700-8558, Japan
| | - Gulsan Ara Sathi
- Department of Biomaterials, Okayama University, 2-5-1 Shikata-Cho, Okayama, 700-8558, Japan
| | - Yoshiaki Hirano
- Department of Chemical Engineering, Kansai University, 3-3-1 Yamate, Suita 564-8680, Japan
| | - Seiji Iida
- Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University, 2-5-1 Shikata-Cho, Okayama, 700-8558, Japan
| | - Takuya Matsumoto
- Department of Biomaterials, Okayama University, 2-5-1 Shikata-Cho, Okayama, 700-8558, Japan
| |
Collapse
|
54
|
Sokol ES, Miller DH, Breggia A, Spencer KC, Arendt LM, Gupta PB. Growth of human breast tissues from patient cells in 3D hydrogel scaffolds. Breast Cancer Res 2016; 18:19. [PMID: 26926363 PMCID: PMC4772689 DOI: 10.1186/s13058-016-0677-5] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 01/14/2016] [Indexed: 12/21/2022] Open
Abstract
Background Three-dimensional (3D) cultures have proven invaluable for expanding human tissues for basic research and clinical applications. In both contexts, 3D cultures are most useful when they (1) support the outgrowth of tissues from primary human cells that have not been immortalized through extensive culture or viral infection and (2) include defined, physiologically relevant components. Here we describe a 3D culture system with both of these properties that stimulates the outgrowth of morphologically complex and hormone-responsive mammary tissues from primary human breast epithelial cells. Methods Primary human breast epithelial cells isolated from patient reduction mammoplasty tissues were seeded into 3D hydrogels. The hydrogel scaffolds were composed of extracellular proteins and carbohydrates present in human breast tissue and were cultured in serum-free medium containing only defined components. The physical properties of these hydrogels were determined using atomic force microscopy. Tissue growth was monitored over time using bright-field and fluorescence microscopy, and maturation was assessed using morphological metrics and by immunostaining for markers of stem cells and differentiated cell types. The hydrogel tissues were also studied by fabricating physical models from confocal images using a 3D printer. Results When seeded into these 3D hydrogels, primary human breast epithelial cells rapidly self-organized in the absence of stromal cells and within 2 weeks expanded to form mature mammary tissues. The mature tissues contained luminal, basal, and stem cells in the correct topological orientation and also exhibited the complex ductal and lobular morphologies observed in the human breast. The expanded tissues became hollow when treated with estrogen and progesterone, and with the further addition of prolactin produced lipid droplets, indicating that they were responding to hormones. Ductal branching was initiated by clusters of cells expressing putative mammary stem cell markers, which subsequently localized to the leading edges of the tissue outgrowths. Ductal elongation was preceded by leader cells that protruded from the tips of ducts and engaged with the extracellular matrix. Conclusions These 3D hydrogel scaffolds support the growth of complex mammary tissues from primary patient-derived cells. We anticipate that this culture system will empower future studies of human mammary gland development and biology. Electronic supplementary material The online version of this article (doi:10.1186/s13058-016-0677-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ethan S Sokol
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA, 02142, USA. .,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Daniel H Miller
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA, 02142, USA. .,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Anne Breggia
- Maine Medical Center Research Institute, Scarborough, ME, 04074, USA.
| | - Kevin C Spencer
- David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, 02139, USA. .,Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Lisa M Arendt
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, 53711, USA.
| | - Piyush B Gupta
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA, 02142, USA. .,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA. .,David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, 02139, USA. .,Harvard Stem Cell Institute, Cambridge, MA, 02138, USA.
| |
Collapse
|
55
|
Cell-cell communication enhances the capacity of cell ensembles to sense shallow gradients during morphogenesis. Proc Natl Acad Sci U S A 2016; 113:E679-88. [PMID: 26792522 DOI: 10.1073/pnas.1516503113] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Collective cell responses to exogenous cues depend on cell-cell interactions. In principle, these can result in enhanced sensitivity to weak and noisy stimuli. However, this has not yet been shown experimentally, and little is known about how multicellular signal processing modulates single-cell sensitivity to extracellular signaling inputs, including those guiding complex changes in the tissue form and function. Here we explored whether cell-cell communication can enhance the ability of cell ensembles to sense and respond to weak gradients of chemotactic cues. Using a combination of experiments with mammary epithelial cells and mathematical modeling, we find that multicellular sensing enables detection of and response to shallow epidermal growth factor (EGF) gradients that are undetectable by single cells. However, the advantage of this type of gradient sensing is limited by the noisiness of the signaling relay, necessary to integrate spatially distributed ligand concentration information. We calculate the fundamental sensory limits imposed by this communication noise and combine them with the experimental data to estimate the effective size of multicellular sensory groups involved in gradient sensing. Functional experiments strongly implicated intercellular communication through gap junctions and calcium release from intracellular stores as mediators of collective gradient sensing. The resulting integrative analysis provides a framework for understanding the advantages and limitations of sensory information processing by relays of chemically coupled cells.
Collapse
|
56
|
Abstract
My aim in this article is to soften certain rigid concepts concerning the radial and bilateral symmetry of the animal body plan, and to offer a more flexible framework of thinking for them, based on recent understandings of how morphogenesis is regulated by the mosaically acting gene regulatory networks. Based on general principles of the genetic regulation of morphogenesis, it can be seen that the difference between the symmetry of the whole body and that of minor anatomical structures is only a question of a diverse timing during development. I propose that the animal genome, as such, is capable of expressing both radial and bilateral symmetries, and deploys them according to the functional requirements which must be satisfied by both the anatomical structure and body as a whole. Although it may seem paradoxical, this flexible view of symmetry, together with the idea that symmetry is strongly determined by function, bolsters the concept that the presence of the two main symmetries in the animal world is not due to chance: they are necessary biological patterns emerging in evolution.
Collapse
Affiliation(s)
- Gábor Holló
- Institute of Psychology , University of Debrecen , PO Box 28, 4010 Debrecen , Hungary
| |
Collapse
|
57
|
Verna C, Sawchuk MG, Linh NM, Scarpella E. Control of vein network topology by auxin transport. BMC Biol 2015; 13:94. [PMID: 26560462 PMCID: PMC4641347 DOI: 10.1186/s12915-015-0208-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 10/28/2015] [Indexed: 02/08/2023] Open
Abstract
Background Tissue networks such as the vascular networks of plant and animal organs transport signals and nutrients in most multicellular organisms. The transport function of tissue networks depends on topological features such as the number of networks’ components and the components’ connectedness; yet what controls tissue network topology is largely unknown, partly because of the difficulties in quantifying the effects of genes on tissue network topology. We address this problem for the vein networks of plant leaves by introducing biologically motivated descriptors of vein network topology; we combine these descriptors with cellular imaging and molecular genetic analysis; and we apply this combination of approaches to leaves of Arabidopsis thaliana that lack function of, overexpress or misexpress combinations of four PIN-FORMED (PIN) genes—PIN1, PIN5, PIN6, and PIN8—which encode transporters of the plant signal auxin and are known to control vein network geometry. Results We find that PIN1 inhibits vein formation and connection, and that PIN6 acts redundantly to PIN1 in these processes; however, the functions of PIN6 in vein formation are nonhomologous to those of PIN1, while the functions of PIN6 in vein connection are homologous to those of PIN1. We further find that PIN8 provides functions redundant and homologous to those of PIN6 in PIN1-dependent inhibition of vein formation, but that PIN8 has no functions in PIN1/PIN6-dependent inhibition of vein connection. Finally, we find that PIN5 promotes vein formation; that all the vein-formation-promoting functions of PIN5 are redundantly inhibited by PIN6 and PIN8; and that these functions of PIN5, PIN6, and PIN8 are independent of PIN1. Conclusions Our results suggest that PIN-mediated auxin transport controls the formation of veins and their connection into networks. Electronic supplementary material The online version of this article (doi:10.1186/s12915-015-0208-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Carla Verna
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| | - Megan G Sawchuk
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| | - Nguyen Manh Linh
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| | - Enrico Scarpella
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
58
|
Atsuta Y, Takahashi Y. FGF8 coordinates tissue elongation and cell epithelialization during early kidney tubulogenesis. Development 2015; 142:2329-37. [PMID: 26130757 PMCID: PMC4510593 DOI: 10.1242/dev.122408] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
When a tubular structure forms during early embryogenesis, tubular elongation and lumen formation (epithelialization) proceed simultaneously in a spatiotemporally coordinated manner. We here demonstrate, using the Wolffian duct (WD) of early chicken embryos, that this coordination is regulated by the expression of FGF8, which shifts posteriorly during body axis elongation. FGF8 acts as a chemoattractant on the leader cells of the elongating WD and prevents them from epithelialization, whereas static (‘rear’) cells that receive progressively less FGF8 undergo epithelialization to form a lumen. Thus, FGF8 acts as a binary switch that distinguishes tubular elongation from lumen formation. The posteriorly shifting FGF8 is also known to regulate somite segmentation, suggesting that multiple types of tissue morphogenesis are coordinately regulated by macroscopic changes in body growth. Highlighted article: Body axis elongation is regulated by posterior FGF8 signals . In chicken, nephric duct extension also requires this FGF8 signal, while low FGF8 anteriorly triggers duct lumen formation.
Collapse
Affiliation(s)
- Yuji Atsuta
- Department of Zoology, Graduate School of Science, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yoshiko Takahashi
- Department of Zoology, Graduate School of Science, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo 102-0076, Japan
| |
Collapse
|
59
|
Plaks V, Boldajipour B, Linnemann JR, Nguyen NH, Kersten K, Wolf Y, Casbon AJ, Kong N, van den Bijgaart RJE, Sheppard D, Melton AC, Krummel MF, Werb Z. Adaptive Immune Regulation of Mammary Postnatal Organogenesis. Dev Cell 2015; 34:493-504. [PMID: 26321127 DOI: 10.1016/j.devcel.2015.07.015] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 05/13/2015] [Accepted: 07/28/2015] [Indexed: 01/15/2023]
Abstract
Postnatal organogenesis occurs in an immune competent environment and is tightly controlled by interplay between positive and negative regulators. Innate immune cells have beneficial roles in postnatal tissue remodeling, but roles for the adaptive immune system are currently unexplored. Here we show that adaptive immune responses participate in the normal postnatal development of a non-lymphoid epithelial tissue. Since the mammary gland (MG) is the only organ developing predominantly after birth, we utilized it as a powerful system to study adaptive immune regulation of organogenesis. We found that antigen-mediated interactions between mammary antigen-presenting cells and interferon-γ (IFNγ)-producing CD4+ T helper 1 cells participate in MG postnatal organogenesis as negative regulators, locally orchestrating epithelial rearrangement. IFNγ then affects luminal lineage differentiation. This function of adaptive immune responses, regulating normal development, changes the paradigm for studying players of postnatal organogenesis and provides insights into immune surveillance and cancer transformation.
Collapse
Affiliation(s)
- Vicki Plaks
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Bijan Boldajipour
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jelena R Linnemann
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nguyen H Nguyen
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kelly Kersten
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Yochai Wolf
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Amy-Jo Casbon
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Niwen Kong
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | - Dean Sheppard
- Lung Biology Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Andrew C Melton
- Lung Biology Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Matthew F Krummel
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Zena Werb
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
60
|
Abstract
Collections of cells must be patterned spatially during embryonic development to generate the intricate architectures of mature tissues. In several cases, including the formation of the branched airways of the lung, reciprocal signaling between an epithelium and its surrounding mesenchyme helps generate these spatial patterns. Several molecular signals are thought to interact via reaction-diffusion kinetics to create distinct biochemical patterns, which act as molecular precursors to actual, physical patterns of biological structure and function. Here, however, we show that purely physical mechanisms can drive spatial patterning within embryonic epithelia. Specifically, we find that a growth-induced physical instability defines the relative locations of branches within the developing murine airway epithelium in the absence of mesenchyme. The dominant wavelength of this instability determines the branching pattern and is controlled by epithelial growth rates. These data suggest that physical mechanisms can create the biological patterns that underlie tissue morphogenesis in the embryo.
Collapse
|
61
|
Lee SE, Chen Q, Bhat R, Petkiewicz S, Smith JM, Ferry VE, Correia AL, Alivisatos AP, Bissell MJ. Reversible Aptamer-Au Plasmon Rulers for Secreted Single Molecules. NANO LETTERS 2015; 15:4564-70. [PMID: 26039492 PMCID: PMC4545488 DOI: 10.1021/acs.nanolett.5b01161] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plasmon rulers, consisting of pairs of gold nanoparticles, allow single-molecule analysis without photobleaching or blinking; however, current plasmon rulers are irreversible, restricting detection to only single events. Here, we present a reversible plasmon ruler, comprised of coupled gold nanoparticles linked by a single aptamer, capable of binding individual secreted molecules with high specificity. We show that the binding of target secreted molecules to the reversible plasmon ruler is characterized by single-molecule sensitivity, high specificity, and reversibility. Such reversible plasmon rulers should enable dynamic and adaptive live-cell measurement of secreted single molecules in their local microenvironment.
Collapse
Affiliation(s)
- Somin Eunice Lee
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Electrical & Computer Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Corresponding Authors: . Phone: (510) 486-4999. . Phone: (510) 486-4365. . Phone: (734) 764-7054
| | - Qian Chen
- Material Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemistry and Materials Science & Engineering, University of California, Berkeley, California 94720, United States
| | - Ramray Bhat
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Molecular Reproduction Development and Genetics, Indian Institute of Science, Bangalore, 560012, India
| | - Shayne Petkiewicz
- Material Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemistry and Materials Science & Engineering, University of California, Berkeley, California 94720, United States
| | - Jessica M. Smith
- Material Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemistry and Materials Science & Engineering, University of California, Berkeley, California 94720, United States
| | - Vivian E. Ferry
- Material Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemistry and Materials Science & Engineering, University of California, Berkeley, California 94720, United States
| | - Ana Luisa Correia
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - A. Paul Alivisatos
- Material Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Kavli Energy NanoScience Institute, University of California, Berkeley, California 94720, United States
- Corresponding Authors: . Phone: (510) 486-4999. . Phone: (510) 486-4365. . Phone: (734) 764-7054
| | - Mina J. Bissell
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Corresponding Authors: . Phone: (510) 486-4999. . Phone: (510) 486-4365. . Phone: (734) 764-7054
| |
Collapse
|
62
|
Ibuka S, Matsumoto S, Fujii S, Kikuchi A. The P2Y₂ receptor promotes Wnt3a- and EGF-induced epithelial tubular formation by IEC6 cells by binding to integrins. J Cell Sci 2015; 128:2156-68. [PMID: 25908848 DOI: 10.1242/jcs.169060] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/13/2015] [Indexed: 12/15/2022] Open
Abstract
Epithelial tubular structures are essential units in various organs. Here, we used rat intestinal epithelial IEC6 cells to investigate tubulogenesis and we found that tubular formation was induced by a combination of Wnt3a and EGF signaling during three-dimensional culture. Wnt3a and EGF induced the expression of the P2Y2 receptor (P2Y2R, also known as P2RY2), and knockdown of P2Y2R suppressed tubular formation. A P2Y2R mutant that lacks nucleotide responsiveness rescued the phenotypes resulting from P2Y2R knockdown, suggesting that nucleotide-dependent responses are not required for P2Y2R functions in tubular formation. The Arg-Gly-Asp (RGD) sequence of P2Y2R has been shown to interact with integrins, and a P2Y2R mutant lacking integrin-binding activity was unable to induce tubular formation. P2Y2R expression inhibited the interaction between integrins and fibronectin, and induced cell morphological changes and proliferation. Inhibition of integrin and fibronectin binding by treatment with the cyclic RGD peptide and fibronectin knockdown induced tubular formation in the presence of EGF alone, but a fibronectin coat suppressed Wnt3a- and EGF-induced tubular formation. These results suggest that Wnt3a- and EGF-induced P2Y2R expression causes tubular formation by preventing the binding of integrins and fibronectin rather than by mediating nucleotide responses.
Collapse
Affiliation(s)
- Souji Ibuka
- Departments of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan Pediatric Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shinji Matsumoto
- Departments of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shinsuke Fujii
- Departments of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Akira Kikuchi
- Departments of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
63
|
Esser JS, Rahner S, Deckler M, Bode C, Patterson C, Moser M. Fibroblast Growth Factor Signaling Pathway in Endothelial Cells Is Activated by BMPER to Promote Angiogenesis. Arterioscler Thromb Vasc Biol 2015; 35:358-67. [DOI: 10.1161/atvbaha.114.304345] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jennifer S. Esser
- From the Department for Cardiology and Angiology, Heart Center University of Freiburg, Albert-Ludwigs University Freiburg, Freiburg, Germany (J.S.E., S.R., M.D., C.B., M.M.); UNC McAllister Heart Institute, Department of Medicine, University of North Carolina, Chapel Hill (C.P.); and New York-Presbyterian Hospital/Weill-Cornell Medical Center, New York, NY (C.P.)
| | - Susanne Rahner
- From the Department for Cardiology and Angiology, Heart Center University of Freiburg, Albert-Ludwigs University Freiburg, Freiburg, Germany (J.S.E., S.R., M.D., C.B., M.M.); UNC McAllister Heart Institute, Department of Medicine, University of North Carolina, Chapel Hill (C.P.); and New York-Presbyterian Hospital/Weill-Cornell Medical Center, New York, NY (C.P.)
| | - Meike Deckler
- From the Department for Cardiology and Angiology, Heart Center University of Freiburg, Albert-Ludwigs University Freiburg, Freiburg, Germany (J.S.E., S.R., M.D., C.B., M.M.); UNC McAllister Heart Institute, Department of Medicine, University of North Carolina, Chapel Hill (C.P.); and New York-Presbyterian Hospital/Weill-Cornell Medical Center, New York, NY (C.P.)
| | - Christoph Bode
- From the Department for Cardiology and Angiology, Heart Center University of Freiburg, Albert-Ludwigs University Freiburg, Freiburg, Germany (J.S.E., S.R., M.D., C.B., M.M.); UNC McAllister Heart Institute, Department of Medicine, University of North Carolina, Chapel Hill (C.P.); and New York-Presbyterian Hospital/Weill-Cornell Medical Center, New York, NY (C.P.)
| | - Cam Patterson
- From the Department for Cardiology and Angiology, Heart Center University of Freiburg, Albert-Ludwigs University Freiburg, Freiburg, Germany (J.S.E., S.R., M.D., C.B., M.M.); UNC McAllister Heart Institute, Department of Medicine, University of North Carolina, Chapel Hill (C.P.); and New York-Presbyterian Hospital/Weill-Cornell Medical Center, New York, NY (C.P.)
| | - Martin Moser
- From the Department for Cardiology and Angiology, Heart Center University of Freiburg, Albert-Ludwigs University Freiburg, Freiburg, Germany (J.S.E., S.R., M.D., C.B., M.M.); UNC McAllister Heart Institute, Department of Medicine, University of North Carolina, Chapel Hill (C.P.); and New York-Presbyterian Hospital/Weill-Cornell Medical Center, New York, NY (C.P.)
| |
Collapse
|
64
|
Fang HW, Kao WY, Lin PI, Chang GW, Hung YJ, Chen RM. Effects of Polypropylene Carbonate/Poly(d,l-lactic) Acid/Tricalcium Phosphate Elastic Composites on Improving Osteoblast Maturation. Ann Biomed Eng 2014; 43:1999-2009. [DOI: 10.1007/s10439-014-1236-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 12/22/2014] [Indexed: 12/11/2022]
|
65
|
The BED finger domain protein MIG-39 halts migration of distal tip cells in Caenorhabditis elegans. Dev Biol 2014; 397:151-61. [PMID: 25446539 DOI: 10.1016/j.ydbio.2014.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 10/08/2014] [Accepted: 10/14/2014] [Indexed: 11/21/2022]
Abstract
Organs are often formed by the extension and branching of epithelial tubes. An appropriate termination of epithelial tube extension is important for generating organs of the proper size and morphology. However, the mechanism by which epithelial tubes terminate their extension is mostly unknown. Here we show that the BED-finger domain protein MIG-39 acts to stop epithelial tube extension in Caenorhabditis elegans. The gonadal leader cells, called distal tip cells (DTCs), migrate in a U-shaped pattern during larval development and stop migrating at the young adult stage, generating a gonad with anterior and posterior U-shaped arms. In mig-39 mutants, however, DTCs overshot their normal stopping position. MIG-39 promoted the deceleration of DTCs, leading to the proper timing and positioning of the cessation of DTC migration. Among three Rac GTPase genes, mutations in ced-10 and rac-2 enhanced the overshoot of anterior DTCs, while they suppressed that of posterior DTCs of mig-39 mutants. On the other hand, the mutation in mig-2 suppressed both the anterior and posterior DTC defects of mig-39. Genetic analyses suggested that MIG-39 acts in parallel with Rac GTPases in stopping DTC migration. We propose a model in which the anterior and posterior DTCs respond in an opposite manner to the levels of Rac activities in the cessation of DTC migration.
Collapse
|
66
|
Lee SE, Alivisatos AP, Bissell MJ. Toward plasmonics-enabled spatiotemporal activity patterns in three-dimensional culture models. ACTA ACUST UNITED AC 2014; 1. [PMID: 24224142 DOI: 10.4161/sysb.22834] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Spatiotemporal activity patterns of proteases such as matrix metalloproteinases and cysteine proteases in organs have the potential to provide insight into how organized structural patterns arise during tissue morphogenesis and may suggest therapeutic strategies to repair diseased tissues. Toward imaging spatiotemporal activity patterns, recently increased emphasis has been placed on imaging activity patterns in three-dimensional culture models that resemble tissues in vivo. Here, we briefly review key methods, based on fluorogenic modifications either to the extracellular matrix or to the protease-of-interest, that have allowed for qualitative imaging of activity patterns in three-dimensional culture models. We highlight emerging plasmonic methods that address significant improvements in spatial and temporal resolution and have the potential to enable quantitative measurement of spatiotemporal activity patterns with single-molecule sensitivity.
Collapse
|
67
|
Shamir ER, Ewald AJ. Three-dimensional organotypic culture: experimental models of mammalian biology and disease. Nat Rev Mol Cell Biol 2014; 15:647-64. [PMID: 25237826 PMCID: PMC4352326 DOI: 10.1038/nrm3873] [Citation(s) in RCA: 532] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mammalian organs are challenging to study as they are fairly inaccessible to experimental manipulation and optical observation. Recent advances in three-dimensional (3D) culture techniques, coupled with the ability to independently manipulate genetic and microenvironmental factors, have enabled the real-time study of mammalian tissues. These systems have been used to visualize the cellular basis of epithelial morphogenesis, to test the roles of specific genes in regulating cell behaviours within epithelial tissues and to elucidate the contribution of microenvironmental factors to normal and disease processes. Collectively, these novel models can be used to answer fundamental biological questions and generate replacement human tissues, and they enable testing of novel therapeutic approaches, often using patient-derived cells.
Collapse
Affiliation(s)
- Eliah R Shamir
- Departments of Cell Biology and Oncology, Center for Cell Dynamics, School of Medicine, Johns Hopkins University, 855 North Wolfe Street, Baltimore, Maryland 21205, USA
| | - Andrew J Ewald
- Departments of Cell Biology and Oncology, Center for Cell Dynamics, School of Medicine, Johns Hopkins University, 855 North Wolfe Street, Baltimore, Maryland 21205, USA
| |
Collapse
|
68
|
Zhang X, Martinez D, Koledova Z, Qiao G, Streuli CH, Lu P. FGF ligands of the postnatal mammary stroma regulate distinct aspects of epithelial morphogenesis. Development 2014; 141:3352-62. [PMID: 25078648 DOI: 10.1242/dev.106732] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
FGF signaling is essential for mammary gland development, yet the mechanisms by which different members of the FGF family control stem cell function and epithelial morphogenesis in this tissue are not well understood. Here, we have examined the requirement of Fgfr2 in mouse mammary gland morphogenesis using a postnatal organ regeneration model. We found that tissue regeneration from basal stem cells is a multistep event, including luminal differentiation and subsequent epithelial branching morphogenesis. Basal cells lacking Fgfr2 did not generate an epithelial network owing to a failure in luminal differentiation. Moreover, Fgfr2 null epithelium was unable to undergo ductal branch initiation and elongation due to a deficiency in directional migration. We identified FGF10 and FGF2 as stromal ligands that control distinct aspects of mammary ductal branching. FGF10 regulates branch initiation, which depends on directional epithelial migration. By contrast, FGF2 controls ductal elongation, requiring cell proliferation and epithelial expansion. Together, our data highlight a pleiotropic role of Fgfr2 in stem cell differentiation and branch initiation, and reveal that different FGF ligands regulate distinct aspects of epithelial behavior.
Collapse
Affiliation(s)
- Xiaohong Zhang
- Wellcome Trust Centre for Cell Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Denisse Martinez
- Wellcome Trust Centre for Cell Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Zuzana Koledova
- Wellcome Trust Centre for Cell Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Guijuan Qiao
- Wellcome Trust Centre for Cell Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Charles H Streuli
- Wellcome Trust Centre for Cell Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Pengfei Lu
- Wellcome Trust Centre for Cell Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
69
|
Iordanou E, Chandran RR, Yang Y, Essak M, Blackstone N, Jiang L. The novel Smad protein Expansion regulates the receptor tyrosine kinase pathway to control Drosophila tracheal tube size. Dev Biol 2014; 393:93-108. [PMID: 24973580 DOI: 10.1016/j.ydbio.2014.06.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/01/2014] [Accepted: 06/17/2014] [Indexed: 10/25/2022]
Abstract
Tubes with distinct shapes and sizes are critical for the proper function of many tubular organs. Here we describe a unique phenotype caused by the loss of a novel, evolutionarily-conserved, Drosophila Smad-like protein, Expansion. In expansion mutants, unicellular and intracellular tracheal branches develop bubble-like cysts with enlarged apical membranes. Cysts in unicellular tubes are enlargements of the apical lumen, whereas cysts in intracellular tubes are cytoplasmic vacuole-like compartments. The cyst phenotype in expansion mutants is similar to, but weaker than, that observed in double mutants of Drosophila type III receptor tyrosine phosphatases (RPTPs), Ptp4E and Ptp10D. Ptp4E and Ptp10D negatively regulate the receptor tyrosine kinase (RTK) pathways, especially epithelial growth factor receptor (EGFR) and fibroblast growth factor receptor/breathless (FGFR, Btl) signaling to maintain the proper size of unicellular and intracellular tubes. We show Exp genetically interacts with RTK signaling, the downstream targets of RPTPs. Cyst size and number in expansion mutants is enhanced by increased RTK signaling and suppressed by reduced RTK signaling. Genetic interaction studies strongly suggest that Exp negatively regulates RTK (EGFR, Btl) signaling to ensure proper tube sizes. Smad proteins generally function as intermediate components of the transforming growth factor-β (TGF-β, DPP) signaling pathway. However, no obvious genetic interaction between expansion and TGF-β (DPP) signaling was observed. Therefore, Expansion does not function as a typical Smad protein. The expansion phenotype demonstrates a novel role for Smad-like proteins in epithelial tube formation.
Collapse
Affiliation(s)
- Ekaterini Iordanou
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| | - Rachana R Chandran
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| | - Yonghua Yang
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| | - Mina Essak
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| | - Nicholas Blackstone
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| | - Lan Jiang
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA.
| |
Collapse
|
70
|
Mukouyama YS. Vessel-dependent recruitment of sympathetic axons: looking for innervation in all the right places. J Clin Invest 2014; 124:2855-7. [PMID: 24937419 DOI: 10.1172/jci76622] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Autonomic sympathetic axons extend along and innervate resistance arteries to control vascular tone and participate in blood pressure regulation. In this issue of the JCI, Brunet and colleagues reveal that sympathetic innervation of arteries is facilitated by secretion of the axon guidance molecule netrin-1 by arterial VSMCs. Furthermore, disruption of the signaling cascade induced by netrin-1 through its receptor DCC resulted in defective arterial innervation and sympathetic control of vasoconstriction. This comprehensive study represents a major step forward in our understanding of the coordinated wiring of the vascular and nervous systems in various tissues.
Collapse
|
71
|
Zhang X, Qiao G, Lu P. Modulation of fibroblast growth factor signaling is essential for mammary epithelial morphogenesis. PLoS One 2014; 9:e92735. [PMID: 24718286 PMCID: PMC3981693 DOI: 10.1371/journal.pone.0092735] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 02/25/2014] [Indexed: 12/28/2022] Open
Abstract
Fibroblast growth factor (FGF) signaling is essential for vertebrate organogenesis, including mammary gland development. The mechanism whereby FGF signaling is regulated in the mammary gland, however, has remained unknown. Using a combination of mouse genetics and 3D ex vivo models, we tested the hypothesis that Spry2 gene, which encodes an inhibitor of signaling via receptor tyrosine kinases (RTKs) in certain contexts, regulates FGF signaling during mammary branching. We found that Spry2 is expressed at various stages of the developing mammary gland. Targeted removal of Spry2 function from mammary epithelium leads to accelerated epithelial invasion. Spry2 is up-regulated by FGF signaling activities and its loss sensitizes mammary epithelium to FGF stimulation, as indicated by increased expression of FGF target genes and epithelia invasion. By contrast, Spry2 gain-of-function in the mammary epithelium results in reduced FGF signaling, epithelial invasion, and stunted branching. Furthermore, reduction of Spry2 expression is correlated with tumor progression in the MMTV-PyMT mouse model. Together, the data show that FGF signaling modulation by Spry2 is essential for epithelial morphogenesis in the mammary gland and it functions to protect the epithelium against tumorigenesis.
Collapse
Affiliation(s)
- Xiaohong Zhang
- Wellcome Trust Centre for Cell Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Guijuan Qiao
- Wellcome Trust Centre for Cell Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Pengfei Lu
- Wellcome Trust Centre for Cell Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
72
|
Matsumoto S, Fujii S, Sato A, Ibuka S, Kagawa Y, Ishii M, Kikuchi A. A combination of Wnt and growth factor signaling induces Arl4c expression to form epithelial tubular structures. EMBO J 2014; 33:702-718. [PMID: 24562386 PMCID: PMC4000088 DOI: 10.1002/embj.201386942] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 01/13/2014] [Accepted: 01/14/2014] [Indexed: 12/17/2022] Open
Abstract
Growth factor-dependent epithelial morphological changes and proliferation are essential for the formation of tubular structures, but the underlying molecular mechanisms are poorly understood. Co-stimulation with Wnt3a and epidermal growth factor (Wnt3a/EGF) induced development of tubes consisting of intestinal epithelial cells by inducing expression of Arl4c, an Arf-like small GTP-binding protein, in three-dimensional culture, while stimulation with Wnt3a or EGF alone did not. Arl4c expression resulted in rearrangement of the cytoskeleton through activation of Rac and inactivation of Rho properly, which promoted cell growth by inducing nuclear translocation of Yes-associated protein and transcriptional co-activator with PDZ-binding motif (YAP/TAZ) in leading cells. Arl4c was expressed in ureteric bud tips and pretubular structures in the embryonic kidney. In an organoid culture assay, Wnt and fibroblast growth factor signaling simultaneously induced elongation and budding of kidney ureteric buds through Arl4c expression. YAP/TAZ was observed in the nucleus of extending ureteric bud tips. Thus, Arl4c expression induced by a combination of growth factor signaling mechanisms is involved in tube formation.
Collapse
Affiliation(s)
- Shinji Matsumoto
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka UniversityOsaka, Japan
| | - Shinsuke Fujii
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka UniversityOsaka, Japan
- Interdisciplinary Program for Biomedical Sciences (IPBS), Institute for Academic Initiatives, Osaka University, Graduate School of MedicineOsaka, Japan
| | - Akira Sato
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka UniversityOsaka, Japan
| | - Souji Ibuka
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka UniversityOsaka, Japan
- Department of Pediatric Surgery, Graduate School of Medicine, Osaka UniversityOsaka, Japan
| | - Yoshinori Kagawa
- Department of Gastrointestinal Surgery, Graduate School of Medicine, Osaka UniversityOsaka, Japan
- Department of Immunology and Cell Biology, Graduate School of Medicine, Osaka UniversityOsaka, Japan
- Japan Science and Technology Agency (JST), CRESTTokyo, Japan
| | - Masaru Ishii
- Department of Immunology and Cell Biology, Graduate School of Medicine, Osaka UniversityOsaka, Japan
- Japan Science and Technology Agency (JST), CRESTTokyo, Japan
| | - Akira Kikuchi
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka UniversityOsaka, Japan
| |
Collapse
|
73
|
Zegers MM. 3D in vitro cell culture models of tube formation. Semin Cell Dev Biol 2014; 31:132-40. [PMID: 24613912 DOI: 10.1016/j.semcdb.2014.02.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 02/13/2014] [Accepted: 02/26/2014] [Indexed: 11/24/2022]
Abstract
Building the complex architecture of tubular organs is a highly dynamic process that involves cell migration, polarization, shape changes, adhesion to neighboring cells and the extracellular matrix, physicochemical characteristics of the extracellular matrix and reciprocal signaling with the mesenchyme. Understanding these processes in vivo has been challenging as they take place over extended time periods deep within the developing organism. Here, I will discuss 3D in vitro models that have been crucial to understand many of the molecular and cellular mechanisms and key concepts underlying branching morphogenesis in vivo.
Collapse
Affiliation(s)
- Mirjam M Zegers
- Radboud University Medical Center, Radboud Institute for Molecular Life Sciences (RIMLS), Department of Cell Biology, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.
| |
Collapse
|
74
|
Abstract
Branched structures are ubiquitous in nature, both in living and non-living systems. While the functional benefits of branching organogenesis are straightforward, the developmental mechanisms leading to the repeated branching of epithelia in surrounding mesoderm remain unclear. Both molecular and physical aspects of growth control seem to play a critical role in shape emergence and maintenance. On the molecular side, the existence of a gradient of growth-promoting ligand between epithelial tips and distal mesenchyme seems to be common to branched organs. On the physical side, the branching process seems to require a mechanism of real-time adaptation to local geometry, as suggested by the self-avoiding nature of branching events. In this paper, we investigate the outcomes of a general three-dimensional growth model, in which epithelial growth is implemented as a function of ligand income, while the mesenchyme is considered as a proliferating viscous medium. Our results suggest that the existence of a gradient of growth-promoting ligand between distal and proximal mesenchyme implies a growth instability of the epithelial sheet, resulting in spontaneous self-avoiding branching morphogenesis. While the general nature of the model prevents one from fitting the development of specific organs, it suggests that few ingredients are actually required to achieve branching organogenesis.
Collapse
Affiliation(s)
- Raphaël Clément
- Laboratoire J-A Dieudonné - UMR CNRS 7531, Parc Valrose - University Nice Sophia Antipolis, F-06100 Nice, France
| | | |
Collapse
|
75
|
Howard BA, Lu P. Stromal regulation of embryonic and postnatal mammary epithelial development and differentiation. Semin Cell Dev Biol 2014; 25-26:43-51. [DOI: 10.1016/j.semcdb.2014.01.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 12/19/2013] [Accepted: 01/09/2014] [Indexed: 01/06/2023]
|
76
|
Abstract
Cell migration is fundamental to establishing and maintaining the proper organization of multicellular organisms. Morphogenesis can be viewed as a consequence, in part, of cell locomotion, from large-scale migrations of epithelial sheets during gastrulation, to the movement of individual cells during development of the nervous system. In an adult organism, cell migration is essential for proper immune response, wound repair, and tissue homeostasis, while aberrant cell migration is found in various pathologies. Indeed, as our knowledge of migration increases, we can look forward to, for example, abating the spread of highly malignant cancer cells, retarding the invasion of white cells in the inflammatory process, or enhancing the healing of wounds. This article is organized in two main sections. The first section is devoted to the single-cell migrating in isolation such as occurs when leukocytes migrate during the immune response or when fibroblasts squeeze through connective tissue. The second section is devoted to cells collectively migrating as part of multicellular clusters or sheets. This second type of migration is prevalent in development, wound healing, and in some forms of cancer metastasis.
Collapse
Affiliation(s)
- Xavier Trepat
- Institute for Bioengineering of Catalonia, Barcelona, Spain.
| | | | | |
Collapse
|
77
|
Abstract
Morphogenesis of the hermaphrodite gonad of Caenorhabditis elegans is directed by the U-shaped migration of the gonadal leader cells, which are called distal tip cells (DTCs). The nuclei of migrating DTCs are always positioned at the leading edge of the cells, even as these cells turn dorsally to contact the hypodermis and intestine. When the DTCs turn dorsally, VAB-10B1/spectraplakin acts in nuclear translocation by regulating the polarized growth of microtubules. The function of spectraplakin in nuclear positioning may be evolutionarily conserved. Here we discuss the possible reason for leading-edge positioning of the DTC nucleus.
Collapse
Affiliation(s)
- Hon-Song Kim
- Department of Bioscience; Kwansei Gakuin University; Sanda, Japan
| | | |
Collapse
|
78
|
Abstract
Many organs of higher organisms are heavily branched structures and arise by an apparently similar process of branching morphogenesis. Yet the regulatory components and local interactions that have been identified differ greatly in these organs. It is an open question whether the regulatory processes work according to a common principle and how far physical and geometrical constraints determine the branching process. Here, we review the known regulatory factors and physical constraints in lung, kidney, pancreas, prostate, mammary gland and salivary gland branching morphogenesis, and describe the models that have been formulated to analyse their impacts.
Collapse
Affiliation(s)
- Dagmar Iber
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Basel, Switzerland
- Swiss Institute of Bioinformatics (SIB), Basel, Switzerland
| | - Denis Menshykau
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Basel, Switzerland
- Swiss Institute of Bioinformatics (SIB), Basel, Switzerland
| |
Collapse
|
79
|
Soscia DA, Sequeira SJ, Schramm RA, Jayarathanam K, Cantara SI, Larsen M, Castracane J. Salivary gland cell differentiation and organization on micropatterned PLGA nanofiber craters. Biomaterials 2013; 34:6773-84. [PMID: 23777914 PMCID: PMC3755621 DOI: 10.1016/j.biomaterials.2013.05.061] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 05/24/2013] [Indexed: 12/20/2022]
Abstract
There is a need for an artificial salivary gland as a long-term remedy for patients suffering from salivary hypofunction, a leading cause of chronic xerostomia (dry mouth). Current salivary gland tissue engineering approaches are limited in that they either lack sufficient physical cues and surface area needed to facilitate epithelial cell differentiation, or they fail to provide a mechanism for assembling an interconnected branched network of cells. We have developed highly-ordered arrays of curved hemispherical "craters" in polydimethylsiloxane (PDMS) using wafer-level integrated circuit (IC) fabrication processes, and lined them with electrospun poly-lactic-co-glycolic acid (PLGA) nanofibers, designed to mimic the three-dimensional (3-D) in vivo architecture of the basement membrane surrounding spherical acini of salivary gland epithelial cells. These micropatterned scaffolds provide a method for engineering increased surface area and were additionally investigated for their ability to promote cell polarization. Two immortalized salivary gland cell lines (SIMS, ductal and Par-C10, acinar) were cultured on fibrous crater arrays of various radii and compared with those grown on flat PLGA nanofiber substrates, and in 3-D Matrigel. It was found that by increasing crater curvature, the average height of the cell monolayer of SIMS cells and to a lesser extent, Par-C10 cells, increased to a maximum similar to that seen in cells grown in 3-D Matrigel. Increasing curvature resulted in higher expression levels of tight junction protein occludin in both cell lines, but did not induce a change in expression of adherens junction protein E-cadherin. Additionally, increasing curvature promoted polarity of both cell lines, as a greater apical localization of occludin was seen in cells on substrates of higher curvature. Lastly, substrate curvature increased expression of the water channel protein aquaporin-5 (Aqp-5) in Par-C10 cells, suggesting that curved nanofiber substrates are more suitable for promoting differentiation of salivary gland cells.
Collapse
Affiliation(s)
- David A. Soscia
- College of Nanoscale Science and Engineering, University at Albany, State University of New York, 257 Fuller Road, Albany, NY 12203, USA
| | - Sharon J. Sequeira
- Dept. of Biological Sciences, University at Albany, State University of New York, 1400 Washington Avenue, Life Sciences Bldg., Albany, NY 12222, USA
| | - Robert A. Schramm
- College of Nanoscale Science and Engineering, University at Albany, State University of New York, 257 Fuller Road, Albany, NY 12203, USA
| | - Kavitha Jayarathanam
- College of Nanoscale Science and Engineering, University at Albany, State University of New York, 257 Fuller Road, Albany, NY 12203, USA
| | - Shraddha I. Cantara
- Dept. of Biological Sciences, University at Albany, State University of New York, 1400 Washington Avenue, Life Sciences Bldg., Albany, NY 12222, USA
| | - Melinda Larsen
- Dept. of Biological Sciences, University at Albany, State University of New York, 1400 Washington Avenue, Life Sciences Bldg., Albany, NY 12222, USA
| | - James Castracane
- College of Nanoscale Science and Engineering, University at Albany, State University of New York, 257 Fuller Road, Albany, NY 12203, USA
| |
Collapse
|
80
|
Hsu JC, Koo H, Harunaga JS, Matsumoto K, Doyle AD, Yamada KM. Region-specific epithelial cell dynamics during branching morphogenesis. Dev Dyn 2013; 242:1066-77. [PMID: 23780688 DOI: 10.1002/dvdy.24000] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 06/06/2013] [Accepted: 06/07/2013] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Epithelial cells of developing embryonic organs, such as salivary glands, can display substantial motility during branching morphogenesis. Their dynamic movements and molecules involved in their migration are not fully characterized. RESULTS We generated transgenic mice expressing photo-convertible KikGR and tracked the movements of individual cells highlighted by red fluorescence in different regions of developing salivary glands. Motility was highest for outer bud epithelial cells adjacent to the basement membrane, lower in inner bud cells, and lowest in duct cells. The highly motile outer cells contacting the basement membrane were pleomorphic, whereas inner cells were rounded. Peripheral cell motility was disrupted by antibodies inhibiting α6+β1 integrins and the nonmuscle myosin II inhibitor blebbistatin. Inner bud cell migration was unaffected by these inhibitors, but their rate of migration was stimulated by inhibiting E-cadherin. CONCLUSIONS Cell motility in developing salivary glands was highest in cells in contact with the basement membrane. The basement membrane-associated motility of these outer bud cells depended on integrins and myosin II, but not E-cadherin. In contrast, motility of inner bud cells was restrained by E-cadherin. These findings identify the importance of integrin-dependent basement membrane association for the morphology, tissue organization, and lateral motility of morphogenetic epithelial cells.
Collapse
Affiliation(s)
- Jeff C Hsu
- Cell Biology Section, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | |
Collapse
|
81
|
Kessenbrock K, Dijkgraaf GJP, Lawson DA, Littlepage LE, Shahi P, Pieper U, Werb Z. A role for matrix metalloproteinases in regulating mammary stem cell function via the Wnt signaling pathway. Cell Stem Cell 2013; 13:300-13. [PMID: 23871604 DOI: 10.1016/j.stem.2013.06.005] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 04/03/2013] [Accepted: 06/07/2013] [Indexed: 10/26/2022]
Abstract
The microenvironment provides cues that control the behavior of epithelial stem and progenitor cells. Here, we identify matrix metalloproteinase-3 (MMP3) as a regulator of Wnt signaling and mammary stem cell (MaSC) activity. We show that MMP3 overexpression promotes hyperplastic epithelial growth, surprisingly, in a nonproteolytic manner via its hemopexin (HPX) domain. We demonstrate that MMP3-HPX specifically binds and inactivates Wnt5b, a noncanonical Wnt ligand that inhibits canonical Wnt signaling and mammary epithelial outgrowth in vivo. Indeed, transplants overexpressing MMP3 display increased canonical Wnt signaling, demonstrating that MMP3 is an extracellular regulator of the Wnt signaling pathway. MMP3-deficient mice exhibit decreased MaSC populations and diminished mammary-reconstituting activity, whereas MMP3 overexpression elevates MaSC function, indicating that MMP3 is necessary for the maintenance of MaSCs. Our study reveals a mechanism by a microenvironmental protease that regulates Wnt signaling and impacts adult epithelial stem cell function.
Collapse
Affiliation(s)
- Kai Kessenbrock
- Department of Anatomy and Biomedical Sciences Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | | | | | |
Collapse
|
82
|
Correia AL, Mori H, Chen EI, Schmitt FC, Bissell MJ. The hemopexin domain of MMP3 is responsible for mammary epithelial invasion and morphogenesis through extracellular interaction with HSP90β. Genes Dev 2013; 27:805-17. [PMID: 23592797 DOI: 10.1101/gad.211383.112] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Matrix metalloproteinases (MMPs) are crucial mediators in sculpting tissue architecture and are required for many physiological and pathological processes. MMP3 has been shown to regulate branching morphogenesis in the mammary gland. Ectopic expression of proteolytically active MMP3 in mouse mammary epithelia triggers supernumerary lateral branching and, eventually, tumors. Using a three-dimensional collagen-I (Col-1) gel assay that simulates epithelial invasion and branching, we show that it is the hemopexin domain that directs these processes. Using three different engineered constructs containing a variation on MMP3 structural domains, we confirmed the importance of the hemopexin domain also in primary organoids of the mammary gland. A proteomic screen of MMP3-binding partners surprisingly revealed that the intracellular chaperone heat-shock protein 90 β (HSP90β) is present extracellularly, and its interaction with the hemopexin domain of MMP3 is critical for invasion. Blocking of HSP90β with inhibitory antibodies added to the medium abolished invasion and branching. These findings shift the focus from the proteolytic activity of MMP3 as the central player to its hemopexin domain and add a new dimension to HSP90β's functions by revealing a hitherto undescribed mechanism of MMP3 regulation. Our data also may shed light on the failure of strategies to use MMP inhibitors in cancer treatment and other related disorders.
Collapse
Affiliation(s)
- Ana Luísa Correia
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | | | | | | | | |
Collapse
|
83
|
Generation and interpretation of FGF morphogen gradients in vertebrates. Curr Opin Genet Dev 2013; 23:415-22. [PMID: 23669552 DOI: 10.1016/j.gde.2013.03.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 03/18/2013] [Indexed: 11/22/2022]
Abstract
Signalling via fibroblast growth factors (FGFs) is involved in multiple aspects of vertebrate development. In several instances FGFs act as morphogens, that is secreted signalling molecules that encode positional information in their graded distribution throughout their target tissue. In recent years, work in the zebrafish model system has been instrumental in addressing the cell biological basis of FGF morphogen gradient formation and interpretation. These experiments have benefitted from the optical properties of the zebrafish embryo that render this vertebrate organism particularly suited for advanced microscopic and biophysical approaches.
Collapse
|
84
|
Nelson DA, Manhardt C, Kamath V, Sui Y, Santamaria-Pang A, Can A, Bello M, Corwin A, Dinn SR, Lazare M, Gervais EM, Sequeira SJ, Peters SB, Ginty F, Gerdes MJ, Larsen M. Quantitative single cell analysis of cell population dynamics during submandibular salivary gland development and differentiation. Biol Open 2013; 2:439-47. [PMID: 23789091 PMCID: PMC3654261 DOI: 10.1242/bio.20134309] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 03/27/2013] [Indexed: 12/22/2022] Open
Abstract
Epithelial organ morphogenesis involves reciprocal interactions between epithelial and mesenchymal cell types to balance progenitor cell retention and expansion with cell differentiation for evolution of tissue architecture. Underlying submandibular salivary gland branching morphogenesis is the regulated proliferation and differentiation of perhaps several progenitor cell populations, which have not been characterized throughout development, and yet are critical for understanding organ development, regeneration, and disease. Here we applied a serial multiplexed fluorescent immunohistochemistry technology to map the progressive refinement of the epithelial and mesenchymal cell populations throughout development from embryonic day 14 through postnatal day 20. Using computational single cell analysis methods, we simultaneously mapped the evolving temporal and spatial location of epithelial cells expressing subsets of differentiation and progenitor markers throughout salivary gland development. We mapped epithelial cell differentiation markers, including aquaporin 5, PSP, SABPA, and mucin 10 (acinar cells); cytokeratin 7 (ductal cells); and smooth muscle α-actin (myoepithelial cells) and epithelial progenitor cell markers, cytokeratin 5 and c-kit. We used pairwise correlation and visual mapping of the cells in multiplexed images to quantify the number of single- and double-positive cells expressing these differentiation and progenitor markers at each developmental stage. We identified smooth muscle α-actin as a putative early myoepithelial progenitor marker that is expressed in cytokeratin 5-negative cells. Additionally, our results reveal dynamic expansion and redistributions of c-kit- and K5-positive progenitor cell populations throughout development and in postnatal glands. The data suggest that there are temporally and spatially discreet progenitor populations that contribute to salivary gland development and homeostasis.
Collapse
Affiliation(s)
- Deirdre A Nelson
- Department of Biological Sciences, University at Albany, State University of New York , 1400 Washington Avenue, Albany, NY 12222 , USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Mori H, Lo AT, Inman JL, Alcaraz J, Ghajar CM, Mott JD, Nelson CM, Chen CS, Zhang H, Bascom JL, Seiki M, Bissell MJ. Transmembrane/cytoplasmic, rather than catalytic, domains of Mmp14 signal to MAPK activation and mammary branching morphogenesis via binding to integrin β1. Development 2013; 140:343-52. [PMID: 23250208 DOI: 10.1242/dev.084236] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Epithelial cell invasion through the extracellular matrix (ECM) is a crucial step in branching morphogenesis. The mechanisms by which the mammary epithelium integrates cues from the ECM with intracellular signaling in order to coordinate invasion through the stroma to make the mammary tree are poorly understood. Because the cell membrane-bound matrix metalloproteinase Mmp14 is known to play a key role in cancer cell invasion, we hypothesized that it could also be centrally involved in integrating signals for mammary epithelial cells (MECs) to navigate the collagen 1 (CL-1)-rich stroma of the mammary gland. Expression studies in nulliparous mice that carry a NLS-lacZ transgene downstream of the Mmp14 promoter revealed that Mmp14 is expressed in MECs at the tips of the branches. Using both mammary organoids and 3D organotypic cultures, we show that MMP activity is necessary for invasion through dense CL-1 (3 mg/ml) gels, but dispensable for MEC branching in sparse CL-1 (1 mg/ml) gels. Surprisingly, however, Mmp14 without its catalytic activity was still necessary for branching. Silencing Mmp14 prevented cell invasion through CL-1 and disrupted branching altogether; it also reduced integrin β1 (Itgb1) levels and attenuated MAPK signaling, disrupting Itgb1-dependent invasion/branching within CL-1 gels. FRET imaging revealed that Mmp14 associates directly with Itgb1. We identified a domain of Mmp14 that is required for modulating the levels of Itgb1, MEC signaling and the rate of invasion within CL-1. These results shed light on hitherto undescribed non-proteolytic activities of Mmp14 that are necessary for the Itgb1-dependent biochemical and mechanical signals that regulate branching in the mammary epithelium.
Collapse
Affiliation(s)
- Hidetoshi Mori
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Longo S, Riccio M, McCune AR. Homology of lungs and gas bladders: Insights from arterial vasculature. J Morphol 2013; 274:687-703. [DOI: 10.1002/jmor.20128] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 12/11/2012] [Accepted: 12/14/2012] [Indexed: 11/10/2022]
|
87
|
Petzold KM, Naumann H, Spagnoli FM. Rho signalling restriction by the RhoGAP Stard13 integrates growth and morphogenesis in the pancreas. Development 2013; 140:126-35. [DOI: 10.1242/dev.082701] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The development of functional organ architecture relies on coordinated morphogenesis and growth. In the developing pancreas, the branching epithelium is organised in discrete domains, delineating one specific domain of progenitor cells at the tip of the branches. The molecular mechanisms underlying the coordinated action of branching and proliferation in organ formation are largely unknown. Here, we identify the RhoGAP protein Stard13 as an essential regulator of pancreas tissue architecture in the mammalian embryo. Conditional ablation of Stard13 expression in the pancreas disrupts epithelial morphogenesis and tip-domain organisation, resulting in hampered proliferation of tip progenitors and subsequent organ hypoplasia. Stard13 acts by regulating Rho signalling spatially and temporally during pancreas development. Our findings provide new insights into the mechanisms that shape pancreatic epithelium to create a mature organ and establish a functional link between Rho-mediated control of epithelial remodelling and organ size determination, involving reciprocal interaction of actin-MAL/SRF and MAPK signalling pathways.
Collapse
Affiliation(s)
- Kristin M. Petzold
- Laboratory of Molecular and Cellular Basis of Embryonic Development, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, D-13125 Berlin, Germany
| | - Heike Naumann
- Laboratory of Molecular and Cellular Basis of Embryonic Development, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, D-13125 Berlin, Germany
| | - Francesca M. Spagnoli
- Laboratory of Molecular and Cellular Basis of Embryonic Development, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, D-13125 Berlin, Germany
| |
Collapse
|
88
|
Daley WP, Yamada KM. Cell–ECM Interactions and the Regulation of Epithelial Branching Morphogenesis. EXTRACELLULAR MATRIX IN DEVELOPMENT 2013. [DOI: 10.1007/978-3-642-35935-4_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
89
|
Basham KJ, Kieffer C, Shelton DN, Leonard CJ, Bhonde VR, Vankayalapati H, Milash B, Bearss DJ, Looper RE, Welm BE. Chemical genetic screen reveals a role for desmosomal adhesion in mammary branching morphogenesis. J Biol Chem 2012; 288:2261-70. [PMID: 23212921 PMCID: PMC3554898 DOI: 10.1074/jbc.m112.411033] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
During the process of branching morphogenesis, the mammary gland undergoes distinct phases of remodeling to form an elaborate ductal network that ultimately produces and delivers milk to newborn animals. These developmental events rely on tight regulation of critical cellular pathways, many of which are probably disrupted during initiation and progression of breast cancer. Transgenic mouse and in vitro organoid models previously identified growth factor signaling as a key regulator of mammary branching, but the functional downstream targets of these pathways remain unclear. Here, we used purified primary mammary epithelial cells stimulated with fibroblast growth factor-2 (FGF2) to model mammary branching morphogenesis in vitro. We employed a forward chemical genetic approach to identify modulators of this process and describe a potent compound, 1023, that blocks FGF2-induced branching. In primary mammary epithelial cells, we used lentivirus-mediated knockdown of the aryl hydrocarbon receptor (AHR) to demonstrate that 1023 acts through AHR to block branching. Using 1023 as a tool, we identified desmosomal adhesion as a novel target of AHR signaling and show that desmosomes are critical for AHR agonists to block branching. Our findings support a functional role for desmosomes during mammary morphogenesis and also in blocking FGF-induced invasion.
Collapse
Affiliation(s)
- Kaitlin J Basham
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Nichols JE, Niles JA, Cortiella J. Design and development of tissue engineered lung: Progress and challenges. Organogenesis 2012; 5:57-61. [PMID: 19794900 DOI: 10.4161/org.5.2.8564] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Accepted: 03/27/2009] [Indexed: 11/19/2022] Open
Abstract
Before we can realize our long term goal of engineering lung tissue worthy of clinical applications, advances in the identification and utilization of cell sources, development of standardized procedures for differentiation of cells, production of matrix tailored to meet the needs of the lung and design of methods or techniques of applying the engineered tissues into the injured lung environment will need to occur. Design of better biomaterials with the capacity to guide stem cell behavior and facilitate lung lineage choice as well as seamlessly integrate with living lung tissue will be achieved through advances in the development of decellularized matrices and new understandings related to the influence of extracellular matrix on cell behavior and function. We have strong hopes that recent developments in the engineering of conducting airway from decellularized trachea will lead to similar breakthroughs in the engineering of distal lung components in the future.
Collapse
|
91
|
Ochoa-Espinosa A, Affolter M. Branching morphogenesis: from cells to organs and back. Cold Spring Harb Perspect Biol 2012; 4:cshperspect.a008243. [PMID: 22798543 DOI: 10.1101/cshperspect.a008243] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Many animal organs, such as the lung, the kidney, the mammary gland, and the vasculature, consist of branched tubular structures that arise through a process known as "branching morphogenesis" that results from the remodeling of epithelial or endothelial sheaths into multicellular tubular networks. In recent years, the combination of molecular biology, forward and reverse genetic approaches, and their complementation by live imaging has started to unravel rules and mechanisms controlling branching processes in animals. Common patterns of branch formation spanning diverse model systems are beginning to emerge that might reflect unifying principles of tubular organ formation.
Collapse
|
92
|
Abstract
Cell migration is fundamental to establishing and maintaining the proper organization of multicellular organisms. Morphogenesis can be viewed as a consequence, in part, of cell locomotion, from large-scale migrations of epithelial sheets during gastrulation, to the movement of individual cells during development of the nervous system. In an adult organism, cell migration is essential for proper immune response, wound repair, and tissue homeostasis, while aberrant cell migration is found in various pathologies. Indeed, as our knowledge of migration increases, we can look forward to, for example, abating the spread of highly malignant cancer cells, retarding the invasion of white cells in the inflammatory process, or enhancing the healing of wounds. This article is organized in two main sections. The first section is devoted to the single-cell migrating in isolation such as occurs when leukocytes migrate during the immune response or when fibroblasts squeeze through connective tissue. The second section is devoted to cells collectively migrating as part of multicellular clusters or sheets. This second type of migration is prevalent in development, wound healing, and in some forms of cancer metastasis.
Collapse
Affiliation(s)
- Xavier Trepat
- Institute for Bioengineering of Catalonia, Barcelona, Spain.
| | | | | |
Collapse
|
93
|
Maina JN. Comparative molecular developmental aspects of the mammalian- and the avian lungs, and the insectan tracheal system by branching morphogenesis: recent advances and future directions. Front Zool 2012; 9:16. [PMID: 22871018 PMCID: PMC3502106 DOI: 10.1186/1742-9994-9-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 06/18/2012] [Indexed: 02/07/2023] Open
Abstract
Gas exchangers fundamentally form by branching morphogenesis (BM), a mechanistically profoundly complex process which derives from coherent expression and regulation of multiple genes that direct cell-to-cell interactions, differentiation, and movements by signaling of various molecular morphogenetic cues at specific times and particular places in the developing organ. Coordinated expression of growth-instructing factors determines sizes and sites where bifurcation occurs, by how much a part elongates before it divides, and the angle at which branching occurs. BM is essentially induced by dualities of factors where through feedback- or feed forward loops agonists/antagonists are activated or repressed. The intricate transactions between the development orchestrating molecular factors determine the ultimate phenotype. From the primeval time when the transformation of unicellular organisms to multicellular ones occurred by systematic accretion of cells, BM has been perpetually conserved. Canonical signalling, transcriptional pathways, and other instructive molecular factors are commonly employed within and across species, tissues, and stages of development. While much still remain to be elucidated and some of what has been reported corroborated and reconciled with rest of existing data, notable progress has in recent times been made in understanding the mechanism of BM. By identifying and characterizing the morphogenetic drivers, and markers and their regulatory dynamics, the elemental underpinnings of BM have been more precisely explained. Broadening these insights will allow more effective diagnostic and therapeutic interventions of developmental abnormalities and pathologies in pre- and postnatal lungs. Conservation of the molecular factors which are involved in the development of the lung (and other branched organs) is a classic example of nature's astuteness in economically utilizing finite resources. Once purposefully formed, well-tested and tried ways and means are adopted, preserved, and widely used to engineer the most optimal phenotypes. The material and time costs of developing utterly new instruments and routines with every drastic biological change (e.g. adaptation and speciation) are circumvented. This should assure the best possible structures and therefore functions, ensuring survival and evolutionary success.
Collapse
Affiliation(s)
- John N Maina
- Department of Zoology, University of Johannesburg, Auckland Park 2006, P,O, Box 524, Johannesburg, South Africa.
| |
Collapse
|
94
|
Donner TJ, Scarpella E. Transcriptional control of early vein expression of CYCA2; 1 and CYCA2;4 in Arabidopsis leaves. Mech Dev 2012; 130:14-24. [PMID: 22842098 DOI: 10.1016/j.mod.2012.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 06/14/2012] [Accepted: 07/16/2012] [Indexed: 01/14/2023]
Abstract
Unlike most animal tissue networks, the patterns of vein networks in plant leaves are variable and plastic, suggesting distinct control mechanisms. Thus, knowledge of the gene regulatory circuits that pattern leaf vein networks could suggest new control mechanisms of tissue network formation. However, the cis-regulatory elements required for expression at early stages of vein development are largely unknown. Here we show that the Arabidopsis genes CYCLIN A2;1 (CYCA2;1) and CYCLIN A2;4 (CYCA2;4), previously shown to act redundantly in vein cell proliferation, are expressed at early stages of vein development. We show that stage-specific expression of CYCA2;1 and CYCA2;4 in vein development depends on regulatory elements containing, respectively, one and three evolutionarily conserved transcription-factor binding sites. Our data suggest that early vein expression is encoded in regulatory elements of different structures.
Collapse
Affiliation(s)
- Tyler J Donner
- Department of Biological Sciences, University of Alberta, CW-405 Biological Sciences Building, Edmonton, AB, Canada T6G 2E9
| | | |
Collapse
|
95
|
A role for mesenchyme dynamics in mouse lung branching morphogenesis. PLoS One 2012; 7:e41643. [PMID: 22844507 PMCID: PMC3402475 DOI: 10.1371/journal.pone.0041643] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 06/22/2012] [Indexed: 12/21/2022] Open
Abstract
Mammalian airways are highly ramified tree-like structures that develop by the repetitive branching of the lung epithelium into the surrounding mesenchyme through reciprocal interactions. Based on a morphometric analysis of the epithelial tree, it has been recently proposed that the complete branching scheme is specified early in each lineage by a programme using elementary patterning routines at specific sites and times in the developing lung. However, the coupled dynamics of both the epithelium and mesenchyme have been overlooked in this process. Using a qualitative and quantitative in vivo morphometric analysis of the E11.25 to E13.5 mouse whole right cranial lobe structure, we show that beyond the first generations, the branching stereotypy relaxes and both spatial and temporal variations are common. The branching pattern and branching rate are sensitive to the dynamic changes of the mesoderm shape that is in turn mainly dependent upon the volume and shape of the surrounding intrathoracic organs. Spatial and temporal variations of the tree architecture are related to local and subtle modifications of the mesoderm growth. Remarkably, buds never meet after suffering branching variations and continue to homogenously fill the opening spaces in the mesenchyme. Moreover despite inter-specimen variations, the growth of the epithelial tree and the mesenchyme remains highly correlated over time at the whole lobe level, implying a long-range regulation of the lung lobe morphogenesis. Together, these findings indicate that the lung epithelial tree is likely to adapt in real time to fill the available space in the mesenchyme, rather than being rigidly specified and predefined by a global programme. Our results strongly support the idea that a comprehensive understanding of lung branching mechanisms cannot be inferred from the branching pattern or behavior alone. Rather it needs to be elaborated upon with the reconsideration of mesenchyme-epithelium coupled growth and lung tissues mechanics.
Collapse
|
96
|
Ciona intestinalis notochord as a new model to investigate the cellular and molecular mechanisms of tubulogenesis. Semin Cell Dev Biol 2012; 23:308-19. [PMID: 22465520 DOI: 10.1016/j.semcdb.2012.03.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 02/20/2012] [Accepted: 03/01/2012] [Indexed: 01/13/2023]
|
97
|
Boudreau A, van't Veer LJ, Bissell MJ. An "elite hacker": breast tumors exploit the normal microenvironment program to instruct their progression and biological diversity. Cell Adh Migr 2012; 6:236-48. [PMID: 22863741 DOI: 10.4161/cam.20880] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The year 2011 marked the 40 year anniversary of Richard Nixon signing the National Cancer Act, thus declaring the beginning of the "War on Cancer" in the United States. Whereas we have made tremendous progress toward understanding the genetics of tumors in the past four decades, and in developing enabling technology to dissect the molecular underpinnings of cancer at unprecedented resolution, it is only recently that the important role of the stromal microenvironment has been studied in detail. Cancer is a tissue-specific disease, and it is becoming clear that much of what we know about breast cancer progression parallels the biology of the normal breast differentiation, of which there is still much to learn. In particular, the normal breast and breast tumors share molecular, cellular, systemic and microenvironmental influences necessary for their progression. It is therefore enticing to consider a tumor to be a "rogue hacker"--one who exploits the weaknesses of a normal program for personal benefit. Understanding normal mammary gland biology and its "security vulnerabilities" may thus leave us better equipped to target breast cancer. In this review, we will provide a brief overview of the heterotypic cellular and molecular interactions within the microenvironment of the developing mammary gland that are necessary for functional differentiation, provide evidence suggesting that similar biology--albeit imbalanced and exaggerated--is observed in breast cancer progression particularly during the transition from carcinoma in situ to invasive disease. Lastly we will present evidence suggesting that the multigene signatures currently used to model cancer heterogeneity and clinical outcome largely reflect signaling from a heterogeneous microenvironment-a recurring theme that could potentially be exploited therapeutically.
Collapse
Affiliation(s)
- Aaron Boudreau
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA.
| | | | | |
Collapse
|
98
|
Gleghorn JP, Kwak J, Pavlovich AL, Nelson CM. Inhibitory morphogens and monopodial branching of the embryonic chicken lung. Dev Dyn 2012; 241:852-62. [PMID: 22410853 DOI: 10.1002/dvdy.23771] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2012] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Branching morphogenesis generates a diverse array of epithelial patterns, including dichotomous and monopodial geometries. Dichotomous branching can be instructed by concentration gradients of epithelial-derived inhibitory morphogens, including transforming growth factor-β (TGFβ), which is responsible for ramification of the pubertal mammary gland. Here, we investigated the role of autocrine inhibitory morphogens in monopodial branching morphogenesis of the embryonic chicken lung. RESULTS Computational modeling and experiments using cultured organ explants each separately revealed that monopodial branching patterns cannot be specified by a single epithelial-derived autocrine morphogen gradient. Instead, signaling by means of TGFβ1 and bone morphogenetic protein-4 (BMP4) differentially affect the rates of branching and growth of the airways. Allometric analysis revealed that development of the epithelial tree obeys power-law dynamics; TGFβ1 and BMP4 have distinct but reversible effects on the scaling coefficient of the power law. CONCLUSIONS These data suggest that although autocrine inhibition cannot specify monopodial branching, inhibitory morphogens define the dynamics of lung morphogenesis.
Collapse
Affiliation(s)
- Jason P Gleghorn
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey
| | | | | | | |
Collapse
|
99
|
Long-range mechanical force enables self-assembly of epithelial tubular patterns. Proc Natl Acad Sci U S A 2012; 109:5576-82. [PMID: 22427356 DOI: 10.1073/pnas.1114781109] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Enabling long-range transport of molecules, tubules are critical for human body homeostasis. One fundamental question in tubule formation is how individual cells coordinate their positioning over long spatial scales, which can be as long as the sizes of tubular organs. Recent studies indicate that type I collagen (COL) is important in the development of epithelial tubules. Nevertheless, how cell-COL interactions contribute to the initiation or the maintenance of long-scale tubular patterns is unclear. Using a two-step process to quantitatively control cell-COL interaction, we show that epithelial cells developed various patterns in response to fine-tuned percentages of COL in ECM. In contrast with conventional thoughts, these patterns were initiated and maintained by traction forces created by cells but not diffusive factors secreted by cells. In particular, COL-dependent transmission of force in the ECM led to long-scale (up to 600 μm) interactions between cells. A mechanical feedback effect was encountered when cells used forces to modify cell positioning and COL distribution and orientations. Such feedback led to a bistability in the formation of linear, tubule-like patterns. Using micro-patterning technique, we further show that the stability of tubule-like patterns depended on the lengths of tubules. Our results suggest a mechanical mechanism that cells can use to initiate and maintain long-scale tubular patterns.
Collapse
|
100
|
Tissue architecture in the Caenorhabditis elegans gonad depends on interactions among fibulin-1, type IV collagen and the ADAMTS extracellular protease. Genetics 2012; 190:1379-88. [PMID: 22298704 DOI: 10.1534/genetics.111.133173] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Molecules in the extracellular matrix (ECM) regulate cellular behavior in both development and pathology. Fibulin-1 is a conserved ECM protein. The Caenorhabditis elegans ortholog, FBL-1, regulates gonad-arm elongation and expansion by acting antagonistically to GON-1, an ADAMTS (a disintegrin and metalloprotease with thrombospondin motifs) family protease. The elongation of gonad arms is directed by gonadal distal tip cells (DTCs). Here we report that a dominant mutation in the EMB-9/type IV collagen α1 subunit can compensate for loss of FBL-1 activity in gonadogenesis. A specific amino acid substitution in the noncollagenous 1 (NC1) domain of EMB-9 suppressed the fbl-1 null mutant. FBL-1 was required to maintain wild-type EMB-9 in the basement membrane (BM), whereas mutant EMB-9 was retained in the absence of FBL-1. EMB-9 (either wild type or mutant) localization in the BM enhanced PAT-3/β-integrin expression in DTCs. In addition, overexpression of PAT-3 partially rescued the DTC migration defects in fbl-1 mutants, suggesting that EMB-9 acts in part through PAT-3 to control DTC migration. In contrast to the suppression of fbl-1(tk45), mutant EMB-9 enhanced the gonadal defects of gon-1(e1254), suggesting that it gained a function similar to that of wild-type FBL-1, which promotes DTC migration by inhibiting GON-1. We propose that FBL-1 and GON-1 control EMB-9 accumulation in the BM and promote PAT-3 expression to control DTC migration.
Collapse
|