51
|
Qin K, Jian D, Xue Y, Cheng Y, Zhang P, Wei Y, Zhang J, Xiong H, Zhang Y, Yuan X. DDX41 regulates the expression and alternative splicing of genes involved in tumorigenesis and immune response. Oncol Rep 2021; 45:1213-1225. [PMID: 33650667 PMCID: PMC7859996 DOI: 10.3892/or.2021.7951] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 11/30/2020] [Indexed: 12/19/2022] Open
Abstract
DEAD‑box helicase 41 (DDX41) is an RNA helicase and accumulating evidence has suggested that DDX41 is involved in pre‑mRNA splicing during tumor development. However, the role of DDX41 in tumorigenesis remains unclear. In order to determine the function of DDX41, the human DDX41 gene was cloned and overexpressed in HeLa cells. The present study demonstrated that DDX41 overexpression inhibited proliferation and promoted apoptosis in HeLa cells. RNA‑sequencing analysis of the transcriptomes in overexpressed and normal control samples. DDX41 regulated 959 differentially expressed genes compared with control cells. Expression levels of certain oncogenes were also regulated by DDX41. DDX41 selectively regulated the alternative splicing of genes in cancer‑associated pathways including the EGFR and FGFR signaling pathways. DDX41 selectively upregulated the expression levels of five antigen processing and presentation genes (HSPA1A, HSPA1B, HSPA6, HLA‑DMB and HLA‑G) and downregulated other immune‑response genes in HeLa cells. Additionally, DDX41‑regulated oncogenes and antigen processing and presentation genes were associated with patient survival rates. Moreover, DDX41 expression was associated with immune infiltration in cervical and endocervical squamous cancer. The present findings showed that DDX41 regulated the cancer cell transcriptome at both the transcriptional and alternative splicing levels. The DDX41 regulatory network predicted the biological function of DDX41 in suppressing tumor cell growth and regulating cancer immunity, which may be important for developing anticancer therapeutics.
Collapse
Affiliation(s)
- Kai Qin
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Danni Jian
- Department of Otolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yaqiang Xue
- Laboratory for Genome Regulation and Human Health, ABLife Inc., Optics Valley International Biomedical Park, Wuhan, Hubei 430075, P.R. China
| | - Yi Cheng
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Peng Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yaxun Wei
- Center for Genome Analysis, ABLife Inc., Optics Valley International Biomedical Park, Wuhan, Hubei 430075, P.R. China
| | - Jing Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Huihua Xiong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yi Zhang
- Laboratory for Genome Regulation and Human Health, ABLife Inc., Optics Valley International Biomedical Park, Wuhan, Hubei 430075, P.R. China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
52
|
Perfetto M, Xu X, Lu C, Shi Y, Yousaf N, Li J, Yien YY, Wei S. The RNA helicase DDX3 induces neural crest by promoting AKT activity. Development 2021; 148:dev.184341. [PMID: 33318149 DOI: 10.1242/dev.184341] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/02/2020] [Indexed: 01/02/2023]
Abstract
Mutations in the RNA helicase DDX3 have emerged as a frequent cause of intellectual disability in humans. Because many individuals carrying DDX3 mutations have additional defects in craniofacial structures and other tissues containing neural crest (NC)-derived cells, we hypothesized that DDX3 is also important for NC development. Using Xenopus tropicalis as a model, we show that DDX3 is required for normal NC induction and craniofacial morphogenesis by regulating AKT kinase activity. Depletion of DDX3 decreases AKT activity and AKT-dependent inhibitory phosphorylation of GSK3β, leading to reduced levels of β-catenin and Snai1: two GSK3β substrates that are crucial for NC induction. DDX3 function in regulating these downstream signaling events during NC induction is likely mediated by RAC1, a small GTPase whose translation depends on the RNA helicase activity of DDX3. These results suggest an evolutionarily conserved role of DDX3 in NC development by promoting AKT activity, and provide a potential mechanism for the NC-related birth defects displayed by individuals harboring mutations in DDX3 and its downstream effectors in this signaling cascade.
Collapse
Affiliation(s)
- Mark Perfetto
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.,Department of Biology, West Virginia University, Morgantown, WV 26506, USA
| | - Xiaolu Xu
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Congyu Lu
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Yu Shi
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Natasha Yousaf
- Department of Biology, West Virginia University, Morgantown, WV 26506, USA
| | - Jiejing Li
- Department of Biology, West Virginia University, Morgantown, WV 26506, USA.,Department of Clinical Laboratory, The Affiliated Hospital of KMUST, Medical School, Kunming University of Science and Technology, Kunming 650032, China
| | - Yvette Y Yien
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Shuo Wei
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
53
|
Shriwas O, Priyadarshini M, Samal SK, Rath R, Panda S, Das Majumdar SK, Muduly DK, Botlagunta M, Dash R. DDX3 modulates cisplatin resistance in OSCC through ALKBH5-mediated m 6A-demethylation of FOXM1 and NANOG. Apoptosis 2021; 25:233-246. [PMID: 31974865 DOI: 10.1007/s10495-020-01591-8] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Platinum based drugs alone or in combination with 5FU and docetaxel are common regimen chemotherapeutics for the treatment of advanced OSCC. Chemoresistance is one of the major factors of treatment failure in OSCC. Human RNA helicase DDX3 plays an important role in cell proliferation, invasion, and metastasis in several neoplasms. The potential role of DDX3 in chemoresistance is yet to be explored. Enhanced cancer stem cells (CSCs) population significantly contributes to chemoresistance and recurrence. A recent study showed that m6A RNA regulates self-renewal and tumorigenesis property in cancer. In this study we found genetic (shRNA) or pharmacological (ketorolac salt) inhibition of DDX3 reduced CSC population by suppressing the expression of FOXM1 and NANOG. We also found that m6A demethylase ALKBH5 is directly regulated by DDX3 which leads to decreased m6A methylation in FOXM1 and NANOG nascent transcript that contribute to chemoresistance. Here, we found DDX3 expression was upregulated in both cisplatin-resistant OSCC lines and chemoresistant tumors when compared with their respective sensitive counterparts. In a patient-derived cell xenograft model of chemoresistant OSCC, ketorolac salt restores cisplatin-mediated cell death and facilitates a significant reduction of tumor burdens. Our work uncovers a critical function of DDX3 and provides a new role in m6 demethylation of RNA. A combination regimen of ketorolac salt with cisplatin deserves further clinical investigation in advanced OSCC.
Collapse
Affiliation(s)
- Omprakash Shriwas
- Institute of Life Sciences, Nalco Square, Chandrasekharpur, Bhubaneswar, Odisha, 751023, India
- Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Manashi Priyadarshini
- Institute of Life Sciences, Nalco Square, Chandrasekharpur, Bhubaneswar, Odisha, 751023, India
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Sabindra K Samal
- Institute of Life Sciences, Nalco Square, Chandrasekharpur, Bhubaneswar, Odisha, 751023, India
- B.J.B Autonomous College, Bhubaneswar, India
| | - Rachna Rath
- Sriram Chandra Bhanj Medical College and Hospital, Cuttack, Odisha, 753007, India
| | - Sanjay Panda
- Department of Head and Neck Oncology, Acharya Harihar Regional Cancer Centre, Cuttack, Odisha, 753007, India
- HCG Panda Cancer Centre, Cuttack, Odisha, 754001, India
| | - Saroj Kumar Das Majumdar
- Department of Radiotherapy, All India Institute of Medical Sciences, Bhubaneswar, Odisha, 751019, India
| | - Dillip Kumar Muduly
- Department of Surgical Oncology, All India Institute of Medical Sciences, Bhubaneswar, Odisha, 751019, India
| | - Mahendran Botlagunta
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation (K L Deemed To Be University), Green fields, Guntur District, Andhra Pradesh, 522502, India.
- Basavatarakam Indo American Cancer Hospital and Research Institute, Banjara Hills Road No 10, Hyderabad, Telangana, 500034, India.
| | - Rupesh Dash
- Institute of Life Sciences, Nalco Square, Chandrasekharpur, Bhubaneswar, Odisha, 751023, India.
| |
Collapse
|
54
|
Brown NP, Vergara AM, Whelan AB, Guerra P, Bolger TA. Medulloblastoma-associated mutations in the DEAD-box RNA helicase DDX3X/DED1 cause specific defects in translation. J Biol Chem 2021; 296:100296. [PMID: 33460649 PMCID: PMC7949108 DOI: 10.1016/j.jbc.2021.100296] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/05/2021] [Accepted: 01/12/2021] [Indexed: 01/22/2023] Open
Abstract
Medulloblastoma is the most common pediatric brain cancer, and sequencing studies identified frequent mutations in DDX3X, a DEAD-box RNA helicase primarily implicated in translation. Forty-two different sites were identified, suggesting that the functional effects of the mutations are complex. To investigate how these mutations are affecting DDX3X cellular function, we constructed a full set of equivalent mutant alleles in DED1, the Saccharomyces cerevisiae ortholog of DDX3X, and characterized their effects in vivo and in vitro. Most of the medulloblastoma-associated mutants in DDX3X/DED1 (ded1-mam) showed substantial growth defects, indicating that functional effects are conserved in yeast. Further, while translation was affected in some mutants, translation defects affecting bulk mRNA were neither consistent nor correlated with the growth phenotypes. Likewise, increased formation of stress granules in ded1-mam mutants was common but did not correspond to the severity of the mutants' growth defects. In contrast, defects in translating mRNAs containing secondary structure in their 5' untranslated regions (UTRs) were found in almost all ded1-mam mutants and correlated well with growth phenotypes. We thus conclude that these specific translation defects, rather than generalized effects on translation, are responsible for the observed cellular phenotypes and likely contribute to DDX3X-mutant medulloblastoma. Examination of ATPase activity and RNA binding of recombinant mutant proteins also did not reveal a consistent defect, indicating that the translation defects are derived from multiple enzymatic deficiencies. This work suggests that future studies into medulloblastoma pathology should focus on this specific translation defect, while taking into account the wide spectrum of DDX3X mutations.
Collapse
Affiliation(s)
- Nicolette P Brown
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA
| | - Ashley M Vergara
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA
| | - Alisha B Whelan
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA
| | - Paolo Guerra
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA
| | - Timothy A Bolger
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA.
| |
Collapse
|
55
|
Fulcher LJ, Sapkota GP. Functions and regulation of the serine/threonine protein kinase CK1 family: moving beyond promiscuity. Biochem J 2020; 477:4603-4621. [PMID: 33306089 PMCID: PMC7733671 DOI: 10.1042/bcj20200506] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022]
Abstract
Regarded as constitutively active enzymes, known to participate in many, diverse biological processes, the intracellular regulation bestowed on the CK1 family of serine/threonine protein kinases is critically important, yet poorly understood. Here, we provide an overview of the known CK1-dependent cellular functions and review the emerging roles of CK1-regulating proteins in these processes. We go on to discuss the advances, limitations and pitfalls that CK1 researchers encounter when attempting to define relationships between CK1 isoforms and their substrates, and the challenges associated with ascertaining the correct physiological CK1 isoform for the substrate of interest. With increasing interest in CK1 isoforms as therapeutic targets, methods of selectively inhibiting CK1 isoform-specific processes is warranted, yet challenging to achieve given their participation in such a vast plethora of signalling pathways. Here, we discuss how one might shut down CK1-specific processes, without impacting other aspects of CK1 biology.
Collapse
Affiliation(s)
- Luke J. Fulcher
- Department of Biochemistry, University of Oxford, Oxford, U.K
| | - Gopal P. Sapkota
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, U.K
| |
Collapse
|
56
|
Wang Y, Li G, Deng M, Liu X, Huang W, Zhang Y, Liu M, Chen Y. The multifaceted functions of RNA helicases in the adaptive cellular response to hypoxia: From mechanisms to therapeutics. Pharmacol Ther 2020; 221:107783. [PMID: 33307143 DOI: 10.1016/j.pharmthera.2020.107783] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/26/2020] [Accepted: 11/30/2020] [Indexed: 02/08/2023]
Abstract
Hypoxia is a hallmark of cancer. Hypoxia-inducible factor (HIF), a master player for sensing and adapting to hypoxia, profoundly influences genome instability, tumor progression and metastasis, metabolic reprogramming, and resistance to chemotherapies and radiotherapies. High levels and activity of HIF result in poor clinical outcomes in cancer patients. Thus, HIFs provide ideal therapeutic targets for cancers. However, HIF biology is sophisticated, and currently available HIF inhibitors have limited clinical utility owing to their low efficacy or side effects. RNA helicases, which are master players in cellular RNA metabolism, are usually highly expressed in tumors to meet the increased oncoprotein biosynthesis demand. Intriguingly, recent findings provide convincing evidence that RNA helicases are crucial for the adaptive cellular response to hypoxia via a mutual regulation with HIFs. More importantly, some RNA helicase inhibitors may suppress HIF signaling by blocking the translation of HIF-responsive genes. Therefore, RNA helicase inhibitors may work synergistically with HIF inhibitors in cancer to improve treatment efficacy. In this review, we discuss current knowledge of how cells sense and adapt to hypoxia through HIFs. However, our primary focus is on the multiple functions of RNA helicases in the adaptive response to hypoxia. We also highlight how these hypoxia-related RNA helicases can be exploited for anti-cancer therapeutics.
Collapse
Affiliation(s)
- Yijie Wang
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Guangqiang Li
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong 519000, China; Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong 510632, China
| | - Mingxia Deng
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong 519000, China; Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong 510632, China
| | - Xiong Liu
- School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Weixiao Huang
- School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Yao Zhang
- School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Min Liu
- Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Yan Chen
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong 519000, China; Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong 510632, China; School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China.
| |
Collapse
|
57
|
Bono B, Franco G, Riva V, Garbelli A, Maga G. Novel Insights into the Biochemical Mechanism of CK1ε and its Functional Interplay with DDX3X. Int J Mol Sci 2020; 21:ijms21176449. [PMID: 32899434 PMCID: PMC7503845 DOI: 10.3390/ijms21176449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/14/2020] [Accepted: 09/01/2020] [Indexed: 11/23/2022] Open
Abstract
Casein Kinase 1 epsilon (CK1ε) is a member of the serine (Ser)/threonine (Thr) CK1 family, known to have crucial roles in several biological scenarios and, ever more frequently, in pathological contexts, such as cancer. Recently, the human DEAD-box RNA helicase 3 X-linked (DDX3X), involved in cancer proliferation and viral infections, has been identified as one of CK1ε substrates and its positive regulator in the Wnt/β-catenin network. However, the way by which these two proteins influence each other has not been fully clarified. In order to further investigate their interplay, we defined the kinetic parameters of CK1ε towards its substrates: ATP, casein, Dvl2 and DDX3X. CK1ε affinity for ATP depends on the nature of the substrate: increasing of casein concentrations led to an increase of KmATP, while increasing DDX3X reduced it. In literature, DDX3X is described to act as an allosteric activator of CK1ε. However, when we performed kinase reactions combining DDX3X and casein, we did not find a positive effect of DDX3X on casein phosphorylation by CK1ε, while both substrates were phosphorylated in a competitive manner. Moreover, CK1ε positively stimulates DDX3X ATPase activity. Our data provide a more detailed kinetic characterization on the functional interplay of these two proteins.
Collapse
|
58
|
Casein Kinase 1α as a Regulator of Wnt-Driven Cancer. Int J Mol Sci 2020; 21:ijms21165940. [PMID: 32824859 PMCID: PMC7460588 DOI: 10.3390/ijms21165940] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/10/2020] [Accepted: 08/14/2020] [Indexed: 12/13/2022] Open
Abstract
Wnt signaling regulates numerous cellular processes during embryonic development and adult tissue homeostasis. Underscoring this physiological importance, deregulation of the Wnt signaling pathway is associated with many disease states, including cancer. Here, we review pivotal regulatory events in the Wnt signaling pathway that drive cancer growth. We then discuss the roles of the established negative Wnt regulator, casein kinase 1α (CK1α), in Wnt signaling. Although the study of CK1α has been ongoing for several decades, the bulk of such research has focused on how it phosphorylates and regulates its various substrates. We focus here on what is known about the mechanisms controlling CK1α, including its putative regulatory proteins and alternative splicing variants. Finally, we describe the discovery and validation of a family of pharmacological CK1α activators capable of inhibiting Wnt pathway activity. One of the important advantages of CK1α activators, relative to other classes of Wnt inhibitors, is their reduced on-target toxicity, overcoming one of the major impediments to developing a clinically relevant Wnt inhibitor. Therefore, we also discuss mechanisms that regulate CK1α steady-state homeostasis, which may contribute to the deregulation of Wnt pathway activity in cancer and underlie the enhanced therapeutic index of CK1α activators.
Collapse
|
59
|
Huang Q, Chen L, Schonbrunn E, Chen J. MDMX inhibits casein kinase 1α activity and stimulates Wnt signaling. EMBO J 2020; 39:e104410. [PMID: 32511789 DOI: 10.15252/embj.2020104410] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 12/20/2022] Open
Abstract
Casein kinase 1 alpha (CK1α) is a serine/threonine kinase with numerous functions, including regulating the Wnt/β-catenin and p53 pathways. CK1α has a well-established role in inhibiting the p53 tumor suppressor by binding to MDMX and stimulating MDMX-p53 interaction. MDMX purified from cells contains near-stoichiometric amounts of CK1α, suggesting that MDMX may in turn regulate CK1α function. We present evidence that MDMX is a potent competitive inhibitor of CK1α kinase activity (Ki = 8 nM). Depletion of MDMX increases CK1α activity and β-catenin S45 phosphorylation, whereas ectopic MDMX expression inhibits CK1α activity and β-catenin phosphorylation. The MDMX acidic domain and zinc finger are necessary and sufficient for binding and inhibition of CK1α. P53 binding to MDMX disrupts an intramolecular auto-regulatory interaction and enhances its ability to inhibit CK1α. P53-null mice expressing the MDMXW 200S/W201G mutant, defective in CK1α binding, exhibit reduced Wnt/β-catenin target gene expression and delayed tumor development. Therefore, MDMX is a physiological inhibitor of CK1α and has a role in modulating cellular response to Wnt signaling. The MDMX-CK1α interaction may account for certain p53-independent functions of MDMX.
Collapse
Affiliation(s)
- Qingling Huang
- Molecular Oncology Department, Moffitt Cancer Center, Tampa, FL, USA
| | - Lihong Chen
- Molecular Oncology Department, Moffitt Cancer Center, Tampa, FL, USA
| | - Ernst Schonbrunn
- Drug Discovery Department, Moffitt Cancer Center, Tampa, FL, USA
| | - Jiandong Chen
- Molecular Oncology Department, Moffitt Cancer Center, Tampa, FL, USA
| |
Collapse
|
60
|
Hu L, Xin X, Lin S, Luo M, Chen J, Qiu H, Ma L, Huang J. A child with a novel DDX3X variant mimicking cerebral palsy: a case report. Ital J Pediatr 2020; 46:88. [PMID: 32600431 PMCID: PMC7325255 DOI: 10.1186/s13052-020-00850-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 06/15/2020] [Indexed: 11/21/2022] Open
Abstract
Background Cerebral palsy (CP) is a non-progressive disorder of movement and posture due to a static insult to the brain. In CP, the depth of investigation is guided by the patients’ medical history and their clinical examination. Magnetic resonance imaging (MRI) has a high yield and is widely used for investigation in CP. Case presentation In this paper, we report a novel DDX3X variant in a girl afflicted with the X-linked mental retardation-102 (MRX102). The girl had been misdiagnosed with CP in her early life based on a comprehensive clinical evaluation and associated clinical features, such as developmental delay, reduced activities of the arms and legs, and abnormal brain MRI. Subsequently, whole-exome sequencing was applied to better distinguish between CP and actual MRX102 with similar characteristics. Conclusions We report on a de novo heterozygous DDX3X variant mimicking cerebral palsy and suggest a thorough and conscientious review during diagnosis of CP.
Collapse
Affiliation(s)
- Liqin Hu
- Department of Gynaecology and Obstetrics, Ganzhou Maternal and Child Health Hospital, Ganzhou, 341000, Jiangxi Province, China
| | - Xiaoqin Xin
- Department of Clinical Laboratory, Ganzhou People's Hospital, Ganzhou, 341000, Jiangxi Province, China
| | - Shaobin Lin
- Fetal Medicine Centre, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong Province, China
| | - Min Luo
- Department of Pediatric Neurorehabilitation, Ganzhou Maternal and Child Health Hospital, Ganzhou, 341000, Jiangxi Province, China
| | - Junkun Chen
- Department of Medical Genetics, Ganzhou Maternal and Child Health Hospital, Ganzhou, 341000, Jiangxi Province, China
| | - Hongsheng Qiu
- Neonatology Department, Ganzhou Maternal and Child Health Hospital, Ganzhou, 341000, Jiangxi Province, China
| | - Li Ma
- Department of Gynaecology and Obstetrics, Ganzhou Maternal and Child Health Hospital, Ganzhou, 341000, Jiangxi Province, China
| | - Jungao Huang
- Department of Medical Genetics, Ganzhou Maternal and Child Health Hospital, Ganzhou, 341000, Jiangxi Province, China.
| |
Collapse
|
61
|
Alkallas R, Lajoie M, Moldoveanu D, Hoang KV, Lefrançois P, Lingrand M, Ahanfeshar-Adams M, Watters K, Spatz A, Zippin JH, Najafabadi HS, Watson IR. Multi-omic analysis reveals significantly mutated genes and DDX3X as a sex-specific tumor suppressor in cutaneous melanoma. NATURE CANCER 2020; 1:635-652. [PMID: 35121978 PMCID: PMC8832745 DOI: 10.1038/s43018-020-0077-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 05/15/2020] [Indexed: 12/30/2022]
Abstract
The high background tumor mutation burden in cutaneous melanoma limits the ability to identify significantly mutated genes (SMGs) that drive this cancer. To address this, we performed a mutation significance study of over 1,000 melanoma exomes, combined with a multi-omic analysis of 470 cases from The Cancer Genome Atlas. We discovered several SMGs with co-occurring loss-of-heterozygosity and loss-of-function mutations, including PBRM1, PLXNC1 and PRKAR1A, which encodes a protein kinase A holoenzyme subunit. Deconvolution of bulk tumor transcriptomes into cancer, immune and stromal components revealed a melanoma-intrinsic oxidative phosphorylation signature associated with protein kinase A pathway alterations. We also identified SMGs on the X chromosome, including the RNA helicase DDX3X, whose loss-of-function mutations were exclusively observed in males. Finally, we found that tumor mutation burden and immune infiltration contain complementary information on survival of patients with melanoma. In summary, our multi-omic analysis provides insights into melanoma etiology and supports contribution of specific mutations to the sex bias observed in this cancer.
Collapse
Affiliation(s)
- Rached Alkallas
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada
- Department of Human Genetics, McGill University, Montréal, Québec, Canada
| | - Mathieu Lajoie
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada
| | - Dan Moldoveanu
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada
- Department of General Surgery, McGill University, Montréal, Québec, Canada
| | - Karen Vo Hoang
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada
| | - Philippe Lefrançois
- Division of Dermatology, McGill University Health Centre, Montréal, Québec, Canada
| | - Marine Lingrand
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada
| | | | - Kevin Watters
- Department of Pathology, McGill University and McGill University Health Center, Montréal, Québec, Canada
| | - Alan Spatz
- Department of Pathology, McGill University and McGill University Health Center, Montréal, Québec, Canada
- Lady Davis Institute, Montréal, Québec, Canada
| | - Jonathan H Zippin
- Department of Dermatology, Weill Cornell Medical College, New York, NY, USA
| | - Hamed S Najafabadi
- Department of Human Genetics, McGill University, Montréal, Québec, Canada
- McGill University and Genome Québec Innovation Centre, McGill University, Montréal, Québec, Canada
| | - Ian R Watson
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada.
- Department of Biochemistry, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
62
|
Ou D, Chen L, He J, Rong Z, Gao J, Li Z, Liu L, Tang F, Li J, Deng Y, Sun L. CDK11 negatively regulates Wnt/β-catenin signaling in the endosomal compartment by affecting microtubule stability. Cancer Biol Med 2020; 17:328-342. [PMID: 32587772 PMCID: PMC7309457 DOI: 10.20892/j.issn.2095-3941.2019.0229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/18/2019] [Indexed: 12/13/2022] Open
Abstract
Objectives: Improper activation of Wnt/β-catenin signaling has been implicated in human diseases. Beyond the well-studied glycogen synthase kinase 3β (GSK3β) and casein kinase 1 (CK1), other kinases affecting Wnt/β-catenin signaling remain to be defined. Methods:To identify the kinases that modulate Wnt/β-catenin signaling, we applied a kinase small interfering RNA (siRNA) library screen approach. Luciferase assays, immunoblotting, and real-time polymerase chain reaction (PCR) were performed to confirm the regulation of the Wnt/β-catenin signaling pathway by cyclin-dependent kinase 11 (CDK11) and to investigate the underlying mechanism. Confocal immunofluorescence, coimmunoprecipitation (co-IP), and scratch wound assays were used to demonstrate colocalization, detect protein interactions, and explore the function of CDK11. Results: CDK11 was found to be a significant candidate kinase participating in the negative control of Wnt/β-catenin signaling. Down-regulation of CDK11 led to the accumulation of Wnt/β-catenin signaling receptor complexes, in a manner dependent on intact adenomatosis polyposis coli (APC) protein. Further analysis showed that CDK11 modulation of Wnt/β-catenin signaling engaged the endolysosomal machinery, and CDK11 knockdown enhanced the colocalization of Wnt/β-catenin signaling receptor complexes with early endosomes and decreased colocalization with lysosomes. Mechanistically, CDK11 was found to function in Wnt/β-catenin signaling by regulating microtubule stability. Depletion of CDK11 down-regulated acetyl-α-tubulin. Moreover, co-IP assays demonstrated that CDK11 interacts with the α-tubulin deacetylase SIRT2, whereas SIRT2 down-regulation in CDK11-depleted cells reversed the accumulation of Wnt/β-catenin signaling receptor complexes. CDK11 was found to suppress cell migration through altered Wnt/β-catenin signaling. Conclusions: CDK11 is a negative modulator of Wnt/β-catenin signaling that stabilizes microtubules, thus resulting in the dysregulation of receptor complex trafficking from early endosomes to lysosomes.
Collapse
Affiliation(s)
- Danmin Ou
- Department of Oncology, Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Lin Chen
- Department of Oncology, Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jiang He
- Department of Oncology, Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhuoxian Rong
- Department of Oncology, Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jie Gao
- Department of Oncology, Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhi Li
- Department of Oncology, Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China.,International Cooperation Base of Cancer Precision Therapy, Department of Science and Technology of Hunan Province, Changsha 410008, China.,Key Laboratory of Molecular Radiation Oncology of Hunan Province, Changsha 410008, China
| | - Liyu Liu
- Department of Oncology, Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Feiyu Tang
- Department of Oncology, Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jiang Li
- Department of Oncology, Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yuezhen Deng
- Department of Oncology, Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China.,International Cooperation Base of Cancer Precision Therapy, Department of Science and Technology of Hunan Province, Changsha 410008, China.,Key Laboratory of Molecular Radiation Oncology of Hunan Province, Changsha 410008, China
| | - Lunquan Sun
- Department of Oncology, Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China.,International Cooperation Base of Cancer Precision Therapy, Department of Science and Technology of Hunan Province, Changsha 410008, China.,Key Laboratory of Molecular Radiation Oncology of Hunan Province, Changsha 410008, China.,National Clinical Research Center for Geriatric Disorders, Changsha 410008, China
| |
Collapse
|
63
|
Samir P, Kanneganti TD. DDX3X Sits at the Crossroads of Liquid-Liquid and Prionoid Phase Transitions Arbitrating Life and Death Cell Fate Decisions in Stressed Cells. DNA Cell Biol 2020; 39:1091-1095. [PMID: 32397752 DOI: 10.1089/dna.2020.5616] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The crosstalk between cellular stress responses and innate immune signaling pathways remains poorly understood. Cells can respond to stressors by assembling stress granules that store 40S ribosomes, translation initiation factors, and mRNAs, and allow the cell to survive. Some stressors can activate the NLRP3 inflammasome, which leads to pyroptotic cell death. Stress granules and the NLRP3 inflammasome provide distinct cell fate choices to the cell. These complexes also involve distinct types of phase transitions-liquid-liquid phase separation for stress granules and prionoid phase transition for the NLRP3 inflammasome. We recently reported that DDX3X modulates this crosstalk by acting as a common essential factor for NLRP3 inflammasome activation and stress granule assembly. Here, we discuss the role of DDX3X in modulating the liquid-liquid phase separation and prionoid phase transition required for making cell fate decisions under stress conditions.
Collapse
Affiliation(s)
- Parimal Samir
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | |
Collapse
|
64
|
Lennox AL, Hoye ML, Jiang R, Johnson-Kerner BL, Suit LA, Venkataramanan S, Sheehan CJ, Alsina FC, Fregeau B, Aldinger KA, Moey C, Lobach I, Afenjar A, Babovic-Vuksanovic D, Bézieau S, Blackburn PR, Bunt J, Burglen L, Campeau PM, Charles P, Chung BHY, Cogné B, Curry C, D'Agostino MD, Di Donato N, Faivre L, Héron D, Innes AM, Isidor B, Keren B, Kimball A, Klee EW, Kuentz P, Küry S, Martin-Coignard D, Mirzaa G, Mignot C, Miyake N, Matsumoto N, Fujita A, Nava C, Nizon M, Rodriguez D, Blok LS, Thauvin-Robinet C, Thevenon J, Vincent M, Ziegler A, Dobyns W, Richards LJ, Barkovich AJ, Floor SN, Silver DL, Sherr EH. Pathogenic DDX3X Mutations Impair RNA Metabolism and Neurogenesis during Fetal Cortical Development. Neuron 2020; 106:404-420.e8. [PMID: 32135084 PMCID: PMC7331285 DOI: 10.1016/j.neuron.2020.01.042] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 11/05/2019] [Accepted: 01/29/2020] [Indexed: 12/16/2022]
Abstract
De novo germline mutations in the RNA helicase DDX3X account for 1%-3% of unexplained intellectual disability (ID) cases in females and are associated with autism, brain malformations, and epilepsy. Yet, the developmental and molecular mechanisms by which DDX3X mutations impair brain function are unknown. Here, we use human and mouse genetics and cell biological and biochemical approaches to elucidate mechanisms by which pathogenic DDX3X variants disrupt brain development. We report the largest clinical cohort to date with DDX3X mutations (n = 107), demonstrating a striking correlation between recurrent dominant missense mutations, polymicrogyria, and the most severe clinical outcomes. We show that Ddx3x controls cortical development by regulating neuron generation. Severe DDX3X missense mutations profoundly disrupt RNA helicase activity, induce ectopic RNA-protein granules in neural progenitors and neurons, and impair translation. Together, these results uncover key mechanisms underlying DDX3X syndrome and highlight aberrant RNA metabolism in the pathogenesis of neurodevelopmental disease.
Collapse
Affiliation(s)
- Ashley L Lennox
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Mariah L Hoye
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ruiji Jiang
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | - Lindsey A Suit
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Srivats Venkataramanan
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Charles J Sheehan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Fernando C Alsina
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Brieana Fregeau
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kimberly A Aldinger
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Ching Moey
- The University of Queensland, Queensland Brain Institute, Brisbane, QLD 4072, Australia
| | - Iryna Lobach
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Alexandra Afenjar
- Centre de référence des malformations et maladies congénitales du cervelet et Département de génétique et embryologie médicale, APHP, Sorbonne Université, Hôpital Armand Trousseau, 75012 Paris, France
| | - Dusica Babovic-Vuksanovic
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA; Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA; Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Stéphane Bézieau
- Service de Génétique Médicale, CHU Nantes, 9 quai Moncousu, 44093 Nantes Cedex 1, France; Université de Nantes, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France
| | - Patrick R Blackburn
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA; Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Jens Bunt
- The University of Queensland, Queensland Brain Institute, Brisbane, QLD 4072, Australia
| | - Lydie Burglen
- Centre de référence des malformations et maladies congénitales du cervelet et Département de génétique et embryologie médicale, APHP, Sorbonne Université, Hôpital Armand Trousseau, 75012 Paris, France
| | - Philippe M Campeau
- Department of Pediatrics, University of Montreal and CHU Sainte-Justine, Montreal, QC, Canada
| | - Perrine Charles
- Département de Génétique, Centre de Référence Déficiences Intellectuelles de Causes Rares, Groupe Hospitalier Pitié Salpêtrière et Hôpital Trousseau, APHP, Sorbonne Université, Paris, France
| | - Brian H Y Chung
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Benjamin Cogné
- Service de Génétique Médicale, CHU Nantes, 9 quai Moncousu, 44093 Nantes Cedex 1, France; Université de Nantes, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France
| | - Cynthia Curry
- Genetic Medicine, University of California San Francisco/Fresno, Fresno, CA 93701, USA
| | - Maria Daniela D'Agostino
- Division of Medical Genetics, Departments of Specialized Medicine and Human Genetics, McGill University, Montreal, QC, Canada
| | | | - Laurence Faivre
- Centre de référence Anomalies du Développement et Syndromes Malformatifs, INSERM UMR 1231 GAD, CHU de Dijon et Université de Bourgogne, Dijon, France
| | - Delphine Héron
- APHP, Département de Génétique, Groupe Hospitalier Pitié Salpêtrière, Paris, France
| | - A Micheil Innes
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Bertrand Isidor
- Service de Génétique Médicale, CHU Nantes, 9 quai Moncousu, 44093 Nantes Cedex 1, France; Université de Nantes, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France
| | - Boris Keren
- APHP, Département de Génétique, Groupe Hospitalier Pitié Salpêtrière, Paris, France
| | - Amy Kimball
- Harvey Institute of Human Genetics, Greater Baltimore Medical Center, Baltimore, MD, USA
| | - Eric W Klee
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA; Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA; Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA; Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Paul Kuentz
- UMR-INSERM 1231 GAD, Génétique des Anomalies du développement, Université de Bourgogne Franche-Comté, Dijon, France
| | - Sébastien Küry
- Service de Génétique Médicale, CHU Nantes, 9 quai Moncousu, 44093 Nantes Cedex 1, France; Université de Nantes, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France
| | | | - Ghayda Mirzaa
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA; Department of Pediatrics, University of Washington, Seattle, WA 98101, USA
| | - Cyril Mignot
- Département de Génétique, Centre de Référence Déficiences Intellectuelles de Causes Rares, Groupe Hospitalier Pitié Salpêtrière et Hôpital Trousseau, APHP, Sorbonne Université, Paris, France
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Atsushi Fujita
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Caroline Nava
- APHP, Département de Génétique, Groupe Hospitalier Pitié Salpêtrière, Paris, France
| | - Mathilde Nizon
- Service de Génétique Médicale, CHU Nantes, 9 quai Moncousu, 44093 Nantes Cedex 1, France; Université de Nantes, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France
| | - Diana Rodriguez
- Centre de Référence Neurogénétique & Service de Neurologie Pédiatrique, APHP, Sorbonne Université, Hôpital Armand Trousseau, 75012 Paris, France
| | - Lot Snijders Blok
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Christel Thauvin-Robinet
- Centre de référence Déficience Intellectuelle, INSERM UMR 1231 GAD, CHU de Dijon et Université de Bourgogne, Dijon, France
| | - Julien Thevenon
- Centre de référence Anomalies du Développement et Syndromes Malformatifs, INSERM UMR 1231 GAD, CHU de Dijon et Université de Bourgogne, Dijon, France
| | - Marie Vincent
- Service de Génétique Médicale, CHU Nantes, 9 quai Moncousu, 44093 Nantes Cedex 1, France; Université de Nantes, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France
| | | | - William Dobyns
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA; Departments of Pediatrics and Neurology, University of Washington, Seattle, WA 98101, USA
| | - Linda J Richards
- The University of Queensland, Queensland Brain Institute, Brisbane, QLD 4072, Australia; The University of Queensland, School of Biomedical Sciences, Brisbane 4072, QLD, Australia
| | - A James Barkovich
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Stephen N Floor
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94158, USA
| | - Debra L Silver
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA; Duke Institute for Brain Sciences, Duke University, Durham, NC 27710, USA.
| | - Elliott H Sherr
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA; Institute of Human Genetics and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
65
|
The Drosophila RNA Helicase Belle (DDX3) Non-Autonomously Suppresses Germline Tumorigenesis Via Regulation of a Specific mRNA Set. Cells 2020; 9:cells9030550. [PMID: 32111103 PMCID: PMC7140462 DOI: 10.3390/cells9030550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 12/28/2022] Open
Abstract
DDX3 subfamily DEAD-box RNA helicases are essential developmental regulators of RNA metabolism in eukaryotes. belle, the single DDX3 ortholog in Drosophila, is required for fly viability, fertility, and germline stem cell maintenance. Belle is involved both in translational activation and repression of target mRNAs in different tissues; however, direct targets of Belle in the testes are essentially unknown. Here we showed that belle RNAi knockdown in testis cyst cells caused a disruption of adhesion between germ and cyst cells and generation of tumor-like clusters of stem-like germ cells. Ectopic expression of β-integrin in cyst cells rescued early stages of spermatogenesis in belle knockdown testes, indicating that integrin adhesion complexes are required for the interaction between somatic and germ cells in a cyst. To address Belle functions in spermatogenesis in detail we performed cross-linking immunoprecipitation and sequencing (CLIP-seq) analysis and identified multiple mRNAs that interacted with Belle in the testes. The set of Belle targets includes transcripts of proteins that are essential for preventing the tumor-like clusters of germ cells and for sustaining spermatogenesis. By our hypothesis, failures in the translation of a number of mRNA targets additively contribute to developmental defects observed in the testes with belle knockdowns both in cyst cells and in the germline.
Collapse
|
66
|
Li D, Kishta MS, Wang J. Regulation of pluripotency and reprogramming by RNA binding proteins. Curr Top Dev Biol 2020; 138:113-138. [PMID: 32220295 DOI: 10.1016/bs.ctdb.2020.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Embryonic stem cells have the capacities of self-renewal and pluripotency. Pluripotency establishment (somatic cell reprogramming), maintenance, and execution (differentiation) require orchestrated regulatory mechanisms of a cell's molecular machinery, including signaling pathways, epigenetics, transcription, translation, and protein degradation. RNA binding proteins (RBPs) take part in every process of RNA regulation and recent studies began to address their important functions in the regulation of pluripotency and reprogramming. Here, we discuss the roles of RBPs in key regulatory steps in the control of pluripotency and reprogramming. Among RNA binding proteins are a group of RNA helicases that are responsible for RNA structure remodeling with important functional implications. We highlight the largest family of RNA helicases, DDX (DEAD-box) helicase family and our current understanding of their functions specifically in the regulation of pluripotency and reprogramming.
Collapse
Affiliation(s)
- Dan Li
- Department of Cell, Developmental and Regenerative Biology; The Black Family Stem Cell Institute; Icahn School of Medicine at Mount Sinai, New York, NY, United States; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Mohamed S Kishta
- Hormones Department, Medical Research Division, National Research Centre, Cairo, Egypt; Stem Cell Lab., Center of Excellence for Advanced Sciences, National Research Centre, Cairo, Egypt; Department of Medicine, Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY, United States
| | - Jianlong Wang
- Department of Cell, Developmental and Regenerative Biology; The Black Family Stem Cell Institute; Icahn School of Medicine at Mount Sinai, New York, NY, United States; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Department of Medicine, Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY, United States.
| |
Collapse
|
67
|
Kukhanova MK, Karpenko IL, Ivanov AV. DEAD-box RNA Helicase DDX3: Functional Properties and Development of DDX3 Inhibitors as Antiviral and Anticancer Drugs. Molecules 2020; 25:1015. [PMID: 32102413 PMCID: PMC7070539 DOI: 10.3390/molecules25041015] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/05/2020] [Accepted: 02/21/2020] [Indexed: 12/11/2022] Open
Abstract
This short review is focused on enzymatic properties of human ATP-dependent RNA helicase DDX3 and the development of antiviral and anticancer drugs targeting cellular helicases. DDX3 belongs to the DEAD-box proteins, a large family of RNA helicases that participate in all aspects of cellular processes, such as cell cycle progression, apoptosis, innate immune response, viral replication, and tumorigenesis. DDX3 has a variety of functions in the life cycle of different viruses. DDX3 helicase is required to facilitate both the Rev-mediated export of unspliced/partially spliced human immunodeficiency virus (HIV) RNA from nucleus and Tat-dependent translation of viral genes. DDX3 silencing blocks the replication of HIV, HCV, and some other viruses. On the other hand, DDX displays antiviral effect against Dengue virus and hepatitis B virus through the stimulation of interferon beta production. The role of DDX3 in different types of cancer is rather controversial. DDX3 acts as an oncogene in one type of cancer, but demonstrates tumor suppressor properties in other types. The human DDX3 helicase is now considered as a new attractive target for the development of novel pharmaceutical drugs. The most interesting inhibitors of DDX3 helicase and the mechanisms of their actions as antiviral or anticancer drugs are discussed in this short review.
Collapse
Affiliation(s)
- Marina K. Kukhanova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov St. 32, 119991 Moscow, Russia;
| | | | - Alexander V. Ivanov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov St. 32, 119991 Moscow, Russia;
| |
Collapse
|
68
|
Marnik EA, Fuqua JH, Sharp CS, Rochester JD, Xu EL, Holbrook SE, Updike DL. Germline Maintenance Through the Multifaceted Activities of GLH/Vasa in Caenorhabditis elegans P Granules. Genetics 2019; 213:923-939. [PMID: 31506335 PMCID: PMC6827368 DOI: 10.1534/genetics.119.302670] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 09/03/2019] [Indexed: 02/07/2023] Open
Abstract
Vasa homologs are ATP-dependent DEAD-box helicases, multipotency factors, and critical components that specify and protect the germline. They regulate translation, amplify piwi-interacting RNAs (piRNAs), and act as RNA solvents; however, the limited availability of mutagenesis-derived alleles and their wide range of phenotypes have complicated their analysis. Now, with clustered regularly interspaced short palindromic repeats (CRISPR/Cas9), these limitations can be mitigated to determine why protein domains have been lost or retained throughout evolution. Here, we define the functional motifs of GLH-1/Vasa in Caenorhabditis elegans using 28 endogenous, mutant alleles. We show that GLH-1's helicase activity is required to retain its association with P granules. GLH-1 remains in P granules when changes are made outside of the helicase and flanking domains, but fertility is still compromised. Removal of the glycine-rich repeats from GLH proteins progressively diminishes P-granule wetting-like interactions at the nuclear periphery. Mass spectrometry of GLH-1-associated proteins implies conservation of a transient piRNA-amplifying complex, and reveals a novel affinity between GLH-1 and three structurally conserved PCI (26S Proteasome Lid, COP9, and eIF3) complexes or "zomes," along with a reciprocal aversion for assembled ribosomes and the 26S proteasome. These results suggest that P granules compartmentalize the cytoplasm to exclude large protein assemblies, effectively shielding associated transcripts from translation and associated proteins from turnover. Within germ granules, Vasa homologs may act as solvents, ensuring mRNA accessibility by small RNA surveillance and amplification pathways, and facilitating mRNA export through germ granules to initiate translation.
Collapse
Affiliation(s)
| | - J Heath Fuqua
- The Mount Desert Island Biological Laboratory, Bar Harbor, Maine 04672
- The College of the Atlantic, Bar Harbor, Maine 04609
| | - Catherine S Sharp
- The Mount Desert Island Biological Laboratory, Bar Harbor, Maine 04672
| | - Jesse D Rochester
- The Mount Desert Island Biological Laboratory, Bar Harbor, Maine 04672
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, Maine 04469
| | - Emily L Xu
- The Mount Desert Island Biological Laboratory, Bar Harbor, Maine 04672
- The College of William and Mary, Williamsburg, Virginia 23185
| | - Sarah E Holbrook
- The Mount Desert Island Biological Laboratory, Bar Harbor, Maine 04672
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, Maine 04469
- The Jackson Laboratory, Bar Harbor, Maine 04609
| | - Dustin L Updike
- The Mount Desert Island Biological Laboratory, Bar Harbor, Maine 04672
| |
Collapse
|
69
|
Xu P, Ianes C, Gärtner F, Liu C, Burster T, Bakulev V, Rachidi N, Knippschild U, Bischof J. Structure, regulation, and (patho-)physiological functions of the stress-induced protein kinase CK1 delta (CSNK1D). Gene 2019; 715:144005. [PMID: 31376410 PMCID: PMC7939460 DOI: 10.1016/j.gene.2019.144005] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/19/2019] [Accepted: 07/23/2019] [Indexed: 12/11/2022]
Abstract
Members of the highly conserved pleiotropic CK1 family of serine/threonine-specific kinases are tightly regulated in the cell and play crucial regulatory roles in multiple cellular processes from protozoa to human. Since their dysregulation as well as mutations within their coding regions contribute to the development of various different pathologies, including cancer and neurodegenerative diseases, they have become interesting new drug targets within the last decade. However, to develop optimized CK1 isoform-specific therapeutics in personalized therapy concepts, a detailed knowledge of the regulation and functions of the different CK1 isoforms, their various splice variants and orthologs is mandatory. In this review we will focus on the stress-induced CK1 isoform delta (CK1δ), thereby addressing its regulation, physiological functions, the consequences of its deregulation for the development and progression of diseases, and its potential as therapeutic drug target.
Collapse
Affiliation(s)
- Pengfei Xu
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Chiara Ianes
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Fabian Gärtner
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Congxing Liu
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Timo Burster
- Department of Biology, School of Science and Technology, Nazarbayev University, 53 Kabanbay Batyr Ave, Nur-Sultan 020000, Kazakhstan.
| | - Vasiliy Bakulev
- Ural Federal University named after the first President of Russia B. N. Eltsin, Technology for Organic Synthesis Laboratory, 19 Mirastr., 620002 Ekaterinburg, Russia.
| | - Najma Rachidi
- Unité de Parasitologie Moléculaire et Signalisation, Department of Parasites and Insect Vectors, Institut Pasteur and INSERM U1201, 25-28 Rue du Dr Roux, 75015 Paris, France.
| | - Uwe Knippschild
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Joachim Bischof
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| |
Collapse
|
70
|
Fulford AD, Holder MV, Frith D, Snijders AP, Tapon N, Ribeiro PS. Casein kinase 1 family proteins promote Slimb-dependent Expanded degradation. eLife 2019; 8:e46592. [PMID: 31567070 PMCID: PMC6768662 DOI: 10.7554/elife.46592] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 09/19/2019] [Indexed: 12/12/2022] Open
Abstract
Hippo signalling integrates diverse stimuli related to epithelial architecture to regulate tissue growth and cell fate decisions. The Hippo kinase cascade represses the growth-promoting transcription co-activator Yorkie. The FERM protein Expanded is one of the main upstream Hippo signalling regulators in Drosophila as it promotes Hippo kinase signalling and directly inhibits Yorkie. To fulfil its function, Expanded is recruited to the plasma membrane by the polarity protein Crumbs. However, Crumbs-mediated recruitment also promotes Expanded turnover via a phosphodegron-mediated interaction with a Slimb/β-TrCP SCF E3 ligase complex. Here, we show that the Casein Kinase 1 (CKI) family is required for Expanded phosphorylation. CKI expression promotes Expanded phosphorylation and interaction with Slimb/β-TrCP. Conversely, CKI depletion in S2 cells impairs Expanded degradation downstream of Crumbs. In wing imaginal discs, CKI loss leads to elevated Expanded and Crumbs levels. Thus, phospho-dependent Expanded turnover ensures a tight coupling of Hippo pathway activity to epithelial architecture.
Collapse
Affiliation(s)
- Alexander D Fulford
- Centre for Tumour Biology, Barts Cancer InstituteQueen Mary University of LondonLondonUnited Kingdom
- Department of Developmental BiologyWashington University School of MedicineSt. LouisUnited States
| | - Maxine V Holder
- Apoptosis and Proliferation Control LaboratoryThe Francis Crick InstituteLondonUnited Kingdom
| | - David Frith
- ProteomicsThe Francis Crick InstituteLondonUnited Kingdom
| | | | - Nicolas Tapon
- Apoptosis and Proliferation Control LaboratoryThe Francis Crick InstituteLondonUnited Kingdom
| | - Paulo S Ribeiro
- Centre for Tumour Biology, Barts Cancer InstituteQueen Mary University of LondonLondonUnited Kingdom
| |
Collapse
|
71
|
García de Herreros A, Duñach M. Intracellular Signals Activated by Canonical Wnt Ligands Independent of GSK3 Inhibition and β-Catenin Stabilization. Cells 2019; 8:cells8101148. [PMID: 31557964 PMCID: PMC6829497 DOI: 10.3390/cells8101148] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/19/2019] [Accepted: 09/21/2019] [Indexed: 12/31/2022] Open
Abstract
In contrast to non-canonical ligands, canonical Wnts promote the stabilization of β-catenin, which is a prerequisite for formation of the TCF4/β-catenin transcriptional complex and activation of its target genes. This pathway is initiated by binding of Wnt ligands to the Frizzled/LRP5/6 receptor complex, and it increases the half-life of β-catenin by precluding the phosphorylation of β-catenin by GSK3 and its binding to the βTrCP1 ubiquitin ligase. Other intercellular signals are also activated by Wnt ligands that do not inhibit GSK3 and increase β-catenin protein but that either facilitate β-catenin transcriptional activity or stimulate other transcriptional factors that cooperate with it. In this review, we describe the layers of complexity of these signals and discuss their crosstalk with β-catenin in activation of transcriptional targets.
Collapse
Affiliation(s)
- Antonio García de Herreros
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Unidad Asociada CSIC, and Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, E-08003 Barcelona, Spain.
| | - Mireia Duñach
- Departament de Bioquímica i Biologia Molecular, CEB, Facultat de Medicina, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain.
| |
Collapse
|
72
|
Samir P, Kesavardhana S, Patmore DM, Gingras S, Malireddi RKS, Karki R, Guy CS, Briard B, Place DE, Bhattacharya A, Sharma BR, Nourse A, King SV, Pitre A, Burton AR, Pelletier S, Gilbertson RJ, Kanneganti TD. DDX3X acts as a live-or-die checkpoint in stressed cells by regulating NLRP3 inflammasome. Nature 2019; 573:590-594. [PMID: 31511697 PMCID: PMC6980284 DOI: 10.1038/s41586-019-1551-2] [Citation(s) in RCA: 287] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 08/07/2019] [Indexed: 12/28/2022]
Abstract
The cellular stress response has a vital role in regulating homeostasis by modulating cell survival and death. Stress granules are cytoplasmic compartments that enable cells to survive various stressors. Defects in the assembly and disassembly of stress granules are linked to neurodegenerative diseases, aberrant antiviral responses and cancer1-5. Inflammasomes are multi-protein heteromeric complexes that sense molecular patterns that are associated with damage or intracellular pathogens, and assemble into cytosolic compartments known as ASC specks to facilitate the activation of caspase-1. Activation of inflammasomes induces the secretion of interleukin (IL)-1β and IL-18 and drives cell fate towards pyroptosis-a form of programmed inflammatory cell death that has major roles in health and disease6-12. Although both stress granules and inflammasomes can be triggered by the sensing of cellular stress, they drive contrasting cell-fate decisions. The crosstalk between stress granules and inflammasomes and how this informs cell fate has not been well-studied. Here we show that the induction of stress granules specifically inhibits NLRP3 inflammasome activation, ASC speck formation and pyroptosis. The stress granule protein DDX3X interacts with NLRP3 to drive inflammasome activation. Assembly of stress granules leads to the sequestration of DDX3X, and thereby the inhibition of NLRP3 inflammasome activation. Stress granules and the NLRP3 inflammasome compete for DDX3X molecules to coordinate the activation of innate responses and subsequent cell-fate decisions under stress conditions. Induction of stress granules or loss of DDX3X in the myeloid compartment leads to a decrease in the production of inflammasome-dependent cytokines in vivo. Our findings suggest that macrophages use the availability of DDX3X to interpret stress signals and choose between pro-survival stress granules and pyroptotic ASC specks. Together, our data demonstrate the role of DDX3X in driving NLRP3 inflammasome and stress granule assembly, and suggest a rheostat-like mechanistic paradigm for regulating live-or-die cell-fate decisions under stress conditions.
Collapse
Affiliation(s)
- Parimal Samir
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sannula Kesavardhana
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Deanna M Patmore
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, UK
| | - Sebastien Gingras
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Immunology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | | | - Rajendra Karki
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Clifford S Guy
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Benoit Briard
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - David E Place
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Anannya Bhattacharya
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Bhesh Raj Sharma
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Amanda Nourse
- The Molecular Interaction Shared Resource, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sharon V King
- Cell and Tissue Imaging Center, Light Microscopy Division, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Aaron Pitre
- Cell and Tissue Imaging Center, Light Microscopy Division, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Amanda R Burton
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stephane Pelletier
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | | |
Collapse
|
73
|
Applying DDX3X Biomarker to Discriminate Atypical from Benign Meningiomas in Tissue Microarray. Appl Immunohistochem Mol Morphol 2019; 26:263-267. [PMID: 29621097 DOI: 10.1097/pai.0000000000000422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Patients with atypical meningiomas have a higher recurrence rate and poorer prognosis than patients with benign meningeal tumors. However, differentiating atypical from benign meningiomas based on fragmented specimens from brain tumor biopsy is complicated. We tested the association of DDX3X cytoplasmic expression and World Health Organization grading system in various subtypes of meningiomas. In our study, DDX3X expression was evaluated immunohistochemically in 10 non-neoplastic brain tissues and 71 meningiomas. The immunostaining scores were calculated as the product of cytoplasmic DDX3X intensity and the percentage of positively stained cells. Our results revealed most of the non-neoplastic brain tissues were immunonegative for DDX3X. The average DDX3X immunostaining score was significantly higher in meningiomas than non-neoplastic brain tissues and significantly higher in atypical meningiomas than in various subtypes of benign meningiomas. In conclusion, DDX3X immunohistochemistry combined with hematoxylin and eosin staining may help differentiate atypical meningiomas from benign meningeal tumors.
Collapse
|
74
|
Long noncoding RNA LINC00673-v4 promotes aggressiveness of lung adenocarcinoma via activating WNT/β-catenin signaling. Proc Natl Acad Sci U S A 2019; 116:14019-14028. [PMID: 31235588 PMCID: PMC6628810 DOI: 10.1073/pnas.1900997116] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This study uncovers a long noncoding RNA (lncRNA)-mediated mechanism underlying lung adenocarcinoma (LAD) metastasis. We here report that lncRNA LINC00673-v4 expression is up-regulated in LAD and is associated with disease progression. At the molecular level, LINC00673-v4 acts as a scaffold molecule that promotes the interaction between DDX3 and CK1ε and thus the phosphorylation of dishevelled, which subsequently activates WNT/β-catenin signaling and consequently causes aggressiveness of LAD. Treatment with antisense oligonucleotides against LINC00673-v4 strongly suppresses LAD metastasis in vivo. It is well recognized that metastasis can occur early in the course of lung adenocarcinoma (LAD) development, and yet the molecular mechanisms driving this capability of rapid metastasis remain incompletely understood. Here we reported that a long noncoding RNA, LINC00673, was up-regulated in LAD cells. Of note, we first found that LINC00673-v4 was the most abundant transcript of LINC00673 in LAD cells and its expression was associated with adverse clinical outcome of LAD. In vitro and in vivo experiments demonstrated that LINC00673-v4 enhanced invasiveness, migration, and metastasis of LAD cells. Mechanistically, LINC00673-v4 augmented the interaction between DDX3 and CK1ε and thus the phosphorylation of dishevelled, which subsequently activated WNT/β-catenin signaling and consequently caused aggressiveness of LAD. Antagonizing LINC00673-v4 suppressed LAD metastasis in vivo. Together, our data suggest that LINC00673-v4 is a driver molecule for metastasis via constitutively activating WNT/β-catenin signaling in LAD and may represent a potential therapeutic target against the metastasis of LAD.
Collapse
|
75
|
Mampay M, Sheridan GK. REST: An epigenetic regulator of neuronal stress responses in the young and ageing brain. Front Neuroendocrinol 2019; 53:100744. [PMID: 31004616 DOI: 10.1016/j.yfrne.2019.04.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/03/2019] [Accepted: 04/11/2019] [Indexed: 12/27/2022]
Abstract
The transcriptional repressor REST (Repressor Element-1 Silencing Transcription factor) is a key modulator of the neuronal epigenome and targets genes involved in neuronal differentiation, axonal growth, vesicular transport, ion channel conductance and synaptic plasticity. Whilst its gene expression-modifying properties have been examined extensively in neuronal development, REST's response towards stress-induced neuronal insults has only recently been explored. Overall, REST appears to be an ideal candidate to fine-tune neuronal gene expression following different forms of cellular, neuropathological, psychological and physical stressors. Upregulation of REST is reportedly protective against premature neural stem cell depletion, neuronal hyperexcitability, oxidative stress, neuroendocrine system dysfunction and neuropathology. In contrast, neuronal REST activation has also been linked to neuronal dysfunction and neurodegeneration. Here, we highlight key findings and discrepancies surrounding our current understanding of REST's function in neuronal adaptation to stress and explore its potential role in neuronal stress resilience in the young and ageing brain.
Collapse
Affiliation(s)
- Myrthe Mampay
- Neuroimmunology & Neurotherapeutics Laboratory, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, UK
| | - Graham K Sheridan
- Neuroimmunology & Neurotherapeutics Laboratory, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, UK.
| |
Collapse
|
76
|
From the magic bullet to the magic target: exploiting the diverse roles of DDX3X in viral infections and tumorigenesis. Future Med Chem 2019; 11:1357-1381. [PMID: 30816053 DOI: 10.4155/fmc-2018-0451] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
DDX3X is an ATPase/RNA helicase of the DEAD-box family and one of the most multifaceted helicases known up to date, acting in RNA metabolism, cell cycle control, apoptosis, stress response and innate immunity. Depending on the virus or the viral cycle stage, DDX3X can act either in a proviral fashion or as an antiviral factor. Similarly, in different cancer types, it can act either as an oncogene or a tumor-suppressor gene. Accumulating evidence indicated that DDX3X can be considered a promising target for anticancer and antiviral chemotherapy, but also that its exploitation requires a deeper understanding of the molecular mechanisms underlying its dual role in cancer and viral infections. In this Review, we will summarize the known roles of DDX3X in different tumor types and viral infections, and the different inhibitors available, illustrating the possible advantages and potential caveats of their use as anticancer and antiviral drugs.
Collapse
|
77
|
Loureiro ME, D'Antuono A, López N. Virus⁻Host Interactions Involved in Lassa Virus Entry and Genome Replication. Pathogens 2019; 8:pathogens8010017. [PMID: 30699976 PMCID: PMC6470645 DOI: 10.3390/pathogens8010017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/25/2019] [Accepted: 01/26/2019] [Indexed: 01/08/2023] Open
Abstract
Lassa virus (LASV) is the causative agent of Lassa fever, a human hemorrhagic disease associated with high mortality and morbidity rates, particularly prevalent in West Africa. Over the past few years, a significant amount of novel information has been provided on cellular factors that are determinant elements playing a role in arenavirus multiplication. In this review, we focus on host proteins that intersect with the initial steps of the LASV replication cycle: virus entry and genome replication. A better understanding of relevant virus⁻host interactions essential for sustaining these critical steps may help to identify possible targets for the rational design of novel therapeutic approaches against LASV and other arenaviruses that cause severe human disease.
Collapse
Affiliation(s)
- María Eugenia Loureiro
- Centro de Virología Animal (CEVAN), CONICET-SENASA, Av Sir Alexander Fleming 1653, Martínez, Provincia de Buenos Aires B1640CSI, Argentina.
| | - Alejandra D'Antuono
- Centro de Virología Animal (CEVAN), CONICET-SENASA, Av Sir Alexander Fleming 1653, Martínez, Provincia de Buenos Aires B1640CSI, Argentina.
| | - Nora López
- Centro de Virología Animal (CEVAN), CONICET-SENASA, Av Sir Alexander Fleming 1653, Martínez, Provincia de Buenos Aires B1640CSI, Argentina.
| |
Collapse
|
78
|
Cullati SN, Gould KL. Spatiotemporal regulation of the Dma1-mediated mitotic checkpoint coordinates mitosis with cytokinesis. Curr Genet 2019; 65:663-668. [PMID: 30600396 DOI: 10.1007/s00294-018-0921-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/14/2018] [Accepted: 12/15/2018] [Indexed: 11/26/2022]
Abstract
During cell division, the timing of mitosis and cytokinesis must be ordered to ensure that each daughter cell receives a complete, undamaged copy of the genome. In fission yeast, the septation initiation network (SIN) is responsible for this coordination, and a mitotic checkpoint dependent on the E3 ubiquitin ligase Dma1 and the protein kinase CK1 controls SIN signaling to delay cytokinesis when there are errors in mitosis. The participation of kinases and ubiquitin ligases in cell cycle checkpoints that maintain genome integrity is conserved from yeast to human, making fission yeast an excellent model system in which to study checkpoint mechanisms. In this review, we highlight recent advances and remaining questions related to checkpoint regulation, which requires the synchronized modulation of protein ubiquitination, phosphorylation, and subcellular localization.
Collapse
|
79
|
Perčulija V, Ouyang S. Diverse Roles of DEAD/DEAH-Box Helicases in Innate Immunity and Diseases. HELICASES FROM ALL DOMAINS OF LIFE 2019. [PMCID: PMC7158350 DOI: 10.1016/b978-0-12-814685-9.00009-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
DEAD/DEAH-box helicases are enzymes that belong to the DEAD/H-box family of SF2 helicase superfamily. These enzymes are essential in RNA metabolism, where they are involved in a number of processes that require manipulation of RNA structure. Recent studies have found that some DEAD/DEAH-box helicases play important roles in innate immunity, where they act as sensors of cytosolic DNA/RNA, as adaptor proteins, or as regulators of signaling and gene expression. In spite of their function in immunity, DEAD/DEAH-box helicases can also be hijacked and exploited by viruses to circumvent detection and aid in viral replication. These findings not only imply that DEAD/DEAH-box helicases have a broader function than previously thought, but also give us a much better understanding of immune mechanisms and diseases that arise due to the dysregulation or evasion thereof. In this chapter, we demonstrate the known scope of activities of human DEAD/DEAH-box helicases in innate immunity and interaction with viruses or other pathogens. Additionally, we give an outline of diseases in which they are, or may be, involved in the context of immunity.
Collapse
|
80
|
Yang F, Fang E, Mei H, Chen Y, Li H, Li D, Song H, Wang J, Hong M, Xiao W, Wang X, Huang K, Zheng L, Tong Q. Cis-Acting circ-CTNNB1 Promotes β-Catenin Signaling and Cancer Progression via DDX3-Mediated Transactivation of YY1. Cancer Res 2018; 79:557-571. [PMID: 30563889 DOI: 10.1158/0008-5472.can-18-1559] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 09/27/2018] [Accepted: 12/11/2018] [Indexed: 11/16/2022]
Abstract
Circular RNAs (circRNA), a subclass of noncoding RNA characterized by covalently closed continuous loops, play emerging roles in tumorigenesis and aggressiveness. However, the functions and underlying mechanisms of circRNA in regulating Wnt/β-catenin signaling and cancer progression remain elusive. Here, we screen cis-acting circRNA generated by β-catenin (CTNNB1)/transcription factor 7-like 2 genes and identify one intronic circRNA derived from CTNNB1 (circ-CTNNB1) as a novel driver of cancer progression. Circ-CTNNB1 was predominantly expressed in the nucleus, upregulated in cancer tissues and cell lines, and associated with unfavorable outcomes in patients with cancer. Circ-CTNNB1 promoted β-catenin activation, growth, invasion, and metastasis in cancer cells. Circ-CTNNB1 bound DEAD-box polypeptide 3 (DDX3) to facilitate its physical interaction with transcription factor Yin Yang 1 (YY1), resulting in the transactivation of YY1 and transcriptional alteration of downstream genes associated with β-catenin activation and cancer progression. Preclinically, administration of lentivirus-mediated short hairpin RNA targeting circ-CTNNB1 or a cell-penetrating inhibitory peptide blocking the circ-CTNNB1-DDX3 interaction inhibited downstream gene expression, tumorigenesis, and aggressiveness in cancer cells. Taken together, these results demonstrate cis-acting circ-CTNNB1 as a mediator of β-catenin signaling and cancer progression through DDX3-mediated transactivation of YY1. SIGNIFICANCE: These findings reveal the oncogenic functions of a cis-acting circular RNA in β-catenin activation and cancer progression, with potential value as a therapeutic target for human cancers.
Collapse
Affiliation(s)
- Feng Yang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
| | - Erhu Fang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
| | - Hong Mei
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
| | - Yajun Chen
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
| | - Huanhuan Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
| | - Dan Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
| | - Huajie Song
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
| | - Jianqun Wang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
| | - Mei Hong
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
| | - Wenjing Xiao
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
| | - Xiaojing Wang
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
| | - Kai Huang
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
| | - Liduan Zheng
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China. .,Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
| | - Qiangsong Tong
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China. .,Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
| |
Collapse
|
81
|
Fullam A, Gu L, Höhn Y, Schröder M. DDX3 directly facilitates IKKα activation and regulates downstream signalling pathways. Biochem J 2018; 475:3595-3607. [PMID: 30341167 DOI: 10.1042/bcj20180163] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 02/07/2023]
Abstract
DDX3 is a DEAD-box RNA helicase that we and others have previously implicated in antiviral immune signalling pathways leading to type I interferon (IFN) induction. We previously demonstrated that it directly interacts with the kinase IKKε (IκB kinase ε), enhances it activation, and then facilitates phosphorylation of the transcription factor IRF3 by IKKε. However, the TLR7/9 (Toll-like receptor 7/9)-mediated pathway, one of the most physiologically relevant IFN induction pathways, proceeds independently of IKKε or the related kinase TBK1 (TANK-binding kinase 1). This pathway induces type I IFN production via the kinases NIK (NF-κB-inducing kinase) and IKKα and is activated when plasmacytoid dendritic cells sense viral nucleic acids. In the present study, we demonstrate that DDX3 also directly interacts with IKKα and enhances its autophosphorylation and -activation. Modulation of DDX3 expression consequently affected NIK/IKKα-mediated IRF7 phosphorylation and induction of type I interferons. In addition, alternative NF-κB (nuclear factor-κB) activation, another pathway regulated by NIK and IKKα, was also down-regulated in DDX3 knockdown cells. This substantially broadens the effects of DDX3 in innate immune signalling to pathways beyond TBK1/IKKε and IFN induction. Dysregulation of these pathways is involved in disease states, and thus, our research might implicate DDX3 as a potential target for their therapeutic manipulation.
Collapse
Affiliation(s)
- Anthony Fullam
- Department of Biology, Institute of Immunology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Lili Gu
- Department of Biology, Institute of Immunology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Yvette Höhn
- Department of Biology, Institute of Immunology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Martina Schröder
- Department of Biology, Institute of Immunology, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
82
|
Targeting DDX3 in Medulloblastoma Using the Small Molecule Inhibitor RK-33. Transl Oncol 2018; 12:96-105. [PMID: 30292066 PMCID: PMC6171097 DOI: 10.1016/j.tranon.2018.09.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/31/2018] [Accepted: 09/07/2018] [Indexed: 02/08/2023] Open
Abstract
Medulloblastoma is the most common malignant tumor that arises from the cerebellum of the central nervous system. Clinically, medulloblastomas are treated by surgery, radiation, and chemotherapy, all of which result in toxicity and morbidity. Recent reports have identified that DDX3, a member of the RNA helicase family, is mutated in medulloblastoma. In this study, we demonstrate the role of DDX3 in driving medulloblastoma. With the use of a small molecule inhibitor of DDX3, RK-33, we could inhibit growth and promote cell death in two medulloblastoma cell lines, DAOY and UW228, with IC50 values of 2.5 μM and 3.5 μM, respectively. Treatment of DAOY and UW228 cells with RK-33 caused a G1 arrest, resulted in reduced TCF reporter activity, and reduced mRNA expression levels of downstream target genes of the WNT pathway, such as Axin2, CCND1, MYC, and Survivin. In addition, treatment of DAOY and UW228 cells with a combination of RK-33 and radiation exhibited a synergistic effect. Importantly, the combination of RK-33 and 5 Gy radiation caused tumor regression in a mouse xenograft model of medulloblastoma. Using immunohistochemistry, we observed DDX3 expression in both pediatric (55%) and adult (66%) medulloblastoma patients. Based on these results, we conclude that RK-33 is a promising radiosensitizing agent that inhibits DDX3 activity and down-regulates WNT/β-catenin signaling and could be used as a frontline therapeutic strategy for DDX3-expressing medulloblastomas in combination with radiation.
Collapse
|
83
|
Brennan R, Haap-Hoff A, Gu L, Gautier V, Long A, Schröder M. Investigating nucleo-cytoplasmic shuttling of the human DEAD-box helicase DDX3. Eur J Cell Biol 2018; 97:501-511. [PMID: 30131165 DOI: 10.1016/j.ejcb.2018.08.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 07/31/2018] [Accepted: 08/03/2018] [Indexed: 01/20/2023] Open
Abstract
The human DEAD-box helicase DDX3 is a multi-functional protein involved in the regulation of gene expression and additional non-conventional roles as signalling adaptor molecule that are independent of its enzymatic RNA remodeling activity. It is a nucleo-cytoplasmic shuttling protein and it has previously been suggested that dysregulation of its subcellular localization could contribute to tumourigenesis. Indeed, both tumour suppressor and oncogenic functions have been attributed to DDX3. In this study, we investigated the regulation of DDX3's nucleocytoplasmic shuttling. We confirmed that an N-terminal conserved Nuclear Export Signal (NES) is required for export of human DDX3 from the nucleus, and identified three regions within DDX3 that can independently facilitate its nuclear import. We also aimed to identify conditions that alter DDX3's subcellular localisation. Viral infection, cytokine treatment and DNA damage only induced minor changes in DDX3's subcellular distribution as determined by High Content Analysis. However, DDX3's nuclear localization increased in early mitotic cells (during prophase) concomitant with an increase in DDX3 expression levels. Our results are likely to have implications for the proposed use of (nuclear) DDX3 as a prognostic biomarker in cancer.
Collapse
Affiliation(s)
- Ruth Brennan
- Institute of Immunology, Biology Department, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Antje Haap-Hoff
- School of Medicine, Trinity College Dublin, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Dublin 2, Ireland
| | - Lili Gu
- Institute of Immunology, Biology Department, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Virginie Gautier
- School of Medicine, Centre for Research in Infectious Diseases (CRID), University College Dublin, Belfield, Dublin 4, Ireland
| | - Aideen Long
- School of Medicine, Trinity College Dublin, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Dublin 2, Ireland
| | - Martina Schröder
- Institute of Immunology, Biology Department, Maynooth University, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
84
|
Tumor promoter TPA activates Wnt/β-catenin signaling in a casein kinase 1-dependent manner. Proc Natl Acad Sci U S A 2018; 115:E7522-E7531. [PMID: 30038030 PMCID: PMC6094128 DOI: 10.1073/pnas.1802422115] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The phorbol ester 12-O-tetra-decanoylphorbol-13-acetate (TPA) is a well-known tumor promoter in two-stage mouse skin carcinogenesis, but the exact mechanism by which TPA promotes tumorigenesis remains elusive. This study discovered that TPA could stabilize CK1ε, enhance its kinase activity, and induce phosphorylation of LRP6, resulting in the formation of CK1ε–LRP6–axin1 complex, which may bypass the requirement of Wnt–Fzd–Dvl complex. TPA also increased the interaction between β-catenin and TCF4E in a CK1ε/δ-dependent way, and finally led to activation of the Wnt/β-catenin pathway. Our findings reveal a pathway by which TPA activates the Wnt/β-catenin signaling cascade. This pathway may represent a common mechanism for the tumor-promoting activity of some carcinogenic agents. The tumor promoter 12-O-tetra-decanoylphorbol-13-acetate (TPA) has been defined by its ability to promote tumorigenesis on carcinogen-initiated mouse skin. Activation of Wnt/β-catenin signaling has a decisive role in mouse skin carcinogenesis, but it remains unclear how TPA activates Wnt/β-catenin signaling in mouse skin carcinogenesis. Here, we found that TPA could enhance Wnt/β-catenin signaling in a casein kinase 1 (CK1) ε/δ-dependent manner. TPA stabilized CK1ε and enhanced its kinase activity. TPA further induced the phosphorylation of LRP6 at Thr1479 and Ser1490 and the formation of a CK1ε–LRP6–axin1 complex, leading to an increase in cytosolic β-catenin. Moreover, TPA increased the association of β-catenin with TCF4E in a CK1ε/δ-dependent way, resulting in the activation of Wnt target genes. Consistently, treatment with a selective CK1ε/δ inhibitor SR3029 suppressed TPA-induced skin tumor formation in vivo, probably through blocking Wnt/β-catenin signaling. Taken together, our study has identified a pathway by which TPA activates Wnt/β-catenin signaling.
Collapse
|
85
|
Loureiro ME, Zorzetto-Fernandes AL, Radoshitzky S, Chi X, Dallari S, Marooki N, Lèger P, Foscaldi S, Harjono V, Sharma S, Zid BM, López N, de la Torre JC, Bavari S, Zúñiga E. DDX3 suppresses type I interferons and favors viral replication during Arenavirus infection. PLoS Pathog 2018; 14:e1007125. [PMID: 30001425 PMCID: PMC6042795 DOI: 10.1371/journal.ppat.1007125] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 05/27/2018] [Indexed: 11/19/2022] Open
Abstract
Several arenaviruses cause hemorrhagic fever (HF) diseases that are associated with high morbidity and mortality in humans. Accordingly, HF arenaviruses have been listed as top-priority emerging diseases for which countermeasures are urgently needed. Because arenavirus nucleoprotein (NP) plays critical roles in both virus multiplication and immune-evasion, we used an unbiased proteomic approach to identify NP-interacting proteins in human cells. DDX3, a DEAD-box ATP-dependent-RNA-helicase, interacted with NP in both NP-transfected and virus-infected cells. Importantly, DDX3 deficiency compromised the propagation of both Old and New World arenaviruses, including the HF arenaviruses Lassa and Junin viruses. The DDX3 role in promoting arenavirus multiplication associated with both a previously un-recognized DDX3 inhibitory role in type I interferon production in arenavirus infected cells and a positive DDX3 effect on arenavirus RNA synthesis that was dependent on its ATPase and Helicase activities. Our results uncover novel mechanisms used by arenaviruses to exploit the host machinery and subvert immunity, singling out DDX3 as a potential host target for developing new therapies against highly pathogenic arenaviruses.
Collapse
Affiliation(s)
- María Eugenia Loureiro
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States of America
| | | | - Sheli Radoshitzky
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States of America
| | - Xiaoli Chi
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States of America
| | - Simone Dallari
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States of America
| | - Nuha Marooki
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States of America
| | - Psylvia Lèger
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States of America
| | - Sabrina Foscaldi
- Centro de Virología Animal, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Vince Harjono
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, United States of America
| | - Sonia Sharma
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States of America
| | - Brian M. Zid
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, United States of America
| | - Nora López
- Centro de Virología Animal, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Juan Carlos de la Torre
- The Scripps Research Institute, Department of Immunology and Microbiology, La Jolla, CA, United States of America
| | - Sina Bavari
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States of America
| | - Elina Zúñiga
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States of America
| |
Collapse
|
86
|
The FAM83 family of proteins: from pseudo-PLDs to anchors for CK1 isoforms. Biochem Soc Trans 2018; 46:761-771. [PMID: 29871876 PMCID: PMC6008594 DOI: 10.1042/bst20160277] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/05/2018] [Accepted: 04/09/2018] [Indexed: 12/12/2022]
Abstract
The eight members of the FAM83 (FAMily with sequence similarity 83) family of poorly characterised proteins are only present in vertebrates and are defined by the presence of the conserved DUF1669 domain of unknown function at their N-termini. The DUF1669 domain consists of a conserved phospholipase D (PLD)-like catalytic motif. However, the FAM83 proteins display no PLD catalytic (PLDc) activity, and the pseudo-PLDc motif present in each FAM83 member lacks the crucial elements of the native PLDc motif. In the absence of catalytic activity, it is likely that the DUF1669 domain has evolved to espouse novel function(s) in biology. Recent studies have indicated that the DUF1669 domain mediates the interaction with different isoforms of the CK1 (casein kinase 1) family of Ser/Thr protein kinases. In turn, different FAM83 proteins, which exhibit unique amino acid sequences outside the DUF1669 domain, deliver CK1 isoforms to unique subcellular compartments. One of the first protein kinases to be discovered, the CK1 isoforms are thought to be constitutively active and are known to control a plethora of biological processes. Yet, their regulation of kinase activity, substrate selectivity and subcellular localisation has remained a mystery. The emerging evidence now supports a central role for the DUF1669 domain, and the FAM83 proteins, in the regulation of CK1 biology.
Collapse
|
87
|
Jiang S, Zhang M, Sun J, Yang X. Casein kinase 1α: biological mechanisms and theranostic potential. Cell Commun Signal 2018; 16:23. [PMID: 29793495 PMCID: PMC5968562 DOI: 10.1186/s12964-018-0236-z] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 05/16/2018] [Indexed: 02/07/2023] Open
Abstract
Casein kinase 1α (CK1α) is a multifunctional protein belonging to the CK1 protein family that is conserved in eukaryotes from yeast to humans. It regulates signaling pathways related to membrane trafficking, cell cycle progression, chromosome segregation, apoptosis, autophagy, cell metabolism, and differentiation in development, circadian rhythm, and the immune response as well as neurodegeneration and cancer. Given its involvement in diverse cellular, physiological, and pathological processes, CK1α is a promising therapeutic target. In this review, we summarize what is known of the biological functions of CK1α, and provide an overview of existing challenges and potential opportunities for advancing theranostics.
Collapse
Affiliation(s)
- Shaojie Jiang
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang, 310016, Hangzhou, China
| | - Miaofeng Zhang
- Department of Orthopaedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310009, Hangzhou, China
| | - Jihong Sun
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang, 310016, Hangzhou, China
| | - Xiaoming Yang
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang, 310016, Hangzhou, China. .,Image-Guided Bio-Molecular Intervention Research, Department of Radiology, University of Washington School of Medicine, Seattle, WA, 98109, USA.
| |
Collapse
|
88
|
Fulcher LJ, Bozatzi P, Tachie-Menson T, Wu KZL, Cummins TD, Bufton JC, Pinkas DM, Dunbar K, Shrestha S, Wood NT, Weidlich S, Macartney TJ, Varghese J, Gourlay R, Campbell DG, Dingwell KS, Smith JC, Bullock AN, Sapkota GP. The DUF1669 domain of FAM83 family proteins anchor casein kinase 1 isoforms. Sci Signal 2018; 11:eaao2341. [PMID: 29789297 PMCID: PMC6025793 DOI: 10.1126/scisignal.aao2341] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Members of the casein kinase 1 (CK1) family of serine-threonine protein kinases are implicated in the regulation of many cellular processes, including the cell cycle, circadian rhythms, and Wnt and Hedgehog signaling. Because these kinases exhibit constitutive activity in biochemical assays, it is likely that their activity in cells is controlled by subcellular localization, interactions with inhibitory proteins, targeted degradation, or combinations of these mechanisms. We identified members of the FAM83 family of proteins as partners of CK1 in cells. All eight members of the FAM83 family (FAM83A to FAM83H) interacted with the α and α-like isoforms of CK1; FAM83A, FAM83B, FAM83E, and FAM83H also interacted with the δ and ε isoforms of CK1. We detected no interaction between any FAM83 member and the related CK1γ1, CK1γ2, and CK1γ3 isoforms. Each FAM83 protein exhibited a distinct pattern of subcellular distribution and colocalized with the CK1 isoform(s) to which it bound. The interaction of FAM83 proteins with CK1 isoforms was mediated by the conserved domain of unknown function 1669 (DUF1669) that characterizes the FAM83 family. Mutations in FAM83 proteins that prevented them from binding to CK1 interfered with the proper subcellular localization and cellular functions of both the FAM83 proteins and their CK1 binding partners. On the basis of its function, we propose that DUF1669 be renamed the polypeptide anchor of CK1 domain.
Collapse
Affiliation(s)
- Luke J Fulcher
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Dundee, Scotland, UK
| | - Polyxeni Bozatzi
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Dundee, Scotland, UK
| | - Theresa Tachie-Menson
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Dundee, Scotland, UK
| | - Kevin Z L Wu
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Dundee, Scotland, UK
| | - Timothy D Cummins
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Dundee, Scotland, UK
| | - Joshua C Bufton
- Structural Genomics Consortium, University of Oxford, Oxford, UK
| | - Daniel M Pinkas
- Structural Genomics Consortium, University of Oxford, Oxford, UK
| | - Karen Dunbar
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Dundee, Scotland, UK
| | - Sabin Shrestha
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Dundee, Scotland, UK
| | - Nicola T Wood
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Dundee, Scotland, UK
| | - Simone Weidlich
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Dundee, Scotland, UK
| | - Thomas J Macartney
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Dundee, Scotland, UK
| | - Joby Varghese
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Dundee, Scotland, UK
| | - Robert Gourlay
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Dundee, Scotland, UK
| | - David G Campbell
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Dundee, Scotland, UK
| | | | | | - Alex N Bullock
- Structural Genomics Consortium, University of Oxford, Oxford, UK
| | - Gopal P Sapkota
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Dundee, Scotland, UK.
| |
Collapse
|
89
|
Heerma van Voss MR, Kammers K, Vesuna F, Brilliant J, Bergman Y, Tantravedi S, Wu X, Cole RN, Holland A, van Diest PJ, Raman V. Global Effects of DDX3 Inhibition on Cell Cycle Regulation Identified by a Combined Phosphoproteomics and Single Cell Tracking Approach. Transl Oncol 2018; 11:755-763. [PMID: 29684792 PMCID: PMC6050443 DOI: 10.1016/j.tranon.2018.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/29/2018] [Accepted: 04/02/2018] [Indexed: 01/17/2023] Open
Abstract
DDX3 is an RNA helicase with oncogenic properties. The small molecule inhibitor RK-33 is designed to fit into the ATP binding cleft of DDX3 and hereby block its activity. RK-33 has shown potent activity in preclinical cancer models. However, the mechanism behind the antineoplastic activity of RK-33 remains largely unknown. In this study we used a dual phosphoproteomic and single cell tracking approach to evaluate the effect of RK-33 on cancer cells. MDA-MB-435 cells were treated for 24 hours with RK-33 or vehicle control. Changes in phosphopeptide abundance were analyzed with quantitative mass spectrometry using isobaric mass tags (Tandem Mass Tags). At the proteome level we mainly observed changes in mitochondrial translation, cell division pathways and proteins related to cell cycle progression. Analysis of the phosphoproteome indicated decreased CDK1 activity after RK-33 treatment. To further evaluate the effect of DDX3 inhibition on cell cycle progression over time, we performed timelapse microscopy of Fluorescent Ubiquitin Cell Cycle Indicators labeled cells after RK-33 or siDDX3 exposure. Single cell tracking indicated that DDX3 inhibition resulted in a global delay in cell cycle progression in interphase and mitosis. In addition, we observed an increase in endoreduplication. Overall, we conclude that DDX3 inhibition affects cells in all phases and causes a global cell cycle progression delay.
Collapse
Affiliation(s)
- Marise R Heerma van Voss
- Department of Radiology and Radiological Sciences, Johns Hopkins University, School of Medicine, Baltimore, MD, USA; Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kai Kammers
- Division of Biostatistics and Bioinformatics, Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Farhad Vesuna
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Justin Brilliant
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Yehudit Bergman
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Saritha Tantravedi
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Xinyan Wu
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Robert N Cole
- Mass Spectrometry and Proteomics Core, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Andrew Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Paul J van Diest
- Department of Radiology and Radiological Sciences, Johns Hopkins University, School of Medicine, Baltimore, MD, USA; Department of Oncology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Venu Raman
- Department of Radiology and Radiological Sciences, Johns Hopkins University, School of Medicine, Baltimore, MD, USA; Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Oncology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
90
|
Kellaris G, Khan K, Baig SM, Tsai IC, Zamora FM, Ruggieri P, Natowicz MR, Katsanis N. A hypomorphic inherited pathogenic variant in DDX3X causes male intellectual disability with additional neurodevelopmental and neurodegenerative features. Hum Genomics 2018; 12:11. [PMID: 29490693 PMCID: PMC5831694 DOI: 10.1186/s40246-018-0141-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/15/2018] [Indexed: 12/19/2022] Open
Abstract
Background Intellectual disability (ID) is a common condition with a population prevalence frequency of 1–3% and an enrichment for males, driven in part by the contribution of mutant alleles on the X-chromosome. Among the more than 500 genes associated with ID, DDX3X represents an outlier in sex specificity. Nearly all reported pathogenic variants of DDX3X are de novo, affect mostly females, and appear to be loss of function variants, consistent with the hypothesis that haploinsufficiency at this locus on the X-chromosome is likely to be lethal in males. Results We evaluated two male siblings with syndromic features characterized by mild-to-moderate ID and progressive spasticity. Quad-based whole-exome sequencing revealed a maternally inherited missense variant encoding p.R79K in DDX3X in both siblings and no other apparent pathogenic variants. We assessed its possible relevance to their phenotype using an established functional assay for DDX3X activity in zebrafish embryos and found that this allele causes a partial loss of DDX3X function and thus represents a hypomorphic variant. Conclusions Our genetic and functional data suggest that partial loss of function of DDX3X can cause syndromic ID. The p.R79K allele affects a region of the protein outside the critical RNA helicase domain, offering a credible explanation for the observed retention of partial function, viability in hemizygous males, and lack of pathology in females. These findings expand the gender spectrum of pathology of this locus and suggest that analysis for DDX3X variants should be considered relevant for both males and females. Electronic supplementary material The online version of this article (10.1186/s40246-018-0141-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Georgios Kellaris
- Center for Human Disease Modeling, Duke University, 300 North Duke Street, Durham, NC, 27701, USA.,Department of Medical Genetics, University of Athens Medical School, Aghia Sophia Children's Hospital, 11527, Athens, Greece
| | - Kamal Khan
- Center for Human Disease Modeling, Duke University, 300 North Duke Street, Durham, NC, 27701, USA.,Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, 38000, Pakistan
| | - Shahid M Baig
- Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, 38000, Pakistan
| | - I-Chun Tsai
- Center for Human Disease Modeling, Duke University, 300 North Duke Street, Durham, NC, 27701, USA
| | | | - Paul Ruggieri
- Imaging Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Marvin R Natowicz
- Pathology and Laboratory Medicine and Genomic Medicine Institutes, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Nicholas Katsanis
- Center for Human Disease Modeling, Duke University, 300 North Duke Street, Durham, NC, 27701, USA. .,Imaging Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA.
| |
Collapse
|
91
|
Liu KS, Li TP, Ton H, Mao XD, Chen YJ. Advances of Long Noncoding RNAs-mediated Regulation in Reproduction. Chin Med J (Engl) 2018; 131:226-234. [PMID: 29336373 PMCID: PMC5776855 DOI: 10.4103/0366-6999.222337] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVE Advances in genomics and molecular biology have led to the discovery of a large group of uncharacterized long noncoding RNAs (lncRNAs). Emerging evidence indicated that many lncRNAs function in multiple biological processes and its dysregulation often causes diseases. Recent studies suggested that almost all regulatory lncRNAs interact with biological macromolecules such as DNA, RNA, and protein. LncRNAs regulate gene expression mainly on three levels, including epigenetic modification, transcription, and posttranscription, through DNA methylation, histone modification, and chromatin remodeling. LncRNAs can also affect the development of diseases and therefore be used to diagnose and treat diseases. With new sequencing and microarray techniques, hundreds of lncRNAs involved in reproductive disorders have been identified, but their functions in these disorders are undefined. DATA SOURCES This review was based on articles published in PubMed databases up to July 10, 2017, with the following keywords: "long noncoding RNAs", "LncRNA", "placentation", and "reproductive diseases". STUDY SELECTION Original articles and reviews on the topics were selected. RESULTS LncRNAs widely participate in various physiological and pathological processes as a new class of important regulatory factors. In spermatogenesis, spermatocytes divide and differentiate into mature spermatozoa. The whole process is elaborately regulated by the expression of phase-specific genes that involve many strains of lncRNAs. Literature showed that lncRNA in reproductive cumulus cells may contribute to the regulation of oocyte maturation, fertilization, and embryo development. CONCLUSIONS LncRNA has been found to play a role in the development of reproduction. Meanwhile, we reviewed the studies on how lncRNAs participate in reproductive disorders, which provides a basis for the study of lncRNA in reproduction regulation.
Collapse
Affiliation(s)
- Kang-Sheng Liu
- Department of Clinical Laboratory, State Key Laboratory of Reproductive Medicine, Nanjing Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Tai-Ping Li
- Department of Pharmacy, The Affiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Hua Ton
- Department of Obstetrics and Gynecology, State Key Laboratory of Reproductive Medicine, Nanjing Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xiao-Dong Mao
- Department of Endocrinology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210028, China
| | - Ya-Jun Chen
- Department of Clinical Laboratory, State Key Laboratory of Reproductive Medicine, Nanjing Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
92
|
Dolde C, Bischof J, Grüter S, Montada A, Halekotte J, Peifer C, Kalbacher H, Baumann U, Knippschild U, Suter B. A CK1 FRET biosensor reveals that DDX3X is an essential activator of CK1ε. J Cell Sci 2018; 131:jcs.207316. [PMID: 29222110 PMCID: PMC5818060 DOI: 10.1242/jcs.207316] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 11/13/2017] [Indexed: 01/09/2023] Open
Abstract
Casein kinase 1 (CK1) plays central roles in various signal transduction pathways and performs many cellular activities. For many years CK1 was thought to act independently of modulatory subunits and in a constitutive manner. Recently, DEAD box RNA helicases, in particular DEAD box RNA helicase 3 X-linked (DDX3X), were found to stimulate CK1 activity in vitro. In order to observe CK1 activity in living cells and to study its interaction with DDX3X, we developed a CK1-specific FRET biosensor. This tool revealed that DDX3X is indeed required for full CK1 activity in living cells. Two counteracting mechanisms control the activity of these enzymes. Phosphorylation by CK1 impairs the ATPase activity of DDX3X and RNA destabilizes the DDX3X–CK1 complex. We identified possible sites of interaction between DDX3X and CK1. While mutations identified in the DDX3X genes of human medulloblastoma patients can enhance CK1 activity in living cells, the mechanism of CK1 activation by DDX3X points to a possible therapeutic approach in CK1-related diseases such as those caused by tumors driven by aberrant Wnt/β-catenin and Sonic hedgehog (SHH) activation. Indeed, CK1 peptides can reduce CK1 activity. Highlighted Article: A FRET biosensor reveals DDX3X as an essential activator of the CK1 kinase in living cells. Its CK1-activating function is counteracted by its ATPase activity and also by CK1 peptides.
Collapse
Affiliation(s)
- Christine Dolde
- Institute of Cell Biology, Department of Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland
| | - Joachim Bischof
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Simon Grüter
- Institute of Cell Biology, Department of Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland
| | - Anna Montada
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Otto-Fischer-Str. 12-14, 50674 Cologne, Germany
| | - Jakob Halekotte
- Institute for Pharmaceutical Chemistry, Christian Albrechts University, Gutenbergstraße 76, 24118 Kiel, Germany
| | - Christian Peifer
- Institute for Pharmaceutical Chemistry, Christian Albrechts University, Gutenbergstraße 76, 24118 Kiel, Germany
| | - Hubert Kalbacher
- Interfaculty Institute of Biochemistry, University of Tübingen, Ob dem Himmelreich 7, 72074 Tübingen, Germany
| | - Ulrich Baumann
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Otto-Fischer-Str. 12-14, 50674 Cologne, Germany
| | - Uwe Knippschild
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Beat Suter
- Institute of Cell Biology, Department of Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland
| |
Collapse
|
93
|
Wu DW, Lin PL, Cheng YW, Huang CC, Wang L, Lee H. DDX3 enhances oncogenic KRAS‑induced tumor invasion in colorectal cancer via the β‑catenin/ZEB1 axis. Oncotarget 2017; 7:22687-99. [PMID: 27007150 PMCID: PMC5008392 DOI: 10.18632/oncotarget.8143] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 02/21/2016] [Indexed: 12/22/2022] Open
Abstract
DDX3 plays a dual role in colorectal cancer; however, the role and underlying mechanism of DDX3 in colorectal tumorigenesis remains unclear. Here, we provide evidence that DDX3 enhances oncogenic KRAS transcription via an increase in SP1 binding to its promoter. Accelerating oncogenic KRAS expression by DDX3 promotes the invasion capability via the ERK/PTEN/AKT/β-catenin cascade. Moreover, the β-catenin/ZEB1 axis is responsible for DDX3-induced cell invasiveness and xenograft lung tumor nodule formation. The xenograft lung tumor nodules induced by DDX3-overexpressing T84 stable clone were nearly suppressed by the inhibitor of AKT (perifosine) or β-catenin (XAV939). Among patients, high KRAS, positive nuclear β-catenin expression and high ZEB1 were more commonly occurred in high-DDX3 tumors than in low-DDX3 tumors. High-DDX3, high-KRAS, positive nuclear β-catenin tumors, and high-ZEB1 exhibited worse overall survival (OS) and relapse free survival (RFS) than their counterparts. In conclusion, DDX3 may play an oncogenic role to promote tumor growth and invasion in colon cancer cells via the β-catenin/ZEB1 axis due to increasing KRAS transcription. We therefore suggest that AKT or β-catenin may potentially act as a therapeutic target to improve tumor regression and outcomes in colorectal cancer patients who harbored high-DDX3 tumors.
Collapse
Affiliation(s)
- De-Wei Wu
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | - Po-Lin Lin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Ya-Wen Cheng
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | - Chi-Chou Huang
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Surgery, Division of Colon and Rectum, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Lee Wang
- School of Public Health, Chung Shan Medical University, Taichung, Taiwan
| | - Huei Lee
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
94
|
Li B, Lee E, Robbins DJ. Casein kinase1α activators, a precision weapon for CRC. Oncotarget 2017; 8:96462-96463. [PMID: 29228537 PMCID: PMC5722489 DOI: 10.18632/oncotarget.21892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 10/19/2017] [Indexed: 01/21/2023] Open
Affiliation(s)
- Bin Li
- Bin Li: Molecular Oncology Program, Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA; Department of Pediatrics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Ethan Lee
- Bin Li: Molecular Oncology Program, Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA; Department of Pediatrics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - David J Robbins
- Bin Li: Molecular Oncology Program, Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA; Department of Pediatrics, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
95
|
Biochemical Differences and Similarities between the DEAD-Box Helicase Orthologs DDX3X and Ded1p. J Mol Biol 2017; 429:3730-3742. [PMID: 29037760 DOI: 10.1016/j.jmb.2017.10.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/06/2017] [Accepted: 10/08/2017] [Indexed: 12/14/2022]
Abstract
DDX3X is a conserved DEAD-box RNA helicase involved in translation initiation and other processes of RNA metabolism. Mutations in human DDX3X and deregulation of its expression are linked to tumorigenesis and intellectual disability. The protein is also targeted by diverse viruses. Previous studies demonstrated helicase and NTPase activities for DDX3X, but important biochemical features of the enzyme remain unclear. Here, we systematically characterize enzymatic activities of human DDX3X and compare these to its closely related Saccharomyces cerevisiae ortholog Ded1p. We show that DDX3X, like Ded1p, utilizes exclusively adenosine triphosphates to unwind helices, oligomerizes to function as efficient RNA helicase, and does not unwind DNA duplexes. The ATPase activity of DDX3X is markedly stimulated by RNA and weaker by DNA, although DNA binds to the enzyme. For RNA unwinding, DDX3X shows a greater preference than Ded1p for substrates with unpaired regions 3' to the duplex over those with 5' unpaired regions. DDX3X separates longer RNA duplexes faster than Ded1p and is less potent than Ded1p in facilitating strand annealing. Our results reveal that the biochemical activities of human DDX3X are typical for DEAD-box RNA helicases, but diverge quantitatively from its highly similar S. cerevisiae ortholog Ded1p.
Collapse
|
96
|
Morgenstern Y, Das Adhikari U, Ayyash M, Elyada E, Tóth B, Moor A, Itzkovitz S, Ben-Neriah Y. Casein kinase 1-epsilon or 1-delta required for Wnt-mediated intestinal stem cell maintenance. EMBO J 2017; 36:3046-3061. [PMID: 28963394 DOI: 10.15252/embj.201696253] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 08/09/2017] [Accepted: 08/11/2017] [Indexed: 01/01/2023] Open
Abstract
The intestinal epithelium holds an immense regenerative capacity mobilized by intestinal stem cells (ISCs), much of it supported by Wnt pathway activation. Several unique regulatory mechanisms ensuring optimal levels of Wnt signaling have been recognized in ISCs. Here, we identify another Wnt signaling amplifier, CKIε, which is specifically upregulated in ISCs and is essential for ISC maintenance, especially in the absence of its close isoform CKIδ. Co-ablation of CKIδ/ε in the mouse gut epithelium results in rapid ISC elimination, with subsequent growth arrest, crypt-villous shrinking, and rapid mouse death. Unexpectedly, Wnt activation is preserved in all CKIδ/ε-deficient enterocyte populations, with the exception of Lgr5+ ISCs, which exhibit Dvl2-dependent Wnt signaling attenuation. CKIδ/ε-depleted gut organoids cease proliferating and die rapidly, yet survive and resume self-renewal upon reconstitution of Dvl2 expression. Our study underscores a unique regulation mode of the Wnt pathway in ISCs, possibly providing new means of stem cell enrichment for regenerative medicine.
Collapse
Affiliation(s)
- Yael Morgenstern
- The Lautenberg Center for Immunology, Institute of Medical Research, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Upasana Das Adhikari
- The Lautenberg Center for Immunology, Institute of Medical Research, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Muneef Ayyash
- The Lautenberg Center for Immunology, Institute of Medical Research, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Ela Elyada
- The Lautenberg Center for Immunology, Institute of Medical Research, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Beáta Tóth
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Andreas Moor
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Shalev Itzkovitz
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yinon Ben-Neriah
- The Lautenberg Center for Immunology, Institute of Medical Research, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
97
|
The helicase, DDX3X, interacts with poly(A)-binding protein 1 (PABP1) and caprin-1 at the leading edge of migrating fibroblasts and is required for efficient cell spreading. Biochem J 2017; 474:3109-3120. [PMID: 28733330 PMCID: PMC5577505 DOI: 10.1042/bcj20170354] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/14/2017] [Accepted: 07/19/2017] [Indexed: 01/01/2023]
Abstract
DDX3X, a helicase, can interact directly with mRNA and translation initiation factors, regulating the selective translation of mRNAs that contain a structured 5′ untranslated region. This activity modulates the expression of mRNAs controlling cell cycle progression and mRNAs regulating actin dynamics, contributing to cell adhesion and motility. Previously, we have shown that ribosomes and translation initiation factors localise to the leading edge of migrating fibroblasts in loci enriched with actively translating ribosomes, thereby promoting steady-state levels of ArpC2 and Rac1 proteins at the leading edge of cells during spreading. As DDX3X can regulate Rac1 levels, cell motility and metastasis, we have examined DDX3X protein interactions and localisation using many complementary approaches. We now show that DDX3X can physically interact and co-localise with poly(A)-binding protein 1 and caprin-1 at the leading edge of spreading cells. Furthermore, as depletion of DDX3X leads to decreased cell motility, this provides a functional link between DDX3X, caprin-1 and initiation factors at the leading edge of migrating cells to promote cell migration and spreading.
Collapse
|
98
|
Sybrandt J, Shtutman M, Safro I. MOLIERE: Automatic Biomedical Hypothesis Generation System. KDD : PROCEEDINGS. INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING 2017; 2017:1633-1642. [PMID: 29430330 PMCID: PMC5804740 DOI: 10.1145/3097983.3098057] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hypothesis generation is becoming a crucial time-saving technique which allows biomedical researchers to quickly discover implicit connections between important concepts. Typically, these systems operate on domain-specific fractions of public medical data. MOLIERE, in contrast, utilizes information from over 24.5 million documents. At the heart of our approach lies a multi-modal and multi-relational network of biomedical objects extracted from several heterogeneous datasets from the National Center for Biotechnology Information (NCBI). These objects include but are not limited to scientific papers, keywords, genes, proteins, diseases, and diagnoses. We model hypotheses using Latent Dirichlet Allocation applied on abstracts found near shortest paths discovered within this network, and demonstrate the effectiveness of MOLIERE by performing hypothesis generation on historical data. Our network, implementation, and resulting data are all publicly available for the broad scientific community.
Collapse
Affiliation(s)
| | - Michael Shtutman
- University of South Carolina, Drug Discovery and Biomedical Sciences, Columbia SC, USA
| | - Ilya Safro
- Clemson University, School of Computing, Clemson SC, USA
| |
Collapse
|
99
|
Milek M, Imami K, Mukherjee N, Bortoli FD, Zinnall U, Hazapis O, Trahan C, Oeffinger M, Heyd F, Ohler U, Selbach M, Landthaler M. DDX54 regulates transcriptome dynamics during DNA damage response. Genome Res 2017; 27:1344-1359. [PMID: 28596291 PMCID: PMC5538551 DOI: 10.1101/gr.218438.116] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 06/05/2017] [Indexed: 12/12/2022]
Abstract
The cellular response to genotoxic stress is mediated by a well-characterized network of DNA surveillance pathways. The contribution of post-transcriptional gene regulatory networks to the DNA damage response (DDR) has not been extensively studied. Here, we systematically identified RNA-binding proteins differentially interacting with polyadenylated transcripts upon exposure of human breast carcinoma cells to ionizing radiation (IR). Interestingly, more than 260 proteins, including many nucleolar proteins, showed increased binding to poly(A)+ RNA in IR-exposed cells. The functional analysis of DDX54, a candidate genotoxic stress responsive RNA helicase, revealed that this protein is an immediate-to-early DDR regulator required for the splicing efficacy of its target IR-induced pre-mRNAs. Upon IR exposure, DDX54 acts by increased interaction with a well-defined class of pre-mRNAs that harbor introns with weak acceptor splice sites, as well as by protein-protein contacts within components of U2 snRNP and spliceosomal B complex, resulting in lower intron retention and higher processing rates of its target transcripts. Because DDX54 promotes survival after exposure to IR, its expression and/or mutation rate may impact DDR-related pathologies. Our work indicates the relevance of many uncharacterized RBPs potentially involved in the DDR.
Collapse
Affiliation(s)
- Miha Milek
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, 13125 Berlin, Germany
| | - Koshi Imami
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, 13125 Berlin, Germany
| | - Neelanjan Mukherjee
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, 13125 Berlin, Germany
| | - Francesca De Bortoli
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, 14195 Berlin, Germany
| | - Ulrike Zinnall
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, 13125 Berlin, Germany
| | - Orsalia Hazapis
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, 13125 Berlin, Germany
| | - Christian Trahan
- Institut de Recherches Cliniques de Montréal, H2W 1R7 Montréal, Quebec, Canada
- Département de Biochimie, Faculté de Médecine, Université de Montréal, H3A 1A3 Montréal, Quebec, Canada
| | - Marlene Oeffinger
- Institut de Recherches Cliniques de Montréal, H2W 1R7 Montréal, Quebec, Canada
- Département de Biochimie, Faculté de Médecine, Université de Montréal, H3A 1A3 Montréal, Quebec, Canada
- Faculty of Medicine, Division of Experimental Medicine, McGill University, H3T 1J4 Montréal, Quebec, Canada
| | - Florian Heyd
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, 14195 Berlin, Germany
| | - Uwe Ohler
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, 13125 Berlin, Germany
- Institute of Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
- Department of Computer Science, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| | - Matthias Selbach
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, 13125 Berlin, Germany
- Charite-Universitätsmedizin Berlin, 10115 Berlin, Germany
| | - Markus Landthaler
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, 13125 Berlin, Germany
- IRI Life Sciences, Institute of Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| |
Collapse
|
100
|
He L, Chen Y, Wu Y, Xu Y, Zhang Z, Liu Z. Nucleic acid sensing pattern recognition receptors in the development of colorectal cancer and colitis. Cell Mol Life Sci 2017; 74:2395-2411. [PMID: 28224203 PMCID: PMC11107753 DOI: 10.1007/s00018-017-2477-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 01/02/2017] [Accepted: 01/26/2017] [Indexed: 12/16/2022]
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related deaths that is often associated with inflammation initiated by activation of pattern recognition receptors (PRRs). Nucleic acid sensing PRRs are one of the major subsets of PRRs that sense nucleic acid (DNA and RNA), mainly including some members of Toll-like receptors (TLR3, 7, 8, 9), AIM2-like receptors (AIM2, IFI16), STING, cGAS, RNA polymerase III, and DExD/H box nucleic acid helicases (such as RIG-I like receptors (RIG-I, MDA5, LPG2), DDX1, 3, 5, 7, 17, 21, 41, 60, and DHX9, 36). Activation of these receptors eventually leads to the release of cytokines and activation of immune cells, which are well known to play crucial roles in host defense against intracellular bacterial and virus infection. However, the functions of these nucleic acid sensing PRRs in the other diseases such as CRC and colitis remain largely unknown. Recent studies indicated that nucleic acid sensing PRRs contribute to CRC and/or colitis development, and therapeutic modulation of nucleic acid sensing PRRs may reduce the risk of CRC development. However, until now, a comprehensive review on the role of nucleic acid sensing PRRs in CRC and colitis is still lacking. This review provided an overview of the roles as well as the mechanisms of these nucleic acid sensing PRRs (AIM2, STING, cGAS, RIG-I and its downstream molecules, DDX3, 5, 6,17, and DHX9, 36) in CRC and colitis, which may aid the diagnosis, therapy, and prognostic prediction of CRC and colitis.
Collapse
Affiliation(s)
- Liangmei He
- Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Yayun Chen
- Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Yuanbing Wu
- Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Ying Xu
- School of Basic Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Zixiang Zhang
- The First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, 341000, Jiangxi, China.
| | - Zhiping Liu
- School of Basic Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, China.
| |
Collapse
|