51
|
Radpay R, Eghtesadi S. Relationship between Plasma Levels of Zinc and Magnesium with the Treatment Process and Mortality Risk in COVID-19 Patients. TANAFFOS 2023; 22:236-247. [PMID: 38628887 PMCID: PMC11016917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 01/20/2023] [Indexed: 04/19/2024]
Abstract
Background The COVID-19 pandemic is considered a major health problem all over the world which has caused extensive and worldwide mortality and morbidities along with vast economic and political impact. Limitations of our knowledge and controversies in treatment modalities make the control and management of this disease more difficult. The status of electrolytes especially Mg and Zn in plasma and its correlation with the clinical situation and criteria for recovery has been investigated in various studies. Limited data in Iran mandate the design of a trial for evaluating our critically ill patients. We designed this study to investigate the correlation between plasma levels of Mg and Zn and the outcome including patients' need for assisted/controlled ventilation, time required for weaning, length of ICU stay, and probable cause of death. Materials and Methods 413 patients with severe respiratory signs of COVID-19 disease who were admitted to the ICUs of 3 medical centers of Shahid Beheshti University of Medical Sciences were evaluated for plasma levels of Mg and Zn. Supplemental therapy was introduced when needed and was followed until discharge from ICU or death. All recorded data were analyzed by statistical methods and results were compared with similar studies. Results 20.6% and 35.1% of all participants had low serum levels of Mg and Zn, respectively. 11 patients (2.7%) died through the treatment period. 56.9% and 61.0% of participants received Mg and Zn supplements, respectively. Conclusion According to our results, serum Mg and Zn levels did not show a significant correlation with the risk of death due to severe COVID-19 disease, prolonged assisted ventilation, or duration of ICU stay. There was no significant association between Mg and Zn supplementation with the risk of death due to severe COVID-19; however, it showed an inverse relationship with the time required for assisted ventilation and the duration of ICU stay. It seems that Mg and Zn supplementation can be useful in preventing or managing some of the morbidities among COVID-19 patients.
Collapse
Affiliation(s)
- Rojan Radpay
- Master Science Student, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shahryar Eghtesadi
- Professor at Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
52
|
Chen S, Wang X, Sun C, Zhao CB, Lin J. MAGT1 Gene Mutation is Associated with Myositis and CD127 Expression Downregulation. J Clin Immunol 2023; 43:315-318. [PMID: 36331720 DOI: 10.1007/s10875-022-01384-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Sheng Chen
- Department of Neurology, Huashan Hospital Fudan University, No.12 Middle Wulumuqi Road, Shanghai, China
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Xuan Wang
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chong Sun
- Department of Neurology, Huashan Hospital Fudan University, No.12 Middle Wulumuqi Road, Shanghai, China
| | - Chong-Bo Zhao
- Department of Neurology, Huashan Hospital Fudan University, No.12 Middle Wulumuqi Road, Shanghai, China
| | - Jie Lin
- Department of Neurology, Huashan Hospital Fudan University, No.12 Middle Wulumuqi Road, Shanghai, China.
| |
Collapse
|
53
|
Luo Y, Zeng H, Ye Y, Yu G, Song C, Liu S, Chen X, Jiang Y, Duan H, Li Y, He S, Chen Z, Liu L, Liang Y, Lin X, Wan H, Shen J. Associations of metal profiles in blood with thyroiditis: a cross-sectional study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:21072-21080. [PMID: 36264466 PMCID: PMC9938027 DOI: 10.1007/s11356-022-23625-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Autoimmune thyroiditis (AIT) is increasingly common, and serological markers include thyroid peroxidase antibody (TPOAb) and thyroglobulin antibody (TgAb). To determine if selected metals influence thyroiditis antibody positivity, this cross-sectional study investigated associations between metals and thyroiditis antibody status. Healthy individuals (n = 1104) completed a questionnaire and underwent checkups of anthropometric parameters, thyroid function status, and levels of seven metals in blood (magnesium, iron, calcium, copper, zinc, manganese, and lead). Associated profiles of glyco- and lipid metabolism were also established. Logistic regression and restricted cubic spline (RCS) regression analysis were applied to adjudge associations between metals and TPOAb and TgAb status. It was found that, after adjusting for likely cofounding factors, participants with antibody positivity had significantly lower serum concentrations of magnesium and iron. When serum magnesium levels were analyzed in quartiles, the odds ratios of quartile 4 were 0.329-fold (95% confidence interval (CI): 0.167-0647) and 0.259-fold (95% CI 0.177-0.574) that of quartile 1 regarding TPOAb and TgAb positivity (P = 0.004, 0.003). After adjustment, the RCS analysis detected nonlinear associations between iron and TPOAb and TgAb positivity (P < 0.01, both). In stratified analyses, these associations regarding magnesium and iron remained for women of reproductive age, but not for postmenopausal women and men. We conclude that lower serum levels of magnesium and iron are associated with incremental positivity of thyroiditis antibodies and may be among the most important metals contributing to AIT in women of reproductive age.
Collapse
Affiliation(s)
- Yaosheng Luo
- Department of Endocrinology and Metabolism, Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China
| | - Huixian Zeng
- Department of Endocrinology and Metabolism, Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China
| | - Yanshi Ye
- Department of Endocrinology and Metabolism, Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China
| | - Genfeng Yu
- Department of Endocrinology and Metabolism, Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China
| | - Cheng Song
- Department of Endocrinology and Metabolism, Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China
| | - Siyang Liu
- Department of Endocrinology and Metabolism, Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China
| | - Xingying Chen
- Department of Endocrinology and Metabolism, Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China
| | - Yuqi Jiang
- Department of Endocrinology and Metabolism, Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China
| | - Hualin Duan
- Department of Endocrinology and Metabolism, Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China
| | - Yue Li
- Department of Endocrinology and Metabolism, Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China
| | - Shengqing He
- Department of Endocrinology and Metabolism, Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China
| | - Zhi Chen
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Lingling Liu
- Department of Endocrinology and Metabolism, Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China
| | - Yongqian Liang
- Department of Endocrinology and Metabolism, Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China
| | - Xu Lin
- Department of Endocrinology and Metabolism, Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China
- Medical Research Center, Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China
| | - Heng Wan
- Department of Endocrinology and Metabolism, Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Jie Shen
- Department of Endocrinology and Metabolism, Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China.
| |
Collapse
|
54
|
Baranova A, Cao H, Teng S, Zhang F. A phenome-wide investigation of risk factors for severe COVID-19. J Med Virol 2023; 95:e28264. [PMID: 36316288 PMCID: PMC9874597 DOI: 10.1002/jmv.28264] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/14/2022] [Accepted: 10/27/2022] [Indexed: 11/07/2022]
Abstract
With the continued spread of COVID-19 globally, it is crucial to identify the potential risk or protective factors associated with COVID-19. Here, we performed genetic correlation analysis and Mendelian randomization analysis to examine genetic relationships between COVID-19 hospitalization and 405 health conditions and lifestyle factors in 456 422 participants from the UK Biobank. The genetic correlation analysis revealed 134 positive and 65 negative correlations, including those with intakes of a variety of dietary components. The MR analysis indicates that a set of body fat-related traits, maternal smoking around birth, basal metabolic rate, lymphocyte count, peripheral enthesopathies and allied syndromes, blood clots in the leg, and arthropathy are causal risk factors for severe COVID-19, while higher education attainment, physical activity, asthma, and never smoking status protect against the illness. Our findings have implications for risk stratification in patients with COVID-19 and the prevention of its severe outcomes.
Collapse
Affiliation(s)
- Ancha Baranova
- School of Systems Biology, George Mason University, Manassas, Virginia, USA.,Research Centre for Medical Genetics, Moscow, Russia
| | - Hongbao Cao
- School of Systems Biology, George Mason University, Manassas, Virginia, USA
| | - Shaolei Teng
- Department of Biology, Howard University, Washington, District of Columbia, USA
| | - Fuquan Zhang
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
55
|
Zhang T, Liu Q, Li Z, Tang S, An Q, Fan D, Xiang Y, Wu X, Jin Z, Ding J, Hu Y, Du Q, Xu J, Xie R. The role of ion channels in immune-related diseases. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 177:129-140. [PMID: 36417963 DOI: 10.1016/j.pbiomolbio.2022.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/26/2022] [Accepted: 11/10/2022] [Indexed: 11/21/2022]
Abstract
Ion channel is an integral membrane protein that allows the permeation of charge ions across hydrophobic phospholipid membranes, including plasma membranes and organelle membranes (such as mitochondria, endoplasmic reticulum and vacuoles), which are widely distributed in various cells and tissues, such as cardiomyocytes, smooth muscle cells, and nerve cells. Ion channels establish membrane potential by regulating ion concentration and membrane potential. Membrane potential plays an important role in cells. Studies have shown that ion channels play a role in a number of immune-related diseases caused by functional defects in ion channels on immune or non-immune cells in major human organs, usually affecting specific organs or multiple organs. The present review discusses the relationship between ion channels and immune diseases in major organs of the human body.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Qi Liu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhuo Li
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Siqi Tang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Qimin An
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Dongdong Fan
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yiwei Xiang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xianli Wu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhe Jin
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jianhong Ding
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yanxia Hu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Qian Du
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jingyu Xu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| | - Rui Xie
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| |
Collapse
|
56
|
Münz C. Immune checkpoints in T cells during oncogenic γ-herpesvirus infections. J Med Virol 2023; 95:e27840. [PMID: 35524342 PMCID: PMC9790391 DOI: 10.1002/jmv.27840] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 01/11/2023]
Abstract
Epstein-Barr virus (EBV) and Kaposi sarcoma-associated herpesvirus (KSHV) are two persistent oncogenic γ-herpesviruses with an exclusive tropism for humans. They cause cancers of lymphocyte, epithelial and endothelial cell origin, such as Burkitt's and Hodgkin's lymphoma, primary effusion lymphoma, nasopharyngeal carcinoma, and Kaposi sarcoma. Mutations in immune-related genes but also adverse events during immune checkpoint inhibition in cancer patients have revealed molecular requirements for immune control of EBV and KSHV. These include costimulatory and coinhibitory receptors on T cells that are currently explored or already therapeutically targeted in tumor patients. This review discusses these co-receptors and their influence on EBV- and KSHV-associated diseases. The respective studies reveal surprising specificities of some of these receptors for immunity to these tumor viruses, benefits of their blockade for some but not other virus-associated diseases, and that EBV- and KSHV-specific immune control should be monitored during immune checkpoint inhibition to prevent adverse events that might be associated with their reactivation during treatment.
Collapse
Affiliation(s)
- Christian Münz
- Viral Immunobiology Department, Institute of Experimental ImmunologyUniversity of ZürichZürichSwitzerland
| |
Collapse
|
57
|
Shan Z, Xie X, Wu X, Zhuang S, Zhang C. Development of degradable magnesium-based metal implants and their function in promoting bone metabolism (A review). J Orthop Translat 2022; 36:184-193. [PMID: 36263386 PMCID: PMC9552026 DOI: 10.1016/j.jot.2022.09.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/05/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022] Open
Abstract
Background Use of degradable magnesium (Mg)-based metal implants in orthopaedic surgeries can avoid drawbacks associated with subsequent removal of the non-degradable metallic implants, reducing cost and trauma of patients. Although Mg has been applied in the clinic for orthopaedic treatment, the use of Mg-based metal implants is largely in the research phase. But its application is potentially beneficial in this context as it has been shown that Mg can promote osteogenesis and inhibit osteoclast activity. Methods A systematic literature search about “degradable magnesium (Mg)-based metal implants” was performed in PubMed and Web of Science. Meanwhile, relevant findings have been reviewed and quoted. Results In this review, we summarize the latest developments in Mg-based metal implants and their role in bone regeneration. We also review the various molecular mechanisms by which Mg ions regulate bone metabolic processes, including osteogenesis, osteoclast activity, angiogenesis, immunity, and neurology. Finally, we discuss the remaining research challenges and opportunities for Mg-based implants and their applications. Conclusion Currently, establishment of the in vitro and in vivo biological evaluation systems and phenotypic modification improvement of Mg-based implants are still needed. Clarifying the functions of Mg-based metal implants in promoting bone metabolism is beneficial for their clinical application. The Translational potential of this article All current reviews on Mg-based implants are mainly concerned with the improvement of Mg alloy properties or the progress of applications. However, there are few reviews that provides a systematic narrative on the effect of Mg on bone metabolism. This review summarized the latest developments in Mg-based metal implants and various molecular mechanisms of Mg ions regulating bone metabolism, which is beneficial to further promote the translation of Mg based implants in the clinic and is able to provide a strong basis for the clinical application of Mg based implants.
Collapse
Affiliation(s)
- Zhengming Shan
- School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Xinhui Xie
- School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
- The Department of Orthopaedics, ZhongDa Hospital, Nanjing, Jiangsu, 210009, China
- Corresponding author. The Department of Orthopaedics, ZhongDa hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China.
| | - Xiaotao Wu
- School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
- The Department of Orthopaedics, ZhongDa Hospital, Nanjing, Jiangsu, 210009, China
- Corresponding author. The Department of Orthopaedics, ZhongDa hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China.
| | - Suyang Zhuang
- School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
- The Department of Orthopaedics, ZhongDa Hospital, Nanjing, Jiangsu, 210009, China
| | - Cong Zhang
- School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
- The Department of Orthopaedics, ZhongDa Hospital, Nanjing, Jiangsu, 210009, China
| |
Collapse
|
58
|
Li L, Zhang X, Li Y, Xiao B, Pei S, Jiang H, Zhang X. Transcription factor KLF16 activates MAGT1 to regulate the tumorigenesis and progression of breast cancer. Int J Mol Med 2022; 50:115. [PMID: 35796007 PMCID: PMC9282640 DOI: 10.3892/ijmm.2022.5171] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/30/2022] [Indexed: 11/18/2022] Open
Abstract
Breast cancer is the most frequent cause of cancer-related mortality among women worldwide. The present study aimed to explore the role of magnesium transporter protein 1 (MAGT1) in breast cancer and to illustrate the potential underlying molecular mechanisms. Bioinformatic analysis was performed to explore the association between MAGT1 expression and patients with breast cancer. MTT, colony formation, wound healing and Transwell assays were performed to examine the proliferative, migratory and invasive abilities of MCF-7 cells. Western blot analysis was conducted to determine the corresponding protein expression. Chromatin immunoprecipitation and luciferase reporter assays were carried out to reveal the interaction between MAGT1 and the Kruppel-like factor 16 (KLF16). In addition, an experimental animal model was established by the subcutaneous injection of MCF-7 cells into BALB/c nude mice, and tumor weight and size were measured. The results revealed that MAGT1 expression was upregulated in breast cancer. MAGT1 knockdown significantly suppressed the MCF-7 cell proliferative, migratory and invasive abilities, and downregulated the protein expression of Ki67, proliferating cell nuclear antigen, MMP2 and MMP9. MAGT1 knockdown also markedly suppressed tumor growth in vivo. Moreover, KLF6 could bind to the MAGT1 promoter and positively regulate MAGT1 expression. The inhibitory effects of KLF6 knockdown on cell proliferation, migration and invasion in vitro, and tumor growth in vivo were partly abolished by MAGT1 overexpression. On the whole, the findings of the present study suggest that MAGT1 knockdown exerts notable inhibitory effects on the progression of breast cancer, providing a potential therapeutic target for the treatment of breast cancer.
Collapse
Affiliation(s)
- Lin Li
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, P.R. China
| | - Xi Zhang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China
| | - Yuqi Li
- Department of Pharmacy, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, Sichuan 637003, P.R. China
| | - Bo Xiao
- Department of Oncology, Nanchong Jialing District People's Hospital, Nanchong, Sichuan 637931, P.R. China
| | - Sibiao Pei
- Department of Pharmacy, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, Sichuan 637003, P.R. China
| | - Hangyu Jiang
- Department of Pharmacy, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, Sichuan 637003, P.R. China
| | - Xiaofen Zhang
- Department of Oncology, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, Sichuan 637003, P.R. China
| |
Collapse
|
59
|
Cai X, Li H, Wang M, Chu E, Wei N, Lin J, Hu Y, Dai J, Chen A, Zheng H, Zhang Q, Zhong Y, Chang R, Wu S, Xiao Y, Liu C. mTOR Participates in the Formation, Maintenance, and Function of Memory CD8 +T Cells Regulated by Glycometabolism. Biochem Pharmacol 2022; 204:115197. [PMID: 35926651 DOI: 10.1016/j.bcp.2022.115197] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 11/02/2022]
Abstract
Memory CD8+T cells participate in the fight against infection and tumorigenesis as well as in autoimmune disease progression because of their efficient and rapid immune response, long-term survival, and continuous differentiation. At each stage of their formation, maintenance, and function, the cell metabolism must be adjusted to match the functional requirements of the specific stage. Notably, enhanced glycolytic metabolism can generate sufficient levels of adenosine triphosphate (ATP) to form memory CD8+T cells, countering the view that glycolysis prevents the formation of memory CD8+T cells. This review focuses on how glycometabolism regulates memory CD8+T cells and highlights the key mechanisms through which the mammalian target of rapamycin (mTOR) signaling pathway affects memory CD8+T cell formation, maintenance, and function by regulating glycometabolism. In addition, different subpopulations of memory CD8+T cells exhibit different metabolic flexibility during their formation, survival, and functional stages, during which the energy metabolism may be critical. These findings which may explain why enhanced glycolytic metabolism can give rise to memory CD8+T cells. Modulating the metabolism of memory CD8+T cells to influence specific cell fates may be useful for disease treatment.
Collapse
Affiliation(s)
- Xuepei Cai
- Department of Orthodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Haokun Li
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Manyi Wang
- Department of Orthodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Edward Chu
- Department of Oncology and Cancer Therapeutics Program, Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ning Wei
- Department of Oncology and Cancer Therapeutics Program, Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jiayu Lin
- Department of Orthodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Yun Hu
- Department of Orthodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Jingtao Dai
- Department of Orthodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Aijie Chen
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Hua Zheng
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qianbing Zhang
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yuxia Zhong
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ruoshui Chang
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Sha Wu
- Department of Immunology, School of Basic Medical Sciences, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China; Key Laboratory of Functional Proteomics of Guangdong Province, Guangzhou, China; National Demonstration Center for Experimental Education of Basic Medical Sciences of China, Guangzhou, China.
| | - Yaomu Xiao
- Department of Orthodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China.
| | - Chufeng Liu
- Department of Orthodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
60
|
Barmettler S, Sharapova SO, Milota T, Greif PA, Magg T, Hauck F. Genomics Driving Diagnosis and Treatment of Inborn Errors of Immunity With Cancer Predisposition. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:1725-1736.e2. [PMID: 35364342 DOI: 10.1016/j.jaip.2022.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 12/14/2022]
Abstract
Inborn errors of immunity (IEI) are genetically and clinically heterogeneous disorders that, in addition to infection susceptibility and immune dysregulation, can have an enhanced cancer predisposition. The increasing availability of upfront next-generation sequencing diagnostics in immunology and oncology have uncovered substantial overlap of germline and somatic genetic conditions that can result in immunodeficiency and cancer. However, broad application of unbiased genetics in these neighboring disciplines still needs to be deployed, and joined therapeutic strategies guided by germline and somatic genetic risk factors are lacking. We illustrate the current difficulties encountered in clinical practice, summarize the historical development of pathophysiological concepts of cancer predisposition, and review select genetic, molecular, and cellular mechanisms of well-defined and illustrative disease entities such as DNA repair defects, combined immunodeficiencies with Epstein-Barr virus susceptibility, autoimmune lymphoproliferative syndromes, regulatory T-cell disorders, and defects in cell intrinsic immunity. We review genetic variants that, when present in the germline, cause IEI with cancer predisposition but, when arising as somatic variants, behave as oncogenes and cause specific cancer entities. We finally give examples of small molecular compounds that are developed and studied to target genetically defined cancers but might also proof useful to treat IEI.
Collapse
Affiliation(s)
- Sara Barmettler
- Allergy and Clinical Immunology Unit, Division of Rheumatology, Allergy, & Immunology, Massachusetts General Hospital, Boston, Mass
| | - Svetlana O Sharapova
- Research Department, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Tomas Milota
- Department of Immunology, Second Faculty of Medicine, Charles University Hospital and Motol University Hospital, Prague, Czechia
| | - Philipp A Greif
- Department of Medicine III, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany; German Cancer Consortium (DKTK), partner site Munich, 81377 Munich, Germany; German Cancer Research Center (DKFZ), 69121 Heidelberg, Germany
| | - Thomas Magg
- Division of Pediatric Immunology and Rheumatology, Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Fabian Hauck
- Division of Pediatric Immunology and Rheumatology, Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
61
|
Guéant JL, Feillet F. Inherited metabolic disorders beyond the new generation sequencing era: the need for in-depth cellular and molecular phenotyping. Hum Genet 2022; 141:1235-1237. [PMID: 35754062 DOI: 10.1007/s00439-022-02467-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Jean-Louis Guéant
- INSERM, UMR_S1256, NGERE - Nutrition, Genetics, and Environmental Risk Exposure and Reference Centre of Inborn Metabolism Diseases, University of Lorraine, Avenue de la Forêt de Haye, Vandoeuvre-Lès-Nancy, 54500, Nancy, France. .,Reference Centre of Inborn Metabolism Diseases and Department of Molecular Medicine, University Hospital Center, 54500, Nancy, France.
| | - François Feillet
- INSERM, UMR_S1256, NGERE - Nutrition, Genetics, and Environmental Risk Exposure and Reference Centre of Inborn Metabolism Diseases, University of Lorraine, Avenue de la Forêt de Haye, Vandoeuvre-Lès-Nancy, 54500, Nancy, France.,Reference Centre of Inborn Metabolism Diseases and Department of Molecular Medicine, University Hospital Center, 54500, Nancy, France
| |
Collapse
|
62
|
Mo X, Pang P, Wang Y, Jiang D, Zhang M, Li Y, Wang P, Geng Q, Xie C, Du HN, Zhong B, Li D, Yao J. Tyrosine phosphorylation tunes chemical and thermal sensitivity of TRPV2 ion channel. eLife 2022; 11:78301. [PMID: 35686730 PMCID: PMC9282855 DOI: 10.7554/elife.78301] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/09/2022] [Indexed: 11/21/2022] Open
Abstract
Transient receptor potential vanilloid 2 (TRPV2) is a multimodal ion channel implicated in diverse physiopathological processes. Its important involvement in immune responses has been suggested such as in the macrophages’ phagocytosis process. However, the endogenous signaling cascades controlling the gating of TRPV2 remain to be understood. Here, we report that enhancing tyrosine phosphorylation remarkably alters the chemical and thermal sensitivities of TRPV2 endogenously expressed in rat bone marrow-derived macrophages and dorsal root ganglia (DRG) neurons. We identify that the protein tyrosine kinase JAK1 mediates TRPV2 phosphorylation at the molecular sites Tyr(335), Tyr(471), and Tyr(525). JAK1 phosphorylation is required for maintaining TRPV2 activity and the phagocytic ability of macrophages. We further show that TRPV2 phosphorylation is dynamically balanced by protein tyrosine phosphatase non-receptor type 1 (PTPN1). PTPN1 inhibition increases TRPV2 phosphorylation, further reducing the activation temperature threshold. Our data thus unveil an intrinsic mechanism where the phosphorylation/dephosphorylation dynamic balance sets the basal chemical and thermal sensitivity of TRPV2. Targeting this pathway will aid therapeutic interventions in physiopathological contexts. All the cells in our body have a membrane that separates their interior from the outside environment. However, studded across this barrier are numerous ion channels which allow the cell to sense and react to changes in its surroundings. This includes the ion channel TRPV2, which opens in response to mechanical pressure, certain chemical signals, or rising temperature levels. Many types of cell express TRPV2, including cells in the nervous system, muscle, and the immune system. However, despite being extensively studied, it is still not clear how TRPV2 opens and closes upon encountering high temperatures. In particular, previous work suggested that TRPV2 only responds when a cell’s surroundings reach around 52°C, which is a much higher temperature than cells inside our body normally encounter, even during a fever. To help resolve this mystery, Mo, Pang et al. studied TRPV2 in neurons responsible for sending sensory information and in immune cells called macrophages which had been extracted from rodents and grown in the laboratory. They found that when the cells were bathed in solutions containing magnesium ions, their TRPV2 channels were more sensitive to a number of different cues, including temperature. Further biochemical experiments showed that magnesium ions do not directly affect TRPV2, but increase the activity of another protein called JAK1. The magnesium ions caused JAK1 to attach specialized structures called phosphorylation tags to TRPV2. This modification (known as phosphorylation) made the channel more sensitive, allowing it to open in response to temperatures as low as 40°C. Mo, Pang et al. found that inhibiting JAK1 reduced the activity of TRPV2. Conversely, inhibiting the enzyme that removes the phosphorylation tags, called PTPN1, increased the channel’s activity. They also discovered that when JAK1 was blocked, macrophages were less able to ‘eat up’ bacteria, which is one of their main roles in the immune system. Taken together these experiments advance our understanding of how TRPV2 becomes active. The balance between the phosphorylation by JAK1 and the dephosphorylation by PTPN1 controls the temperature at which TRPV2 opens. Since TRPV2 contributes to several biological functions, including the development of the nervous system, the maintenance of heart muscles, and inflammation, these findings will be important to scientists in a broad range of fields.
Collapse
Affiliation(s)
- Xiaoyi Mo
- Department of Anesthesiology, Wuhan University, Wuhan, China
| | - Peiyuan Pang
- Department of Anesthesiology, Wuhan University, Wuhan, China
| | - Yulin Wang
- Department of Anesthesiology, Wuhan University, Wuhan, China
| | - Dexiang Jiang
- Department of Anesthesiology, Wuhan University, Wuhan, China
| | - Mengyu Zhang
- Department of Anesthesiology, Wuhan University, Wuhan, China
| | - Yang Li
- Department of Anesthesiology, Wuhan University, Wuhan, China
| | - Peiyu Wang
- Department of Anesthesiology, Wuhan University, Wuhan, China
| | - Qizhi Geng
- Department of Anesthesiology, Wuhan University, Wuhan, China
| | - Chang Xie
- Department of Anesthesiology, Wuhan University, Wuhan, China
| | - Hai-Ning Du
- Department of Anesthesiology, Wuhan University, Wuhan, China
| | - Bo Zhong
- Department of Anesthesiology, Wuhan University, Wuhan, China
| | - Dongdong Li
- Neuroscience Paris Seine, CNRS, INSERM, Sorbonne Université, Paris, France
| | - Jing Yao
- Department of Anesthesiology, Wuhan University, Wuhan, China
| |
Collapse
|
63
|
Batiha GES, Al-Gareeb AI, Qusti S, Alshammari EM, Kaushik D, Verma R, Al-Kuraishy HM. Deciphering the immunoboosting potential of macro and micronutrients in COVID support therapy. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:43516-43531. [PMID: 35391642 PMCID: PMC8989262 DOI: 10.1007/s11356-022-20075-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/30/2022] [Indexed: 04/16/2023]
Abstract
The immune system protects human health from the effects of pathogenic organisms; however, its activity is affected when individuals become infected. These activities require a series of molecules, substrates, and energy sources that are derived from diets. The consumed nutrients from diets help to enhance the immunity of infected individuals as it relates to COVID-19 patients. This study aims to review and highlight requirement and role of macro- and micronutrients of COVID-19 patients in enhancing their immune systems. Series of studies were found to have demonstrated the enhancing potentials of macronutrients (carbohydrates, proteins, and fats) and micronutrients (vitamins, copper, zinc, iron, calcium, magnesium, and selenium) in supporting the immune system's fight against respiratory infections. Each of these nutrients performs a vital role as an antiviral defense in COVID-19 patients. Appropriate consumption or intake of dietary sources that yield these nutrients will help provide the daily requirement to support the immune system in its fight against pathogenic viruses such as COVID-19.
Collapse
Affiliation(s)
- Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt.
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Safaa Qusti
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Eida M Alshammari
- Department of Chemistry, College of Sciences, University of Ha'il, Ha'il, Saudi Arabia
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India.
| | - Ravinder Verma
- Department of Pharmacy, School of Medical and Allied Sciences, G.D. Goenka University, Gurugram, 122103, India
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| |
Collapse
|
64
|
Daniel N, Bouras E, Tsilidis KK, Hughes DJ. Genetically Predicted Circulating Concentrations of Micronutrients and COVID-19 Susceptibility and Severity: A Mendelian Randomization Study. Front Nutr 2022; 9:842315. [PMID: 35558754 PMCID: PMC9085481 DOI: 10.3389/fnut.2022.842315] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
Background Coronavirus disease 2019 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which since 2019 has caused over 5 million deaths to date. The pathogenicity of the virus is highly variable ranging from asymptomatic to fatal. Evidence from experimental and observational studies suggests that circulating micronutrients may affect COVID-19 outcomes. Objectives To complement and inform observational studies, we investigated the associations of genetically predicted concentrations of 12 micronutrients (β-carotene, calcium, copper, folate, iron, magnesium, phosphorus, selenium, vitamin B-6, vitamin B-12, vitamin D, and zinc) with SARS-CoV-2 infection risk and COVID-19 severity using Mendelian randomization (MR). Methods Two-sample MR was conducted using 87,870 individuals of European descent with a COVID-19 diagnosis and 2,210,804 controls from the COVID-19 host genetics initiative. Inverse variance-weighted MR analyses were performed with sensitivity analyses to assess the impact of potential violations of MR assumptions. Results Compared to the general population, nominally significant associations were noted for higher genetically predicted vitamin B-6 (Odds ratio per standard deviation [ORSD]: 1.06; 95% confidence interval [CI]: 1.00, 1.13; p-value = 0.036) and lower magnesium concentrations (ORSD: 0.33; 95%CI: 0.11, 0.96; P = 0.042) with COVID-19 infection risk. However, the association for magnesium was not consistent in some sensitivity analyses, and sensitivity analyses could not be performed for vitamin B-6 as only two genetic instruments were available. Genetically predicted levels of calcium, folate, β-carotene, copper, iron, vitamin B-12, vitamin D, selenium, phosphorus, or zinc were not associated with the outcomes from COVID-19 disease. Conclusion These results, though based only on genetically predicated circulating micronutrient concentrations, provide scant evidence for possible associations of micronutrients with COVID-19 outcomes.
Collapse
Affiliation(s)
- Neil Daniel
- Cancer Biology and Therapeutics Laboratory, School of Biomedical and Biomolecular Sciences, Conway Institute, University College Dublin, Dublin, Ireland
| | - Emmanouil Bouras
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Konstantinos K Tsilidis
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece.,Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - David J Hughes
- Cancer Biology and Therapeutics Laboratory, School of Biomedical and Biomolecular Sciences, Conway Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
65
|
de Jesus JR, Galazzi RM, Lopes Júnior CA, Arruda MAZ. Trace element homeostasis in the neurological system after SARS-CoV-2 infection: Insight into potential biochemical mechanisms. J Trace Elem Med Biol 2022; 71:126964. [PMID: 35240553 PMCID: PMC8881805 DOI: 10.1016/j.jtemb.2022.126964] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 02/10/2022] [Accepted: 02/23/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Several studies have suggested that COVID-19 is a systemic disease that can affect several organs, including the brain. In the brain, specifically, viral infection can cause dyshomeostasis of some trace elements that promote complex biochemical reactions in specialized neurological functions. OBJECTIVE Understand the neurovirulence of SARS-CoV-2 and the relationship between trace elements and neurological disorders after infection, and provide new insights on the drug development for the treatment of SARS-CoV-2 infections. METHODS The main databases were used to search studies published up September 2021, focusing on the role of trace elements during viral infection and on the correct functioning of the brain. RESULTS The imbalance of important trace elements can accelerate SARS-CoV-2 neurovirulence and increase the neurotoxicity since many neurological processes can be associated with the homeostasis of metal and metalloproteins. Some studies involving animals and humans have suggested the synapse as a vulnerable region of the brain to neurological disorders after viral infection. Considering the combined evidence, some mechanisms have been suggested to understand the relationship between neurological disorders and imbalance of trace elements in the brain after viral infection. CONCLUSION Trace elements play important roles in viral infections, such as helping to activate immune cells, produce antibodies, and inhibit virus replication. However, the relationship between trace elements and virus infections is complex since the specific functions of several elements remain largely undefined. Therefore, there is still a lot to be explored to understand the biochemical mechanisms involved between trace elements and viral infections, especially in the brain.
Collapse
Affiliation(s)
- Jemmyson Romário de Jesus
- Research Laboratory in Bionanomaterials, LPbio, Brazil; Chemistry Department, Federal University of Viçosa, UFV, Viçosa, Minas Gerais, Brazil.
| | - Rodrigo Moretto Galazzi
- Analytical Instrumentation Division, Analytik Jena GmbH, an Endress & Hauser Company, São Paulo, SP 04029-901, Brazil.
| | - Cícero Alves Lopes Júnior
- Grupo de Estudos em Bioanalítica - GEBIO, Department of Chemistry, Federal University of Piauí, 64049-550 Teresina, PI, Brazil.
| | - Marco Aurélio Zezzi Arruda
- Spectrometry, Sample Preparation and Mechanization Group, GEPAM, Institute of Chemistry, University of Campinas, UNICAMP, Campinas, Brazil; National Institute of Science and Technology for Bioanalytics, Brazil.
| |
Collapse
|
66
|
Watson CM, Nadat F, Ahmed S, Crinnion LA, O'Riordan S, Carter C, Savic S. Identification of a novel MAGT1 mutation supports a diagnosis of XMEN disease. Genes Immun 2022; 23:66-72. [PMID: 35264785 PMCID: PMC9042700 DOI: 10.1038/s41435-022-00166-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/15/2022] [Accepted: 02/22/2022] [Indexed: 11/29/2022]
Abstract
XMEN (X-linked immunodeficiency with magnesium defect) is caused by loss-of-function mutations in MAGT1 which is encoded on the X chromosome. The disorder is characterised by CD4 lymphopenia, severe chronic viral infections and defective T-lymphocyte activation. XMEN patients are susceptible to Epstein-Barr virus infections and persistently low levels of intracellular Mg2+. Here we describe a patient that presented with multiple recurrent infections and a subsequent diffuse B-cell lymphoma. Molecular genetic analysis by exome sequencing identified a novel hemizygous MAGT1 nonsense mutation c.1005T>A (NM_032121.5) p.(Cys335*), confirming a diagnosis of XMEN deficiency. Follow-up immunophenotyping was performed by antibody staining and flow cytometry; proliferation was determined by 3H-thymidine uptake after activation by PHA and anti-CD3. Cytotoxic natural killer cell activity was assessed with K562 target cells using the NKTESTTM assay. While lymphocyte populations were superficially intact, B cells were largely naive with a reduced memory cell compartment. Translated NKG2D was absent on both NK and T cells in the proband, and normally expressed in the carrier mother. In vitro NK cell activity was intact in both the proband and his mother. This report adds to the growing number of identified XMEN cases, raising awareness of a, still rare, X-linked immunodeficiency.
Collapse
Affiliation(s)
- Christopher M Watson
- North East and Yorkshire Genomic Laboratory Hub, The Leeds Teaching Hospitals NHS Trust, St. James's University Hospital, Beckett Street, Leeds, LS9 7TF, UK.,Leeds Institute of Medical Research, University of Leeds, St. James's University Hospital, Beckett Street, Leeds, LS9 7TF, UK
| | - Fatima Nadat
- Department of Clinical Immunology and Allergy, St James's University Hospital, Beckett Street, Leeds, LS9 7TF, UK
| | - Sammiya Ahmed
- Department of Clinical Immunology and Allergy, St James's University Hospital, Beckett Street, Leeds, LS9 7TF, UK
| | - Laura A Crinnion
- North East and Yorkshire Genomic Laboratory Hub, The Leeds Teaching Hospitals NHS Trust, St. James's University Hospital, Beckett Street, Leeds, LS9 7TF, UK.,Leeds Institute of Medical Research, University of Leeds, St. James's University Hospital, Beckett Street, Leeds, LS9 7TF, UK
| | - Sean O'Riordan
- Department of Paediatric Immunology, Leeds General Infirmary, Leeds, LS1 3EX, UK
| | - Clive Carter
- Department of Clinical Immunology and Allergy, St James's University Hospital, Beckett Street, Leeds, LS9 7TF, UK
| | - Sinisa Savic
- Department of Clinical Immunology and Allergy, St James's University Hospital, Beckett Street, Leeds, LS9 7TF, UK. .,National Institute for Health Research, Leeds Biomedical Research Centre and Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), Wellcome Trust Brenner Building, St James's University Hospital, Beckett Street, Leeds, LS9 7TF, UK.
| |
Collapse
|
67
|
Arancibia-Hernández YL, Aranda-Rivera AK, Cruz-Gregorio A, Pedraza-Chaverri J. Antioxidant/anti-inflammatory effect of Mg 2+ in coronavirus disease 2019 (COVID-19). Rev Med Virol 2022; 32:e2348. [PMID: 35357063 PMCID: PMC9111052 DOI: 10.1002/rmv.2348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/09/2022] [Accepted: 03/17/2022] [Indexed: 12/26/2022]
Abstract
Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), characterised by high levels of inflammation and oxidative stress (OS). Oxidative stress induces oxidative damage to lipids, proteins, and DNA, causing tissue damage. Both inflammation and OS contribute to multi-organ failure in severe cases. Magnesium (Mg2+ ) regulates many processes, including antioxidant and anti-inflammatory responses, as well as the proper functioning of other micronutrients such as vitamin D. In addition, Mg2+ participates as a second signalling messenger in the activation of T cells. Therefore, Mg2+ deficiency can cause immunodeficiency, exaggerated acute inflammatory response, decreased antioxidant response, and OS. Supplementation with Mg2+ has an anti-inflammatory response by reducing the levels of nuclear factor kappa B (NF-κB), interleukin (IL) -6, and tumor necrosis factor alpha. Furthermore, Mg2+ supplementation improves mitochondrial function and increases the antioxidant glutathione (GSH) content, reducing OS. Therefore, Mg2+ supplementation is a potential way to reduce inflammation and OS, strengthening the immune system to manage COVID-19. This narrative review will address Mg2+ deficiency associated with a worse disease prognosis, Mg2+ supplementation as a potent antioxidant and anti-inflammatory therapy during and after COVID-19 disease, and suggest that randomised controlled trials are indicated.
Collapse
Affiliation(s)
| | - Ana Karina Aranda-Rivera
- Facultad de Química, Departamento de Biología, Laboratorio F-315, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alfredo Cruz-Gregorio
- Facultad de Química, Departamento de Biología, Laboratorio F-315, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - José Pedraza-Chaverri
- Facultad de Química, Departamento de Biología, Laboratorio F-315, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
68
|
Iyengar VV, Chougule A, Gowri V, Taur P, Prabhu S, Bodhanwala M, Bargir UA, Madkaikar M, Desai MM. XMEN saved by magnesium. Scand J Immunol 2022; 95:e13154. [PMID: 35266176 DOI: 10.1111/sji.13154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/16/2022] [Accepted: 03/03/2022] [Indexed: 01/29/2023]
Affiliation(s)
- Vaishnavi V Iyengar
- Department of Immunology, Bai Jerbai Wadia Hospital for Children, Mumbai, India
| | - Akshaya Chougule
- Department of Immunology, Bai Jerbai Wadia Hospital for Children, Mumbai, India
| | - Vijaya Gowri
- Department of Immunology, Bai Jerbai Wadia Hospital for Children, Mumbai, India
| | - Prasad Taur
- Department of Immunology, Bai Jerbai Wadia Hospital for Children, Mumbai, India
| | - Shakuntala Prabhu
- Department of Immunology, Bai Jerbai Wadia Hospital for Children, Mumbai, India
| | - Minnie Bodhanwala
- Department of Immunology, Bai Jerbai Wadia Hospital for Children, Mumbai, India
| | - Umair A Bargir
- National Institute of Immunohaematology, ICMR, KEM Hospital, Mumbai, India
| | - Manisha Madkaikar
- National Institute of Immunohaematology, ICMR, KEM Hospital, Mumbai, India
| | - Mukesh M Desai
- Department of Immunology, Bai Jerbai Wadia Hospital for Children, Mumbai, India
| |
Collapse
|
69
|
|
70
|
Münz C. Natural killer cell responses to human oncogenic γ-herpesvirus infections. Semin Immunol 2022; 60:101652. [PMID: 36162228 DOI: 10.1016/j.smim.2022.101652] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/15/2022] [Accepted: 09/12/2022] [Indexed: 01/15/2023]
Abstract
The two γ-herpesviruses Epstein Barr virus (EBV) and Kaposi sarcoma associated herpesvirus (KSHV) are each associated with more than 1% of all tumors in humans. While EBV establishes persistent infection in nearly all adult individuals, KSHV benefits from this widespread EBV prevalence for its own persistence. Interestingly, EBV infection expands early differentiated NKG2A+KIR- NK cells that protect against lytic EBV infection, while KSHV co-infection drives accumulation of poorly functional CD56-CD16+ NK cells. Thus persistent γ-herpesvirus infections are sculptors of human NK cell repertoires and the respectively stimulated NK cell subsets should be considered for immunotherapies of EBV and KSHV associated malignancies.
Collapse
Affiliation(s)
- Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Switzerland.
| |
Collapse
|
71
|
Lack of NKG2D in MAGT1-deficient patients is caused by hypoglycosylation. Hum Genet 2022; 141:1279-1286. [PMID: 35182234 DOI: 10.1007/s00439-021-02400-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 11/06/2021] [Indexed: 12/20/2022]
Abstract
Mutations in the X-linked gene MAGT1 cause a Congenital Disorder of Glycosylation (CDG), with two distinct clinical phenotypes: a primary immunodeficiency (XMEN disorder) versus intellectual and developmental disability. It was previously established that MAGT1 deficiency abolishes steady-state expression of the immune response protein NKG2D (encoded by KLRK1) in lymphocytes. Here, we show that the reduced steady-state levels of NKG2D are caused by hypoglycosylation of the protein and we pinpoint the exact site that is underglycosylated in MAGT1-deficient patients. Furthermore, we challenge the possibility that supplementation with magnesium restores NKG2D levels and show that the addition of this ion does not significantly improve NKG2D steady-state expression nor does it rescue the hypoglycosylation defect in CRISPR-engineered human cell lines. Moreover, magnesium supplementation of an XMEN patient did not result in restoration of NKG2D expression on the cell surface of lymphocytes. In summary, we demonstrate that in MAGT1-deficient patients, the lack of NKG2D is caused by hypoglycosylation, further elucidating the pathophysiology of XMEN/MAGT1-CDG.
Collapse
|
72
|
Kim EY, Lee JM. Transcriptional Control of Trpm6 by the Nuclear Receptor FXR. Int J Mol Sci 2022; 23:ijms23041980. [PMID: 35216094 PMCID: PMC8874704 DOI: 10.3390/ijms23041980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/03/2022] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
Farnesoid x receptor (FXR) is a nuclear bile acid receptor that belongs to the nuclear receptor superfamily. It plays an essential role in bile acid biosynthesis, lipid and glucose metabolism, liver regeneration, and vertical sleeve gastrectomy. A loss of the FXR gene or dysregulations of FXR-mediated gene expression are associated with the development of progressive familial intrahepatic cholestasis, tumorigenesis, inflammation, and diabetes mellitus. Magnesium ion (Mg2+) is essential for mammalian physiology. Over 600 enzymes are dependent on Mg2+ for their activity. Here, we show that the Trpm6 gene encoding a Mg2+ channel is a direct FXR target gene in the intestinal epithelial cells of mice. FXR expressed in the intestinal epithelial cells is absolutely required for sustaining a basal expression of intestinal Trpm6 that can be robustly induced by the treatment of GW4064, a synthetic FXR agonist. Analysis of FXR ChIP-seq data revealed that intron regions of Trpm6 contain two prominent FXR binding peaks. Among them, the proximal peak from the transcription start site contains a functional inverted repeat 1 (IR1) response element that directly binds to the FXR-RXRα heterodimer. Based on these results, we proposed that an intestinal FXR-TRPM6 axis may link a bile acid signaling to Mg2+ homeostasis.
Collapse
Affiliation(s)
- Eun Young Kim
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
| | - Jae Man Lee
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
- BK21 FOUR KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, Daegu 41944, Korea
- Correspondence: ; Tel.: +82-53-420-4826
| |
Collapse
|
73
|
Peng X, Lu Y, Wang H, Wu B, Gan M, Xu S, Zhuang D, Wang J, Sun J, Wang X, Zhou W. Further Delineation of the Spectrum of XMEN Disease in Six Chinese Pediatric Patients. Front Genet 2022; 13:768000. [PMID: 35145548 PMCID: PMC8821886 DOI: 10.3389/fgene.2022.768000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/05/2022] [Indexed: 11/13/2022] Open
Abstract
X-linked MAGT1 deficiency with increased susceptibility to EBV-infection and N-linked glycosylation defect (XMEN) disease is a primary immunodeficiency caused by loss-of-function variants in the MAGT1 gene. Only two patients from one family have been diagnosed with XMEN in China. In this study, we retrospectively analyzed the genetic, clinical, and immunological characteristics of six pediatric patients in a Chinese cohort. Medical records were retrieved, immunological phenotypes were assessed, and infectious microbes in patients were detected. Six male patients (mean age, 6.3 years) from five unrelated families were genetically diagnosed as XMEN. Five patients presented with a major complaint of elevated liver enzymes, while one patient was referred for recurrent fever, cough and skin rash. Five patients developed EBV viremia, and one patient developed non-Hodgkin’s lymphoma. Histopathological findings from liver biopsy tissues showed variable hepatic steatosis, fibrosis, inflammatory infiltration, and glycogenosis. Immune phenotypes included CD4 T-cell lymphopenia, elevated B cells, inverted CD4/CD8 ratios, and elevated αβDNTs. No pathogenic microbes other than EBV were identified in these patients. This study reports the clinical and molecular features of Chinese patients with XMEN. For patients with transaminase elevation, chronic EBV infection and EBV-associated lymphoproliferative disease, the possibility of XMEN should be considered in addition to isolated liver diseases.
Collapse
Affiliation(s)
- Xiaomin Peng
- Center for Molecular Medicine of Children’s Hospital of Fudan University and National Children’s Medical Center, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yi Lu
- Center for Pediatric Liver Diseases, Children’s Hospital of Fudan University and National Children’s Medical Center, Shanghai, China
| | - Huijun Wang
- Center for Molecular Medicine, Key Laboratory of Birth Defects, Pediatrics Research Institute, Children’s Hospital of Fudan University and National Children’s Medical Center, Shanghai, China
| | - Bingbing Wu
- Center for Molecular Medicine, Key Laboratory of Birth Defects, Pediatrics Research Institute, Children’s Hospital of Fudan University and National Children’s Medical Center, Shanghai, China
| | - Mingyu Gan
- Center for Molecular Medicine, Key Laboratory of Birth Defects, Pediatrics Research Institute, Children’s Hospital of Fudan University and National Children’s Medical Center, Shanghai, China
| | - Suzhen Xu
- Center for Molecular Medicine, Key Laboratory of Birth Defects, Pediatrics Research Institute, Children’s Hospital of Fudan University and National Children’s Medical Center, Shanghai, China
| | - Deyi Zhuang
- Department of Pediatrics, Xiamen Children’s Hospital, Xiamen, China
| | - Jianshe Wang
- Center for Pediatric Liver Diseases, Children’s Hospital of Fudan University and National Children’s Medical Center, Shanghai, China
| | - Jinqiao Sun
- Department of Clinical Immunology, Children’s Hospital of Fudan University and National Children’s Medical Center, Shanghai, China
| | - Xiaochuan Wang
- Department of Clinical Immunology, Children’s Hospital of Fudan University and National Children’s Medical Center, Shanghai, China
- *Correspondence: Xiaochuan Wang, ; Wenhao Zhou,
| | - Wenhao Zhou
- Center for Molecular Medicine of Children’s Hospital of Fudan University and National Children’s Medical Center, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- *Correspondence: Xiaochuan Wang, ; Wenhao Zhou,
| |
Collapse
|
74
|
Latour S. Inherited immunodeficiencies associated with proximal and distal defects in T cell receptor signaling and co-signaling. Biomed J 2022; 45:321-333. [PMID: 35091087 PMCID: PMC9250091 DOI: 10.1016/j.bj.2022.01.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 12/24/2022] Open
Affiliation(s)
- Sylvain Latour
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Inserm UMR 1163, Université de Paris, Institut Imagine, Paris, France.
| |
Collapse
|
75
|
Chauvin SD, Price S, Zou J, Hunsberger S, Brofferio A, Matthews H, Similuk M, Rosenzweig SD, Su HC, Cohen JI, Lenardo MJ, Ravell JC. A Double-Blind, Placebo-Controlled, Crossover Study of Magnesium Supplementation in Patients with XMEN Disease. J Clin Immunol 2022; 42:108-118. [PMID: 34655400 PMCID: PMC10655616 DOI: 10.1007/s10875-021-01137-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/07/2021] [Indexed: 11/28/2022]
Abstract
X-linked MAGT1 deficiency with increased susceptibility to Epstein-Barr virus (EBV) infection and N-linked glycosylation defect (XMEN) disease is an inborn error of immunity caused by loss-of-function mutations in the magnesium transporter 1 (MAGT1) gene. The original studies of XMEN patients focused on impaired magnesium regulation, leading to decreased EBV-cytotoxicity and the loss of surface expression of the activating receptor "natural killer group 2D" (NKG2D) on CD8+ T cells and NK cells. In vitro studies showed that supraphysiological supplementation of magnesium rescued these defects. Observational studies in 2 patients suggested oral magnesium supplementation could decrease EBV viremia. Hence, we performed a randomized, double-blind, placebo-controlled, crossover study in 2 parts. In part 1, patients received either oral magnesium L-threonate (MLT) or placebo for 12 weeks followed by 12 weeks of the other treatment. Part 2 began with 3 days of high-dose intravenous (IV) magnesium sulfate (MgSO4) followed by open-label MLT for 24 weeks. One EBV-infected and 3 EBV-naïve patients completed part 1. One EBV-naïve patient was removed from part 2 of the study due to asymptomatic elevation of liver enzymes during IV MgSO4. No change in EBV or NKG2D status was observed. In vitro magnesium supplementation experiments in cells from 14 XMEN patients failed to significantly rescue NKG2D expression and the clinical trial was stopped. Although small, this study indicates magnesium supplementation is unlikely to be an effective therapeutic option in XMEN disease.
Collapse
Affiliation(s)
- Samuel D Chauvin
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, and Clinical Genomics Program, Division of Intramural Research, National Institutes of Health, National Institute of Allergy and Infectious Diseases, Building 10, Room 11N311, 10 Center Drive, MSC 1892, Bethesda, MD, 20892-1892, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Susan Price
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Juan Zou
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, and Clinical Genomics Program, Division of Intramural Research, National Institutes of Health, National Institute of Allergy and Infectious Diseases, Building 10, Room 11N311, 10 Center Drive, MSC 1892, Bethesda, MD, 20892-1892, USA
| | - Sally Hunsberger
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Alessandra Brofferio
- Cardiovascular and Pulmonary Branch, National Heart Lung and Blood Institute, Bethesda, MD, USA
| | - Helen Matthews
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, and Clinical Genomics Program, Division of Intramural Research, National Institutes of Health, National Institute of Allergy and Infectious Diseases, Building 10, Room 11N311, 10 Center Drive, MSC 1892, Bethesda, MD, 20892-1892, USA
| | - Morgan Similuk
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, and Clinical Genomics Program, Division of Intramural Research, National Institutes of Health, National Institute of Allergy and Infectious Diseases, Building 10, Room 11N311, 10 Center Drive, MSC 1892, Bethesda, MD, 20892-1892, USA
| | - Sergio D Rosenzweig
- Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - Helen C Su
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Jeffrey I Cohen
- Medical Virology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, USA
| | - Michael J Lenardo
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, and Clinical Genomics Program, Division of Intramural Research, National Institutes of Health, National Institute of Allergy and Infectious Diseases, Building 10, Room 11N311, 10 Center Drive, MSC 1892, Bethesda, MD, 20892-1892, USA.
| | - Juan C Ravell
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, and Clinical Genomics Program, Division of Intramural Research, National Institutes of Health, National Institute of Allergy and Infectious Diseases, Building 10, Room 11N311, 10 Center Drive, MSC 1892, Bethesda, MD, 20892-1892, USA.
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA.
- Division of Allergy and Immunology, Department of Internal Medicine, Hackensack University Medical Center, 360 Essex Street, Suite 302, Hackensack, NJ, 07601, USA.
- Department of Internal Medicine, Hackensack Meridian School of Medicine, Nutley, NJ, USA.
| |
Collapse
|
76
|
Rahman MM, Ahmed M, Islam MT, Khan MR, Sultana S, Maeesa SK, Hasan S, Hossain MA, Ferdous KS, Mathew B, Rauf A, Uddin MS. Nanotechnology-based Approaches and Investigational Therapeutics against COVID-19. Curr Pharm Des 2022; 28:948-968. [PMID: 34218774 DOI: 10.2174/1381612827666210701150315] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/30/2021] [Indexed: 01/08/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the novel coronavirus responsible for the current global pandemic, which first emerged in December 2019. This coronavirus has affected 217 countries worldwide, most of which have enacted non-remedial preventive measures, such as nationwide lockdowns, work from home, travel bans, and social isolation. Pharmacists, doctors, nurses, technologists, and other healthcare professionals have played pivotal roles during this pandemic. Unfortunately, confirmed drugs have not been identified for the treatment of patients with coronavirus disease 2019 (COVID-19) caused by SARSCoV2; however, favipiravir and remdesivir have been reported as promising antiviral drugs. Some vaccines have already been developed, and vaccination is ongoing globally. Various nanotechnologies are currently being developed in many countries for preventing SARS-CoV-2 spread and treating COVID-19 infections. In this article, we present an overview of the COVID-19 pandemic situation and discuss nanotechnology-based approaches and investigational therapeutics for COVID-19.
Collapse
Affiliation(s)
- Md Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Muniruddin Ahmed
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Mohammad Touhidul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Md Robin Khan
- Bangladesh Reference Institute for Chemical Measurements, Dhaka, Bangladesh
| | - Sharifa Sultana
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Saila Kabir Maeesa
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Sakib Hasan
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Md Abid Hossain
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Kazi Sayma Ferdous
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682041, India
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Anbar, Khyber Pakhtunkhwa, Pakistan
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| |
Collapse
|
77
|
|
78
|
Brault J, Liu T, Bello E, Liu S, Sweeney CL, Meis RJ, Koontz S, Corsino C, Choi U, Vayssiere G, Bosticardo M, Dowdell K, Lazzarotto CR, Clark AB, Notarangelo LD, Ravell JC, Lenardo MJ, Kleinstiver BP, Tsai SQ, Wu X, Dahl GA, Malech HL, De Ravin SS. CRISPR-targeted MAGT1 insertion restores XMEN patient hematopoietic stem cells and lymphocytes. Blood 2021; 138:2768-2780. [PMID: 34086870 PMCID: PMC8718624 DOI: 10.1182/blood.2021011192] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/25/2021] [Indexed: 01/01/2023] Open
Abstract
XMEN disease, defined as "X-linked MAGT1 deficiency with increased susceptibility to Epstein-Barr virus infection and N-linked glycosylation defect," is a recently described primary immunodeficiency marked by defective T cells and natural killer (NK) cells. Unfortunately, a potentially curative hematopoietic stem cell transplantation is associated with high mortality rates. We sought to develop an ex vivo targeted gene therapy approach for patients with XMEN using a CRISPR/Cas9 adeno-associated vector (AAV) to insert a therapeutic MAGT1 gene at the constitutive locus under the regulation of the endogenous promoter. Clinical translation of CRISPR/Cas9 AAV-targeted gene editing (GE) is hampered by low engraftable gene-edited hematopoietic stem and progenitor cells (HSPCs). Here, we optimized GE conditions by transient enhancement of homology-directed repair while suppressing AAV-associated DNA damage response to achieve highly efficient (>60%) genetic correction in engrafting XMEN HSPCs in transplanted mice. Restored MAGT1 glycosylation function in human NK and CD8+ T cells restored NK group 2 member D (NKG2D) expression and function in XMEN lymphocytes for potential treatment of infections, and it corrected HSPCs for long-term gene therapy, thus offering 2 efficient therapeutic options for XMEN poised for clinical translation.
Collapse
Affiliation(s)
- Julie Brault
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD
| | - Taylor Liu
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD
| | - Ezekiel Bello
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD
| | - Siyuan Liu
- Cancer Research Technology Program, Leidos Biomedical Research, Frederick, MD
| | - Colin L Sweeney
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD
| | | | - Sherry Koontz
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD
| | - Cristina Corsino
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD
| | - Uimook Choi
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD
| | - Guillaume Vayssiere
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD
| | - Marita Bosticardo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD
| | | | | | | | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD
| | - Juan C Ravell
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD
| | - Michael J Lenardo
- Laboratory of Immune System Biology, and Clinical Genomics Program, NIAID, NIH, Bethesda, MD
| | - Benjamin P Kleinstiver
- Center for Genomic Medicine and Department of Pathology, Massachusetts General Hospital, Boston, MA; and
- Department of Pathology, Harvard Medical School, Boston, MA
| | - Shengdar Q Tsai
- Department of Hematology, St Jude Children's Research Hospital, Memphis, TN
| | - Xiaolin Wu
- Cancer Research Technology Program, Leidos Biomedical Research, Frederick, MD
| | | | - Harry L Malech
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD
| | - Suk See De Ravin
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD
| |
Collapse
|
79
|
Münz C. Co-Stimulatory Molecules during Immune Control of Epstein Barr Virus Infection. Biomolecules 2021; 12:biom12010038. [PMID: 35053187 PMCID: PMC8774114 DOI: 10.3390/biom12010038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 01/17/2023] Open
Abstract
The Epstein Barr virus (EBV) is one of the prominent human tumor viruses, and it is efficiently immune-controlled in most virus carriers. Cytotoxic lymphocytes strongly expand during symptomatic primary EBV infection and in preclinical in vivo models of this tumor virus infection. In these models and patients with primary immunodeficiencies, antibody blockade or deficiencies in certain molecular pathways lead to EBV-associated pathologies. In addition to T, NK, and NKT cell development, as well as their cytotoxic machinery, a set of co-stimulatory and co-inhibitory molecules was found to be required for EBV-specific immune control. The role of CD27/CD70, 4-1BB, SLAMs, NKG2D, CD16A/CD2, CTLA-4, and PD-1 will be discussed in this review. Some of these have just been recently identified as crucial for EBV-specific immune control, and for others, their important functions during protection were characterized in in vivo models of EBV infection and its immune control. These insights into the phenotype of cytotoxic lymphocytes that mediate the near-perfect immune control of EBV-associated malignancies might also guide immunotherapies against other tumors in the future.
Collapse
Affiliation(s)
- Christian Münz
- Department of Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, 8057 Zurich, Switzerland
| |
Collapse
|
80
|
Wang L, Tang Y, Wu H, Shan G. TCF12 activates MAGT1 expression to regulate the malignant progression of pancreatic carcinoma cells. Oncol Lett 2021; 23:62. [PMID: 35069871 PMCID: PMC8756560 DOI: 10.3892/ol.2021.13180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/19/2021] [Indexed: 11/24/2022] Open
Abstract
As a highly malignant gastrointestinal tumor, pancreatic carcinoma (PC) has poor prognosis due to its low early diagnosis rate, advanced tumor resection and chemotherapy resistance. Magnesium transporter 1 (MAGT1) is a magnesium ion transporter located on the cell membrane, which shows promotive effects on biological behaviors of multiple tumor cells. The aim of the present study was to investigate the role of MAGT1 in the progression of PC and its potential molecular mechanism. Based on the Gene Expression Profiling Interactive Analysis website, MAGT1 was highly expressed in tissues from patients with PC and was associated with poor prognosis. In functional experiments, MAGT1 was highly expressed in PC cell lines. The Cell Counting Kit-8, gap closure and Transwell assays, and western blot analysis, were used to investigate the effects of MAGT1 overexpression or knockdown on the biological behaviors of PC cells. It was found that MAGT1 promoted the proliferation, migration and invasion of PC cells in vitro. According to the Encyclopedia of RNA Interactomes website, transcription factor 12 (TCF12) mRNA expression level was positively correlated with MAGT1 expression level in the tissues from patients with PC. Positive targeting regulation of MAGT1 by TCF12 was also confirmed using a dual-luciferase gene reporter assay and chromatin immunoprecipitation. In addition, knockdown of TCF12 expression inhibited the proliferation and migration of PC cells, but overexpression of MAGT1 expression partly reversed this. These results suggested that TCF12 could promote the proliferation, migration and invasion of PC cells by activating MAGT1 expression, which was associated with poor prognosis. These findings suggest that MAGT1 could be a promising biomarker for the occurrence, progression and prognosis of PC.
Collapse
Affiliation(s)
- Ling Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250014, P.R. China
| | - Yanjiao Tang
- Medical Laboratory, Shenzhen Sami Medical Center, Shenzhen, Guangdong 518038, P.R. China
| | - Hongyi Wu
- Medical Laboratory, Huizhou Municipal Central Hospital, Huizhou, Guangdong 516008, P.R. China
| | - Guiqiu Shan
- Department of Transfusion Medicine, General Hospital of Southern Theater Command, Guangzhou, Guangdong 510010, P.R. China
| |
Collapse
|
81
|
Ginefra P, Carrasco Hope H, Spagna M, Zecchillo A, Vannini N. Ionic Regulation of T-Cell Function and Anti-Tumour Immunity. Int J Mol Sci 2021; 22:ijms222413668. [PMID: 34948472 PMCID: PMC8705279 DOI: 10.3390/ijms222413668] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 12/02/2022] Open
Abstract
The capacity of T cells to identify and kill cancer cells has become a central pillar of immune-based cancer therapies. However, T cells are characterized by a dysfunctional state in most tumours. A major obstacle for proper T-cell function is the metabolic constraints posed by the tumour microenvironment (TME). In the TME, T cells compete with cancer cells for macronutrients (sugar, proteins, and lipid) and micronutrients (vitamins and minerals/ions). While the role of macronutrients in T-cell activation and function is well characterized, the contribution of micronutrients and especially ions in anti-tumour T-cell activities is still under investigation. Notably, ions are important for most of the signalling pathways regulating T-cell anti-tumour function. In this review, we discuss the role of six biologically relevant ions in T-cell function and in anti-tumour immunity, elucidating potential strategies to adopt to improve immunotherapy via modulation of ion metabolism.
Collapse
|
82
|
The Epstein-Barr Virus Oncogene EBNA1 Suppresses Natural Killer Cell Responses and Apoptosis Early after Infection of Peripheral B Cells. mBio 2021; 12:e0224321. [PMID: 34781735 PMCID: PMC8593684 DOI: 10.1128/mbio.02243-21] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The innate immune system serves as frontline defense against pathogens, such as bacteria and viruses. Natural killer (NK) cells are a part of innate immunity and can both secrete cytokines and directly target cells for lysis. NK cells express several cell surface receptors, including NKG2D, which bind multiple ligands. People with deficiencies in NK cells are often susceptible to uncontrolled infection by herpesviruses, such as Epstein-Barr virus (EBV). Infection with EBV stimulates both innate and adaptive immunity, yet the virus establishes lifelong latent infection in memory B cells. We show that the EBV oncogene EBNA1, previously known to be necessary for maintaining EBV genomes in latently infected cells, also plays an important role in suppressing NK cell responses and cell death in newly infected cells. EBNA1 does so by downregulating the NKG2D ligands ULBP1 and ULBP5 and modulating expression of c-Myc. B cells infected with a derivative of EBV that lacks EBNA1 are more susceptible to NK cell-mediated killing and show increased levels of apoptosis. Thus, EBNA1 performs a previously unappreciated role in reducing immune response and programmed cell death after EBV infection, helping infected cells avoid immune surveillance and apoptosis and thus persist for the lifetime of the host. IMPORTANCE Epstein-Barr virus (EBV) is a ubiquitous human pathogen, infecting up to 95% of the world's adult population. Initial infection with EBV can cause infectious mononucleosis. EBV is also linked to several human malignancies, including lymphomas and carcinomas. Although infection by EBV alerts the immune system and causes an immune response, the virus persists for life in memory B cells. We show that the EBV protein EBNA1 can downregulate several components of the innate immune system linked to natural killer (NK) cells. This downregulation of NK cell activity translates to lower killing of EBV-infected cells and is likely one way that EBV escapes immune surveillance after infection. Additionally, we show that EBNA1 reduces apoptosis in newly infected B cells, allowing more of these cells to survive. Taken together, our findings uncover new functions of EBNA1 and provide insights into viral strategies to survive the initial immune response postinfection.
Collapse
|
83
|
Chaouat AE, Seliger B, Mandelboim O, Schmiedel D. The HHV-6A Proteins U20 and U21 Target NKG2D Ligands to Escape Immune Recognition. Front Immunol 2021; 12:714799. [PMID: 34721381 PMCID: PMC8554080 DOI: 10.3389/fimmu.2021.714799] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/16/2021] [Indexed: 11/13/2022] Open
Abstract
The coevolution of the human immune system and herpesviruses led to the emergence and diversification of both cellular danger molecules recognized by immune cells on the one hand and viral countermeasures that prevent the expression of these proteins on infected cells on the other. There are eight ligands for the activating receptor NKG2D in humans - MICA, MICB, ULBP1-6. Several of them are induced and surface-expressed on herpesvirus-infected cells to serve as danger signals to activate the immune system. Therefore, these ligands are frequently targeted for suppression by viral immune evasion mechanisms. Mechanisms to downregulate NKG2D ligands and thereby escape immune recognition have been identified in all other human herpesviruses (HHV), except for HHV-6A. In this study, we identify two HHV-6A encoded immunoevasins, U20 and U21, which suppress the expression of the NKG2D ligands ULBP1 and ULBP3, respectively, during infection. Additionally, MICB is targeted by a so far unexplored viral protein. Due to the diminished NKG2D ligand surface expression on infected cells, recognition of HHV-6A infected cells by innate immune cells is impaired. Importantly, our study indicates that immune escape mechanisms between the related herpesviruses HHV-6A and HHV-6B are evolutionary conserved as the same NKG2D ligands are targeted. Our data contribute an additional piece of evidence for the importance of the NKG2D receptor - NKG2D ligand axis during human herpesvirus infections and sheds light on immune evasion mechanisms of HHV-6A.
Collapse
Affiliation(s)
- Abigael Eva Chaouat
- The Lautenberg Center for General and Tumor Immunology, The BioMedical Research Institute Israel Canada of the Faculty of Medicine, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Barbara Seliger
- Martin Luther University, Institute of Medical Immunology, Halle-Wittenberg, Germany.,Department of GMP Development and ATMP Design, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | - Ofer Mandelboim
- The Lautenberg Center for General and Tumor Immunology, The BioMedical Research Institute Israel Canada of the Faculty of Medicine, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Dominik Schmiedel
- The Lautenberg Center for General and Tumor Immunology, The BioMedical Research Institute Israel Canada of the Faculty of Medicine, The Hebrew University Hadassah Medical School, Jerusalem, Israel.,Department of GMP Development and ATMP Design, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| |
Collapse
|
84
|
Martynov VI, Pakhomov AA. BODIPY derivatives as fluorescent reporters of molecular activities in living cells. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr4985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Abstract
Fluorescent compounds have become indispensable tools for imaging molecular activities in the living cell. 4,4-Difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) is currently one of the most popular fluorescent reporters due to its unique photophysical properties. This review provides a general survey and presents a summary of recent advances in the development of new BODIPY-based cellular biomarkers and biosensors. The review starts with the consideration of the properties of BODIPY derivatives required for their application as cellular reporters. Then review provides examples of the design of sensors for different biologically important molecules, ions, membrane potential, temperature and viscosity defining the live cell status. Special attention is payed to BODPY-based phototransformable reporters.
The bibliography includes 339 references.
Collapse
|
85
|
Abstract
Viral infection is an indisputable causal factor for nearly 17% of all human cancers. However, the diversity and complexity of oncogenic mechanisms raises new questions as to the mechanistic role of viruses in cancer. Classical viral oncogenes have been identified for all tumor-associated viruses. These oncogenes can have multiple oncogenic activities that may or may not be utilized in a particular tumor cell. In addition, stochastic events, like viral mutation and integration, as well as heritable host susceptibilities and immune deficiencies are also implicated in tumorigenesis. A more contemporary view of tumor biology highlights the importance of evolutionary forces that select for phenotypes better adapted to a complex and changing environment. Given the challenges of prioritizing singular mechanistic causes, it may be necessary to integrate concepts from evolutionary theory and systems biology to better understand viral cancer-driving forces. Here, we propose that viral infection provides a biological “entropy” that increases genetic variation and phenotypic plasticity, accelerating the main driving forces of cancer cell evolution. Viruses can also influence the evolutionary selection criteria by altering the tumor microenvironment and immune signaling. Utilizing concepts from cancer cell evolution, population genetics, thermodynamics, and systems biology may provide new perspectives on viral oncogenesis and identify novel therapeutic strategies for treating viruses and cancer.
Collapse
Affiliation(s)
- Italo Tempera
- Program in Gene Expression and Regulation, The Wistar Institute, Philadelphia, PA, United States
| | - Paul M Lieberman
- Program in Gene Expression and Regulation, The Wistar Institute, Philadelphia, PA, United States
| |
Collapse
|
86
|
Sun X, Zhang Y, Li J, Park KS, Han K, Zhou X, Xu Y, Nam J, Xu J, Shi X, Wei L, Lei YL, Moon JJ. Amplifying STING activation by cyclic dinucleotide-manganese particles for local and systemic cancer metalloimmunotherapy. NATURE NANOTECHNOLOGY 2021; 16:1260-1270. [PMID: 34594005 PMCID: PMC8595610 DOI: 10.1038/s41565-021-00962-9] [Citation(s) in RCA: 383] [Impact Index Per Article: 95.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 07/23/2021] [Indexed: 05/19/2023]
Abstract
Nutritional metal ions play critical roles in many important immune processes. Hence, the effective modulation of metal ions may open up new forms of immunotherapy, termed as metalloimmunotherapy. Here, we demonstrate a prototype of cancer metalloimmunotherapy using cyclic dinucleotide (CDN) stimulator of interferon genes (STING) agonists and Mn2+. We screened various metal ions and discovered specific metal ions augmented STING agonist activity, wherein Mn2+ promoted a 12- to 77-fold potentiation effect across the prevalent human STING haplotypes. Notably, Mn2+ coordinated with CDN STING agonists to self-assemble into a nanoparticle (CDN-Mn2+ particle, CMP) that effectively delivered STING agonists to immune cells. The CMP, administered either by local intratumoural or systemic intravenous injection, initiated robust anti-tumour immunity, achieving remarkable therapeutic efficacy with minute doses of STING agonists in multiple murine tumour models. Overall, the CMP offers a new platform for local and systemic cancer treatments, and this work underscores the great potential of coordination nanomedicine for metalloimmunotherapy.
Collapse
Affiliation(s)
- Xiaoqi Sun
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Yu Zhang
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Jiaqian Li
- Department of Periodontics and Oral Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Kyung Soo Park
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Kai Han
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Xingwu Zhou
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Yao Xu
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Jutaek Nam
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea
| | - Jin Xu
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Xiaoyue Shi
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Lei Wei
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Yu Leo Lei
- Department of Periodontics and Oral Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Otolaryngology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA.
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
87
|
Singh S, Kola P, Kaur D, Singla G, Mishra V, Panesar PS, Mallikarjunan K, Krishania M. Therapeutic Potential of Nutraceuticals and Dietary Supplements in the Prevention of Viral Diseases: A Review. Front Nutr 2021; 8:679312. [PMID: 34604272 PMCID: PMC8484310 DOI: 10.3389/fnut.2021.679312] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 08/16/2021] [Indexed: 12/24/2022] Open
Abstract
Nowadays, despite enormous scientific advances, viral diseases remain the leading cause of morbidity worldwide, and their potential to spread is escalating, eventually turning into pandemics. Nutrition can play a major role in supporting the immune system of the body and for the optimal functioning of the cells of the immune system. A healthy diet encompassing vitamins, multi-nutrient supplements, functional foods, nutraceuticals, and probiotics can play a pivotal role in combating several viral invasions in addition to strengthening the immune system. This review provides comprehensive information on diet-based scientific recommendations, evidence, and worldwide case studies in light of the current pandemic and also with a particular focus on virus-induced respiratory tract infections. After reviewing the immune potential of nutraceuticals based on the lab studies and on human studies, it was concluded that bioactive compounds such as nutraceuticals, vitamins, and functional foods (honey, berries, etc.) with proven antiviral efficacy, in addition to pharmaceutical medication or alone as dietary supplements, can prove instrumental in treating a range of virus-induced infections in addition to strengthening the immune system. Milk proteins and peptides can also act as adjuvants for the design of more potent novel antiviral drugs.
Collapse
Affiliation(s)
- Saumya Singh
- Center of Innovative and Applied Bioprocessing (CIAB), Sector-81 (Knowledge City), Mohali, India
| | - Prithwish Kola
- Center of Innovative and Applied Bioprocessing (CIAB), Sector-81 (Knowledge City), Mohali, India
| | - Dalveer Kaur
- Center of Innovative and Applied Bioprocessing (CIAB), Sector-81 (Knowledge City), Mohali, India
| | - Gisha Singla
- Center of Innovative and Applied Bioprocessing (CIAB), Sector-81 (Knowledge City), Mohali, India.,Food Biotechnology Research Laboratory, Department of Food Engineering & Technology, Sant Longowal Institute of Engineering & Technology Longowal, Longowal, India
| | - Vibhu Mishra
- Center of Innovative and Applied Bioprocessing (CIAB), Sector-81 (Knowledge City), Mohali, India
| | - Parmjit S Panesar
- Food Biotechnology Research Laboratory, Department of Food Engineering & Technology, Sant Longowal Institute of Engineering & Technology Longowal, Longowal, India
| | - Kumar Mallikarjunan
- Food Science and Nutrition Department, University of Minnesota, Minneapolis, MN, United States
| | - Meena Krishania
- Center of Innovative and Applied Bioprocessing (CIAB), Sector-81 (Knowledge City), Mohali, India
| |
Collapse
|
88
|
Lino CNR, Ghosh S. Epstein-Barr Virus in Inborn Immunodeficiency-More Than Infection. Cancers (Basel) 2021; 13:cancers13194752. [PMID: 34638238 PMCID: PMC8507541 DOI: 10.3390/cancers13194752] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/05/2021] [Accepted: 09/06/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Epstein–Barr Virus (EBV) is a common virus that is readily controlled by a healthy immune system and rarely causes serious problems in infected people. However, patients with certain genetic defects of their immune system might have difficulties controlling EBV and often develop severe and life-threatening conditions, such as severe inflammation and malignancies. In this review, we provide a summary of inherited immune diseases that lead to a high susceptibility to EBV infection and discuss how this infection is associated with cancer development. Abstract Epstein–Barr Virus (EBV) is a ubiquitous virus affecting more than 90% of the world’s population. Upon infection, it establishes latency in B cells. It is a rather benign virus for immune-competent individuals, in whom infections usually go unnoticed. Nevertheless, EBV has been extensively associated with tumorigenesis. Patients suffering from certain inborn errors of immunity are at high risk of developing malignancies, while infection in the majority of immune-competent individuals does not seem to lead to immune dysregulation. Herein, we discuss how inborn mutations in TNFRSF9, CD27, CD70, CORO1A, CTPS1, ITK, MAGT1, RASGRP1, STK4, CARMIL2, SH2D1A, and XIAP affect the development, differentiation, and function of key factors involved in the immunity against EBV, leading to increased susceptibility to lymphoproliferative disease and lymphoma.
Collapse
Affiliation(s)
| | - Sujal Ghosh
- Correspondence: ; Tel.: +49-211-811-6224; Fax: +49-211-811-6191
| |
Collapse
|
89
|
Faa G, Saba L, Fanni D, Kalcev G, Carta M. Association between Hypomagnesemia, COVID-19, Respiratory Tract and Lung Disease. Open Respir Med J 2021; 15:43-45. [PMID: 34733373 PMCID: PMC8493831 DOI: 10.2174/1874306402115010043] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/26/2021] [Accepted: 06/07/2021] [Indexed: 01/10/2023] Open
Abstract
The complexity of COVID-19 is also related to the multiple molecular pathways triggered by SARS-CoV-2, which is able to cause type I pneumocyte death, trigger intravascular coagulation, interfere with the renin-angiotensin system, dysregulate iron metabolism, ending with the insurgence of a cytokine storm which may lead to death. Old adults with obesity, hypertension, and diabetes are among the high-risk category groups more prone to SARS-CoV-2 infection. Magnesium has been reported to play a major role both in physiology and in pathology, particularly in elderly people, regulating cytotoxic functions of natural killer (NK) cells and CD8+ T lymphocytes. In spite of the absence of controlled trials, the possibility of magnesium supplementation for supportive treatment in patients with COVID-19 should be encouraged. This could be useful in all phases of the COVID-19 disease.
Collapse
Affiliation(s)
- Gavino Faa
- Division of Pathology, Department of Medical Sciences and Public Health, University Hospital San Giovanni di Dio, Cagliari, Italy
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, USA
| | - Luca Saba
- Department of Medical Imaging, Azienda Ospedaliero Universitaria (AOU) of Cagliari-Polo di Monserrato, Cagliari, Italy
| | - Daniela Fanni
- Division of Pathology, Department of Medical Sciences and Public Health, University Hospital San Giovanni di Dio, Cagliari, Italy
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, USA
| | - Goce Kalcev
- International Ph.D. in Innovation Sciences and Technologies, University of Cagliari, Cagliari, Italy
| | - Mauro Carta
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|
90
|
Ciesielski TH, Ngendahimana DK, Roche A, Williams SM, Freedman DA. Elevated Dietary Inflammation Among Supplemental Nutrition Assistance Program Recipients Provides Targets for Precision Public Health Intervention. Am J Prev Med 2021; 61:192-200. [PMID: 33985837 PMCID: PMC8319049 DOI: 10.1016/j.amepre.2021.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/13/2021] [Accepted: 02/05/2021] [Indexed: 12/30/2022]
Abstract
INTRODUCTION The Supplemental Nutrition Assistance Program was designed to prevent food insecurity among low-income Americans and has been linked to improvements in pregnancy health, long-term child development, and criminal recidivism. However, the pursuit of food security does not ensure nutritional sufficiency, and the program has not improved diet quality or cardiometabolic mortality (i.e., heart disease, stroke, diabetes). In this study, longitudinal cohort data are used to identify by Supplemental Nutrition Assistance Program status the proinflammatory characteristics that predispose to chronic disease. METHODS Between 2015 and 2018, annual 24-hour dietary recalls were conducted with 409 residents from low-income, urban neighborhoods in Columbus and Cleveland, Ohio (statistical analysis started in 2019). The Dietary Inflammatory Index was calculated. It provides empirically validated estimates of the internal inflammation that each diet should produce; higher Dietary Inflammatory Index scores have been associated with elevated inflammatory biomarkers. Finally, associations between Supplemental Nutrition Assistance Program and Dietary Inflammatory Index were evaluated, and dietary components that differed by Supplemental Nutrition Assistance Program status were identified. RESULTS Supplemental Nutrition Assistance Program recipients had higher Dietary Inflammatory Index scores (+0.40, 95% CI=0.09, 0.70) and a consistently lower intake of 4 anti-inflammatory nutrients (dietary fiber, β-carotene, magnesium, vitamin E) than nonrecipients. Vitamin D intake did not differ by Supplemental Nutrition Assistance Program status but was well below the Recommended Daily Allowance in this sample. CONCLUSIONS Supplemental Nutrition Assistance Program recipients had elevated Dietary Inflammatory Index scores, implying higher diet-driven inflammation. This was due, in part, to low intake of 4 anti-inflammatory food components, which were higher yet still nutritionally insufficient among nonrecipients. Findings highlight specific nutritional targets for improving public health through dietary change.
Collapse
Affiliation(s)
- Timothy H Ciesielski
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio; Mary Ann Swetland Center for Environmental Health, School of Medicine, Case Western Reserve University, Cleveland, Ohio; Ronin Institute, Montclair, New Jersey.
| | - David K Ngendahimana
- Mary Ann Swetland Center for Environmental Health, School of Medicine, Case Western Reserve University, Cleveland, Ohio; Dissemination and Training Division of the Veterans Health Administration, National Center for PTSD, Menlo Park, California
| | - Abigail Roche
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio; Mary Ann Swetland Center for Environmental Health, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Scott M Williams
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio; Cleveland Institute for Computational Biology, Cleveland, Ohio
| | - Darcy A Freedman
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio; Mary Ann Swetland Center for Environmental Health, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
91
|
Desimio MG, Finocchi A, Di Matteo G, Di Cesare S, Giancotta C, Conti F, Chessa L, Piane M, Montin D, Dellepiane M, Rossi P, Cancrini C, Doria M. Altered NK-cell compartment and dysfunctional NKG2D/NKG2D-ligand axis in patients with ataxia-telangiectasia. Clin Immunol 2021; 230:108802. [PMID: 34298181 DOI: 10.1016/j.clim.2021.108802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/25/2021] [Accepted: 07/17/2021] [Indexed: 11/15/2022]
Abstract
Ataxia-telangiectasia (A-T) is a multisystem disorder caused by biallelic pathogenic variants in the gene encoding A-T mutated (ATM) kinase, a master regulator of the DNA damage response (DDR) pathway. Most A-T patients show cellular and/or humoral immunodeficiency that has been associated with cancer risk and reduced survival, but NK cells have not been thoroughly studied. Here we investigated NK cells of A-T patients with a special focus on the NKG2D receptor that triggers cytotoxicity upon engagement by its ligands (NKG2DLs) commonly induced via the DDR pathway on infected, transformed, and variously stressed cells. Using flow cytometry, we examined the phenotype and function of NK cells in 6 A-T patients as compared with healthy individuals. NKG2D expression was evaluated also by western blotting and RT-qPCR; plasma soluble NKG2DLs (sMICA, sMICB, sULBP1, ULBP2) were measured by ELISA. Results showed that A-T NK cells were skewed towards the CD56neg anergic phenotype and displayed decreased expression of NKG2D and perforin. NKG2D was reduced at the protein but not at the mRNA level and resulted in impaired NKG2D-mediated cytotoxicity in 4/6 A-T patients. Moreover, in A-T plasma we found 24-fold and 2-fold increase of sMICA and sULBP1, respectively, both inversely correlated with NKG2D expression. Overall, NK cells are disturbed in A-T patients showing reduced NKG2D expression, possibly caused by persistent engagement of its ligands, that may contribute to susceptibility to cancer and infections and represent novel targets for therapeutic interventions.
Collapse
Affiliation(s)
- Maria Giovanna Desimio
- Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Andrea Finocchi
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Gigliola Di Matteo
- Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Silvia Di Cesare
- Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Carmela Giancotta
- Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Francesca Conti
- Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Maria Piane
- Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy
| | - Davide Montin
- Pediatric Immunology and Rheumatology, Regina Margherita Children's Hospital, Turin, Italy
| | - Marta Dellepiane
- Department of Public Health and Pediatrics, University of Turin, Turin, Italy
| | - Paolo Rossi
- Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Caterina Cancrini
- Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Margherita Doria
- Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| |
Collapse
|
92
|
Mortaz E, Bezemer G, Alipoor SD, Varahram M, Mumby S, Folkerts G, Garssen J, Adcock IM. Nutritional Impact and Its Potential Consequences on COVID-19 Severity. Front Nutr 2021; 8:698617. [PMID: 34291074 PMCID: PMC8287001 DOI: 10.3389/fnut.2021.698617] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/24/2021] [Indexed: 12/24/2022] Open
Abstract
Background: During late 2019 a viral disease due to a novel coronavirus was reported in Wuhan, China, which rapidly developed into an exploding pandemic and poses a severe threat to human health all over the world. Until now (May 2021), there are insufficient treatment options for the management of this global disease and shortage of vaccines. Important aspects that help to defeat coronavirus infection seems to be having a healthy, strong, and resilient immune system. Nutrition and metabolic disorders, such as obesity and diabetes play a crucial role on the community health situation in general and especially during this new pandemic. There seems to be an enormous impact of lifestyle, metabolic disorders, and immune status on coronavirus disease 2019 (COVID-19) severity and recovery. For this reason, it is important to consider the impact of lifestyle and the consumption of well-defined healthy diets during the pandemic. Aims: In this review, we summarise recent findings on the effect of nutrition on COVID-19 susceptibility and disease severity and treatment. Understanding how specific dietary features might help to improve the public health strategies to reduce the rate and severity of COVID-19.
Collapse
Affiliation(s)
- Esmaeil Mortaz
- Department of Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Clinical Tuberculosis and Epidemiology Research Centre, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gillina Bezemer
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
- Impact Station, Hilversum, Netherlands
| | - Shamila D. Alipoor
- Molecular Medicine Department, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mohammad Varahram
- Mycobacteriology Research Centre, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sharon Mumby
- Airways Disease Section, Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Gert Folkerts
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Johan Garssen
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
- Center of Excellence Immunology, Nutricia Research, Utrecht, Netherlands
| | - Ian M. Adcock
- Airways Disease Section, Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
93
|
Szmyd B, Mlynarski W, Pastorczak A. Genetic predisposition to lymphomas: Overview of rare syndromes and inherited familial variants. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2021; 788:108386. [PMID: 34893151 DOI: 10.1016/j.mrrev.2021.108386] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 05/14/2021] [Accepted: 06/03/2021] [Indexed: 01/19/2023]
Abstract
Approximately 10 % of malignancies occur in carriers of germline mutations predisposing to cancer. A high risk of developing lymphomas has been noted in many primary immunodeficiencies, including DNA repair disorders. Moreover, implementation of next-generation sequencing has recently enabled to uncover rare genetic variants predisposing patients to lymphoid neoplasms. Some patients harboring inherited predisposition to lymphomas require dedicated clinical management, which will contribute to effective cancer treatment and to the prevention of potential severe toxicities and secondary malignancies. In line with that, our review summarizes the natural history of lymphoid tumors developing on different germline genetic backgrounds and discusses the progress that has been made toward successfully treating these malignancies.
Collapse
Affiliation(s)
- Bartosz Szmyd
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland.
| | - Wojciech Mlynarski
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland.
| | - Agata Pastorczak
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland.
| |
Collapse
|
94
|
Natural Killer Cell Responses during Human γ-Herpesvirus Infections. Vaccines (Basel) 2021; 9:vaccines9060655. [PMID: 34203904 PMCID: PMC8232711 DOI: 10.3390/vaccines9060655] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 02/07/2023] Open
Abstract
Herpesviruses are main sculptors of natural killer (NK) cell repertoires. While the β-herpesvirus human cytomegalovirus (CMV) drives the accumulation of adaptive NKG2C-positive NK cells, the human γ-herpesvirus Epstein–Barr virus (EBV) expands early differentiated NKG2A-positive NK cells. While adaptive NK cells support adaptive immunity by antibody-dependent cellular cytotoxicity, NKG2A-positive NK cells seem to preferentially target lytic EBV replicating B cells. The importance of this restriction of EBV replication during γ-herpesvirus pathogenesis will be discussed. Furthermore, the modification of EBV-driven NK cell expansion by coinfections, including by the other human γ-herpesvirus Kaposi sarcoma-associated herpesvirus (KSHV), will be summarized.
Collapse
|
95
|
Hanaoka H, Kikuchi J, Kaneko Y, Seki N, Tsujimoto H, Chiba K, Takeuchi T. Proton Pump Inhibitor and Tacrolimus Uses are Associated With Hypomagnesemia in Connective Tissue Disease: a Potential Link With Renal Dysfunction and Recurrent Infection. Front Pharmacol 2021; 12:616719. [PMID: 34093176 PMCID: PMC8173076 DOI: 10.3389/fphar.2021.616719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Low levels of serum magnesium perturb renal tubular cell function and lymphocytes, resulting in renal deterioration and an imbalance in mononuclear cells. This study investigated the mechanism and influence of hypomagnesemia in patients with connective tissue disease. Methods: We retrospectively evaluated patients with connective tissue disease and available serum magnesium data who visited Keio University Hospital in 2019. Patients were divided into two groups: those with (serum magnesium < 1.8 mg/dl) and those without hypomagnesemia; their rates of hospitalization for severe infection and cumulative renal deterioration were compared. Patients’ fractions of lymphocytes and natural killer and dendritic cell subsets, as measured by fluorescence-activated cell sorting (FACS) analysis, were also compared. Results: Among 284 patients, hypomagnesemia was detected in 63 (22.2%). Multivariate analysis revealed that the use of proton pump inhibitors [odds ratio (OR), 1.48; p = 0.01] and tacrolimus (OR, 6.14; p < 0.01) was independently associated with hypomagnesemia. In addition, the renal deterioration rate was significantly higher in tacrolimus and/or proton pump inhibitor users with hypomagnesemia (p = 0.01). The hospitalization rate for severe infection was also higher in patients with hypomagnesemia (p = 0.04). FACS analysis showed lower CD8+ T cell, CD19+ B cell, natural killer cell, and dendritic cell counts in patients with hypomagnesemia (p = 0.03, p = 0.02, p = 0.02, and p = 0.03, respectively). Conclusion: The use of tacrolimus and proton pump inhibitors may be associated with hypomagnesemia and lead to poor renal outcomes and severe infection in patients with connective tissue disease.
Collapse
Affiliation(s)
- Hironari Hanaoka
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Jun Kikuchi
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Yuko Kaneko
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Noriyasu Seki
- Mitsubishi Tanabe Pharma Corporation, Yokohama, Japan
| | | | - Kenji Chiba
- Mitsubishi Tanabe Pharma Corporation, Yokohama, Japan
| | - Tsutomu Takeuchi
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| |
Collapse
|
96
|
Park ES, Yu T, Lee HJ, Lim YI, Lee SM, Park KY. Shinan Sea Salt Intake Ameliorates Colorectal Cancer in AOM/DSS with High Fat Diet-Induced C57BL/6N Mice. J Med Food 2021; 24:431-435. [PMID: 33861936 DOI: 10.1089/jmf.2020.4836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The anticancer effects of Shinan (Shinan-South Korea) sea salts on azoxymethane (AOM)/dextran sodium sulfate (DSS) with high fat diet (HFD)-induced colon cancer and obesity in C57BL/6N mice were studied. We prepared three types of sea salt: generally manufactured sea salt (GS), generally manufactured after filtering seawater (FS), and manufactured with only new seawater (NS). Sea salt intake increased colon length and reduced colon length/weight ratio, tumor number, and progression of colon cancer in colon tissue. The differently prepared sea salts also ameliorated liver injury. In addition, the mineral composition of each salt was different. Moreover, the sea salts enhanced activation of natural killer cell (CD56) expression in colon and spleen tissues. However, the mineral compositions of sea salts were not simply associated with anticancer effects in AOM/DSS+HFD induced mice. Thus, the anticolorectal cancer effects of sea salts may be mediated by different factors, which remain to be identified.
Collapse
Affiliation(s)
- Eui-Seong Park
- Department of Food and Nutrition, Yonsei University, Seoul, South Korea
| | - Ting Yu
- Department of Food Science and Biotechnology, Cha University, Seongnam, Gyeonggi-do, South Korea
| | - Hey-Jin Lee
- Department of Center for Research & Development Histological analysis, CHA Bundang Medical Center, Seongnam, Gyeonggi-do, South Korea
| | - Yang-Iee Lim
- Department of Food and Nutrition, Sungshin Women's University, Seoul, South Korea
| | - Seung-Min Lee
- Department of Food and Nutrition, Yonsei University, Seoul, South Korea.,Department of Food and Nutrition, BK21 FOUR, Yonsei University, Seoul, South Korea
| | - Kun-Young Park
- Department of Food Science and Biotechnology, Cha University, Seongnam, Gyeonggi-do, South Korea
| |
Collapse
|
97
|
Fournier B, Latour S. Immunity to EBV as revealed by immunedeficiencies. Curr Opin Immunol 2021; 72:107-115. [PMID: 33989894 DOI: 10.1016/j.coi.2021.04.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/29/2021] [Accepted: 04/05/2021] [Indexed: 02/06/2023]
Abstract
Epstein-Barr virus infection is the most common viral latent infection in humans and represents one prototypical model to study immunity to viral infections. In that respect, inborn errors of immunity (IEIs) or primary immunodeficiencies (PIDs) predisposing to severe and chronic EBV infections provide peculiar examples to decipher-specific molecular and cellular components involved in the immune control of EBV-infected cells. Herein, we discuss the recent knowledge and concepts arising from these studies, with a particular focus on 'atypical' EBV infections when EBV enters T, NK and smooth muscle cells, instead of the common 'typical' infection of B cells.
Collapse
Affiliation(s)
- Benjamin Fournier
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, INSERM UMR 1163, Imagine Institute, Paris, France; Université de Paris, F75006 Paris, France; Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades, Paris, France
| | - Sylvain Latour
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, INSERM UMR 1163, Imagine Institute, Paris, France; Université de Paris, F75006 Paris, France.
| |
Collapse
|
98
|
Khanna K, Kohli SK, Kaur R, Bhardwaj A, Bhardwaj V, Ohri P, Sharma A, Ahmad A, Bhardwaj R, Ahmad P. Herbal immune-boosters: Substantial warriors of pandemic Covid-19 battle. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 85:153361. [PMID: 33485605 PMCID: PMC7532351 DOI: 10.1016/j.phymed.2020.153361] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/24/2020] [Accepted: 09/30/2020] [Indexed: 05/19/2023]
Abstract
Current scenario depicts that world has been clenched by COVID-19 pandemic. Inevitably, public health and safety measures could be undertaken in order to dwindle the infection threat and mortality. Moreover, to overcome the global menace and drawing out world from moribund stage, there is an exigency for social distancing and quarantines. Since December, 2019, coronavirus, SARS-CoV-2 (COVID-19) have came into existence and up till now world is still in the state of shock.At this point of time, COVID-19 has entered perilous phase, creating havoc among individuals, and this has been directly implied due to enhanced globalisation and ability of the virus to acclimatize at all conditions. The unabated transmission is due to lack of drugs, vaccines and therapeutics against this viral outbreak. But research is still underway to formulate the vaccines or drugs by this means, as scientific communities are continuously working to unravel the pharmacologically active compounds that might offer a new insight for curbing infections and pandemics. Therefore, the topical COVID-19 situation highlights an immediate need for effective therapeutics against SARS-CoV-2. Towards this effort, the present review discusses the vital concepts related to COVID-19, in terms of its origin, transmission, clinical aspects and diagnosis. However, here, we have formulated the novel concept hitherto, ancient means of traditional medicines or herbal plants to beat this pandemic.
Collapse
Affiliation(s)
- Kanika Khanna
- Plant Stress Biology Lab, Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Sukhmeen Kaur Kohli
- Plant Stress Biology Lab, Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Ravdeep Kaur
- Plant Stress Biology Lab, Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Abhay Bhardwaj
- Department of Bio-organic and Biological Chemistry, Kharkiv National Medical University, Kharkiv 61000, Ukraine
| | - Vinay Bhardwaj
- Department of Bio-organic and Biological Chemistry, Kharkiv National Medical University, Kharkiv 61000, Ukraine
| | - Puja Ohri
- Department of Zoology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Anket Sharma
- Plant Stress Biology Lab, Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Renu Bhardwaj
- Plant Stress Biology Lab, Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India.
| | - Parvaiz Ahmad
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
99
|
Odler B, Deak AT, Pregartner G, Riedl R, Bozic J, Trummer C, Prenner A, Söllinger L, Krall M, Höflechner L, Hebesberger C, Boxler MS, Berghold A, Schemmer P, Pilz S, Rosenkranz AR. Hypomagnesemia Is a Risk Factor for Infections after Kidney Transplantation: A Retrospective Cohort Analysis. Nutrients 2021; 13:1296. [PMID: 33919913 PMCID: PMC8070921 DOI: 10.3390/nu13041296] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 01/16/2023] Open
Abstract
INTRODUCTION Magnesium (Mg2+) deficiency is a common finding in the early phase after kidney transplantation (KT) and has been linked to immune dysfunction and infections. Data on the association of hypomagnesemia and the rate of infections in kidney transplant recipients (KTRs) are sparse. METHODS We conducted a single-center retrospective cohort study of KTRs transplanted between 2005 and 2015. Laboratory data, including serum Mg2+ (median time of the Mg2+ measurement from KT: 29 days), rate of infections including mainly urinary tract infections (UTI), and common transplant-related viral infections (CMV, polyoma, EBV) in the early phase after KT were recorded. The primary outcome was the incidence of infections within one year after KT, while secondary outcomes were hospitalization due to infection, incidence rates of long-term (up to two years) infections, and all-cause mortality. RESULTS We enrolled 376 KTRs of whom 229 patients (60.9%) suffered from Mg2+ deficiency defined as a serum Mg2+ < 0.7 mmol/L. A significantly higher incidence rate of UTIs and viral infections was observed in patients with versus without Mg2+ deficiency during the first year after KT (58.5% vs. 47.6%, p = 0.039 and 69.9% vs. 51.7%, p < 0.001). After adjustment for potential confounders, serum Mg2+ deficiency remained an independent predictor of both UTIs and viral infections (odds ratio (OR): 1.73, 95% CI: 1.04-2.86, p = 0.035 and OR: 2.05, 95% CI: 1.23-3.41, p = 0.006). No group differences according to Mg2+ status in hospitalizations due to infections and infection incidence rates in the 12-24 months post-transplant were observed. In the Cox regression analysis, Mg2+ deficiency was not significantly associated with all-cause mortality (HR: 1.15, 95% CI: 0.70-1.89, p = 0.577). CONCLUSIONS KTRs suffering from Mg2+ deficiency are at increased risk of UTIs and viral infections in the first year after KT. Interventional studies investigating the effect of Mg2+ supplementation on Mg2+ deficiency and viral infections in KTRs are needed.
Collapse
Affiliation(s)
- Balazs Odler
- Division of Nephrology, Department of Internal Medicine, Medical University of Graz, A-8036 Graz, Austria; (B.O.); (A.T.D.); (J.B.); (A.P.); (L.S.); (M.K.); (L.H.); (C.H.); (M.S.B.)
- Transplant Center Graz, Medical University of Graz, A-8036 Graz, Austria;
| | - Andras T. Deak
- Division of Nephrology, Department of Internal Medicine, Medical University of Graz, A-8036 Graz, Austria; (B.O.); (A.T.D.); (J.B.); (A.P.); (L.S.); (M.K.); (L.H.); (C.H.); (M.S.B.)
- Transplant Center Graz, Medical University of Graz, A-8036 Graz, Austria;
| | - Gudrun Pregartner
- Institute of Medical Informatics, Statistics and Documentation, Medical University of Graz, A-8036 Graz, Austria; (G.P.); (R.R.); (A.B.)
| | - Regina Riedl
- Institute of Medical Informatics, Statistics and Documentation, Medical University of Graz, A-8036 Graz, Austria; (G.P.); (R.R.); (A.B.)
| | - Jasmin Bozic
- Division of Nephrology, Department of Internal Medicine, Medical University of Graz, A-8036 Graz, Austria; (B.O.); (A.T.D.); (J.B.); (A.P.); (L.S.); (M.K.); (L.H.); (C.H.); (M.S.B.)
| | - Christian Trummer
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, A-8036 Graz, Austria; (C.T.); (S.P.)
| | - Anna Prenner
- Division of Nephrology, Department of Internal Medicine, Medical University of Graz, A-8036 Graz, Austria; (B.O.); (A.T.D.); (J.B.); (A.P.); (L.S.); (M.K.); (L.H.); (C.H.); (M.S.B.)
- Transplant Center Graz, Medical University of Graz, A-8036 Graz, Austria;
| | - Lukas Söllinger
- Division of Nephrology, Department of Internal Medicine, Medical University of Graz, A-8036 Graz, Austria; (B.O.); (A.T.D.); (J.B.); (A.P.); (L.S.); (M.K.); (L.H.); (C.H.); (M.S.B.)
| | - Marcell Krall
- Division of Nephrology, Department of Internal Medicine, Medical University of Graz, A-8036 Graz, Austria; (B.O.); (A.T.D.); (J.B.); (A.P.); (L.S.); (M.K.); (L.H.); (C.H.); (M.S.B.)
| | - Lukas Höflechner
- Division of Nephrology, Department of Internal Medicine, Medical University of Graz, A-8036 Graz, Austria; (B.O.); (A.T.D.); (J.B.); (A.P.); (L.S.); (M.K.); (L.H.); (C.H.); (M.S.B.)
| | - Carina Hebesberger
- Division of Nephrology, Department of Internal Medicine, Medical University of Graz, A-8036 Graz, Austria; (B.O.); (A.T.D.); (J.B.); (A.P.); (L.S.); (M.K.); (L.H.); (C.H.); (M.S.B.)
- Transplant Center Graz, Medical University of Graz, A-8036 Graz, Austria;
| | - Matias S. Boxler
- Division of Nephrology, Department of Internal Medicine, Medical University of Graz, A-8036 Graz, Austria; (B.O.); (A.T.D.); (J.B.); (A.P.); (L.S.); (M.K.); (L.H.); (C.H.); (M.S.B.)
| | - Andrea Berghold
- Institute of Medical Informatics, Statistics and Documentation, Medical University of Graz, A-8036 Graz, Austria; (G.P.); (R.R.); (A.B.)
| | - Peter Schemmer
- Transplant Center Graz, Medical University of Graz, A-8036 Graz, Austria;
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, A-8036 Graz, Austria
| | - Stefan Pilz
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, A-8036 Graz, Austria; (C.T.); (S.P.)
| | - Alexander R. Rosenkranz
- Division of Nephrology, Department of Internal Medicine, Medical University of Graz, A-8036 Graz, Austria; (B.O.); (A.T.D.); (J.B.); (A.P.); (L.S.); (M.K.); (L.H.); (C.H.); (M.S.B.)
- Transplant Center Graz, Medical University of Graz, A-8036 Graz, Austria;
| |
Collapse
|
100
|
CD27 is required for protective lytic EBV antigen-specific CD8+ T-cell expansion. Blood 2021; 137:3225-3236. [PMID: 33827115 DOI: 10.1182/blood.2020009482] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 03/18/2021] [Indexed: 12/12/2022] Open
Abstract
Primary immunodeficiencies in the costimulatory molecule CD27 and its ligand, CD70, predispose for pathologies of uncontrolled Epstein-Barr virus (EBV) infection in nearly all affected patients. We demonstrate that both depletion of CD27+ cells and antibody blocking of CD27 interaction with CD70 cause uncontrolled EBV infection in mice with reconstituted human immune system components. While overall CD8+ T-cell expansion and composition are unaltered after antibody blocking of CD27, only some EBV-specific CD8+ T-cell responses, exemplified by early lytic EBV antigen BMLF1-specific CD8+ T cells, are inhibited in their proliferation and killing of EBV-transformed B cells. This suggests that CD27 is not required for all CD8+ T-cell expansions and cytotoxicity but is required for a subset of CD8+ T-cell responses that protect us from EBV pathology.
Collapse
|