51
|
Lilkendey J, Barrelet C, Zhang J, Meares M, Larbi H, Subsol G, Chaumont M, Sabetian A. Herbivorous fish feeding dynamics and energy expenditure on a coral reef: Insights from stereo-video and AI-driven 3D tracking. Ecol Evol 2024; 14:e11070. [PMID: 38435013 PMCID: PMC10909578 DOI: 10.1002/ece3.11070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/30/2024] [Accepted: 02/07/2024] [Indexed: 03/05/2024] Open
Abstract
Unveiling the intricate relationships between animal movement ecology, feeding behavior, and internal energy budgeting is crucial for a comprehensive understanding of ecosystem functioning, especially on coral reefs under significant anthropogenic stress. Here, herbivorous fishes play a vital role as mediators between algae growth and coral recruitment. Our research examines the feeding preferences, bite rates, inter-bite distances, and foraging energy expenditure of the Brown surgeonfish (Acanthurus nigrofuscus) and the Yellowtail tang (Zebrasoma xanthurum) within the fish community on a Red Sea coral reef. To this end, we used advanced methods such as remote underwater stereo-video, AI-driven object recognition, species classification, and 3D tracking. Despite their comparatively low biomass, the two surgeonfish species significantly influence grazing pressure on the studied coral reef. A. nigrofuscus exhibits specialized feeding preferences and Z. xanthurum a more generalist approach, highlighting niche differentiation and their importance in maintaining reef ecosystem balance. Despite these differences in their foraging strategies, on a population level, both species achieve a similar level of energy efficiency. This study highlights the transformative potential of cutting-edge technologies in revealing the functional feeding traits and energy utilization of keystone species. It facilitates the detailed mapping of energy seascapes, guiding targeted conservation efforts to enhance ecosystem health and biodiversity.
Collapse
Affiliation(s)
- Julian Lilkendey
- School of ScienceAuckland University of Technology (AUT)AucklandNew Zealand
- Leibniz Centre for Tropical Marine Research (ZMT)BremenGermany
| | - Cyril Barrelet
- Research‐Team ICAR, Laboratoire d'informatique, de robotique et de microélectronique de Montpellier (LIRMM), CNRSUniversity of MontpellierMontpellierFrance
| | - Jingjing Zhang
- School of ScienceAuckland University of Technology (AUT)AucklandNew Zealand
- The New Zealand Institute for Plant and Food Research LimitedAucklandNew Zealand
| | - Michael Meares
- School of ScienceAuckland University of Technology (AUT)AucklandNew Zealand
| | - Houssam Larbi
- Research‐Team ICAR, Laboratoire d'informatique, de robotique et de microélectronique de Montpellier (LIRMM), CNRSUniversity of MontpellierMontpellierFrance
| | - Gérard Subsol
- Research‐Team ICAR, Laboratoire d'informatique, de robotique et de microélectronique de Montpellier (LIRMM), CNRSUniversity of MontpellierMontpellierFrance
| | - Marc Chaumont
- Research‐Team ICAR, Laboratoire d'informatique, de robotique et de microélectronique de Montpellier (LIRMM), CNRSUniversity of MontpellierMontpellierFrance
- University of NîmesNîmesFrance
| | - Armagan Sabetian
- School of ScienceAuckland University of Technology (AUT)AucklandNew Zealand
| |
Collapse
|
52
|
Gu Z, Dixon A, Zhan X. Genetics and Evolution of Bird Migration. Annu Rev Anim Biosci 2024; 12:21-43. [PMID: 37906839 DOI: 10.1146/annurev-animal-021122-092239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Bird migration has long been a subject of fascination for humankind and is a behavior that is both intricate and multifaceted. In recent years, advances in technology, particularly in the fields of genomics and animal tracking, have enabled significant progress in our understanding of this phenomenon. In this review, we provide an overview of the latest advancements in the genetics of bird migration, with a particular focus on genomics, and examine various factors that contribute to the evolution of this behavior, including climate change. Integration of research from the fields of genomics, ecology, and evolution can enhance our comprehension of the complex mechanisms involved in bird migration and inform conservation efforts in a rapidly changing world.
Collapse
Affiliation(s)
- Zhongru Gu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China;
- Cardiff University-Institute of Zoology Joint Laboratory for Biocomplexity Research, Chinese Academy of Sciences, Beijing, China
| | - Andrew Dixon
- Mohamed Bin Zayed Raptor Conservation Fund, Abu Dhabi, United Arab Emirates
| | - Xiangjiang Zhan
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China;
- Cardiff University-Institute of Zoology Joint Laboratory for Biocomplexity Research, Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
53
|
Sblendorio JM, Vonhof MJ, Gill SA. Migratory singers dynamically overlap the signal space of a breeding warbler community. Ecol Evol 2024; 14:e11013. [PMID: 38405408 PMCID: PMC10893555 DOI: 10.1002/ece3.11013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 12/09/2023] [Accepted: 12/15/2023] [Indexed: 02/27/2024] Open
Abstract
Migratory species inhabit many communities along their migratory routes. Across taxa, these species repeatedly move into and out of communities, interacting with each other and locally breeding species and competing for resources and niche space. However, their influence is rarely considered in analyses of ecological processes within the communities they temporarily occupy. Here, we explore the impact of migratory species on a breeding community using the framework of acoustic signal space, a limited resource in which sounds of species within communities co-exist. Migrating New World warblers (Parulidae, hereafter referred to as migrant species) often sing during refueling stops in areas and at times during which locally breeding warbler species (hereafter breeding species) are singing to establish territories and attract mates. We used eBird data to determine the co-occurrence of 19 migrant and 11 breeding warbler species across spring migration in SW Michigan, generated a signal space from song recordings of these species, and examined patterns of signaling overlap experienced by breeding species as migrants moved through the community. Migrant species were present for two-thirds of the breeding season of local species, including periods when breeding species established territories and attracted mates. Signaling niche overlap experienced by individual breeding species was idiosyncratic and varied over time, yet niche overlap between migrant and breeding species occurred more commonly than between breeding species or between migrant species. Nevertheless, the proportion of niche overlap between migrant and breeding warblers was similar to overlap among breeding species. Our findings showed that singing by migrant species overlapped the signals of many breeding species, suggesting that migrants could have unexplored impacts on communication in breeding species, potentially affecting song detection and song evolution. Our study contributes to a growing body of research documenting the impacts of migratory species on communities and ecosystems.
Collapse
Affiliation(s)
- Joanna M. Sblendorio
- Department of Biological SciencesWestern Michigan UniversityKalamazooMichiganUSA
| | - Maarten J. Vonhof
- Department of Biological SciencesWestern Michigan UniversityKalamazooMichiganUSA
- Institute of the Environment and SustainabilityWestern Michigan UniversityKalamazooMichiganUSA
| | - Sharon A. Gill
- Department of Biological SciencesWestern Michigan UniversityKalamazooMichiganUSA
| |
Collapse
|
54
|
D'Antonio B, Ferreira LC, Meekan M, Thomson PG, Lieber L, Virtue P, Power C, Pattiaratchi CB, Brierley AS, Sequeira AMM, Thums M. Links between the three-dimensional movements of whale sharks (Rhincodon typus) and the bio-physical environment off a coral reef. MOVEMENT ECOLOGY 2024; 12:10. [PMID: 38297368 PMCID: PMC10829290 DOI: 10.1186/s40462-024-00452-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/17/2024] [Indexed: 02/02/2024]
Abstract
BACKGROUND Measuring coastal-pelagic prey fields at scales relevant to the movements of marine predators is challenging due to the dynamic and ephemeral nature of these environments. Whale sharks (Rhincodon typus) are thought to aggregate in nearshore tropical waters due to seasonally enhanced foraging opportunities. This implies that the three-dimensional movements of these animals may be associated with bio-physical properties that enhance prey availability. To date, few studies have tested this hypothesis. METHODS Here, we conducted ship-based acoustic surveys, net tows and water column profiling (salinity, temperature, chlorophyll fluorescence) to determine the volumetric density, distribution and community composition of mesozooplankton (predominantly euphausiids and copepods) and oceanographic properties of the water column in the vicinity of whale sharks that were tracked simultaneously using satellite-linked tags at Ningaloo Reef, Western Australia. Generalised linear mixed effect models were used to explore relationships between the 3-dimensional movement behaviours of tracked sharks and surrounding prey fields at a spatial scale of ~ 1 km. RESULTS We identified prey density as a significant driver of horizontal space use, with sharks occupying areas along the reef edge where densities were highest. These areas were characterised by complex bathymetry such as reef gutters and pinnacles. Temperature and salinity profiles revealed a well-mixed water column above the height of the bathymetry (top 40 m of the water column). Regions of stronger stratification were associated with reef gutters and pinnacles that concentrated prey near the seabed, and entrained productivity at local scales (~ 1 km). We found no quantitative relationship between the depth use of sharks and vertical distributions of horizontally averaged prey density. Whale sharks repeatedly dove to depths where spatially averaged prey concentration was highest but did not extend the time spent at these depth layers. CONCLUSIONS Our work reveals previously unrecognized complexity in interactions between whale sharks and their zooplankton prey.
Collapse
Affiliation(s)
- Ben D'Antonio
- Oceans Graduate School and the UWA Oceans Institute, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia.
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre, University of Western Australia, Perth, WA, Australia.
| | - Luciana C Ferreira
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre, University of Western Australia, Perth, WA, Australia
| | - Mark Meekan
- The Oceans Institute, University of Western Australia, Perth, WA, Australia
| | - Paul G Thomson
- Oceans Graduate School and the UWA Oceans Institute, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Lilian Lieber
- Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK
| | - Patti Virtue
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
- CSIRO Environment, Battery Point, TAS, 7004, Australia
| | - Chloe Power
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
| | - Charitha B Pattiaratchi
- Oceans Graduate School and the UWA Oceans Institute, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Andrew S Brierley
- Pelagic Ecology Research Group, Scottish Oceans Institute, Gatty Marine Laboratory, School of Biology, University of St. Andrews, St Andrews, KY16 8LB, Scotland, UK
| | - Ana M M Sequeira
- The Oceans Institute, University of Western Australia, Perth, WA, Australia
- Research School of Biology, Division of Ecology and Evolution, The Australian National University, 46 Sullivans Creek Road, Canberra, ACT, 2600, Australia
| | - Michele Thums
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
55
|
Smoglica C, Graziosi G, De Angelis D, Lupini C, Festino A, Catelli E, Vergara A, Di Francesco CE. Wild Birds as Drivers of Salmonella Braenderup and Multidrug Resistant Bacteria in Wetlands of Northern Italy. Transbound Emerg Dis 2024; 2024:6462849. [PMID: 40303189 PMCID: PMC12016999 DOI: 10.1155/2024/6462849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/27/2023] [Accepted: 12/27/2023] [Indexed: 05/02/2025]
Abstract
In this study, the antimicrobial resistance profiles of bacterial strains obtained from wild avian species recovered in wetlands of Northern Italy were described. Cloacal swabs collected from 67 aquatic birds, hunted or found dead in two private hunting grounds, were submitted to microbiological investigations and antimicrobial susceptibility testing using the Vitek 2 system, while specific PCR protocols were applied to screen for genes associated with the resistance. One hundred fifty-seven bacterial strains were characterized. The most frequent isolates were Enterococcus faecalis (36/157; 22.9%) and Escherichia coli (23/157; 14.6%). Seventy-seven isolates (77/157; 49%) were resulted resistant to at least one antibiotic, and eight isolates (8/157; 5%) were classified as multidrug resistant bacteria. Resistance for critically important antibiotics (linezolid, vancomycin, carbapenems, third-generation cephalosporins, and fluoroquinolones) was also described. Salmonella spp. was obtained from a Eurasian teal (Anas crecca), and it was subsequently analyzed by whole genome sequencing, revealing the serovar Salmonella Braenderup ST22. The phylogenetic analysis, performed with all ST22 described in 2021 and 2022, placed the strain under study in a large clade associated with human salmonellosis cases. These results suggest that migratory aquatic birds may be considered as relevant carriers of critically important antibiotic resistant bacteria and zoonotic food-borne pathogens potentially able to impact public health.
Collapse
Affiliation(s)
- Camilla Smoglica
- Department of Veterinary Medicine, University of Teramo, Piano D'Accio, Teramo 64100, Italy
| | - Giulia Graziosi
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna 40064, Italy
| | - Damiano De Angelis
- Department of Veterinary Medicine, University of Teramo, Piano D'Accio, Teramo 64100, Italy
| | - Caterina Lupini
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna 40064, Italy
| | - Annarita Festino
- Department of Veterinary Medicine, University of Teramo, Piano D'Accio, Teramo 64100, Italy
| | - Elena Catelli
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna 40064, Italy
| | - Alberto Vergara
- Department of Veterinary Medicine, University of Teramo, Piano D'Accio, Teramo 64100, Italy
| | | |
Collapse
|
56
|
Thompson PR, Harrington PD, Mallory CD, Lele SR, Bayne EM, Derocher AE, Edwards MA, Campbell M, Lewis MA. Simultaneous estimation of the temporal and spatial extent of animal migration using step lengths and turning angles. MOVEMENT ECOLOGY 2024; 12:1. [PMID: 38191509 PMCID: PMC10775566 DOI: 10.1186/s40462-023-00444-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 12/19/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND Animals of many different species, trophic levels, and life history strategies migrate, and the improvement of animal tracking technology allows ecologists to collect increasing amounts of detailed data on these movements. Understanding when animals migrate is important for managing their populations, but is still difficult despite modelling advancements. METHODS We designed a model that parametrically estimates the timing of migration from animal tracking data. Our model identifies the beginning and end of migratory movements as signaled by change-points in step length and turning angle distributions. To this end, we can also use the model to estimate how an animal's movement changes when it begins migrating. In addition to a thorough simulation analysis, we tested our model on three datasets: migratory ferruginous hawks (Buteo regalis) in the Great Plains, barren-ground caribou (Rangifer tarandus groenlandicus) in northern Canada, and non-migratory brown bears (Ursus arctos) from the Canadian Arctic. RESULTS Our simulation analysis suggests that our model is most useful for datasets where an increase in movement speed or directional autocorrelation is clearly detectable. We estimated the beginning and end of migration in caribou and hawks to the nearest day, while confirming a lack of migratory behaviour in the brown bears. In addition to estimating when caribou and ferruginous hawks migrated, our model also identified differences in how they migrated; ferruginous hawks achieved efficient migrations by drastically increasing their movement rates while caribou migration was achieved through significant increases in directional persistence. CONCLUSIONS Our approach is applicable to many animal movement studies and includes parameters that can facilitate comparison between different species or datasets. We hope that rigorous assessment of migration metrics will aid understanding of both how and why animals move.
Collapse
Affiliation(s)
- Peter R Thompson
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.
| | - Peter D Harrington
- Department of Mathematics, University of British Columbia, Vancouver, BC, Canada
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB, Canada
| | | | - Subhash R Lele
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Erin M Bayne
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Andrew E Derocher
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Mark A Edwards
- Office of the Chief Scientist, Environment and Protected Areas, Government of Alberta, Edmonton, AB, Canada
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada
| | | | - Mark A Lewis
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB, Canada
- Department of Biology, University of Victoria, Victoria, BC, Canada
- Department of Mathematics and Statistics, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
57
|
Yang S, Liu Y, Zhao X, Chen J, Li H, Liang H, Fan J, Zhou M, Wang S, Zhang X, Shi M, Han L, Yu M, Lu Y, Liu B, Xu Y, Lan T, Hou Z. Genomic exploration of the endangered oriental stork, Ciconia boyciana, sheds light on migration adaptation and future conservation. Gigascience 2024; 13:giae081. [PMID: 39435574 PMCID: PMC11494145 DOI: 10.1093/gigascience/giae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/27/2024] [Accepted: 09/26/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND The oriental stork, Ciconia boyciana, is an endangered migratory bird listed on the International Union for Conservation of Nature's Red List. The bird population has experienced a rapid decline in the past decades, with nest locations and stop-over sites largely degraded due to human-bird conflicts. Multipronged conservation efforts are required to secure the future of oriental storks. We propose that a thorough understanding of the genome-wide genetic background of this threatened bird species is critical to make future conservation strategies. FINDINGS In this study, the first chromosome-scale reference genome was presented for the oriental stork with high quality, contiguity, and accuracy. The assembled genome size was 1.24 Gb with a scaffold N50 of 103 Mb, and 1.23 Gb contigs (99.32%) were anchored to 35 chromosomes. Population genomic analysis did not show a genetic structure in the wild population. Genome-wide genetic diversity (π = 0.0012) of the oriental stork was at a moderate to high level among threatened bird species, and the inbreeding risk was also not significant (FROH = 5.56% ± 5.30%). Reconstruction of demographic history indicated a rapid recent population decline likely driven by human activities. Genes that were under positive selection associated with the migratory trait were identified in relation to the long-term potentiation, photoreceptor cell organization, circadian rhythm, muscle development, and energy metabolism, indicating the essential interplay between genetic and ecological adaptation. CONCLUSIONS Our study presents the first chromosome-scale genome assembly of the oriental stork and provides a genomic basis for understanding a genetic background of the oriental stork, the population's extinction risks, and the migratory characteristics, which will facilitate the decision of future conservation plans for this species.
Collapse
Affiliation(s)
- Shangchen Yang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yan Liu
- Center for Biological Disaster Prevention and Control, National Forestry and Grassland Administration, Shenyang 110034, China
| | - Xiaoqing Zhao
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, Inner Mongolia, China
- Key Laboratory of Black Soil Protection and Utilization (Hohhot), Ministry of Agriculture and Rural Affairs, Hohhot 010031, Inner Mongolia, China
| | - Jin Chen
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Haimeng Li
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
- Heilongjiang Key Laboratory of Complex Traits and Protein Machines in Organisms, Harbin 150040, China
| | - Hongrui Liang
- Center for Biological Disaster Prevention and Control, National Forestry and Grassland Administration, Shenyang 110034, China
| | - Jiale Fan
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Mengchao Zhou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Shiqing Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Xiaotian Zhang
- Center for Biological Disaster Prevention and Control, National Forestry and Grassland Administration, Shenyang 110034, China
| | - Minhui Shi
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Lei Han
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Mingyuan Yu
- Center for Biological Disaster Prevention and Control, National Forestry and Grassland Administration, Shenyang 110034, China
| | - Yaxian Lu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Boyang Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Yu Xu
- Center for Biological Disaster Prevention and Control, National Forestry and Grassland Administration, Shenyang 110034, China
| | - Tianming Lan
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
- Heilongjiang Key Laboratory of Complex Traits and Protein Machines in Organisms, Harbin 150040, China
| | - Zhijun Hou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
58
|
Williams S, Hebblewhite M, Martin H, Meyer C, Whittington J, Killeen J, Berg J, MacAulay K, Smolko P, Merrill EH. Predation risk drives long-term shifts in migratory behaviour and demography in a large herbivore population. J Anim Ecol 2024; 93:21-35. [PMID: 37982331 DOI: 10.1111/1365-2656.14022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 09/27/2023] [Indexed: 11/21/2023]
Abstract
Migration is an adaptive life-history strategy across taxa that helps individuals maximise fitness by obtaining forage and avoiding predation risk. The mechanisms driving migratory changes are poorly understood, and links between migratory behaviour, space use, and demographic consequences are rare. Here, we use a nearly 20-year record of individual-based monitoring of a large herbivore, elk (Cervus canadensis) to test hypotheses for changing patterns of migration in and adjacent to a large protected area in Banff National Park (BNP), Canada. We test whether bottom-up (forage quality) or top-down (predation risk) factors explained trends in (i) the proportion of individuals using 5 different migratory tactics, (ii) differences in survival rates of migratory tactics during migration and whilst on summer ranges, (iii) cause-specific mortality by wolves and grizzly bears, and (iv) population abundance. We found dramatic shifts in migration consistent with behavioural plasticity in individual choice of annual migratory routes. Shifts were inconsistent with exposure to the bottom-up benefits of migration. Instead, exposure to landscape gradients in predation risk caused by exploitation outside the protected area drove migratory shifts. Carnivore exploitation outside the protected area led to higher survival rates for female elk remaining resident or migrating outside the protected area. Cause-specific mortality aligned with exposure to predation risk along migratory routes and summer ranges. Wolf predation risk was higher on migratory routes than summer ranges of montane-migrant tactics, but wolf predation risk traded-off with heightened risk from grizzly bears on summer ranges. A novel eastern migrant tactic emerged following a large forest fire that enhanced forage in an area with lower predation risk outside of the protected area. The changes in migratory behaviour translated to population abundance, where abundance of the montane-migratory tactics declined over time. The presence of diverse migratory life histories maintained a higher total population abundance than would have been the case with only one migratory tactic in the population. Our study demonstrates the complex ways in which migratory populations change over time through behavioural plasticity and associated demographic consequences because of individuals balancing predation risk and forage trade-offs.
Collapse
Affiliation(s)
- S Williams
- Wildlife Biology Program, Department of Ecosystem and Conservation Sciences, Franke College of Forestry and Conservation, University of Montana, Missoula, Montana, USA
| | - M Hebblewhite
- Wildlife Biology Program, Department of Ecosystem and Conservation Sciences, Franke College of Forestry and Conservation, University of Montana, Missoula, Montana, USA
| | - H Martin
- Wildlife Biology Program, Department of Ecosystem and Conservation Sciences, Franke College of Forestry and Conservation, University of Montana, Missoula, Montana, USA
| | - C Meyer
- Wildlife Biology Program, Department of Ecosystem and Conservation Sciences, Franke College of Forestry and Conservation, University of Montana, Missoula, Montana, USA
| | - J Whittington
- Banff National Park, Parks Canada, Banff, Alberta, Canada
| | - J Killeen
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - J Berg
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - K MacAulay
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - P Smolko
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- Department of Applied Zoology and Wildlife Management, Technical University in Zvolen, Zvolen, Slovakia
| | - E H Merrill
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
59
|
Dunn RE, Duckworth J, Green JA. A framework to unlock marine bird energetics. J Exp Biol 2023; 226:jeb246754. [PMID: 37990955 PMCID: PMC10753490 DOI: 10.1242/jeb.246754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/14/2023] [Indexed: 11/23/2023]
Abstract
Energetics can provide novel insights into the roles of animals, but employing an energetics approach has traditionally required extensive empirical physiological data on the focal species, something that can be challenging for those that inhabit marine environments. There is therefore a demand for a framework through which to estimate energy expenditure from readily available data. We present the energetic costs associated with important time- and energy-intensive behaviours across nine families of marine bird (including seabirds, ducks, divers and grebes) and nine ecological guilds. We demonstrate a worked example, calculating the year-round energetic expenditure of the great auk, Pinguinus impennis, under three migration scenarios, thereby illustrating the capacity of this approach to make predictions for data-deficient species. We provide a comprehensive framework through which to model marine bird energetics and demonstrate the power of this approach to provide novel, quantitative insights into the influence of marine birds within their ecosystems.
Collapse
Affiliation(s)
- Ruth E. Dunn
- Lancaster Environment Centre, Lancaster University, Lancaster, Lancashire, LA1 4YQ, UK
- The Lyell Centre, Heriot-Watt University, Edinburgh, Lothian, EH14 4BA, UK
| | - James Duckworth
- School of Environmental Sciences, University of Liverpool, Liverpool, Merseyside, L3 5DA, UK
| | - Jonathan A. Green
- School of Environmental Sciences, University of Liverpool, Liverpool, Merseyside, L3 5DA, UK
| |
Collapse
|
60
|
McGuire LP, Leys R, Webber QMR, Clerc J. Heterothermic Migration Strategies in Flying Vertebrates. Integr Comp Biol 2023; 63:1060-1074. [PMID: 37279461 DOI: 10.1093/icb/icad053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/08/2023] Open
Abstract
Migration is a widespread and highly variable trait among animals. Population-level patterns arise from individual-level decisions, including physiological and energetic constraints. Many aspects of migration are influenced by behaviors and strategies employed during periods of stopover, where migrants may encounter variable or unpredictable conditions. Thermoregulation can be a major cost for homeotherms which largely encounter ambient temperatures below the lower critical temperature during migration, especially during the rest phase of the daily cycle. In this review we describe the empirical evidence, theoretical models, and potential implications of bats and birds that use heterothermy to reduce thermoregulatory costs during migration. Torpor-assisted migration is a strategy described for migrating temperate insectivorous bats, whereby torpor can be used during periods of inactivity to drastically reduce thermoregulatory costs and increase net refueling rate, leading to shorter stopover duration, reduced fuel load requirement, and potential consequences for broad-scale movement patterns and survival. Hummingbirds can adopt a similar strategy, but most birds are not capable of torpor. However, there is an increasing recognition of the use of more shallow heterothermic strategies by diverse bird species during migration, with similarly important implications for migration energetics. A growing body of published literature and preliminary data from ongoing research indicate that heterothermic migration strategies in birds may be more common than traditionally appreciated. We further take a broad evolutionary perspective to consider heterothermy as an alternative to migration in some species, or as a conceptual link to consider alternatives to seasonal resource limitations. There is a growing body of evidence related to heterothermic migration strategies in bats and birds, but many important questions related to the broader implications of this strategy remain.
Collapse
Affiliation(s)
- Liam P McGuire
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Ryan Leys
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Quinn M R Webber
- Department of Integrative Biology, University of Guelph,Guelph, ON N1G 2W1, Canada
| | - Jeff Clerc
- National Renewable Energy Laboratory, Golden, CO 80401, USA
| |
Collapse
|
61
|
Barbero-Palacios L, Ferraro KM, Barrio IC, Krumins JA, Bartolomé J, Albanell E, Jarque-Bascuñana L, Lavín S, Calleja JA, Carreira JA, Serrano E. Faecal nutrient deposition of domestic and wild herbivores in an alpine grassland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166616. [PMID: 37647958 DOI: 10.1016/j.scitotenv.2023.166616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/01/2023]
Abstract
The contribution of herbivores to ecosystem nutrient fluxes through dung deposition has the potential to, directly and indirectly, influence ecosystem functioning. This process can be particularly important in nutrient-limited ecosystems such as alpine systems. However, herbivore dung content (carbon, C; nitrogen, N; phosphorus, P; potassium, K) and stoichiometry (C/N) may differ among species due to differences in diet, seasonality, body type, feeding strategy, and/or digestive system with consequences for soil biogeochemistry. Here we explore how species, body size, and seasonality may result in differences in dung stoichiometry for four alpine herbivores (chamois, sheep, horse, and cattle). We found that herbivore dung nutrient content often varies among species as well as with body size, with the dung of small herbivores having larger C, N, and P faecal content. Seasonality also showed marked effects on faecal nutrient content, with a general pattern of decreasing levels of faecal P, N and an increase of C/N as the summer progresses following the loss of nutrient value of the vegetation. Moreover, we showed how herbivores play an important role as natural fertilizers of C, N, and P in our study area, especially cattle. Our study highlights the importance of considering the relative contribution of different herbivores to ecosystem nutrient fluxes in management practices, especially with ongoing changes in wild and domestic herbivore populations in alpine ecosystems.
Collapse
Affiliation(s)
- Laura Barbero-Palacios
- Faculty of Environmental and Forest Sciences, Agricultural University of Iceland, Árleyni 22, Keldnaholt, IS-112 Reykjavík, Iceland.
| | - Kristy M Ferraro
- Yale University School of the Environment, 370 Prospect Street, New Haven, CT 06511, USA
| | - Isabel C Barrio
- Faculty of Environmental and Forest Sciences, Agricultural University of Iceland, Árleyni 22, Keldnaholt, IS-112 Reykjavík, Iceland.
| | | | - Jordi Bartolomé
- Grup de Recerca en Remugants, Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain.
| | - Elena Albanell
- Grup de Recerca en Remugants, Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain.
| | - Laia Jarque-Bascuñana
- Wildlife Ecology & Health Group (WE&H) and Servei d'Ecopatologia de Fauna Salvatge (SEFaS), Departament de Medicina i Cirurgia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain
| | - Santiago Lavín
- Wildlife Ecology & Health Group (WE&H) and Servei d'Ecopatologia de Fauna Salvatge (SEFaS), Departament de Medicina i Cirurgia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain.
| | - Juan A Calleja
- Departamento de Biología (Botánica), Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, Spain; CREAF, Cerdanyola del Vallès, Spain.
| | - José A Carreira
- Departamento de Biología Animal, Vegetal y Ecología, Universidad de Jaén, 23071 Jaén, Spain
| | - Emmanuel Serrano
- Wildlife Ecology & Health Group (WE&H) and Servei d'Ecopatologia de Fauna Salvatge (SEFaS), Departament de Medicina i Cirurgia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
62
|
Fitzgerald KA, Bellmore JR, Fellman JB, Cheng MLH, Delbecq CE, Falke JA. Stream hydrology and a pulse subsidy shape patterns of fish foraging. J Anim Ecol 2023; 92:2386-2398. [PMID: 37904340 DOI: 10.1111/1365-2656.14018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/09/2023] [Indexed: 11/01/2023]
Abstract
Pulsed subsidy events create ephemeral fluxes of hyper-abundant resources that can shape annual patterns of consumption and growth for recipient consumers. However, environmental conditions strongly affect local resource availability for much of the year, and can heavily impact consumer foraging and growth patterns prior to pulsed subsidy events. Thus, a consumer's capacity to exploit pulse subsidy resources may be influenced by antecedent environmental conditions, but this has rarely been shown in nature and is unknown in aquatic ecosystems. Here, we sought to understand the importance of hydrologic variation and a salmon pulse subsidy on the foraging and growth patterns of two stream salmonids in a coastal southeast Alaska drainage. To do this, we sampled fish stomach contents at a high temporal frequency (daily-weekly measurements) and analyzed fish consumption rates in relation to streamflow and pulse subsidy resource availability. We then explored the influence of interannual hydrologic variation on access to pulse subsidy resources (i.e. whether fish exceeded an egg consumption gape limit) in a bioenergetic simulation. Prior to Pink Salmon spawning, Dolly Varden and Coho Salmon displayed distinct and nonlinear flow-foraging relationships, where forage for both species consisted primarily of macroinvertebrates. During this time period, consumption maxima coincided with baseflow and the highest observed flow conditions, and consumption minima were observed at severe low-water and intermediate flow values. After salmon spawning began, forage was not significantly related to flow and consisted primarily of salmon eggs. Further, consumption rates increased overall, and foraging patterns did not appear to be affected by flow in either species. Bioenergetic simulations revealed that patterns of interannual hydrologic variation may shift Coho Salmon growth trajectories among years. Together, our results suggest that access to marine pulse subsidy resources may depend on whether antecedent hydrologic conditions are suitable for juvenile salmonids to grow large enough to consume salmon eggs by the onset of spawning.
Collapse
Affiliation(s)
- Kevin A Fitzgerald
- College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Juneau, Alaska, USA
| | - J Ryan Bellmore
- U. S. Forest Service, Pacific Northwest Research Station, Juneau, Alaska, USA
| | - Jason B Fellman
- Alaska Coastal Rainforest Center, University of Alaska Southeast, Juneau, Alaska, USA
| | - Matthew L H Cheng
- College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Juneau, Alaska, USA
| | - Claire E Delbecq
- College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Juneau, Alaska, USA
| | - Jeffrey A Falke
- U. S. Geological Survey, Alaska Cooperative Fish and Wildlife Research Unit, Fairbanks, Alaska, USA
| |
Collapse
|
63
|
Martinez V, Keith KD, Grace JK, Voelker G. Avian haemosporidians of breeding birds in the Davis Mountains sky-islands of west Texas, USA. Parasitology 2023; 150:1266-1276. [PMID: 38072659 PMCID: PMC10941211 DOI: 10.1017/s0031182023001087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 02/06/2024]
Abstract
Avian haemosporidians are protozoan parasites transmitted by insect vectors that infect birds worldwide, negatively impacting avian fitness and survival. However, the majority of haemosporidian diversity remains undescribed. Quantifying this diversity is critical to determining parasite–host relationships and host-switching potentials of parasite lineages as climate change induces both host and vector range shifts. In this study, we conducted a community survey of avian haemosporidians found in breeding birds on the Davis Mountains sky islands in west Texas, USA. We determined parasite abundance and host associations and compared our results to data from nearby regions. A total of 265 birds were screened and infections were detected in 108 birds (40.8%). Most positive infections were identified as Haemoproteus (36.2%), followed by Plasmodium (6.8%) and Leucocytozoon (0.8%). A total of 71 haemosporidian lineages were detected of which 39 were previously undescribed. We found that regional similarity influenced shared lineages, as a higher number of lineages were shared with avian communities in the sky islands of New Mexico compared to south Texas, the Texas Gulf Coast and central Mexico. We found that migratory status of avian host did not influence parasite prevalence, but that host phylogeny is likely an important driver.
Collapse
Affiliation(s)
- Viridiana Martinez
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, USA
| | - Katrina D Keith
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, USA
| | - Jacquelyn K Grace
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, USA
| | - Gary Voelker
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, USA
| |
Collapse
|
64
|
Santos JL, Ebert D. The limits of stress-tolerance for zooplankton resting stages in freshwater ponds. Oecologia 2023; 203:453-465. [PMID: 37971560 PMCID: PMC10684647 DOI: 10.1007/s00442-023-05478-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
In seasonal environments, many organisms evolve strategies such as diapause to survive stressful periods. Understanding the link between habitat stability and diapause strategy can help predict a population's survival in a changing world. Indeed, resting stages may be an important way freshwater organisms can survive periods of drought or freezing, and as the frequency and extent of drought or freezing vary strongly among habitats and are predicted to change with climate change, it raises questions about how organisms cope with, and survive, environmental stress. Using Daphnia magna as a model system, we tested the ability of resting stages from different populations to cope with stress during diapause. The combination of elevated temperatures and wet conditions during diapause shows to prevent hatching altogether. In contrast, hatching is relatively higher after a dry and warm diapause, but declines with rising temperatures, while time to hatch increases. Resting stages produced by populations from summer-dry habitats perform slightly, but consistently, better at higher temperatures and dryness, supporting the local adaptation hypothesis. A higher trehalose content in resting eggs from summer-dry habitat might explain such pattern. Considering that temperatures and summer droughts are projected to increase in upcoming years, it is fundamental to know how resting stages resist stressful conditions so as to predict and protect the ecological functioning of freshwater ecosystems.
Collapse
Affiliation(s)
- Joana L Santos
- Department of Environmental Sciences, Zoology, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland.
| | - Dieter Ebert
- Department of Environmental Sciences, Zoology, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland
| |
Collapse
|
65
|
Schirmer S, Korner-Nievergelt F, von Rönn JAC, Liebscher V. Estimating survival in continuous space from mark-dead-recovery data - Towards a continuous version of the multinomial dead recovery model. J Theor Biol 2023; 574:111625. [PMID: 37748534 DOI: 10.1016/j.jtbi.2023.111625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/15/2023] [Accepted: 09/18/2023] [Indexed: 09/27/2023]
Abstract
Understanding spatially varying survival is crucial for understanding the ecology and evolution of migratory animals, which may ultimately help to conserve such species. We develop an approach to estimate an annual survival probability function varying continuously in geographic space, if the recovery probability is constant over space. This estimate is based on a density function over continuous geographic space and the discrete age at death obtained from dead recovery data. From the same density function, we obtain an estimate for animal distribution in space corrected for survival, i.e., migratory connectivity. This is possible, when migratory connectivity can be separated from recovery probability. In this article, we present the method how spatially and continuously varying survival and the migratory connectivity corrected for survival can be obtained, if a constant recovery probability can be assumed reasonably. The model is a stepping stone in developing a model allowing for disentangling spatially heterogeneous survival and migratory connectivity corrected for survival from a spatially heterogeneous recovery probability. We implement the method using kernel density estimates in the R-package CONSURE. Any other density estimation technique can be used as an alternative. In a simulation study, the estimators are unbiased but show edge effects in survival and migratory connectivity. Applying the method to a real-world data set of European robins Erithacus rubecula results in biologically reasonable continuous heat-maps for survival and migratory connectivity.
Collapse
Affiliation(s)
- Saskia Schirmer
- Department of Mathematics and Computer Science, University of Greifswald, Walther-Rathenau-Straße 47, 17489 Greifswald, Germany; Swiss Ornithological Institute, Seerose 1, 6204 Sempach, Switzerland; Zoological Institute and Museum, University of Greifswald, Loitzer Straße 26, 17489 Greifswald, Germany.
| | | | - Jan A C von Rönn
- Swiss Ornithological Institute, Seerose 1, 6204 Sempach, Switzerland
| | - Volkmar Liebscher
- Department of Mathematics and Computer Science, University of Greifswald, Walther-Rathenau-Straße 47, 17489 Greifswald, Germany
| |
Collapse
|
66
|
Mumme S, Middleton AD, Ciucci P, De Groeve J, Corradini A, Aikens EO, Ossi F, Atwood P, Balkenhol N, Cole EK, Debeffe L, Dewey SR, Fischer C, Gude J, Heurich M, Hurley MA, Jarnemo A, Kauffman MJ, Licoppe A, van Loon E, McWhirter D, Mong TW, Pedrotti L, Morellet N, Mysterud A, Peters W, Proffitt K, Saïd S, Signer J, Sunde P, Starý M, Cagnacci F. Wherever I may roam-Human activity alters movements of red deer (Cervus elaphus) and elk (Cervus canadensis) across two continents. GLOBAL CHANGE BIOLOGY 2023; 29:5788-5801. [PMID: 37306048 DOI: 10.1111/gcb.16769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 03/29/2023] [Accepted: 04/02/2023] [Indexed: 06/13/2023]
Abstract
Human activity and associated landscape modifications alter the movements of animals with consequences for populations and ecosystems worldwide. Species performing long-distance movements are thought to be particularly sensitive to human impact. Despite the increasing anthropogenic pressure, it remains challenging to understand and predict animals' responses to human activity. Here we address this knowledge gap using 1206 Global Positioning System movement trajectories of 815 individuals from 14 red deer (Cervus elaphus) and 14 elk (Cervus canadensis) populations spanning wide environmental gradients, namely the latitudinal range from the Alps to Scandinavia in Europe, and the Greater Yellowstone Ecosystem in North America. We measured individual-level movements relative to the environmental context, or movement expression, using the standardized metric Intensity of Use, reflecting both the directionality and extent of movements. We expected movement expression to be affected by resource (Normalized Difference Vegetation Index, NDVI) predictability and topography, but those factors to be superseded by human impact. Red deer and elk movement expression varied along a continuum, from highly segmented trajectories over relatively small areas (high intensity of use), to directed transitions through restricted corridors (low intensity of use). Human activity (Human Footprint Index, HFI) was the strongest driver of movement expression, with a steep increase in Intensity of Use as HFI increased, but only until a threshold was reached. After exceeding this level of impact, the Intensity of Use remained unchanged. These results indicate the overall sensitivity of Cervus movement expression to human activity and suggest a limitation of plastic responses under high human pressure, despite the species also occurring in human-dominated landscapes. Our work represents the first comparison of metric-based movement expression across widely distributed populations of a deer genus, contributing to the understanding and prediction of animals' responses to human activity.
Collapse
Affiliation(s)
- Steffen Mumme
- Department of Biology and Biotechnologies "Charles Darwin", University of Rome La Sapienza, Rome, Italy
- Animal Ecology Unit, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
- Department of Environmental Science, Policy, and Management, University of California, California, Berkeley, USA
| | - Arthur D Middleton
- Department of Environmental Science, Policy, and Management, University of California, California, Berkeley, USA
| | - Paolo Ciucci
- Department of Biology and Biotechnologies "Charles Darwin", University of Rome La Sapienza, Rome, Italy
| | - Johannes De Groeve
- Animal Ecology Unit, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| | - Andrea Corradini
- Animal Ecology Unit, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
- Department of Civil, Environmental and Mechanical Engineering (DICAM), University of Trento, Trento, Italy
- Stelvio National Park-Ersaf Lombardia, Bormio, Italy
| | - Ellen O Aikens
- School of Computing, University of Wyoming, Wyoming, Laramie, USA
- Haub School of Environment and Natural Resources, University of Wyoming, Wyoming, Laramie, USA
| | - Federico Ossi
- Animal Ecology Unit, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Paul Atwood
- Idaho Department of Fish and Game, Idaho, Coeur d'Alene, USA
| | - Niko Balkenhol
- Wildlife Sciences, Faculty of Forest Sciences and Forest Ecology, University of Goettingen, Goettingen, Germany
| | - Eric K Cole
- US Fish and Wildlife Service, National Elk Refuge, Wyoming, Jackson, USA
| | - Lucie Debeffe
- Université de Toulouse, INRAE, CEFS, Castanet Tolosan, France
- LTSER ZA PYRénées GARonne, Auzeville Tolosane, France
| | - Sarah R Dewey
- National Park Service, Grand Teton National Park, Wyoming, Moose, USA
| | - Claude Fischer
- Department of Nature Management, University of Applied Sciences of Western Switzerland, Jussy, Switzerland
| | - Justin Gude
- Montana Department of Fish, Wildlife and Parks, Montana, Helena, USA
| | - Marco Heurich
- Department of Visitor Management and National Park Monitoring, Bavarian Forest National Park, Grafenau, Germany
- Chair of Wildlife Ecology and Management, Albert Ludwigs University Freiburg, Freiburg, Germany
- Inland Norway University of Applied Science Institute for Forest and Wildlife Management, Koppang, Norway
| | - Mark A Hurley
- Idaho Department of Fish and Game, Idaho, Boise, USA
| | - Anders Jarnemo
- School of Business, Innovation and Sustainability, Halmstad University, Halmstad, Sweden
| | - Matthew J Kauffman
- U.S. Geological Survey, Wyoming Cooperative Fish and Wildlife Research Unit, Department of Zoology and Physiology, University of Wyoming, Wyoming, Laramie, USA
| | - Alain Licoppe
- Natural and Agricultural Environmental Studies Department, Service Public de Wallonie, Gembloux, Belgium
| | - Emiel van Loon
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| | | | - Tony W Mong
- Wyoming Game and Fish Department, Wyoming, Cody, USA
| | - Luca Pedrotti
- Stelvio National Park-Ersaf Lombardia, Bormio, Italy
| | - Nicolas Morellet
- Université de Toulouse, INRAE, CEFS, Castanet Tolosan, France
- LTSER ZA PYRénées GARonne, Auzeville Tolosane, France
| | - Atle Mysterud
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, Norway
| | - Wibke Peters
- Department for Conservation, Biodiversity and Wildlife Management, Bavarian State Institute of Forestry, Freising, Germany
| | - Kelly Proffitt
- Montana Department of Fish, Wildlife and Parks, Montana, Bozeman, USA
| | - Sonia Saïd
- Office Français de la Biodiversité, DRAS, "Montfort", Birieux, France
| | - Johannes Signer
- Wildlife Sciences, Faculty of Forest Sciences and Forest Ecology, University of Goettingen, Goettingen, Germany
| | - Peter Sunde
- Department of Ecoscience-Wildlife Ecology, Aarhus University, Aarhus, Denmark
| | | | - Francesca Cagnacci
- Animal Ecology Unit, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| |
Collapse
|
67
|
Kendzel MJ, Altizer SM, de Roode JC. Interactions between parasitism and migration in monarch butterflies. CURRENT OPINION IN INSECT SCIENCE 2023; 59:101089. [PMID: 37506879 DOI: 10.1016/j.cois.2023.101089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/12/2023] [Accepted: 07/23/2023] [Indexed: 07/30/2023]
Abstract
In many species, migration can increase parasite burdens or diversity as hosts move between diverse habitats with different parasite assemblages. On the other hand, migration can reduce parasite prevalence by letting animals escape infested habitats, or by exacerbating the costs of parasitism, leading to culling or dropout. How the balance between these negative and positive interactions is maintained or how they will change under anthropogenic pressure remains poorly understood. Here, we summarize the relationship between migration and infectious disease in monarch butterflies, finding that migration can reduce parasite prevalence through a combination of migratory culling and dropout. Because parasite prevalence has risen in recent decades, these processes are now resulting in the loss of tens of millions of monarchs. We highlight the remaining questions, asking how migration influences population genetics and virulence, how the establishment of resident populations interferes with migration, and whether infection can interfere with migratory cognition.
Collapse
Affiliation(s)
| | - Sonia M Altizer
- Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
| | | |
Collapse
|
68
|
De Wysiecki AM, Barnett A, Cortés F, Wiff R, Merlo PJ, Jaureguizar AJ, Awruch CA, Trobbiani GA, Irigoyen AJ. The essential habitat role of a unique coastal inlet for a widely distributed apex predator. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230667. [PMID: 37830021 PMCID: PMC10565395 DOI: 10.1098/rsos.230667] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/18/2023] [Indexed: 10/14/2023]
Abstract
Essential habitats support specific functions for species, such as reproduction, feeding or refuge. For highly mobile aquatic species, identifying essential habitats within the wider distribution range is central to understanding species ecology, and underpinning effective management plans. This study examined the movement and space use patterns of sevengill sharks (Notorynchus cepedianus) in Caleta Valdés (CV), a unique coastal habitat in northern Patagonia, Argentina. Seasonal residency patterns of sharks were evident, with higher detectability in late spring and early summer and lower during autumn and winter. The overlap between the residency patterns of sharks and their prey, elephant seals, suggests that CV functions as a seasonal feeding aggregation site for N. cepedianus. The study also found sexual differences in movement behaviour, with males performing abrupt departures from CV and showing increased roaming with the presence of more sharks, and maximum detection probability at high tide. These movements could be related to different feeding strategies between sexes or mate-searching behaviour, suggesting that CV may also be essential for reproduction. Overall, this study highlights the importance of coastal sites as essential habitats for N. cepedianus and deepens our understanding of the ecological role of this apex predator in marine ecosystems.
Collapse
Affiliation(s)
- Agustín M. De Wysiecki
- Centro para el Estudio de Sistemas Marinos, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Puerto Madryn, Chubut, Argentina
| | - Adam Barnett
- Marine Data Technology Hub, James Cook University, Townsville, Queensland, Australia
- Biopixel Oceans Foundation, Cairns, Queensland, Australia
| | - Federico Cortés
- Instituto Nacional de Investigación y Desarrollo Pesquero, Mar del Plata, Buenos Aires, Argentina
| | - Rodrigo Wiff
- Center of Applied Ecology and Sustainability (CAPES), Pontificia Universidad Católica de Chile, Santiago, Chile
- Instituto Milenio en Socio-Ecología Costera (SECOS), Santiago, Chile
| | - Pablo J. Merlo
- Centro para el Estudio de Sistemas Marinos, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Puerto Madryn, Chubut, Argentina
| | - Andrés J. Jaureguizar
- Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC), La Plata, Buenos Aires, Argentina
- Instituto Argentino de Oceanografía (IADO), Bahía Blanca, Buenos Aires, Argentina
- Universidad Provincial del Sudoeste (UPSO), Coronel Pringles, Buenos Aires, Argentina
| | - Cynthia A. Awruch
- Centro para el Estudio de Sistemas Marinos, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Puerto Madryn, Chubut, Argentina
- Fisheries and Aquaculture, Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Hobart, Tasmania, Australia
| | - Gastón A. Trobbiani
- Centro para el Estudio de Sistemas Marinos, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Puerto Madryn, Chubut, Argentina
| | - Alejo J. Irigoyen
- Centro para el Estudio de Sistemas Marinos, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Puerto Madryn, Chubut, Argentina
| |
Collapse
|
69
|
Russo NJ, Davies AB, Blakey RV, Ordway EM, Smith TB. Feedback loops between 3D vegetation structure and ecological functions of animals. Ecol Lett 2023; 26:1597-1613. [PMID: 37419868 DOI: 10.1111/ele.14272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 05/09/2023] [Accepted: 05/16/2023] [Indexed: 07/09/2023]
Abstract
Ecosystems function in a series of feedback loops that can change or maintain vegetation structure. Vegetation structure influences the ecological niche space available to animals, shaping many aspects of behaviour and reproduction. In turn, animals perform ecological functions that shape vegetation structure. However, most studies concerning three-dimensional vegetation structure and animal ecology consider only a single direction of this relationship. Here, we review these separate lines of research and integrate them into a unified concept that describes a feedback mechanism. We also show how remote sensing and animal tracking technologies are now available at the global scale to describe feedback loops and their consequences for ecosystem functioning. An improved understanding of how animals interact with vegetation structure in feedback loops is needed to conserve ecosystems that face major disruptions in response to climate and land-use change.
Collapse
Affiliation(s)
- Nicholas J Russo
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, California, USA
| | - Andrew B Davies
- Department of Organismic & Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Rachel V Blakey
- La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, University of California Los Angeles, Los Angeles, California, USA
- Biological Sciences Department, California State Polytechnic University, Pomona, California, USA
| | - Elsa M Ordway
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, California, USA
- La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, University of California Los Angeles, Los Angeles, California, USA
| | - Thomas B Smith
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, California, USA
- La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
70
|
Doherty S, Saltré F, Llewelyn J, Strona G, Williams SE, Bradshaw CJA. Estimating co-extinction threats in terrestrial ecosystems. GLOBAL CHANGE BIOLOGY 2023; 29:5122-5138. [PMID: 37386726 DOI: 10.1111/gcb.16836] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 05/27/2023] [Indexed: 07/01/2023]
Abstract
The biosphere is changing rapidly due to human endeavour. Because ecological communities underlie networks of interacting species, changes that directly affect some species can have indirect effects on others. Accurate tools to predict these direct and indirect effects are therefore required to guide conservation strategies. However, most extinction-risk studies only consider the direct effects of global change-such as predicting which species will breach their thermal limits under different warming scenarios-with predictions of trophic cascades and co-extinction risks remaining mostly speculative. To predict the potential indirect effects of primary extinctions, data describing community interactions and network modelling can estimate how extinctions cascade through communities. While theoretical studies have demonstrated the usefulness of models in predicting how communities react to threats like climate change, few have applied such methods to real-world communities. This gap partly reflects challenges in constructing trophic network models of real-world food webs, highlighting the need to develop approaches for quantifying co-extinction risk more accurately. We propose a framework for constructing ecological network models representing real-world food webs in terrestrial ecosystems and subjecting these models to co-extinction scenarios triggered by probable future environmental perturbations. Adopting our framework will improve estimates of how environmental perturbations affect whole ecological communities. Identifying species at risk of co-extinction (or those that might trigger co-extinctions) will also guide conservation interventions aiming to reduce the probability of co-extinction cascades and additional species losses.
Collapse
Affiliation(s)
- Seamus Doherty
- Global Ecology | Partuyarta Ngadluku Wardli Kuu, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, Wollongong, New South Wales, Australia
| | - Frédérik Saltré
- Global Ecology | Partuyarta Ngadluku Wardli Kuu, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, Wollongong, New South Wales, Australia
| | - John Llewelyn
- Global Ecology | Partuyarta Ngadluku Wardli Kuu, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, Wollongong, New South Wales, Australia
| | - Giovanni Strona
- European Commission, Joint Research Centre, Ispra, Italy
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Stephen E Williams
- Centre for Tropical Environmental and Sustainability Science, College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Corey J A Bradshaw
- Global Ecology | Partuyarta Ngadluku Wardli Kuu, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, Wollongong, New South Wales, Australia
| |
Collapse
|
71
|
Martin EC, Hansen BB, Lee AM, Herfindal I. Generation time and seasonal migration explain variation in spatial population synchrony across European bird species. J Anim Ecol 2023; 92:1904-1918. [PMID: 37448134 DOI: 10.1111/1365-2656.13983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023]
Abstract
Spatial population synchrony is common among populations of the same species and is an important predictor of extinction risk. Despite the potential consequences for metapopulation persistence, we still largely lack understanding of what makes one species more likely to be synchronized than another given the same environmental conditions. Generally, environmental conditions in a shared environment or a species' sensitivity to the environment can explain the extent of synchrony. Populations that are closer together experience more similar fluctuations in their environments than those populations that are further apart and are therefore more synchronized. The relative importance of environmental and demographic stochasticity for population dynamics is strongly linked to species' life-history traits, such as pace of life, which may impact population synchrony. For populations that migrate, there may be multiple environmental conditions at different locations driving synchrony. However, the importance of life history and migration tactics in determining patterns of spatial population synchrony have rarely been explored empirically. We therefore hypothesize that increasing generation time, a proxy for pace of life, would decrease spatial population synchrony and that migrants would be less synchronized than resident species. We used population abundance data on breeding birds from four countries to investigate patterns of spatial population synchrony in growth rate and abundance. We calculated the mean spatial population synchrony between log-transformed population growth rates or log-transformed abundances for each species and country separately. We investigated differences in synchrony across generation times in resident (n = 67), short-distance migrant (n = 86) and long-distance migrant (n = 39) bird species. Species with shorter generation times were more synchronized than species with longer generation times. Short-distance migrants were more synchronized than long-distance migrants and resident birds. Our results provide novel empirical links between spatial population synchrony and species traits known to be of key importance for population dynamics, generation time and migration tactics. We show how these different mechanisms can be combined to understand species-specific causes of spatial population synchrony. Understanding these specific drivers of spatial population synchrony is important in the face of increasingly severe threats to biodiversity and could be key for successful future conservation outcomes.
Collapse
Affiliation(s)
- Ellen C Martin
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Brage Bremset Hansen
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Terrestrial Ecology, Norwegian Institute for Nature Research, Trondheim, Norway
| | - Aline Magdalena Lee
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
- The Gjaerevoll Centre for Biodiversity Foresight Analyses, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ivar Herfindal
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
- The Gjaerevoll Centre for Biodiversity Foresight Analyses, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
72
|
Barry JP, Litvin SY, DeVogelaere A, Caress DW, Lovera CF, Kahn AS, Burton EJ, King C, Paduan JB, Wheat CG, Girard F, Sudek S, Hartwell AM, Sherman AD, McGill PR, Schnittger A, Voight JR, Martin EJ. Abyssal hydrothermal springs-Cryptic incubators for brooding octopus. SCIENCE ADVANCES 2023; 9:eadg3247. [PMID: 37611094 PMCID: PMC10446498 DOI: 10.1126/sciadv.adg3247] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 07/03/2023] [Indexed: 08/25/2023]
Abstract
Does warmth from hydrothermal springs play a vital role in the biology and ecology of abyssal animals? Deep off central California, thousands of octopus (Muusoctopus robustus) migrate through cold dark waters to hydrothermal springs near an extinct volcano to mate, nest, and die, forming the largest known aggregation of octopus on Earth. Warmth from the springs plays a key role by raising metabolic rates, speeding embryonic development, and presumably increasing reproductive success; we show that brood times for females are ~1.8 years, far faster than expected for abyssal octopods. Using a high-resolution subsea mapping system, we created landscape-scale maps and image mosaics that reveal 6000 octopus in a 2.5-ha area. Because octopuses die after reproducing, hydrothermal springs indirectly provide a food supplement to the local energy budget. Although localized deep-sea heat sources may be essential to octopuses and other warm-tolerant species, most of these unique and often cryptic habitats remain undiscovered and unexplored.
Collapse
Affiliation(s)
- James P. Barry
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | | | - Andrew DeVogelaere
- Monterey Bay National Marine Sanctuary, National Ocean Service, National Oceanic and Atmospheric Administration, Monterey, CA, USA
| | - David W. Caress
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | - Chris F. Lovera
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | - Amanda S. Kahn
- Moss Landing Marine Laboratories, San Jose State University, Moss Landing, CA, USA
| | - Erica J. Burton
- Monterey Bay National Marine Sanctuary, National Ocean Service, National Oceanic and Atmospheric Administration, Monterey, CA, USA
| | - Chad King
- Monterey Bay National Marine Sanctuary, National Ocean Service, National Oceanic and Atmospheric Administration, Monterey, CA, USA
| | | | - C. Geoffrey Wheat
- College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Moss Landing, CA, USA
| | - Fanny Girard
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | - Sebastian Sudek
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | | | | | - Paul R. McGill
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | | | | | - Eric J. Martin
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| |
Collapse
|
73
|
Bellisario B, Cardinale M, Maggini I, Fusani L, Carere C. Co-migration fidelity at a stopover site increases over time in African-European migratory landbirds. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221043. [PMID: 37650061 PMCID: PMC10465194 DOI: 10.1098/rsos.221043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 08/11/2023] [Indexed: 09/01/2023]
Abstract
Migratory species are changing their timing of departure from wintering areas and arrival to breeding sites (i.e. migration phenology) in response to climate change to exploit maximum food availability at higher latitudes and improve their fitness. Despite the impact of changing migration phenology at population and community level, the extent to which individual and species-specific response affects associations among co-migrating species has been seldom explored. By applying temporal co-occurrence network models on 15 years of standardized bird ringing data at a spring stopover site, we show that African-European migratory landbirds tend to migrate in well-defined groups of species with high temporal overlap. Such 'co-migration fidelity' significantly increased over the years and was higher in long-distance (trans-Saharan) than in short-distance (North African) migrants. Our findings suggest non-random patterns of associations in co-migrating species, possibly related to the existence of regulatory mechanisms associated with changing climate conditions and different uses of stopover sites, ultimately influencing the global economy of migration of landbirds in the Palearctic-African migration system.
Collapse
Affiliation(s)
- Bruno Bellisario
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Massimiliano Cardinale
- Swedish University of Agricultural Sciences, Department of Aquatic Resources, Institute of Marine Research, Lysekil, Sweden
| | - Ivan Maggini
- Konrad-Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Austria
| | - Leonida Fusani
- Konrad-Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Austria
- Department of Behavioural and Cognitive Biology, University of Vienna, Vienna, Austria
| | - Claudio Carere
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| |
Collapse
|
74
|
Ambrosini R, Imperio S, Cecere JG, Andreotti A, Serra L, Spina F, Fattorini N, Costanzo A. Modelling the timing of migration of a partial migrant bird using ringing and observation data: a case study with the Song Thrush in Italy. MOVEMENT ECOLOGY 2023; 11:47. [PMID: 37528451 PMCID: PMC10391980 DOI: 10.1186/s40462-023-00407-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/27/2023] [Indexed: 08/03/2023]
Abstract
BACKGROUND The study of the timing of migration is fundamental to the understanding of the ecology of many bird species and their response to climate change, and it has important conservation and management implications e.g., for assessing the hunting seasons according to the EU Directive 2009/147/EC (Birds Directive). METHODS We developed a new method for the analysis of ringing data (both first capture and re-encounters) and citizen science observations, to assess the timing of pre- and post-nuptial migration of birds. This method was tested on the Song Thrush Turdus philomelos, using i) the Bird Ringing Database hosted by the ISPRA Italian Ringing Centre from the whole Italian peninsula, the three closest large islands (Sicily, Sardinia and Corsica), and Canton Ticino (Switzerland) and ii) the eBird data for the same study area. RESULTS The results from both datasets consistently showed that pre-nuptial migration starts during the first 10-day period of January (Jan 1) in some central and southern areas of the Italian peninsula, in central Sicily, southern Sardinia, and Corsica. The onset of migration occurs on Jan 2 in the rest of central and southern Italy, Sicily and Sardinia, and western Liguria, while it starts later in the north-eastern Alps, up to Mar 3. The end of post-nuptial migration is more synchronous, occurring on Nov 1 across most of Italy, slightly earlier (Oct 3) in northern Italy and later (Nov 2) in Sicily. The uncertainty of the estimated dates was < 2 days in most cases. CONCLUSION This method represents a novel and valuable tool for the analyses of the timing of migration using ringing and citizen science data and provides an important contribution to the Key Concepts Document of the EU Birds Directive, where migration timings are considered and used to define the hunting period of birds.
Collapse
Affiliation(s)
- Roberto Ambrosini
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Via Celoria 26, Milano, 20133, Italia
| | - Simona Imperio
- Area Avifauna Migratrice, Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), Via Ca' Fornacetta 9, Ozzano dell'Emilia (BO), 40064, Italia
| | - Jacopo G Cecere
- Area Avifauna Migratrice, Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), Via Ca' Fornacetta 9, Ozzano dell'Emilia (BO), 40064, Italia
| | - Alessandro Andreotti
- Area Avifauna Migratrice, Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), Via Ca' Fornacetta 9, Ozzano dell'Emilia (BO), 40064, Italia
| | - Lorenzo Serra
- Area Avifauna Migratrice, Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), Via Ca' Fornacetta 9, Ozzano dell'Emilia (BO), 40064, Italia
| | - Fernando Spina
- Area Avifauna Migratrice, Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), Via Ca' Fornacetta 9, Ozzano dell'Emilia (BO), 40064, Italia
- , Via della Madonnina, 30 ? I 65010 , Italia, Spoltore (PE), 65010, Italia
| | - Niccolò Fattorini
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Via Celoria 26, Milano, 20133, Italia
- Dipartimento di Scienze della Vita, Università degli Studi di Siena, Via P.A. Mattioli 4, Siena, 53100, Italia
- NBFC, National Biodiversity Future Center, Palermo, Italia
| | - Alessandra Costanzo
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Via Celoria 26, Milano, 20133, Italia.
| |
Collapse
|
75
|
Pringle RM, Abraham JO, Anderson TM, Coverdale TC, Davies AB, Dutton CL, Gaylard A, Goheen JR, Holdo RM, Hutchinson MC, Kimuyu DM, Long RA, Subalusky AL, Veldhuis MP. Impacts of large herbivores on terrestrial ecosystems. Curr Biol 2023; 33:R584-R610. [PMID: 37279691 DOI: 10.1016/j.cub.2023.04.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Large herbivores play unique ecological roles and are disproportionately imperiled by human activity. As many wild populations dwindle towards extinction, and as interest grows in restoring lost biodiversity, research on large herbivores and their ecological impacts has intensified. Yet, results are often conflicting or contingent on local conditions, and new findings have challenged conventional wisdom, making it hard to discern general principles. Here, we review what is known about the ecosystem impacts of large herbivores globally, identify key uncertainties, and suggest priorities to guide research. Many findings are generalizable across ecosystems: large herbivores consistently exert top-down control of plant demography, species composition, and biomass, thereby suppressing fires and the abundance of smaller animals. Other general patterns do not have clearly defined impacts: large herbivores respond to predation risk but the strength of trophic cascades is variable; large herbivores move vast quantities of seeds and nutrients but with poorly understood effects on vegetation and biogeochemistry. Questions of the greatest relevance for conservation and management are among the least certain, including effects on carbon storage and other ecosystem functions and the ability to predict outcomes of extinctions and reintroductions. A unifying theme is the role of body size in regulating ecological impact. Small herbivores cannot fully substitute for large ones, and large-herbivore species are not functionally redundant - losing any, especially the largest, will alter net impact, helping to explain why livestock are poor surrogates for wild species. We advocate leveraging a broad spectrum of techniques to mechanistically explain how large-herbivore traits and environmental context interactively govern the ecological impacts of these animals.
Collapse
Affiliation(s)
- Robert M Pringle
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA.
| | - Joel O Abraham
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - T Michael Anderson
- Department of Biology, Wake Forest University, Winston Salem, NC 27109, USA
| | - Tyler C Coverdale
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Andrew B Davies
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | - Jacob R Goheen
- Department of Zoology & Physiology, University of Wyoming, Laramie, WY 82072, USA
| | - Ricardo M Holdo
- Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
| | - Matthew C Hutchinson
- Department of Life & Environmental Sciences, University of California Merced, Merced, CA 95343, USA
| | - Duncan M Kimuyu
- Department of Natural Resources, Karatina University, Karatina, Kenya
| | - Ryan A Long
- Department of Fish and Wildlife Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Amanda L Subalusky
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Michiel P Veldhuis
- Institute of Environmental Sciences, Leiden University, 2333 CC Leiden, The Netherlands
| |
Collapse
|
76
|
Arai K, Castonguay M, Lyubchich V, Secor DH. Integrating machine learning with otolith isoscapes: Reconstructing connectivity of a marine fish over four decades. PLoS One 2023; 18:e0285702. [PMID: 37256866 DOI: 10.1371/journal.pone.0285702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/30/2023] [Indexed: 06/02/2023] Open
Abstract
Stable isotopes are an important tool to uncover animal migration. Geographic natal assignments often require categorizing the spatial domain through a nominal approach, which can introduce bias given the continuous nature of these tracers. Stable isotopes predicted over a spatial gradient (i.e., isoscapes) allow a probabilistic and continuous assignment of origin across space, although applications to marine organisms remain limited. We present a new framework that integrates nominal and continuous assignment approaches by (1) developing a machine-learning multi-model ensemble classifier using Bayesian model averaging (nominal); and (2) integrating nominal predictions with continuous isoscapes to estimate the probability of origin across the spatial domain (continuous). We applied this integrated framework to predict the geographic origin of the Northwest Atlantic mackerel (Scomber scombrus), a migratory pelagic fish comprised of northern and southern components that have distinct spawning sites off Canada (northern contingent) and the US (southern contingent), and seasonally overlap in the US fished regions. The nominal approach based on otolith carbon and oxygen stable isotopes (δ13C/δ18O) yielded high contingent classification accuracy (84.9%). Contingent assignment of unknown-origin samples revealed prevalent, yet highly varied contingent mixing levels (12.5-83.7%) within the US waters over four decades (1975-2019). Nominal predictions were integrated into mackerel-specific otolith oxygen isoscapes developed independently for Canadian and US waters. The combined approach identified geographic nursery hotspots in known spawning sites, but also detected geographic shifts over multi-decadal time scales. This framework can be applied to other marine species to understand migration and connectivity at a high spatial resolution, relevant to management of unit stocks in fisheries and other conservation assessments.
Collapse
Affiliation(s)
- Kohma Arai
- Chesapeake Biological Laboratory, University of Maryland Center for Environmental Science, Solomons, MD, United States of America
| | - Martin Castonguay
- Fisheries and Oceans Canada, Institut Maurice-Lamontagne, Mont-Joli, QC, Canada
| | - Vyacheslav Lyubchich
- Chesapeake Biological Laboratory, University of Maryland Center for Environmental Science, Solomons, MD, United States of America
| | - David H Secor
- Chesapeake Biological Laboratory, University of Maryland Center for Environmental Science, Solomons, MD, United States of America
| |
Collapse
|
77
|
Lubitz N, Daly R, Filmalter JD, Sheaves M, Cowley PD, Naesje TF, Barnett A. Context drives movement patterns in a mobile marine predator. MOVEMENT ECOLOGY 2023; 11:28. [PMID: 37226200 DOI: 10.1186/s40462-023-00390-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/06/2023] [Indexed: 05/26/2023]
Abstract
Intra-specific variability in movement behaviour occurs in all major taxonomic groups. Despite its common occurrence and ecological consequences, individual variability is often overlooked. As a result, there is a persistent gap in knowledge about drivers of intra-specific variability in movement and its role in fulfilling life history requirements. We apply a context-focused approach to bull sharks (Carcharhinus leucas), a highly mobile marine predator, incorporating intra-specific variability to understand how variable movement patterns arise and how they might be altered under future change scenarios. Spatial analysis of sharks, acoustically tagged both at their distributional limit and the centre of distribution in southern Africa, was combined with spatial analysis of acoustically tagged teleost prey and remote-sensing of environmental variables. The objective was to test the hypothesis that varying resource availability and magnitude of seasonal environmental change in different locations interact to produce variable yet predictable movement behaviours across a species' distribution. Sharks from both locations showed high seasonal overlap with predictable prey aggregations. Patterns were variable in the centre of distribution, where residency, small- and large-scale movements were all recorded. In contrast, all animals from the distributional limit performed 'leap-frog migrations', making long-distance migrations bypassing conspecifics in the centre of distribution. By combining multiple variables related to life history requirements for animals in different environments we identified combinations of key drivers that explain the occurrence of differing movement behaviours across different contexts and delineated the effects of environmental factors and prey dynamics on predator movement. Comparisons with other taxa show striking similarities in patterns of intra-specific variability across terrestrial and marine species, suggesting common drivers.
Collapse
Affiliation(s)
- Nicolas Lubitz
- Marine Data Technology Hub, College of Science and Engineering, James Cook University, Townsville City, QLD, Australia.
- Biopixel Oceans Foundation, Cairns, QLD, Australia.
| | - Ryan Daly
- Oceanographic Research Institute, Marine Parade, PO Box 10712, 4056, Durban, South Africa
- South African Institute for Aquatic Biodiversity (SAIAB), Private Bag, 1015, 6140, Makhanda, South Africa
| | - John D Filmalter
- South African Institute for Aquatic Biodiversity (SAIAB), Private Bag, 1015, 6140, Makhanda, South Africa
| | - Marcus Sheaves
- Marine Data Technology Hub, College of Science and Engineering, James Cook University, Townsville City, QLD, Australia
| | - Paul D Cowley
- South African Institute for Aquatic Biodiversity (SAIAB), Private Bag, 1015, 6140, Makhanda, South Africa
| | - Tor F Naesje
- Norwegian Institute for Nature Research, P.O. Box 5685, NO- 7485, Torgarden, Trondheim, Norway
| | - Adam Barnett
- Marine Data Technology Hub, College of Science and Engineering, James Cook University, Townsville City, QLD, Australia
- Biopixel Oceans Foundation, Cairns, QLD, Australia
| |
Collapse
|
78
|
Lv H, Zhai MY, Zeng J, Zhang YY, Zhu F, Shen HM, Qiu K, Gao BY, Reynolds DR, Chapman JW, Hu G. Changing patterns of the East Asian monsoon drive shifts in migration and abundance of a globally important rice pest. GLOBAL CHANGE BIOLOGY 2023; 29:2655-2668. [PMID: 36794561 DOI: 10.1111/gcb.16636] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/03/2023] [Indexed: 05/31/2023]
Abstract
Numerous insects including pests and beneficial species undertake windborne migrations over hundreds of kilometers. In East Asia, climate-induced changes in large-scale atmospheric circulation systems are affecting wind-fields and precipitation zones and these, in turn, are changing migration patterns. We examined the consequences in a serious rice pest, the brown planthopper (BPH, Nilaparvata lugens) in East China. BPH cannot overwinter in temperate East Asia, and infestations there are initiated by several waves of windborne spring or summer migrants originating from tropical areas in Indochina. The East Asian summer monsoon, characterized by abundant rainfall and southerly winds, is of critical importance for these northward movements. We analyzed a 42-year dataset of meteorological parameters and catches of BPH from a standardized network of 341 light-traps in South and East China. We show that south of the Yangtze River during summer, southwesterly winds have weakened and rainfall increased, while the summer precipitation has decreased further north on the Jianghuai Plain. Together, these changes have resulted in shorter migratory journeys for BPH leaving South China. As a result, pest outbreaks of BPH in the key rice-growing area of the Lower Yangtze River Valley (LYRV) have declined since 2001. We show that these changes to the East Asian summer monsoon weather parameters are driven by shifts in the position and intensity of the Western Pacific subtropical high (WPSH) system that have occurred during the last 20 years. As a result, the relationship between WPSH intensity and BPH immigration that was previously used to predict the size of the immigration to the LYRV has now broken down. Our results demonstrate that migration patterns of a serious rice pest have shifted in response to the climate-induced changes in precipitation and wind pattern, with significant consequences for the population management of migratory pests.
Collapse
Affiliation(s)
- Hua Lv
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory of Biological Interactions and Crop Health, Nanjing Agricultural University, Nanjing, China
| | - Meng-Yuan Zhai
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory of Biological Interactions and Crop Health, Nanjing Agricultural University, Nanjing, China
| | - Juan Zeng
- China National Agro-Tech Extension and Service Center, Beijing, China
| | - Yi-Yang Zhang
- China National Agro-Tech Extension and Service Center, Beijing, China
| | - Feng Zhu
- Plant Protection Station of Jiangsu Province, Nanjing, China
| | - Hui-Mei Shen
- Shanghai Agricultural Technology Extension and Service Center, Shanghai, China
| | - Kun Qiu
- Plant Protection Station of Anhui Province, Hefei, China
| | - Bo-Ya Gao
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory of Biological Interactions and Crop Health, Nanjing Agricultural University, Nanjing, China
| | - Don R Reynolds
- Natural Resources Institute, University of Greenwich, Chatham, UK
- Rothamsted Research, Harpenden, UK
| | - Jason W Chapman
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
- Centre for Ecology and Conservation, Environment and Sustainability Institute, University of Exeter, Cornwall, UK
| | - Gao Hu
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory of Biological Interactions and Crop Health, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
79
|
Maeda K, Inoue KI, Takada M, Hikosaka O. Environmental context-dependent activation of dopamine neurons via putative amygdala-nigra pathway in macaques. Nat Commun 2023; 14:2282. [PMID: 37085491 PMCID: PMC10121604 DOI: 10.1038/s41467-023-37584-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/23/2023] [Indexed: 04/23/2023] Open
Abstract
Seeking out good and avoiding bad objects is critical for survival. In practice, objects are rarely good every time or everywhere, but only at the right time or place. Whereas the basal ganglia (BG) are known to mediate goal-directed behavior, for example, saccades to rewarding objects, it remains unclear how such simple behaviors are rendered contingent on higher-order factors, including environmental context. Here we show that amygdala neurons are sensitive to environments and may regulate putative dopamine (DA) neurons via an inhibitory projection to the substantia nigra (SN). In male macaques, we combined optogenetics with multi-channel recording to demonstrate that rewarding environments induce tonic firing changes in DA neurons as well as phasic responses to rewarding events. These responses may be mediated by disinhibition via a GABAergic projection onto DA neurons, which in turn is suppressed by an inhibitory projection from the amygdala. Thus, the amygdala may provide an additional source of learning to BG circuits, namely contingencies imposed by the environment.
Collapse
Affiliation(s)
- Kazutaka Maeda
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
- Department of Neurophysiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, 187-8502, Japan.
| | - Ken-Ichi Inoue
- Systems Neuroscience Section, Department of Neuroscience, Primate Research Institute, and Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi, 484-8506, Japan
| | - Masahiko Takada
- Systems Neuroscience Section, Department of Neuroscience, Primate Research Institute, and Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi, 484-8506, Japan
| | - Okihide Hikosaka
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
80
|
Rasmussen JA, Chua PYS. Genome-resolving metagenomics reveals wild western capercaillies (Tetrao urogallus) as avian hosts for antibiotic-resistance bacteria and their interactions with the gut-virome community. Microbiol Res 2023; 271:127372. [PMID: 37018898 DOI: 10.1016/j.micres.2023.127372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/04/2023]
Abstract
The gut microbiome is a critical component of avian health, influencing nutrient uptake and immune functions. While the gut microbiomes of agriculturally important birds have been studied, the microbiomes of wild birds still need to be explored. Filling this knowledge gap could have implications for the microbial rewilding of captive birds and managing avian hosts for antibiotic-resistant bacteria (ARB). Using genome-resolved metagenomics, we recovered 112 metagenome-assembled genomes (MAGs) from the faeces of wild and captive western capercaillies (Tetrao urogallus) (n = 8). Comparisons of bacterial diversity between the wild and captive capercaillies suggest that the reduced diversity in the captive individual could be due to differences in diet. This was further substantiated through the analyses of 517,657 clusters of orthologous groups (COGs), which revealed that gene functions related to amino acids and carbohydrate metabolisms were more abundant in wild capercaillies. Metagenomics mining of resistome identified 751 antibiotic resistance genes (ARGs), of which 40.7 % were specific to wild capercaillies suggesting that capercaillies could be potential reservoirs for hosting ARG-associated bacteria. Additionally, the core resistome shared between wild and captive capercaillies indicates that birds can acquire these ARG-associated bacteria naturally from the environment (43.1 % of ARGs). The association of 26 MAGs with 120 ARGs and 378 virus operational taxonomic units (vOTUs) also suggests a possible interplay between these elements, where putative phages could have roles in modulating the gut microbiota of avian hosts. These findings can have important implications for conservation and human health, such as avian gut microbiota rewilding, identifying the emerging threats or opportunities due to phage-microbe interactions, and monitoring the potential spread of ARG-associated bacteria from wild avian populations.
Collapse
|
81
|
Pandey HP, Aryal K, Aryal S, Maraseni TN. Understanding local ecosystem dynamics in three provinces of the lowlands of Nepal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161501. [PMID: 36626996 DOI: 10.1016/j.scitotenv.2023.161501] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/29/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Incidences of failure of sustainable ecosystem management policies, especially in the developing world are partly attributable due to a lack of political will and inadequate understanding of ecosystem dynamics (ED) at the local levels. In this study, we endeavor to comprehend the dynamics of two ecosystems - forest and agriculture - by employing a resource-friendly participatory approach based on stake-taking the experiences of indigenous and forest-dependent local stakeholders in three lowland provinces of Nepal and is guided by the theory of socio-ecological concept. An in-depth survey (n = 136) was conducted using semi-structured questionnaires, key informant interviews (n = 9), and focus group discussions (n = 4) for data generation, and generalized linear models were used to test whether understanding of ED is uniform across the socio-ecological landscape. We identified that various attributes of forests and agricultural ecosystems have altered substantially earlier than 30 years (hereafter, earlier decade) relative to the present (hereafter, later decade). Apart from the natural processes including anthropogenic and climatic factors, technological innovations played a significant role in altering ecosystems in the later decade. Understanding of ED among forest-dependent stakeholders significantly varied with respect to gender, occupation, age group, gender-based water fetching responsibility, and water-fetching duration, however, no significant correlation was observed with their level of education across the landscape. The studied ecosystem attributes significantly correlate with water regime changes, signifying that water-centric ecosystem management is crucial. The attributes that observed significant dynamics in the forest ecosystem include changes in forest cover, structure and species composition, the severity of invasive species, wildfires, water regimes, and abundance and behavioral changes in mammals and avifauna. The alteration of crop cultivation and harvesting season which results in a decrease in yield, increased use of chemicals (fertilizers and pesticides), an increase in fallow land, and the proliferation of hybrid variety cultivation in the later decade are significant disparities in the dynamics of the agriculture ecosystem. To withstand the accelerated ED, stakeholders adopt various strategies, however, these strategies are either obtained from unsustainable sources entail high costs and technology, or are detrimental to the ecosystems. In relation, we present specific examples of ecosystem attributes that have significantly experienced changes in the later decade compared to the earlier decades along with plausible future pathways for policy decisions sustaining and stewardship of dynamic ecosystems across the socio-ecological landscape.
Collapse
Affiliation(s)
- Hari Prasad Pandey
- Ministry of Forests and Environment, Government of Nepal, Kathmandu; University of Southern Queensland, Toowoomba 4350, Queensland, Australia.
| | - Kishor Aryal
- Ministry of Industry, Tourism, Forests and Environment, Sudurpaschim Province, Dhangadhi, Nepal; University of Southern Queensland, Toowoomba 4350, Queensland, Australia
| | - Suman Aryal
- University of Southern Queensland, Toowoomba 4350, Queensland, Australia
| | - Tek Narayan Maraseni
- University of Southern Queensland, Toowoomba 4350, Queensland, Australia; Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
82
|
Martínez-Curci NS, Fierro P, Navedo JG. Does experimental seaweed cultivation affect benthic communities and shorebirds? Applications for extensive aquaculture. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2023; 33:e2799. [PMID: 36504174 DOI: 10.1002/eap.2799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 09/13/2022] [Accepted: 11/03/2022] [Indexed: 06/17/2023]
Abstract
Extensive seaweed aquaculture is a growing industry expected to expand globally due to its relatively low impact and benefits in the form of ecosystem services. However, seaweeds are ecosystem engineers that may alter coastal environments by creating complex habitats on previously bare mudflats. These changes may scale up to top-consumers, particularly migratory shorebirds, species of conservation concern that regulate trophic webs at these habitats. Understanding how habitats are transformed and how this affects different species is critical to direct ecological applications for commercial seaweed management. We experimentally assessed through a Before-After Control-Impact design the potential changes exerted by Gracilaria chilensis farming on bare mudflats on the abundance, biomass, and assemblage structure of benthic macroinvertebrates, and their scaled-up effects on shorebirds' habitat use and prey consumption. As predicted, experimental cultivation of G. chilensis significantly affects different components of biodiversity that scale-up from lower to upper trophic levels. The total biomass of benthic macroinvertebrates increased with seaweed cultivation and remained high for at least 2 months after harvest, boosted by an increase in the median size of polychaetes, particularly Nereids. Tactile-foraging shorebirds tracked these changes at the patch level increasing their abundance and spending more time foraging at seaweed cultivated plots. These results suggest that seaweed farming has the potential to impact shorebird populations by favoring tactile-foraging species which could lead to a competitive disadvantage to species that rely on visual cues. Therefore, the establishment of new seaweed farms in bare mudflats at key sites for shorebirds must be planned warranting habitat heterogeneity (i.e., cultivated and non-cultivated areas) at the landscape level and based on a previous experimental approach to account for local characteristics. Fostering properly designed extensive seaweed farming over other aquaculture industries with greater negative environmental impacts would provide benefits for human well-being and for ecosystem functions.
Collapse
Affiliation(s)
- Natalia S Martínez-Curci
- Coastal Solutions Fellows Program, Cornell Lab of Ornithology, Cornell University, Ithaca, New York, USA
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Vadivia, Chile
- Instituto de Investigaciones Marinas y Costeras, Universidad Nacional de Mar del Plata-CONICET, Buenos Aires, Argentina
| | - Pablo Fierro
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Vadivia, Chile
| | - Juan G Navedo
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Vadivia, Chile
- Estación Experimental Quempillén, Universidad Austral de Chile, Ancud, Chile
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
| |
Collapse
|
83
|
López-Calderón C, Martín-Vélez V, Blas J, Höfle U, Sánchez MI, Flack A, Fiedler W, Wikelski M, Green AJ. White stork movements reveal the ecological connectivity between landfills and different habitats. MOVEMENT ECOLOGY 2023; 11:18. [PMID: 36978169 PMCID: PMC10045253 DOI: 10.1186/s40462-023-00380-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Connections between habitats are key to a full understanding of anthropic impacts on ecosystems. Freshwater habitats are especially biodiverse, yet depend on exchange with terrestrial habitats. White storks (Ciconia ciconia) are widespread opportunists that often forage in landfills and then visit wetlands, among other habitats. It is well known that white storks ingest contaminants at landfills (such as plastics and antibiotic resistant bacteria), which can be then deposited in other habitats through their faeces and regurgitated pellets. METHODS We characterized the role of white storks in habitat connectivity by analyzing GPS data from populations breeding in Germany and wintering from Spain to Morocco. We overlaid GPS tracks on a land-use surface to construct a spatially-explicit network in which nodes were sites, and links were direct flights. We then calculated centrality metrics, identified spatial modules, and quantified overall connections between habitat types. For regional networks in southern Spain and northern Morocco, we built Exponential Random Graph Models (ERGMs) to explain network topologies as a response to node habitat. RESULTS For Spain and Morocco combined, we built a directed spatial network with 114 nodes and 370 valued links. Landfills were the habitat type most connected to others, as measured by direct flights. The relevance of landfills was confirmed in both ERGMs, with significant positive effects of this habitat as a source of flights. In the ERGM for southern Spain, we found significant positive effects of rice fields and salines (solar saltworks) as sinks for flights. By contrast, in the ERGM for northern Morocco, we found a significant positive effect of marshes as a sink for flights. CONCLUSIONS These results illustrate how white storks connect landfills with terrestrial and aquatic habitats, some of which are managed for food production. We identified specific interconnected habitat patches across Spain and Morocco that could be used for further studies on biovectoring of pollutants, pathogens and other propagules.
Collapse
Affiliation(s)
- Cosme López-Calderón
- Department of Wetland Ecology, Estación Biológica de Doñana CSIC, Seville, Spain.
| | - Víctor Martín-Vélez
- Department of Wetland Ecology, Estación Biológica de Doñana CSIC, Seville, Spain
| | - Julio Blas
- Department of Conservation Biology, Estación Biológica de Doñana CSIC, Seville, Spain
| | - Ursula Höfle
- SaBio Health and Biotechnology Research Group, Institute for Game and Wildlife Research (IREC), CSIC-UCLM-JCCM, Ciudad Real, Spain
| | - Marta I Sánchez
- Department of Wetland Ecology, Estación Biológica de Doñana CSIC, Seville, Spain
| | - Andrea Flack
- Collective Migration Group, Max Planck Institute of Animal Behavior, 78315, Radolfzell, Germany
- Department of Migration and Immuno-Ecology, Max Planck Institute of Animal Behaviour, Radolfzell, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78468, Constance, Germany
- Department of Biology, University of Konstanz, Constance, Germany
| | - Wolfgang Fiedler
- Department of Migration and Immuno-Ecology, Max Planck Institute of Animal Behaviour, Radolfzell, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78468, Constance, Germany
- Department of Biology, University of Konstanz, Constance, Germany
| | - Martin Wikelski
- Department of Migration and Immuno-Ecology, Max Planck Institute of Animal Behaviour, Radolfzell, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78468, Constance, Germany
- Department of Biology, University of Konstanz, Constance, Germany
| | - Andy J Green
- Department of Wetland Ecology, Estación Biológica de Doñana CSIC, Seville, Spain
| |
Collapse
|
84
|
Classifying habitat characteristics of wetlands using a self-organizing map. ECOL INFORM 2023. [DOI: 10.1016/j.ecoinf.2023.102048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
85
|
Teitelbaum CS, Bachner NC, Hall RJ. Post‐migratory nonbreeding movements of birds: A review and case study. Ecol Evol 2023. [DOI: 10.1002/ece3.9893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
|
86
|
Navedo JG, Piersma T. Do 50‐year‐old Ramsar criteria still do the best possible job? A plea for broadened scientific underpinning of the global protection of wetlands and migratory waterbirds. Conserv Lett 2023. [DOI: 10.1111/conl.12941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Affiliation(s)
- Juan G. Navedo
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE) Santiago Chile
- Bird Ecology Lab, Instituto de Ciencias Marinas y Limnológicas Universidad Austral de Chile Valdivia Chile
- Área de Zoología Universidad de Extremadura Badajoz Spain
- BirdEyes, Centre for Global Ecological Change at the Faculties of Science & Engineering and Campus Fryslân University of Groningen Leeuwarden The Netherlands
| | - Theunis Piersma
- BirdEyes, Centre for Global Ecological Change at the Faculties of Science & Engineering and Campus Fryslân University of Groningen Leeuwarden The Netherlands
- Rudi Drent Chair in Global Flyway Ecology Conservation Ecology Group, University of Groningen Groningen The Netherlands
- Department of Coastal Systems NIOZ Royal Netherlands Institute for Sea Research Den Burg The Netherlands
- Center for East Asian–Australasian Flyway Studies, School of Ecology and Nature Conservation Beijing Forestry University Beijing China
| |
Collapse
|
87
|
Guilherme JL, Jones VR, Catry I, Beal M, Dias MP, Oppel S, Vickery JA, Hewson CM, Butchart SHM, Rodrigues ASL. Connectivity between countries established by landbirds and raptors migrating along the African-Eurasian flyway. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2023; 37:e14002. [PMID: 36073347 PMCID: PMC10107209 DOI: 10.1111/cobi.14002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
The conservation of long-distance migratory birds requires coordination between the multiple countries connected by the movements of these species. The recent expansion of tracking studies is shedding new light on these movements, but much of this information is fragmented and inaccessible to conservation practitioners and policy makers. We synthesized current knowledge on the connectivity established between countries by landbirds and raptors migrating along the African-Eurasian flyway. We reviewed tracking studies to compile migration records for 1229 individual birds, from which we derived 544 migratory links, each link corresponding to a species' connection between a breeding country in Europe and a nonbreeding country in sub-Saharan Africa. We used these migratory links to analyze trends in knowledge over time and spatial patterns of connectivity per country (across species), per species (across countries), and at the flyway scale (across all countries and all species). The number of tracking studies available increased steadily since 2010 (particularly for landbirds), but the coverage of existing tracking data was highly incomplete. An average of 7.5% of migratory landbird species and 14.6% of raptor species were tracked per country. More data existed from central and western European countries, and it was biased toward larger bodied species. We provide species- and country-level syntheses of the migratory links we identified from the reviewed studies, involving 123 populations of 43 species, migrating between 28 European and 43 African countries. Several countries (e.g., Spain, Poland, Ethiopia, Democratic Republic of Congo) are strategic priorities for future tracking studies to complement existing data, particularly on landbirds. Despite the limitations in existing tracking data, our data and results can inform discussions under 2 key policy instruments at the flyway scale: the African-Eurasian Migratory Landbirds Action Plan and the Memorandum of Understanding on the Conservation of Migratory Birds of Prey in Africa and Eurasia.
Collapse
Affiliation(s)
- João L. Guilherme
- CEFE, Univ Montpellier, CNRS, EPHE, IRDMontpellierFrance
- BirdLife InternationalCambridgeUK
| | | | - Inês Catry
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Laboratório AssociadoUniversidade do PortoVairãoPortugal
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Instituto Superior de Agronomia, Laboratório AssociadoUniversidade de LisboaLisbonPortugal
- BIOPOLIS Program in GenomicsBiodiversity and Land Planning, CIBIOVairãoPortugal
| | - Martin Beal
- BirdLife InternationalCambridgeUK
- MARE – Marine and Environmental Sciences CentreISPA – Instituto UniversitárioLisbonPortugal
| | - Maria P. Dias
- BirdLife InternationalCambridgeUK
- cE3c ‐ Center for Ecology, Evolution and Environmental Changes & CHANGE ‐ Global Change and Sustainability Institute, Department of Animal BiologyFaculty of Sciences of the University of Lisbon, 1749‐016 Lisboa, Campo GrandeLisbonPortugal
| | - Steffen Oppel
- RSPB Centre for Conservation ScienceRoyal Society for the Protection of Birds, The LodgeSandyUK
| | - Juliet A. Vickery
- RSPB Centre for Conservation ScienceRoyal Society for the Protection of Birds, The LodgeSandyUK
- British Trust for Ornithology, The NunneryThetfordUK
- Department of ZoologyUniversity of CambridgeCambridgeUK
- School of Biological SciencesUniversity of East AngliaNorwichUK
| | | | - Stuart H. M. Butchart
- BirdLife InternationalCambridgeUK
- Department of ZoologyUniversity of CambridgeCambridgeUK
| | | |
Collapse
|
88
|
Eacker DR, Jakes AF, Jones PF. Spatiotemporal risk factors predict landscape‐scale survivorship for a northern ungulate. Ecosphere 2023. [DOI: 10.1002/ecs2.4341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Affiliation(s)
| | - Andrew F. Jakes
- Smithsonian's National Zoo and Conservation Biology Institute Missoula Montana USA
- National Wildlife Federation Missoula Montana USA
| | - Paul F. Jones
- Alberta Conservation Association Lethbridge Alberta Canada
| |
Collapse
|
89
|
Kiffney PM, Lisi PJ, Liermann M, Naman SM, Anderson JH, Bond MH, Pess GR, Koehler ME, Buhle ER, Buehrens TW, Klett RS, Cram JM, Quinn TP. Colonization of a temperate river by mobile fish following habitat reconnection. Ecosphere 2023. [DOI: 10.1002/ecs2.4336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Affiliation(s)
- P. M. Kiffney
- Fish Ecology, Northwest Fisheries Science Center National Marine Fisheries Service, NOAA Seattle Washington USA
- School of Aquatic and Fishery Sciences University of Washington Seattle Washington USA
| | - P. J. Lisi
- Washington Department of Fish and Wildlife Olympia Washington USA
| | - M. Liermann
- Fish Ecology, Northwest Fisheries Science Center National Marine Fisheries Service, NOAA Seattle Washington USA
| | - S. M. Naman
- Department of Zoology University of British Columbia Vancouver British Columbia Canada
- Fisheries and Oceans Canada Freshwaer Ecosystems Section Cultus Lake British Columbia Canada
| | - J. H. Anderson
- Washington Department of Fish and Wildlife Olympia Washington USA
| | - M. H. Bond
- Fish Ecology, Northwest Fisheries Science Center National Marine Fisheries Service, NOAA Seattle Washington USA
| | - G. R. Pess
- Fish Ecology, Northwest Fisheries Science Center National Marine Fisheries Service, NOAA Seattle Washington USA
- School of Aquatic and Fishery Sciences University of Washington Seattle Washington USA
| | | | - E. R. Buhle
- Affiliate, Northwest Fisheries Science Center National Marine Fisheries Service, NOAA Seattle Washington USA
- Mount Hood Environmental Sandy Oregon USA
| | - T. W. Buehrens
- Washington Department of Fish and Wildlife Ridgefield Washington USA
| | - R. S. Klett
- Colville Indian Tribes Nespelem Washington USA
| | - J. M. Cram
- Washington Department of Fish and Wildlife Wenatchee Washington USA
| | - T. P. Quinn
- School of Aquatic and Fishery Sciences University of Washington Seattle Washington USA
| |
Collapse
|
90
|
Liu G, Xu N, Feng J. Metagenomic analysis of gut microbiota and antibiotic-resistant genes in Anser erythropus wintering at Shengjin and Caizi Lakes in China. Front Microbiol 2023; 13:1081468. [PMID: 36699586 PMCID: PMC9868308 DOI: 10.3389/fmicb.2022.1081468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/13/2022] [Indexed: 01/11/2023] Open
Abstract
Migratory birds are the primary source and reservoir of antibiotic-resistant genes (ARGs) related to their gut microbes. In this study, we performed metagenomics analysis to study the gut microbial communities and ARGs of Anser erythropus wintering at Shengjin (SJ) and Caizi (CZ) Lakes. The results showed that bacteria, fungi, viruses, and archaea were the dominant gut microbes. Principal component analysis (PCA) indicated that the microbiota compositions significantly differed between the two populations. Diet may be the most crucial driver of the gut microbial communities for A. erythropus. This species fed exclusively on Poaceae spp. at Shengjin Lake and primarily on Carex spp. at Caizi Lake. Tetracycline, macrolide, fluoroquinolone, phenicol, and peptide antibiotics were the dominant resistant types. ARGs had a significantly higher abundance of operational taxonomic units (OTUs) in the Shengjin Lake samples than in Caizi Lake samples. PCA indicated that most Shengjin Lake samples significantly differed in gut microbiota composition from those obtained at Caizi Lake. This difference in gut microbiota composition between the two lakes' samples is attributed to more extensive aquaculture operations and poultry farms surrounding Shengjin Lake than Caizi Lake. ARGs-microbes associations indicated that 24 bacterial species, commonly used as indicators of antibiotic resistance in surveillance efforts, were abundant in wintering A. erythropus. The results revealed the composition and structural characteristics of the gut microbiota and ARGs of A. erythropus, pointing to their high sensitivities to diet habits at both lakes. This study also provides primary data for risk prevention and control of potential harmful pathogens that could endanger public health and therefore are of major significance to epidemiological and public health.
Collapse
|
91
|
Moisan L, Gravel D, Legagneux P, Gauthier G, Léandri-Breton DJ, Somveille M, Therrien JF, Lamarre JF, Bêty J. Scaling migrations to communities: An empirical case of migration network in the Arctic. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2022.1077260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Seasonal migrants transport energy, nutrients, contaminants, parasites and diseases, while also connecting distant food webs between communities and ecosystems, which contributes to structuring meta-communities and meta-ecosystems. However, we currently lack a framework to characterize the structure of the spatial connections maintained by all migratory species reproducing or wintering in a given community. Here, we use a network approach to represent and characterize migratory pathways at the community level and provide an empirical description of this pattern from a High-Arctic terrestrial community. We define community migration networks as multipartite networks representing different biogeographic regions connected with a focal community through the seasonal movements of its migratory species. We focus on the Bylot Island High-Arctic terrestrial community, a summer breeding ground for several migratory species. We define the non-breeding range of each species using tracking devices, or range maps refined by flyways and habitat types. We show that the migratory species breeding on Bylot Island are found across hundreds of ecoregions on several continents during the non-breeding period and present a low spatial overlap. The migratory species are divided into groups associated with different sets of ecoregions. The non-random structure observed in our empirical community migration network suggests evolutionary and geographic constraints as well as ecological factors act to shape migrations at the community level. Overall, our study provides a simple and generalizable framework as a starting point to better integrate migrations at the community level. Our framework is a far-reaching tool that could be adapted to address the seasonal transport of energy, contaminants, parasites and diseases in ecosystems, as well as trophic interactions in communities with migratory species.
Collapse
|
92
|
Schuhmann F, Ryvkin L, McLaren JD, Gerhards L, Solov'yov IA. Across atoms to crossing continents: Application of similarity measures to biological location data. PLoS One 2023; 18:e0284736. [PMID: 37186599 PMCID: PMC10184918 DOI: 10.1371/journal.pone.0284736] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
Biological processes involve movements across all measurable scales. Similarity measures can be applied to compare and analyze these movements but differ in how differences in movement are aggregated across space and time. The present study reviews frequently-used similarity measures, such as the Hausdorff distance, Fréchet distance, Dynamic Time Warping, and Longest Common Subsequence, jointly with several measures less used in biological applications (Wasserstein distance, weak Fréchet distance, and Kullback-Leibler divergence), and provides computational tools for each of them that may be used in computational biology. We illustrate the use of the selected similarity measures in diagnosing differences within two extremely contrasting sets of biological data, which, remarkably, may both be relevant for magnetic field perception by migratory birds. Specifically, we assess and discuss cryptochrome protein conformational dynamics and extreme migratory trajectories of songbirds between Alaska and Africa. We highlight how similarity measures contrast regarding computational complexity and discuss those which can be useful in noise elimination or, conversely, are sensitive to spatiotemporal scales.
Collapse
Affiliation(s)
- Fabian Schuhmann
- Department of Physics, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Leonie Ryvkin
- Department of Mathematics & Computer Science, Technische Universiteit Eindhoven, Eindhoven, Netherlands
- Department of Computer Science, Ruhr-Universität Bochum, Bochum, Germany
| | - James D McLaren
- Institute of Chemistry and Marine Biology, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Luca Gerhards
- Department of Physics, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Ilia A Solov'yov
- Department of Physics, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
- Research Centre for Neurosensory Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
- Center for Nanoscale Dynamics (CENAD), Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| |
Collapse
|
93
|
Peller T, Guichard F, Altermatt F. The significance of partial migration for food web and ecosystem dynamics. Ecol Lett 2023; 26:3-22. [PMID: 36443028 DOI: 10.1111/ele.14143] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/09/2022] [Accepted: 10/30/2022] [Indexed: 11/30/2022]
Abstract
Migration is ubiquitous and can strongly shape food webs and ecosystems. Less familiar, however, is that the majority of life cycle, seasonal and diel migrations in nature are partial migrations: only a fraction of the population migrates while the other individuals remain in their resident ecosystem. Here, we demonstrate different impacts of partial migration rendering it fundamental to our understanding of the significance of migration for food web and ecosystem dynamics. First, partial migration affects the spatiotemporal distribution of individuals and the food web and ecosystem-level processes they drive differently than expected under full migration. Second, whether an individual migrates or not is regularly correlated with morphological, physiological, and/or behavioural traits that shape its food-web and ecosystem-level impacts. Third, food web and ecosystem dynamics can drive the fraction of the population migrating, enabling the potential for feedbacks between the causes and consequences of migration within and across ecosystems. These impacts, individually and in combination, can yield unintuitive effects of migration and drive the dynamics, diversity and functions of ecosystems. By presenting the first full integration of partial migration and trophic (meta-)community and (meta-)ecosystem ecology, we provide a roadmap for studying how migration affects and is affected by ecosystem dynamics in a changing world.
Collapse
Affiliation(s)
- Tianna Peller
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland.,Eawag: Department of Aquatic Ecology, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | | | - Florian Altermatt
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland.,Eawag: Department of Aquatic Ecology, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| |
Collapse
|
94
|
Samraoui B, Nedjah R, Boucheker A, Bouzid A, El‐Serehy HA, Samraoui F. Blowin' in the wind: Dispersal of Glossy Ibis Plegadis falcinellus in the West Mediterranean basin. Ecol Evol 2023; 13:e9756. [PMID: 36699577 PMCID: PMC9852941 DOI: 10.1002/ece3.9756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 11/23/2022] [Accepted: 01/06/2023] [Indexed: 01/22/2023] Open
Abstract
The movement of organisms is a central process in ecology and evolution, and understanding the selective forces shaping the spatial structure of populations is essential to conservation. Known as a trans-Saharan migrant capable of long-distance flights, the Glossy Ibis Plegadis falcinellus' dispersal remains poorly known. We started a ringing scheme in 2008, the first of its kind in North Africa, and ringed 1121 fledglings over 10 years, of which 265 (23.6%) were resighted. Circular statistics and finite mixture models of natal dispersal indicated: (1) a strong West/Northwest-East/Southeast flight orientation; (2) Glossy Ibis colonies from North Africa and Southern Europe (particularly on the Iberian Peninsula) are closely linked through partial exchanges of juvenile and immature birds; (3) unlike birds from Eastern Europe, North African Glossy Ibis disperse to but do not seem to undergo regular round-trip migration to the Sahel; (4) young adults (>2-years-old) have a higher probability of dispersing further than individuals in their first calendar year (<1-year-old); and (5) dispersal distance is not influenced by sex or morphometric traits. Together, these results enhance our knowledge of the dispersal and metapopulation dynamics of Glossy Ibis, revealing large-scale connectivity between the Iberian Peninsula and Algeria, likely driven by the spatial heterogeneity of the landscape in these two regions and the prevailing winds in the Western Mediterranean.
Collapse
Affiliation(s)
- Boudjéma Samraoui
- Laboratoire de Conservation des Zones HumidesUniversité 8 Mai 1945 GuelmaGuelmaAlgeria
- Department of BiologyUniversity Badji MokhtarAnnabaAlgeria
| | - Riad Nedjah
- Laboratoire de Conservation des Zones HumidesUniversité 8 Mai 1945 GuelmaGuelmaAlgeria
- Department of EcologyUniversity 8 mai 1945 GuelmaGuelmaAlgeria
| | - Abdennour Boucheker
- Laboratoire de Conservation des Zones HumidesUniversité 8 Mai 1945 GuelmaGuelmaAlgeria
- Department of BiologyUniversity Badji MokhtarAnnabaAlgeria
| | - Abdelhakim Bouzid
- Département de Sciences AgronomiquesUniversity Kasdi MerbahOuarglaAlgeria
| | - Hamed A. El‐Serehy
- Department of Zoology, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
| | - Farrah Samraoui
- Laboratoire de Conservation des Zones HumidesUniversité 8 Mai 1945 GuelmaGuelmaAlgeria
- Department of EcologyUniversity 8 mai 1945 GuelmaGuelmaAlgeria
| |
Collapse
|
95
|
Bonar M, Anderson SJ, Anderson CR, Wittemyer G, Northrup JM, Shafer ABA. Genomic correlates for migratory direction in a free-ranging cervid. Proc Biol Sci 2022; 289:20221969. [PMID: 36475444 PMCID: PMC9727677 DOI: 10.1098/rspb.2022.1969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Animal migrations are some of the most ubiquitous and one of the most threatened ecological processes globally. A wide range of migratory behaviours occur in nature, and this behaviour is not uniform among and within species, where even individuals in the same population can exhibit differences. While the environment largely drives migratory behaviour, it is necessary to understand the genetic mechanisms influencing migration to elucidate the potential of migratory species to cope with novel conditions and adapt to environmental change. In this study, we identified genes associated with a migratory trait by undertaking pooled genome-wide scans on a natural population of migrating mule deer. We identified genomic regions associated with variation in migratory direction, including FITM1, a gene linked to the formation of lipids, and DPPA3, a gene linked to epigenetic modifications of the maternal line. Such a genetic basis for a migratory trait contributes to the adaptive potential of the species and might affect the flexibility of individuals to change their behaviour in the face of changes in their environment.
Collapse
Affiliation(s)
- Maegwin Bonar
- Environmental & Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada K9L 0G2
| | - Spencer J. Anderson
- Environmental & Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada K9L 0G2
| | - Charles R. Anderson
- Mammals Research Section, Colorado Parks and Wildlife, Fort Collins, CO 80523, USA
| | - George Wittemyer
- Department of Fish, Wildlife and Conservation Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Joseph M. Northrup
- Environmental & Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada K9L 0G2,Wildlife Research and Monitoring Section, Ontario Ministry of Natural Resources & Forestry, Peterborough, Ontario, Canada K9J 3C7
| | - Aaron B. A. Shafer
- Environmental & Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada K9L 0G2
| |
Collapse
|
96
|
Zhu J, Chen X, Liu J, Jiang Y, Chen F, Lu J, Chen H, Zhai B, Reynolds DR, Chapman JW, Hu G. A cold high-pressure system over North China hinders the southward migration of Mythimna separata in autumn. MOVEMENT ECOLOGY 2022; 10:54. [PMID: 36457049 PMCID: PMC9716675 DOI: 10.1186/s40462-022-00360-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND In warm regions or seasons of the year, the planetary boundary layer is occupied by a huge variety and quantity of insects, but the southward migration of insects (in East Asia) in autumn is still poorly understood. METHODS We collated daily catches of the oriental armyworm (Mythimna separata) moth from 20 searchlight traps from 2014 to 2017 in China. In order to explore the autumn migratory connectivity of M. separata in East China, we analyzed the autumn climate and simulated the autumn migration process of moths. RESULTS The results confirmed that northward moth migration in spring and summer under the East Asian monsoon system can bring rapid population growth. However, slow southerly wind (blowing towards the north) prevailed over the major summer breeding area in North China (33°-40° N) due to a cold high-pressure system located there, and this severely disrupts the autumn 'return' migration of this pest. Less than 8% of moths from the summer breeding area successfully migrated back to their winter-breeding region, resulting in a sharp decline of the population abundance in autumn. As northerly winds (blowing towards the south) predominate at the eastern periphery of a high-pressure system, the westward movement of the high-pressure system leads to more northerlies over North China, increasing the numbers of moths migrating southward successfully. Therefore, an outbreak year of M. separata larvae was associated with a more westward position of the high-pressure system during the previous autumn. CONCLUSION These results indicate that the southward migration in autumn is crucial for sustaining pest populations of M. separata, and the position of the cold high-pressure system in September is a key environmental driver of the population size in the next year. This study indicates that the autumn migration of insects in East China is more complex than previously recognized, and that the meteorological conditions in autumn are an important driver of migratory insects' seasonal and interannual population dynamics.
Collapse
Affiliation(s)
- Jian Zhu
- Department of Entomology, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
- State Key Laboratory of Biological Interactions and Crop Health, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiao Chen
- College of Life Science, International Cooperative Research Centre for Cross-Border Pest Management in Central Asia, Xinjiang Normal University, Urumqi, 830054, China
| | - Jie Liu
- China National Agro-Tech Extension and Service Center, Beijing, 100125, China
| | - Yuying Jiang
- China National Agro-Tech Extension and Service Center, Beijing, 100125, China
| | - Fajun Chen
- Department of Entomology, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
| | - Jiahao Lu
- Department of Entomology, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
- State Key Laboratory of Biological Interactions and Crop Health, Nanjing Agricultural University, Nanjing, 210095, China
- Songjiang District Agro-Technology Extension Center, Shanghai, 201613, China
| | - Hui Chen
- Department of Entomology, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
- State Key Laboratory of Biological Interactions and Crop Health, Nanjing Agricultural University, Nanjing, 210095, China
| | - Baoping Zhai
- Department of Entomology, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
| | - Don R Reynolds
- Natural Resources Institute, University of Greenwich, Chatham, ME4 4TB, UK
- Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Jason W Chapman
- Department of Entomology, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
- Centre of Ecology and Conservation, and Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
| | - Gao Hu
- Department of Entomology, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China.
- State Key Laboratory of Biological Interactions and Crop Health, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
97
|
Bird Assemblages in a Peri-Urban Landscape in Eastern India. BIRDS 2022. [DOI: 10.3390/birds3040026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Urbanization plays an important role in biodiversity loss across the globe due to natural habitat loss in the form of landscape conversion and habitat fragmentation on which species depend. To study the bird diversity in the peri-urban landscape, we surveyed four habitats—residential areas, cropland, water bodies, and sal forest; three seasons—monsoon, winter, and summer in Baripada, Odisha, India. We surveyed from February 2018 to January 2019 using point counts set along line transects; 8 transects were established with a replication of 18 each. During the survey, 6963 individuals of 117 bird species belonged to 48 families and 98 genera in the study area, whereas cropland showed rich avian diversity. Based on the non-parametric multidimensional scale (NMDS) and one-way ANOVA, bird richness and abundance differed significantly among the habitats. Cropland showed higher species richness than other habitats; however, water bodies showed more abundance than others. The similarity of bird assemblage was greater between residential areas and cropland than forest and water bodies based on similarity indices. Among seasons, we observed the highest bird species richness in winter and the highest similarity of species richness in monsoon and summer. In conclusion, our study reported that agricultural and degraded landscapes like cropland play important roles in conserving bird diversity in peri-urban landscapes. Our findings highlighted and identified the problems that affect the local biodiversity (e.g., birds) in the peri-urban landscape. It can assist the local government in urban planning and habitat management without affecting the local biodiversity, including birds.
Collapse
|
98
|
Fecchio A, Dias RI, De La Torre GM, Bell JA, Sagario MC, Gorosito CA, dos Anjos CC, Lugarini C, Piacentini VQ, Pinho JB, Kirchgatter K, Ricklefs RE, Schunck F, Cueto VR. Beta diversity, prevalence, and specificity of avian haemosporidian parasites throughout the annual cycle of Chilean Elaenia ( Elaenia chilensis), a Neotropical austral migrant. Parasitology 2022; 149:1760-1768. [PMID: 36165282 PMCID: PMC11010540 DOI: 10.1017/s0031182022001317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/25/2022] [Accepted: 09/10/2022] [Indexed: 12/14/2022]
Abstract
Migratory birds are implicated in dispersing haemosporidian parasites over great geographic distances. However, their role in sharing these vector-transmitted blood parasites with resident avian host species along their migration flyway is not well understood. We studied avian haemosporidian parasites in 10 localities where Chilean Elaenia, a long-distance Neotropical austral migrant species, spends part of its annual cycle to determine local parasite transmission among resident sympatric host species in the elaenia's distributional range across South America. We sampled 371 Chilean Elaenias and 1,818 birds representing 243 additional sympatric species from Brazilian wintering grounds to Argentinian breeding grounds. The 23 haemosporidian lineages found in Chilean Elaenias exhibited considerable variation in distribution, specialization, and turnover across the 10 avian communities in South America. Parasite lineage dissimilarity increased with geographic distance, and infection probability by Parahaemoproteus decreased in localities harbouring a more diverse haemosporidian fauna. Furthermore, blood smears from migrating Chilean Elaenias and local resident avian host species did not contain infective stages of Leucocytozoon, suggesting that transmission did not take place in the Brazilian stopover site. Our analyses confirm that this Neotropical austral migrant connects avian host communities and transports haemosporidian parasites along its distributional range in South America. However, the lack of transmissive stages at stopover site and the infrequent parasite lineage sharing between migratory host populations and residents at breeding and wintering grounds suggest that Chilean Elaenias do not play a significant role in dispersing haemosporidian parasites, nor do they influence local transmission across South America.
Collapse
Affiliation(s)
- Alan Fecchio
- Programa de Pós-graduação em Ecologia e Conservação da Biodiversidade, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil
- Laboratorio de Ecología de Aves, Centro de Investigación Esquel de Montaña y Estepa Patagónica (CIEMEP), CONICET – Universidad Nacional de la Patagonia San Juan Bosco, Esquel, Chubut, Argentina
| | - Raphael I. Dias
- Faculdade de Ciências da Educação e Saúde, Centro Universitário de Brasília, Brasília, DF, Brazil
| | - Gabriel M. De La Torre
- Programa de Pós-graduação em Ecologia e Conservação, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Jeffrey A. Bell
- Department of Biology, University of North Dakota, Grand Forks, ND, USA
| | - M. Cecilia Sagario
- Grupo de Ecología Terrestre de Neuquén, Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA–CONICET and UNComahue), and Centro de Ecología Aplicada del Neuquén (CEAN), Junín de los Andes, Neuquén, Argentina
| | - Cristian A. Gorosito
- Laboratorio de Ecología de Aves, Centro de Investigación Esquel de Montaña y Estepa Patagónica (CIEMEP), CONICET – Universidad Nacional de la Patagonia San Juan Bosco, Esquel, Chubut, Argentina
| | - Carolina C. dos Anjos
- Programa de Pós-graduação em Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Camile Lugarini
- Centro Nacional de Pesquisa e Conservação de Aves Silvestres, Instituto Chico Mendes de Conservação da Biodiversidade, Florianópolis, SC, Brazil
| | - Vítor Q. Piacentini
- Departamento de Biologia e Zoologia & Programa de Pós-graduação em Zoologia, Instituto de Biociências, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil
| | - João B. Pinho
- Programa de Pós-graduação em Ecologia e Conservação da Biodiversidade, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil
| | - Karin Kirchgatter
- Programa de Pós-graduação em Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
- Laboratório de Bioquímica e Biologia Molecular, Superintendência de Controle de Endemias, São Paulo, SP, Brazil
| | - Robert E. Ricklefs
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO, USA
| | - Fabio Schunck
- Brazilian Committee for Ornithological Records – CBRO, Brazil
| | - Victor R. Cueto
- Laboratorio de Ecología de Aves, Centro de Investigación Esquel de Montaña y Estepa Patagónica (CIEMEP), CONICET – Universidad Nacional de la Patagonia San Juan Bosco, Esquel, Chubut, Argentina
| |
Collapse
|
99
|
Oestreich WK, Aiu KM, Crowder LB, McKenna MF, Berdahl AM, Abrahms B. The influence of social cues on timing of animal migrations. Nat Ecol Evol 2022; 6:1617-1625. [DOI: 10.1038/s41559-022-01866-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 08/01/2022] [Indexed: 11/09/2022]
|
100
|
Somveille M, Ellis‐Soto D. Linking animal migration and ecosystem processes: Data-driven simulation of propagule dispersal by migratory herbivores. Ecol Evol 2022; 12:e9383. [PMID: 36267687 PMCID: PMC9577414 DOI: 10.1002/ece3.9383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/27/2022] [Accepted: 08/27/2022] [Indexed: 11/24/2022] Open
Abstract
Animal migration is a key process underlying active subsidies and species dispersal over long distances, which affects the connectivity and functioning of ecosystems. Despite much research describing patterns of where animals migrate, we still lack a framework for quantifying and predicting how animal migration affects ecosystem processes. In this study, we aim to integrate animal movement behavior and ecosystem functioning by developing a predictive modeling framework that can inform ecosystem management and conservation. We propose a framework to model individual‐level migration trajectories between populations' seasonal ranges as well as the resulting dispersal and fate of propagules carried by the migratory animals, which can be calibrated using empirical data at every step of the modeling process. As a case study, we applied our framework to model the spread of guava seeds, Psidium guajava, by a population of migratory Galapagos tortoises, Chelonoidis porteri, across Santa Cruz Island. Galapagos tortoises are large herbivores that transport seeds and nutrients across the island, while Guava is one of the most problematic invasive species in the Galapagos archipelago. Our model can predict the pattern of spread of guava seeds alongside tortoises' downslope migration range, and it identified areas most likely to see establishment success. Our results show that Galapagos tortoises' seed dispersal may particularly contribute to guava range expansion on Santa Cruz Island, due to both long gut retention time and tortoise's long‐distance migration across vegetation zones. In particular, we predict that tortoises are dispersing a significant amount of guava seeds into the Galapagos National Park, which has important consequences for the native flora. The flexibility and modularity of our framework allow for the integration of multiple data sources. It also allows for a wide range of applications to investigate how migratory animals affect ecosystem processes, including propagule dispersal but also other processes such as nutrient transport across ecosystems. Our framework is also a valuable tool for predicting how animal‐mediated propagule dispersal can be affected by environmental change. These different applications can have important conservation implications for the management of ecosystems that include migratory animals.
Collapse
Affiliation(s)
- Marius Somveille
- Department of BiologyColorado State UniversityFort CollinsColoradoUSA,Department of Genetics, Evolution and Environment, Centre for Biodiversity and Environment ResearchUniversity College LondonLondonUK
| | - Diego Ellis‐Soto
- Department of Ecology and Evolutionary BiologyYale UniversityNew HavenConnecticutUSA,Center for Biodiversity and Global ChangeYale UniversityNew HavenConnecticutUSA
| |
Collapse
|