51
|
Quaas AM. Triggering change in stimulation protocols: a matter of oocyte maturation and beyond. J Assist Reprod Genet 2021; 38:1285-1287. [PMID: 33970369 DOI: 10.1007/s10815-021-02223-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 11/29/2022] Open
Abstract
Since the birth of Louise Brown, in vitro fertilization (IVF) stimulation protocols have evolved significantly. One particular area of focus has been the process of final oocyte maturation, during which the oocyte gains competence to support fertilization and early embryonic development up to implantation. The field of human assisted reproductive technology (ART) is witnessing increased utilization of GnRH agonists (GnRHa) as trigger agents, in addition to or instead of the traditionally used human chorionic gonadotropin (hCG). Future translational studies will reveal whether oocyte developmental competence, as reflected in live birth outcomes, are not only non-inferior, but also superior with the use of GnRHa as a trigger for both nuclear and cytoplasmic oocyte maturation.
Collapse
Affiliation(s)
- Alexander M Quaas
- Division of Reproductive Endocrinology and Infertility, University of California, San Diego, San Diego, CA, USA. .,Reproductive Partners San Diego, 9850 Genesee Avenue, Suite # 800, La Jolla, CA, 92037, USA.
| |
Collapse
|
52
|
Djouahra N, Moudilou EN, Exbrayat JM, Hammouche S. Immunodistribution of RFamide-related peptide-3 (RFRP-3) during the seminiferous epithelium cycle in a desert rodent Psammomys obesus. Tissue Cell 2021; 69:101484. [PMID: 33450652 DOI: 10.1016/j.tice.2020.101484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 12/15/2020] [Accepted: 12/21/2020] [Indexed: 12/21/2022]
Abstract
The Sand rat, Psammomys obesus, living northwest of the Algerian Sahara, presents a seasonal reproductive cycle. The purposes of this study were firstly to determine the stages of seminiferous epithelium cycle (SEC) by histological and morphometric analysis and secondly to investigate, for the first time, the testicular expression of RFamide-related peptide-3 (RFRP-3) during the SEC by immunohistochemistry. The results showed that the SEC consists of 14 stages according to the tubular morphology method. RFRP-3 was observed in both testicular compartments: the tubular and the interstitial. Leydig cells exhibited the highest RFRP-3 signal (30.73 % ± 4.80) compared to Sertoli cells (13-15 %). In the germline, RFRP-3 was detected during the late prophase I of meiosis in late pachytene, diplotene and metaphasic spermatocytes I. In addition, only round and triangular spermatids were positive during spermiogenesis. Referring to the SEC, it was found that the increased staining of RFRP-3 in spermatocytes I coincided with late pachytene of XI and XII stages (16.90 % ± 0.69 and 16.61 % ± 0.28, respectively). In spermatids, the labeling decreased in the triangular ones at stage IX (8.04 % ± 0.42). These results suggest the involvement of RFRP-3 in the control of SEC in P. obesus.
Collapse
Affiliation(s)
- Nassima Djouahra
- USTHB, University of Sciences and Technology of Houari Boumediene, Biological Sciences Faculty, Arid Area Research Laboratory, Algiers, Algeria.
| | - Elara N Moudilou
- Confluence Sciences and Humanities Research Unit, Biosciences Technologies Ethics Laboratory, Lyon Catholic University, 10 Place des Archives, Lyon, 69002, France
| | - Jean-Marie Exbrayat
- Confluence Sciences and Humanities Research Unit, Biosciences Technologies Ethics Laboratory, Lyon Catholic University, 10 Place des Archives, Lyon, 69002, France
| | - Sadjia Hammouche
- USTHB, University of Sciences and Technology of Houari Boumediene, Biological Sciences Faculty, Arid Area Research Laboratory, Algiers, Algeria
| |
Collapse
|
53
|
Ma WQ, Zhao DH, Cheng HZ, Wang SB, Yang J, Cui HX, Lu MY, Wu HZ, Xu L, Liu GJ. Effects of dietary Enteromorpha powder on reproduction-related hormones and genes during the late laying period of Zi geese. Anim Biosci 2021; 34:457-462. [PMID: 32898960 PMCID: PMC7961191 DOI: 10.5713/ajas.20.0368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/13/2020] [Accepted: 08/16/2020] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE The aim of this study was to investigate the effects of Enteromorpha powder supplementation on reproduction-related hormones and genes in the late laying period of Zi geese. METHODS A total of 312 (1-year-old) Zi geese with similar laying rate were randomly divided into 2 groups with 6 replicates each, each with 21 female geese and 5 male geese. The control group was fed with a basal diet and the test group was fed with a diet containing 3% Enteromorpha powder. The trial period lasted for 7 weeks. RESULTS Our results showed that the laying rate was improved in the test group at each week of trial (p<0.01), and the levels of estradiol in serum and prolactin in ovary were increased compared with the control group (p<0.05). CONCLUSION Based on above results, Enteromorpha powder supplementation at 3% could promote reproductive performance during the late laying period of Zi geese.
Collapse
Affiliation(s)
- Wei Qing Ma
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030,
China
| | - Dan Hua Zhao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030,
China
| | - Huang Zuo Cheng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030,
China
| | - Si Bo Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030,
China
| | - Ji Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030,
China
| | - Hong Xia Cui
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030,
China
| | - Ming Yuan Lu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030,
China
| | - Hong Zhi Wu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030,
China
| | - Li Xu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030,
China
| | - Guo Jun Liu
- Institute of Animal Husbandry of Heilongjiang Academy of Agricultural Sciences, Harbin 150086,
China
| |
Collapse
|
54
|
Liu YF, Fu SQ, Yan YC, Gong BB, Xie WJ, Yang XR, Sun T, Ma M. Progress in Clinical Research on Gonadotropin-Releasing Hormone Receptor Antagonists for the Treatment of Prostate Cancer. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:639-649. [PMID: 33623372 PMCID: PMC7896730 DOI: 10.2147/dddt.s291369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/20/2021] [Indexed: 01/04/2023]
Abstract
Gonadotropin-releasing hormone (GnRH) receptor agonists are still the most commonly used androgen deprivation treatment (ADT) drugs for prostate cancer in clinical practice. Currently, the GnRH receptor antagonists used for endocrine therapy for prostate cancer primarily include degarelix and relugolix (TAK-385). The former is administered by subcutaneous injection, while the latter is an oral drug. Compared to GnRH agonists, GnRH antagonists reduce serum testosterone levels more rapidly without an initial testosterone surge or subsequent microsurges. This review focuses on the mechanism of action of GnRH antagonists and agonists, the developmental history of GnRH antagonists, and emerging data from clinical studies of the two antagonists used as endocrine therapy for prostate cancer.
Collapse
Affiliation(s)
- Yi-Fu Liu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, 330000, Jiangxi Province, People's Republic of China
| | - Sheng-Qiang Fu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, 330000, Jiangxi Province, People's Republic of China
| | - Yu-Chang Yan
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, 330000, Jiangxi Province, People's Republic of China
| | - Bin-Bin Gong
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, 330000, Jiangxi Province, People's Republic of China
| | - Wen-Jie Xie
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, 330000, Jiangxi Province, People's Republic of China
| | - Xiao-Rong Yang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, 330000, Jiangxi Province, People's Republic of China
| | - Ting Sun
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, 330000, Jiangxi Province, People's Republic of China
| | - Ming Ma
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, 330000, Jiangxi Province, People's Republic of China
| |
Collapse
|
55
|
Rosa-Casillas M, de Jesús PM, Vicente Rodríguez LC, Habib MR, Croll RP, Miller MW. Identification and localization of a gonadotropin-releasing hormone-related neuropeptide in Biomphalaria, an intermediate host for schistosomiasis. J Comp Neurol 2021; 529:2347-2361. [PMID: 33368267 DOI: 10.1002/cne.25099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 11/22/2020] [Accepted: 12/11/2020] [Indexed: 12/14/2022]
Abstract
Freshwater snails of the genus Biomphalaria serve as obligatory hosts for the digenetic trematode Schistosoma mansoni, the causative agent for the most widespread form of intestinal schistosomiasis. Within Biomphalaria, S. mansoni larvae multiply and transform into the cercariae form that can infect humans. Trematode development and proliferation is thought to be facilitated by modifications of host behavior and physiological processes, including a reduction of reproduction known as "parasitic castration." As neuropeptides participate in the control of reproduction across phylogeny, a neural transcriptomics approach was undertaken to identify peptides that could regulate Biomphalaria reproductive physiology. The present study identified a transcript in Biomphalaria alexandrina that encodes a peptide belonging to the gonadotropin-releasing hormone (GnRH) superfamily. The precursor and the predicted mature peptide, pQIHFTPDWGNN-NH2 (designated Biom-GnRH), share features with peptides identified in other molluscan species, including panpulmonates, opisthobranchs, and cephalopods. An antibody generated against Biom-GnRH labeled neurons in the cerebral, pedal, and visceral ganglia of Biomphalaria glabrata. GnRH-like immunoreactive fiber systems projected to all central ganglia. In the periphery, immunoreactive material was detected in the ovotestis, oviduct, albumen gland, and nidamental gland. As these structures serve crucial roles in the production, transport, nourishment, and encapsulation of eggs, disruption of the GnRH system of Biomphalaria could contribute to reduced reproductive activity in infected snails.
Collapse
Affiliation(s)
- Mariela Rosa-Casillas
- Institute of Neurobiology and Department of Anatomy and Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| | - Paola Méndez de Jesús
- Institute of Neurobiology and Department of Anatomy and Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| | | | - Mohamed R Habib
- Medical Malacology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Roger P Croll
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Mark W Miller
- Institute of Neurobiology and Department of Anatomy and Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| |
Collapse
|
56
|
Tzoupis H, Nteli A, Androutsou ME, Tselios T. Gonadotropin-Releasing Hormone and GnRH Receptor: Structure, Function and Drug Development. Curr Med Chem 2021; 27:6136-6158. [PMID: 31309882 DOI: 10.2174/0929867326666190712165444] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 01/11/2023]
Abstract
BACKGROUND Gonadotropin-Releasing Hormone (GnRH) is a key element in sexual maturation and regulation of the reproductive cycle in the human organism. GnRH interacts with the pituitary cells through the activation of the Gonadotropin Releasing Hormone Receptors (GnRHR). Any impairments/dysfunctions of the GnRH-GnRHR complex lead to the development of various cancer types and disorders. Furthermore, the identification of GnRHR as a potential drug target has led to the development of agonist and antagonist molecules implemented in various treatment protocols. The development of these drugs was based on the information derived from the functional studies of GnRH and GnRHR. OBJECTIVE This review aims at shedding light on the versatile function of GnRH and GnRH receptor and offers an apprehensive summary regarding the development of different agonists, antagonists and non-peptide GnRH analogues. CONCLUSION The information derived from these studies can enhance our understanding of the GnRH-GnRHR versatile nature and offer valuable insight into the design of new more potent molecules.
Collapse
Affiliation(s)
| | - Agathi Nteli
- Department of Chemistry, University of Patras, Rion GR-26504, Greece
| | - Maria-Eleni Androutsou
- Vianex S.A., Tatoiou Str., 18th km Athens-Lamia National Road, Nea Erythrea 14671, Greece
| | - Theodore Tselios
- Department of Chemistry, University of Patras, Rion GR-26504, Greece
| |
Collapse
|
57
|
Podfigurna A, Maciejewska-Jeske M, Meczekalski B, Genazzani AD. Kisspeptin and LH pulsatility in patients with functional hypothalamic amenorrhea. Endocrine 2020; 70:635-643. [PMID: 32915434 PMCID: PMC7674559 DOI: 10.1007/s12020-020-02481-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/26/2020] [Indexed: 11/24/2022]
Abstract
PURPOSE Functional hypothalamic amenorrhea (FHA) occurs in response to exaggerated stressors with or without body weight loss. Various hormones, neurotransmitters, and neuromodulators are involved in the control of GnRH and kisspeptin is one of them. Our study aimed to evaluate the putative temporal coupling between kisspeptin and GnRH-induced LH pulsatile secretion. METHODS In total, 71 patients with FHA were selected for this study. All patients undergo to a pulsatility study for LH and kisspeptin evaluation (120 min, sampling every 10 min), and to an endocrine evaluation for prolactin (PRL), estradiol (E2), androstenedione (A), 17-hydroxy-progesterone (17OHP), TSH, fT3, fT4, insulin, cortisol and testosterone (T), glucose, total cholesterol, triglycerides. RESULTS Our data demonstrated kisspeptin and LH pulsatile secretions and that both hormones are co-secreted and temporally coupled at time 0 (p < 0.05). When patients were subdivided in hypo-LH (≤3 mIU/ml, n = 58) and normo-LH (>3 mIU/ml, n = 13), more insights were observed on the specific correlations of metabolic and hormone profiles with pulsatility indexes of LH and kisspeptin. CONCLUSIONS Our study demonstrated the presence of a distinct kisspeptin episodic secretion in patients with FHA, and showed the temporally coupling of kisspeptin with LH secretory episodes thus supporting that though in amenorrhea, the reproductive axis is still relying on kisspeptin to drive GnRH discharge. In addition, correlations among hormonal data sustain the hypothesis that stress-induced compensatory events are the main direct and indirect promoters of the reproductive blockade in patients affected by FHA.
Collapse
Affiliation(s)
- Agnieszka Podfigurna
- Department of Gynecological Endocrinology, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Blazej Meczekalski
- Department of Gynecological Endocrinology, Poznan University of Medical Sciences, Poznan, Poland.
| | - Alessandro D Genazzani
- Department of Obstetrics and Gynecology, Gynecological Endocrinology Center, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
58
|
Fallah HP, Habibi HR. Role of GnRH and GnIH in paracrine/autocrine control of final oocyte maturation. Gen Comp Endocrinol 2020; 299:113619. [PMID: 32956700 DOI: 10.1016/j.ygcen.2020.113619] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 09/13/2020] [Indexed: 12/28/2022]
Abstract
The control of oocyte growth and its final maturation is multifactorial and involves a number of hypothalamic, hypophyseal, and peripheral hormones. In this study, we investigated the direct actions of the gonadotropin-releasing hormone (GnRH) and the gonadotropin-inhibitory hormone (GnIH), which are expressed in the ovarian follicles, on final oocyte maturation in zebrafish, in vitro. Our study demonstrates the expression of GnRH and GnIH in the ovarian follicles of zebrafish (Danio rerio) at different stages of development and provides information on the direct action of these hormones on final oocyte maturation. Treatment with both GnRH and GnIH peptides stimulated the germinal vesicle breakdown (GVBD) of the late-vitellogenic oocyte. Both the GnRH and GnIH treatments showed no significant change in the caspase-3 activity of pre-vitellogenic and mid-vitellogenic oocytes, while they displayed different responses in the late-vitellogenic follicles. The GnRH treatment increased caspase-3 activity, whereas the GnIH reduced caspase-3 activity in the late-vitellogenic follicles. We also investigated the effects of GnRH and GnIH on the hCG-induced resumption of meiosis and caspase activity in vitro. GnRH and GnIH were found to have a similar effect on the hCG-induced resumption of meiosis, while they showed the opposite effect on caspase-3 activity. Furthermore, we investigated the effects of concomitant treatment of GnRH and GnIH peptides with hCG. The results demonstrated that the presence of both GnRH3 and GnIH are necessary for the normal induction of final oocyte maturation by gonadotropins. The findings support the hypothesis that GnIH and GnRH peptides produced in the ovary are part of a complex multifactorial regulatory system that controls zebrafish final oocyte maturation in paracrine/autocrine manner working in concert with gonadotropin hormones.
Collapse
Affiliation(s)
- Hamideh P Fallah
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Hamid R Habibi
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada.
| |
Collapse
|
59
|
Moriwaki S, Narimatsu Y, Fukumura K, Iwakoshi-Ukena E, Furumitsu M, Ukena K. Effects of Chronic Intracerebroventricular Infusion of RFamide-Related Peptide-3 on Energy Metabolism in Male Mice. Int J Mol Sci 2020; 21:ijms21228606. [PMID: 33203104 PMCID: PMC7698077 DOI: 10.3390/ijms21228606] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022] Open
Abstract
RFamide-related peptide-3 (RFRP-3), the mammalian ortholog of avian gonadotropin-inhibitory hormone (GnIH), plays a crucial role in reproduction. In the present study, we explored the other functions of RFRP-3 by investigating the effects of chronic intracerebroventricular infusion of RFRP-3 (6 nmol/day) for 13 days on energy homeostasis in lean male C57BL/6J mice. The infusion of RFRP-3 increased cumulative food intake and body mass. In addition, the masses of brown adipose tissue (BAT) and the liver were increased by the administration of RFRP-3, although the mass of white adipose tissue was unchanged. On the other hand, RFRP-3 decreased O2 consumption, CO2 production, energy expenditure, and core body temperature during a short time period in the dark phase. These results suggest that the increase in food intake and the decrease in energy expenditure contributed to the gain of body mass, including the masses of BAT and the liver. The present study shows that RFRP-3 regulates not only reproductive function, but also energy metabolism, in mice.
Collapse
|
60
|
Cardoso RC, West SM, Maia TS, Alves BRC, Williams GL. Nutritional control of puberty in the bovine female: prenatal and early postnatal regulation of the neuroendocrine system. Domest Anim Endocrinol 2020; 73:106434. [PMID: 32115309 DOI: 10.1016/j.domaniend.2020.106434] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 01/25/2023]
Abstract
Puberty is a complex biological event that requires maturation of the reproductive neuroendocrine axis and subsequent initiation of high-frequency, episodic release of GnRH and LH. Nutrition is a critical factor affecting the neuroendocrine control of puberty. Although nutrient restriction during juvenile development delays puberty, elevated rates of body weight gain during this period facilitate pubertal maturation by programming hypothalamic centers that underlie the pubertal process. Recent findings suggest that maternal nutrition during gestation can also modulate the development of the fetal neuroendocrine axis, thus influencing puberty and subsequent reproductive function. Among the several metabolic signals, leptin plays a critical role in conveying metabolic information to the brain and, consequently, controlling puberty. The effects of leptin on GnRH secretion are mediated via an upstream neuronal network because GnRH neurons do not express the leptin receptor. Two neuronal populations located in the arcuate nucleus that express the orexigenic peptide neuropeptide Y (NPY), and the anorexigenic peptide alpha melanocyte-stimulating hormone (αMSH), are key components of the neurocircuitry that conveys inhibitory (NPY) and excitatory (αMSH) inputs to GnRH neurons. In addition, neurons in the arcuate nucleus that coexpress kisspeptin, neurokinin B, and dynorphin (termed KNDy neurons) are also involved in the metabolic control of puberty. Our studies in the bovine female demonstrate that increased planes of nutrition during juvenile development lead to organizational and functional changes in hypothalamic pathways comprising NPY, proopiomelanocortin (POMC, the precursor of αMSH), and kisspeptin neurons. Changes include alterations in the abundance of NPY, POMC, and Kiss1 mRNA and in plasticity of the neuronal projections to GnRH neurons. Our studies also indicate that epigenetic mechanisms, such as modifications in the DNA methylation pattern, are involved in this process. Finally, our most recent data demonstrate that maternal nutrition during gestation can also induce morphological and functional changes in the hypothalamic NPY system in the heifer offspring that are likely to persist long after birth. These organizational changes occurring during fetal development have the potential to not only impact puberty but also influence reproductive performance throughout adulthood in the bovine female.
Collapse
Affiliation(s)
- R C Cardoso
- Department of Animal Science, Texas A&M University, College Station, TX, USA.
| | - S M West
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - T S Maia
- Department of Animal Science, Texas A&M University, College Station, TX, USA; Animal Reproduction Laboratory, Texas A&M AgriLife Research, Beeville, TX, USA
| | - B R C Alves
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - G L Williams
- Department of Animal Science, Texas A&M University, College Station, TX, USA; Animal Reproduction Laboratory, Texas A&M AgriLife Research, Beeville, TX, USA
| |
Collapse
|
61
|
Felberbaum R, Küpker W, Strowitzki T, Emons G, Diedrich K. GnRH–Antagonisten 2.0. DER GYNÄKOLOGE 2020; 53:492-493. [PMID: 32834083 PMCID: PMC7406955 DOI: 10.1007/s00129-020-04635-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
62
|
Terashima R, Saigo T, Laoharatchatathanin T, Kurusu S, Brachvogel B, Pöschl E, Kawaminami M. Augmentation of Nr4a3 and Suppression of Fshb Expression in the Pituitary Gland of Female Annexin A5 Null Mouse. J Endocr Soc 2020; 4:bvaa096. [PMID: 32864544 PMCID: PMC7448937 DOI: 10.1210/jendso/bvaa096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/14/2020] [Indexed: 01/05/2023] Open
Abstract
GnRH enhances the expression of annexin A5 (ANXA5) in pituitary gonadotropes, and ANXA5 enhances gonadotropin secretion. However, the impact of ANXA5 regulation on the expression of pituitary hormone genes remains unclear. Here, using quantitative PCR, we demonstrated that ANXA5 deficiency in female mice reduced the expression of Fshb and Gh in their pituitary glands. Transcriptome analysis confirmed a specific increase in Nr4a3 mRNA expression in addition to lower levels of Fshb expression in ANXA5-deficient female pituitary glands. This gene was then found to be a GnRH-inducible immediate early gene, and its increased expression caused protein to accumulate in the nucleus after administration of a GnRH agonist in LβT2 cells, which are an in vitro pituitary gonadotrope model. The increase in ANXA5 protein levels in LβT2 cells clearly suppressed Nr4a3 expression. siRNA-mediated inhibition of Nr4a3 expression increased Fshb expression. The results revealed that GnRH stimulates Nr4a3 and Anxa5 sequentially. NR4A3 suppression of Fshb may be necessary for later massive secretion of FSH by GnRH in gonadotropes, and Nr4a3 would be negatively regulated by ANXA5 to increase FSH secretion.
Collapse
Affiliation(s)
- Ryota Terashima
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Tomotaka Saigo
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Titaree Laoharatchatathanin
- Clinic for Small Domestic Animals and Radiology, Faculty of Veterinary Medicine, Mahanakorn University of Technology, Bangkok, Thailand
| | - Shiro Kurusu
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Bent Brachvogel
- Experimental Neonatology, Department of Pediatrics and Adolescent Medicine, Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Ernst Pöschl
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Mitsumori Kawaminami
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Kitasato University, Aomori, Japan.,Laboratory of Veterinary Physiology, School of Veterinary Medicine, Okayama University of Science, Imabari, Ehime, Japan
| |
Collapse
|
63
|
Shore ND, Saad F, Cookson MS, George DJ, Saltzstein DR, Tutrone R, Akaza H, Bossi A, van Veenhuyzen DF, Selby B, Fan X, Kang V, Walling J, Tombal B. Oral Relugolix for Androgen-Deprivation Therapy in Advanced Prostate Cancer. N Engl J Med 2020; 382:2187-2196. [PMID: 32469183 DOI: 10.1056/nejmoa2004325] [Citation(s) in RCA: 284] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Injectable luteinizing hormone-releasing hormone agonists (e.g., leuprolide) are the standard agents for achieving androgen deprivation for prostate cancer despite the initial testosterone surge and delay in therapeutic effect. The efficacy and safety of relugolix, an oral gonadotropin-releasing hormone antagonist, as compared with those of leuprolide are not known. METHODS In this phase 3 trial, we randomly assigned patients with advanced prostate cancer, in a 2:1 ratio, to receive relugolix (120 mg orally once daily) or leuprolide (injections every 3 months) for 48 weeks. The primary end point was sustained testosterone suppression to castrate levels (<50 ng per deciliter) through 48 weeks. Secondary end points included noninferiority with respect to the primary end point, castrate levels of testosterone on day 4, and profound castrate levels (<20 ng per deciliter) on day 15. Testosterone recovery was evaluated in a subgroup of patients. RESULTS A total of 622 patients received relugolix and 308 received leuprolide. Of men who received relugolix, 96.7% (95% confidence interval [CI], 94.9 to 97.9) maintained castration through 48 weeks, as compared with 88.8% (95% CI, 84.6 to 91.8) of men receiving leuprolide. The difference of 7.9 percentage points (95% CI, 4.1 to 11.8) showed noninferiority and superiority of relugolix (P<0.001 for superiority). All other key secondary end points showed superiority of relugolix over leuprolide (P<0.001). The percentage of patients with castrate levels of testosterone on day 4 was 56.0% with relugolix and 0% with leuprolide. In the subgroup of 184 patients followed for testosterone recovery, the mean testosterone levels 90 days after treatment discontinuation were 288.4 ng per deciliter in the relugolix group and 58.6 ng per deciliter in the leuprolide group. Among all the patients, the incidence of major adverse cardiovascular events was 2.9% in the relugolix group and 6.2% in the leuprolide group (hazard ratio, 0.46; 95% CI, 0.24 to 0.88). CONCLUSIONS In this trial involving men with advanced prostate cancer, relugolix achieved rapid, sustained suppression of testosterone levels that was superior to that with leuprolide, with a 54% lower risk of major adverse cardiovascular events. (Funded by Myovant Sciences; HERO ClinicalTrials.gov number, NCT03085095.).
Collapse
Affiliation(s)
- Neal D Shore
- From the Carolina Urologic Research Center, Myrtle Beach, SC (N.D.S.); the University of Montreal Hospital Center, Montreal (F.S.); the Department of Urology, University of Oklahoma Health Sciences Center, Oklahoma City (M.S.C.); the Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University, Durham, NC (D.J.G.); Urology San Antonio, San Antonio, TX (D.R.S.); Chesapeake Urology, Towson, MD (R.T.); the Department of Strategic Investigation on Comprehensive Cancer Network, Interfaculty Initiative in Information Studies-Graduate School of Interdisciplinary Information Studies, University of Tokyo, Tokyo (H.A.); the Department of Radiation Oncology, Gustave Roussy Cancer Institute, Villejuif, France (A.B.); Myovant Sciences, Brisbane, CA (D.F.V., B.S., X.F., V.K., J.W.); and Service d'Urologie, Cliniques Universitaires Saint Luc, Brussels (B.T.)
| | - Fred Saad
- From the Carolina Urologic Research Center, Myrtle Beach, SC (N.D.S.); the University of Montreal Hospital Center, Montreal (F.S.); the Department of Urology, University of Oklahoma Health Sciences Center, Oklahoma City (M.S.C.); the Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University, Durham, NC (D.J.G.); Urology San Antonio, San Antonio, TX (D.R.S.); Chesapeake Urology, Towson, MD (R.T.); the Department of Strategic Investigation on Comprehensive Cancer Network, Interfaculty Initiative in Information Studies-Graduate School of Interdisciplinary Information Studies, University of Tokyo, Tokyo (H.A.); the Department of Radiation Oncology, Gustave Roussy Cancer Institute, Villejuif, France (A.B.); Myovant Sciences, Brisbane, CA (D.F.V., B.S., X.F., V.K., J.W.); and Service d'Urologie, Cliniques Universitaires Saint Luc, Brussels (B.T.)
| | - Michael S Cookson
- From the Carolina Urologic Research Center, Myrtle Beach, SC (N.D.S.); the University of Montreal Hospital Center, Montreal (F.S.); the Department of Urology, University of Oklahoma Health Sciences Center, Oklahoma City (M.S.C.); the Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University, Durham, NC (D.J.G.); Urology San Antonio, San Antonio, TX (D.R.S.); Chesapeake Urology, Towson, MD (R.T.); the Department of Strategic Investigation on Comprehensive Cancer Network, Interfaculty Initiative in Information Studies-Graduate School of Interdisciplinary Information Studies, University of Tokyo, Tokyo (H.A.); the Department of Radiation Oncology, Gustave Roussy Cancer Institute, Villejuif, France (A.B.); Myovant Sciences, Brisbane, CA (D.F.V., B.S., X.F., V.K., J.W.); and Service d'Urologie, Cliniques Universitaires Saint Luc, Brussels (B.T.)
| | - Daniel J George
- From the Carolina Urologic Research Center, Myrtle Beach, SC (N.D.S.); the University of Montreal Hospital Center, Montreal (F.S.); the Department of Urology, University of Oklahoma Health Sciences Center, Oklahoma City (M.S.C.); the Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University, Durham, NC (D.J.G.); Urology San Antonio, San Antonio, TX (D.R.S.); Chesapeake Urology, Towson, MD (R.T.); the Department of Strategic Investigation on Comprehensive Cancer Network, Interfaculty Initiative in Information Studies-Graduate School of Interdisciplinary Information Studies, University of Tokyo, Tokyo (H.A.); the Department of Radiation Oncology, Gustave Roussy Cancer Institute, Villejuif, France (A.B.); Myovant Sciences, Brisbane, CA (D.F.V., B.S., X.F., V.K., J.W.); and Service d'Urologie, Cliniques Universitaires Saint Luc, Brussels (B.T.)
| | - Daniel R Saltzstein
- From the Carolina Urologic Research Center, Myrtle Beach, SC (N.D.S.); the University of Montreal Hospital Center, Montreal (F.S.); the Department of Urology, University of Oklahoma Health Sciences Center, Oklahoma City (M.S.C.); the Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University, Durham, NC (D.J.G.); Urology San Antonio, San Antonio, TX (D.R.S.); Chesapeake Urology, Towson, MD (R.T.); the Department of Strategic Investigation on Comprehensive Cancer Network, Interfaculty Initiative in Information Studies-Graduate School of Interdisciplinary Information Studies, University of Tokyo, Tokyo (H.A.); the Department of Radiation Oncology, Gustave Roussy Cancer Institute, Villejuif, France (A.B.); Myovant Sciences, Brisbane, CA (D.F.V., B.S., X.F., V.K., J.W.); and Service d'Urologie, Cliniques Universitaires Saint Luc, Brussels (B.T.)
| | - Ronald Tutrone
- From the Carolina Urologic Research Center, Myrtle Beach, SC (N.D.S.); the University of Montreal Hospital Center, Montreal (F.S.); the Department of Urology, University of Oklahoma Health Sciences Center, Oklahoma City (M.S.C.); the Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University, Durham, NC (D.J.G.); Urology San Antonio, San Antonio, TX (D.R.S.); Chesapeake Urology, Towson, MD (R.T.); the Department of Strategic Investigation on Comprehensive Cancer Network, Interfaculty Initiative in Information Studies-Graduate School of Interdisciplinary Information Studies, University of Tokyo, Tokyo (H.A.); the Department of Radiation Oncology, Gustave Roussy Cancer Institute, Villejuif, France (A.B.); Myovant Sciences, Brisbane, CA (D.F.V., B.S., X.F., V.K., J.W.); and Service d'Urologie, Cliniques Universitaires Saint Luc, Brussels (B.T.)
| | - Hideyuki Akaza
- From the Carolina Urologic Research Center, Myrtle Beach, SC (N.D.S.); the University of Montreal Hospital Center, Montreal (F.S.); the Department of Urology, University of Oklahoma Health Sciences Center, Oklahoma City (M.S.C.); the Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University, Durham, NC (D.J.G.); Urology San Antonio, San Antonio, TX (D.R.S.); Chesapeake Urology, Towson, MD (R.T.); the Department of Strategic Investigation on Comprehensive Cancer Network, Interfaculty Initiative in Information Studies-Graduate School of Interdisciplinary Information Studies, University of Tokyo, Tokyo (H.A.); the Department of Radiation Oncology, Gustave Roussy Cancer Institute, Villejuif, France (A.B.); Myovant Sciences, Brisbane, CA (D.F.V., B.S., X.F., V.K., J.W.); and Service d'Urologie, Cliniques Universitaires Saint Luc, Brussels (B.T.)
| | - Alberto Bossi
- From the Carolina Urologic Research Center, Myrtle Beach, SC (N.D.S.); the University of Montreal Hospital Center, Montreal (F.S.); the Department of Urology, University of Oklahoma Health Sciences Center, Oklahoma City (M.S.C.); the Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University, Durham, NC (D.J.G.); Urology San Antonio, San Antonio, TX (D.R.S.); Chesapeake Urology, Towson, MD (R.T.); the Department of Strategic Investigation on Comprehensive Cancer Network, Interfaculty Initiative in Information Studies-Graduate School of Interdisciplinary Information Studies, University of Tokyo, Tokyo (H.A.); the Department of Radiation Oncology, Gustave Roussy Cancer Institute, Villejuif, France (A.B.); Myovant Sciences, Brisbane, CA (D.F.V., B.S., X.F., V.K., J.W.); and Service d'Urologie, Cliniques Universitaires Saint Luc, Brussels (B.T.)
| | - David F van Veenhuyzen
- From the Carolina Urologic Research Center, Myrtle Beach, SC (N.D.S.); the University of Montreal Hospital Center, Montreal (F.S.); the Department of Urology, University of Oklahoma Health Sciences Center, Oklahoma City (M.S.C.); the Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University, Durham, NC (D.J.G.); Urology San Antonio, San Antonio, TX (D.R.S.); Chesapeake Urology, Towson, MD (R.T.); the Department of Strategic Investigation on Comprehensive Cancer Network, Interfaculty Initiative in Information Studies-Graduate School of Interdisciplinary Information Studies, University of Tokyo, Tokyo (H.A.); the Department of Radiation Oncology, Gustave Roussy Cancer Institute, Villejuif, France (A.B.); Myovant Sciences, Brisbane, CA (D.F.V., B.S., X.F., V.K., J.W.); and Service d'Urologie, Cliniques Universitaires Saint Luc, Brussels (B.T.)
| | - Bryan Selby
- From the Carolina Urologic Research Center, Myrtle Beach, SC (N.D.S.); the University of Montreal Hospital Center, Montreal (F.S.); the Department of Urology, University of Oklahoma Health Sciences Center, Oklahoma City (M.S.C.); the Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University, Durham, NC (D.J.G.); Urology San Antonio, San Antonio, TX (D.R.S.); Chesapeake Urology, Towson, MD (R.T.); the Department of Strategic Investigation on Comprehensive Cancer Network, Interfaculty Initiative in Information Studies-Graduate School of Interdisciplinary Information Studies, University of Tokyo, Tokyo (H.A.); the Department of Radiation Oncology, Gustave Roussy Cancer Institute, Villejuif, France (A.B.); Myovant Sciences, Brisbane, CA (D.F.V., B.S., X.F., V.K., J.W.); and Service d'Urologie, Cliniques Universitaires Saint Luc, Brussels (B.T.)
| | - Xiaolin Fan
- From the Carolina Urologic Research Center, Myrtle Beach, SC (N.D.S.); the University of Montreal Hospital Center, Montreal (F.S.); the Department of Urology, University of Oklahoma Health Sciences Center, Oklahoma City (M.S.C.); the Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University, Durham, NC (D.J.G.); Urology San Antonio, San Antonio, TX (D.R.S.); Chesapeake Urology, Towson, MD (R.T.); the Department of Strategic Investigation on Comprehensive Cancer Network, Interfaculty Initiative in Information Studies-Graduate School of Interdisciplinary Information Studies, University of Tokyo, Tokyo (H.A.); the Department of Radiation Oncology, Gustave Roussy Cancer Institute, Villejuif, France (A.B.); Myovant Sciences, Brisbane, CA (D.F.V., B.S., X.F., V.K., J.W.); and Service d'Urologie, Cliniques Universitaires Saint Luc, Brussels (B.T.)
| | - Vicky Kang
- From the Carolina Urologic Research Center, Myrtle Beach, SC (N.D.S.); the University of Montreal Hospital Center, Montreal (F.S.); the Department of Urology, University of Oklahoma Health Sciences Center, Oklahoma City (M.S.C.); the Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University, Durham, NC (D.J.G.); Urology San Antonio, San Antonio, TX (D.R.S.); Chesapeake Urology, Towson, MD (R.T.); the Department of Strategic Investigation on Comprehensive Cancer Network, Interfaculty Initiative in Information Studies-Graduate School of Interdisciplinary Information Studies, University of Tokyo, Tokyo (H.A.); the Department of Radiation Oncology, Gustave Roussy Cancer Institute, Villejuif, France (A.B.); Myovant Sciences, Brisbane, CA (D.F.V., B.S., X.F., V.K., J.W.); and Service d'Urologie, Cliniques Universitaires Saint Luc, Brussels (B.T.)
| | - Jackie Walling
- From the Carolina Urologic Research Center, Myrtle Beach, SC (N.D.S.); the University of Montreal Hospital Center, Montreal (F.S.); the Department of Urology, University of Oklahoma Health Sciences Center, Oklahoma City (M.S.C.); the Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University, Durham, NC (D.J.G.); Urology San Antonio, San Antonio, TX (D.R.S.); Chesapeake Urology, Towson, MD (R.T.); the Department of Strategic Investigation on Comprehensive Cancer Network, Interfaculty Initiative in Information Studies-Graduate School of Interdisciplinary Information Studies, University of Tokyo, Tokyo (H.A.); the Department of Radiation Oncology, Gustave Roussy Cancer Institute, Villejuif, France (A.B.); Myovant Sciences, Brisbane, CA (D.F.V., B.S., X.F., V.K., J.W.); and Service d'Urologie, Cliniques Universitaires Saint Luc, Brussels (B.T.)
| | - Bertrand Tombal
- From the Carolina Urologic Research Center, Myrtle Beach, SC (N.D.S.); the University of Montreal Hospital Center, Montreal (F.S.); the Department of Urology, University of Oklahoma Health Sciences Center, Oklahoma City (M.S.C.); the Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University, Durham, NC (D.J.G.); Urology San Antonio, San Antonio, TX (D.R.S.); Chesapeake Urology, Towson, MD (R.T.); the Department of Strategic Investigation on Comprehensive Cancer Network, Interfaculty Initiative in Information Studies-Graduate School of Interdisciplinary Information Studies, University of Tokyo, Tokyo (H.A.); the Department of Radiation Oncology, Gustave Roussy Cancer Institute, Villejuif, France (A.B.); Myovant Sciences, Brisbane, CA (D.F.V., B.S., X.F., V.K., J.W.); and Service d'Urologie, Cliniques Universitaires Saint Luc, Brussels (B.T.)
| |
Collapse
|
64
|
Duan C, Allard J. Gonadotropin-releasing hormone neuron development in vertebrates. Gen Comp Endocrinol 2020; 292:113465. [PMID: 32184073 DOI: 10.1016/j.ygcen.2020.113465] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/26/2020] [Accepted: 03/12/2020] [Indexed: 11/21/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) neurons are master regulators of the reproductive axis in vertebrates. During early mammalian embryogenesis, GnRH1 neurons emerge in the nasal/olfactory placode. These neurons undertake a long-distance migration, moving from the nose to the preoptic area and hypothalamus. While significant advances have been made in understanding the functional importance of the GnRH1 neurons in reproduction, where GnRH1 neurons come from and how are they specified during early development is still under debate. In addition to the GnRH1 gene, most vertebrate species including humans have one or two additional GnRH genes. Compared to the GnRH1 neurons, much less is known about the development and regulation of GnRH2 neuron and GnRH3 neurons. The objective of this article is to review what is currently known about GnRH neuron development. We will survey various cell autonomous and non-autonomous factors implicated in the regulation of GnRH neuron development. Finally, we will discuss emerging tools and new approaches to resolve open questions pertaining to GnRH neuron development.
Collapse
Affiliation(s)
- Cunming Duan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, United States.
| | - John Allard
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, United States
| |
Collapse
|
65
|
Targeted mutation of secretogranin-2 disrupts sexual behavior and reproduction in zebrafish. Proc Natl Acad Sci U S A 2020; 117:12772-12783. [PMID: 32467166 DOI: 10.1073/pnas.2002004117] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The luteinizing hormone surge is essential for fertility as it triggers ovulation in females and sperm release in males. We previously reported that secretoneurin-a, a neuropeptide derived from the processing of secretogranin-2a (Scg2a), stimulates luteinizing hormone release, suggesting a role in reproduction. Here we provide evidence that mutation of the scg2a and scg2b genes using TALENs in zebrafish reduces sexual behavior, ovulation, oviposition, and fertility. Large-scale spawning within-line crossings (n = 82 to 101) were conducted. Wild-type (WT) males paired with WT females successfully spawned in 62% of the breeding trials. Spawning success was reduced to 37% (P = 0.006), 44% (P = 0.0169), and 6% (P < 0.0001) for scg2a -/- , scg2b -/- , and scg2a -/- ;scg2b -/- mutants, respectively. Comprehensive video analysis indicates that scg2a -/- ;scg2b -/- mutation reduces all male courtship behaviors. Spawning success was 47% in saline-injected WT controls compared to 11% in saline-injected scg2a -/- ;scg2b -/- double mutants. For these mutants, spawning success increased 3-fold following a single intraperitoneal (i.p.) injection of synthetic secretoneurin-a (P = 0.0403) and increased 3.5-fold with injection of human chorionic gonadotropin (hCG). Embryonic survival at 24 h remained on average lower in scg2a -/- ;scg2b -/- fish compared to WT injected with secretoneurin-a (P < 0.001). Significant reductions in the expression of gonadotropin-releasing hormone 3 in the hypothalamus, and luteinizing hormone beta and glycoprotein alpha subunits in the pituitary provide evidence for disrupted hypothalamo-pituitary function in scg2a and scg2b mutant fish. Our results indicate that secretogranin-2 is required for optimal reproductive function and support the hypothesis that secretoneurin is a reproductive hormone.
Collapse
|
66
|
Huang S, Wu H, Li B, Fu L, Sun P, Wang M, Hu K. Automated radiosynthesis and preclinical evaluation of Al[ 18F]F-NOTA-P-GnRH for PET imaging of GnRH receptor-positive tumors. Nucl Med Biol 2020; 82-83:64-71. [PMID: 32088580 DOI: 10.1016/j.nucmedbio.2020.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/16/2020] [Accepted: 02/11/2020] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Gonadotropin releasing hormone (GnRH) receptor is overexpressed in many human tumors. Previously we developed a 18F-labelled GnRH peptide. Although the GnRH-targeted PET probe can be clearly visualized by microPET imaging in a PC-3 xenograft model, clinical applications of the probe have been limited by complex labeling procedures, poor radiochemical yield, and unwanted accumulation in GnRH receptor negative tissues. In this study, we have designed a new 18F-labelled GnRH peptide that is more amenable to clinical development. METHODS GnRH peptide analogues NOTA-P-GnRH was synthesized and automated radiolabeled with 18F using a Al[18F]F complex on a modified PET-MF-2V-IT-I synthesis module. The GnRH receptor affinities of AlF-NOTA-P-GnRH and NOTA-P-GnRH were determined by in vitro competitive binding assay. For in vitro characterization determination of stability and partition coefficients were carried out, respectively. Dynamic microPET and biodistribution studies of Al[18F]F-NOTA-P-GnRH were evaluated in xenograft tumor mouse models. RESULTS The total radiochemical synthesis and purification of Al[18F]F-NOTA-P-GnRH was completed within 35 min with a decay-corrected yield of 35 ± 10%. The logP value of Al[18F]F-NOTA-P-GnRH was -2.74 ± 0.04 and the tracer was stable in phosphate-buffered saline, and bovine and human serum. The IC50 values of AlF-NOTA-P-GnRH and NOTA-P-GnRH were 116 nM and 56.2 nM, respectively. Dynamic PET imaging together with ex vivo biodistribution analyses revealed that Al[18F]F-NOTA-P-GnRH was clearly delineated in both PC-3 and MDA-MB-231 xenografted tumors. CONCLUSION Al[18F]F-NOTA-P-GnRH can be efficiently produced on a commercially available automated synthesis module and has potential for use in clinical diagnosis of GnRH receptor-positive tumors. ADVANCES IN KNOWLEDGE Our studies developed the automated radiosynthesis of a new 18F-labelled GnRH tracer and preclinical evaluation for future clinical application. IMPLICATIONS FOR PATIENT CARE Quantitative and noninvasive imaging of GnRH expression would provide information for diagnosis and treatment of cancer patients.
Collapse
Affiliation(s)
- Shun Huang
- Nanfang PET Center, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, Guangdong Province 510515, China
| | - Hubing Wu
- Nanfang PET Center, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, Guangdong Province 510515, China
| | - Baoyuan Li
- Department of Nuclear Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510120, China
| | - Lilan Fu
- Nanfang PET Center, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, Guangdong Province 510515, China
| | - Penghui Sun
- Nanfang PET Center, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, Guangdong Province 510515, China
| | - Meng Wang
- Nanfang PET Center, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, Guangdong Province 510515, China
| | - Kongzhen Hu
- Nanfang PET Center, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, Guangdong Province 510515, China.
| |
Collapse
|
67
|
Zhang K, Gao G, Zhao X, Li Q, Zhong H, Xie Y, Wang Q. The direct effects of gonadotropin-releasing hormone on proliferation of granulosa cells and development of follicles in goose. Br Poult Sci 2020; 61:242-250. [PMID: 32019334 DOI: 10.1080/00071668.2020.1724877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
1. The study objectives were to determine the direct effects of gonadotropin-releasing hormone (GnRH) on the proliferation of ovarian granulosa cells (GCs) and the development of follicles in geese (Anser cygnoides) by colorimetry and ethynyl-2'-deoxyuridine (EdU) cell proliferation assays, in which primary GCs were treated with different concentrations of GnRH agonist (alarelin acetate) and an antagonist (cetrorelix acetate). Differently expressed genes (DEGs) were identified by RNA-sequencing and validated by quantitative reverse transcription polymerase chain reaction (RT-qPCR) and Western blotting. 2. The EdU assays showed that the proliferation of GCs was affected by the GnRH agonist and antagonist in a dose-dependent manner. The effect of treatment on cell proliferation was statistically significant at the concentrations of 10-5 mol/l alarelin and 1 mg/l cetrorelix acetate. A total of 134 DEGs (76 downregulated and 58 upregulated for alarelin treatment) and 226 DEGs (90 downregulated and 136 upregulated for cetrorelix) were identified by RNA-sequencing analysis, respectively. Enrichment analysis indicated that DEGs were enriched in the GO terms of cell-cell signalling and cell junctions. The pathways that regulate the development of follicles were identified, including the biological progress of cAMP accumulation, ovulation cycle and vasculature that are essential to follicular selection. 3. The results suggested that GnRH might directly regulate GC proliferation via autocrine or paracrine pathways related to cell junctions. In particular, it was confirmed that the mRNA and protein expression levels of the oestrogen receptor 2 (ESR2) gene, a negative transcription factor involved in follicular maturation and ovulation, were affected by GnRH agonist or antagonist in GCs. 4. In conclusion, GnRH might play an important role in follicular development by changing the expression of genes that participate in cAMP accumulation, ovulation cycle and cell junctions in ovarian GCs.
Collapse
Affiliation(s)
- K Zhang
- Poultry Science Department, Chongqing Academy of Animal Science , Chongqing, P. R. China.,Chongqing Engineering Research Center of Goose Genetic Improvement , Chongqing, P. R. China
| | - G Gao
- Poultry Science Department, Chongqing Academy of Animal Science , Chongqing, P. R. China.,Chongqing Engineering Research Center of Goose Genetic Improvement , Chongqing, P. R. China
| | - X Zhao
- Poultry Science Department, Chongqing Academy of Animal Science , Chongqing, P. R. China.,Chongqing Engineering Research Center of Goose Genetic Improvement , Chongqing, P. R. China
| | - Q Li
- Poultry Science Department, Chongqing Academy of Animal Science , Chongqing, P. R. China.,Chongqing Engineering Research Center of Goose Genetic Improvement , Chongqing, P. R. China
| | - H Zhong
- Poultry Science Department, Chongqing Academy of Animal Science , Chongqing, P. R. China.,Chongqing Engineering Research Center of Goose Genetic Improvement , Chongqing, P. R. China
| | - Y Xie
- Poultry Science Department, Chongqing Academy of Animal Science , Chongqing, P. R. China.,Chongqing Engineering Research Center of Goose Genetic Improvement , Chongqing, P. R. China
| | - Q Wang
- Poultry Science Department, Chongqing Academy of Animal Science , Chongqing, P. R. China.,Chongqing Engineering Research Center of Goose Genetic Improvement , Chongqing, P. R. China
| |
Collapse
|
68
|
Liu J, Shen J, Lu G, Xu X, Yang H, Yan Z, Chen W. Multilevel ecotoxicity assessment of environmentally relevant bisphenol F concentrations in Daphnia magna. CHEMOSPHERE 2020; 240:124917. [PMID: 31726617 DOI: 10.1016/j.chemosphere.2019.124917] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/29/2019] [Accepted: 09/18/2019] [Indexed: 06/10/2023]
Abstract
With the pressure to ban or limit the use of Bisphenol A (BPA), substitutes such as bisphenol F (BPF) are applied to various commodities and generally detected in aquatic systems worldwide. To understand the potential ecological risk of BPF, the acute toxicity as well as behavioural, physiological and biochemical parameters of the water flea Daphnia magna were assessed. Following BPF exposure at concentrations ranging from 0.1 μg L-1 to 100 μg L-1, phenotypic traits including growth development, fecundity and swimming activity were significantly inhibited in response to exposure to sublethal concentrations (1-100 μg L-1) of BPF, which had a positive relationship with the activity of antioxidant enzymes. Moreover, the acetylcholinesterase (AChE) activity, which was strictly associated with the behavioural changes, was clearly inhibited, which was also obviously related to the heart rate and thoracic limb activity. Compared to the toxicity of BPA, BPF induces similar toxic effects, and the health concerns regarding the use of these alternatives should be highlighted.
Collapse
Affiliation(s)
- Jianchao Liu
- Key Laboratory of Integrated Regulation and Resources Development, College of Environment, Hohai University, Nanjing, 210098, China
| | - Jie Shen
- Key Laboratory of Integrated Regulation and Resources Development, College of Environment, Hohai University, Nanjing, 210098, China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resources Development, College of Environment, Hohai University, Nanjing, 210098, China; College of Hydraulic and Civil Engineering, XiZang Agricultural and Animal Husbandry College, Linzhi, China.
| | - Xinlei Xu
- Key Laboratory of Integrated Regulation and Resources Development, College of Environment, Hohai University, Nanjing, 210098, China
| | - Haohan Yang
- Key Laboratory of Integrated Regulation and Resources Development, College of Environment, Hohai University, Nanjing, 210098, China
| | - Zhenhua Yan
- Key Laboratory of Integrated Regulation and Resources Development, College of Environment, Hohai University, Nanjing, 210098, China
| | - Wei Chen
- Key Laboratory of Integrated Regulation and Resources Development, College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
69
|
Fallah HP, Rodrigues MS, Corchuelo S, Nóbrega RH, Habibi HR. Role of GnRH Isoforms in Paracrine/Autocrine Control of Zebrafish (Danio rerio) Spermatogenesis. Endocrinology 2020; 161:5701481. [PMID: 31930304 DOI: 10.1210/endocr/bqaa004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/10/2020] [Indexed: 12/25/2022]
Abstract
Abstract
It is well established that hypothalamic GnRH (gonadotropin-releasing hormone) is one of the key peptides involved in the neuroendocrine control of testicular development and spermatogenesis. However, the role of GnRH as a paracrine regulator of testicular function has not been fully investigated. The present study demonstrates the presence of GnRH and its receptors in the zebrafish (Danio rerio) testis, and provides information on direct action of native GnRH isoforms (GnRH2 and GnRH3) on different stages of spermatogenesis in this model. Both GnRH2 and GnRH3 stimulated basal spermatogenesis by increasing numbers of type Aund spermatogonia, spermatozoa, and testosterone release, and in this study GnRH2 exerted higher relative activity than GnRH3. Next, we evaluated the effects of GnRH isoforms on human chorionic gonadotropin (hCG)- and follicle-stimulating hormone (Fsh)-induced spermatogenesis. The 2 GnRH isoforms were found to have different effects on Fsh- and hCG-induced response depending on the stage of spermatogenesis and concentration of the peptides. The results provide strong support for the hypothesis that locally produced GnRH2 and GnRH3 are important components of the complex multifactorial system that regulates testicular germinal cell development and function in adult zebrafish.
Collapse
Affiliation(s)
- Hamideh P Fallah
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Maira S Rodrigues
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
- Department of Morphology, Reproductive and Molecular Biology Group, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Sheryll Corchuelo
- Department of Morphology, Reproductive and Molecular Biology Group, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Rafael H Nóbrega
- Department of Morphology, Reproductive and Molecular Biology Group, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Hamid R Habibi
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
70
|
Peacey L, Elphick MR, Jones CE. Roles of copper in neurokinin B and gonadotropin-releasing hormone structure and function and the endocrinology of reproduction. Gen Comp Endocrinol 2020; 287:113342. [PMID: 31783025 DOI: 10.1016/j.ygcen.2019.113342] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/24/2019] [Accepted: 11/25/2019] [Indexed: 11/30/2022]
Abstract
Copper is a metal ion present in all organisms, where it has well-known roles in association with proteins and enzymes essential for cellular processes. In the early decades of the twentieth century copper was shown to influence mammalian reproductive biology, and it was subsequently shown to exert effects primarily at the level of the pituitary gland and/or hypothalamic regions of the brain. Furthermore, it has been reported that copper can interact with key neuropeptides in the hypothalamic-pituitary-gonadal axis, notably gonadotropin-releasing hormone (GnRH) and neurokinin B. Interestingly, recent phylogenetic analysis of the sequences of GnRH-related peptides indicates that copper binding is an evolutionarily ancient property of this neuropeptide family, which has been variously retained, modified or lost in the different taxa. In this mini-review the metal-binding properties of neuropeptides in the vertebrate reproductive pathway are reviewed and the evolutionary and functional significance of copper binding by GnRH-related neuropeptides in vertebrates and invertebrates are discussed.
Collapse
Affiliation(s)
- Lorraine Peacey
- School of Science and Health, The University of Western Sydney, Locked Bag 1797, Penrith, New South Wales, Australia
| | - Maurice R Elphick
- Queen Mary University of London, School of Biological and Chemical Sciences, Mile End Road, London E14NS, UK
| | - Christopher E Jones
- School of Science and Health, The University of Western Sydney, Locked Bag 1797, Penrith, New South Wales, Australia.
| |
Collapse
|
71
|
Padmanabhan V, Cardoso RC. Neuroendocrine, autocrine, and paracrine control of follicle-stimulating hormone secretion. Mol Cell Endocrinol 2020; 500:110632. [PMID: 31682864 PMCID: PMC7433377 DOI: 10.1016/j.mce.2019.110632] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 12/12/2022]
Abstract
Follicle-stimulating hormone (FSH) is a glycoprotein hormone produced by gonadotropes in the anterior pituitary that plays a central role in controlling ovarian folliculogenesis and steroidogenesis in females. Moreover, recent studies strongly suggest that FSH exerts extragonadal actions, particularly regulating bone mass and adiposity. Despite its crucial role, the mechanisms regulating FSH secretion are not completely understood. It is evident that hypothalamic, ovarian, and pituitary factors are involved in the neuroendocrine, paracrine, and autocrine regulation of FSH production. Large animal models, such as the female sheep, represent valuable research models to investigate specific aspects of FSH secretory processes. This review: (i) summarizes the role of FSH controlling reproduction and other biological processes; (ii) discusses the hypothalamic, gonadal, and pituitary regulation of FSH secretion; (iii) considers the biological relevance of the different FSH isoforms; and (iv) summarizes the distinct patterns of FSH secretion under different physiological conditions.
Collapse
|
72
|
Abstract
The neuroendocrinology of reproduction focuses on the neuromodulation of gonadotropin-releasing hormone (GnRH), the ontogeny of the hypothalamic-pituitary-gonadal axis, and common reproductive events and conditions, namely, puberty, the menstrual cycle, and disorders of reproductive function. The core concept underpinning the neuroendocrinology of reproduction is neuroregulation of hypothalamic GnRH drive. In both men and women, reproductive function requires that GnRH input elicit appropriate secretion of follicle-stimulating hormone and luteinizing hormone from the anterior pituitary and that the gonads respond to such input appropriately. Moreover, insufficient GnRH drive causes hypothalamic hypogonadism and secondary insufficiency of gonadal sex steroid hormone synthesis and release in both sexes. Alterations in GnRH drive also reflect gonadal conditions such as dysgenesis, hyperandrogenism, gonadotropin mutations, and aging and loss or absence of oocytes or Sertoli cells. The most common cause of insufficient GnRH drive is functional, that is, due to the endocrine effects of psychologic or behavioral variables. Rarely does reduced GnRH drive reflect organic or congenital causes such as developmental defects, brain tumors, or celiac disease. Despite a common neuropathogenesis the heterogeneity of behavioral variables associated with reduced GnRH drive has resulted in a variety of names, including functional hypothalamic amenorrhea, stress-induced anovulation, and psychogenic amenorrhea.
Collapse
Affiliation(s)
- Deepika Garg
- (1)Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Sarah L Berga
- Department of Obstetrics and Gynecology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States.
| |
Collapse
|
73
|
Vélez EJ, Unniappan S. A Comparative Update on the Neuroendocrine Regulation of Growth Hormone in Vertebrates. Front Endocrinol (Lausanne) 2020; 11:614981. [PMID: 33708174 PMCID: PMC7940767 DOI: 10.3389/fendo.2020.614981] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/31/2020] [Indexed: 12/22/2022] Open
Abstract
Growth hormone (GH), mainly produced from the pituitary somatotrophs is a key endocrine regulator of somatic growth. GH, a pleiotropic hormone, is also involved in regulating vital processes, including nutrition, reproduction, physical activity, neuroprotection, immunity, and osmotic pressure in vertebrates. The dysregulation of the pituitary GH and hepatic insulin-like growth factors (IGFs) affects many cellular processes associated with growth promotion, including protein synthesis, cell proliferation and metabolism, leading to growth disorders. The metabolic and growth effects of GH have interesting applications in different fields, including the livestock industry and aquaculture. The latest discoveries on new regulators of pituitary GH synthesis and secretion deserve our attention. These novel regulators include the stimulators adropin, klotho, and the fibroblast growth factors, as well as the inhibitors, nucleobindin-encoded peptides (nesfatin-1 and nesfatin-1-like peptide) and irisin. This review aims for a comparative analysis of our current understanding of the endocrine regulation of GH from the pituitary of vertebrates. In addition, we will consider useful pharmacological molecules (i.e. stimulators and inhibitors of the GH signaling pathways) that are important in studying GH and somatotroph biology. The main goal of this review is to provide an overview and update on GH regulators in 2020. While an extensive review of each of the GH regulators and an in-depth analysis of specifics are beyond its scope, we have compiled information on the main endogenous and pharmacological regulators to facilitate an easy access. Overall, this review aims to serve as a resource on GH endocrinology for a beginner to intermediate level knowledge seeker on this topic.
Collapse
|
74
|
Corazonin signaling integrates energy homeostasis and lunar phase to regulate aspects of growth and sexual maturation in Platynereis. Proc Natl Acad Sci U S A 2019; 117:1097-1106. [PMID: 31843923 PMCID: PMC6969523 DOI: 10.1073/pnas.1910262116] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Gonadotropin Releasing Hormone (GnRH) acts as a key regulator of sexual maturation in vertebrates, and is required for the integration of environmental stimuli to orchestrate breeding cycles. Whether this integrative function is conserved across phyla remains unclear. We characterized GnRH-type signaling systems in the marine worm Platynereis dumerilii, in which both metabolic state and lunar cycle regulate reproduction. We find gnrh-like (gnrhl) genes upregulated in sexually mature animals, after feeding, and in specific lunar phases. Animals in which the corazonin1/gnrhl1 gene has been disabled exhibit delays in growth, regeneration, and maturation. Molecular analyses reveal glycoprotein turnover/energy homeostasis as targets of CRZ1/GnRHL1. These findings point at an ancestral role of GnRH superfamily signaling in coordinating energy demands dictated by environmental and developmental cues. The molecular mechanisms by which animals integrate external stimuli with internal energy balance to regulate major developmental and reproductive events still remain enigmatic. We investigated this aspect in the marine bristleworm, Platynereis dumerilii, a species where sexual maturation is tightly regulated by both metabolic state and lunar cycle. Our specific focus was on ligands and receptors of the gonadotropin-releasing hormone (GnRH) superfamily. Members of this superfamily are key in triggering sexual maturation in vertebrates but also regulate reproductive processes and energy homeostasis in invertebrates. Here we show that 3 of the 4 gnrh-like (gnrhl) preprohormone genes are expressed in specific and distinct neuronal clusters in the Platynereis brain. Moreover, ligand–receptor interaction analyses reveal a single Platynereis corazonin receptor (CrzR) to be activated by CRZ1/GnRHL1, CRZ2/GnRHL2, and GnRHL3 (previously classified as AKH1), whereas 2 AKH-type hormone receptors (GnRHR1/AKHR1 and GnRHR2/AKHR2) respond only to a single ligand (GnRH2/GnRHL4). Crz1/gnrhl1 exhibits a particularly strong up-regulation in sexually mature animals, after feeding, and in specific lunar phases. Homozygous crz1/gnrhl1 knockout animals exhibit a significant delay in maturation, reduced growth, and attenuated regeneration. Through a combination of proteomics and gene expression analysis, we identify enzymes involved in carbohydrate metabolism as transcriptional targets of CRZ1/GnRHL1 signaling. Our data suggest that Platynereis CRZ1/GnRHL1 coordinates glycoprotein turnover and energy homeostasis with growth and sexual maturation, integrating both metabolic and developmental demands with the worm’s monthly cycle.
Collapse
|
75
|
Matsuda F, Ohkura S, Magata F, Munetomo A, Chen J, Sato M, Inoue N, Uenoyama Y, Tsukamura H. Role of kisspeptin neurons as a GnRH surge generator: Comparative aspects in rodents and non-rodent mammals. J Obstet Gynaecol Res 2019; 45:2318-2329. [PMID: 31608564 DOI: 10.1111/jog.14124] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 08/30/2019] [Indexed: 02/01/2023]
Abstract
Ovulation is an essential phenomenon for reproduction in mammalian females along with follicular growth. It is well established that gonadal function is controlled by the neuroendocrine system called the hypothalamus-pituitary-gonadal (HPG) axis. Gonadotropin-releasing hormone (GnRH) neurons, localized in the hypothalamus, had been considered to be the head in governing the HPG axis for a long time until the discovery of kisspeptin. In females, induction of ovulation and folliculogenesis has been linked to a surge mode and pulse mode of GnRH releases, respectively. The mechanisms of how the two modes of GnRH are differently regulated had long remained elusive. The discovery of kisspeptin neurons, distributed in two hypothalamic nuclei, such as the arcuate nucleus in the caudal hypothalamus and preoptic area or the anteroventral periventricular nucleus in the rostral hypothalamic regions, and analyses of the detailed functions of kisspeptin neurons have led marked progress on the understanding of different mechanisms regulating GnRH surges (ovulation) and GnRH pulses (folliculogenesis). The present review will focus on the role of kisspeptin neurons as the GnRH surge generator, including the sexual differentiation of the surge generation system and factors that regulate the surge generator. Comparative aspects between mammalian species are especially focused on.
Collapse
Affiliation(s)
- Fuko Matsuda
- Laboratory of Theriogenology, Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo, Japan
| | - Satoshi Ohkura
- Laboratory of Animal Production Science, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Fumie Magata
- Laboratory of Theriogenology, Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo, Japan
| | - Arisa Munetomo
- Laboratory of Theriogenology, Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo, Japan
| | - Jing Chen
- Laboratory of Theriogenology, Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo, Japan
| | - Marimo Sato
- Laboratory of Theriogenology, Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo, Japan
| | - Naoko Inoue
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Yoshihisa Uenoyama
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Hiroko Tsukamura
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
76
|
Lippincott MF, León S, Chan YM, Fergani C, Talbi R, Farooqi IS, Jones CM, Arlt W, Stewart SE, Cole TR, Terasawa E, Hall JE, Shaw ND, Navarro VM, Seminara SB. Hypothalamic Reproductive Endocrine Pulse Generator Activity Independent of Neurokinin B and Dynorphin Signaling. J Clin Endocrinol Metab 2019; 104:4304-4318. [PMID: 31132118 PMCID: PMC6736049 DOI: 10.1210/jc.2019-00146] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/21/2019] [Indexed: 11/19/2022]
Abstract
CONTEXT Kisspeptin-neurokinin B (NKB)-dynorphin neurons are critical regulators of the hypothalamic-pituitary-gonadal axis. NKB and dynorphin are hypothesized to influence the frequency of GnRH pulses, whereas kisspeptin is hypothesized to be a generator of the GnRH pulse. How these neuropeptides interact remains unclear. OBJECTIVE To probe the role of NKB in GnRH pulse generation and to determine the interactions between NKB, kisspeptin, and dynorphin in humans and mice with a complete absence of NKB. DESIGN Case/control. SETTING Academic medical center. PARTICIPANTS Members of a consanguineous family bearing biallelic loss-of-function mutations in the gene encoding NKB and NKB-deficient mice. INTERVENTIONS Frequent blood sampling to characterize neuroendocrine profile and administration of kisspeptin, GnRH, and naloxone, a nonspecific opioid receptor antagonist used to block dynorphin. MAIN OUTCOME MEASURES LH pulse characteristics. RESULTS Humans lacking NKB demonstrate slow LH pulse frequency, which can be increased by opioid antagonism. Mice lacking NKB also demonstrate impaired LH secretion, which can be augmented with an identical pharmacologic manipulation. Both mice and humans with NKB deficiency respond to exogenous kisspeptin. CONCLUSION The preservation of LH pulses in the absence of NKB and dynorphin signaling suggests that both peptides are dispensable for GnRH pulse generation and kisspeptin responsiveness. However, NKB and dynorphin appear to have opposing roles in the modulation of GnRH pulse frequency.
Collapse
Affiliation(s)
- Margaret F Lippincott
- Harvard Reproductive Sciences Center and Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts
- Correspondence and Reprint Requests: Margaret F. Lippincott, MD, Massachusetts General Hospital, 55 Fruit Street, Bartlett Hall Extension, 5th Floor, Boston, Massachusetts 02114. E-mail:
| | - Silvia León
- Division of Endocrinology, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Yee-Ming Chan
- Harvard Reproductive Sciences Center and Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts
- Division of Endocrinology, Department of Pediatrics, Boston Children’s Hospital, Boston, Massachusetts
| | - Chrysanthi Fergani
- Division of Endocrinology, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Rajae Talbi
- Division of Endocrinology, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - I Sadaf Farooqi
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust–MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Christopher M Jones
- Faculty of Medicine and Health, and Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Wiebke Arlt
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham, NHS Foundation Trust & University of Birmingham, Birmingham, United Kingdom
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom
| | - Susan E Stewart
- Birmingham Women’s Hospital Foundation Trust, Birmingham, United Kingdom
- University Hospital Birmingham, Birmingham, United Kingdom
| | - Trevor R Cole
- Birmingham Women’s Hospital Foundation Trust, Birmingham, United Kingdom
- University Hospital Birmingham, Birmingham, United Kingdom
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Ei Terasawa
- Wisconsin National Primate Research Center, Madison, Wisconsin
- Department of Pediatrics, University of Wisconsin–Madison, Madison, Wisconsin
| | - Janet E Hall
- Harvard Reproductive Sciences Center and Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts
| | - Natalie D Shaw
- Harvard Reproductive Sciences Center and Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts
| | - Victor M Navarro
- Division of Endocrinology, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Stephanie Beth Seminara
- Harvard Reproductive Sciences Center and Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
77
|
Corbière A, Vaudry H, Chan P, Walet-Balieu ML, Lecroq T, Lefebvre A, Pineau C, Vaudry D. Strategies for the Identification of Bioactive Neuropeptides in Vertebrates. Front Neurosci 2019; 13:948. [PMID: 31619945 PMCID: PMC6759750 DOI: 10.3389/fnins.2019.00948] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 08/22/2019] [Indexed: 11/13/2022] Open
Abstract
Neuropeptides exert essential functions in animal physiology by controlling e.g., reproduction, development, growth, energy homeostasis, cardiovascular activity and stress response. Thus, identification of neuropeptides has been a very active field of research over the last decades. This review article presents the various methods used to discover novel bioactive peptides in vertebrates. Initially identified on the basis of their biological activity, some neuropeptides have also been discovered for their ability to bind/activate a specific receptor or based on their biochemical characteristics such as C-terminal amidation which concerns half of the known neuropeptides. More recently, sequencing of the genome of many representative species has facilitated peptidomic approaches using mass spectrometry and in silico screening of genomic libraries. Through these different approaches, more than a hundred of bioactive neuropeptides have already been identified in vertebrates. Nevertheless, researchers continue to find new neuropeptides or to identify novel functions of neuropeptides that had not been detected previously, as it was recently the case for nociceptin.
Collapse
Affiliation(s)
- Auriane Corbière
- Normandie Univ, UNIROUEN, Inserm, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Neuropeptides, Neuronal Death and Cell Plasticity Team, Rouen, France
| | - Hubert Vaudry
- Normandie Univ, UNIROUEN, Inserm, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Neuropeptides, Neuronal Death and Cell Plasticity Team, Rouen, France.,Normandie Univ, UNIROUEN, Regional Cell Imaging Platform of Normandy (PRIMACEN), Rouen, France
| | - Philippe Chan
- Normandie Univ, UNIROUEN, Rouen Proteomic Platform (PISSARO), Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Marie-Laure Walet-Balieu
- Normandie Univ, UNIROUEN, Rouen Proteomic Platform (PISSARO), Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Thierry Lecroq
- Normandie Univ, UNIROUEN, LITIS EA 4108, Information Processing in Biology & Health, Rouen, France
| | - Arnaud Lefebvre
- Normandie Univ, UNIROUEN, LITIS EA 4108, Information Processing in Biology & Health, Rouen, France
| | | | - David Vaudry
- Normandie Univ, UNIROUEN, Inserm, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Neuropeptides, Neuronal Death and Cell Plasticity Team, Rouen, France.,Normandie Univ, UNIROUEN, Regional Cell Imaging Platform of Normandy (PRIMACEN), Rouen, France.,Normandie Univ, UNIROUEN, Rouen Proteomic Platform (PISSARO), Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| |
Collapse
|
78
|
Marvel M, Spicer OS, Wong TT, Zmora N, Zohar Y. Knockout of the Gnrh genes in zebrafish: effects on reproduction and potential compensation by reproductive and feeding-related neuropeptides. Biol Reprod 2019; 99:565-577. [PMID: 29635430 DOI: 10.1093/biolre/ioy078] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 04/03/2018] [Indexed: 11/13/2022] Open
Abstract
Gonadotropin-releasing hormone (GNRH) is known as a pivotal upstream regulator of reproduction in vertebrates. However, reproduction is not compromised in the hypophysiotropic Gnrh3 knockout line in zebrafish (gnrh3-/-). In order to determine if Gnrh2, the only other Gnrh isoform in zebrafish brains, is compensating for the loss of Gnrh3, we generated a double Gnrh knockout zebrafish line. Surprisingly, the loss of both Gnrh isoforms resulted in no major impact on reproduction, indicating that a compensatory response, outside of the Gnrh system, was evoked. A plethora of factors acting along the reproductive hypothalamus-pituitary axis were evaluated as possible compensators based on neuroanatomical and differential gene expression studies. In addition, we also examined the involvement of feeding factors in the brain as potential compensators for Gnrh2, which has known anorexigenic effects. We found that the double knockout fish exhibited upregulation of several genes in the brain, specifically gonadotropin-inhibitory hormone (gnih), secretogranin 2 (scg2), tachykinin 3a (tac3a), and pituitary adenylate cyclase-activating peptide 1 (pacap1), and downregulation of agouti-related peptide 1 (agrp1), indicating the compensation occurs outside of Gnrh cells and therefore is a noncell autonomous response to the loss of Gnrh. While the differential expression of gnih and agrp1 in the double knockout line was confined to the periventricular nucleus and hypothalamus, respectively, the upregulation of scg2 corresponded with a broader neuronal redistribution in the lateral hypothalamus and hindbrain. In conclusion, our results demonstrate the existence of a redundant reproductive regulatory system that comes into play when Gnrh2 and Gnrh3 are lost.
Collapse
Affiliation(s)
- Miranda Marvel
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Olivia Smith Spicer
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Ten-Tsao Wong
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Nilli Zmora
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Yonathan Zohar
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, Maryland, USA
| |
Collapse
|
79
|
Yao H, Xu Z, Li C, Tse MK, Tong Z, Zhu G. Synthesis and Cytotoxic Study of a Platinum(IV) Anticancer Prodrug with Selectivity toward Luteinizing Hormone-Releasing Hormone (LHRH) Receptor-Positive Cancer Cells. Inorg Chem 2019; 58:11076-11084. [PMID: 31393117 DOI: 10.1021/acs.inorgchem.9b01583] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Platinum drugs including cisplatin are widely used in clinics to treat various types of cancer. However, the lack of cancer-cell selectivity is one of the major problems that lead to side effects in normal tissues. Luteinizing hormone-releasing hormone (LHRH) receptors are overexpressed in many types of cancer cells but rarely presented in normal cells, making LHRH receptor a good candidate for cancer targeting. In this study, we report the synthesis and cytotoxic study of a novel platinum(IV) anticancer prodrug functionalized with LHRH peptide. This LHRH-platinum(IV) conjugate is highly soluble in water and quite stable in a PBS buffer. Cytotoxic study reveals that the prodrug selectively targets LHRH receptor-positive cancer cell lines with the cytotoxicities 5-8 times higher than those in LHRH receptor-negative cell lines. In addition, the introduction of LHRH peptide enhances the cellular accumulation in a manner of receptor-mediated endocytosis. Moreover, the LHRH-platinum(IV) prodrug is proved to kill cancer cells by binding to the genomic DNA, inducing apoptosis, and arresting the cell cycle at the G2/M phase. In summary, we report a novel LHRH-platinum(IV) anticancer prodrug having largely improved selectivity toward LHRH receptor-positive cancer cells, relative to cisplatin.
Collapse
Affiliation(s)
- Houzong Yao
- Department of Chemistry , City University of Hong Kong , 83 Tat Chee Avenue , Hong Kong SAR 999077 , People's Republic of China.,City University of Hong Kong Shenzhen Research Institute , Shenzhen 518057 , People's Republic of China
| | - Zoufeng Xu
- Department of Chemistry , City University of Hong Kong , 83 Tat Chee Avenue , Hong Kong SAR 999077 , People's Republic of China.,City University of Hong Kong Shenzhen Research Institute , Shenzhen 518057 , People's Republic of China
| | - Cai Li
- Department of Chemistry , City University of Hong Kong , 83 Tat Chee Avenue , Hong Kong SAR 999077 , People's Republic of China.,City University of Hong Kong Shenzhen Research Institute , Shenzhen 518057 , People's Republic of China
| | - Man-Kit Tse
- Department of Chemistry , City University of Hong Kong , 83 Tat Chee Avenue , Hong Kong SAR 999077 , People's Republic of China
| | - Zixuan Tong
- Department of Chemistry , City University of Hong Kong , 83 Tat Chee Avenue , Hong Kong SAR 999077 , People's Republic of China
| | - Guangyu Zhu
- Department of Chemistry , City University of Hong Kong , 83 Tat Chee Avenue , Hong Kong SAR 999077 , People's Republic of China.,City University of Hong Kong Shenzhen Research Institute , Shenzhen 518057 , People's Republic of China
| |
Collapse
|
80
|
Uslu BA, Kocyigit A, Sendag S, Gülyüz F, Wehrend A. The effect of GnRH on the pregnancy ratio in low-yielding local race cows: comparison of different injection times. Trop Anim Health Prod 2019; 52:497-502. [PMID: 31388876 DOI: 10.1007/s11250-019-02034-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/29/2019] [Indexed: 11/28/2022]
Abstract
The objective of this article was to investigate the efficiency of GnRH administrations at different time points after induced luteolysis on pregnancy rates in low-yielding subfertile cows. One thousand six hundred and ten healthy and subfertile dairy cows of different ages and races were used in this study. Cows were randomly divided into 4 groups. Estrus cycles were synchronized by two, with 11-day intervals, injections of the prostaglandin F2α-analogue (PG). The artificial inseminations (AIs) of all animals were achieved at the 72nd and 96th hours following the last PG injection. The animals in groups I (n 257), II (n 337), and III (n 675) were used for the administration of a single dose of GnRH at different time points. Accordingly, GnRH was applied at 48th, 64th, and 72nd hours following the last PG injection in groups I, II, and III, respectively. Group IV was accepted as a control without GnRH injection (n 341). The pregnancy rates in groups I, II, III, and IV after transrectal pregnancy examinations were found to be 89.88%, 91.09%, 83.25%, and 77.12%, respectively. In our study, maximal pregnancy rates could be obtained with GnRH injections performed at 48th and 64th hours following luteolysis induction (P < 0.001). There was a 6-8% decrease in pregnancy rates due to the injection of GnRH in the 72nd hour (P < 0.001). These dramatic losses and gains in pregnancy rates in our study emphasized the necessity of taking the time of injection into account when using GnRH to stimulate ovulation. It can be said that the success of GnRH stimulation of ovulation is directly related to the follicle wave dynamics at the time of injection point and the character of a dominant follicle.
Collapse
Affiliation(s)
- Barış Atalay Uslu
- Faculty of Veterinary Medicine, Department of Reproduction and Artificial Insemination, Mehmet Akif Ersoy University, Burdur, Turkey.
| | - Alper Kocyigit
- Faculty of Veterinary Medicine, Department of Reproduction and Artificial Insemination, Cumhuriyet University, 58140, Sivas, Turkey
| | - Sait Sendag
- Faculty of Veterinary Medicine, Clinic for Obstetrics and Gynecology, VanYYÜ, 65100, Van, Turkey
| | - Fetih Gülyüz
- Faculty of Agriculture, Department of Animal Science, Akdeniz University, Antalya, Turkey
| | - Axel Wehrend
- Faculty of Veterinary Medicine, Clinic for Obstetrics, Gynecology and Andrology, University of Justus-Liebig, Giessen, Germany
| |
Collapse
|
81
|
Umatani C, Oka Y. Multiple functions of non-hypophysiotropic gonadotropin releasing hormone neurons in vertebrates. ZOOLOGICAL LETTERS 2019; 5:23. [PMID: 31367467 PMCID: PMC6647275 DOI: 10.1186/s40851-019-0138-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 06/19/2019] [Indexed: 06/10/2023]
Abstract
Gonadotropin releasing hormone (GnRH) is a hypophysiotropic hormone that is generally thought to be important for reproduction. This hormone is produced by hypothalamic GnRH neurons and stimulates the secretion of gonadotropins. On the other hand, vertebrates also have non-hypophysiotropic GnRH peptides, which are produced by extrahypothalamic GnRH neurons. They are mainly located in the terminal nerve, midbrain tegmentum, trigeminal nerve, and spinal cord (sympathetic preganglionic nerves). In vertebrates, there are typically three gnrh paralogues (gnrh1, gnrh2, gnrh3). GnRH-expression in the non-hypophysiotropic neurons (gnrh1 or gnrh3 in the terminal nerve and the trigeminal nerve, gnrh2 in the midbrain tegmentum) occurs from the early developmental stages. Recent studies have suggested that non-hypophysiotropic GnRH neurons play various functional roles. Here, we summarize their anatomical/physiological properties and discuss their possible functions, focusing on studies in vertebrates. GnRH neurons in the terminal nerve show different spontaneous firing properties during the developmental stages. These neurons in adulthood show regular pacemaker firing, and it has been suggested that these neurons show neuromodulatory function related to the regulation of behavioral motivation, etc. In addition to their recognized role in neuromodulation in adult, in juvenile fish, these neurons, which show more frequent burst firing than in adults, are suggested to have novel functions. GnRH neurons in the midbrain tegmentum show regular pacemaker firing similar to that of the adult terminal nerve and are suggested to be involved in modulations of feeding (teleosts) or nutrition-related sexual behaviors (musk shrew). GnRH neurons in the trigeminal nerve are suggested to be involved in nociception and chemosensory avoidance, although the literature on their electrophysiological properties is limited. Sympathetic preganglionic cells in the spinal cord were first reported as peptidergic modulatory neurons releasing GnRH with a putative function in coordinating interaction between vasomotor and exocrine outflow in the sympathetic nervous system. The functional role of non-hypophysiotropic GnRH neurons may thus be in the global modulation of neural circuits in a manner dependent on internal conditions or the external environment.
Collapse
Affiliation(s)
- Chie Umatani
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, Tokyo, 113-0033 Japan
| | - Yoshitaka Oka
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, Tokyo, 113-0033 Japan
| |
Collapse
|
82
|
D'Hondt M, Verbeke F, Wuytens P, Skirtach A, De Spiegeleer B, Wynendaele E. Hot-Melt Preparation of a Non-Biodegradable Peptide Implant: A Proof of Principle. Protein Pept Lett 2019; 26:691-701. [PMID: 31215364 DOI: 10.2174/0929866526666190619113724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/30/2019] [Accepted: 05/09/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Both biodegradable and non-biodegradable peptide-loaded implants are already developed for the long-term treatment of patients, thereby reducing the frequency of drug administration. To further improve peptide formulation, extending the scope of implant-based drug delivery systems towards other polymers and processing techniques is highly interesting. OBJECTIVE In this study, as a proof-of-principle, the feasibility of hot-melt processing of a peptide active pharmaceutical ingredient was assessed by developing a non-biodegradable poly(ethylenevinyl acetate) (33% VA) implant loaded with 20% (w/w) buserelin acetate. METHODS Cross-sectional implant characterization was performed by Raman microscopy. The stability of buserelin acetate in the polymeric matrix was evaluated for 3 months under ICH stability conditions and the quantity as well as the degradation products analyzed using LC-UV methods. An in vitro dissolution study was performed as well and buserelin acetate and its degradants analyzed using the same chromatographic methods. RESULTS No significant quantities of buserelin acetate-related degradation products were formed during the hot-melt preparation as well as during the stability study. Together with the consistent buserelin acetate assay values over time, chemical peptide stability was thus demonstrated. The in vitro buserelin acetate release from the implant was found to be diffusion-controlled after an initial burst release, with stable release profiles in the stability study, demonstrating the functional stability of the peptide implant. CONCLUSION These results indicate the feasibility of preparing non-biodegradable peptide-loaded implants using the hot-melt production method and may act as a proof of principle concept for further innovation in peptide medicinal formulations.
Collapse
Affiliation(s)
- Matthias D'Hondt
- Drug Quality and Registration (DruQuaR) group, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Frederick Verbeke
- Drug Quality and Registration (DruQuaR) group, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Pieter Wuytens
- Department of Molecular Biotechnology, Centre for Nano-Biophotonics, Ghent University, Ghent, Belgium
| | - Andre Skirtach
- Department of Molecular Biotechnology, Centre for Nano-Biophotonics, Ghent University, Ghent, Belgium
| | - Bart De Spiegeleer
- Drug Quality and Registration (DruQuaR) group, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Evelien Wynendaele
- Drug Quality and Registration (DruQuaR) group, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
83
|
Tzoupis H, Nteli A, Platts J, Mantzourani E, Tselios T. Refinement of the gonadotropin releasing hormone receptor I homology model by applying molecular dynamics. J Mol Graph Model 2019; 89:147-155. [DOI: 10.1016/j.jmgm.2019.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/26/2019] [Accepted: 03/06/2019] [Indexed: 10/27/2022]
|
84
|
Juel Mortensen L, Lorenzen M, Jørgensen N, Andersson AM, Nielsen JE, Petersen LI, Lanske B, Juul A, Hansen JB, Blomberg Jensen M. Possible link between FSH and RANKL release from adipocytes in men with impaired gonadal function including Klinefelter syndrome. Bone 2019; 123:103-114. [PMID: 30914274 DOI: 10.1016/j.bone.2019.03.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 02/19/2019] [Accepted: 03/18/2019] [Indexed: 11/21/2022]
Abstract
INTRODUCTION The FSH receptor (FSHR) has been found to be expressed in human bone cells and bone marrow-adipocytes, and highly-debated mouse studies have suggested extra-gonadal effects of gonadotropins on glucose, adipocyte and bone homeostasis. These putative effects could be direct or indirectly mediated by endocrine factors released from bone-cells or adipocytes. Here, we investigated whether gonadotropins are linked with glucose- and lipid-metabolism in hypergonadotropic men. METHODS Single centre, cross-sectional study of 307 men with idiopathic infertility and 28 men with Klinefelter syndrome (KS). OUTCOME associations between serum LH and FSH with soluble-RANKL (sRANKL), osteoprotegerin (OPG), osteocalcin, fasting glucose and insulin, sex steroids, and body composition. Expression of FSHR was studied in human-derived adipocyte-cell-models (hMADS, TERT-hWA) and FSH stimulation of RANKL expression and secretion in hMADS in vitro. RESULTS Serum FSH was not directly linked with glucose- and lipid-metabolism. However, FSH was inversely associated with sRANKL in both infertile men and KS men (p = .023 and p = .012). Infertile men with elevated FSH (>11 U/L) had significantly lower sRANKL (p = .015). sRANKL was positively associated with fat percentage, fasting insulin, and glucose (all p < .05). Men with prediabetes had higher sRANKL (p = .021), but lower testosterone (p < .0001) and Inhibin B (p = .005). The FSHR was expressed in the investigated human derived adipocytes, and 3-6 h treatment with FSH markedly increased RANKL release (p < .05). CONCLUSION KS and infertile men with prediabetes have low Inhibin B, and testosterone but elevated RANKL compared with non-prediabetic men despite comparable levels of serum gonadotropins. Serum FSH and sRANKL was inversely associated in both infertile and KS men, but the increased release of RANKL from FSH treated adipocytes suggest a direct effect of FSH on RANKL production in some tissues. Further studies are required to clarify whether FSH targets RANKL in the skeleton. ClinicalTrial_ID:NCT01304927.
Collapse
Affiliation(s)
- Li Juel Mortensen
- Group of skeletal, mineral and gonadal endocrinology, University Department of Growth and Reproduction, Rigshospitalet, Copenhagen, Denmark; Division of Bone and Mineral Research, HSDM/HMS, Harvard Medical School, Boston, USA
| | - Mette Lorenzen
- Group of skeletal, mineral and gonadal endocrinology, University Department of Growth and Reproduction, Rigshospitalet, Copenhagen, Denmark
| | - Niels Jørgensen
- University Department of Growth and Reproduction and International Center for Research, Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Blegdamsvej 9, Copenhagen 2100, Denmark
| | - Anna-Maria Andersson
- University Department of Growth and Reproduction and International Center for Research, Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Blegdamsvej 9, Copenhagen 2100, Denmark
| | - John E Nielsen
- University Department of Growth and Reproduction and International Center for Research, Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Blegdamsvej 9, Copenhagen 2100, Denmark
| | - Louise I Petersen
- Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Beate Lanske
- Division of Bone and Mineral Research, HSDM/HMS, Harvard Medical School, Boston, USA
| | - Anders Juul
- University Department of Growth and Reproduction and International Center for Research, Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Blegdamsvej 9, Copenhagen 2100, Denmark
| | - Jacob B Hansen
- Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Martin Blomberg Jensen
- Group of skeletal, mineral and gonadal endocrinology, University Department of Growth and Reproduction, Rigshospitalet, Copenhagen, Denmark; Division of Bone and Mineral Research, HSDM/HMS, Harvard Medical School, Boston, USA.
| |
Collapse
|
85
|
Julien AR, Kouba AJ, Kabelik D, Feugang JM, Willard ST, Kouba CK. Nasal administration of gonadotropin releasing hormone (GnRH) elicits sperm production in Fowler’s toads (Anaxyrus fowleri). BMC ZOOL 2019. [DOI: 10.1186/s40850-019-0040-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
86
|
Shim M, Bang WJ, Oh CY, Lee YS, Cho JS. Effectiveness of three different luteinizing hormone-releasing hormone agonists in the chemical castration of patients with prostate cancer: Goserelin versus triptorelin versus leuprolide. Investig Clin Urol 2019; 60:244-250. [PMID: 31294133 PMCID: PMC6607074 DOI: 10.4111/icu.2019.60.4.244] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/28/2019] [Indexed: 01/16/2023] Open
Abstract
Purpose To investigate the changes in testosterone levels and rates of chemical castration following androgen-deprivation therapy (ADT) with goserelin, triptorelin, and leuprolide. Materials and Methods We retrospectively reviewed the medical records of 125 patients with prostate cancer treated with luteinizing hormone-releasing hormone (LHRH) agonists between January 2009 and December 2015. Changes in testosterone concentration during 9 months of ADT with goserelin 11.34 mg, triptorelin 11.25 mg, and leuprolide 11.25 mg were analyzed using a mixed model. The number of patients with serum testosterone below castration levels defined as various values (<50 ng/dL, <20 ng/dL, or <10 ng/dL) at 3, 6, and 9 months were also evaluated. Results Of the 125 patients, 59 received goserelin, 44 received triptorelin, and 22 received leuprolide, respectively. The lowest mean testosterone levels during 9 months of treatment were achieved in patients treated with triptorelin, followed by those treated with leuprolide, and then by those treated with goserelin (p=0.001). Significant differences in chemical castration levels were observed only at <10 ng/dL, with 54.2% of goserelin, 93.2% of triptorelin, and 86.4% of leuprolide treated patients (p<0.001). Conclusions Three LHRH agonists showed comparable efficacy for achieving castration when the castration threshold was 50 or 20 ng/dL. However, triptorelin was the most potent LHRH agonist, achieving the lowest mean testosterone levels and the highest rate of chemical castration at <10 ng/dL testosterone.
Collapse
Affiliation(s)
- Myungsun Shim
- Department of Urology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| | - Woo Jin Bang
- Department of Urology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| | - Cheol Young Oh
- Department of Urology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| | - Yong Seong Lee
- Department of Urology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| | - Jin Seon Cho
- Department of Urology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| |
Collapse
|
87
|
Zhu H, Nan S, Suo C, Zhang Q, Hu M, Chen R, Wan J, Li M, Chen J, Ding M. Electro-Acupuncture Affects the Activity of the Hypothalamic-Pituitary-Ovary Axis in Female Rats. Front Physiol 2019; 10:466. [PMID: 31068836 PMCID: PMC6491808 DOI: 10.3389/fphys.2019.00466] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/04/2019] [Indexed: 12/16/2022] Open
Abstract
Hypothalamic-pituitary-ovary (HPO) axis is a dominant system controlling ovulation during puberty. Electro-acupuncture (EA) has been widely used to cure the reproductive diseases associated with endocrinological disorders. However, whether EA treatment affects HPO axis activity of physiological animals and induces alterations on the hormones in the HPO axis was also unclear. Here, we performed the EA stimuli on bilateral acupoints of Sanyinjiao (SP6) and Zusanli (ST36) on female virgin rats every 3 days and for a total of 5 times. The results showed that GnRH levels in hypothalamus were greatly upregulated in EA-treated rats than untreated animals at day 7 and 13. The serum levels for FSH and LH were severely reduced after EA treatment compared with EA-untreated animals at day 1, while they were greatly increased at day 7 and 13. The serum concentrations of 17β-estradiol were lower in EA-treated rats versus untreated animals at day 7, while they were higher in EA-treated rats than other groups at day 13. However, the progesterone concentrations were lower in EA-treated rats than Control and Sham-EA rats both at day 7 and 13. More importantly, we found that the prostaglandin E2 level in serum was reduced in EA-treated rats versus untreated rats at day 1, while they were upregulated at day 7 and 13. Conversely, the norepinephrine level in serum was increased at day 1, while they were decreased greatly in EA-treated rats versus untreated rats at day 7 and 13. The current results demonstrated that EA could modulate homeostasis of HPO axis in physiologic rats, which would be useful to clarify the mechanisms of EA application on pathological and physiological animals or human.
Collapse
Affiliation(s)
- Hongmei Zhu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Sha Nan
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Chuanguang Suo
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Qiulin Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Manli Hu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Rong Chen
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Juan Wan
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Meng Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jianguo Chen
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Mingxing Ding
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
88
|
Young J, Xu C, Papadakis GE, Acierno JS, Maione L, Hietamäki J, Raivio T, Pitteloud N. Clinical Management of Congenital Hypogonadotropic Hypogonadism. Endocr Rev 2019; 40:669-710. [PMID: 30698671 DOI: 10.1210/er.2018-00116] [Citation(s) in RCA: 225] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 10/05/2018] [Indexed: 12/12/2022]
Abstract
The initiation and maintenance of reproductive capacity in humans is dependent on pulsatile secretion of the hypothalamic hormone GnRH. Congenital hypogonadotropic hypogonadism (CHH) is a rare disorder that results from the failure of the normal episodic GnRH secretion, leading to delayed puberty and infertility. CHH can be associated with an absent sense of smell, also termed Kallmann syndrome, or with other anomalies. CHH is characterized by rich genetic heterogeneity, with mutations in >30 genes identified to date acting either alone or in combination. CHH can be challenging to diagnose, particularly in early adolescence where the clinical picture mirrors that of constitutional delay of growth and puberty. Timely diagnosis and treatment will induce puberty, leading to improved sexual, bone, metabolic, and psychological health. In most cases, patients require lifelong treatment, yet a notable portion of male patients (∼10% to 20%) exhibit a spontaneous recovery of their reproductive function. Finally, fertility can be induced with pulsatile GnRH treatment or gonadotropin regimens in most patients. In summary, this review is a comprehensive synthesis of the current literature available regarding the diagnosis, patient management, and genetic foundations of CHH relative to normal reproductive development.
Collapse
Affiliation(s)
- Jacques Young
- University of Paris-Sud, Paris-Sud Medical School, Le Kremlin-Bicêtre, France.,Department of Reproductive Endocrinology, Assistance Publique-Hôpitaux de Paris, Bicêtre Hôpital, Le Kremlin-Bicêtre, France.,INSERM Unité 1185, Le Kremlin-Bicêtre, France
| | - Cheng Xu
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne, Switzerland.,Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Georgios E Papadakis
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne, Switzerland
| | - James S Acierno
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne, Switzerland.,Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Luigi Maione
- University of Paris-Sud, Paris-Sud Medical School, Le Kremlin-Bicêtre, France.,Department of Reproductive Endocrinology, Assistance Publique-Hôpitaux de Paris, Bicêtre Hôpital, Le Kremlin-Bicêtre, France.,INSERM Unité 1185, Le Kremlin-Bicêtre, France
| | - Johanna Hietamäki
- Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Translational Stem Cell Biology and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Taneli Raivio
- Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Translational Stem Cell Biology and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Nelly Pitteloud
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne, Switzerland.,Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
89
|
Synthesis and Evaluation of 18F-Labeled Peptide for Gonadotropin-Releasing Hormone Receptor Imaging. CONTRAST MEDIA & MOLECULAR IMAGING 2019; 2019:5635269. [PMID: 30983920 PMCID: PMC6431521 DOI: 10.1155/2019/5635269] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/23/2019] [Accepted: 01/29/2019] [Indexed: 12/13/2022]
Abstract
The gonadotropin-releasing hormone (GnRH) receptor is overexpressed in the majority of tumors of the human reproductive system. The purpose of this study was to develop an 18F-labeled peptide for tumor GnRH receptor imaging. In this study, the GnRH (pGlu1-His2-Trp3-Ser4-Tyr5-Gly6-Leu7-Arg8-Pro9-Gly10-NH2) peptide analogues FP-d-Lys6-GnRH (FP = 2-fluoropropanoyl) and NOTA-P-d-Lys6-GnRH (P = ethylene glycol) were designed and synthesized. The IC50 values of FP-d-Lys6-GnRH and NOTA-P-d-Lys6-GnRH were 2.0 nM and 56.2 nM, respectively. 4-Nitrophenyl-2-[18F]fluoropropionate was conjugated to the ε-amino group of the d-lysine side chain of d-Lys6-GnRH to yield the new tracer [18F]FP-d-Lys6-GnRH with a decay-corrected yield of 8 ± 3% and a specific activity of 20−100 GBq/µmol (n=6). Cell uptake studies of [18F]FP-d-Lys6-GnRH in GnRH receptor-positive PC-3 cells and GnRH receptor-negative CHO-K1 cells indicated receptor-specific accumulation. Biodistribution and PET studies in nude mice bearing PC-3 xenografted tumors showed that [18F]FP-d-Lys6-GnRH was localized in tumors with a higher uptake than in surrounding muscle and heart tissues. Furthermore, the metabolic stability of [18F]FP-d-Lys6-GnRH was determined in mouse blood and PC-3 tumor homogenates at 1 h after tracer injection. The presented results indicated a potential of the novel tracer [18F]FP-d-Lys6-GnRH for tumor GnRH receptor imaging.
Collapse
|
90
|
Mizera A, Kuczaj M, Szul A, Jędraszczyk J. Effect of addition of buserelin acetate to the extender on motility and viability of bovine spermatozoa. Anim Biotechnol 2018; 30:99-104. [PMID: 30595097 DOI: 10.1080/10495398.2018.1521821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The present study was aimed to determine the effect of GnRH analog (buserelin acetate) on the quality of bovine spermatozoa stored at 16° C for 24 h. Semen collected in the summer season from June to September from healthy Polish Holstein-Friesian bulls. Ejaculates were centrifuged, divided and diluted to the final concentration of 240 × 106 spermatozoa/mL using animal protein-free commercial BIOXcell® extender (IMV Technologies, L'aigle, France) (Control) or with BIOXcell® extender supplemented with buserelin acetate and stored 0, 8 and 24 h. Sperm motility parameters analysis was performed using a computer-assisted sperm analysis (CASA) system. The viability of spermatozoa was performed using flow cytometer. The addition of buserelin acetate to BIOXcell® extender did positively affect the total motility (was higher in the observed samples with the addition of 2 µg/mL and 4 µg/mL than in the control group), progressive motile (forward progressing sperm was significantly increased (p < 0.05) over the control group at the 0 h and 8 h of incubation following the supplementation of 2, 4 and 8 μg/mL buserelin acetate) and viability of spermatozoa (the number of live spermatozoa was significantly higher (p < 0.05) in 2 µg/mL and 4 µg/mL samples with buserelin acetate at 8th hour of incubation and in sample with 4 µg/mL at 24th hour of incubation compared to the control group). We recommend adding 4 µg/mL to the extender to improve the quality of bovine semen.
Collapse
Affiliation(s)
- Alicja Mizera
- a Institute of Animal Breeding , Wroclaw University of Environmental and Life Sciences , Wroclaw , Poland
| | - Marian Kuczaj
- a Institute of Animal Breeding , Wroclaw University of Environmental and Life Sciences , Wroclaw , Poland
| | - Anna Szul
- b Malopolska Biotechnic Center Ltd , Krasne , Poland
| | | |
Collapse
|
91
|
Hamidatou Khati W, Moudilou EN, Exbrayat JM, Hammouche S. Immunolocalization of RFamide-related peptide 3 in a desert rodent Gerbillus tarabuli during seminiferous epithelium cycle. Tissue Cell 2018; 55:1-12. [PMID: 30503055 DOI: 10.1016/j.tice.2018.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/29/2018] [Accepted: 09/17/2018] [Indexed: 12/06/2022]
Abstract
Gerbillus tarabuli is a nocturnal seasonal breeder desert rodent with a main breeding season in spring and summer, and sexual quiescence in winter. This species is an interesting model for studying testis function in rodents. Therefore, the present study was performed firstly to investigate the stages of seminiferous epithelium cycle of Gerbillus tarabuli with a histological, morphometric and statistical study. And secondly to investigate the expression and possible variations in cellular distribution of RFamide-related peptide-3 (RFRP-3) - the mammalian ortholog of avian gonadotropin-inhibitory hormone (GnIH) - during seminiferous epithelium cycle using immunohistochimestry. Our results showed for the first time that the seminiferous epithelium cycle in Gerbillus tarabuli comprises 14 well-defined stages according to the tubular morphology method. The seminiferous epithelium thickness showed a significant difference during the epithelium cycle, thus it was the only morphometric classification criterion of seminiferous epithelium cycle in Gerbillus tarabuli. The immunohistochemical study reveals, for the first time, the presence of RFRP-3 in Gerbillus tarabuli testes, in both testicular compartments: the tubular and the interstitial. RFRP-3 is expressed differently according to the seminiferous epithelium cycle, RFRP-3 seemed to be more expressed at the stages V-VII and XIII. RFRP-3 was detected in Sertoli cells (≈12%), spermatocytes I (≈19%), round and elongated spermatids (≈13%), and with a more important signal in Leydig cells (26.87%±0.07). These results indicated the importance of RFRP-3 in testicular function in Gerbillus tarabuli; its expression at the interstitial and germinal levels argues in favor of an involvement in androgens synthesis and in spermatogenesis specifically in meiosis and spermiogenesis. This action seems primordial from stages V-VII and XIII. Also, the study of the seminiferous epithelium cycle will enrich the histological identity of the species.
Collapse
Affiliation(s)
- Wissam Hamidatou Khati
- USTHB, University of Sciences and Technology of Houari Boumediene, Biological Sciences Faculty, Aride Area Research Laboratory, Algiers, Algeria.
| | - Elara N Moudilou
- UMRS 449- General Biology - Reproduction and Comparative Development, Lyon Catholic University, UDL, Ecole Pratique des Hautes Etudes, PSL, Lyon, France
| | - Jean-Marie Exbrayat
- UMRS 449- General Biology - Reproduction and Comparative Development, Lyon Catholic University, UDL, Ecole Pratique des Hautes Etudes, PSL, Lyon, France
| | - Sadjia Hammouche
- USTHB, University of Sciences and Technology of Houari Boumediene, Biological Sciences Faculty, Aride Area Research Laboratory, Algiers, Algeria
| |
Collapse
|
92
|
Treatment of the primary tumor in metastatic prostate cancer. World J Urol 2018; 37:2597-2606. [PMID: 30456709 DOI: 10.1007/s00345-018-2552-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/29/2018] [Indexed: 12/13/2022] Open
Abstract
The cornerstone of treatment for metastatic prostate cancer patients has been conventional androgen deprivation therapy, with additional systemic therapy initiated only after castration resistance, and local therapy reserved for palliation. Compelling results from modern trials challenge this paradigm, arguing for initiating escalated hormone therapy and/or chemotherapy during the castration-sensitive disease state for many patients. Furthermore, modern radiotherapy techniques allow for local control of disease with low risk of toxicity. Finally, new PET probes with enhanced sensitivity and accuracy are likely to become a part of routine staging and will lead to an increased incidence of patients with metastatic disease at presentation, with a shift toward identification of patients with limited metastatic disease. As such, the landscape is primed for investigations aimed to explore the role of primary tumor therapy for patients with metastatic prostate cancer. We review the existing data evaluating primary tumor therapy for patients with metastatic prostate cancer and describe ongoing clinical trials testing the hypothesis that primary tumor therapy may benefit patients with metastatic prostate cancer.
Collapse
|
93
|
Tambe P, Kumar P, Paknikar KM, Gajbhiye V. Decapeptide functionalized targeted mesoporous silica nanoparticles with doxorubicin exhibit enhanced apoptotic effect in breast and prostate cancer cells. Int J Nanomedicine 2018; 13:7669-7680. [PMID: 30538451 PMCID: PMC6251469 DOI: 10.2147/ijn.s184634] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Considering the increase in cancer cases and number of deaths per year worldwide, development of potential therapeutics is imperative. Mesoporous silica nanoparticles (MSNPs) are among the potential nanocarriers having unique properties for drug delivery. Doxorubicin (DOX), being the most commonly used drug, can be efficiently delivered to gonadotropin-releasing hormone (GnRH)-overexpressing cancer cells using functionalized MSNPs. AIM We report the development of decapeptide-conjugated MSNPs loaded with DOX for the targeted drug delivery in breast and prostate cancer cells. MATERIALS AND METHODS MSNPs were synthesized and subsequently functionalized with an analog of GnRH by using a heterobifunctional polyethylene glycol as a linker. These targeted MSNPs were then characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy. An anticancer drug DOX was loaded and then characterized for drug loading. DOX-loaded nanocarriers were then studied for their cellular uptake using confocal microscopy. The cytotoxicity of DOX-loaded targeted MSNPs and DOX-loaded bare MSNPs was studied by performing MTT assay on MCF-7 (breast cancer) and LNCaP (prostate cancer) cells. Further, acridine orange/ethidium bromide staining, as well as flow cytometry, was performed to confirm the apoptotic mode of cancer cell death. RESULTS MSNPs were conjugated with polyethylene glycol as well as an agonist of GnRH and subsequently loaded with DOX. These targeted and bare MSNPs showed excellent porous structure and loading of DOX. Further, higher uptake of DOX-loaded targeted MSNPs was observed as compared to DOX-loaded bare MSNPs in GnRH-overexpressing breast (MCF-7) and prostate (LNCaP) cancer cells. The targeted MSNPs also showed significantly higher (P<0.001) cytotoxicity than DOX-loaded bare MSNPs at different time points. After 48 hours of treatment, the IC50 value for DOX-loaded targeted MSNPs was found to be 0.44 and 0.43 µM in MCF-7 and LNCaP cells, respectively. Acridine orange/ethidium bromide staining and flow cytometry analysis further confirmed the pathway of cell death through apoptosis. CONCLUSION This study suggests GnRH analog-conjugated targeted MSNPs can be the suitable and promising approach for targeted drug delivery in all hormone-dependent cancer cells.
Collapse
Affiliation(s)
- Prajakta Tambe
- Nanobioscience Group, Agharkar Research Institute, Pune, India, ,
- Savitribai Phule Pune University, Pune, India, ,
| | - Pramod Kumar
- Nanobioscience Group, Agharkar Research Institute, Pune, India, ,
- Savitribai Phule Pune University, Pune, India, ,
| | - Kishore M Paknikar
- Nanobioscience Group, Agharkar Research Institute, Pune, India, ,
- Savitribai Phule Pune University, Pune, India, ,
| | - Virendra Gajbhiye
- Nanobioscience Group, Agharkar Research Institute, Pune, India, ,
- Savitribai Phule Pune University, Pune, India, ,
| |
Collapse
|
94
|
Changes in GABAergic Transmission to and Intrinsic Excitability of Gonadotropin-Releasing Hormone (GnRH) Neurons during the Estrous Cycle in Mice. eNeuro 2018; 5:eN-NWR-0171-18. [PMID: 30417076 PMCID: PMC6223108 DOI: 10.1523/eneuro.0171-18.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 10/12/2018] [Accepted: 10/16/2018] [Indexed: 11/21/2022] Open
Abstract
Gonadotropin-releasing hormone (GnRH) neurons form the final common central output pathway controlling fertility and are regulated by steroid feedback. In females, estradiol feedback action varies between negative and positive; negative feedback typically regulates episodic GnRH release whereas positive feedback initiates a surge of GnRH, and subsequently luteinizing hormone (LH) release ultimately triggering ovulation. During the estrous cycle, changes between estradiol negative and positive feedback occur with cycle stage and time of day, with positive feedback in the late afternoon of proestrus in nocturnal species. To test the hypotheses that synaptic and intrinsic properties of GnRH neurons are regulated by cycle stage and time of day, we performed whole-cell patch-clamp studies of GnRH neurons in brain slices from mice at two times considered negative feedback (diestrous PM and proestrous AM) and during positive feedback (proestrous PM). GABAergic transmission can excite GnRH neurons and was higher in cells from proestrous PM mice than cells from proestrous AM mice and approached traditional significance levels relative to cells from diestrous PM mice. Action potential response to current injection was also greater in cells from proestrous PM mice than the other two groups. Interestingly, the hormonal milieu of proestrous AM provided stronger negative feedback on both GnRH neuron excitability and GABAergic postsynaptic current (PSC) amplitude than diestrous PM. These observations demonstrate elements of both synaptic and intrinsic properties of GnRH neurons are regulated in a cycle-dependent manner and provide insight into the neurobiological mechanisms underlying cyclic changes in neuroendocrine function among states of estradiol negative and positive feedback.
Collapse
|
95
|
Uenoyama Y, Inoue N, Maeda KI, Tsukamura H. The roles of kisspeptin in the mechanism underlying reproductive functions in mammals. J Reprod Dev 2018; 64:469-476. [PMID: 30298825 PMCID: PMC6305848 DOI: 10.1262/jrd.2018-110] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Kisspeptin, identified as a natural ligand of GPR54 in 2001, is now considered as a master regulator of puberty and subsequent reproductive functions in mammals. Our previous studies using
Kiss1 knockout (KO) rats clearly demonstrated the indispensable role of kisspeptin in gonadotropin-releasing hormone (GnRH)/gonadotropin secretion. In addition, behavioral
analyses of Kiss1 KO rats revealed an organizational effect of kisspeptin on neural circuits controlling sexual behaviors. Our studies using transgenic mice carrying a
region-specific Kiss1 enhancer-driven reporter gene provided a clue as to the mechanism by which estrogen regulates Kiss1 expression in hypothalamic
kisspeptin neurons. Analyses of Kiss1 expression and gonadotropin secretion during the pubertal transition shed light on the mechanism triggering GnRH/gonadotropin secretion
at the onset of puberty in rats. Here, we summarize data obtained from the aforementioned studies and revisit the physiological roles of kisspeptin in the mechanism underlying reproductive
functions in mammals.
Collapse
Affiliation(s)
- Yoshihisa Uenoyama
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Naoko Inoue
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Kei-Ichiro Maeda
- Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Hiroko Tsukamura
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
96
|
Kaprara A, Huhtaniemi IT. The hypothalamus-pituitary-gonad axis: Tales of mice and men. Metabolism 2018; 86:3-17. [PMID: 29223677 DOI: 10.1016/j.metabol.2017.11.018] [Citation(s) in RCA: 212] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 11/28/2017] [Accepted: 11/29/2017] [Indexed: 02/06/2023]
Abstract
Reproduction is controlled by the hypothalamic-pituitary-gonadal (HPG) axis. Gonadotropin-releasing hormone (GnRH) neurons play a central role in this axis through production of GnRH, which binds to a membrane receptor on pituitary gonadotrophs and stimulates the biosynthesis and secretion of follicle-stimulating hormone (FSH) and luteinizing hormone (LH). Multiple factors affect GnRH neuron migration, GnRH gene expression, GnRH pulse generator, GnRH secretion, GnRH receptor expression, and gonadotropin synthesis and release. Among them anosmin is involved in the guidance of the GnRH neuron migration, and a loss-of-function mutation in its gene leads to a failure of their migration from the olfactory placode to the hypothalamus, with consequent anosmic hypogonadotropic hypogonadism (Kallmann syndrome). There are also cases of hypogonadotropic hypogonadim with normal sense of smell, due to mutations of other genes. Another protein, kisspeptin plays a crucial role in the regulation of GnRH pulse generator and the pubertal development. GnRH is the main hypothalamic regulator of the release of gonadotropins. Finally, FSH and LH are the essential hormonal regulators of testicular functions, acting through their receptors in Sertoli and Leydig cells, respectively. The main features of the male HPG axis will be described in this review.
Collapse
Affiliation(s)
- Athina Kaprara
- Unit of Reproductive Endocrinology, Medical School, Aristotle University of Thessaloniki, Greece.
| | | |
Collapse
|
97
|
Raftogianni A, Roth LC, García-González D, Bus T, Kühne C, Monyer H, Spergel DJ, Deussing JM, Grinevich V. Deciphering the Contributions of CRH Receptors in the Brain and Pituitary to Stress-Induced Inhibition of the Reproductive Axis. Front Mol Neurosci 2018; 11:305. [PMID: 30214395 PMCID: PMC6125327 DOI: 10.3389/fnmol.2018.00305] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/09/2018] [Indexed: 01/13/2023] Open
Abstract
Based on pharmacological studies, corticotropin-releasing hormone (CRH) and its receptors play a leading role in the inhibition of the hypothalamic–pituitary–gonadal (HPG) axis during acute stress. To further study the effects of CRH receptor signaling on the HPG axis, we generated and/or employed male mice lacking CRH receptor type 1 (CRHR1) or type 2 (CRHR2) in gonadotropin-releasing hormone neurons, GABAergic neurons, or in all central neurons and glia. The deletion of CRHRs revealed a preserved decrease of plasma luteinizing hormone (LH) in response to either psychophysical or immunological stress. However, under basal conditions, central infusion of CRH into mice lacking CRHR1 in all central neurons and glia, or application of CRH to pituitary cultures from mice lacking CRHR2, failed to suppress LH release, unlike in controls. Our results, taken together with those of the earlier pharmacological studies, suggest that inhibition of the male HPG axis during acute stress is mediated by other factors along with CRH, and that CRH suppresses the HPG axis at the central and pituitary levels via CRHR1 and CRHR2, respectively.
Collapse
Affiliation(s)
- Androniki Raftogianni
- Schaller Group on Neuropeptides, German Cancer Research Center, Heidelberg - Central Institute of Mental Health, Mannheim, Germany.,Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Lena C Roth
- Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Diego García-González
- Department of Clinical Neurobiology, Medical Faculty of Heidelberg, University of Heidelberg - German Cancer Research Center, Heidelberg, Germany
| | - Thorsten Bus
- Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Heidelberg, Germany.,Max Planck Research Group at the Institute for Anatomy and Cell Biology, University of Heidelberg, Heidelberg, Germany
| | - Claudia Kühne
- Molecular Neurogenetics Research Group, Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Hannah Monyer
- Department of Clinical Neurobiology, Medical Faculty of Heidelberg, University of Heidelberg - German Cancer Research Center, Heidelberg, Germany
| | - Daniel J Spergel
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, United States
| | - Jan M Deussing
- Molecular Neurogenetics Research Group, Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Valery Grinevich
- Schaller Group on Neuropeptides, German Cancer Research Center, Heidelberg - Central Institute of Mental Health, Mannheim, Germany.,Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Heidelberg, Germany
| |
Collapse
|
98
|
Medina-Aguiñaga D, Munoz A, Luna M, Martinez-Moreno CG, Quintanar-Stephano A, Quintanar JL. Administration of leuprolide acetate, a GnRH agonist, improves urodynamic parameters in ovariectomized rats. Neurourol Urodyn 2018; 37:1574-1582. [PMID: 30133853 DOI: 10.1002/nau.23505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/08/2017] [Indexed: 12/24/2022]
Abstract
AIM To evaluate the effects of a treatment with leuprolide acetate (LA) on bladder overactivity as well as the expression of gonadotropin releasing hormone receptor (GnRH-R), and neurofilaments NF68 and NF200 in female rats with overactive bladder induced by castration. METHODS Changes in the urodynamic parameters were determined in SHAM, ovariectomized (OVX) and ovariectomized rats treated with LA (OVX-LA). A semi-quantitative analysis for the expression pattern of GnRH-R and neurofilaments NF68 and NF200 were determined. RESULTS Forty-three days after ovariectomy, rats from the OVX group have significant lower values for intercontractile interval (ICI) and compliance (C); as well as higher values for basal bladder pressure (BP) and frequency of non-voiding contractions (NVC). The systemic application of LA increased voiding volume (Vv) and pressure threshold (ThP) in the OVX-LA animals. The application of LA reduced the high frequency of NVC in the OVX rats. No significant differences were found for Vv and NVCs between the OVX-LA vs SHAM groups. At the mid part of the bladder, the presence of GnRH-R was evidenced in the urothelium of the SHAM group. The OVX animals showed different pattern of immunolabeling for GnRH-R as well as for neurofilaments NF200 and NF68, whereas in the OVX-LA group the immunofluorescence pattern was similar to the one seen in SHAM bladders (P < 0.05 for OVX vs OVX + LA). CONCLUSIONS the results suggest that systemic application of LA can improve bladder dysfunction in castrated rats, and perhaps considered as a treatment for overactive bladder conditions secondary to menopause.
Collapse
Affiliation(s)
- Daniel Medina-Aguiñaga
- Laboratory of Neurophysiology, Department of Physiology and Pharmacology, Autonomous University of Aguascalientes, Aguascalientes, México
| | - Alvaro Munoz
- Regenerative Medicine Program-Urology, Houston Methodist Research Institute, Houston, Texas
| | - Maricela Luna
- Laboratory of Hormones, Department Cellular and Molecular Neurobiology, Institute of Neurobiology, Juriquilla Campus, National Autonomous University of México, Querétaro, México
| | - Carlos G Martinez-Moreno
- Laboratory of Hormones, Department Cellular and Molecular Neurobiology, Institute of Neurobiology, Juriquilla Campus, National Autonomous University of México, Querétaro, México
| | - Andrés Quintanar-Stephano
- Laboratory of Neuroimmunoendocrinology, Department of Physiology and Pharmacology, Autonomous University of Aguascalientes, Aguascalientes, México
| | - J Luis Quintanar
- Laboratory of Neurophysiology, Department of Physiology and Pharmacology, Autonomous University of Aguascalientes, Aguascalientes, México
| |
Collapse
|
99
|
Abstract
Gonadotropin-releasing hormone (GnRH) was first discovered in mammals on account of its effect in triggering pituitary release of gonadotropins and the importance of this discovery was recognized forty years ago in the award of the 1977 Nobel Prize for Physiology or Medicine. Investigation of the evolution of GnRH revealed that GnRH-type signaling systems occur throughout the chordates, including agnathans (e.g. lampreys) and urochordates (e.g. sea squirts). Furthermore, the discovery that adipokinetic hormone (AKH) is the ligand for a GnRH-type receptor in the arthropod Drosophila melanogaster provided evidence of the antiquity of GnRH-type signaling. However, the occurrence of other AKH-like peptides in arthropods, which include corazonin and AKH/corazonin-related peptide (ACP), has complicated efforts to reconstruct the evolutionary history of this family of related neuropeptides. Genome/transcriptome sequencing has revealed that both GnRH-type receptors and corazonin-type receptors occur in lophotrochozoan protostomes (annelids, mollusks) and in deuterostomian invertebrates (cephalochordates, hemichordates, echinoderms). Furthermore, peptides that act as ligands for GnRH-type and corazonin-type receptors have been identified in mollusks. However, what has been lacking is experimental evidence that distinct GnRH-type and corazonin-type peptide-receptor signaling pathways occur in deuterostomes. Importantly, we recently reported the identification of two neuropeptides that act as ligands for either a GnRH-type receptor or a corazonin-type receptor in an echinoderm species - the common European starfish Asterias rubens. Discovery of distinct GnRH-type and corazonin-type signaling pathways in this deuterostomian invertebrate has demonstrated for the first time that the evolutionarily origin of these paralogous systems can be traced to the common ancestor of protostomes and deuterostomes. Furthermore, lineage-specific losses of corazonin signaling (in vertebrates, urochordates and nematodes) and duplication of the GnRH signaling system in arthropods (giving rise to the AKH and ACP signaling systems) and quadruplication of the GnRH signaling system in vertebrates (followed by lineage-specific losses or duplications) accounts for the phylogenetic distribution of GnRH/corazonin-type peptide-receptor pathways in extant animals. Informed by these new insights, here we review the history of research on the evolution of GnRH/corazonin-type neuropeptide signaling. Furthermore, we propose a standardized nomenclature for GnRH/corazonin-type neuropeptides wherein peptides are either named "GnRH" or "corazonin", with the exception of the paralogous GnRH-type peptides that have arisen by gene duplication in the arthropod lineage and which are referred to as "AKH" (or red pigment concentrating hormone, "RCPH", in crustaceans) and "ACP".
Collapse
Affiliation(s)
- Meet Zandawala
- Stockholm University, Department of Zoology, Stockholm, Sweden
| | - Shi Tian
- Queen Mary University of London, School of Biological & Chemical Sciences, Mile End Road, London E1 4NS, UK
| | - Maurice R Elphick
- Queen Mary University of London, School of Biological & Chemical Sciences, Mile End Road, London E1 4NS, UK.
| |
Collapse
|
100
|
Tsai PS. Gonadotropin-releasing hormone by any other name would smell as sweet. Gen Comp Endocrinol 2018; 264:58-63. [PMID: 28927877 DOI: 10.1016/j.ygcen.2017.09.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 08/28/2017] [Accepted: 09/13/2017] [Indexed: 12/11/2022]
Abstract
The goal of this article is to discuss the nomenclature of members of the gonadotropin-releasing hormone (GnRH) superfamily. This superfamily currently consists of 5 families: (1) vertebrate GnRH, (2) adipokinetic hormone, (3) corazonin, (4) adipokinetic hormone/corazonin-related peptide and (5) invertebrate GnRH (or GnRH/corazonin). The naming of some of these peptides, especially members of the invertebrate GnRH family, may not have reflected their true evolutionary origin, leading to some confusion and controversy. Using a few examples from the invertebrate GnRH family, this article proposes several peptide-naming criteria and discusses naming challenges and problem cases. It is recommended that the invertebrate GnRH family be renamed based on the naming criteria of (1) mature peptide structure, (2) prepropeptide phylogeny, and (3) receptor phylogeny. Following this approach, the names of the peptides should reflect their phylogeny, and if possible, delineate a monophyletic group.
Collapse
Affiliation(s)
- Pei-San Tsai
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado, Boulder, CO 80309-0354, United States.
| |
Collapse
|