51
|
Chiba T, Hashimoto Y, Tajima H, Yamada M, Kato R, Niikura T, Terashita K, Schulman H, Aiso S, Kita Y, Matsuoka M, Nishimoto I. Neuroprotective effect of activity-dependent neurotrophic factor against toxicity from familial amyotrophic lateral sclerosis-linked mutant SOD1 in vitro and in vivo. J Neurosci Res 2005; 78:542-52. [PMID: 15478191 DOI: 10.1002/jnr.20305] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common fatal motor neuron disease, affecting mostly middle-aged people. There are no curative therapies for ALS. Several lines of evidence have supported the notion that the proapoptotic property of familial ALS (FALS)-linked mutant Cu/Zn-superoxide dismutase-1 (SOD1) genes may play an important role in the pathogenesis of some FALS cases. Here we found that activity-dependent neurotrophic factor (ADNF), a neurotrophic factor originally identified to have the anti-Alzheimer's disease (AD) activity, protected against neuronal cell death caused by FALS-linked A4T-, G85R- and G93R-SOD1 in a dose-responsive fashion. Notably, ADNF-mediated complete suppression of SOD1 mutant-induced neuronal cell death occurs at concentrations as low as 100 fM. ADNF maintains the neuroprotective activity even at concentrations of more than 1 nM. This is in clear contrast to the previous finding that ADNF loses its protective activity against neurotoxicity induced by AD-relevant insults, including some familial AD genes and amyloid beta peptide at concentrations of more than 1 nM. Characterization of the neuroprotective activity of ADNF against cell death caused by SOD1 mutants revealed that CaMKIV and certain tyrosine kinases are involved in ADNF-mediated neuroprotection. Moreover, in vivo studies showed that intracerebroventricularly administered ADNF significantly improved motor performance of G93A-SOD1 transgenic mice, a widely used model of FALS, although survival was extended only marginally. Thus, the neuroprotective activity of ADNF provides a novel insight into the development of curative drugs for ALS.
Collapse
Affiliation(s)
- Tomohiro Chiba
- Department of Pharmacology, KEIO University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Hsieh MH, Nguyen HT. Molecular Mechanism of Apoptosis Induced by Mechanical Forces. INTERNATIONAL REVIEW OF CYTOLOGY 2005; 245:45-90. [PMID: 16125545 DOI: 10.1016/s0074-7696(05)45003-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In all biological systems, a balance between cell proliferation/growth and death is required for normal development as well as for adaptation to a changing environment. To affect their fate, it is essential for cells to integrate signals from the environment. Recently, it has been recognized that physical forces such as stretch, strain, and tension play a critical role in regulating this process. Despite intensive investigation, the pathways by which mechanical signals are converted to biochemical responses is yet to be completely understood. In this review, we will examine our current understanding of how mechanical forces induce apoptosis in a variety of biological systems. Rather than being a degenerative event, physical forces act through specific receptor-like molecules such as integrins, focal adhesion proteins, and the cytoskeleton. These molecules in turn activate a limited number of protein kinase pathways (p38 MAPK and JNK/SAPK), which amplify the signal and activate enzymes (caspases) that promote apoptosis. Physical forces concurrently activate other signaling pathways such as PIK-3 and Erk 1/2 MAPK, which modulate the apoptotic response. The cell phenotype and the character of the physical stimuli determine which pathways are activated and, consequently, allow for variability in response to a specific stimulus in different cell types.
Collapse
Affiliation(s)
- Michael H Hsieh
- Department of Urology, University of California San Francisco, San Francisco, California 94143, USA
| | | |
Collapse
|
53
|
Esposito L, Gan L, Yu GQ, Essrich C, Mucke L. Intracellularly generated amyloid-β peptide counteracts the antiapoptotic function of its precursor protein and primes proapoptotic pathways for activation by other insults in neuroblastoma cells. J Neurochem 2004; 91:1260-74. [PMID: 15584903 DOI: 10.1111/j.1471-4159.2004.02816.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Most mutations in amyloid precursor proteins (APPs) linked to early onset familial Alzheimer's disease (FAD) increase the production of amyloid-beta peptides ending at residue 42 (Abeta42), which are released from APP by beta- and gamma-secretase cleavage. Stably transfected cells expressing wild-type human APP (APP(WT)) were more resistant to apoptosis-inducing treatments than cells expressing FAD-mutant human APP (APP(FAD)). Preventing Abeta42 production with an M596I mutation (beta-), which blocks beta-secretase cleavage of APP, or by treatment with a gamma-secretase inhibitor increased the resistance of APP(FAD)-expressing cells to apoptosis. Exposing hAPP(FAD/beta-) cells to exogenous Abeta42 or conditioned medium from Abeta42-producing APP(FAD) cells did not diminish their resistance to apoptosis. Preventing APP from entering the distal secretory pathway, where most Abeta peptides are generated, by retaining APP in the endoplasmic reticulum (ER)/intermediate compartment (IC) increased the resistance of APP(FAD)-expressing cells to apoptosis and did not alter the resistance of APP(WT)-expressing cells. p53-mediated gene transactivation after apoptosis-inducing treatments was much stronger in APP(FAD) cells than in hAPP(WT) or hAPP(FAD/beta-) cells. In contrast, upon induction of ER stress, cells expressing APP(FAD), hAPP(FAD/beta-), or APP(WT) had comparable levels of glucose-regulated protein-78 mRNA, an unfolded protein response indicator. We conclude that Abeta, especially intracellular Abeta, counteracts the antiapoptotic function of its precursor protein and predisposes cells to p53-mediated, and possibly other, proapoptotic pathways.
Collapse
Affiliation(s)
- Luke Esposito
- Gladstone Institute of Neurological Disease, Department of Neurology, University of California, San Francisco, California, USA
| | | | | | | | | |
Collapse
|
54
|
Abe Y, Hashimoto Y, Tomita Y, Terashita K, Aiso S, Tajima H, Niikura T, Matsuoka M, Nishimoto I. Cytotoxic mechanisms by M239V presenilin 2, a little-analyzed Alzheimer's disease-causative mutant. J Neurosci Res 2004; 77:583-95. [PMID: 15264228 DOI: 10.1002/jnr.20163] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Although neurotoxic functions are well characterized in familial Alzheimer's disease (FAD)-linked N141I mutant of presenilin (PS)2, little has been known about M239V-PS2, another established FAD-causative mutant. We found that expression of M239V-PS2 caused neuronal cytotoxicity. M239V-PS2 exerted three forms of cytotoxicity: one was sensitive to both an antioxidant glutathione-ethyl-ester (GEE) and a caspase inhibitor Ac-DEVD-CHO (DEVD); the second was sensitive to GEE but resistant to DEVD; and the third was resistant to both. The GEE/DEVD-sensitive cytotoxicity by M239V-PS2 was likely through NADPH oxidase and the GEE-sensitive/DEVD-resistant cytotoxicity through xanthine oxidase (XO). Both mechanisms by M239V-PS2 were suppressed by pertussis toxin (PTX) and were mediated by Galpha(o), but not by Galpha(i). Although Abeta1-43 itself induced no cytotoxicity, Abeta1-43 potentiated all three components of M239V-PS2 cytotoxicity. As these cytotoxic mechanisms by M239V-PS2 are fully shared with N141I-PS2, they are most likely implicated in the pathomechanism of FAD by PS2 mutations. Notably, cytotoxicity by M239V-PS2 could be inhibited by the combination of two clinically usable inhibitors of superoxide-generating enzymes, apocynin and oxypurinol.
Collapse
Affiliation(s)
- Yoichiro Abe
- Department of Pharmacology, KEIO University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Patel TB. Single transmembrane spanning heterotrimeric g protein-coupled receptors and their signaling cascades. Pharmacol Rev 2004; 56:371-85. [PMID: 15317909 DOI: 10.1124/pr.56.3.4] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Heptahelical of serpentine receptors such as the adrenergic receptors are well known to mediate their actions via heterotrimeric GTP-binding proteins. Likewise, receptors that traverse the cell membrane once have been shown to mediate their biological actions by activating several different mechanisms including stimulation of their intrinsic tyrosine kinase activities or the kinase activities of other proteins. Some of these single transmembrane receptors have an intrinsic guanylyl cyclase activity and can stimulate the cyclic GMP second messenger system; however, over the last few years, several studies have shown the involvement of heterotrimeric GTP-binding proteins in mediating signals that eventually culminate in the biological actions of single transmembrane spanning receptors and proteins. These receptors include the receptor tyrosine kinases that mediate the actions of growth factors such as epidermal growth factor, insulin, insulin-like growth factor as well as receptors for atrial natiuretic hormone or the zona pellucida protein (ZP3) and integrins. In this review, the significance of the coupling of the single transmembrane spanning receptors to G proteins has been highlighted by providing several examples of the concept that signaling via these receptors may involve the activation of multiple signaling cascades.
Collapse
Affiliation(s)
- Tarun B Patel
- Department of Pharmacology and Experimental Therapeutics, Loyola University Chicago, Stritch School of Medicine, 2160 S. First Avenue, Maywood, IL 60513, USA.
| |
Collapse
|
56
|
Heredia L, Lin R, Vigo FS, Kedikian G, Busciglio J, Lorenzo A. Deposition of amyloid fibrils promotes cell-surface accumulation of amyloid β precursor protein. Neurobiol Dis 2004; 16:617-29. [PMID: 15262274 DOI: 10.1016/j.nbd.2004.04.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2003] [Revised: 04/09/2004] [Accepted: 04/19/2004] [Indexed: 12/21/2022] Open
Abstract
Amyloid beta protein (Abeta) deposition and neuronal degeneration are characteristic pathological features of Alzheimer's disease (AD). In vitro, Abeta fibrils (fAbeta) induce neuronal degeneration reminiscent to AD, but the mechanism of neurotoxicity is unknown. Here we show that amyloid fibrils increase the level of cell-surface full-length amyloid beta precursor protein (h-AbetaPP) and secreted AbetaPP (s-AbetaPP). Pulse-chase analysis indicated that fAbeta selectively inhibited the turnover of cell-surface AbetaPP, without altering its intracellular levels. FAbeta-induced AbetaPP accumulation was not abrogated by cycloheximide, suggesting that increased protein synthesis is not critically required. Abeta fibrils sequester s-AbetaPP from the culture medium and promote its accumulation at the cell surface, indicating that binding of Abeta fibrils mediates AbetaPP accumulation. A time course analysis of Abeta treatment showed that AbetaPP level is elevated before significant cell death can be detected, while other toxic insults do not augment AbetaPP level, suggesting that AbetaPP may be specifically involved in early stages of Abeta-induced neurodegeneration. Finally, Abeta fibrils promote clustering of h-AbetaPP in abnormal focal adhesion-like (FA-like) structures that mediate neuronal dystrophy, increasing its association with the cytoskeleton. These results indicate that the interaction of Abeta fibrils with AbetaPP is an early event in the mechanism of Abeta-induced neurodegeneration that may play a significant role in AD pathogenesis.
Collapse
Affiliation(s)
- Lorena Heredia
- Laboratory of Experimental Neuropathology, Instituto de Investigación Médica Mercedes y Martín Ferreyra-INIMEC/CONICET, Córdoba, 5000 Argentina
| | | | | | | | | | | |
Collapse
|
57
|
Kawasumi M, Chiba T, Yamada M, Miyamae-Kaneko M, Matsuoka M, Nakahara J, Tomita T, Iwatsubo T, Kato S, Aiso S, Nishimoto I, Kouyama K. Targeted introduction of V642I mutation in amyloid precursor protein gene causes functional abnormality resembling early stage of Alzheimer's disease in aged mice. Eur J Neurosci 2004; 19:2826-38. [PMID: 15147316 DOI: 10.1111/j.0953-816x.2004.03397.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
While the exact aetiology of Alzheimer's disease (AD) is unknown, distinct genetic mutations have been identified for the rare cases of familial AD (FAD). V642I mutation in amyloid precursor protein (APP) co-segregates with FAD with perfect penetration, and the clinicopathological characteristics of patients with this mutation resemble that of sporadic AD. To examine the pathogenic process of this FAD-linked trait in vivo, we produced a mouse with the corresponding point mutation in the APP gene using homologous recombination and Cre-loxP site-specific recombination ('knock-in' technique). Mice with the heterozygous V642I-APP allele most precisely reflected the genotype of humans bearing this mutation. For the observation period of 2.5 years the mutants stayed apparently indistinguishable from the wild-type littermates. However, behavioural analysis revealed significantly deteriorated long-term memory in mutants when examined for the retention of spatial attention. Interestingly, acquisition of spatial memory was slightly affected but short-term working memory was not deteriorated at all. Histological examination was negative for formation of neuritic plaques or neurofibrillary tangles, whereas the relative amount of longer form of beta-amyloid species A beta 42(43) was significantly increased against that of the shorter form (A beta 40) in the mutant brain homogenates. We conclude that a V642I-APP mutant allele in aged mice confers functional components, but not organic components, of the AD-related phenotype that are observed in the early stage of AD. This V642I-APP knock-in mutant line may serve as a model to study the early pathogenic processes of AD in vivo and to develop therapeutics for this stage.
Collapse
Affiliation(s)
- Masaoki Kawasumi
- Department of Pharmacology, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Hashimoto Y, Terashita K, Niikura T, Yamagishi Y, Ishizaka M, Kanekura K, Chiba T, Yamada M, Kita Y, Aiso S, Matsuoka M, Nishimoto I. Humanin antagonists: mutants that interfere with dimerization inhibit neuroprotection by Humanin. Eur J Neurosci 2004; 19:2356-64. [PMID: 15128389 DOI: 10.1111/j.0953-816x.2004.03298.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The 24-residue peptide Humanin (HN) protects neuronal cells from insults of various Alzheimer's disease (AD) genes and Abeta by forming a homodimer. We have previously shown that P3A, S7A, C8A, L9A, L12A, T13A, S14A and P19A mutations nullify the neuroprotective function of HN [Yamagishi, Y., Hashimoto, Y., Niikura, T. & Nishimoto, I. (2003) Peptides, 24, 585-595]. Here we examined whether any of these 'null' mutants could function as dominant-negative mutants. Homodimerization-defective mutants, P3A-, L12A-, S14A- and P19A-HN, specifically blocked neuroprotection by HN, but not by activity-dependent neurotrophic factor. Furthermore, insertion of S7A, the mutation that blocks the homodimerization of HN, but not insertion of G5A abolished the antagonizing function of L12A-HN. While L12A-HN and G5A/L12A-HN actually inhibited HN homodimerization, S7A/L12A-HN had no effect. These data indicate that P3A-, L12A-, S14A- and P19A-HN function as HN antagonists by forming an inactive dimer with HN. This study provides a novel insight into the understanding of the in vivo function of HN, as well as into the development of clinically applicable HN neutralizers.
Collapse
Affiliation(s)
- Yuichi Hashimoto
- Departments of Pharmacology and Anatomy, KEIO University School of Medicine, General Research Building, 3rd and 6th Floors, 35 Shinanomachi, Tokyo 160-8582, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Hashimoto Y, Tsuji O, Kanekura K, Aiso S, Niikura T, Matsuoka M, Nishimoto I. The Gtx Homeodomain Transcription Factor Exerts Neuroprotection Using Its Homeodomain. J Biol Chem 2004; 279:16767-77. [PMID: 14754886 DOI: 10.1074/jbc.m313630200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Certain cases of familial Alzheimer's disease are caused by mutants of amyloid-beta precursor protein (AbetaPP), including V642I-AbetaPP, K595N/M596L-AbetaPP (NL-AbetaPP), A617G-AbetaPP, and L648P-AbetaPP. By using an unbiased functional screening with transfection and expression of a human brain cDNA library, we searched for genes that protect neuronal cells from toxicity by V642I-AbetaPP. One protective clone was identical to the human GTX, a neuronal homeobox gene. Human Gtx (hGtx) inhibited caspase inhibitor-sensitive neuronal cell death not only by V642I-AbetaPP but also by L648P-, NL-, A617G-AbetaPP, apolipoprotein E4, and Abeta. The region of hGtx responsible for this rescue function was specified to be its homeodomain (Lys148-His207). The rescue function was shared by DLX4, a distal-less family gene with a homeodomain only 38.3% homologous to that of hGtx, suggesting that this function would be generally shared by homeodomains. The neuroprotective function of hGtx was attributable to hGtx-stimulated production and secretion of insulin-like growth factor-I. This study provides molecular clues to understand how neuronal cells developmentally regulate themselves against cell death as well as to develop reagents effective in curative therapeutics of Alzheimer's disease.
Collapse
Affiliation(s)
- Yuichi Hashimoto
- Departments of Pharmacology and Anatomy, KEIO University School of Medicine, 35 Shinanomachi, Tokyo 160-8582, Japan
| | | | | | | | | | | | | |
Collapse
|
60
|
Niikura T, Yamada M, Chiba T, Aiso S, Matsuoka M, Nishimoto I. Characterization of V642I-A?PP-induced cytotoxicity in primary neurons. J Neurosci Res 2004; 77:54-62. [PMID: 15197738 DOI: 10.1002/jnr.20139] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Amyloid precursor protein (AbetaPP), a precursor of amyloid beta (Abeta) peptide, is one of the molecules involved in the pathogenesis of Alzheimer's disease (AD). Specific mutations in AbetaPP have been found in patients inheriting familial AD (FAD). These mutant AbetaPP proteins cause cell death in neuronal cell lines in vitro, but the molecular mechanism of cytotoxicity has not yet been clarified completely. We analyzed the cytotoxic mechanisms of the London-type AbetaPP mutant, V642I-AbetaPP, in primary cortical neurons utilizing an adenovirus-mediated gene transfer system. Expression of V642I-AbetaPP protein induced degeneration of the primary neurons. This cytotoxicity was blocked by pertussis toxin, a specific inhibitor for heterotrimeric G proteins, Go/i, and was suppressed by an inhibitor of caspase-3/7 and an antioxidant, glutathione ethyl ester. A specific inhibitor for NADPH oxidase, apocynin, but not a xanthine oxidase inhibitor or a nitric oxide inhibitor, blocked V642I-AbetaPP-induced cytotoxicity. Among mitogen-activated protein kinase (MAPK) family proteins, c-Jun N-terminal kinase (JNK) and p38MAPK, but not extracellular regulated kinase (ERK), were involved in this cytotoxic pathway. The V642I-AbetaPP-induced cytotoxicity was not suppressed by two secretase inhibitors, suggesting that Abeta does not play a major role in this cytotoxicity. Two neuroprotective factors, insulin-like growth factor I (IGF-I) and Humanin, protected these primary neurons from V642I-AbetaPP-induced cytotoxicity. Furthermore, interleukin-6 and -11 also attenuated this cytotoxicity. This study demonstrated that the signaling pathway activated by mutated AbetaPP in the primary neurons is the same as that by the other artificial insults such as antibody binding to AbetaPP and the artificial dimerization of cytoplasmic domain of AbetaPP. The potential of neurotrophic factors and cytokines in AD therapy is also indicated.
Collapse
Affiliation(s)
- Takako Niikura
- Department of Pharmacology, KEIO University School of Medicine, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
61
|
Hashimoto Y, Tsukamoto E, Niikura T, Yamagishi Y, Ishizaka M, Aiso S, Takashima A, Nishimoto I. Amino- and carboxyl-terminal mutants of presenilin 1 cause neuronal cell death through distinct toxic mechanisms: Study of 27 different presenilin 1 mutants. J Neurosci Res 2004; 75:417-28. [PMID: 14743455 DOI: 10.1002/jnr.10861] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Presenilin (PS)1 and its mutants, which consist of the N-terminal and C-terminal fragments, cause certain familial forms of Alzheimer's disease (FAD). Our earlier studies found that FAD-linked M146L-PS1 causes neuronal cell death through nitrogen oxide synthase (NOS) and that FAD-linked N141I-PS2, another member of the PS family, causes neuronal cell death through NADPH oxidase. In this study, we examined 27 different FAD-linked mutants of PS1, and found that PS1 mutants with mutations in the N-terminal fragment caused NOS inhibitor (NOSI)-sensitive neuronal cell death; in contrast, the PS1 mutants with mutations in the C-terminal fragment caused NOSI-resistant neuronal cell death. The former toxicity was resistant to the specific NADPH oxidase inhibitor apocynin and was inhibited by Humanin (HN), a newly identified neuroprotective factor against Alzheimer's disease (AD)-relevant insults, but not by insulin-like growth factor-I (IGF-I). In contrast, the latter toxicity was sensitive to apocynin and inhibited by both IGF-I and HN. This study indicates for the first time that N- and C-terminal fragment PS1 mutants can generate distinct neurotoxic signals, which will provide an important clue to the understanding of the entire array of neurotoxic signals generated by FAD-causative mutations of PS1.
Collapse
Affiliation(s)
- Yuichi Hashimoto
- Department of Pharmacology, KEIO University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Analysis of neurons created from wild-type and Alzheimer's mutation knock-in embryonic stem cells by a highly efficient differentiation protocol. J Neurosci 2003. [PMID: 13679420 DOI: 10.1523/jneurosci.23-24-08513.2003] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
It is impossible to obtain and amplify live neurons from Alzheimer's disease (AD) patients. To establish the neurons harboring AD abnormality, we constructed mouse embryonic stem (ES) cells, in which the AD-causative V642I mutation was introduced to the endogenous amyloid precursor protein (APP) gene, in combination with a protocol to efficiently differentiate ES cells into postmitotic neurons without using a cell sorter. By this protocol, ES cells differentiated into >90% of the central type of adult postmitotic neurons. Neurons derived from V642I-APP knock-in ES cells were indistinguishable from wild-type ES-derived neurons, as determined by the expression of various markers for neuronal differentiation. Notably, V642I-APP knock-in ES cell-derived neurons exhibited significantly increased secretion of Abeta42 without AD-related hyperphosphorylation of tau, indicating that the direct output of the AD-causative mutation is increased Abeta42 secretion. In this study, we analyze created neurons with wild-type and AD genotypes and propose a new strategy for generating neurons for any dominantly inherited neurodegenerative diseases. The strategy can be applied to create human neurons with AD or any other neurodegenerative disease by using human ES cells.
Collapse
|
63
|
Lovell MA, Xie C, Xiong S, Markesbery WR. Wilms' tumor suppressor (WT1) is a mediator of neuronal degeneration associated with the pathogenesis of Alzheimer's disease. Brain Res 2003; 983:84-96. [PMID: 12914969 DOI: 10.1016/s0006-8993(03)03032-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Wilms' tumor suppressor (WT1), a 52- to 54-kda transcription factor, is the gene product of Wilms' tumor 1 (wt1), one of at least three genes involved in the development of a pediatric kidney cancer. Expression patterns of WT1 indicate that it is not restricted to the kidney but may play a role in the development and homeostasis of other tissues as well. WT1 has been implicated in various cellular processes including proliferation, differentiation, and apoptosis. High levels of WT1 induce apoptosis independent of p53, whereas low levels of WT1 inhibit apoptosis. Because apoptosis has been suggested to play a role in neurodegeneration in Alzheimer's disease (AD), immunohistochemistry of WT1 and paired helical filament (PHF) in serial sections was carried out. Immunohistochemical localization of WT1 and PHF showed the presence of WT1 in approximately 42% of PHF-positive neurofibrillary tangle containing-neurons. Laser confocal microscopy of hippocampal neuron cultures undergoing apoptosis induced by amyloid beta peptide (Abeta) or staurosporine demonstrated significant time-dependent elevations of WT1 correlating with increased levels of apoptosis. Blockade of WT1 transcription by antisense oligonucleotide reduced WT1 expression and prevented neuronal apoptosis in both Abeta- and staurosporine-treated cultures. Together, these data suggest a role for WT1 in the neurodegeneration observed in AD brain.
Collapse
Affiliation(s)
- Mark A Lovell
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA.
| | | | | | | |
Collapse
|
64
|
DNA synthesis and neuronal apoptosis caused by familial Alzheimer disease mutants of the amyloid precursor protein are mediated by the p21 activated kinase PAK3. J Neurosci 2003. [PMID: 12890786 DOI: 10.1523/jneurosci.23-17-06914.2003] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Apoptotic pathways and DNA synthesis are activated in neurons in the brains of individuals with Alzheimer disease (AD). However, the signaling mechanisms that mediate these events have not been defined. We show that expression of familial AD (FAD) mutants of the amyloid precursor protein (APP) in primary neurons in culture causes apoptosis and DNA synthesis. Both the apoptosis and the DNA synthesis are mediated by the p21 activated kinase PAK3, a serine-threonine kinase that interacts with APP. A dominant-negative kinase mutant of PAK3 inhibits the neuronal apoptosis and DNA synthesis; this effect is abolished by deletion of the PAK3 APP-binding domain or by coexpression of a peptide representing this binding domain. The involvement of PAK3 specifically in FAD APP-mediated apoptosis rather than in general apoptotic pathways is suggested by the facts that a dominant-positive mutant of PAK3 does not alone cause neuronal apoptosis and that the dominant-negative mutant of PAK3 does not inhibit chemically induced apoptosis. Pertussis toxin, which inactivates the heterotrimeric G-proteins Go and Gi, inhibits the apoptosis and DNA synthesis caused by FAD APP mutants; the apoptosis and DNA synthesis are rescued by coexpression of a pertussis toxin-insensitive Go. FAD APP-mediated DNA synthesis precedes FAD APP-mediated apoptosis in neurons, and inhibition of neuronal entry into the cell cycle inhibits the apoptosis. These data suggest that a normal signaling pathway mediated by the interaction of APP, PAK3, and Go is constitutively activated in neurons by FAD mutations in APP and that this activation causes cell cycle entry and consequent apoptosis.
Collapse
|
65
|
Tsukamoto E, Hashimoto Y, Kanekura K, Niikura T, Aiso S, Nishimoto I. Characterization of the toxic mechanism triggered by Alzheimer's amyloid-beta peptides via p75 neurotrophin receptor in neuronal hybrid cells. J Neurosci Res 2003; 73:627-36. [PMID: 12929130 DOI: 10.1002/jnr.10703] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Neuronal pathology of the brain with Alzheimer's disease (AD) is characterized by numerous depositions of amyloid-beta peptides (Abeta). Abeta binding to the 75-kDa neurotrophin receptor (p75NTR) causes neuronal cell death. Here we report that Abeta causes cell death in neuronal hybrid cells transfected with p75NTR, but not in nontransfected cells, and that p75NTR(L401K) cannot mediate Abeta neurotoxicity. We analyzed the cytotoxic pathway by transfecting pertussis toxin (PTX)-resistant G protein alpha subunits in the presence of PTX and identified that Galpha(o), but not Galpha(i), proteins are involved in p75NTR-mediated Abeta neurotoxicity. Further investigation suggested that Abeta neurotoxicity via p75NTR involved JNK, NADPH oxidase, and caspases-9/3 and was inhibited by activity-dependent neurotrophic factor, insulin-like growth factor-I, basic fibroblast growth factor, and Humanin, as observed in primary neuron cultures. Understanding the Abeta neurotoxic mechanism would contribute significantly to the development of anti-AD therapies.
Collapse
Affiliation(s)
- Emi Tsukamoto
- Departments of Pharmacology and Anatomy, KEIO University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
66
|
Hashimoto Y, Niikura T, Chiba T, Tsukamoto E, Kadowaki H, Nishitoh H, Yamagishi Y, Ishizaka M, Yamada M, Nawa M, Terashita K, Aiso S, Ichijo H, Nishimoto I. The cytoplasmic domain of Alzheimer's amyloid-beta protein precursor causes sustained apoptosis signal-regulating kinase 1/c-Jun NH2-terminal kinase-mediated neurotoxic signal via dimerization. J Pharmacol Exp Ther 2003; 306:889-902. [PMID: 12829723 DOI: 10.1124/jpet.103.051383] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The biological function of full-length amyloid-beta protein precursor (AbetaPP), the precursor of Abeta, is not fully understood. Multiple laboratories have reported that antibody binding to cell surface AbetaPP causes neuronal cell death. Here we examined whether induced dimerization of the cytoplasmic domain of AbetaPP (AbetaPPCD) triggers neuronal cell death. In neurohybrid cells expressing fusion constructs of the epidermal growth factor (EGF) receptor with AbetaPPCD (EGFR/AbetaPP hybrids), EGF drastically enhanced neuronal cell death in a manner sensitive to acetyl-l-aspartyl-l-glutamyl-l-valyl-l-aspartyl-aldehyde (Ac-DEVD-CHO; DEVD), GSH-ethyl ester (GEE), and pertussis toxin (PTX). Dominant-negative apoptosis signal-regulating kinase 1 (ASK1) blocked this neuronal cell death, but not alpha-synuclein-induced cell death. Constitutively active ASK1 (caASK1) caused DEVD/GEE-sensitive cell death in a manner resistant to PTX and sensitive to Humanin, which also suppressed neuronal cell death by EGFR/AbetaPP hybrid. ASK1 formed a complex with AbetaPPCD via JIP-1b, the c-Jun N-terminal kinase (JNK)-interacting protein. EGFR/AbetaPP hybrid-induced and caASK1-induced neuronal cell deaths were specifically blocked by SP600125 (anthra[1,9-cd]pyrazol-6(2H)-one), a specific JNK inhibitor. Combined with our earlier study, these data indicate that dimerization of AbetaPPCD triggers ASK1/JNK-mediated neuronal cell death. We also noticed a potential role of ASK1/JNK in sustaining the activity of this mechanism after initial activation by AbetaPP, which allows for the achievement of cell death by short-term anti-AbetaPP antibody treatment. Understanding the function of AbetaPPCD and its downstream pathway should lead to effective anti-Alzheimer's disease therapeutics.
Collapse
Affiliation(s)
- Yuichi Hashimoto
- Department of Pharmacology, KEIO University School of Medicine, Medical Research Center, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Lee Y, Chang DJ, Lee YS, Chang KA, Kim H, Yoon JS, Lee S, Suh YH, Kaang BK. Beta-amyloid peptide binding protein does not couple to G protein in a heterologous Xenopus expression system. J Neurosci Res 2003; 73:255-9. [PMID: 12836168 DOI: 10.1002/jnr.10652] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Alzheimer's disease is a neurodegenerative disorder related to the formation of protein aggregates. beta-Amyloid protein (A beta), generated by enzymatic cleavage of amyloid precursor protein (APP), can cause such aggregation, and these aggregates may cause neuronal cell death by inducing apoptosis. However, A beta-induced intracellular signaling pathways involved in the neuronal death are not well understood. Recently it was shown that A beta aggregates induce neuronal cell death via beta-amyloid peptide-binding protein (BBP), a receptor for A beta in BBP-transfected cells, which is known to be sensitive to pertussis toxin, a G alpha(i/o) family inhibitor. However, the actual coupling of BBP to the pertussis-sensitive G protein was not demonstrated. In this study, we performed electrophysiological recordings using the two-electrode voltage-clamp technique to test whether human or Drosophila BBPs, singly or in combination with APP, are coupled to a specific type of G protein. Our results suggest that BBP is not directly coupled to G alpha(i/o), G alpha(s), or G alpha(q) proteins and that BBP may need a component other than APP to exert its toxic effect in concert with A beta.
Collapse
Affiliation(s)
- Yong Lee
- National Research Laboratory of Neurobiology, School of Biological Sciences, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Terashita K, Hashimoto Y, Niikura T, Tajima H, Yamagishi Y, Ishizaka M, Kawasumi M, Chiba T, Kanekura K, Yamada M, Nawa M, Kita Y, Aiso S, Nishimoto I. Two serine residues distinctly regulate the rescue function of Humanin, an inhibiting factor of Alzheimer's disease-related neurotoxicity: functional potentiation by isomerization and dimerization. J Neurochem 2003; 85:1521-38. [PMID: 12787071 DOI: 10.1046/j.1471-4159.2003.01797.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The 24-residue peptide Humanin (HN), containing two Ser residues at positions 7 and 14, protects neuronal cells from insults of various Alzheimer's disease (AD) genes and A beta. It was not known why the rescue function of (S14G)HN is more potent than HN by two to three orders of magnitude. Investigating the possibility that the post-translational modification of Ser14 might play a role, we found that HN with D-Ser at position 14 exerts neuroprotection more potently than HN by two to three orders of magnitude, whereas D-Ser7 substitution does not affect the rescue function of HN. On the other hand, S7A substitution nullified the HN function. Multiple series of experiments indicated that Ser7 is necessary for self-dimerization of HN, which is essential for neuroprotection by this factor. These findings indicate that the rescue function of HN is quantitatively modulated by d-isomerization of Ser14 and Ser7-relevant dimerization, allowing for the construction of a very potent HN derivative that was fully neuroprotective at 10 pM against 25 microM A beta1-43. This study provides important clues to the understanding of the neuroprotective mechanism of HN, as well as to the development of novel AD therapeutics.
Collapse
Affiliation(s)
- Kenzo Terashita
- Department of Pharmacology, KEIO University School of Medicine, Medical Research Center, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Perry T, Lahiri DK, Sambamurti K, Chen D, Mattson MP, Egan JM, Greig NH. Glucagon-like peptide-1 decreases endogenous amyloid-beta peptide (Abeta) levels and protects hippocampal neurons from death induced by Abeta and iron. J Neurosci Res 2003; 72:603-12. [PMID: 12749025 DOI: 10.1002/jnr.10611] [Citation(s) in RCA: 277] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Glucagon-like peptide-1(7-36)-amide (GLP-1) is an endogenous insulinotropic peptide that is secreted from the gastrointestinal tract in response to food. It enhances pancreatic islet beta-cell proliferation and glucose-dependent insulin secretion and lowers blood glucose and food intake in patients with type 2 diabetes mellitus. GLP-1 receptors, which are coupled to the cyclic AMP second messenger pathway, are expressed throughout the brains of rodents and humans. It was recently reported that GLP-1 and exendin-4, a naturally occurring, more stable analogue of GLP-1 that binds at the GLP-1 receptor, possess neurotrophic properties and can protect neurons against glutamate-induced apoptosis. We report here that GLP-1 can reduce the levels of amyloid-beta peptide (Abeta) in the brain in vivo and can reduce levels of amyloid precursor protein (APP) in cultured neuronal cells. Moreover, GLP-1 and exendin-4 protect cultured hippocampal neurons against death induced by Abeta and iron, an oxidative insult. Collectively, these data suggest that GLP-1 can modify APP processing and protect against oxidative injury, two actions that suggest a novel therapeutic target for intervention in Alzheimer's disease.
Collapse
Affiliation(s)
- TracyAnn Perry
- Section of Drug Design and Development, Laboratory of Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA.
| | | | | | | | | | | | | |
Collapse
|
70
|
Turner PR, O'Connor K, Tate WP, Abraham WC. Roles of amyloid precursor protein and its fragments in regulating neural activity, plasticity and memory. Prog Neurobiol 2003; 70:1-32. [PMID: 12927332 DOI: 10.1016/s0301-0082(03)00089-3] [Citation(s) in RCA: 489] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Amyloid-beta precursor protein (APP) is a membrane-spanning protein with a large extracellular domain and a much smaller intracellular domain. It is the source of the amyloid-beta (Abeta) peptide found in neuritic plaques of Alzheimer's disease (AD) patients. Because Abeta shows neurotoxic properties, and because familial forms of AD promote Abeta accumulation, a massive international research effort has been aimed at understanding the mechanisms of Abeta generation, catabolism and toxicity. APP, however, is an extremely complex molecule that may be a functionally important molecule in its full-length configuration, as well as being the source of numerous fragments with varying effects on neural function. For example, one fragment derived from the non-amyloidogenic processing pathway, secreted APPalpha (sAPPalpha), is neuroprotective, neurotrophic and regulates cell excitability and synaptic plasticity, while Abeta appears to exert opposing effects. Less is known about the neural functions of other fragments, but there is a growing interest in understanding the basic biology of APP as it has become recognized that alterations in the functional activity of the APP fragments during disease states will have complex effects on cell function. Indeed, it has been proposed that reductions in the level or activity of certain APP fragments, in addition to accumulation of Abeta, may play a critical role in the cognitive dysfunction associated with AD, particularly early in the course of the disease. To test and modify this hypothesis, it is important to understand the roles that full-length APP and its fragments normally play in neuronal structure and function. Here we review evidence addressing these fundamental questions, paying particular attention to the contributions that APP fragments play in synaptic transmission and neural plasticity, as these may be key to understanding their effects on learning and memory. It is clear from this literature that APP fragments, including Abeta, can exert a powerful regulation of key neural functions including cell excitability, synaptic transmission and long-term potentiation, both acutely and over the long-term. Furthermore, there is a small but growing literature confirming that these fragments correspondingly regulate behavioral learning and memory. These data indicate that a full account of cognitive dysfunction in AD will need to incorporate the actions of the full complement of APP fragments. To this end, there is an urgent need for a dedicated research effort aimed at understanding the behavioral consequences of altered levels and activity of the different APP fragments as a result of experience and disease.
Collapse
Affiliation(s)
- Paul R Turner
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | | | | | | |
Collapse
|
71
|
Zhang HY, Tang XC. Huperzine A attenuates the neurotoxic effect of staurosporine in primary rat cortical neurons. Neurosci Lett 2003; 340:91-4. [PMID: 12668244 DOI: 10.1016/s0304-3940(03)00023-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The effects of huperzine A (HupA) on staurosporine-induced neuronal apoptosis and potential mechanisms were investigated in primary cultured rat cortical neurons. Pretreatment of the cells with HupA (0.1-100 microM) 2 h prior to 0.5 microM staurosporine exposure for 24 h, markedly elevated cell survival. Incubation with HupA at higher dose (1 microM) also reduced the DNA fragmentation caused by staurosporine. This dose of HupA also reduced the upregulation of the pro-apoptotic gene, bax, downregulation of the anti-apoptotic gene, bcl-2, and antagonized the decrease in immunoreactive caspase-3 proenzyme. These results demonstrated that HupA protect neurons against staurosporine-induced apoptosis via regulating the apoptotic related genes and caspase-3 proenzyme.
Collapse
Affiliation(s)
- Hai Yan Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 294 Tai-Yuan Road, Shanghai 200031, China
| | | |
Collapse
|
72
|
Yamagishi Y, Hashimoto Y, Niikura T, Nishimoto I. Identification of essential amino acids in Humanin, a neuroprotective factor against Alzheimer's disease-relevant insults. Peptides 2003; 24:585-95. [PMID: 12860203 DOI: 10.1016/s0196-9781(03)00106-2] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Humanin (HN) is a secretory peptide that inhibits neurotoxicity by various Alzheimer's disease-relevant insults. We have so far identified that the substitution of Leu9 for Arg nullifies the extracellular secretion of HN. Here we comprehensively investigate the amino acid requirement of HN essential for its secretion and for its neuroprotective function. Intracellulary expressed HN-EGFP (EGFP N-terminally fused with HN) was extracellularly secreted, whereas neither EGFP nor (L9R)HN-EGFP was secreted at all. While Ala substitution of neither residue affected HN secretion, Arg substitution revealed that the two structures-Leu9-Leu11 and Pro19-Va120-were essential for the secretion of full-length HN. In the Leu9-Leu11 domain, the Leu10 residue turned out to play a central role in this function, because the Asp substitution of Leu10, but not Leu9 or Leu11, nullified the secretion of HN. Utilizing Ala-scanned HN constructs, we also investigated a comprehensive structure-function relationship for the neuroprotective function of full-length HN, which revealed (i) that Pro3, Ser7, Cys8, Leu9, Leu12, Thr13, Ser14, and Pro19 were essential for this function and (ii) that Ser7 and Leu9 were essential for self-dimerization of HN. These findings indicate that HN has activity similar to a signal peptide, for which the Leu9-Leu11 region, particularly Leu10, functions as a core domain, and suggest that self-dimerization of HN is a process essential for its neuroprotective function.
Collapse
Affiliation(s)
- Yohichi Yamagishi
- Department of Pharmacology, KEIO University School of Medicine, Life Science Research Building, 6th Floor, Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | | | | | | |
Collapse
|
73
|
Hashimoto Y, Tsuji O, Niikura T, Yamagishi Y, Ishizaka M, Kawasumi M, Chiba T, Kanekura K, Yamada M, Tsukamoto E, Kouyama K, Terashita K, Aiso S, Lin A, Nishimoto I. Involvement of c-Jun N-terminal kinase in amyloid precursor protein-mediated neuronal cell death. J Neurochem 2003; 84:864-77. [PMID: 12562529 DOI: 10.1046/j.1471-4159.2003.01585.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Amyloid precursor protein (APP), the precursor of Abeta, has been shown to function as a cell surface receptor that mediates neuronal cell death by anti-APP antibody. The c-Jun N-terminal kinase (JNK) can mediate various neurotoxic signals, including Abeta neurotoxicity. However, the relationship of APP-mediated neurotoxicity to JNK is not clear, partly because APP cytotoxicity is Abeta independent. Here we examined whether JNK is involved in APP-mediated neuronal cell death and found that: (i) neuronal cell death by antibody-bound APP was inhibited by dominant-negative JNK, JIP-1b and SP600125, the specific inhibitor of JNK, but not by SB203580 or PD98059; (ii) constitutively active (ca) JNK caused neuronal cell death and (iii) the pharmacological profile of caJNK-mediated cell death closely coincided with that of APP-mediated cell death. Pertussis toxin (PTX) suppressed APP-mediated cell death but not caJNK-induced cell death, which was suppressed by Humanin, a newly identified neuroprotective factor which inhibits APP-mediated cytotoxicity. In the presence of PTX, the PTX-resistant mutant of Galphao, but not that of Galphai, recovered the cytotoxic action of APP. These findings demonstrate that JNK is involved in APP-mediated neuronal cell death as a downstream signal transducer of Go.
Collapse
Affiliation(s)
- Yuichi Hashimoto
- Departments of Pharmacology and Anatomy, KEIO University School of Medicine, 35 Shinanomachi, Tokyo 160-8582, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Sánchez-Blázquez P, De Antonio I, Montero C, Garzón J. Exogenous myristoylated-G(i2)alpha subunits of GTP-binding proteins are mitogens following their internalization by astrocytes in culture. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2003; 110:15-26. [PMID: 12573529 DOI: 10.1016/s0169-328x(02)00554-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Heterotrimeric GTP-binding proteins (G proteins) are involved in the coupling of a variety of cell surface receptors to different intracellular signalling pathways, some of which take part in the regulation of growth by affecting cell proliferation and/or differentiation. In cultured astrocytes, many receptors of neuropeptides and hormones are coupled to the heterotrimeric G(i) proteins which regulate the mitogen-activated protein kinase (MAPK/ERK) cascade through both the Galpha and Gbetagamma subunits. We have previously reported that functionally active recombinant myr-G(i2)alpha subunits added to such cultures are internalised and distributed within the plasma membrane and cytosol as well as in the nuclei of dividing astrocytes. Here we show that astrocytes proliferate dose-dependently in response to exogenous myr-G(i2)alpha subunits. Concentrations of 100 pM-30 nM myr-G(i2)alpha caused more than 2.5-fold increase of [3H]thymidine incorporation over basal levels. Other classes of myr-Galpha subunits, such as G(i3)alpha or G(o)alpha, induced a much lower proliferative effect. The addition of G(i1)alpha subunits to the cultures produced no change, indicating the selectivity of this effect. Even though myr-G(i2)alpha subunits are internalised by the cells regardless of their guanine nucleotide-bound state, much less [3H]thymidine incorporation was observed in the presence of GDPbetaS-myr-G(i2)alpha or GTPgammaS-myr-G(i2)alpha. Further, the fluorescent labelling was dissimilarly distributed, the signal being concentrated in the nucleus and perinuclear regions of the astrocytes. Selective disassembly of caveolae impaired both myr-G(i2)alpha internalisation and DNA induction. Together, these data reveal a proliferative effect of myr-G(i2)alpha subunits in astrocytes, and provide evidence for the incorporation of exogenous myr-G(i2)alpha subunits into the mitogen cascade activated by neurotransmitters or growth factors. The fact that Galpha proteins can enter cells is particularly interesting because options for delivering functional proteins into cells are limited. Thus, these proteins may have clinical applications for compensating deficits in the transduction mechanisms associated with several neurological diseases, or as a non-invasive membrane traversing carriers.
Collapse
Affiliation(s)
- Pilar Sánchez-Blázquez
- Neuropharmacology, Instituto Neurobiología Santiago Ramón y Cajal, CSIC, Avenida Doctor Arce 37, 28002 Madrid, Spain.
| | | | | | | |
Collapse
|
75
|
Mazzola JL, Sirover MA. Subcellular alteration of glyceraldehyde-3-phosphate dehydrogenase in Alzheimer's disease fibroblasts. J Neurosci Res 2003; 71:279-85. [PMID: 12503091 DOI: 10.1002/jnr.10484] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The regulation of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has been implicated both in age-related neurodegenerative disease and in apoptosis. Previous in vitro studies suggest an interaction between GAPDH and the beta-amyloid precursor protein (beta-APP), a protein directly involved in Alzheimer's disease (AD). New studies indicate that GAPDH is a multidimensional protein with diverse membrane, cytoplasmic, and nuclear functions; each is distinct from its role in glycolysis. The nuclear functions of GAPDH include a role in apoptosis that requires its translocation to the nucleus. Accordingly, beta-APP-GAPDH interactions, altering GAPDH structure in vivo, may affect energy generation, inducing hypometabolism, a characteristic AD phenotype. Because GAPDH is a multifunctional protein, pleiotropic effects may also occur in a variety of fundamental cellular pathways in AD cells. This may include unique GAPDH-RNA interactions. We report here the identification of a high-molecular-weight (HMW) GAPDH species present exclusively in the postnuclear fraction of AD cells. The latter is characterized by reduced GAPDH activity. The HMW GAPDH species was not detected in postnuclear age-matched control (AMC) fractions nor in AD whole-cell preparations. Each is characterized by normal GAPDH activity. By definition, the preparation of whole-cell extracts entails the destruction of subcellular structure. The latter findings indicate that the dissociation of the GAPDH protein from the HMW species restores its enzymatic activity. Thus, these results reveal a new, unique intracellular phenotype in AD cells. The functional consequences of subcellular alteration in GAPDH structure in AD cells are considered.
Collapse
Affiliation(s)
- Jennifer L Mazzola
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | |
Collapse
|
76
|
Niikura T, Hashimoto Y, Tajima H, Ito Y, Nishimoto I. [Neuronal cell death by Alzheimer's disease-relevant insults and its rescue]. Nihon Ronen Igakkai Zasshi 2003; 40:36-40. [PMID: 12649845 DOI: 10.3143/geriatrics.40.36] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Neuronal cell death accounts for the clinical manifestations in Alzheimer's disease (AD). To establish the curative therapy of AD, neuroprotection is one of the primary therapeutic targets, and the elucidation of the mechanism of neuronal cell death is mandatory. Detailed characterization of neuronal cell death caused by familial AD (FAD)-linked mutant genes revealed that different cell death pathways are evoked by different types of mutants. Humanin (HN), a newly identified neuroprotective peptide, suppresses neuronal cell death caused by all known FAD mutants and A beta, while it has no effect on neuronal cell death caused by AD-irrelevant insults. The functional target of HN is the antagonism to neuronal death, not the modulation of A beta production, suggesting that HN-based medication can be combined with other remedies targeting A beta. HN is a promising seed for a novel therapy aiming at complete cure of AD through the suppression of neuronal loss.
Collapse
Affiliation(s)
- Takako Niikura
- Department of Pharmacology, KEIO University School of Medicine
| | | | | | | | | |
Collapse
|
77
|
Niikura T, Hashimoto Y, Tajima H, Nishimoto I. Death and survival of neuronal cells exposed to Alzheimer's insults. J Neurosci Res 2002; 70:380-91. [PMID: 12391601 DOI: 10.1002/jnr.10354] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Neuronal cell death is the central abnormality occurring in brains suffering from Alzheimer's disease (AD). The notion that AD is a disease caused by loss of neurons points toward suppression of neuronal death as the most important therapeutic target. Nevertheless, the mechanisms for neuronal death in AD are still relatively unclear. Three known mutant genes cause familial AD (FAD): amyloid precursor protein, presenilin 1, and presenilin 2. Detailed analysis of cytotoxic mechanisms of the FAD-linked mutant genes reveals that they cause neuronal cell death at physiologically low expression levels. Unexpectedly, cytotoxic mechanisms vary depending on the type of mutations and genes, suggesting that various mechanisms for neuronal cell death are involved in AD patients. In support of this, activity-dependent neurotrophic factor, basic fibroblast growth factor, and insulin-like growth factor-I can completely protect neurons from beta-amyloid (A beta) cytotoxicity but exhibit incomplete or little effect on cytotoxicity by FAD mutant genes. By contrast, Humanin, a newly identified 24-residue peptide, suppresses neuronal cell death by various FAD mutants and A beta, whereas this factor has no effect on cytotoxicity from AD-irrelevant insults. Studies investigating death and survival of neuronal cells exposed to AD insults will open a new horizon in developing therapy aimed at neuroprotection.
Collapse
Affiliation(s)
- Takako Niikura
- Department of Pharmacology and Neurosciences, Keio University School of Medicine, Shinanomachi, Tokyo, Japan
| | | | | | | |
Collapse
|
78
|
Sambamurti K, Greig NH, Lahiri DK. Advances in the cellular and molecular biology of the beta-amyloid protein in Alzheimer's disease. Neuromolecular Med 2002; 1:1-31. [PMID: 12025813 DOI: 10.1385/nmm:1:1:1] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2001] [Accepted: 10/10/2001] [Indexed: 02/08/2023]
Abstract
Alzheimer's disease (AD) is a progressive senile dementia characterized by deposition of a 4 kDa peptide of 39-42 residues known as amyloid beta-peptide (Abeta) in the form of senile plaques and the microtubule associated protein tau as paired helical filaments. Genetic studies have identified mutations in the Abeta precursor protein (APP) as the key triggers for the pathogenesis of AD. Other genes such as presenilins 1 and 2 (PS1/2) and apolipoprotein E (APOE) also play a critical role in increased Abeta deposition. Several biochemical and molecular studies using transfected cells and transgenic animals point to mechanisms by which Abeta is generated and aggregated to trigger the neurodegeneration that may cause AD. Three important enzymes collectively known as "secretases" participate in APP processing. An enzymatic activity, beta-secretase, cleaves APP on the amino side of Abeta producing a large secreted derivative, sAPPbeta, and an Abeta-bearing membrane-associated C-terminal derivative, CTFbeta, which is subsequently cleaved by the second activity, gamma-secretase, to release Abeta. Alternatively, a third activity, alpha-secretase, cleaves APP within Abeta to the secreted derivative sAPPalpha and membrane-associated CTFalpha. The predominant secreted APP derivative is sAPPalpha in most cell-types. Most of the secreted Abeta is 40 residues long (Abeta40) although a small percentage is 42 residues in length (Abeta42). However, the longer Abeta42 aggregates more readily and was therefore considered to be the pathologically important form. Advances in our understanding of APP processing, trafficking, and turnover will pave the way for better drug discovery for the eventual treatment of AD. In addition, APP gene regulation and its interaction with other proteins may provide useful drug targets for AD. The emerging knowledge related to the normal function of APP will help in determining whether or not the AD associated changes in APP metabolism affect its function. The present review summarizes our current understanding of APP metabolism and function and their relationship to other proteins involved in AD.
Collapse
Affiliation(s)
- Kumar Sambamurti
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA.
| | | | | |
Collapse
|
79
|
Sawa A. Alteration of gene expression in Down's syndrome (DS) brains: its significance in neurodegeneration. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2002:361-71. [PMID: 11771759 DOI: 10.1007/978-3-7091-6262-0_30] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Several groups have reported pro-apoptotic alteration of gene expression in Down's syndrome (DS) brains. Aged DS brains manifest a similar neuropathology to Alzheimer's disease (AD), including the presence of senile plaques (SP) and neurofibrillary tangles (NFT). Although it is controversial if neurodegenerative processes play a pathological role in DS brains, evidence such as cortical neurons from fetal DS brains showing vulnerability to cell death when compared with neurons from control subjects supports this point of view. In this chapter, we review the reports that demonstrate pro-apoptotic alteration of gene expression in DS brains. In addition to the pathogenic genes on chromosome 21, such as amyloid precursor protein (APP) and CuZn-superoxide dismutase (SOD1), other genes which associate with p53, or with processes for protein folding have been frequently found.
Collapse
Affiliation(s)
- A Sawa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
80
|
Mbebi C, Sée V, Mercken L, Pradier L, Müller U, Loeffler JP. Amyloid precursor protein family-induced neuronal death is mediated by impairment of the neuroprotective calcium/calmodulin protein kinase IV-dependent signaling pathway. J Biol Chem 2002; 277:20979-90. [PMID: 11877414 DOI: 10.1074/jbc.m107948200] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The aberrant metabolism of beta-amyloid precursor protein (APP) and the progressive deposition of its derived fragment beta-amyloid peptide are early and constant pathological hallmarks of Alzheimer's disease. Because APP is able to function as a cell surface receptor, we investigated here whether a disruption of the normal function of APP may contribute to the pathogenic mechanisms in Alzheimer's disease. To this aim, we generated a specific chicken polyclonal antibody directed against the extracellular domain of APP, which is common with the beta-amyloid precursor-like protein type 2. Exposure of cultured cortical neurons to this antibody (APP-Ab) induced cell death preceded by neurite degeneration, oxidative stress, and nuclear condensation. Interestingly, caspase-3-like protease was not activated in this neurotoxic action suggesting a different mode of cell death than classical apoptosis. Further analysis of the molecular mechanisms revealed a calpain- and calcineurin-dependent proteolysis of the neuroprotective calcium/calmodulin-dependent protein kinase IV and its nuclear target protein cAMP responsive element binding protein. These effects were abolished by the G protein inhibitor pertussis toxin, strongly suggesting that APP binding operates via a GTPase-dependent pathway to cause neuronal death.
Collapse
Affiliation(s)
- Corinne Mbebi
- Université Louis Pasteur, Faculté de Médecine, EA 3433 Molecular signaling and neurodegeneration, 67000 Strasbourg, France
| | | | | | | | | | | |
Collapse
|
81
|
Wei W, Wang X, Kusiak JW. Signaling events in amyloid beta-peptide-induced neuronal death and insulin-like growth factor I protection. J Biol Chem 2002; 277:17649-56. [PMID: 11882652 DOI: 10.1074/jbc.m111704200] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Amyloid beta-peptide (Abeta) is implicated as the toxic agent in Alzheimer's disease and is the major component of brain amyloid plaques. In vitro, Abeta causes cell death, but the molecular mechanisms are unclear. We analyzed the early signaling mechanisms involved in Abeta toxicity using the SH-SY5Y neuroblastoma cell line. Abeta caused cell death and induced a 2- to 3-fold activation of JNK. JNK activation and cell death were inhibited by overexpression of a dominant-negative SEK1 (SEK1-AL) construct. Butyrolactone I, a cdk5 inhibitor, had an additional protective effect against Abeta toxicity in these SEK1-AL-expressing cells suggesting that cdk5 and JNK activation independently contributed to this toxicity. Abeta also weakly activated ERK and Akt but had no effect on p38 kinase. Inhibitors of ERK and phosphoinositide 3-kinase (PI3K) pathways did not affect Abeta-induced cell death, suggesting that these pathways were not important in Abeta toxicity. Insulin-like growth factor I protected against Abeta toxicity by strongly activating ERK and Akt and blocking JNK activation in a PI3K-dependent manner. Pertussis toxin also blocked Abeta-induced cell death and JNK activation suggesting that G(i/o) proteins were upstream activators of JNK. The results suggest that activation of the JNK pathway and cdk5 may be initial signaling cascades in Abeta-induced cell death.
Collapse
Affiliation(s)
- Wanli Wei
- Molecular Neurobiology Unit, Laboratory of Cellular and Molecular Biology, NIA, Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA.
| | | | | |
Collapse
|
82
|
Kienlen-Campard P, Miolet S, Tasiaux B, Octave JN. Intracellular amyloid-beta 1-42, but not extracellular soluble amyloid-beta peptides, induces neuronal apoptosis. J Biol Chem 2002; 277:15666-70. [PMID: 11861655 DOI: 10.1074/jbc.m200887200] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alzheimer disease (AD), the most frequent cause of dementia, is characterized by an important neuronal loss. A typical histological hallmark of AD is the extracellular deposition of beta-amyloid peptide (A beta), which is produced by the cleavage of the amyloid precursor protein (APP). Most of the gene mutations that segregate with the inherited forms of AD result in increasing the ratio of A beta 42/A beta 40 production. A beta 42 also accumulates in neurons of AD patients. Altogether, these data strongly suggest that the neuronal production of A beta 42 is a critical event in AD, but the intraneuronal A beta 42 toxicity has never been demonstrated. Here, we report that the long term expression of human APP in rat cortical neurons induces apoptosis. Although APP processing leads to production of extracellular A beta 1-40 and soluble APP, these extracellular derivatives do not induce neuronal death. On the contrary, neurons undergo apoptosis as soon as they accumulate intracellular A beta 1-42 following the expression of full-length APP or a C-terminal deleted APP isoform. The inhibition of intraneuronal A beta 1-42 production by a functional gamma-secretase inhibitor increases neuronal survival. Therefore, the accumulation of intraneuronal A beta 1-42 is the key event in the neurodegenerative process that we observed.
Collapse
Affiliation(s)
- Pascal Kienlen-Campard
- Université Catholique de Louvain, FARL/UCL 54 10, av Hippocrate 54, B-1200 Brussels, Belgium
| | | | | | | |
Collapse
|
83
|
Hashimoto Y, Niikura T, Ito Y, Kita Y, Terashita K, Nishimoto I. Neurotoxic mechanisms by Alzheimer's disease-linked N141I mutant presenilin 2. J Pharmacol Exp Ther 2002; 300:736-45. [PMID: 11861776 DOI: 10.1124/jpet.300.3.736] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although it has been established that oxidative stress mediates cytotoxicity by familial Alzheimer's disease (FAD)-linked mutants of presenilin (PS)1 and that pertussis toxin inhibits cytotoxicity by FAD-linked N141I-PS2, it has not been determined whether oxidative stress is involved in cytotoxicity by N141I-PS2 or which pertussis toxin-sensitive proteins mediate the cytotoxicity. Here we report that low expression of N141I-PS2 caused neuronal cell death, whereas low expression of wild-type PS2 did not. Cytotoxicities by low and high expression of N141I-PS2 occurred through dissimilar mechanisms: the former cytotoxicity was blocked by a cell-permeable caspase inhibitor, and the latter was not. Since both mechanisms were sensitive to a cell-permeable antioxidant, we examined potential sources of reactive oxygen species in each mechanism, and found that the caspase inhibitor-sensitive neurotoxicity by N141I-PS2 was likely through NADPH oxidase and the caspase inhibitor-resistant neurotoxicity by N141I-PS2 through xanthine oxidase. Pertussis toxin greatly suppressed both toxic mechanisms by N141I-PS2, and only Galpha(o), a neuron-enriched pertussis toxin-sensitive G protein, was involved in both mechanisms. We therefore conclude that N141I-PS2 is capable of triggering multiple neurotoxic mechanisms, which can be inhibited by the combination of clinically usable inhibitors of NADPH oxidase and xanthine oxidase. This study thus provides a novel insight into the therapeutic intervention of PS2 mutant-associated FAD.
Collapse
Affiliation(s)
- Yuichi Hashimoto
- Department of Pharmacology and Neurosciences, KEIO University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo Japan
| | | | | | | | | | | |
Collapse
|
84
|
Detailed characterization of neuroprotection by a rescue factor humanin against various Alzheimer's disease-relevant insults. J Neurosci 2002. [PMID: 11717357 DOI: 10.1523/jneurosci.21-23-09235.2001] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel factor, termed Humanin (HN), antagonizes against neurotoxicity by various types of familial Alzheimer's disease (AD) genes [V642I and K595N/M596L (NL) mutants of amyloid precursor protein (APP), M146L-presenilin (PS) 1, and N141I-PS2] and by Abeta1-43 with clear action specificity ineffective on neurotoxicity by polyglutamine repeat Q79 or superoxide dismutase 1 mutants. Here we report that HN can also inhibit neurotoxicity by other AD-relevant insults: other familial AD genes (A617G-APP, L648P-APP, A246E-PS1, L286V-PS1, C410Y-PS1, and H163R-PS1), APP stimulation by anti-APP antibody, and other Abeta peptides (Abeta1-42 and Abeta25-35). The action specificity was further indicated by the finding that HN could not suppress neurotoxicity by glutamate or prion fragment. Against the AD-relevant insults, essential roles of Cys(8) and Ser(14) were commonly indicated, and the domain from Pro(3) to Pro(19) was responsible for the rescue action of HN, in which seven residues turned out to be essential. We also compared the neuroprotective action of S14G HN (HNG) with that of activity-dependent neurotrophic factor, IGF-I, or basic FGF for the antagonism against various AD-relevant insults (V642I-APP, NL-APP, M146L-PS1, N141I-PS2, and Abeta1-43). Although all of these factors could abolish neurotoxicity by Abeta1-43, only HNG could abolish cytotoxicities by all of them. HN and HN derivative peptides may provide a new insight into the study of AD pathophysiology and allow new avenues for the development of therapeutic interventions for various forms of AD.
Collapse
|
85
|
McPhie DL, Golde T, Eckman CB, Yager D, Brant JB, Neve RL. beta-Secretase cleavage of the amyloid precursor protein mediates neuronal apoptosis caused by familial Alzheimer's disease mutations. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2001; 97:103-13. [PMID: 11744168 DOI: 10.1016/s0169-328x(01)00294-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The amyloid precursor protein (APP) is cleaved by two enzymes, beta-secretase and gamma-secretase, to generate the pathological amyloid beta (Abeta) peptide. Expression of familial Alzheimer's disease (FAD) mutants of APP in primary neurons causes both intracellular accumulation of the C-terminal beta-secretase cleavage product of APP and increased secretion of Abeta, and eventually results in apoptotic death of the cells. To determine whether either of these two processing products of APP is involved in this apoptotic pathway, we first modeled experimentally the accumulation of the beta-secretase cleavage product in neurons. The C-terminal 100 amino acids (C100) of APP, with and without a signal peptide, was expressed in cells via recombinant herpes simplex virus (HSV) vectors. Both transgene products were targeted to the membrane, and both caused apoptosis in the neurons, implicating the beta-secretase cleavage product of APP in apoptosis caused by FAD APPs. Expression in neurons of a mutant of FAD APP that inhibited beta-secretase cleavage inhibited its ability to cause apoptosis. However, expression in neurons of a mutant of FAD APP that inhibited gamma-secretase cleavage did not inhibit the ability of this mutant to cause apoptosis. These data suggested that the C-terminal beta-secretase cleavage product of APP, but not Abeta, mediates the apoptosis caused by FAD mutants of APP. Consistent with this hypothesis, C31, which is generated from the beta-secretase cleavage product, itself caused neuronal apoptosis. Inhibitors of caspases 3, 6 and 8, but not of caspase 9, inhibited the apoptosis caused by FAD mutants of APP. It may be inferred from these data that beta-secretase cleavage of FAD mutants of APP allows the appropriate caspase access to its site of action to produce C31, which directly causes neuronal apoptosis.
Collapse
Affiliation(s)
- D L McPhie
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478, USA
| | | | | | | | | | | |
Collapse
|
86
|
Bertrand E, Brouillet E, Caillé I, Bouillot C, Cole GM, Prochiantz A, Allinquant B. A short cytoplasmic domain of the amyloid precursor protein induces apoptosis in vitro and in vivo. Mol Cell Neurosci 2001; 18:503-11. [PMID: 11922141 DOI: 10.1006/mcne.2001.1030] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The amyloid precursor protein presents several cleavage sites leading to the release of its entire C-terminal domain into the cytoplasm. During apoptosis, this C-terminal domain can be cleaved at amino acid 664 by caspases 3, 6, and 8 and can thus generate two peptides N- and C-terminal to amino acid 664 (C31). Recently, it was shown that the C31 induces apoptosis after transfection into N2A and 293 T cell lines. We have analyzed here, by internalization into neurons, the physiological consequences of the entire C-terminal domain (APP-Cter) and of its membrane proximal sequence corresponding to the N-terminal peptide unmasked after caspase cleavage. We find that whereas micromolar concentrations of APP-Cter are harmless, the peptide extending from the membrane (amino acid 649) to the caspase cleavage site (amino acid 664) in the same range of concentrations induces DNA fragmentation, cleavage of actin at a caspase-sensitive site, and activates caspase 3. A mutated version of this sequence (tyrosine 653 replaced by an aspartate) abolishes the effect in vitro and in vivo. Taken together, this report suggests the existence of a new mechanism contributing to Alzheimer's Disease-associated cell death.
Collapse
Affiliation(s)
- E Bertrand
- Centre National de la Recherche de Scientifique UMR 8542, Ecole normale supérieure, Paris, France
| | | | | | | | | | | | | |
Collapse
|
87
|
c-Jun N-terminal kinase (JNK)-interacting protein-1b/islet-brain-1 scaffolds Alzheimer's amyloid precursor protein with JNK. J Neurosci 2001. [PMID: 11517249 DOI: 10.1523/jneurosci.21-17-06597.2001] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Using a yeast two-hybrid method, we searched for amyloid precursor protein (APP)-interacting molecules by screening mouse and human brain libraries. In addition to known interacting proteins containing a phosphotyrosine-interaction-domain (PID)-Fe65, Fe65L, Fe65L2, X11, and mDab1, we identified, as a novel APP-interacting molecule, a PID-containing isoform of mouse JNK-interacting protein-1 (JIP-1b) and its human homolog IB1, the established scaffold proteins for JNK. The APP amino acids Tyr(682), Asn(684), and Tyr(687) in the G(681)YENPTY(687) region were all essential for APP/JIP-1b interaction, but neither Tyr(653) nor Thr(668) was necessary. APP-interacting ability was specific for this additional isoform containing PID and was shared by both human and mouse homologs. JIP-1b expressed by mammalian cells was efficiently precipitated by the cytoplasmic domain of APP in the extreme Gly(681)-Asn(695) domain-dependent manner. Reciprocally, both full-length wild-type and familial Alzheimer's disease mutant APPs were precipitated by PID-containing JIP constructs. Antibodies raised against the N and C termini of JIP-1b coprecipitated JIP-1b and wild-type or mutant APP in non-neuronal and neuronal cells. Moreover, human JNK1beta1 formed a complex with APP in a JIP-1b-dependent manner. Confocal microscopic examination demonstrated that APP and JIP-1b share similar subcellular localization in transfected cells. These data indicate that JIP-1b/IB1 scaffolds APP with JNK, providing a novel insight into the role of the JNK scaffold protein as an interface of APP with intracellular functional molecules.
Collapse
|
88
|
Scheuermann S, Hambsch B, Hesse L, Stumm J, Schmidt C, Beher D, Bayer TA, Beyreuther K, Multhaup G. Homodimerization of amyloid precursor protein and its implication in the amyloidogenic pathway of Alzheimer's disease. J Biol Chem 2001; 276:33923-9. [PMID: 11438549 DOI: 10.1074/jbc.m105410200] [Citation(s) in RCA: 181] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We reported previously that the carbohydrate domain of the amyloid precursor protein is involved in amyloid precursor protein (APP)-APP interactions. Functional in vitro studies suggested that this interaction occurs through the collagen binding site of APP. The physiological significance remained unknown, because it is not understood whether and how APP dimerization occurs in vivo. Here we report that cellular APP exists as homodimers matching best with a two-site model. Consistent with our published crystallographic data, we show that a deletion of the entire sequence after the kunitz protease inhibitor domain did not abolish APP homodimerization, suggesting that two domains are critically involved but that neither is essential for homodimerization. Finally, we generated stabilized dimers by expressing mutant APP with a single cysteine in the ectodomain juxtamembrane region. Mutation of Lys(624) to cysteine produced approximately 6-8-fold more A beta than cells expressing normal APP. Our results suggest that amyloid A beta production can in principle be positively regulated by dimerization in vivo. We suggest that dimerization could be a physiologically important mechanism for regulating the proposed signal activity of APP.
Collapse
Affiliation(s)
- S Scheuermann
- ZMBH, Center for Molecular Biology, University of Heidelberg, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Querfurth HW, Suhara T, Rosen KM, McPhie DL, Fujio Y, Tejada G, Neve RL, Adelman LS, Walsh K. Beta-amyloid peptide expression is sufficient for myotube death: implications for human inclusion body myopathy. Mol Cell Neurosci 2001; 17:793-810. [PMID: 11358479 DOI: 10.1006/mcne.2001.0972] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Inclusion body myositis (sIBM) is the most common disorder of skeletal muscle in aged humans. It shares biochemical features with Alzheimer's disease, including congophilic deposits, which are immunoreactive for beta-amyloid peptide (Abeta) and C'-terminal betaAPP epitopes. However, the etiology of myofiber loss and the role of intracellular Abeta in IBM is unknown. Here we report correlative evidence for apoptotic cell death in myofibers of IBM patients that exhibit pronounced Abeta deposition. HSV-1-mediated gene transfer of Abeta(42) into cultured C2C12 myotubes resulted in a 12.6-fold increase in dUTP-labeled and condensed nuclei over nonexpressing myotubes (P < 0.05). The C'-terminal betaAPP domain C99 also induced myotube apoptosis, but to a significantly lesser extent than Abeta. Apoptosis specific to Abeta-expressing myotubes was also demonstrated through DNA fragmentation, decreased mitochondrial function and the loss of membrane phospholipid polarity. Myotubes laden with Abeta(42), but not other transgene products, developed cytoplasmic inclusions consisting of fibrillar material. Furthermore, injection of normal mouse gastrocnemius muscle with HSV-encoding Abeta cDNA resulted in TUNEL-positive myofibers with pyknotic nuclei. We conclude that Abeta is sufficient to induce apoptosis in myofibers both in vivo and in vitro and suggest it may contribute to myofiber loss and muscle dysfunction in patients with IBM.
Collapse
MESH Headings
- Amyloid beta-Peptides/genetics
- Amyloid beta-Peptides/metabolism
- Apoptosis/genetics
- Cell Nucleus/metabolism
- Cell Nucleus/pathology
- Cells, Cultured/metabolism
- Cells, Cultured/pathology
- Cells, Cultured/ultrastructure
- DNA Fragmentation/genetics
- DNA, Complementary/pharmacology
- Gene Transfer Techniques
- Genetic Vectors
- Humans
- Immunohistochemistry
- In Situ Nick-End Labeling
- Microscopy, Electron
- Muscle Fibers, Skeletal/metabolism
- Muscle Fibers, Skeletal/pathology
- Muscle Fibers, Skeletal/ultrastructure
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/physiopathology
- Myositis, Inclusion Body/genetics
- Myositis, Inclusion Body/metabolism
- Myositis, Inclusion Body/physiopathology
- Peptide Fragments/genetics
- Peptide Fragments/metabolism
- Protein Structure, Tertiary/genetics
- Simplexvirus/genetics
Collapse
Affiliation(s)
- H W Querfurth
- Division of Neurology, St. Elizabeth's Medical Center, Boston, MA 02135, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Nakajima M, Miura M, Aosaki T, Shirasawa T. Deficiency of presenilin-1 increases calcium-dependent vulnerability of neurons to oxidative stress in vitro. J Neurochem 2001; 78:807-14. [PMID: 11520901 DOI: 10.1046/j.1471-4159.2001.00478.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We examined the function of presenilin-1 (PS1) on neuronal resistance to oxidative stress. CNS neurons cultured from PS1-deficient mice exhibited increased vulnerability to H2O2 treatment compared with those from wild-type mice. Antioxidants protected the cultured neurons against the oxidative stress. An intracellular calcium chelator, BAPTA AM, as well as an L-type voltage-dependent calcium channel blocker, nifedipine, rescued the neurons from H2O2-induced death, while an N-type voltage-dependent calcium channel blocker, omega-conotoxin, or calcium release blockers from ER stores, dantrolene and xestospongin C, failed to rescue them. Wild-type and PS1-deficient neurons showed comparable increases of cytoplasmic free calcium levels after exposure to H2O2. Taken together with the data that PS1-deficient neurons exhibited increased vulnerability to glutamate, these findings imply that PS1 confers resistance to oxidative stress on neurons in calcium-dependent manners.
Collapse
Affiliation(s)
- M Nakajima
- Department of Molecular Genetics, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | | | | | | |
Collapse
|
91
|
Hashimoto Y, Niikura T, Tajima H, Yasukawa T, Sudo H, Ito Y, Kita Y, Kawasumi M, Kouyama K, Doyu M, Sobue G, Koide T, Tsuji S, Lang J, Kurokawa K, Nishimoto I. A rescue factor abolishing neuronal cell death by a wide spectrum of familial Alzheimer's disease genes and Abeta. Proc Natl Acad Sci U S A 2001; 98:6336-41. [PMID: 11371646 PMCID: PMC33469 DOI: 10.1073/pnas.101133498] [Citation(s) in RCA: 504] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Through functional expression screening, we identified a gene, designated Humanin (HN) cDNA, which encodes a short polypeptide and abolishes death of neuronal cells caused by multiple different types of familial Alzheimer's disease genes and by Abeta amyloid, without effect on death by Q79 or superoxide dismutase-1 mutants. Transfected HN cDNA was transcribed to the corresponding polypeptide and then was secreted into the cultured medium. The rescue action clearly depended on the primary structure of HN. This polypeptide would serve as a molecular clue for the development of new therapeutics for Alzheimer's disease targeting neuroprotection.
Collapse
Affiliation(s)
- Y Hashimoto
- Departments of Pharmacology and Neurosciences, KEIO University School of Medicine, 160-8582 Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Insulin-like growth factor I (IGF-I) protects cells from apoptosis by Alzheimer's V642I mutant amyloid precursor protein through IGF-I receptor in an IGF-binding protein-sensitive manner. J Neurosci 2001. [PMID: 11245675 DOI: 10.1523/jneurosci.21-06-01902.2001] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
It has been found that insulin-like growth factor I (IGF-I) exerts cytoprotection against Abeta amyloid-induced neuronal cell death. Deposits of Abeta amyloid are one of the pathological hallmarks of Alzheimer's disease (AD). Here, we examined whether IGF-I exerts protective activity against cell death induced by a familial AD (FAD)-linked mutant of amyloid precursor protein (APP), and we found that IGF-I protected cells from toxicity of FAD-associated V642I mutant of APP in multiple cell systems. IGFBP-3 blocked this action of IGF-I, but not of des(1-3)IGF-I, which was as active as IGF-I in the presence of IGFBP-3. The data also demonstrated that the IGF-I receptor (IGF-IR) mediates the protective activity of IGF-I. The antagonizing function of the IGF-I/IGF-IR system against V642I-APP, which is further antagonized by IGFBP-3, provides a molecular clue to the understanding of AD pathophysiology and to the establishment of potential therapy for AD.
Collapse
|
93
|
Kajkowski EM, Lo CF, Ning X, Walker S, Sofia HJ, Wang W, Edris W, Chanda P, Wagner E, Vile S, Ryan K, McHendry-Rinde B, Smith SC, Wood A, Rhodes KJ, Kennedy JD, Bard J, Jacobsen JS, Ozenberger BA. beta -Amyloid peptide-induced apoptosis regulated by a novel protein containing a g protein activation module. J Biol Chem 2001; 276:18748-56. [PMID: 11278849 DOI: 10.1074/jbc.m011161200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Degeneration of neurons in Alzheimer's disease is mediated by beta-amyloid peptide by diverse mechanisms, which include a putative apoptotic component stimulated by unidentified signaling events. This report describes a novel beta-amyloid peptide-binding protein (denoted BBP) containing a G protein-coupling module. BBP is one member of a family of three proteins containing this conserved structure. The BBP subtype bound human beta-amyloid peptide in vitro with high affinity and specificity. Expression of BBP in cell culture induced caspase-dependent vulnerability to beta-amyloid peptide toxicity. Expression of a signaling-deficient dominant negative BBP mutant suppressed sensitivity of human Ntera-2 neurons to beta-amyloid peptide mediated toxicity. These findings suggest that BBP is a target of neurotoxic beta-amyloid peptide and provide new insight into the molecular pathophysiology of Alzheimer's disease.
Collapse
Affiliation(s)
- E M Kajkowski
- Wyeth Neuroscience, Wyeth-Ayerst Research, CN 8000, Princeton, New Jersey 08543-8000, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Hashimoto Y, Ito Y, Niikura T, Shao Z, Hata M, Oyama F, Nishimoto I. Mechanisms of neuroprotection by a novel rescue factor humanin from Swedish mutant amyloid precursor protein. Biochem Biophys Res Commun 2001; 283:460-8. [PMID: 11327724 DOI: 10.1006/bbrc.2001.4765] [Citation(s) in RCA: 171] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We report a novel gene, designated Humanin (HN) cDNA, that suppresses neuronal cell death by K595N/M596L-APP (NL-APP), a mutant causing familial Alzheimer's disease (FAD), termed Swedish mutant. Transfection of neuronal cells with HN cDNA or treatment with the coding HN polypeptide abrogated cytotoxicity by NL-APP. HN suppressed neurotoxicity by Abeta1-43 in the absence of N2 supplement, but could not inhibit Abeta secretion from NL-APP. HN could also protect neuronal cells from death by NL-APP lacking the 41st and 42nd residues of the Abeta region. Therefore, HN suppressed neuronal cell death by NL-APP not through inhibition of Abeta42 secretion, but with two targets for its inhibitory action: (i) the intracellular toxic mechanism directly triggered by NL-APP and (ii) neurotoxicity by Abeta. HN will contribute to the development of curative therapy of AD, especially as a novel reagent that could mechanistically supplement Abeta-production inhibitors.
Collapse
Affiliation(s)
- Y Hashimoto
- Department of Pharmacology and Neurosciences, KEIO University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | | | | | | | | | | | | |
Collapse
|
95
|
Eckert A, Steiner B, Marques C, Leutz S, Romig H, Haass C, Müller WE. Elevated vulnerability to oxidative stress-induced cell death and activation of caspase-3 by the Swedish amyloid precursor protein mutation. J Neurosci Res 2001; 64:183-92. [PMID: 11288146 DOI: 10.1002/jnr.1064] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The Swedish double mutation (KM670/671NL) of amyloid precursor protein (APPsw) is associated with early-onset familial Alzheimer's disease (FAD) and results in from three- to sixfold increased beta-amyloid production. The goal of the present study was to elucidate the effects of APPsw on mechanisms of apoptotic cell death. Therefore, PC12 cells were stably transfected with human APPsw. Here we report that the vulnerability of APPsw-bearing PC12 cells to undergo apoptotic cell death was significantly enhanced after exposure to hydrogen peroxide compared to human wild-type APP-bearing cells, empty vector-transfected cells, and parent untransfected cells. In addition, we have analyzed the potential influence of several mechanisms that can interfere with the execution of the apoptotic cell death program: the inhibition of cell death by the use of caspase inhibitors and the reduction of oxidative stress by the use of (+/-)-alpha-tocopherol (vitamin E). Interestingly, oxidative stress-induced cell death was significantly attenuated in APPsw PC12 cells by pretreatment with caspase-3 inhibitors but not with caspase-1 inhibitors. In parallel, caspase-3 activity was markedly elevated in APPsw PC12 after stimulation with hydrogen peroxide for 6 hr, whereas caspase-1 activity was unaltered. In addition, oxidative stress-induced cell death could be reduced after pretreatment of APPsw cells with (+/-)-alpha-tocopherol. The protective potency of (+/-)-alpha-tocopherol was even greater than that of caspase-3 inhibitors. Our findings further emphasize the role of mutations in the amyloid precursor protein in apoptotic cell death and may provide the fundamental basis for further efforts to elucidate the underlying processes caused by FAD-related mutations.
Collapse
Affiliation(s)
- A Eckert
- Department of Pharmacology, Biocenter, University of Frankfurt, Frankfurt, Germany.
| | | | | | | | | | | | | |
Collapse
|
96
|
Sudo H, Hashimoto Y, Niikura T, Shao Z, Yasukawa T, Ito Y, Yamada M, Hata M, Hiraki T, Kawasumi M, Kouyama K, Nishimoto I. Secreted Abeta does not mediate neurotoxicity by antibody-stimulated amyloid precursor protein. Biochem Biophys Res Commun 2001; 282:548-56. [PMID: 11401495 DOI: 10.1006/bbrc.2001.4604] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Antibodies against APP, a precursor of Abeta deposited in Alzheimer's disease brain, have been shown to cause neuronal death. Therefore, it is important to determine whether Abeta mediates antibody-induced neurotoxicity. When primary neurons were treated with anti-APP antibodies, Abeta40 and Abeta42 in the cultured media were undetectable by an assay capable of detecting 100 nM Abeta peptides. However, exogenously treated Abeta1-42 or Abeta1-43 required >3 microM to exert neurotoxicity, and 25 microM Abeta1-40 was not neurotoxic. Glutathione-ethyl-ester inhibited neuronal death by anti-APP antibody, but not death by Abeta1-42, whereas serum attenuated toxicity by Abeta1-42, but not by anti-APP antibody. Using immortalized neuronal cells, we specified the domain responsible for toxicity to be cytoplasmic His(657)-Lys(676), but not the Abeta1-42 region, of APP. This indicates that neuronal cell death by anti-APP antibody is not mediated by secreted Abeta.
Collapse
Affiliation(s)
- H Sudo
- Department of Pharmacology and Neurosciences, KEIO University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Daly J, Lahiri DK, Justus DE, Kotwal GJ. Detection of the membrane-retained carboxy-terminal tail containing polypeptides of the amyloid precursor protein in tissue from Alzheimer's disease brain. Life Sci 2001; 63:2121-31. [PMID: 9839536 DOI: 10.1016/s0024-3205(99)80009-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A major hallmark of Alzheimer's disease (AD) is the presence of extracellular amyloid plaques consisting primarily of amyloid beta peptide (A beta) which is derived from a larger beta-amyloid precursor protein (APP). APP is processed via secretory and endosomal/lysosomal pathways by a group of proteases called secretases. During the processing of APP, the carboxy-terminal tail fragment has been suggested to remain within the cell. To investigate the fate of this fragment, we generated an antibody specific for a nine amino acid residue, the sequence of which was derived from the carboxy-terminal putative cytoplasmic tail of APP. Computer analysis of the entire APP gene, searching for regions of greatest antigenicity, surface probability, hydrophilicity, and presence of beta turns, indicated that the cytoplasmic tail region is an immunodominant region of APP. The peptide coupled to keyhole limpet hemocyanin protein, produced a very high titer antibody (1:1 x 10(6)). To evaluate the specificity of the antibody, immunoprecipitation of in vitro transcribed and translated DNA encoding the carboxy-terminal amino acids of APP in wheat germ extract was carried out. A single immunoprecipitated band of the correct size was seen by SDS-PAGE. The antibody was also able to specifically detect the accumulation of the stable C-terminal tail containing fragments of APP in neurites of the amygdala and hippocampus regions of the human brain tissue from AD subjects, but did not react with age-matched control normal brain tissue. The localization of the C-terminal tail of APP within the brain tissue of AD patients underscores the likely importance of the C-terminus in the pathogenesis of AD.
Collapse
Affiliation(s)
- J Daly
- Department of Microbiology and Immunology, University of Louisville School of Medicine, KY 40292, USA
| | | | | | | |
Collapse
|
98
|
Jo DG, Kim MJ, Choi YH, Kim IK, Song YH, Woo HN, Chung CW, Jung YK. Pro-apoptotic function of calsenilin/DREAM/KChIP3. FASEB J 2001; 15:589-91. [PMID: 11259376 DOI: 10.1096/fj.00-0541fje] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Apoptotic cell death and increased production of amyloid b peptide (Ab) are pathological features of Alzheimer's disease (AD), although the exact contribution of apoptosis to the pathogenesis of the disease remains unclear. Here we describe a novel pro-apoptotic function of calsenilin/DREAM/KChIP3. By antisense oligonucleotide-induced inhibition of calsenilin/DREAM/KChIP3 synthesis, apoptosis induced by Fas, Ca2+-ionophore, or thapsigargin is attenuated. Conversely, calsenilin/DREAM/KChIP3 expression induced the morphological and biochemical features of apoptosis, including cell shrinkage, DNA laddering, and caspase activation. Calsenilin/DREAM/KChIP3-induced apoptosis was suppressed by caspase inhibitor Z-VAD and by Bcl-XL, and was potentiated by increasing cytosolic Ca2+, expression of Swedish amyloid precursor protein mutant (APPSW) or presenilin 2 (PS2), but not by a PS2 deletion lacking its C-terminus (PS2/411stop). In addition, calsenilin/DREAM/KChIP3 expression increased Ab42 production in cells expressing APPsw, which was potentiated by PS2, but not by PS2/411stop, which suggests a role for apoptosis-associated Ab42 production of calsenilin/DREAM/KChIP3.
Collapse
Affiliation(s)
- D G Jo
- Department of Life Science, Kwangju Institute of Science and Technology, Puk-gu, Kwangju 500-712, Korea
| | | | | | | | | | | | | | | |
Collapse
|
99
|
Jellinger KA, Stadelmann C. Mechanisms of cell death in neurodegenerative disorders. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2001; 59:95-114. [PMID: 10961423 DOI: 10.1007/978-3-7091-6781-6_13] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Progressive cell loss in specific neuronal populations is the prominent pathological hallmark of neurodegenerative diseases, but its molecular basis remains unresolved. Apoptotic cell death has been implicated as a general mechanism in Alzheimer disease (AD) and other neurodegenerative disorders. However, DNA fragmention in neurons is too frequent to account for the continuous loss in these slowly progressive diseases. MATERIAL AND METHODS In 9 cases of morphologically confirmed AD (CERAD criteria, Braak stages 5 or 6), 5 cases of Parkinson disease (PD) and 3 cases each of Dementia with Lewy bodies (DLB), Progressive Supranuclear Palsy (PSP), and Multiple System Atrophy (MSA), and 7 age-matched controls, the TUNEL method was used to detect DNA fragmentation, and immunohistochemistry for an array of apoptosis-related proteins (ARP), protooncogenes, and activated caspase-3 were performed. RESULTS In AD, a considerable number of hippocampal neurons showed DNA fragmentation with a 3 to 5.7 fold increase related to neurofibrillary tangles and amyloid deposits, but only exceptional neurons displayed apoptotic morphology (1 in 1100-5000) and cytoplasmic immunoreactivity for ARPs and activated caspase-3 (1 in 2600 to 5650 hippocampal neurons), whereas no neurons were labeled in age-matched controls. Caspase-3 immunoreactivity was seen in granules of granulovacuolar degeneration, only rarely colocalized with tau-immunoreactivity. In PD, DLB, and MSA, TUNEL positivity and expression of ARPs or activated caspase-3 was only seen in microglia, rare astrocytes and in oligodendroglia with cytoplasmic inclusions in MSA, but not in nigral or other neurons with or without Lewy bodies. In PSP, only single neurons but oligodendrocytes, some with tau deposits, in brainstem tegmentum and pontine nuclei were TUNEL-positive and expressed both ARPs and activated caspase-3. CONCLUSIONS These data provide evidence for extremely rare apoptotic neuronal death in AD compatible with the progression of neuronal degeneration in this chronic disease. In other neurodegenerative disorders, apoptosis mainly involves microglia and oligodendroglia, while alternative mechanisms of neuronal death may occur. Susceptible cell populations in a proapoptotic environment show increased vulnerability towards metabolic and other pathogenic factors, with autophagy as a possible protective mechanism in early stages of programmed cell death. The intracellular cascade leading to cell death still awaits elucidation.
Collapse
Affiliation(s)
- K A Jellinger
- Ludwig Boltzmann Institute of Clinical Neurobiology, Psychiatric Hospital, Vienna, Austria.
| | | |
Collapse
|
100
|
Neuronal apoptosis by apolipoprotein E4 through low-density lipoprotein receptor-related protein and heterotrimeric GTPases. J Neurosci 2001. [PMID: 11069947 DOI: 10.1523/jneurosci.20-22-08401.2000] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The epsilon4 genotype of apolipoprotein E (apoE4) is the most established predisposing factor in Alzheimer's disease (AD); however, it remains unclear how apoE4 contributes to the pathophysiology. Here, we report that the apoE4 protein (ApoE4) evokes apoptosis in neuronal cells through the low-density lipoprotein receptor-related protein (LRP) and heterotrimeric GTPases. We examined neuron/neuroblastoma hybrid F11 cells and found that these cells were killed by 30 microg/ml ApoE4, but not by 30 microg/ml ApoE3. ApoE4-induced death occurred with typical features for apoptosis in time- and dose-dependent manners, and was observed in SH-SY5Y neuroblastomas, but not in glioblastomas or non-neuronal Chinese hamster ovary cells. Activated, but not native, alpha2-macroglobulin suppressed this ApoE4 toxicity. Suppression by the antisense oligonucleotide to LRP and inhibition by low nanomolar concentrations of LRP-associated protein RAP provided evidence for the involvement of LRP. The involvement of heterotrimeric GTPases was demonstrated by the findings that (1) ApoE4-induced death was suppressed by pertussis toxin (PTX), but not by heat-inactivated PTX; and (2) transfection with PTX-resistant mutant cDNAs of Galpha(i) restored the toxicity of ApoE4 restricted by PTX. We thus conclude that one of the neurotoxic mechanisms triggered by ApoE4 is to activate a cell type-specific apoptogenic program involving LRP and the G(i) class of GTPases and that the apoE4 gene may play a direct role in the pathogenesis of AD and other forms of dementia.
Collapse
|