51
|
Lehmann CHK, Baranska A, Heidkamp GF, Heger L, Neubert K, Lühr JJ, Hoffmann A, Reimer KC, Brückner C, Beck S, Seeling M, Kießling M, Soulat D, Krug AB, Ravetch JV, Leusen JHW, Nimmerjahn F, Dudziak D. DC subset-specific induction of T cell responses upon antigen uptake via Fcγ receptors in vivo. J Exp Med 2017; 214:1509-1528. [PMID: 28389502 PMCID: PMC5413326 DOI: 10.1084/jem.20160951] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 01/19/2017] [Accepted: 02/17/2017] [Indexed: 12/20/2022] Open
Abstract
Lehmann et al. targeted antigens to Fcγ receptors expressed on various antigen-presenting cells. Induced CD4+ and CD8+ T cell responses were solely dependent on CD11b+ and CD8+ DC subsets, respectively, but independent of receptor intrinsic ITAM or ITIM signaling domains. Dendritic cells (DCs) are efficient antigen-presenting cells equipped with various cell surface receptors for the direct or indirect recognition of pathogenic microorganisms. Interestingly, not much is known about the specific expression pattern and function of the individual activating and inhibitory Fcγ receptors (FcγRs) on splenic DC subsets in vivo and how they contribute to the initiation of T cell responses. By targeting antigens to select activating and the inhibitory FcγR in vivo, we show that antigen uptake under steady-state conditions results in a short-term expansion of antigen-specific T cells, whereas under inflammatory conditions especially, the activating FcγRIV is able to induce superior CD4+ and CD8+ T cell responses. Of note, this effect was independent of FcγR intrinsic activating signaling pathways. Moreover, despite the expression of FcγRIV on both conventional splenic DC subsets, the induction of CD8+ T cell responses was largely dependent on CD11c+CD8+ DCs, whereas CD11c+CD8− DCs were critical for priming CD4+ T cell responses.
Collapse
Affiliation(s)
- Christian H K Lehmann
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital of Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Anna Baranska
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital of Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany.,Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale-Centre National de la Recherche Scientifique, 13288 Marseille-Luminy, France
| | - Gordon F Heidkamp
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital of Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Lukas Heger
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital of Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Kirsten Neubert
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital of Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Jennifer J Lühr
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital of Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Alana Hoffmann
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital of Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Katharina C Reimer
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital of Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Christin Brückner
- Department of Biology, Chair of Genetics, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Simone Beck
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital of Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Michaela Seeling
- Department of Biology, Chair of Genetics, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Melissa Kießling
- Department of Biology, Chair of Genetics, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Didier Soulat
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, University Hospital of Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Anne B Krug
- Institute for Immunology, Biomedical Center, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Jeffrey V Ravetch
- Leonard Wagner Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY 10065
| | - Jeanette H W Leusen
- Immunotherapy Laboratory, Laboratory for Translational Immunology, University Medical Center Utrecht, 3584 Utrecht, Netherlands
| | - Falk Nimmerjahn
- Department of Biology, Chair of Genetics, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany .,Medical Immunology Campus Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Diana Dudziak
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital of Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany .,Medical Immunology Campus Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
52
|
Transcriptome Profiling of IL-17A Preactivated Mesenchymal Stem Cells: A Comparative Study to Unmodified and IFN- γ Modified Mesenchymal Stem Cells. Stem Cells Int 2017; 2017:1025820. [PMID: 28293262 PMCID: PMC5331321 DOI: 10.1155/2017/1025820] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 12/20/2016] [Indexed: 12/20/2022] Open
Abstract
Human mesenchymal stem cells pretreatment with IL-17A (MSC-17) potently enhances T cell immunosuppression but not their immunogenicity, in addition to avidly promoting the induction of suppressive regulatory T cells. The aim of this study was to identify potential mechanisms by which human MSC-17 mediate their superior immunomodulatory function. Untreated-MSC (UT-MSC), IFN-γ treated MSC (MSC-γ), and MSC-17 were assessed for their gene expression profile by microarray. Significantly regulated genes were identified for their biological functions (Database for Annotation, Visualisation and Integrated Discovery, DAVID). Microarray analyses identified 1278 differentially regulated genes between MSC-γ and UT-MSC and 67 genes between MSC-17 and UT-MSC. MSC-γ were enriched for genes involved in immune response, antigen processing and presentation, humoral response, and complement activation, consistent with increased MSC-γ immunogenicity. MSC-17 genes were associated with chemotaxis response, which may be involved in T cell recruitment for MSC-17 immunosuppression. MMP1, MMP13, and CXCL6 were highly and specifically expressed in MSC-17, which was further validated by real-time PCR. Thus, MMPs and chemokines may play a key role in mediating MSC-17 superior immunomodulatory function. MSC-17 represent a potential cellular therapy to suppress immunological T cell responses mediated by expression of an array of immunoregulatory molecules.
Collapse
|
53
|
Van Goor A, Slawinska A, Schmidt CJ, Lamont SJ. Distinct functional responses to stressors of bone marrow derived dendritic cells from diverse inbred chicken lines. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 63:96-110. [PMID: 27238770 DOI: 10.1016/j.dci.2016.05.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/23/2016] [Accepted: 05/24/2016] [Indexed: 05/19/2023]
Abstract
Differences in responses of chicken bone marrow derived dendritic cells (BMDC) to in vitro treatment with lipopolysaccharide (LPS), heat, and LPS + heat were identified. The Fayoumi is more disease resistant and heat tolerant than the Leghorn line. Nitric Oxide (NO) production, phagocytic ability, MHC II surface expression and mRNA expression were measured. NO was induced in BMDC from both lines in response to LPS and LPS + heat stimulation; Fayoumi produced more NO with LPS treatment. Fayoumi had higher phagocytic ability and MHC II surface expression. Gene expression for the heat-related genes BAG3, HSP25, HSPA2, and HSPH1 was strongly induced with heat and few differences existed between lines. Expression for the immune-related genes CCL4, CCL5, CD40, GM-CSF, IFN-γ, IL-10, IL-12β, IL-1β, IL-6, IL-8, and iNOS was highly induced in response to LPS and different between lines. This research contributes to the sparse knowledge of genetic differences in chicken BMDC biology and function.
Collapse
Affiliation(s)
| | - Anna Slawinska
- Department of Animal Science, Iowa State University, Ames, IA, USA; Department of Animal Biochemistry and Biotechnology, UTP University of Science and Technology, Bydgoszcz, Poland
| | - Carl J Schmidt
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, USA
| | - Susan J Lamont
- Department of Animal Science, Iowa State University, Ames, IA, USA.
| |
Collapse
|
54
|
Efron PA, Tsujimoto H, Bahjat FR, Ungaro R, Debernardis J, Tannahill C, Baker HV, Edwards CK, Moldawer LL. Differential maturation of murine bone-marrow derived dendritic cells with lipopolysaccharide and tumor necrosis factor-α. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519050110030301] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Dendritic cells (DCs) play a key role in the interface between the innate and acquired immune systems. In response to both exogenous as well as endogenous signals, DCs undergo a programmed maturation to become an efficient, antigen-presenting cell. Yet little is known regarding the differential responses by endogenous versus exogenous stimuli on DC maturation. In the present report, we have compared the phenotypic, functional, and genome-wide expression responses associated with maturation by bone marrow derived DCs to either an endogenous danger signal, tumor necrosis factor-α (TNF-α), or a microbial product, bacterial lipopolysaccharide (LPS). Examination of the cell surface expression of DCs as well as cytokine production demonstrated that patterns of DC maturation varied dramatically depending upon the stimulus. Whereas LPS was highly effective in terms of inducing phenotypic and functional maturation, TNF-α exposure produced a phenotypically distinct DC. Gene expression patterns in DCs 6 and 24 h after LPS and TNF-α exposure revealed that these activation signals produce fundamentally different genomic responses. Supervised analysis revealed that the expression of 929 probe sets discriminated among the treatment groups, and the patterns of gene expression in TNF-α stimulated DCs were more similar to unstimulated cells at both 6 and 24 h post-stimulation than to LPS-stimulated cells at the same time points. These findings reveal that DCs are capable of a varying phenotypic response to different antigens and endogenous signals.
Collapse
Affiliation(s)
- Philip A. Efron
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Hironori Tsujimoto
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Frances R. Bahjat
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Ricardo Ungaro
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Justin Debernardis
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Cynthia Tannahill
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Henry V. Baker
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Carl K. Edwards
- Division of Inflammation, Amgen Inc., Thousand Oaks, California, USA
| | - Lyle L. Moldawer
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA,
| |
Collapse
|
55
|
Blumenthal D, Edidin M, Gheber LA. Trafficking of MHC molecules to the cell surface creates dynamic protein patches. J Cell Sci 2016; 129:3342-50. [PMID: 27466380 DOI: 10.1242/jcs.187112] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 07/21/2016] [Indexed: 11/20/2022] Open
Abstract
Major histocompatibility complex class I (MHC-I) molecules signal infection or transformation by engaging receptors on T lymphocytes. The spatial organization of MHC-I on the plasma membranes is important for this engagement. We and others have shown that MHC-I molecules, like other membrane proteins, are not uniformly distributed, but occur in patches in the plasma membrane. Here, we describe the temporal details of MHC-I patch formation and combine them with the spatial details, which we have described earlier, to yield a comprehensive quantitative description of patch formation. MHC-I is delivered to the plasma membrane in clathrin-coated vesicles, arriving at a rate of ∼2.5×10(-3) μm(-1) min(-1) (or about two arrivals per minute over the whole cell). The vesicles dock and fuse at non-random, apparently targeted, locations on the membrane and the newly delivered MHC-I molecules form patches that are a few hundred nanometers in diameter. The patches are maintained at steady state by a dynamic equilibrium between the rate of delivery and the rate of hindered diffusion of MHC-I molecules out of the patches (caused by components of the actin cytoskeleton).
Collapse
Affiliation(s)
- Daniel Blumenthal
- The Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben Gurion University of the Negev, Beer-Sheva, 8410501 Israel
| | - Michael Edidin
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Levi A Gheber
- The Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben Gurion University of the Negev, Beer-Sheva, 8410501 Israel
| |
Collapse
|
56
|
Bretou M, Kumari A, Malbec O, Moreau HD, Obino D, Pierobon P, Randrian V, Sáez PJ, Lennon-Duménil AM. Dynamics of the membrane-cytoskeleton interface in MHC class II-restricted antigen presentation. Immunol Rev 2016; 272:39-51. [DOI: 10.1111/imr.12429] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Marine Bretou
- Inserm U932, Institut Curie; ANR-10-IDEX-0001-02 PSL* and ANR-11-LABX-0043; Paris France
| | - Anita Kumari
- Inserm U932, Institut Curie; ANR-10-IDEX-0001-02 PSL* and ANR-11-LABX-0043; Paris France
| | - Odile Malbec
- Inserm U932, Institut Curie; ANR-10-IDEX-0001-02 PSL* and ANR-11-LABX-0043; Paris France
| | - Hélène D. Moreau
- Inserm U932, Institut Curie; ANR-10-IDEX-0001-02 PSL* and ANR-11-LABX-0043; Paris France
| | - Dorian Obino
- Inserm U932, Institut Curie; ANR-10-IDEX-0001-02 PSL* and ANR-11-LABX-0043; Paris France
| | - Paolo Pierobon
- Inserm U932, Institut Curie; ANR-10-IDEX-0001-02 PSL* and ANR-11-LABX-0043; Paris France
| | - Violaine Randrian
- Inserm U932, Institut Curie; ANR-10-IDEX-0001-02 PSL* and ANR-11-LABX-0043; Paris France
| | - Pablo J. Sáez
- Inserm U932, Institut Curie; ANR-10-IDEX-0001-02 PSL* and ANR-11-LABX-0043; Paris France
| | | |
Collapse
|
57
|
Tukhvatulin AI, Dzharullaeva AS, Tukhvatulina NM, Shcheblyakov DV, Shmarov MM, Dolzhikova IV, Stanhope-Baker P, Naroditsky BS, Gudkov AV, Logunov DY, Gintsburg AL. Powerful Complex Immunoadjuvant Based on Synergistic Effect of Combined TLR4 and NOD2 Activation Significantly Enhances Magnitude of Humoral and Cellular Adaptive Immune Responses. PLoS One 2016; 11:e0155650. [PMID: 27187797 PMCID: PMC4871337 DOI: 10.1371/journal.pone.0155650] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 05/02/2016] [Indexed: 12/28/2022] Open
Abstract
Binding of pattern recognition receptors (PRRs) by pathogen-associated molecular patterns (PAMPs) activates innate immune responses and contributes to development of adaptive immunity. Simultaneous stimulation of different types of PRRs can have synergistic immunostimulatory effects resulting in enhanced production of molecules that mediate innate immunity such as inflammatory cytokines, antimicrobial peptides, etc. Here, we evaluated the impact of combined stimulation of PRRs from different families on adaptive immunity by generating alum-based vaccine formulations with ovalbumin as a model antigen and the Toll-like receptor 4 (TLR4) agonist MPLA and the Nucleotide-binding oligomerization domain-containing protein 2 (NOD2) agonist MDP adsorbed individually or together on the alum-ovalbumin particles. Multiple in vitro and in vivo readouts of immune system activation all showed that while individual PRR agonists increased the immunogenicity of vaccines compared to alum alone, the combination of both PRR agonists was significantly more effective. Combined stimulation of TLR4 and NOD2 results in a stronger and broader transcriptional response in THP-1 cells compared to individual PRR stimulation. Immunostimulatory composition containing both PRR agonists (MPLA and MDP) in the context of the alum-based ovalbumin vaccine also enhanced uptake of vaccine particles by bone marrow derived dendritic cells (BMDCs) and promoted maturation (up-regulation of expression of CD80, CD86, MHCII) and activation (production of cytokines) of BMDCs. Finally, immunization of mice with vaccine particles containing both PRR agonists resulted in enhanced cellular immunity as indicated by increased proliferation and activation (IFN-γ production) of splenic CD4+ and CD8+ T cells following in vitro restimulation with ovalbumin and enhanced humoral immunity as indicated by higher titers of ovalbumin-specific IgG antibodies. These results indicate that combined stimulation of TLR4 and NOD2 receptors dramatically enhances activation of both the humoral and cellular branches of adaptive immunity and suggests that inclusion of agonists of these receptors in standard alum-based adjuvants could be used to improve the effectiveness of vaccination.
Collapse
Affiliation(s)
- Amir I. Tukhvatulin
- N. F. Gamaleya Research Institute for Epidemiology and Microbiology, Gamaleya str.18, 123098 Moscow, Russia
| | - Alina S. Dzharullaeva
- N. F. Gamaleya Research Institute for Epidemiology and Microbiology, Gamaleya str.18, 123098 Moscow, Russia
| | - Natalia M. Tukhvatulina
- N. F. Gamaleya Research Institute for Epidemiology and Microbiology, Gamaleya str.18, 123098 Moscow, Russia
| | - Dmitry V. Shcheblyakov
- N. F. Gamaleya Research Institute for Epidemiology and Microbiology, Gamaleya str.18, 123098 Moscow, Russia
| | - Maxim M. Shmarov
- N. F. Gamaleya Research Institute for Epidemiology and Microbiology, Gamaleya str.18, 123098 Moscow, Russia
| | - Inna V. Dolzhikova
- N. F. Gamaleya Research Institute for Epidemiology and Microbiology, Gamaleya str.18, 123098 Moscow, Russia
| | | | - Boris S. Naroditsky
- N. F. Gamaleya Research Institute for Epidemiology and Microbiology, Gamaleya str.18, 123098 Moscow, Russia
| | - Andrei V. Gudkov
- Cleveland BioLabs, Inc., Buffalo, New York, United States of America
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Elm and Carlton str., 14263 Buffalo, New York, United States of America
| | - Denis Y. Logunov
- N. F. Gamaleya Research Institute for Epidemiology and Microbiology, Gamaleya str.18, 123098 Moscow, Russia
- * E-mail:
| | - Alexander L. Gintsburg
- N. F. Gamaleya Research Institute for Epidemiology and Microbiology, Gamaleya str.18, 123098 Moscow, Russia
| |
Collapse
|
58
|
Redd L, Schmelz M, Burack WR, Cook JR, Day AW, Rimsza L. Langerhans Cell Histiocytosis Shows Distinct Cytoplasmic Expression of Major Histocompatibility Class II Antigens. J Hematop 2016; 9:107-112. [PMID: 30338008 DOI: 10.1007/s12308-016-0272-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Objectives Langerhans cell histiocytosis (LCH) is a monoclonal proliferation of antigen presenting cells (APC). In benign APCs, antigen loading occurs in the Major Histocompatibility class II (MHCII)-lysosomal compartment of the endocytic pathway followed by transport to the cell surface upon antigen stimulation. The pattern of MHC II expression in LCH is not well characterized. Methods The cellular localization of MHCII was determined using immunohistochemisty (IHC). Staining pattern for the representative MHCII molecule, HLA-DR, (cell surface, cytoplasmic granular, or cytoplasmic globular) and intensity (0 to 3+) were recorded for normal tissues and 44 LCH samples along with available clinicopathologic features. Results were confirmed with a different antibody to confirm the appearance. Results In the normal tissue survey, strong HLA-DR cell surface expression was present on APCs, benign B cells, some T cells, and pulmonary macrophages. A granular cytoplasmic staining pattern (without surface expression) was seen in benign Langerhans cells (LCs) in the skin and histiocytes. Strikingly, all 44 LCH samples demonstrated both cytoplasmic granular and an unusual "globular" staining pattern with no surface staining. Conclusion This is the first report of a highly specific HLA-DR staining pattern in LCH detected by IHC. The cytoplasmic perinuclear globular localization of MHCII may possibly be useful in diagnostics and may result from an immature/antigen-naïve differentiation state of the neoplastic cell.
Collapse
Affiliation(s)
- Lucas Redd
- Department of Pathology, University of Arizona, Tucson, AZ
| | - Monika Schmelz
- Department of Pathology, University of Arizona, Tucson, AZ
| | | | - James R Cook
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH
| | - Antony W Day
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ
| | - Lisa Rimsza
- Department of Laboratory Medicine and Pathology, Mayo Clinic, AZ
| |
Collapse
|
59
|
Caucheteux SM, Mitchell JP, Ivory MO, Hirosue S, Hakobyan S, Dolton G, Ladell K, Miners K, Price DA, Kan-Mitchell J, Sewell AK, Nestle F, Moris A, Karoo RO, Birchall JC, Swartz MA, Hubbel JA, Blanchet FP, Piguet V. Polypropylene Sulfide Nanoparticle p24 Vaccine Promotes Dendritic Cell-Mediated Specific Immune Responses against HIV-1. J Invest Dermatol 2016; 136:1172-1181. [PMID: 26896775 DOI: 10.1016/j.jid.2016.01.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/12/2016] [Accepted: 01/14/2016] [Indexed: 12/24/2022]
Abstract
Delivery of vaccine formulations into the dermis using antigen-coated microneedle patches is a promising and safe approach because of efficient antigen delivery and safety. We evaluated an intradermal vaccine using HIV-1 p24 Gag peptide-conjugated polypropylene sulfide nanoparticles to induce immunity against HIV-1. This peptide-conjugated polypropylene sulfide nanoparticle formulation did not accelerate the maturation of blood- or skin-derived subsets of dendritic cells, either generated in vitro or purified ex vivo, despite efficient uptake in the absence of adjuvant. Moreover, dendritic cell-mediated capture of particulate antigen in this form induced potent HIV-1-specific CD4(+) T-cell responses, as well as B-cell-mediated antibody production. Nanoparticle-based intradermal antigen delivery may therefore provide a new option in the global effort to develop an effective vaccine against HIV-1.
Collapse
Affiliation(s)
- Stephan M Caucheteux
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - John P Mitchell
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Matthew O Ivory
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK; School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | - Sachiko Hirosue
- Institute of Bioengineering, School of Life Sciences and School of Engineering, Lausanne, Switzerland
| | - Svetlana Hakobyan
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Garry Dolton
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Kristin Ladell
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Kelly Miners
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - David A Price
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK; Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - June Kan-Mitchell
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, USA
| | - Andrew K Sewell
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Frank Nestle
- St. John's Institute of Dermatology, King's College London, London, UK
| | - Arnaud Moris
- Sorbonne Universités, UPMC Paris 06, INSERM U1135, CNRS ERL 8255, Center for Immunology and Microbial Infections, F-75013, Paris, France
| | | | - James C Birchall
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | - Melody A Swartz
- Institute of Bioengineering, School of Life Sciences and School of Engineering, Lausanne, Switzerland; Institute for Molecular Engineering, University of Chicago, Chicago, Illinois, USA
| | - Jeffrey A Hubbel
- Institute of Bioengineering, School of Life Sciences and School of Engineering, Lausanne, Switzerland; Institute for Molecular Engineering, University of Chicago, Chicago, Illinois, USA
| | - Fabien P Blanchet
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Vincent Piguet
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK.
| |
Collapse
|
60
|
Torreno-Pina JA, Manzo C, Salio M, Aichinger MC, Oddone A, Lakadamyali M, Shepherd D, Besra GS, Cerundolo V, Garcia-Parajo MF. The actin cytoskeleton modulates the activation of iNKT cells by segregating CD1d nanoclusters on antigen-presenting cells. Proc Natl Acad Sci U S A 2016; 113:E772-81. [PMID: 26798067 PMCID: PMC4760795 DOI: 10.1073/pnas.1514530113] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Invariant natural killer T (iNKT) cells recognize endogenous and exogenous lipid antigens presented in the context of CD1d molecules. The ability of iNKT cells to recognize endogenous antigens represents a distinct immune recognition strategy, which underscores the constitutive memory phenotype of iNKT cells and their activation during inflammatory conditions. However, the mechanisms regulating such "tonic" activation of iNKT cells remain unclear. Here, we show that the spatiotemporal distribution of CD1d molecules on the surface of antigen-presenting cells (APCs) modulates activation of iNKT cells. By using superresolution microscopy, we show that CD1d molecules form nanoclusters at the cell surface of APCs, and their size and density are constrained by the actin cytoskeleton. Dual-color single-particle tracking revealed that diffusing CD1d nanoclusters are actively arrested by the actin cytoskeleton, preventing their further coalescence. Formation of larger nanoclusters occurs in the absence of interactions between CD1d cytosolic tail and the actin cytoskeleton and correlates with enhanced iNKT cell activation. Importantly and consistently with iNKT cell activation during inflammatory conditions, exposure of APCs to the Toll-like receptor 7/8 agonist R848 increases nanocluster density and iNKT cell activation. Overall, these results define a previously unidentified mechanism that modulates iNKT cell autoreactivity based on the tight control by the APC cytoskeleton of the sizes and densities of endogenous antigen-loaded CD1d nanoclusters.
Collapse
Affiliation(s)
- Juan A Torreno-Pina
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Barcelona, Spain
| | - Carlo Manzo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Barcelona, Spain
| | - Mariolina Salio
- Medical Research Council (MRC) Human Immunology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Michael C Aichinger
- Medical Research Council (MRC) Human Immunology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Anna Oddone
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Barcelona, Spain
| | - Melike Lakadamyali
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Barcelona, Spain
| | - Dawn Shepherd
- Medical Research Council (MRC) Human Immunology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Gurdyal S Besra
- School of Biosciences, University of Birmingham, Birmingham B11 2TT, United Kingdom
| | - Vincenzo Cerundolo
- Medical Research Council (MRC) Human Immunology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom;
| | - Maria F Garcia-Parajo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| |
Collapse
|
61
|
Xu P, Tang S, Jiang L, Yang L, Zhang D, Feng S, Zhao T, Dong Y, He W, Wang R, Zhang J, Liang Z. Nanomaterial-dependent immunoregulation of dendritic cells and its effects on biological activities of contraceptive nanovaccines. J Control Release 2016; 225:252-68. [PMID: 26826303 DOI: 10.1016/j.jconrel.2016.01.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 01/19/2016] [Accepted: 01/24/2016] [Indexed: 01/08/2023]
Abstract
Nanovehicles are promising delivery systems for various vaccines. Nevertheless, different biophysicochemical properties of nanoparticles (NPs), dominating their in vitro and in vivo performances for vaccination, remain unclear. We attempted to elucidate the effects of NPs and their pH-sensitivity on in vitro and in vivo efficacy of resulting prophylactic nanovaccines containing a contraceptive peptide (FSHR). To this end, pH-responsive and non-responsive nanovaccines were produced using acetalated β-cyclodextrin (Ac-bCD) and poly(lactic-co-glycolic acid) (PLGA), respectively. Meanwhile, FSHR derived from an epitope of the follicle-stimulating hormone receptor was used as the model antigen. FSHR-containing Ac-bCD and PLGA NPs were successfully prepared by a nanoemulsion technique, leading to well-shaped nanovaccines with high loading efficiency. The pH-sensitivity of Ac-bCD and PLGA nanovaccines was examined by in vitro hydrolysis and antigen release studies. Nanovaccines could be effectively engulfed by dendritic cells (DCs) via endocytosis in both dose and time dependent manners, and their intracellular trafficking was closely related to the pH-sensitivity of the carrier materials. Furthermore, nanovaccines could induce the secretion of inflammatory cytokines by DCs and T cells co-cultured with the stimulated DCs. In vivo evaluations demonstrated that nanovaccines were more potent than that based on the complete Freund's adjuvant, with respect to inducing anti-FSHR antibody, reducing the sperm count, inhibiting the sperm motility, and increasing the teratosperm rate. Immunization of male mice with nanovaccines notably decreased the parturition incidence of the mated females. Consequently, both in vitro and in vivo activities of FSHR could be considerably augmented by NPs. More importantly, our studies indicated that the pH-responsive nanovaccine was not superior over the non-responsive counterpart for the examined peptide antigen.
Collapse
Affiliation(s)
- Pingping Xu
- Department of Obstetrics and Gynaecology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing 400038, China; Department of Obstetrics and Gynaecology, Hospital 81 of PLA, Nanjing 210002, China
| | - Shuai Tang
- Department of Obstetrics and Gynaecology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Luping Jiang
- Department of Obstetrics and Gynaecology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Lihua Yang
- Department of Obstetrics and Gynaecology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; Department of Obstetrics and Gynaecology, Tangshan Workers' Hospital of Hebei Province, Tangshan 063000, China
| | - Dinglin Zhang
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Shibin Feng
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Tingting Zhao
- Institute of Immunology, Third Military Medical University, Chongqing 400038, China
| | - Yajun Dong
- Department of Obstetrics and Gynaecology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Wei He
- Department of Obstetrics and Gynaecology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | - Jianxiang Zhang
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing 400038, China.
| | - Zhiqing Liang
- Department of Obstetrics and Gynaecology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
62
|
Rocha-Perugini V, Sánchez-Madrid F, Martínez Del Hoyo G. Function and Dynamics of Tetraspanins during Antigen Recognition and Immunological Synapse Formation. Front Immunol 2016; 6:653. [PMID: 26793193 PMCID: PMC4707441 DOI: 10.3389/fimmu.2015.00653] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 12/18/2015] [Indexed: 12/31/2022] Open
Abstract
Tetraspanin-enriched microdomains (TEMs) are specialized membrane platforms driven by protein–protein interactions that integrate membrane receptors and adhesion molecules. Tetraspanins participate in antigen recognition and presentation by antigen-presenting cells (APCs) through the organization of pattern-recognition receptors (PRRs) and their downstream-induced signaling, as well as the regulation of MHC-II–peptide trafficking. T lymphocyte activation is triggered upon specific recognition of antigens present on the APC surface during immunological synapse (IS) formation. This dynamic process is characterized by a defined spatial organization involving the compartmentalization of receptors and adhesion molecules in specialized membrane domains that are connected to the underlying cytoskeleton and signaling molecules. Tetraspanins contribute to the spatial organization and maturation of the IS by controlling receptor clustering and local accumulation of adhesion receptors and integrins, their downstream signaling, and linkage to the actin cytoskeleton. This review offers a perspective on the important role of TEMs in the regulation of antigen recognition and presentation and in the dynamics of IS architectural organization.
Collapse
Affiliation(s)
- Vera Rocha-Perugini
- Servicio de Inmunología, Instituto de Investigación Sanitaria La Princesa, Hospital de la Princesa, Madrid, Spain; Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Francisco Sánchez-Madrid
- Servicio de Inmunología, Instituto de Investigación Sanitaria La Princesa, Hospital de la Princesa, Madrid, Spain; Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Gloria Martínez Del Hoyo
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) , Madrid , Spain
| |
Collapse
|
63
|
Kim Y, Clements DR, Sterea AM, Jang HW, Gujar SA, Lee PWK. Dendritic Cells in Oncolytic Virus-Based Anti-Cancer Therapy. Viruses 2015; 7:6506-25. [PMID: 26690204 PMCID: PMC4690876 DOI: 10.3390/v7122953] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 11/10/2015] [Accepted: 11/27/2015] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DCs) are specialized antigen-presenting cells that have a notable role in the initiation and regulation of innate and adaptive immune responses. In the context of cancer, appropriately activated DCs can induce anti-tumor immunity by activating innate immune cells and tumor-specific lymphocytes that target cancer cells. However, the tumor microenvironment (TME) imposes different mechanisms that facilitate the impairment of DC functions, such as inefficient antigen presentation or polarization into immunosuppressive DCs. These tumor-associated DCs thus fail to initiate tumor-specific immunity, and indirectly support tumor progression. Hence, there is increasing interest in identifying interventions that can overturn DC impairment within the TME. Many reports thus far have studied oncolytic viruses (OVs), viruses that preferentially target and kill cancer cells, for their capacity to enhance DC-mediated anti-tumor effects. Herein, we describe the general characteristics of DCs, focusing on their role in innate and adaptive immunity in the context of the TME. We also examine how DC-OV interaction affects DC recruitment, OV delivery, and anti-tumor immunity activation. Understanding these roles of DCs in the TME and OV infection is critical in devising strategies to further harness the anti-tumor effects of both DCs and OVs, ultimately enhancing the efficacy of OV-based oncotherapy.
Collapse
Affiliation(s)
- Youra Kim
- Departments of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada.
| | - Derek R Clements
- Departments of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada.
| | - Andra M Sterea
- Department of Biology, Dalhousie University, Halifax, NS B3H 1X5, Canada.
| | - Hyun Woo Jang
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 1X5, Canada.
| | - Shashi A Gujar
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 1X5, Canada.
- Department of Strategy and Organizational Performance, IWK Health Centre, Halifax, NS B3K 6R8, Canada.
| | - Patrick W K Lee
- Departments of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada.
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 1X5, Canada.
| |
Collapse
|
64
|
Innate control of actin nucleation determines two distinct migration behaviours in dendritic cells. Nat Cell Biol 2015; 18:43-53. [PMID: 26641718 DOI: 10.1038/ncb3284] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 11/09/2015] [Indexed: 12/13/2022]
Abstract
Dendritic cell (DC) migration in peripheral tissues serves two main functions: antigen sampling by immature DCs, and chemokine-guided migration towards lymphatic vessels (LVs) on maturation. These migratory events determine the efficiency of the adaptive immune response. Their regulation by the core cell locomotion machinery has not been determined. Here, we show that the migration of immature DCs depends on two main actin pools: a RhoA-mDia1-dependent actin pool located at their rear, which facilitates forward locomotion; and a Cdc42-Arp2/3-dependent actin pool present at their front, which limits migration but promotes antigen capture. Following TLR4-MyD88-induced maturation, Arp2/3-dependent actin enrichment at the cell front is markedly reduced. Consequently, mature DCs switch to a faster and more persistent mDia1-dependent locomotion mode that facilitates chemotactic migration to LVs and lymph nodes. Thus, the differential use of actin-nucleating machineries optimizes the migration of immature and mature DCs according to their specific function.
Collapse
|
65
|
Porter KR, Raviprakash K. Nucleic acid (DNA) immunization as a platform for dengue vaccine development. Vaccine 2015; 33:7135-40. [PMID: 26458805 DOI: 10.1016/j.vaccine.2015.09.102] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 08/28/2015] [Accepted: 09/03/2015] [Indexed: 10/22/2022]
Abstract
Since the early 1990s, DNA immunization has been used as a platform for developing a tetravalent dengue vaccine in response to the high priority need for protecting military personnel deployed to dengue endemic regions of the world. Several approaches have been explored ranging from naked DNA immunization to the use of live virus vectors to deliver the targeted genes for expression. Pre-clinical animal studies were largely successful in generating anti-dengue cellular and humoral immune responses that were protective either completely or partially against challenge with live dengue virus. However, Phase 1 clinical evaluation of a prototype monovalent dengue 1 DNA vaccine expressing prM and E genes revealed anti-dengue T cell IFNγ responses, but poor neutralizing antibody responses. These less than optimal results are thought to be due to poor uptake and expression of the DNA vaccine plasmids. Because DNA immunization as a vaccine platform has the advantages of ease of manufacture, flexible genetic manipulation and enhanced stability, efforts continue to improve the immunogenicity of these vaccines using a variety of methods.
Collapse
Affiliation(s)
- Kevin R Porter
- Naval Medical Research Center, Infectious Diseases Directorate, Silver Spring, MD, United States.
| | - Kanakatte Raviprakash
- Naval Medical Research Center, Infectious Diseases Directorate, Silver Spring, MD, United States
| |
Collapse
|
66
|
Geginat J, Nizzoli G, Paroni M, Maglie S, Larghi P, Pascolo S, Abrignani S. Immunity to Pathogens Taught by Specialized Human Dendritic Cell Subsets. Front Immunol 2015; 6:527. [PMID: 26528289 PMCID: PMC4603245 DOI: 10.3389/fimmu.2015.00527] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 09/28/2015] [Indexed: 12/24/2022] Open
Abstract
Dendritic cells (DCs) are specialized antigen-presenting cells (APCs) that have a key role in immune responses because they bridge the innate and adaptive arms of the immune system. They mature upon recognition of pathogens and upregulate MHC molecules and costimulatory receptors to activate antigen-specific CD4+ and CD8+ T cells. It is now well established that DCs are not a homogeneous population but are composed of different subsets with specialized functions in immune responses to specific pathogens. Upon viral infections, plasmacytoid DCs (pDCs) rapidly produce large amounts of IFN-α, which has potent antiviral functions and activates several other immune cells. However, pDCs are not particularly potent APCs and induce the tolerogenic cytokine IL-10 in CD4+ T cells. In contrast, myeloid DCs (mDCs) are very potent APCs and possess the unique capacity to prime naive T cells and consequently to initiate a primary adaptive immune response. Different subsets of mDCs with specialized functions have been identified. In mice, CD8α+ mDCs capture antigenic material from necrotic cells, secrete high levels of IL-12, and prime Th1 and cytotoxic T-cell responses to control intracellular pathogens. Conversely, CD8α− mDCs preferentially prime CD4+ T cells and promote Th2 or Th17 differentiation. BDCA-3+ mDC2 are the human homologue of CD8α+ mDCs, since they share the expression of several key molecules, the capacity to cross-present antigens to CD8+ T-cells and to produce IFN-λ. However, although several features of the DC network are conserved between humans and mice, the expression of several toll-like receptors as well as the production of cytokines that regulate T-cell differentiation are different. Intriguingly, recent data suggest specific roles for human DC subsets in immune responses against individual pathogens. The biology of human DC subsets holds the promise to be exploitable in translational medicine, in particular for the development of vaccines against persistent infections or cancer.
Collapse
Affiliation(s)
- Jens Geginat
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi" (INGM) , Milan , Italy
| | - Giulia Nizzoli
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi" (INGM) , Milan , Italy
| | - Moira Paroni
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi" (INGM) , Milan , Italy
| | - Stefano Maglie
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi" (INGM) , Milan , Italy
| | - Paola Larghi
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi" (INGM) , Milan , Italy
| | - Steve Pascolo
- Department of Dermatology, University Hospital of Zurich , Zurich , Switzerland
| | - Sergio Abrignani
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi" (INGM) , Milan , Italy ; DISCCO, Department of Clinical Sciences and Community Health, University of Milano , Milan , Italy
| |
Collapse
|
67
|
Abstract
Over two decades ago, it was discovered that the human T-cell repertoire contains T cells that do not recognize peptide antigens in the context of MHC molecules but instead respond to lipid antigens presented by CD1 antigen-presenting molecules. The ability of T cells to 'see' lipid antigens bound to CD1 enables these lymphocytes to sense changes in the lipid composition of cells and tissues as a result of infections, inflammation, or malignancies. Although foreign lipid antigens have been shown to function as antigens for CD1-restricted T cells, many CD1-restricted T cells do not require foreign antigens for activation but instead can be activated by self-lipids presented by CD1. This review highlights recent developments in the field, including the identification of common mammalian lipids that function as autoantigens for αβ and γδ T cells, a novel mode of T-cell activation whereby CD1a itself rather than lipids serves as the autoantigen, and various mechanisms by which the activation of CD1-autoreactive T cells is regulated. As CD1 can induce T-cell effector functions in the absence of foreign antigens, multiple mechanisms are in place to regulate this self-reactivity, and stimulatory CD1-lipid complexes appear to be tightly controlled in space and time.
Collapse
|
68
|
Ubiquitination by March-I prevents MHC class II recycling and promotes MHC class II turnover in antigen-presenting cells. Proc Natl Acad Sci U S A 2015; 112:10449-54. [PMID: 26240324 DOI: 10.1073/pnas.1507981112] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
MHC class II (MHC-II)-dependent antigen presentation by antigen-presenting cells (APCs) is carefully controlled to achieve specificity of immune responses; the regulated assembly and degradation of antigenic peptide-MHC-II complexes (pMHC-II) is one aspect of such control. In this study, we have examined the role of ubiquitination in regulating pMHC-II biosynthesis, endocytosis, recycling, and turnover in APCs. By using APCs obtained from MHC-II ubiquitination mutant mice, we find that whereas ubiquitination does not affect pMHC-II formation in dendritic cells (DCs), it does promote the subsequent degradation of newly synthesized pMHC-II. Acute activation of DCs or B cells terminates expression of the MHC-II E3 ubiquitin ligase March-I and prevents pMHC-II ubiquitination. Most importantly, this change results in very efficient pMHC-II recycling from the surface of DCs and B cells, thereby preventing targeting of internalized pMHC-II to lysosomes for degradation. Biochemical and functional assays confirmed that pMHC-II turnover is suppressed in MHC-II ubiquitin mutant DCs or by acute activation of wild-type DCs. These studies demonstrate that acute APC activation blocks the ubiquitin-dependent turnover of pMHC-II by promoting efficient pMHC-II recycling and preventing lysosomal targeting of internalized pMHC-II, thereby enhancing pMHC-II stability for efficient antigen presentation to CD4 T cells.
Collapse
|
69
|
Almeda-Valdes P, Aguilar Olivos NE, Barranco-Fragoso B, Uribe M, Méndez-Sánchez N. The Role of Dendritic Cells in Fibrosis Progression in Nonalcoholic Fatty Liver Disease. BIOMED RESEARCH INTERNATIONAL 2015; 2015:768071. [PMID: 26339640 PMCID: PMC4538585 DOI: 10.1155/2015/768071] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 06/01/2015] [Accepted: 06/14/2015] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most frequent cause of chronic liver disease. NAFLD encompasses a wide range of pathologies, from simple steatosis to steatosis with inflammation to fibrosis. The pathogenesis of NAFLD progression has not been completely elucidated, and different liver cells could be implicated. This review focuses on the current evidence of the role of liver dendritic cells (DCs) in the progression from NAFLD to fibrosis. Liver DCs are a heterogeneous population of hepatic antigen-presenting cells; their main function is to induce T-cell mediated immunity by antigen processing and presentation to T cells. During the steady state liver DCs are immature and tolerogenic. However, in an environment of chronic inflammation, DCs are transformed to potent inducers of immune responses. There is evidence about the role of DC in liver fibrosis, but it is not clearly understood. Interestingly, there might be a link between lipid metabolism and DC function, suggesting that immunogenic DCs are associated with liver lipid storage, representing a possible pathophysiological mechanism in NAFLD development. A better understanding of the interaction between inflammatory pathways and the different cell types and the effect on the progression of NAFLD is of great relevance.
Collapse
Affiliation(s)
- Paloma Almeda-Valdes
- Endocrinology and Metabolism Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, 14080 Mexico, DF, Mexico
| | | | - Beatriz Barranco-Fragoso
- Department of Gastroenterology, National Medical Center “20 Noviembre”, 03229 Mexico, DF, Mexico
| | - Misael Uribe
- Liver Research Unit, Medica Sur Clinic & Foundation, 14050 Mexico, DF, Mexico
| | | |
Collapse
|
70
|
Sachan S, Ramakrishnan S, Annamalai A, Sharma BK, Malik H, Saravanan B, Jain L, Saxena M, Kumar A, Krishnaswamy N. Adjuvant potential of resiquimod with inactivated Newcastle disease vaccine and its mechanism of action in chicken. Vaccine 2015; 33:4526-32. [DOI: 10.1016/j.vaccine.2015.07.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 06/20/2015] [Accepted: 07/07/2015] [Indexed: 11/26/2022]
|
71
|
Biedroń R, Konopiński MK, Marcinkiewicz J, Józefowski S. Oxidation by neutrophils-derived HOCl increases immunogenicity of proteins by converting them into ligands of several endocytic receptors involved in antigen uptake by dendritic cells and macrophages. PLoS One 2015; 10:e0123293. [PMID: 25849867 PMCID: PMC4388828 DOI: 10.1371/journal.pone.0123293] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 02/26/2015] [Indexed: 11/21/2022] Open
Abstract
The initiation of adaptive immune responses to protein antigens has to be preceded by their uptake by antigen presenting cells and intracellular proteolytic processing. Paradoxically, endocytic receptors involved in antigen uptake do not bind the majority of proteins, which may be the main reason why purified proteins stimulate at most weak immune responses. A shared feature of different types of adjuvants, capable of boosting immunogenicity of protein vaccines, is their ability to induce acute inflammation, characterized by early influx of activated neutrophils. Neutrophils are also rapidly recruited to sites of tissue injury or infection. These cells are the source of potent oxidants, including hypochlorous acid (HOCl), causing oxidation of proteins present in inflammatory foci. We demonstrate that oxidation of proteins by endogenous, neutrophils-derived HOCl increases their immunogenicity. Upon oxidation, different, randomly chosen simple proteins (yeast alcohol dehydrogenase, human and bovine serum albumin) and glycoproteins (human apo-transferrin, ovalbumin) gain the ability to bind with high affinity to several endocytic receptors on antigen presenting cells, which seems to be the major mechanism of their increased immunogenicity. The mannose receptor (CD206), scavenger receptors A (CD204) and CD36 were responsible for the uptake and presentation of HOCl-modified proteins by murine dendritic cells and macrophages. Other scavenger receptors, SREC-I and LOX-1, as well as RAGE were also able to bind HOCl-modified proteins, but they did not contribute significantly to these ligands uptake by dendritic cells because they were either not expressed or exhibited preference for more heavily oxidised proteins. Our results indicate that oxidation by neutrophils-derived HOCl may be a physiological mechanism of conferring immunogenicity on proteins which in their native forms do not bind to endocytic receptors. This mechanism might enable the immune system to detect infections caused by pathogens not recognized by pattern recognition receptors.
Collapse
Affiliation(s)
- Rafał Biedroń
- Department of Immunology, Jagiellonian University Medical College, Cracow, Poland
| | | | - Janusz Marcinkiewicz
- Department of Immunology, Jagiellonian University Medical College, Cracow, Poland
| | - Szczepan Józefowski
- Department of Immunology, Jagiellonian University Medical College, Cracow, Poland
- * E-mail:
| |
Collapse
|
72
|
The ins and outs of MHC class II-mediated antigen processing and presentation. Nat Rev Immunol 2015; 15:203-16. [PMID: 25720354 DOI: 10.1038/nri3818] [Citation(s) in RCA: 730] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Antigenic peptide-loaded MHC class II molecules (peptide-MHC class II) are constitutively expressed on the surface of professional antigen-presenting cells (APCs), including dendritic cells, B cells, macrophages and thymic epithelial cells, and are presented to antigen-specific CD4(+) T cells. The mechanisms of antigen uptake, the nature of the antigen processing compartments and the lifetime of cell surface peptide-MHC class II complexes can vary depending on the type of APC. It is likely that these differences are important for the function of each distinct APC subset in the generation of effective adaptive immune responses. In this Review, we describe our current knowledge of the mechanisms of uptake and processing of antigens, the intracellular formation of peptide-MHC class II complexes, the intracellular trafficking of peptide-MHC class II complexes to the APC plasma membrane and their ultimate degradation.
Collapse
|
73
|
Liu Z, Roche PA. Macropinocytosis in phagocytes: regulation of MHC class-II-restricted antigen presentation in dendritic cells. Front Physiol 2015; 6:1. [PMID: 25688210 PMCID: PMC4311620 DOI: 10.3389/fphys.2015.00001] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 01/05/2015] [Indexed: 01/01/2023] Open
Abstract
Dendritic cells (DCs) are outstanding antigen presenting cells (APCs) due to their robust ability to internalize extracellular antigens using endocytic processes such as receptor-mediated endocytosis, phagocytosis, and macropinocytosis. Macropinocytosis mediates the non-specific uptake of soluble antigens and occurs in DCs constitutively. Macropinocytosis plays a key role in DC-mediated antigen presentation to T cells against pathogens and the efficiency of macropinocytosis in antigen capture is regulated during the process of DC maturation. Here, we review the methods to study macropinocytosis, describe our current knowledge of the regulatory mechanisms of antigen uptake via macropinocytosis and the intracellular trafficking route followed by macropinocytosed antigens, and discuss the significance of macropinocytosis for DC function.
Collapse
Affiliation(s)
- Zhenzhen Liu
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health Bethesda, MD, USA
| | - Paul A Roche
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health Bethesda, MD, USA
| |
Collapse
|
74
|
Michelet X, Garg S, Wolf BJ, Tuli A, Ricciardi-Castagnoli P, Brenner MB. MHC Class II Presentation Is Controlled by the Lysosomal Small GTPase, Arl8b. THE JOURNAL OF IMMUNOLOGY 2015; 194:2079-88. [DOI: 10.4049/jimmunol.1401072] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
75
|
Mody N, Dubey S, Sharma R, Agrawal U, Vyas SP. Dendritic cell-based vaccine research against cancer. Expert Rev Clin Immunol 2014; 11:213-32. [DOI: 10.1586/1744666x.2015.987663] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
76
|
TLR-dependent phagosome tubulation in dendritic cells promotes phagosome cross-talk to optimize MHC-II antigen presentation. Proc Natl Acad Sci U S A 2014; 111:15508-13. [PMID: 25313083 DOI: 10.1073/pnas.1412998111] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Dendritic cells (DCs) phagocytose large particles like bacteria at sites of infection and progressively degrade them within maturing phagosomes. Phagosomes in DCs are also signaling platforms for pattern recognition receptors, such as Toll-like receptors (TLRs), and sites for assembly of cargo-derived peptides with major histocompatibility complex class II (MHC-II) molecules. Although TLR signaling from phagosomes stimulates presentation of phagocytosed antigens, the mechanisms underlying this enhancement and the cell surface delivery of MHC-II-peptide complexes from phagosomes are not known. We show that in DCs, maturing phagosomes extend numerous long tubules several hours after phagocytosis. Tubule formation requires an intact microtubule and actin cytoskeleton and MyD88-dependent phagosomal TLR signaling, but not phagolysosome formation or extensive proteolysis. In contrast to the tubules that emerge from endolysosomes after uptake of soluble ligands and TLR stimulation, the late-onset phagosomal tubules are not essential for delivery of phagosome-derived MHC-II-peptide complexes to the plasma membrane. Rather, tubulation promotes MHC-II presentation by enabling maximal cargo transfer among phagosomes that bear a TLR signature. Our data show that phagosomal tubules in DCs are functionally distinct from those that emerge from lysosomes and are unique adaptations of the phagocytic machinery that facilitate cargo exchange and antigen presentation among TLR-signaling phagosomes.
Collapse
|
77
|
Anderson HA, Roche PA. MHC class II association with lipid rafts on the antigen presenting cell surface. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:775-80. [PMID: 25261705 DOI: 10.1016/j.bbamcr.2014.09.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 09/16/2014] [Accepted: 09/17/2014] [Indexed: 12/29/2022]
Abstract
MHC class II (MHC-II) molecules function by binding peptides derived from either self or foreign proteins and expressing these peptides on the surface of antigen presenting cells (APCs) for recognition by CD4 T cells. MHC-II is known to exist on clusters on the surface of APCs, and a variety of biochemical and functional studies have suggested that these clusters represent lipid raft microdomain-associated MHC-II. This review will summarize data exploring the biosynthesis of raft-associated MHC-II and the role that lipid raft association plays in regulating T cell activation by APCs. This article is part of a Special Issue entitled: Nanoscale membrane organisation and signalling.
Collapse
Affiliation(s)
- Howard A Anderson
- Division of Therapeutic Proteins, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Paul A Roche
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
78
|
Abstract
PURPOSE The aim of this study was to compare the antirejection effects of topical selective sphingosine-1-phosphate 1 receptor (S1P1) agonist and cyclosporine A (CsA) on the acceptance of a transplanted, allogeneic cornea graft in a murine animal model. METHODS Fifty-six BALB/c mice were randomly divided into 4 groups. All the mice received corneal grafts from 28 C57BL/6 donors. Experimental recipients were treated with 0.25%, 0.5% S1P1 agonist suspension eye drops or 1% CsA eye drops 4 times a day after the corneal graft was performed. Controls received no treatment. The corneal grafts were imaged and evaluated with clinical scoring. The excised corneal sections 14 days after transplantation were stained using hematoxylin-eosin for histopathological evaluation. CD86+ and MHC-II+ dendritic cells in corneal samples were identified by immunohistochemical staining. The expression of mRNA in the cornea was evaluated using real-time quantitative PCR for interleukin-2, interferon-gamma, and cytotoxic T-lymphocyte antigen 4. RESULTS Corneal graft survival was prolonged by treatment with 0.5% S1P1 agonist and 1% CsA (P < 0.01, respectively) when compared with that in the control in clinical scoring. In addition, topical application of 0.5% S1P1 increased the cytotoxic T-lymphocyte antigen 4 mRNA expression of the corneal grafts. There were significant differences observed with 0.5% S1P1 and agonist 1% CsA (P < 0.01, respectively) when compared with the values of the control group in histology scoring. CONCLUSIONS Topical 0.5% S1P1 agonist is as effective as 1% CsA, and both can effectively prolong the survival of corneal allografts in mice.
Collapse
|
79
|
Kim JJ, Nam JP, Nah JW, Jang MK, Yee ST. Immunoadjuvant Efficacy of N-Carboxymethyl Chitosan for Vaccination via Dendritic Cell Activation. J Med Food 2014; 17:268-77. [DOI: 10.1089/jmf.2013.2921] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jong-Jin Kim
- Department of Biology, Sunchon National University, Suncheon, Korea
| | - Joung-Pyo Nam
- Department of Polymer Science and Engineering, Sunchon National University, Suncheon, Korea
| | - Jae-Woon Nah
- Department of Polymer Science and Engineering, Sunchon National University, Suncheon, Korea
| | - Mi-Kyeong Jang
- Department of Polymer Science and Engineering, Sunchon National University, Suncheon, Korea
| | - Sung-Tae Yee
- Department of Biology, Sunchon National University, Suncheon, Korea
- Department of Pharmacy, Sunchon National University, Suncheon, Korea
| |
Collapse
|
80
|
Ohnuma K, Inoue H, Uchiyama M, Yamochi T, Hosono O, Dang NH, Morimoto C. T-cell activation via CD26 and caveolin-1 in rheumatoid synovium. Mod Rheumatol 2014. [DOI: 10.3109/s10165-005-0452-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
81
|
Cho KJ, Roche PA. Regulation of MHC Class II-Peptide Complex Expression by Ubiquitination. Front Immunol 2013; 4:369. [PMID: 24312092 PMCID: PMC3826109 DOI: 10.3389/fimmu.2013.00369] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 10/28/2013] [Indexed: 01/13/2023] Open
Abstract
MHC class II (MHC-II) molecules are present on antigen presenting cells (APCs) and these molecules function by binding antigenic peptides and presenting these peptides to antigen-specific CD4+ T cells. APCs continuously generate and degrade MHC-II molecules, and ubiquitination of MHC-II has recently been shown to be a key regulator of MHC-II expression in dendritic cells (DCs). In this mini-review we will examine the mechanism by which the E3 ubiquitin ligase March-I regulates MHC-II expression on APCs and will discuss the functional consequences of altering MHC-II ubiquitination.
Collapse
Affiliation(s)
- Kyung-Jin Cho
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health , Bethesda, MD , USA
| | | |
Collapse
|
82
|
Zuidscherwoude M, de Winde CM, Cambi A, van Spriel AB. Microdomains in the membrane landscape shape antigen-presenting cell function. J Leukoc Biol 2013; 95:251-63. [PMID: 24168856 DOI: 10.1189/jlb.0813440] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The plasma membrane of immune cells is a highly organized cell structure that is key to the initiation and regulation of innate and adaptive immune responses. It is well-established that immunoreceptors embedded in the plasma membrane have a nonrandom spatial distribution that is important for coupling to components of intracellular signaling cascades. In the last two decades, specialized membrane microdomains, including lipid rafts and TEMs, have been identified. These domains are preformed structures ("physical entities") that compartmentalize proteins, lipids, and signaling molecules into multimolecular assemblies. In APCs, different microdomains containing immunoreceptors (MHC proteins, PRRs, integrins, among others) have been reported that are imperative for efficient pathogen recognition, the formation of the immunological synapse, and subsequent T cell activation. In addition, recent work has demonstrated that tetraspanin microdomains and lipid rafts are involved in BCR signaling and B cell activation. Research into the molecular mechanisms underlying membrane domain formation is fundamental to a comprehensive understanding of membrane-proximal signaling and APC function. This review will also discuss the advances in the microscopy field for the visualization of the plasma membrane, as well as the recent progress in targeting microdomains as novel, therapeutic approach for infectious and malignant diseases.
Collapse
Affiliation(s)
- Malou Zuidscherwoude
- 1.Nijmegen Centre for Molecular Life Sciences/278 TIL, Radboud University Medical Centre, Geert Grooteplein 28, 6525GA, Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
83
|
Dendritic cell-based approaches for therapeutic immune regulation in solid-organ transplantation. J Transplant 2013; 2013:761429. [PMID: 24307940 PMCID: PMC3824554 DOI: 10.1155/2013/761429] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 09/16/2013] [Indexed: 12/18/2022] Open
Abstract
To avoid immune rejection, allograft recipients require drug-based immunosuppression, which has significant toxicity. An emerging approach is adoptive transfer of immunoregulatory cells. While mature dendritic cells (DCs) present donor antigen to the immune system, triggering rejection, regulatory DCs interact with regulatory T cells to promote immune tolerance. Intravenous injection of immature DCs of either donor or host origin at the time of transplantation have prolonged allograft survival in solid-organ transplant models. DCs can be treated with pharmacological agents before injection, which may attenuate their maturation in vivo. Recent data suggest that injected immunosuppressive DCs may inhibit allograft rejection, not by themselves, but through conventional DCs of the host. Genetically engineered DCs have also been tested. Two clinical trials in type-1 diabetes and rheumatoid arthritis have been carried out, and other trials, including one trial in kidney transplantation, are in progress or are imminent.
Collapse
|
84
|
Harimoto H, Shimizu M, Nakagawa Y, Nakatsuka K, Wakabayashi A, Sakamoto C, Takahashi H. Inactivation of tumor-specific CD8⁺ CTLs by tumor-infiltrating tolerogenic dendritic cells. Immunol Cell Biol 2013; 91:545-55. [PMID: 24018532 PMCID: PMC3806489 DOI: 10.1038/icb.2013.38] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 07/03/2013] [Accepted: 07/07/2013] [Indexed: 02/06/2023]
Abstract
Cancer immunosurveillance failure is largely attributed to the insufficient activation of tumor-specific class I major histocompatibility complex (MHC) molecule (MHC-I)-restricted CD8+ cytotoxic T lymphocytes (CTLs). DEC-205+ dendritic cells (DCs), having the ability to cross-present, can present captured tumor antigens on MHC-I alongside costimulatory molecules, inducing the priming and activation of tumor-specific CD8+ CTLs. It has been suggested that reduced levels of costimulatory molecules on DCs may be a cause of impaired CTL induction and that some tumors may induce the downregulation of costimulatory molecules on tolerogenic DCs. To examine such possibilities, we established two distinct types of murine hepatoma cell lines, named Hepa1-6-1 and Hepa1-6-2 (derived from Hepa1-6 cells), and confirmed that they display similar antigenicities, as well as identical surface expression of MHC-I. We found that Hepa1-6-1 had the ability to grow continuously after subcutaneous implantation into syngeneic C57BL/6 mice and did not prime CD8+ CTLs. In contrast, Hepa1-6-2 cells, which display reduced levels of adhesion molecules, such as Intercellular Adhesion Molecule 1 (ICAM-1), failed to grow in vivo and efficiently primed CTLs. Moreover, Hepa1-6-1-derived factors, such as transforming growth factor (TGF)-β1, vascular endothelial growth factor (VEGF) and α-fetoprotein (AFP), converted CD11chigh MHC-IIhigh DEC-205+ DC subsets into tolerogenic cells, displaying downregulated costimulatory molecules and having impaired cross-presenting capacities. These immunosuppressive tolerogenic DCs appeared to inhibit the induction of tumor-specific CD8+ CTLs and suppress their cytotoxic functions within the tumor. Together, the findings presented here provide a new method of cancer immunotherapy using the selective suppression, depletion or alteration of immunosuppressive tolerogenic DCs within tumors.
Collapse
Affiliation(s)
- Hirotomo Harimoto
- 1] Department of Microbiology and Immunology, Nippon Medical School, Tokyo, Japan [2] Third Department of Internal Medicine, Nippon Medical School, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
85
|
Tardif V, Riquelme SA, Remy S, Carreño LJ, Cortés CM, Simon T, Hill M, Louvet C, Riedel CA, Blancou P, Bach JM, Chauveau C, Bueno SM, Anegon I, Kalergis AM. Carbon monoxide decreases endosome-lysosome fusion and inhibits soluble antigen presentation by dendritic cells to T cells. Eur J Immunol 2013; 43:2832-44. [PMID: 23852701 DOI: 10.1002/eji.201343600] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 06/27/2013] [Accepted: 07/11/2013] [Indexed: 11/06/2022]
Abstract
Heme oxygenase-1 (HO-1) inhibits immune responses and inflammatory reactions via the catabolism of heme into carbon monoxide (CO), Fe(2+) , and biliverdin. We have previously shown that either induction of HO-1 or treatment with exogenous CO inhibits LPS-induced maturation of dendritic cells (DCs) and protects in vivo and in vitro antigen-specific inflammation. Here, we evaluated the capacity of HO-1 and CO to regulate antigen presentation on MHC class I and MHC class II molecules by LPS-treated DCs. We observed that HO-1 and CO treatment significantly inhibited the capacity of DCs to present soluble antigens to T cells. Inhibition was restricted to soluble OVA protein, as no inhibition was observed for antigenic OVA-derived peptides, bead-bound OVA protein, or OVA as an endogenous antigen. Inhibition of soluble antigen presentation was not due to reduced antigen uptake by DCs, as endocytosis remained functional after HO-1 induction and CO treatment. On the contrary, CO significantly reduced the efficiency of fusion between late endosomes and lysosomes and not by phagosomes and lysosomes. These data suggest that HO-1 and CO can inhibit the ability of LPS-treated DCs to present exogenous soluble antigens to naïve T cells by blocking antigen trafficking at the level of late endosome-lysosome fusion.
Collapse
Affiliation(s)
- Virginie Tardif
- INSERM, UMR 1064, Nantes, France; CHU Nantes, ITUN, Nantes, France; Faculté de Médecine, Université de Nantes, Nantes, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Neddylation plays an important role in the regulation of murine and human dendritic cell function. Blood 2013; 122:2062-73. [PMID: 23863900 DOI: 10.1182/blood-2013-02-486373] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Posttranslational protein modifications (PTMs) are necessary for cells to function properly. The role of PTMs in regulating immune responses, specifically those mediated by dendritic cells (DCs), which are critical for both innate and adaptive immunity, is not well understood. Utilizing multiple but complementary approaches, we determined the role of an important but less understood type of PTM, namely, neddylation, in regulating DC functions. Inhibition of neddylation suppressed the release of proinflammatory cytokines by DCs in response to Toll-like receptor, nucleotide oligomerization domain-like receptor, and noninfectious CD40L stimulation. These effects were more profound than those mediated by the proteasome inhibitor bortezomib or a commonly used antiinflammatory agent, dexamethasone. Targeting neddylation also suppressed the ability of DCs to stimulate murine allogeneic T cells in vitro and in vivo and human allogeneic T-cell responses in vitro. Mechanistic studies demonstrated that inhibition of neddylation reduced both canonical and noncanonical nuclear factor-κB (NF-κB) activity. Neddylation inhibition prevented the degradation of inhibitor-κB and thus reduced the translocation and activation of NF-κB, but without perturbation of the mitogen-activated protein kinase/extracellular signal-regulated kinase pathway. Thus, blocking neddylation could be a novel strategy for mitigating immune-mediated disease processes.
Collapse
|
87
|
Bär F, Sina C, Hundorfean G, Pagel R, Lehnert H, Fellermann K, Büning J. Inflammatory bowel diseases influence major histocompatibility complex class I (MHC I) and II compartments in intestinal epithelial cells. Clin Exp Immunol 2013; 172:280-9. [PMID: 23574324 DOI: 10.1111/cei.12047] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2012] [Indexed: 12/19/2022] Open
Abstract
Antigen presentation by intestinal epithelial cells (IEC) is crucial for intestinal homeostasis. Disturbances of major histocompatibility complex class I (MHC I)- and II-related presentation pathways in IEC appear to be involved in an altered activation of CD4(+) and CD8(+) T cells in inflammatory bowel disease. However, a comprehensive analysis of MHC I- and II-enriched compartments in IEC of the small and large bowel in the healthy state as opposed to inflammatory bowel diseases is lacking. The aim of this study was to characterize the subcellular expression of MHC I and II in the endocytic pathway of IEC throughout all parts of the intestinal tract, and to identify differences between the healthy state and inflammatory bowel diseases. Biopsies were taken by endoscopy from the duodenum, jejunum, ileum and colon in healthy individuals (n = 20). In Crohn's disease (CD), biopsies were obtained from the ileum and colon and within the colon from ulcerative colitis (UC) patients (n = 15). Analysis of IEC was performed by immunoelectron microscopy. MHC I and II were identified in early endosomes and multi-vesicular, multi-lamellar, electrondense and vacuolar late endosomes. Both molecules were enriched in multi-vesicular bodies. No differences were found between the distinct parts of the gut axis. In CD and UC the expression of MHC I and II showed a shift from multi-vesicular bodies towards the basolateral membranes. Within the multi-vesicular bodies, MHC I and II moved from internal vesicles to the limiting membranes upon inflammation in CD and UC. MHC I- and II-enriched compartments in IEC were identical in all parts of the small and large bowel. CD and UC appear to modulate the MHC I- and II-related presentation pathways of exogenous antigens in IEC.
Collapse
Affiliation(s)
- F Bär
- Department of Internal Medicine I, University Hospital of Schleswig-Holstein, Institute of Anatomy, University of Lübeck, Lübeck, Germany
| | | | | | | | | | | | | |
Collapse
|
88
|
Junginger J, Lemensieck F, Moore PF, Schwittlick U, Nolte I, Hewicker-Trautwein M. Canine gut dendritic cells in the steady state and in inflammatory bowel disease. Innate Immun 2013; 20:145-60. [PMID: 23723379 DOI: 10.1177/1753425913485475] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Alongside the intestinal border, dendritic cells (DCs) sample large amounts of endogenous and potentially pathogenic antigens followed by initiation of protective immune responses or induction of tolerance. Breakdown of oral tolerance towards commensal bacteria is suggested to be crucial for the development of both human and canine inflammatory bowel disease (IBD). The aim of this study was to investigate canine intestinal DCs in the steady state and in dogs with IBD using multicolour immunofluorescence. In the healthy gut, DC-like cells expressed MHC II, CD1a8.2 and CD11c, and, in lower amounts, CD11b, within lamina propria, Peyer's patches (PPs) and mesenteric lymph nodes (MLNs), whereas those expressing CD80 and CD86 were only present in PPs and MLNs. Occasionally, DC-like cells were in contact with the intestinal lumen through transepithelial projections. In canine IBD, CD1a8.2+, CD11b+ and CD11c+ DC-like cells were decreased within the stomach, duodenum and colon, whereas the colonic mucosa revealed elevation of CD86+ DC-like cells. The complex network of DC-like cells in the gut indicates their important role in canine mucosal immunity, including active sampling of luminal antigens. Furthermore, their shift in diseased dogs suggests a pathogenetic significance for canine IBD.
Collapse
Affiliation(s)
- Johannes Junginger
- 1Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | | | | | | | | |
Collapse
|
89
|
Kerr RP, Krunkosky TM, Hurley DJ, Cummings BS, Holladay SD, Gogal RM. Lead at 2.5 and 5.0 μM induced aberrant MH-II surface expression through increased MII exocytosis and increased autophagosome formation in Raw 267.4 cells. Toxicol In Vitro 2013; 27:1018-24. [PMID: 23376802 DOI: 10.1016/j.tiv.2013.01.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 01/18/2013] [Accepted: 01/19/2013] [Indexed: 12/13/2022]
Abstract
Aberrant major histocompatibility complex class II (MHC-II) surface expression on antigen presenting cells (APCs) is associated with dysregulated immune homeostasis. Lead (Pb) is known to increase MHC-II surface expression on murine peritoneal macrophages ex vivo at concentrations exceeding 25 μM. Little data exist examining this effect at physiologically relevant concentrations. To address this deficit, we examined the effects of Pb on MHC-II surface expression, secondary T-cell activation markers (CD80, CD86, CD40), cell viability, cellular metabolic activity, and β-hexosaminidase activity in RAW 267.4 macrophage cell lines, with changes in cell ultrastructure evaluated by electron and confocal microscopy. Pb induced an increase in MHC-II, CD86, and lysosome-associated LAMP-1 and LAMP-2 surface mean expression during one doubling cycle (17 h), which was mirrored by increased β-hexosaminidase activity. Although cell viability was unaffected, cellular metabolism was inhibited. Electron microscopy revealed evidence of lipid vacuolization, macroautophagy and myelin figure formation in cells cultured with either Pb or LPS. Confocal microscopy with antibodies against LC3B showed a punctate pattern consistent with the presence of mature autophagosomes. Collectively, these data suggest that 2.5-5.0 μM Pb increased MHC-II surface expression by inhibiting metabolic activity, inducing autophagy, and increasing MHC-II trafficking in a macrophage cell line.
Collapse
Affiliation(s)
- R P Kerr
- Department of Veterinary Biosciences & Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, 501 D.W. Brooks Drive, Athens, GA 30602, USA
| | | | | | | | | | | |
Collapse
|
90
|
Bosch B, Heipertz EL, Drake JR, Roche PA. Major histocompatibility complex (MHC) class II-peptide complexes arrive at the plasma membrane in cholesterol-rich microclusters. J Biol Chem 2013; 288:13236-42. [PMID: 23532855 DOI: 10.1074/jbc.m112.442640] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Antigen-specific CD4 T cells are activated by small numbers of antigenic peptide-MHC class II (pMHC-II) complexes on dendritic cells (DCs). RESULTS Newly generated pMHC-II complexes are present in small clusters on the DC surface. CONCLUSION pMHC-II clusters permit efficient T cell activation. SIGNIFICANCE The appearance of clustered pMHC-II reveals the organization of the T cell antigen receptor ligand on the DC surface. Dendritic cells (DCs) function by stimulating naive antigen-specific CD4 T cells to proliferate and secrete a variety of immunomodulatory factors. The ability to activate naive T cells comes from the capacity of DCs to internalize, degrade, and express peptide fragments of antigenic proteins on their surface bound to MHC class II molecules (MHC-II). Although DCs express tens of thousands of distinct MHC-II, very small amounts of specific peptide-MHC-II complexes are required to interact with and activate T cells. We now show that stimulatory MHC-II I-A(k)-HEL(46-61) complexes that move from intracellular antigen-processing compartments to the plasma membrane are not randomly distributed on the DC surface. Confocal immunofluorescence microscopy and quantitative immunoelectron microscopy reveal that the majority of newly generated MHC-II I-A(k)-HEL(46-61) complexes are expressed in sub-100-nm microclusters on the DC membrane. These microclusters are stabilized in cholesterol-containing microdomains, and cholesterol depletion inhibits the stability of these clusters as well as the ability of the DCs to function as antigen-presenting cells. These results demonstrate that specific cohorts of peptide-MHC-II complexes expressed on the DC surface are present in cholesterol-dependent microclusters and that cluster integrity is important for antigen-specific naive CD4 T cell activation by DCs.
Collapse
Affiliation(s)
- Berta Bosch
- Experimental Immunology Branch, NCI, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
91
|
Ma ZH, Lu H, Lu Q, Yao ZF, Han Y. CD1d blockade suppresses the capacity of immature dendritic cells to prime allogeneic T cell response. J Surg Res 2013; 183:894-9. [PMID: 23478084 DOI: 10.1016/j.jss.2013.01.066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Revised: 12/27/2012] [Accepted: 01/31/2013] [Indexed: 11/29/2022]
Abstract
BACKGROUND Dendritic cells (DCs) are the principal antigen-presenting cells involved in primary immune response and immunoregulation. The function of DCs is believed to depend on their degree of maturation. Mature DCs activate immune responses, whereas immature DCs (imDCs) tend to induce immune tolerance. CD1 is involved in regulating the development of imDCs, which have important roles in initiating or suppressing the immune response after transplantation. MATERIALS AND METHODS We used male BALB/c mice and C57BL/6 mice (aged 8-10 wk, 18-22 g). We isolated and purified T lymphocytes from mouse spleen. Immature DCs modified by viral delivery of interleukin-10 (IL-10) were stimulated with granulocyte macrophage colony-stimulating factor and lipopolysaccharide (LPS) and treated with anti-CD1d in vitro. We used mixed lymphocyte cultures to evaluate the heterogeneity of T lymphocyte response. We also examined the proliferation of T lymphocytes and the expression of cytokines. RESULTS CD1d blockade did not impair granulocyte macrophage colony-stimulating factor and LPS-stimulated DC maturation. We observed a dramatic increase in allogeneic T lymphocyte proliferation (stimulation index) at all tested responder-stimulator ratios in response to imDCs cultured in the presence of LPS (P < 0.05). CD1d has an important role in imDC-primed T cell response (P < 0.05). CD1d blockade reduced the capacity of imDCs to prime allogeneic T cells. T cells pre-sensitized by LPS-stimulated imDCs showed remarkably elevated proliferation in response to T cells from either BALB/c or C57BL/6 mice (P < 0.01). We observed a significant decrease in the proliferation of T cells pre-sensitized by stimulated imDCs after CD1d blockade. Lipopolysaccharide stimulation caused elevated the production of IL-12 and tumor necrosis factor-α (TNF-α) (P < 0.01) and decreased the secretion of IL-10 (P < 0.05). The addition of CD1d neutralization antibody did not significantly change the concentrations of IL-12, TNF-α, or IL-10 produced by imDCs cultured in the presence of LPS (P > 0.05). CONCLUSIONS Blockade of CD1d impaired the ability of imDCs to stimulate allogeneic T cell response. By reduced T cell proliferation, the secretion of IL-12 and TNF-α decreased and production of a T-helper type 2 cytokine IL-10 increased, which indicates the potential of CD1d blockade as a method to induce immune tolerance to allograft antigens in transplantation.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Antigens, CD1d/drug effects
- Antigens, CD1d/immunology
- Antigens, CD1d/physiology
- Cell Differentiation/drug effects
- Cell Differentiation/physiology
- Cell Proliferation/drug effects
- Cells, Cultured
- Cytokines/metabolism
- Dendritic Cells/cytology
- Dendritic Cells/drug effects
- Dendritic Cells/physiology
- Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology
- Immune Tolerance/drug effects
- Immune Tolerance/physiology
- In Vitro Techniques
- Lipopolysaccharides/pharmacology
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Models, Animal
- T-Lymphocytes/cytology
- T-Lymphocytes/drug effects
- Transplantation, Homologous
Collapse
Affiliation(s)
- Zhao-Hui Ma
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | | | | | | | | |
Collapse
|
92
|
Abstract
Pulmonary dendritic cells (DCs) constantly sample the tissue and traffic inhaled antigens to the lung-draining lymph node where they normally orchestrate an appropriate immune response. The dynamic ability of these professional antigen-presenting cells to promote tolerance or immunity has been intensively studied by several groups, including ours. Distinct DC subsets in both lymphoid and non-lymphoid tissues have been described based on their surface molecule expression and location. Current efforts to unravel DC development and function are providing insight into the various roles each subset offers the immune system. Elucidating DC functions, particularly in the lung, may then allow use of the inherent ability of these cells for enhanced vaccine strategies and therapeutics for pulmonary infections and diseases.
Collapse
Affiliation(s)
- A. Nicole Desch
- Integrated Department of Immunology, University of Colorado School of Medicine, Denver, CO, USA
| | - Peter M. Henson
- Department of Pediatrics, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
- Integrated Department of Immunology, University of Colorado School of Medicine, Denver, CO, USA
| | - Claudia V. Jakubzick
- Department of Pediatrics, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA,
- Integrated Department of Immunology, University of Colorado School of Medicine, Denver, CO, USA
| |
Collapse
|
93
|
E XQ, Meng HX, Cao Y, Zhang SQ, Bi ZG, Yamakawa M. Distribution of regulatory T cells and interaction with dendritic cells in the synovium of rheumatoid arthritis. Scand J Rheumatol 2013; 41:413-20. [PMID: 23157225 DOI: 10.3109/03009742.2012.696135] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES The aim of this study was to investigate the tissue distribution of regulatory T cells (Treg cells) and their interaction with dendritic cells (DCs) in synovium from patients with rheumatoid arthritis (RA) or osteoarthritis (OA). METHODS Immunohistochemical staining was used to investigate the distribution of Treg cells and the interaction between Treg cells and DCs in RA (n = 30) and OA synovium (n = 8). mRNA levels were measured by quantitative real-time reverse transcription polymerase chain reaction (RT-PCR). RESULTS Large numbers of Treg cells were observed in lymphoid aggregates and perivenular infiltration areas in the RA synovium. Specific cellular markers for Treg cells (Foxp3, CD39, LAG-3, and Nrp-1) were found in lymphoid aggregates, perivenular infiltration, and scattered in lining layer areas. As molecular markers for DCs, DC-LAMP, DEC-205, CD80/86, and CD83 were also detected in the lymphoid aggregates and perivenular infiltration areas in RA. Furthermore, the co-localization of Treg cells and DCs was confined mainly in the lymphoid aggregation areas. The number of DCs increased significantly more than the number of Treg cells with inflammatory progression in RA. mRNA expression of the cellular markers for Treg cells (Foxp3, LAG-3, and Nrp-1) and the molecular markers for DCs (DC-LAMP and DEC-205) was increased in RA compared with OA synovium. CONCLUSIONS Our results indicate that DCs play a dominant role in regulating the activation and progression of immune responses in RA, even though the number of Treg cells was upregulated at the same time. This suggests that Treg cells do not function normally to suppress the maturation of DCs in the RA synovium.
Collapse
Affiliation(s)
- X Q E
- Department of Orthopaedics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | | | | | | | | | | |
Collapse
|
94
|
Abstract
Dendritic cells (DCs) are specialized sentinels responsible for coordinating adaptive immunity. This function is dependent upon coupled sensitivity to environmental signs of inflammation and infection to cellular maturation-the programmed alteration of DC phenotype and function to enhance immune cell activation. Although DCs are thus well equipped to respond to pathogens, maturation triggers are not unique to infection. Given that immune cells are exquisitely sensitive to the biological functions of DCs, we now appreciate that multiple layers of suppression are required to restrict the environmental sensitivity, cellular maturation, and even life span of DCs to prevent aberrant immune activation during the steady state. At the same time, steady-state DCs are not quiescent but rather perform key functions that support homeostasis of numerous cell types. Here we review these functions and molecular mechanisms of suppression that control steady-state DC maturation. Corruption of these steady-state operatives has diverse immunological consequences and pinpoints DCs as potent drivers of autoimmune and inflammatory disease.
Collapse
Affiliation(s)
- Gianna Elena Hammer
- Department of Medicine, University of California, San Francisco, California 94143
| | - Averil Ma
- Department of Medicine, University of California, San Francisco, California 94143
| |
Collapse
|
95
|
Stephen TL, Harms F, Fabri M, Flenner E, Bessler M, Hafke H, Meemboor S, Kalka C, Kalka-Moll W. In vitro generation of murine myeloid dendritic cells from CD34-positive precursors. Cell Biol Int 2013; 33:778-84. [DOI: 10.1016/j.cellbi.2009.04.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 03/19/2009] [Accepted: 04/23/2009] [Indexed: 11/28/2022]
|
96
|
Mantegazza AR, Magalhaes JG, Amigorena S, Marks MS. Presentation of phagocytosed antigens by MHC class I and II. Traffic 2012; 14:135-52. [PMID: 23127154 DOI: 10.1111/tra.12026] [Citation(s) in RCA: 162] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 11/01/2012] [Accepted: 11/06/2012] [Indexed: 12/15/2022]
Abstract
Phagocytosis provides innate immune cells with a mechanism to take up and destroy pathogenic bacteria, apoptotic cells and other large particles. In some cases, however, peptide antigens from these particles are preserved for presentation in association with major histocompatibility complex (MHC) class I or class II molecules in order to stimulate antigen-specific T cells. Processing and presentation of antigens from phagosomes presents a number of distinct challenges relative to antigens internalized by other means; while bacterial antigens were among the first discovered to be presented to T cells, analyses of the cellular mechanisms by which peptides from phagocytosed antigens assemble with MHC molecules and by which these complexes are then expressed at the plasma membrane have lagged behind those of conventional model soluble antigens. In this review, we cover recent advances in our understanding of these processes, including the unique cross-presentation of phagocytosed antigens by MHC class I molecules, and in their control by signaling modalities in phagocytic cells.
Collapse
Affiliation(s)
- Adriana R Mantegazza
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
97
|
Encounter with antigen-specific primed CD4 T cells promotes MHC class II degradation in dendritic cells. Proc Natl Acad Sci U S A 2012; 109:19380-5. [PMID: 23129633 DOI: 10.1073/pnas.1213868109] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Major histocompatibility complex class II molecules (MHC-II) on antigen presenting cells (APCs) engage the TCR on antigen-specific CD4 T cells, thereby providing the specificity required for T cell priming and the induction of an effective immune response. In this study, we have asked whether antigen-loaded dendritic cells (DCs) that have been in contact with antigen-specific CD4 T cells retain the ability to stimulate additional naïve T cells. We show that encounter with antigen-specific primed CD4 T cells induces the degradation of surface MHC-II in antigen-loaded DCs and inhibits the ability of these DCs to stimulate additional naïve CD4 T cells. Cross-linking with MHC-II mAb as a surrogate for T-cell engagement also inhibits APC function and induces MHC-II degradation by promoting the clustering of MHC-II present in lipid raft membrane microdomains, a process that leads to MHC-II endocytosis and degradation in lysosomes. Encounter of DCs with antigen-specific primed T cells or engagement of MHC-II with antibodies promotes the degradation of both immunologically relevant and irrelevant MHC-II molecules. These data demonstrate that engagement of MHC-II on DCs after encounter with antigen-specific primed CD4 T cells promotes the down-regulation of cell surface MHC-II in DCs, thereby attenuating additional activation of naïve CD4 T cells by these APCs.
Collapse
|
98
|
Bueno SM, Riquelme S, Riedel CA, Kalergis AM. Mechanisms used by virulent Salmonella to impair dendritic cell function and evade adaptive immunity. Immunology 2012; 137:28-36. [PMID: 22703384 DOI: 10.1111/j.1365-2567.2012.03614.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Innate and adaptive immunity are inter-related by dendritic cells (DCs), which directly recognize bacteria through the binding of pathogen-associated molecular patterns (PAMPs) to specialized receptors on their surface. After capturing and degrading bacteria, DCs present their antigens as small peptides bound to MHC molecules and prime naive bacteria-specific T cells. In response to PAMP recognition DCs undergo maturation, which is a phenotypic change that increases their immunogenicity and promotes the activation of naive T cells. As a result, a specific immune response that targets bacteria-derived antigens is initiated. Therefore, the characterization of DC-bacteria interactions is important to understand the mechanisms used by virulent bacteria to avoid adaptive immunity. Furthermore, any impairment of DC function might contribute to bacterial survival and dissemination inside the host. An example of a bacterial pathogen capable of interfering with DC function is Salmonella enterica serovar Typhimurium (S. Typhimurium). Virulent strains of this bacterium are able to differentially modulate the entrance to DCs, avoid lysosomal degradation and prevent antigen presentation on MHC molecules. These features of virulent S. Typhimurium are controlled by virulence proteins, which are encoded by pathogenicity islands. Modulation of DC functions by these gene products is supported by several studies showing that pathogenesis might depend on this attribute of virulent S. Typhimurium. Here we discuss some of the recent data reported by the literature showing that several virulence proteins from Salmonella are required to modulate DC function and the activation of host adaptive immunity.
Collapse
Affiliation(s)
- Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genetica Molecular y Microbiologia, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | | | | | | |
Collapse
|
99
|
Posch W, Cardinaud S, Hamimi C, Fletcher A, Mühlbacher A, Loacker K, Eichberger P, Dierich MP, Pancino G, Lass-Flörl C, Moris A, Saez-Cirion A, Wilflingseder D. Antibodies attenuate the capacity of dendritic cells to stimulate HIV-specific cytotoxic T lymphocytes. J Allergy Clin Immunol 2012; 130:1368-74.e2. [PMID: 23063584 DOI: 10.1016/j.jaci.2012.08.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 08/07/2012] [Accepted: 08/17/2012] [Indexed: 01/08/2023]
Abstract
BACKGROUND Control of HIV is suggested to depend on potent effector functions of the virus-specific CD8(+) T-cell response. Antigen opsonization can modulate the capture of antigen, its presentation, and the priming of specific CD8(+) T-cell responses. OBJECTIVE We have previously shown that opsonization of retroviruses acts as an endogenous adjuvant for dendritic cell (DC)-mediated induction of specific cytotoxic T lymphocytes (CTLs). However, in some HIV-positive subjects, high levels of antibodies and low levels of complement fragments coat the HIV surface. METHODS Therefore we analyzed the effect of IgG opsonization on the antigen-presenting capacity of DCs by using CD8(+) T-cell proliferation assays after repeated prime boosting, by measuring the antiviral activity against HIV-infected autologous CD4(+) T cells, and by determining IFN-γ secretion from HIV-specific CTL clones. RESULTS We find that DCs exposed to IgG-opsonized HIV significantly decreased the HIV-specific CD8(+) T-cell response compared with the earlier described efficient CD8(+) T-cell activation induced by DCs loaded with complement-opsonized HIV. DCs exposed to HIV bearing high surface IgG levels after incubation in plasma from HIV-infected subjects acted as weak stimulators for HIV-specific CTL clones. In contrast, HIV opsonized with plasma from patients exhibiting high complement and low IgG deposition on the viral surface favored significantly higher activation of HIV-specific CD8(+) T-cell clones. CONCLUSION Our ex vivo and in vitro observations provide the first evidence that IgG opsonization of HIV is associated with a decreased CTL-stimulatory capacity of DCs.
Collapse
Affiliation(s)
- Wilfried Posch
- Division of Hygiene and Medical Microbiology, Innsbruck Medical University, Innsbruck, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Faria HA, Farnese M, Rocha LP, Olegário JGP, Cavellani CL, de Oliveira Guimarães CS, dos Reis MA, Miranda Corrêa RR. Analysis of the scalp of women with AIDS subjected to autopsy: epithelial, follicular, and immunologic aspects. Ann Diagn Pathol 2012; 17:67-71. [PMID: 22921727 DOI: 10.1016/j.anndiagpath.2012.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 06/28/2012] [Accepted: 06/29/2012] [Indexed: 10/28/2022]
Abstract
Hair keeps the scalp warmer and slightly moister than the rest of the skin, which contributes to a favorable environment for mycotic, bacterial, and parasitic infections. It is well established that AIDS makes the patient more susceptible to opportunistic infections and cutaneous manifestations. Because of this, the aim of this study was to analyze scalp fragments of autopsied women with AIDS. Twenty-eight scalp samples of women aged between 18 and 46 years were observed. These women were divided into 2 groups: with AIDS (n = 14) and without AIDS (n = 14). We conducted histochemical (hematoxylin-eosin, Picrosirius, and Verhoeff), morphometric (Image J; National Institutes of Health, Hamilton, ON, Canada and KS-300 Kontron-Zeiss; Kontron Elektronik, Carl-Zeiss, Germany), and immunohistochemical (S-100) analyses of the scalp. In patients with AIDS, epithelial thickness, number of epithelial cell layers, number of immature Langerhans cells in the epidermis, and percentages of elastic fibers in the dermis were significantly lower, whereas telogen hair follicles were significantly higher. The percentage of collagen fibers in the dermis and the diameter of the epithelial cells were smaller in patients with AIDS, without significant difference. AIDS possibly causes immunologic and morphologic alterations in the scalp. This study may establish parameters for better clinical and morphologic diagnostic in patients with AIDS.
Collapse
|