51
|
de Bruijn SE, Panneman DM, Weisschuh N, Cadena EL, Boonen EGM, Holtes LK, Astuti GDN, Cremers FPM, Leijsten N, Corominas J, Gilissen C, Skowronska A, Woodley J, Beggs AD, Toulis V, Chen D, Cheetham ME, Hardcastle AJ, McLaren TL, Lamey TM, Thompson JA, Chen FK, de Roach JN, Urwin IR, Sullivan LS, Roosing S. Identification of novel 3D-genome altering and complex structural variants underlying retinitis pigmentosa type 17 through a multistep and high-throughput approach. Front Genet 2024; 15:1469686. [PMID: 39507620 PMCID: PMC11537883 DOI: 10.3389/fgene.2024.1469686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/04/2024] [Indexed: 11/08/2024] Open
Abstract
Introduction Autosomal dominant retinitis pigmentosa type 17 (adRP, type RP17) is caused by complex structural variants (SVs) affecting a locus on chromosome 17 (chr17q22). The SVs disrupt the 3D regulatory landscape by altering the topologically associating domain (TAD) structure of the locus, creating novel TAD structures (neo-TADs) and ectopic enhancer-gene contacts. Currently, screening for RP17-associated SVs is not included in routine diagnostics given the complexity of the variants and a lack of cost-effective detection methods. The aim of this study was to accurately detect novel RP17-SVs by establishing a systematic and efficient workflow. Methods Genetically unexplained probands diagnosed with adRP (n = 509) from an international cohort were screened using a smMIPs or genomic qPCR-based approach tailored for the RP17 locus. Suspected copy number changes were validated using high-density SNP-array genotyping, and SV breakpoint characterization was performed by mutation-specific breakpoint PCR, genome sequencing and, if required, optical genome mapping. In silico modeling of novel SVs was performed to predict the formation of neo-TADs and whether ectopic contacts between the retinal enhancers and the GDPD1-promoter could be formed. Results Using this workflow, potential RP17-SVs were detected in eight probands of which seven were confirmed. Two novel SVs were identified that are predicted to cause TAD rearrangement and retinal enhancer-GDPD1 contact, one from Germany (DE-SV9) and three with the same SV from the United States (US-SV10). Previously reported RP17-SVs were also identified in three Australian probands, one with UK-SV2 and two with SA-SV3. Discussion In summary, we describe a validated multi-step pipeline for reliable and efficient RP17-SV discovery and expand the range of disease-associated SVs. Based on these data, RP17-SVs can be considered a frequent cause of adRP which warrants the inclusion of RP17-screening as a standard diagnostic test for this disease.
Collapse
Affiliation(s)
- Suzanne E. de Bruijn
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Daan M. Panneman
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Nicole Weisschuh
- Center for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Elizabeth L. Cadena
- Human Genetics Center, School of Public Health, University of Texas Health Science Center, Houston, TX, United States
| | - Erica G. M. Boonen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Lara K. Holtes
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Galuh D. N. Astuti
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Frans P. M. Cremers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Nico Leijsten
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jordi Corominas
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Christian Gilissen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Anna Skowronska
- West Midlands Regional Genetics Laboratory, Birmingham Woman’s and Children’s NHS Foundation Trust, Birmingham, United Kingdom
| | - Jessica Woodley
- West Midlands Regional Genetics Laboratory, Birmingham Woman’s and Children’s NHS Foundation Trust, Birmingham, United Kingdom
| | - Andrew D. Beggs
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, United Kingdom
| | - Vasileios Toulis
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Di Chen
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Michael E. Cheetham
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Alison J. Hardcastle
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Terri L. McLaren
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA, Australia
- Department of Medical Technology and Physics, Australian Inherited Retinal Disease Registry and DNA Bank, Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - Tina M. Lamey
- Department of Medical Technology and Physics, Australian Inherited Retinal Disease Registry and DNA Bank, Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - Jennifer A. Thompson
- Department of Medical Technology and Physics, Australian Inherited Retinal Disease Registry and DNA Bank, Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - Fred K. Chen
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA, Australia
- Department of Medical Technology and Physics, Australian Inherited Retinal Disease Registry and DNA Bank, Sir Charles Gairdner Hospital, Perth, WA, Australia
- Department of Ophthalmology, Royal Perth Hospital, Perth, WA, Australia
| | - John N. de Roach
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA, Australia
- Department of Medical Technology and Physics, Australian Inherited Retinal Disease Registry and DNA Bank, Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - Isabella R. Urwin
- Department of Medical Technology and Physics, Australian Inherited Retinal Disease Registry and DNA Bank, Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - Lori S. Sullivan
- Human Genetics Center, School of Public Health, University of Texas Health Science Center, Houston, TX, United States
| | - Susanne Roosing
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
52
|
Tong X, Chen W, Ye L, Xiong Y, Xu Y, Luo Y, Xia X, Xu Z, Lin Y, Zhu X, Wang N, Xue X, Zhang H, Guo G. 5-Hydroxymethylcytosine in circulating cell-free DNA as a potential diagnostic biomarker for SLE. Lupus Sci Med 2024; 11:e001286. [PMID: 39366755 PMCID: PMC11459320 DOI: 10.1136/lupus-2024-001286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/23/2024] [Indexed: 10/06/2024]
Abstract
BACKGROUND SLE is a complex autoimmune disease with heterogeneous manifestations and unpredictable outcomes. Early diagnosis is challenging due to non-specific symptoms, and current treatments only manage symptoms. Epigenetic alternations, including 5-Hydroxymethylome (5hmC) modifications, are important contributors to SLE pathogenesis. However, the 5hmC modification status in circulating cell-free DNA (cfDNA) of patients with SLE remains largely unexplored. We investigated the distribution of 5hmC in cfDNA of patients with SLE and healthy controls (HCs), and explored its potential as an SLE diagnosis marker. METHODS We used 5hmC-Seal to generate genome-wide 5hmC profiles of plasma cfDNA and bioinformatics analysis to screen differentially hydroxymethylated regions (DhMRs). In vitro mechanistic exploration was conducted to investigate the regulatory effect of CCCTC-binding factor (CTCF) in 5hmC candidate biomarkers. RESULTS We found distinct differences in genomic regions and 5hmC modification motif patterns between patients with SLE and HCs, varying with disease progression. Increased 5hmC modification enrichment was detected in SLE. Additionally, we screened 151 genes with hyper-5hmC, which are significantly involved in SLE-related processes, and 5hmC-modified BCL2, CD83, ETS1 and GZMB as SLE biomarkers. Our findings suggest that CTCF regulates 5hmC modification of these genes by recruiting TET (ten-eleven translocation) protein, and CTCF knockdown affected the protein expression of these genes in vitro. CONCLUSIONS Our findings demonstrate the increased 5hmC distribution in plasma cfDNA in different disease activity in patients with SLE compared with HCs and relating DhMRs involved in SLE-associated pathways. Furthermore, we identified a panel of SLE relevant biomarkers, and these viewpoints could provide insight into the pathogenesis of SLE.
Collapse
Affiliation(s)
- Xinya Tong
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wenwen Chen
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lele Ye
- Department of Gynecology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yanling Xiong
- Department of Nephrology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuan Xu
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yunhui Luo
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xinhang Xia
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zexia Xu
- Department of Nephrology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yutong Lin
- First Clinical College, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xinqi Zhu
- First Clinical College, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Nan Wang
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiangyang Xue
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huidi Zhang
- Department of Nephrology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Gangqiang Guo
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
53
|
Esteller M, Dawson MA, Kadoch C, Rassool FV, Jones PA, Baylin SB. The Epigenetic Hallmarks of Cancer. Cancer Discov 2024; 14:1783-1809. [PMID: 39363741 DOI: 10.1158/2159-8290.cd-24-0296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/08/2024] [Accepted: 06/24/2024] [Indexed: 10/05/2024]
Abstract
Cancer is a complex disease in which several molecular and cellular pathways converge to foster the tumoral phenotype. Notably, in the latest iteration of the cancer hallmarks, "nonmutational epigenetic reprogramming" was newly added. However, epigenetics, much like genetics, is a broad scientific area that deserves further attention due to its multiple roles in cancer initiation, progression, and adaptive nature. Herein, we present a detailed examination of the epigenetic hallmarks affected in human cancer, elucidating the pathways and genes involved, and dissecting the disrupted landscapes for DNA methylation, histone modifications, and chromatin architecture that define the disease. Significance: Cancer is a disease characterized by constant evolution, spanning from its initial premalignant stages to the advanced invasive and disseminated stages. It is a pathology that is able to adapt and survive amidst hostile cellular microenvironments and diverse treatments implemented by medical professionals. The more fixed setup of the genetic structure cannot fully provide transformed cells with the tools to survive but the rapid and plastic nature of epigenetic changes is ready for the task. This review summarizes the epigenetic hallmarks that define the ecological success of cancer cells in our bodies.
Collapse
Affiliation(s)
- Manel Esteller
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Spain
| | - Mark A Dawson
- Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
- Centre for Cancer Research, University of Melbourne, Melbourne, Australia
| | - Cigall Kadoch
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Feyruz V Rassool
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Peter A Jones
- Department of Epigenetics, Van Andel Institute, Grand Rapids, Michigan
| | - Stephen B Baylin
- Department of Epigenetics, Van Andel Institute, Grand Rapids, Michigan
- Department of Oncology, The Johns Hopkins School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| |
Collapse
|
54
|
Dabrowski JK, Yang EJ, Crofts SJC, Hillary RF, Simpson DJ, McCartney DL, Marioni RE, Kirschner K, Latorre-Crespo E, Chandra T. Probabilistic inference of epigenetic age acceleration from cellular dynamics. NATURE AGING 2024; 4:1493-1507. [PMID: 39313745 PMCID: PMC11485233 DOI: 10.1038/s43587-024-00700-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/31/2024] [Indexed: 09/25/2024]
Abstract
The emergence of epigenetic predictors was a pivotal moment in geroscience, propelling the measurement and concept of biological aging into a quantitative era; however, while current epigenetic clocks show strong predictive power, they are data-driven in nature and are not based on the underlying biological mechanisms driving methylation dynamics. We show that predictions of these clocks are susceptible to several confounding non-age-related phenomena that make interpretation of these estimates and associations difficult. To address these limitations, we developed a probabilistic model describing methylation transitions at the cellular level. Our approach reveals two measurable components, acceleration and bias, which directly reflect perturbations of the underlying cellular dynamics. Acceleration is the proportional increase in the speed of methylation transitions across CpG sites, whereas bias corresponds to global changes in methylation levels. Using data from 15,900 participants from the Generation Scotland study, we develop a robust inference framework and show that these are two distinct processes confounding current epigenetic predictors. Our results show improved associations of acceleration and bias with physiological traits known to impact healthy aging, such as smoking and alcohol consumption, respectively. Furthermore, a genome-wide association study of epigenetic age acceleration identified seven genomic loci.
Collapse
Affiliation(s)
- Jan K Dabrowski
- School of Informatics, University of Edinburgh, Edinburgh, UK
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh, UK
| | - Emma J Yang
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh, UK
| | - Samuel J C Crofts
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh, UK
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Robert F Hillary
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | | | - Daniel L McCartney
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Riccardo E Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Kristina Kirschner
- Cancer Research UK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
- Department of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Eric Latorre-Crespo
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh, UK.
- School of Cancer Sciences, University of Glasgow, Glasgow, UK.
| | - Tamir Chandra
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh, UK.
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA.
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
55
|
Do C, Skok JA. Factors that determine cell type-specific CTCF binding in health and disease. Curr Opin Genet Dev 2024; 88:102244. [PMID: 39146885 PMCID: PMC11383740 DOI: 10.1016/j.gde.2024.102244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/17/2024]
Abstract
A number of factors contribute to cell type-specific CTCF chromatin binding, but how they act in concert to determine binding stability and functionality has not been fully elucidated. In this review, we tie together different layers of regulation to provide a holistic view of what is known. What emerges from these studies is a multifaceted system in which DNA sequence, DNA and chromatin accessibility, and cell type-specific transcription factors together contribute to CTCF binding profile and function. We discuss these findings in the light of disease settings in which changes in the chromatin landscape and transcriptional programming can disrupt CTCF's binding profile and involvement in looping.
Collapse
Affiliation(s)
- Catherine Do
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA; Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Jane A Skok
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA; Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA. https://twitter.com/@Ryo2Iwata
| |
Collapse
|
56
|
Conte M, Abraham A, Esposito A, Yang L, Gibcus JH, Parsi KM, Vercellone F, Fontana A, Di Pierno F, Dekker J, Nicodemi M. Polymer Physics Models Reveal Structural Folding Features of Single-Molecule Gene Chromatin Conformations. Int J Mol Sci 2024; 25:10215. [PMID: 39337699 PMCID: PMC11432541 DOI: 10.3390/ijms251810215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/17/2024] [Accepted: 09/22/2024] [Indexed: 09/30/2024] Open
Abstract
Here, we employ polymer physics models of chromatin to investigate the 3D folding of a 2 Mb wide genomic region encompassing the human LTN1 gene, a crucial DNA locus involved in key cellular functions. Through extensive Molecular Dynamics simulations, we reconstruct in silico the ensemble of single-molecule LTN1 3D structures, which we benchmark against recent in situ Hi-C 2.0 data. The model-derived single molecules are then used to predict structural folding features at the single-cell level, providing testable predictions for super-resolution microscopy experiments.
Collapse
Affiliation(s)
- Mattia Conte
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant’Angelo, 80126 Naples, Italy
| | - Alex Abraham
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant’Angelo, 80126 Naples, Italy
| | - Andrea Esposito
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant’Angelo, 80126 Naples, Italy
| | - Liyan Yang
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Johan H. Gibcus
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Krishna M. Parsi
- Diabetes Center of Excellence and Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Francesca Vercellone
- DIETI, Università di Napoli Federico II, Via Claudio 21, 80125 Naples, Italy
- INFN Napoli, Complesso Universitario di Monte Sant’Angelo, 80126 Naples, Italy
| | - Andrea Fontana
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant’Angelo, 80126 Naples, Italy
| | - Florinda Di Pierno
- DIETI, Università di Napoli Federico II, Via Claudio 21, 80125 Naples, Italy
- INFN Napoli, Complesso Universitario di Monte Sant’Angelo, 80126 Naples, Italy
| | - Job Dekker
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Mario Nicodemi
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant’Angelo, 80126 Naples, Italy
| |
Collapse
|
57
|
Liu M, Jin S, Agabiti SS, Jensen TB, Yang T, Radda JSD, Ruiz CF, Baldissera G, Rajaei M, Townsend JP, Muzumdar MD, Wang S. Tracing the evolution of single-cell cancer 3D genomes: an atlas for cancer gene discovery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.23.550157. [PMID: 37546882 PMCID: PMC10401964 DOI: 10.1101/2023.07.23.550157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Although three-dimensional (3D) genome structures are altered in cancer cells, little is known about how these changes evolve and diversify during cancer progression. Leveraging genome-wide chromatin tracing to visualize 3D genome folding directly in tissues, we generated 3D genome cancer atlases of murine lung and pancreatic adenocarcinoma. Our data reveal stereotypical, non-monotonic, and stage-specific alterations in 3D genome folding heterogeneity, compaction, and compartmentalization as cancers progress from normal to preinvasive and ultimately to invasive tumors, discovering a potential structural bottleneck in early tumor progression. Remarkably, 3D genome architectures distinguish histologic cancer states in single cells, despite considerable cell-to-cell heterogeneity. Gene-level analyses of evolutionary changes in 3D genome compartmentalization not only showed compartment-associated genes are more homogeneously regulated, but also elucidated prognostic and dependency genes in lung adenocarcinoma and a previously unappreciated role for polycomb-group protein Rnf2 in 3D genome regulation. Our results demonstrate the utility of mapping the single-cell cancer 3D genome in tissues and illuminate its potential to identify new diagnostic, prognostic, and therapeutic biomarkers in cancer.
Collapse
Affiliation(s)
- Miao Liu
- Department of Genetics, Yale School of Medicine, Yale University; New Haven, CT 06510, USA
| | - Shengyan Jin
- Department of Genetics, Yale School of Medicine, Yale University; New Haven, CT 06510, USA
| | - Sherry S. Agabiti
- Department of Genetics, Yale School of Medicine, Yale University; New Haven, CT 06510, USA
- Yale Cancer Biology Institute, Yale University; West Haven, CT 06516, USA
| | - Tyler B. Jensen
- Department of Genetics, Yale School of Medicine, Yale University; New Haven, CT 06510, USA
- M.D.-Ph.D. Program, Yale University; New Haven, CT 06510, USA
| | - Tianqi Yang
- Department of Genetics, Yale School of Medicine, Yale University; New Haven, CT 06510, USA
| | - Jonathan S. D. Radda
- Department of Genetics, Yale School of Medicine, Yale University; New Haven, CT 06510, USA
| | - Christian F. Ruiz
- Department of Genetics, Yale School of Medicine, Yale University; New Haven, CT 06510, USA
- Yale Cancer Biology Institute, Yale University; West Haven, CT 06516, USA
| | - Gabriel Baldissera
- Department of Genetics, Yale School of Medicine, Yale University; New Haven, CT 06510, USA
| | - Moein Rajaei
- Department of Biostatistics, Yale School of Public Health, Yale University; New Haven, CT 06510, USA
| | - Jeffrey P. Townsend
- Department of Biostatistics, Yale School of Public Health, Yale University; New Haven, CT 06510, USA
- Program in Computational Biology and Bioinformatics, Yale University; New Haven, CT 06510, USA
- Program in Genetics, Genomics, and Epigenetics, Yale Cancer Center, Yale University; New Haven, CT 06510, USA
| | - Mandar Deepak Muzumdar
- Department of Genetics, Yale School of Medicine, Yale University; New Haven, CT 06510, USA
- Yale Cancer Biology Institute, Yale University; West Haven, CT 06516, USA
- M.D.-Ph.D. Program, Yale University; New Haven, CT 06510, USA
- Program in Genetics, Genomics, and Epigenetics, Yale Cancer Center, Yale University; New Haven, CT 06510, USA
- Department of Internal Medicine, Section of Medical Oncology, Yale School of Medicine, Yale University; New Haven, CT 06510, USA
- Yale Combined Program in the Biological and Biomedical Sciences, Yale University; New Haven, CT 06510, USA
- Molecular Cell Biology, Genetics, and Development Program, Yale University; New Haven, CT 06510, USA
| | - Siyuan Wang
- Department of Genetics, Yale School of Medicine, Yale University; New Haven, CT 06510, USA
- M.D.-Ph.D. Program, Yale University; New Haven, CT 06510, USA
- Yale Combined Program in the Biological and Biomedical Sciences, Yale University; New Haven, CT 06510, USA
- Molecular Cell Biology, Genetics, and Development Program, Yale University; New Haven, CT 06510, USA
- Department of Cell Biology, Yale School of Medicine, Yale University; New Haven, CT 06510, USA
- Biochemistry, Quantitative Biology, Biophysics, and Structural Biology Program, Yale University; New Haven, CT 06510, USA
- Yale Center for RNA Science and Medicine, Yale University School of Medicine; New Haven, CT 06510, USA
- Yale Liver Center, Yale University School of Medicine; New Haven, CT 06510, USA
| |
Collapse
|
58
|
Yu A, Yesilkanal A, Thakur A, Wang F, Yang Y, Phillips W, Wu X, Muir A, He X, Spitz F, Yang L. HYENA detects oncogenes activated by distal enhancers in cancer. Nucleic Acids Res 2024; 52:e77. [PMID: 39051548 PMCID: PMC11381332 DOI: 10.1093/nar/gkae646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/07/2024] [Accepted: 07/11/2024] [Indexed: 07/27/2024] Open
Abstract
Somatic structural variations (SVs) in cancer can shuffle DNA content in the genome, relocate regulatory elements, and alter genome organization. Enhancer hijacking occurs when SVs relocate distal enhancers to activate proto-oncogenes. However, most enhancer hijacking studies have only focused on protein-coding genes. Here, we develop a computational algorithm 'HYENA' to identify candidate oncogenes (both protein-coding and non-coding) activated by enhancer hijacking based on tumor whole-genome and transcriptome sequencing data. HYENA detects genes whose elevated expression is associated with somatic SVs by using a rank-based regression model. We systematically analyze 1146 tumors across 25 types of adult tumors and identify a total of 108 candidate oncogenes including many non-coding genes. A long non-coding RNA TOB1-AS1 is activated by various types of SVs in 10% of pancreatic cancers through altered 3-dimensional genome structure. We find that high expression of TOB1-AS1 can promote cell invasion and metastasis. Our study highlights the contribution of genetic alterations in non-coding regions to tumorigenesis and tumor progression.
Collapse
Affiliation(s)
- Anqi Yu
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Ali E Yesilkanal
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Ashish Thakur
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Fan Wang
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Yang Yang
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - William Phillips
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Xiaoyang Wu
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
- University of Chicago Comprehensive Cancer Center, Chicago, IL, USA
| | - Alexander Muir
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
- University of Chicago Comprehensive Cancer Center, Chicago, IL, USA
| | - Xin He
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Francois Spitz
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Lixing Yang
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
- University of Chicago Comprehensive Cancer Center, Chicago, IL, USA
| |
Collapse
|
59
|
Mulet-Lazaro R, Delwel R. Oncogenic Enhancers in Leukemia. Blood Cancer Discov 2024; 5:303-317. [PMID: 39093124 PMCID: PMC11369600 DOI: 10.1158/2643-3230.bcd-23-0211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/06/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024] Open
Abstract
Although the study of leukemogenesis has traditionally focused on protein-coding genes, the role of enhancer dysregulation is becoming increasingly recognized. The advent of high-throughput sequencing, together with a better understanding of enhancer biology, has revealed how various genetic and epigenetic lesions produce oncogenic enhancers that drive transformation. These aberrations include translocations that lead to enhancer hijacking, point mutations that modulate enhancer activity, and copy number alterations that modify enhancer dosage. In this review, we describe these mechanisms in the context of leukemia and discuss potential therapeutic avenues to target these regulatory elements. Significance: Large-scale sequencing projects have uncovered recurrent gene mutations in leukemia, but the picture remains incomplete: some patients harbor no such aberrations, whereas others carry only a few that are insufficient to bring about transformation on their own. One of the missing pieces is enhancer dysfunction, which only recently has emerged as a critical driver of leukemogenesis. Knowledge of the various mechanisms of enhancer dysregulation is thus key for a complete understanding of leukemia and its causes, as well as the development of targeted therapies in the era of precision medicine.
Collapse
Affiliation(s)
- Roger Mulet-Lazaro
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands.
- Oncode Institute, Utrecht, the Netherlands.
| | - Ruud Delwel
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands.
- Oncode Institute, Utrecht, the Netherlands.
| |
Collapse
|
60
|
Gu X, Wei S, Lv X. Circulating tumor cells: from new biological insights to clinical practice. Signal Transduct Target Ther 2024; 9:226. [PMID: 39218931 PMCID: PMC11366768 DOI: 10.1038/s41392-024-01938-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/31/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
The primary reason for high mortality rates among cancer patients is metastasis, where tumor cells migrate through the bloodstream from the original site to other parts of the body. Recent advancements in technology have significantly enhanced our comprehension of the mechanisms behind the bloodborne spread of circulating tumor cells (CTCs). One critical process, DNA methylation, regulates gene expression and chromosome stability, thus maintaining dynamic equilibrium in the body. Global hypomethylation and locus-specific hypermethylation are examples of changes in DNA methylation patterns that are pivotal to carcinogenesis. This comprehensive review first provides an overview of the various processes that contribute to the formation of CTCs, including epithelial-mesenchymal transition (EMT), immune surveillance, and colonization. We then conduct an in-depth analysis of how modifications in DNA methylation within CTCs impact each of these critical stages during CTC dissemination. Furthermore, we explored potential clinical implications of changes in DNA methylation in CTCs for patients with cancer. By understanding these epigenetic modifications, we can gain insights into the metastatic process and identify new biomarkers for early detection, prognosis, and targeted therapies. This review aims to bridge the gap between basic research and clinical application, highlighting the significance of DNA methylation in the context of cancer metastasis and offering new avenues for improving patient outcomes.
Collapse
Affiliation(s)
- Xuyu Gu
- Department of Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shiyou Wei
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xin Lv
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
61
|
Aboreden NG, Lam JC, Goel VY, Wang S, Wang X, Midla SC, Quijano A, Keller CA, Giardine BM, Hardison RC, Zhang H, Hansen AS, Blobel GA. LDB1 establishes multi-enhancer networks to regulate gene expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.23.609430. [PMID: 39229045 PMCID: PMC11370584 DOI: 10.1101/2024.08.23.609430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
How specific enhancer-promoter pairing is established is still mostly unclear. Besides the CTCF/cohesin machinery, only a few nuclear factors have been studied for a direct role in physically connecting regulatory elements. Here, we show via acute degradation experiments that LDB1 directly and broadly promotes enhancer-promoter loops. Most LDB1-mediated contacts, even those spanning hundreds of kb, can form in the absence of CTCF, cohesin, or YY1 as determined via the use of multiple degron systems. Moreover, an engineered LDB1-driven chromatin loop is cohesin independent. Cohesin-driven loop extrusion does not stall at LDB1 occupied sites but may aid the formation of a subset of LDB1 anchored loops. Leveraging the dynamic reorganization of nuclear architecture during the transition from mitosis to G1-phase, we establish a relationship between LDB1-dependent interactions in the context of TAD organization and gene activation. Lastly, Tri-C and Region Capture Micro-C reveal that LDB1 organizes multi-enhancer networks to activate transcription. This establishes LDB1 as a direct driver of regulatory network inter-connectivity.
Collapse
Affiliation(s)
- Nicholas G. Aboreden
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jessica C. Lam
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Viraat Y. Goel
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
| | - Siqing Wang
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Xiaokang Wang
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Susannah C. Midla
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Alma Quijano
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Cheryl A. Keller
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Belinda M. Giardine
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Ross C. Hardison
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Haoyue Zhang
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Anders S. Hansen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
| | - Gerd A. Blobel
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
62
|
Steinek C, Guirao-Ortiz M, Stumberger G, Tölke AJ, Hörl D, Carell T, Harz H, Leonhardt H. Generation of densely labeled oligonucleotides for the detection of small genomic elements. CELL REPORTS METHODS 2024; 4:100840. [PMID: 39137784 PMCID: PMC11384094 DOI: 10.1016/j.crmeth.2024.100840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/16/2024] [Accepted: 07/22/2024] [Indexed: 08/15/2024]
Abstract
The genome contains numerous regulatory elements that may undergo complex interactions and contribute to the establishment, maintenance, and change of cellular identity. Three-dimensional genome organization can be explored with fluorescence in situ hybridization (FISH) at the single-cell level, but the detection of small genomic loci remains challenging. Here, we provide a rapid and simple protocol for the generation of bright FISH probes suited for the detection of small genomic elements. We systematically optimized probe design and synthesis, screened polymerases for their ability to incorporate dye-labeled nucleotides, and streamlined purification conditions to yield nanoscopy-compatible oligonucleotides with dyes in variable arrays (NOVA probes). With these probes, we detect genomic loci ranging from genome-wide repetitive regions down to non-repetitive loci below the kilobase scale. In conclusion, we introduce a simple workflow to generate densely labeled oligonucleotide pools that facilitate detection and nanoscopic measurements of small genomic elements in single cells.
Collapse
Affiliation(s)
- Clemens Steinek
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, 81377 Munich, Germany.
| | - Miguel Guirao-Ortiz
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Gabriela Stumberger
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Annika J Tölke
- Department of Chemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - David Hörl
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Thomas Carell
- Department of Chemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Hartmann Harz
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, 81377 Munich, Germany.
| | - Heinrich Leonhardt
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, 81377 Munich, Germany.
| |
Collapse
|
63
|
Chen W, Zeng Y, Achinger-Kawecka J, Campbell E, Jones A, Stewart A, Khoury A, Clark S. Machine learning enables pan-cancer identification of mutational hotspots at persistent CTCF binding sites. Nucleic Acids Res 2024; 52:8086-8099. [PMID: 38950902 PMCID: PMC11317138 DOI: 10.1093/nar/gkae530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 05/15/2024] [Accepted: 06/13/2024] [Indexed: 07/03/2024] Open
Abstract
CCCTC-binding factor (CTCF) is an insulator protein that binds to a highly conserved DNA motif and facilitates regulation of three-dimensional (3D) nuclear architecture and transcription. CTCF binding sites (CTCF-BSs) reside in non-coding DNA and are frequently mutated in cancer. Our previous study identified a small subclass of CTCF-BSs that are resistant to CTCF knock down, termed persistent CTCF binding sites (P-CTCF-BSs). P-CTCF-BSs show high binding conservation and potentially regulate cell-type constitutive 3D chromatin architecture. Here, using ICGC sequencing data we made the striking observation that P-CTCF-BSs display a highly elevated mutation rate in breast and prostate cancer when compared to all CTCF-BSs. To address whether P-CTCF-BS mutations are also enriched in other cell-types, we developed CTCF-INSITE-a tool utilising machine learning to predict persistence based on genetic and epigenetic features of experimentally-determined P-CTCF-BSs. Notably, predicted P-CTCF-BSs also show a significantly elevated mutational burden in all 12 cancer-types tested. Enrichment was even stronger for P-CTCF-BS mutations with predicted functional impact to CTCF binding and chromatin looping. Using in vitro binding assays we validated that P-CTCF-BS cancer mutations, predicted to be disruptive, indeed reduced CTCF binding. Together this study reveals a new subclass of cancer specific CTCF-BS DNA mutations and provides insights into their importance in genome organization in a pan-cancer setting.
Collapse
Affiliation(s)
- Wenhan Chen
- Epigenetics Laboratory, Garvan Institute of Medical Research, Sydney 2010 New South Wales, Australia
| | - Yi C Zeng
- Structural Biology Laboratory, Victor Chang Cardiac Research Institute, Sydney 2010 New South Wales, Australia
- St Vincent's Clinical School, UNSW, Sydney 2010 New South Wales, Australia
| | - Joanna Achinger-Kawecka
- Epigenetics Laboratory, Garvan Institute of Medical Research, Sydney 2010 New South Wales, Australia
- St Vincent's Clinical School, UNSW, Sydney 2010 New South Wales, Australia
| | - Elyssa Campbell
- Epigenetics Laboratory, Garvan Institute of Medical Research, Sydney 2010 New South Wales, Australia
| | - Alicia K Jones
- Epigenetics Laboratory, Garvan Institute of Medical Research, Sydney 2010 New South Wales, Australia
| | - Alastair G Stewart
- Structural Biology Laboratory, Victor Chang Cardiac Research Institute, Sydney 2010 New South Wales, Australia
- St Vincent's Clinical School, UNSW, Sydney 2010 New South Wales, Australia
| | - Amanda Khoury
- Epigenetics Laboratory, Garvan Institute of Medical Research, Sydney 2010 New South Wales, Australia
- St Vincent's Clinical School, UNSW, Sydney 2010 New South Wales, Australia
| | - Susan J Clark
- Epigenetics Laboratory, Garvan Institute of Medical Research, Sydney 2010 New South Wales, Australia
- St Vincent's Clinical School, UNSW, Sydney 2010 New South Wales, Australia
| |
Collapse
|
64
|
Li T, Huang M, Lu J. Cancer statistics and trends in China: the potential of natural product application. Chin J Nat Med 2024; 22:673-675. [PMID: 39197959 DOI: 10.1016/s1875-5364(24)60649-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Indexed: 09/01/2024]
Affiliation(s)
- Ting Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China; MoE Frontiers Science Center for Precision Oncology, University of Macau, Macao SAR 999078, China.
| | - Muyang Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Jinjian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China; MoE Frontiers Science Center for Precision Oncology, University of Macau, Macao SAR 999078, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao SAR 999078, China.
| |
Collapse
|
65
|
Czapiewski R, Schirmer EC. Enhancers on the edge - how the nuclear envelope controls gene regulatory elements. Curr Opin Genet Dev 2024; 87:102234. [PMID: 39047586 DOI: 10.1016/j.gde.2024.102234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/20/2024] [Accepted: 07/05/2024] [Indexed: 07/27/2024]
Abstract
Precise temporal and sequential control of gene expression during development and in response to environmental stimuli requires tight regulation of the physical contact between gene regulatory elements and promoters. Current models describing how the genome folds in 3D space to establish these interactions often ignore the role of the most stable structural nuclear feature - the nuclear envelope. While contributions of 3D folding within/between topologically associated domains (TADs) have been extensively described, mechanical contributions from the nuclear envelope can impact enhancer-promoter interactions both directly and indirectly through influencing intra/inter-TAD interactions. Importantly, these nuclear envelope contributions clearly link this mechanism to development and, when defective, to human disease. Here, we discuss evidence for nuclear envelope regulation of tissue-specific enhancer-promoter pairings, potential mechanisms for this regulation, exciting recent findings that other regulatory elements such as microRNAs and long noncoding RNAs are under nuclear envelope regulation, the possible involvement of condensates, and how disruption of this regulation can lead to disease.
Collapse
Affiliation(s)
- Rafal Czapiewski
- Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom; MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom.
| | - Eric C Schirmer
- Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom.
| |
Collapse
|
66
|
Ma H, Qu J, Pang Z, Luo J, Yan M, Xu W, Zhuang H, Liu L, Qu Q. Super-enhancer omics in stem cell. Mol Cancer 2024; 23:153. [PMID: 39090713 PMCID: PMC11293198 DOI: 10.1186/s12943-024-02066-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/12/2024] [Indexed: 08/04/2024] Open
Abstract
The hallmarks of stem cells, such as proliferation, self-renewal, development, differentiation, and regeneration, are critical to maintain stem cell identity which is sustained by genetic and epigenetic factors. Super-enhancers (SEs), which consist of clusters of active enhancers, play a central role in maintaining stemness hallmarks by specifically transcriptional model. The SE-navigated transcriptional complex, including SEs, non-coding RNAs, master transcriptional factors, Mediators and other co-activators, forms phase-separated condensates, which offers a toggle for directing diverse stem cell fate. With the burgeoning technologies of multiple-omics applied to examine different aspects of SE, we firstly raise the concept of "super-enhancer omics", inextricably linking to Pan-omics. In the review, we discuss the spatiotemporal organization and concepts of SEs, and describe links between SE-navigated transcriptional complex and stem cell features, such as stem cell identity, self-renewal, pluripotency, differentiation and development. We also elucidate the mechanism of stemness and oncogenic SEs modulating cancer stem cells via genomic and epigenetic alterations hijack in cancer stem cell. Additionally, we discuss the potential of targeting components of the SE complex using small molecule compounds, genome editing, and antisense oligonucleotides to treat SE-associated organ dysfunction and diseases, including cancer. This review also provides insights into the future of stem cell research through the paradigm of SEs.
Collapse
Affiliation(s)
- Hongying Ma
- Department of Pharmacy, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, People's Republic of China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Jian Qu
- Department of Pharmacy, the Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, 410011, People's Republic of China
- Hunan key laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, 410219, China
| | - Zicheng Pang
- Department of Pharmacy, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, People's Republic of China
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jian Luo
- Department of Pharmacy, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, People's Republic of China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Min Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, People's Republic of China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Weixin Xu
- Department of Pharmacy, the Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, 410011, People's Republic of China
| | - Haihui Zhuang
- Department of Pharmacy, the Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, 410011, People's Republic of China
| | - Linxin Liu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China
| | - Qiang Qu
- Department of Pharmacy, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, People's Republic of China.
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China.
| |
Collapse
|
67
|
Labudina AA, Meier M, Gimenez G, Tatarakis D, Ketharnathan S, Mackie B, Schilling TF, Antony J, Horsfield JA. Cohesin composition and dosage independently affect early development in zebrafish. Development 2024; 151:dev202593. [PMID: 38975838 DOI: 10.1242/dev.202593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 06/27/2024] [Indexed: 07/09/2024]
Abstract
Cohesin, a chromatin-associated protein complex with four core subunits (Smc1a, Smc3, Rad21 and either Stag1 or 2), has a central role in cell proliferation and gene expression in metazoans. Human developmental disorders termed 'cohesinopathies' are characterized by germline variants of cohesin or its regulators that do not entirely eliminate cohesin function. However, it is not clear whether mutations in individual cohesin subunits have independent developmental consequences. Here, we show that zebrafish rad21 or stag2b mutants independently influence embryonic tailbud development. Both mutants have altered mesoderm induction, but only homozygous or heterozygous rad21 mutation affects cell cycle gene expression. stag2b mutants have narrower notochords and reduced Wnt signaling in neuromesodermal progenitors as revealed by single-cell RNA sequencing. Stimulation of Wnt signaling rescues transcription and morphology in stag2b, but not rad21, mutants. Our results suggest that mutations altering the quantity versus composition of cohesin have independent developmental consequences, with implications for the understanding and management of cohesinopathies.
Collapse
Affiliation(s)
- Anastasia A Labudina
- Department of Pathology, Dunedin School of Medicine, University of Otago, P.O. Box 913, Dunedin 9016, New Zealand
| | - Michael Meier
- Department of Pathology, Dunedin School of Medicine, University of Otago, P.O. Box 913, Dunedin 9016, New Zealand
| | - Gregory Gimenez
- Department of Pathology, Dunedin School of Medicine, University of Otago, P.O. Box 913, Dunedin 9016, New Zealand
| | - David Tatarakis
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697-2300, USA
| | - Sarada Ketharnathan
- Department of Pathology, Dunedin School of Medicine, University of Otago, P.O. Box 913, Dunedin 9016, New Zealand
| | - Bridget Mackie
- Department of Pathology, Dunedin School of Medicine, University of Otago, P.O. Box 913, Dunedin 9016, New Zealand
| | - Thomas F Schilling
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697-2300, USA
| | - Jisha Antony
- Department of Pathology, Dunedin School of Medicine, University of Otago, P.O. Box 913, Dunedin 9016, New Zealand
| | - Julia A Horsfield
- Department of Pathology, Dunedin School of Medicine, University of Otago, P.O. Box 913, Dunedin 9016, New Zealand
| |
Collapse
|
68
|
Das M, Semple JI, Haemmerli A, Volodkina V, Scotton J, Gitchev T, Annan A, Campos J, Statzer C, Dakhovnik A, Ewald CY, Mozziconacci J, Meister P. Condensin I folds the Caenorhabditis elegans genome. Nat Genet 2024; 56:1737-1749. [PMID: 39039278 DOI: 10.1038/s41588-024-01832-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/13/2024] [Indexed: 07/24/2024]
Abstract
The structural maintenance of chromosome (SMC) complexes-cohesin and condensins-are crucial for chromosome separation and compaction during cell division. During the interphase, mammalian cohesins additionally fold the genome into loops and domains. Here we show that, in Caenorhabditis elegans, a species with holocentric chromosomes, condensin I is the primary, long-range loop extruder. The loss of condensin I and its X-specific variant, condensin IDC, leads to genome-wide decompaction, chromosome mixing and disappearance of X-specific topologically associating domains, while reinforcing fine-scale epigenomic compartments. In addition, condensin I/IDC inactivation led to the upregulation of X-linked genes and unveiled nuclear bodies grouping together binding sites for the X-targeting loading complex of condensin IDC. C. elegans condensin I/IDC thus uniquely organizes holocentric interphase chromosomes, akin to cohesin in mammals, as well as regulates X-chromosome gene expression.
Collapse
Affiliation(s)
- Moushumi Das
- Cell Fate and Nuclear Organization, Institute of Cell Biology, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Jennifer I Semple
- Cell Fate and Nuclear Organization, Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Anja Haemmerli
- Cell Fate and Nuclear Organization, Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Valeriia Volodkina
- Cell Fate and Nuclear Organization, Institute of Cell Biology, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Janik Scotton
- Cell Fate and Nuclear Organization, Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Todor Gitchev
- Cell Fate and Nuclear Organization, Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Ahrmad Annan
- Cell Fate and Nuclear Organization, Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Julie Campos
- Cell Fate and Nuclear Organization, Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Cyril Statzer
- Eidgenössische Technische Hochschule Zürich, Department of Health Sciences and Technology, Institute of Translational Medicine, Schwerzenbach, Switzerland
| | - Alexander Dakhovnik
- Eidgenössische Technische Hochschule Zürich, Department of Health Sciences and Technology, Institute of Translational Medicine, Schwerzenbach, Switzerland
| | - Collin Y Ewald
- Eidgenössische Technische Hochschule Zürich, Department of Health Sciences and Technology, Institute of Translational Medicine, Schwerzenbach, Switzerland
| | - Julien Mozziconacci
- Laboratoire Structure et Instabilité des Génomes UMR 7196, Muséum National d'Histoire Naturelle, Paris, France
| | - Peter Meister
- Cell Fate and Nuclear Organization, Institute of Cell Biology, University of Bern, Bern, Switzerland.
| |
Collapse
|
69
|
Wang Z, Tian W, Guo Y, Wang D, Zhang Y, Zhi Y, Li D, Li W, Li Z, Jiang R, Han R, Sun G, Li G, Tian Y, Li H, Kang X, Liu X. Dynamic alternations of three-dimensional chromatin architecture contribute to phenotypic characteristics of breast muscle in chicken. Commun Biol 2024; 7:910. [PMID: 39068219 PMCID: PMC11283561 DOI: 10.1038/s42003-024-06599-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 07/17/2024] [Indexed: 07/30/2024] Open
Abstract
Breast muscle growth rate and intramuscular fat (IMF) content show apparent differences between fast-growing broilers and slow-growing indigenous chickens. However, the underlying genetic basis of these phenotypic characteristics remains elusive. In this study, we investigate the dynamic alterations of three-dimensional genome architecture and chromatin accessibility in breast muscle across four key developmental stages from embryo to starter chick in Arbor Acres (AA) broilers and Yufen (YF) indigenous chickens. The limited breed-specifically up-regulated genes (Bup-DEGs) are embedded in breed-specific A compartment, while a majority of the Bup-DEGs involving myogenesis and adipogenesis are regulated by the breed-specific TAD reprogramming. Chromatin loops allow distal accessible regions to interact with myogenic genes, and those loops share an extremely low similarity between chicken with different growth rate. Moreover, AA-specific loop interactions promote the expression of 40 Bup-DEGs, such as IGF1, which contributes to myofiber hypertrophy. YF-specific loop interactions or distal accessible regions lead to increased expression of 5 Bup-DEGs, including PIGO, PEMT, DHCR7, TMEM38B, and DHDH, which contribute to IMF deposition. These results help elucidate the regulation of breast muscle growth and IMF deposition in chickens.
Collapse
Affiliation(s)
- Zhang Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Weihua Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yulong Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Dandan Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yanyan Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yihao Zhi
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Donghua Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, China
- International Joint Research, Laboratory for Poultry Breeding of Henan, Zhengzhou, 450002, China
| | - Wenting Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, China
- International Joint Research, Laboratory for Poultry Breeding of Henan, Zhengzhou, 450002, China
| | - Zhuanjian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, China
- International Joint Research, Laboratory for Poultry Breeding of Henan, Zhengzhou, 450002, China
| | - Ruirui Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, China
- International Joint Research, Laboratory for Poultry Breeding of Henan, Zhengzhou, 450002, China
| | - Ruili Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, China
- International Joint Research, Laboratory for Poultry Breeding of Henan, Zhengzhou, 450002, China
| | - Guirong Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, China
- International Joint Research, Laboratory for Poultry Breeding of Henan, Zhengzhou, 450002, China
| | - Guoxi Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, China
- International Joint Research, Laboratory for Poultry Breeding of Henan, Zhengzhou, 450002, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, China
- International Joint Research, Laboratory for Poultry Breeding of Henan, Zhengzhou, 450002, China
| | - Hong Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China.
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, China.
- International Joint Research, Laboratory for Poultry Breeding of Henan, Zhengzhou, 450002, China.
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China.
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, China.
- International Joint Research, Laboratory for Poultry Breeding of Henan, Zhengzhou, 450002, China.
| | - Xiaojun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China.
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, China.
- International Joint Research, Laboratory for Poultry Breeding of Henan, Zhengzhou, 450002, China.
| |
Collapse
|
70
|
Do C, Jiang G, Cova G, Katsifis CC, Narducci DN, Yang J, Sakellaropoulos T, Vidal R, Lhoumaud P, Tsirigos A, Regis FFD, Kakabadze N, Nora EP, Noyes M, Cheng X, Hansen AS, Skok JA. Brain and cancer associated binding domain mutations provide insight into CTCF's relationship with chromatin and its ability to act as a chromatin organizer. RESEARCH SQUARE 2024:rs.3.rs-4670379. [PMID: 39070636 PMCID: PMC11275995 DOI: 10.21203/rs.3.rs-4670379/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Although only a fraction of CTCF motifs are bound in any cell type, and approximately half of the occupied sites overlap cohesin, the mechanisms underlying cell-type specific attachment and ability to function as a chromatin organizer remain unknown. To investigate the relationship between CTCF and chromatin we applied a combination of imaging, structural and molecular approaches, using a series of brain and cancer associated CTCF mutations that act as CTCF perturbations. We demonstrate that binding and the functional impact of WT and mutant CTCF depend not only on the unique properties of each protein, but also on the genomic context of bound sites. Our studies also highlight the reciprocal relationship between CTCF and chromatin, demonstrating that the unique binding properties of WT and mutant proteins have a distinct impact on accessibility, TF binding, cohesin overlap, chromatin interactivity and gene expression programs, providing insight into their cancer and brain related effects.
Collapse
Affiliation(s)
- Catherine Do
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Guimei Jiang
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Giulia Cova
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Christos C Katsifis
- MIT Department of Biological Engineering
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, Cambridge, MA, 02139, USA
| | - Domenic N Narducci
- MIT Department of Biological Engineering
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, Cambridge, MA, 02139, USA
| | - Jie Yang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Theodore Sakellaropoulos
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Raphael Vidal
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Priscillia Lhoumaud
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Aristotelis Tsirigos
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
- Applied Bioinformatics Laboratories, Office of Science & Research, NYU Grossman School of Medicine, New York, NY, USA
| | - Faye Fara D Regis
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Nata Kakabadze
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Elphege P Nora
- Cardiovascular Research Institute, and Department of Biochemistry and Biophysics, University of California San Francisco, CA, USA
| | - Marcus Noyes
- Institute for Systems Genetics, Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Anders S Hansen
- MIT Department of Biological Engineering
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, Cambridge, MA, 02139, USA
| | - Jane A Skok
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| |
Collapse
|
71
|
Conte M, Abraham A, Esposito A, Yang L, Gibcus JH, Parsi KM, Vercellone F, Fontana A, Pierno FD, Dekker J, Nicodemi M. Polymer physics models reveal structural folding features of single-molecule gene chromatin conformations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.16.603769. [PMID: 39071404 PMCID: PMC11275793 DOI: 10.1101/2024.07.16.603769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Here, we employ polymer physics models of chromatin to investigate the 3D folding of a 2Mb wide genomic region encompassing the human LTN1 gene, a crucial DNA locus involved in key cellular functions. Through extensive Molecular Dynamics simulations, we reconstruct in-silico the ensemble of single-molecule LTN1 3D structures, which we benchmark against recent in-situ Hi-C 2.0 data. The model-derived single molecules are then used to predict structural folding features at the single-cell level, providing testable predictions for super-resolution microscopy experiments.
Collapse
Affiliation(s)
- Mattia Conte
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant’Angelo, 80126 Naples, Italy
| | - Alex Abraham
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant’Angelo, 80126 Naples, Italy
| | - Andrea Esposito
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant’Angelo, 80126 Naples, Italy
| | - Liyan Yang
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Johan H. Gibcus
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Krishna M. Parsi
- Diabetes Center of Excellence and Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655
| | - Francesca Vercellone
- DIETI, Università di Napoli Federico II, Via Claudio 21, 80125 Naples, and INFN Napoli, Complesso Universitario di Monte Sant’Angelo, 80126 Naples, Italy
| | - Andrea Fontana
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant’Angelo, 80126 Naples, Italy
| | - Florinda Di Pierno
- DIETI, Università di Napoli Federico II, Via Claudio 21, 80125 Naples, and INFN Napoli, Complesso Universitario di Monte Sant’Angelo, 80126 Naples, Italy
| | - Job Dekker
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Mario Nicodemi
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant’Angelo, 80126 Naples, Italy
| |
Collapse
|
72
|
Zhang W, Li Z, Wang X, Sun T. Phase separation is regulated by post-translational modifications and participates in the developments of human diseases. Heliyon 2024; 10:e34035. [PMID: 39071719 PMCID: PMC11279762 DOI: 10.1016/j.heliyon.2024.e34035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024] Open
Abstract
Liquid-liquid phase separation (LLPS) of intracellular proteins has emerged as a hot research topic in recent years. Membrane-less and liquid-like condensates provide dense spaces that ensure cells to high efficiently regulate genes transcription and rapidly respond to burst changes from the environment. The fomation and activity of LLPS are not only modulated by the cytosol conditions including but not limited to salt concentration and temperture. Interestingly, recent studies have shown that phase separation is also regulated by various post-translational modifications (PTMs) through modulating proteins multivalency, such as solubility and charge interactions. The regulation mechanism is crucial for normal functioning of cells, as aberrant protein aggregates are often closely related with the occurrence and development of human diseases including cancer and nurodegenerative diseases. Therefore, studying phase separation in the perspective of protein PTMs has long-term significance for human health. In this review, we summarized the properties and cellular physiological functions of LLPS, particularly its relationships with PTMs in human diseases according to recent researches.
Collapse
Affiliation(s)
- Weibo Zhang
- Faculty of Health Sciences Building University of Macau E12 Avenida da Universidade, Taipa, Macau, China
| | - Zhengfeng Li
- Faculty of Health Sciences Building University of Macau E12 Avenida da Universidade, Taipa, Macau, China
| | - Xianju Wang
- Faculty of Health Sciences Building University of Macau E12 Avenida da Universidade, Taipa, Macau, China
| | - Ting Sun
- Faculty of Health Sciences Building University of Macau E12 Avenida da Universidade, Taipa, Macau, China
| |
Collapse
|
73
|
Li Y, Tan M, Akkari-Henić A, Zhang L, Kip M, Sun S, Sepers JJ, Xu N, Ariyurek Y, Kloet SL, Davis RP, Mikkers H, Gruber JJ, Snyder MP, Li X, Pang B. Genome-wide Cas9-mediated screening of essential non-coding regulatory elements via libraries of paired single-guide RNAs. Nat Biomed Eng 2024; 8:890-908. [PMID: 38778183 PMCID: PMC11310080 DOI: 10.1038/s41551-024-01204-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 03/27/2024] [Indexed: 05/25/2024]
Abstract
The functions of non-coding regulatory elements (NCREs), which constitute a major fraction of the human genome, have not been systematically studied. Here we report a method involving libraries of paired single-guide RNAs targeting both ends of an NCRE as a screening system for the Cas9-mediated deletion of thousands of NCREs genome-wide to study their functions in distinct biological contexts. By using K562 and 293T cell lines and human embryonic stem cells, we show that NCREs can have redundant functions, and that many ultra-conserved elements have silencer activity and play essential roles in cell growth and in cellular responses to drugs (notably, the ultra-conserved element PAX6_Tarzan may be critical for heart development, as removing it from human embryonic stem cells led to defects in cardiomyocyte differentiation). The high-throughput screen, which is compatible with single-cell sequencing, may allow for the identification of druggable NCREs.
Collapse
Affiliation(s)
- Yufeng Li
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Minkang Tan
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Almira Akkari-Henić
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Limin Zhang
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Maarten Kip
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Shengnan Sun
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jorian J Sepers
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Ningning Xu
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Yavuz Ariyurek
- Leiden Genome Technology Center, Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Susan L Kloet
- Leiden Genome Technology Center, Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Richard P Davis
- Department of Anatomy and Embryology, The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, the Netherlands
| | - Harald Mikkers
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Joshua J Gruber
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Xiao Li
- Department of Biochemistry, The Center for RNA Science and Therapeutics, Department of Computer and Data Sciences, Case Western Reserve University, Cleveland, OH, USA.
| | - Baoxu Pang
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
74
|
Zhang J, Hu G, Lu Y, Ren H, Huang Y, Wen Y, Ji B, Wang D, Wang H, Liu H, Ma N, Zhang L, Pan G, Qu Y, Wang H, Zhang W, Miao Z, Yao H. CTCF mutation at R567 causes developmental disorders via 3D genome rearrangement and abnormal neurodevelopment. Nat Commun 2024; 15:5524. [PMID: 38951485 PMCID: PMC11217373 DOI: 10.1038/s41467-024-49684-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/14/2024] [Indexed: 07/03/2024] Open
Abstract
The three-dimensional genome structure organized by CTCF is required for development. Clinically identified mutations in CTCF have been linked to adverse developmental outcomes. Nevertheless, the underlying mechanism remains elusive. In this investigation, we explore the regulatory roles of a clinically relevant R567W point mutation, located within the 11th zinc finger of CTCF, by introducing this mutation into both murine models and human embryonic stem cell-derived cortical organoid models. Mice with homozygous CTCFR567W mutation exhibit growth impediments, resulting in postnatal mortality, and deviations in brain, heart, and lung development at the pathological and single-cell transcriptome levels. This mutation induces premature stem-like cell exhaustion, accelerates the maturation of GABAergic neurons, and disrupts neurodevelopmental and synaptic pathways. Additionally, it specifically hinders CTCF binding to peripheral motifs upstream to the core consensus site, causing alterations in local chromatin structure and gene expression, particularly at the clustered protocadherin locus. Comparative analysis using human cortical organoids mirrors the consequences induced by this mutation. In summary, this study elucidates the influence of the CTCFR567W mutation on human neurodevelopmental disorders, paving the way for potential therapeutic interventions.
Collapse
Affiliation(s)
- Jie Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Gongcheng Hu
- Department of Basic Research, Guangzhou National Laboratory, Guangzhou, China
| | - Yuli Lu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Huawei Ren
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Yin Huang
- Department of Basic Research, Guangzhou National Laboratory, Guangzhou, China
| | - Yulin Wen
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Binrui Ji
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Diyang Wang
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Haidong Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Huisheng Liu
- Department of Basic Research, Guangzhou National Laboratory, Guangzhou, China
| | - Ning Ma
- Department of Basic Research, Guangzhou National Laboratory, Guangzhou, China
| | - Lingling Zhang
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine (Ministry of Education), Anhui Medical University, Hefei, China
| | - Guangjin Pan
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yibo Qu
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Hua Wang
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine (Ministry of Education), Anhui Medical University, Hefei, China
| | - Wei Zhang
- Department of Basic Research, Guangzhou National Laboratory, Guangzhou, China
| | - Zhichao Miao
- Department of Basic Research, Guangzhou National Laboratory, Guangzhou, China
| | - Hongjie Yao
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Department of Basic Research, Guangzhou National Laboratory, Guangzhou, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
75
|
Wang X, Yue F. Hijacked enhancer-promoter and silencer-promoter loops in cancer. Curr Opin Genet Dev 2024; 86:102199. [PMID: 38669773 DOI: 10.1016/j.gde.2024.102199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/19/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024]
Abstract
Recent work has shown that besides inducing fusion genes, structural variations (SVs) can also contribute to oncogenesis by disrupting the three-dimensional genome organization and dysregulating gene expression. At the chromatin-loop level, SVs can relocate enhancers or silencers from their original genomic loci to activate oncogenes or repress tumor suppressor genes. On a larger scale, different types of alterations in topologically associating domains (TADs) have been reported in cancer, such as TAD expansion, shuffling, and SV-induced neo-TADs. Furthermore, the transformation from normal cells to cancerous cells is usually coupled with active or repressive compartmental switches, and cancer-specific compartments have been proposed. This review discusses the sites, and the other latest advances in studying how SVs disrupt higher-order genome structure in cancer, which in turn leads to oncogene dysregulation. We also highlight the clinical implications of these changes and the challenges ahead in this field.
Collapse
Affiliation(s)
- Xiaotao Wang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China; Shanghai Key Laboratory of Reproduction and Development, Shanghai, China.
| | - Feng Yue
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, Illinois, USA; Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois, USA.
| |
Collapse
|
76
|
Chen X, Yang W, Roberts CWM, Zhang J. Developmental origins shape the paediatric cancer genome. Nat Rev Cancer 2024; 24:382-398. [PMID: 38698126 PMCID: PMC11571274 DOI: 10.1038/s41568-024-00684-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 05/05/2024]
Abstract
In the past two decades, technological advances have brought unprecedented insights into the paediatric cancer genome revealing characteristics distinct from those of adult cancer. Originating from developing tissues, paediatric cancers generally have low mutation burden and are driven by variants that disrupt the transcriptional activity, chromatin state, non-coding cis-regulatory regions and other biological functions. Within each tumour, there are multiple populations of cells with varying states, and the lineages of some can be tracked to their fetal origins. Genome-wide genetic screening has identified vulnerabilities associated with both the cell of origin and transcription deregulation in paediatric cancer, which have become a valuable resource for designing new therapeutic approaches including those for small molecules, immunotherapy and targeted protein degradation. In this Review, we present recent findings on these facets of paediatric cancer from a pan-cancer perspective and provide an outlook on future investigations.
Collapse
Affiliation(s)
- Xiaolong Chen
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Wentao Yang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Charles W M Roberts
- Comprehensive Cancer Center, St Jude Children's Research Hospital, Memphis, TN, USA
- Department of Oncology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
77
|
Zhao Y, Yang M, Gong F, Pan Y, Hu M, Peng Q, Lu L, Lyu X, Sun K. Accelerating 3D genomics data analysis with Microcket. Commun Biol 2024; 7:675. [PMID: 38824179 PMCID: PMC11144199 DOI: 10.1038/s42003-024-06382-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/24/2024] [Indexed: 06/03/2024] Open
Abstract
The three-dimensional (3D) organization of genome is fundamental to cell biology. To explore 3D genome, emerging high-throughput approaches have produced billions of sequencing reads, which is challenging and time-consuming to analyze. Here we present Microcket, a package for mapping and extracting interacting pairs from 3D genomics data, including Hi-C, Micro-C, and derivant protocols. Microcket utilizes a unique read-stitch strategy that takes advantage of the long read cycles in modern DNA sequencers; benchmark evaluations reveal that Microcket runs much faster than the current tools along with improved mapping efficiency, and thus shows high potential in accelerating and enhancing the biological investigations into 3D genome. Microcket is freely available at https://github.com/hellosunking/Microcket .
Collapse
Affiliation(s)
- Yu Zhao
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, China
| | - Mengqi Yang
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518132, China
- Department of Chemical and Biological Engineering, Division of Life Science, Hong Kong University of Science and Technology, Hong Kong SAR, 999077, China
| | - Fanglei Gong
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Yuqi Pan
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518132, China
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Minghui Hu
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, China
| | - Qin Peng
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Leina Lu
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Xiaowen Lyu
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Reproductive Health Research, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Kun Sun
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
| |
Collapse
|
78
|
Wu H, Zhang J, Jian F, Chen JP, Zheng Y, Tan L, Sunney Xie X. Simultaneous single-cell three-dimensional genome and gene expression profiling uncovers dynamic enhancer connectivity underlying olfactory receptor choice. Nat Methods 2024; 21:974-982. [PMID: 38622459 PMCID: PMC11166570 DOI: 10.1038/s41592-024-02239-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 03/07/2024] [Indexed: 04/17/2024]
Abstract
The simultaneous measurement of three-dimensional (3D) genome structure and gene expression of individual cells is critical for understanding a genome's structure-function relationship, yet this is challenging for existing methods. Here we present 'Linking mRNA to Chromatin Architecture (LiMCA)', which jointly profiles the 3D genome and transcriptome with exceptional sensitivity and from low-input materials. Combining LiMCA and our high-resolution scATAC-seq assay, METATAC, we successfully characterized chromatin accessibility, as well as paired 3D genome structures and gene expression information, of individual developing olfactory sensory neurons. We expanded the repertoire of known olfactory receptor (OR) enhancers and discovered unexpected rules of their dynamics: OR genes and their enhancers are most accessible during early differentiation. Furthermore, we revealed the dynamic spatial relationship between ORs and enhancers behind stepwise OR expression. These findings offer valuable insights into how 3D connectivity of ORs and enhancers dynamically orchestrate the 'one neuron-one receptor' selection process.
Collapse
Affiliation(s)
- Honggui Wu
- Biomedical Pioneering Innovation Center (BIOPIC), and School of Life Sciences, Peking University, Beijing, China
- Changping Laboratory, Beijing, China
| | - Jiankun Zhang
- Biomedical Pioneering Innovation Center (BIOPIC), and School of Life Sciences, Peking University, Beijing, China
- Changping Laboratory, Beijing, China
| | - Fanchong Jian
- Biomedical Pioneering Innovation Center (BIOPIC), and School of Life Sciences, Peking University, Beijing, China
- Changping Laboratory, Beijing, China
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Jinxin Phaedo Chen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Yinghui Zheng
- Biomedical Pioneering Innovation Center (BIOPIC), and School of Life Sciences, Peking University, Beijing, China
| | - Longzhi Tan
- Department of Neurobiology, Stanford University, Stanford, CA, USA.
| | - X Sunney Xie
- Biomedical Pioneering Innovation Center (BIOPIC), and School of Life Sciences, Peking University, Beijing, China.
- Changping Laboratory, Beijing, China.
| |
Collapse
|
79
|
Mowery CT, Freimer JW, Chen Z, Casaní-Galdón S, Umhoefer JM, Arce MM, Gjoni K, Daniel B, Sandor K, Gowen BG, Nguyen V, Simeonov DR, Garrido CM, Curie GL, Schmidt R, Steinhart Z, Satpathy AT, Pollard KS, Corn JE, Bernstein BE, Ye CJ, Marson A. Systematic decoding of cis gene regulation defines context-dependent control of the multi-gene costimulatory receptor locus in human T cells. Nat Genet 2024; 56:1156-1167. [PMID: 38811842 PMCID: PMC11176074 DOI: 10.1038/s41588-024-01743-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/04/2024] [Indexed: 05/31/2024]
Abstract
Cis-regulatory elements (CREs) interact with trans regulators to orchestrate gene expression, but how transcriptional regulation is coordinated in multi-gene loci has not been experimentally defined. We sought to characterize the CREs controlling dynamic expression of the adjacent costimulatory genes CD28, CTLA4 and ICOS, encoding regulators of T cell-mediated immunity. Tiling CRISPR interference (CRISPRi) screens in primary human T cells, both conventional and regulatory subsets, uncovered gene-, cell subset- and stimulation-specific CREs. Integration with CRISPR knockout screens and assay for transposase-accessible chromatin with sequencing (ATAC-seq) profiling identified trans regulators influencing chromatin states at specific CRISPRi-responsive elements to control costimulatory gene expression. We then discovered a critical CCCTC-binding factor (CTCF) boundary that reinforces CRE interaction with CTLA4 while also preventing promiscuous activation of CD28. By systematically mapping CREs and associated trans regulators directly in primary human T cell subsets, this work overcomes longstanding experimental limitations to decode context-dependent gene regulatory programs in a complex, multi-gene locus critical to immune homeostasis.
Collapse
Grants
- P30 DK063720 NIDDK NIH HHS
- R01 HG008140 NHGRI NIH HHS
- T32 GM007618 NIGMS NIH HHS
- S10 OD028511 NIH HHS
- F99 CA234842 NCI NIH HHS
- S10 OD021822 NIH HHS
- K00 CA234842 NCI NIH HHS
- P01 AI138962 NIAID NIH HHS
- U01 HL157989 NHLBI NIH HHS
- R01 DK129364 NIDDK NIH HHS
- T32 DK007418 NIDDK NIH HHS
- R01 AI136972 NIAID NIH HHS
- F30 AI157167 NIAID NIH HHS
- R01 HG011239 NHGRI NIH HHS
- NIH grants 1R01DK129364-01A1, P01AI138962, and R01HG008140; the Larry L. Hillblom Foundation (grant no. 2020-D-002-NET); and Northern California JDRF Center of Excellence. A.M. is a member of the Parker Institute for Cancer Immunotherapy (PICI), and has received funding from the Arc Institute, Chan Zuckerberg Biohub, Innovative Genomics Institute (IGI), Cancer Research Institute (CRI) Lloyd J. Old STAR award, a gift from the Jordan Family, a gift from the Byers family and a gift from B. Bakar.
- UCSF ImmunoX Computational Immunology Fellow, is supported by NIH grant F30AI157167, and has received support from NIH grants T32DK007418 and T32GM007618
- NIH grant R01HG008140
- Career Award for Medical Scientists from the Burroughs Wellcome Fund, a Lloyd J. Old STAR Award from the Cancer Research Institute, and the Parker Institute for Cancer Immunotherapy
- NIH grant U01HL157989
Collapse
Affiliation(s)
- Cody T Mowery
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Jacob W Freimer
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Zeyu Chen
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA, USA
| | - Salvador Casaní-Galdón
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA, USA
| | - Jennifer M Umhoefer
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Maya M Arce
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Ketrin Gjoni
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Bence Daniel
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
- Department of Microchemistry, Proteomics, Lipidomics and Next Generation Sequencing, Genentech, South San Francisco, CA, USA
| | - Katalin Sandor
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Benjamin G Gowen
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Vinh Nguyen
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
- UCSF CoLabs, University of California, San Francisco, San Francisco, CA, USA
| | - Dimitre R Simeonov
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Christian M Garrido
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Gemma L Curie
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Ralf Schmidt
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Zachary Steinhart
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Ansuman T Satpathy
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Program in Immunology, Stanford University, Stanford, CA, USA
| | - Katherine S Pollard
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub SF, San Francisco, CA, USA
| | - Jacob E Corn
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Bradley E Bernstein
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA, USA
| | - Chun Jimmie Ye
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA.
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA.
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
- Chan Zuckerberg Biohub SF, San Francisco, CA, USA.
- Rosalind Russell/Ephraim P. Engleman Rheumatology Research Center, University of California, San Francisco, San Francisco, CA, USA.
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA.
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA.
| | - Alexander Marson
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA.
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA.
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA.
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA.
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
80
|
Kabirova E, Ryzhkova A, Lukyanchikova V, Khabarova A, Korablev A, Shnaider T, Nuriddinov M, Belokopytova P, Smirnov A, Khotskin NV, Kontsevaya G, Serova I, Battulin N. TAD border deletion at the Kit locus causes tissue-specific ectopic activation of a neighboring gene. Nat Commun 2024; 15:4521. [PMID: 38806452 PMCID: PMC11133455 DOI: 10.1038/s41467-024-48523-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/30/2024] [Indexed: 05/30/2024] Open
Abstract
Topologically associated domains (TADs) restrict promoter-enhancer interactions, thereby maintaining the spatiotemporal pattern of gene activity. However, rearrangements of the TADs boundaries do not always lead to significant changes in the activity pattern. Here, we investigated the consequences of the TAD boundaries deletion on the expression of developmentally important genes encoding tyrosine kinase receptors: Kit, Kdr, Pdgfra. We used genome editing in mice to delete the TADs boundaries at the Kit locus and characterized chromatin folding and gene expression in pure cultures of fibroblasts, mast cells, and melanocytes. We found that although Kit is highly active in both mast cells and melanocytes, deletion of the TAD boundary between the Kit and Kdr genes results in ectopic activation only in melanocytes. Thus, the epigenetic landscape, namely the mutual arrangement of enhancers and actively transcribing genes, is important for predicting the consequences of the TAD boundaries removal. We also found that mice without a TAD border between the Kit and Kdr genes have a phenotypic manifestation of the mutation - a lighter coloration. Thus, the data obtained shed light on the principles of interaction between the 3D chromatin organization and epigenetic marks in the regulation of gene activity.
Collapse
Affiliation(s)
- Evelyn Kabirova
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | | | | | - Anna Khabarova
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Alexey Korablev
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | | | | | - Polina Belokopytova
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | | | | | | | - Irina Serova
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Nariman Battulin
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia.
- Novosibirsk State University, Novosibirsk, Russia.
| |
Collapse
|
81
|
Xie T, Danieli-Mackay A, Buccarelli M, Barbieri M, Papadionysiou I, D'Alessandris QG, Robens C, Übelmesser N, Vinchure OS, Lauretti L, Fotia G, Schwarz RF, Wang X, Ricci-Vitiani L, Gopalakrishnan J, Pallini R, Papantonis A. Pervasive structural heterogeneity rewires glioblastoma chromosomes to sustain patient-specific transcriptional programs. Nat Commun 2024; 15:3905. [PMID: 38724522 PMCID: PMC11082206 DOI: 10.1038/s41467-024-48053-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/18/2024] [Indexed: 05/12/2024] Open
Abstract
Glioblastoma multiforme (GBM) encompasses brain malignancies marked by phenotypic and transcriptional heterogeneity thought to render these tumors aggressive, resistant to therapy, and inevitably recurrent. However, little is known about how the spatial organization of GBM genomes underlies this heterogeneity and its effects. Here, we compile a cohort of 28 patient-derived glioblastoma stem cell-like lines (GSCs) known to reflect the properties of their tumor-of-origin; six of these were primary-relapse tumor pairs from the same patient. We generate and analyze 5 kbp-resolution chromosome conformation capture (Hi-C) data from all GSCs to systematically map thousands of standalone and complex structural variants (SVs) and the multitude of neoloops arising as a result. By combining Hi-C, histone modification, and gene expression data with chromatin folding simulations, we explain how the pervasive, uneven, and idiosyncratic occurrence of neoloops sustains tumor-specific transcriptional programs via the formation of new enhancer-promoter contacts. We also show how even moderately recurrent neoloops can relate to patient-specific vulnerabilities. Together, our data provide a resource for dissecting GBM biology and heterogeneity, as well as for informing therapeutic approaches.
Collapse
Affiliation(s)
- Ting Xie
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Adi Danieli-Mackay
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Mariachiara Buccarelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Mariano Barbieri
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | | | - Q Giorgio D'Alessandris
- Department of Neuroscience, Catholic University School of Medicine, Rome, Italy
- Department of Neuroscience, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Claudia Robens
- Institute for Computational Cancer Biology (ICCB), Center for Integrated Oncology (CIO), Cancer Research Center Cologne Essen (CCCE), University of Cologne, Cologne, Germany
| | - Nadine Übelmesser
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Omkar Suhas Vinchure
- Institute of Human Genetics, University Hospital and Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Liverana Lauretti
- Department of Neuroscience, Catholic University School of Medicine, Rome, Italy
| | - Giorgio Fotia
- Centre for Advanced Studies, Research and Development in Sardinia (CRS4), Pula, Italy
| | - Roland F Schwarz
- Institute for Computational Cancer Biology (ICCB), Center for Integrated Oncology (CIO), Cancer Research Center Cologne Essen (CCCE), University of Cologne, Cologne, Germany
- Berlin Institute for the Foundations of Learning and Data (BIFOLD), Berlin, Germany
| | - Xiaotao Wang
- Institute of Reproduction and Development, Fudan University, Shanghai, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Lucia Ricci-Vitiani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Jay Gopalakrishnan
- Institute of Human Genetics, University Hospital and Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Institute of Human Genetics, Jena University Hospital and Friedrich Schiller University of Jena, Jena, Germany
| | - Roberto Pallini
- Department of Neuroscience, Catholic University School of Medicine, Rome, Italy.
| | - Argyris Papantonis
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany.
| |
Collapse
|
82
|
Liu H, Pan Z, Lin X, Chen L, Yang Q, Zhang W, Dai L, Zhang Y, Li W, Chen Y, Peng K, Wanggou S, Zeng F, Li X. A potassium-chloride co-transporter with altered genome architecture functions as a suppressor in glioma. J Cell Mol Med 2024; 28:e18352. [PMID: 38685685 PMCID: PMC11058328 DOI: 10.1111/jcmm.18352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/28/2024] [Accepted: 04/11/2024] [Indexed: 05/02/2024] Open
Abstract
Gliomas, the most lethal tumours in brain, have a poor prognosis despite accepting standard treatment. Limited benefits from current therapies can be attributed to genetic, epigenetic and microenvironmental cues that affect cell programming and drive tumour heterogeneity. Through the analysis of Hi-C data, we identified a potassium-chloride co-transporter SLC12A5 associated with disrupted topologically associating domain which was downregulated in tumour tissues. Multiple independent glioma cohorts were included to analyse the characterization of SLC12A5 and found it was significantly associated with pathological features, prognostic value, genomic alterations, transcriptional landscape and drug response. We constructed two SLC12A5 overexpression cell lines to verify the function of SLC12A5 that suppressed tumour cell proliferation and migration in vitro. In addition, SLC12A5 was also positively associated with GABAA receptor activity and negatively associated with pro-tumour immune signatures and immunotherapy response. Collectively, our study provides a comprehensive characterization of SLC12A5 in glioma and supports SLC12A5 as a potential suppressor of disease progression.
Collapse
Affiliation(s)
- Hongwei Liu
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya HospitalCentral South UniversityChangshaChina
| | - Zhouyang Pan
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya HospitalCentral South UniversityChangshaChina
| | - Xuelei Lin
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya HospitalCentral South UniversityChangshaChina
| | - Long Chen
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya HospitalCentral South UniversityChangshaChina
| | - Qi Yang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya HospitalCentral South UniversityChangshaChina
| | - Wei Zhang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya HospitalCentral South UniversityChangshaChina
| | - Luohuan Dai
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya HospitalCentral South UniversityChangshaChina
| | - Yihao Zhang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya HospitalCentral South UniversityChangshaChina
| | - Wang Li
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya HospitalCentral South UniversityChangshaChina
| | - Yinhua Chen
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya HospitalCentral South UniversityChangshaChina
| | - Kang Peng
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya HospitalCentral South UniversityChangshaChina
- Department of Radiology, Xiangya HospitalCentral South UniversityChangshaChina
| | - Siyi Wanggou
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya HospitalCentral South UniversityChangshaChina
| | - Feiyue Zeng
- Department of Radiology, Xiangya HospitalCentral South UniversityChangshaChina
| | - Xuejun Li
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya HospitalCentral South UniversityChangshaChina
| |
Collapse
|
83
|
Guo J, Chen Y, Zhu H, Tong X, Cao L, Zhang Y, Xie W, Li C. Three-dimensional chromatin landscapes in somatotroph tumour. Clin Transl Med 2024; 14:e1682. [PMID: 38769659 PMCID: PMC11106515 DOI: 10.1002/ctm2.1682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/01/2024] [Accepted: 04/19/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND The three-dimensional (3D) genome architecture plays a critical role inregulating gene expression. However, the specific alterations in thisarchitecture within somatotroph tumors and their implications for gene expression remain largely unexplored. METHODS We employed Hi-C and RNA-seq analyses to compare the 3D genomic structures of somatotroph tumors with normal pituitary tissue. This comprehensive approachenabled the characterization of A/B compartments, topologically associateddomains (TADs), and chromatin loops, integrating these with gene expression patterns. RESULTS We observed a decrease in both the frequency of chromosomal interactions andthe size of TADs in tumor tissue compared to normal tissue. Conversely, the number of TADs and chromatin loops was found to be increased in tumors. Integrated analysis of Hi-C and RNA-seq data demonstrated that changes inhigher-order chromat in structure were associated with alterations in gene expression. Specifically, genes in A compartments showed higher density and increased expression relative to those in B compartments. Moreover, the weakand enhanced insulation boundaries were identified, and the associated genes were enriched in the Wnt/β-Catenin signaling pathway. We identified the gainedand lost loops in tumor and integrated these differences with transcriptional changes to examine the functional relevance of the identified loops. Notably, we observed an enhanced insulation boundary and a greater number of loops in the TCF7L2 gene region within tumors, which was accompanied by an upregulation of TCF7L2 expression. Subsequently, TCF7L2 expression was confirmed through qRT-PCR, and upregulated TCF7L2 prompted cell proliferation and growth hormone (GH) secretion in vitro. CONCLUSION Our results provide comprehensive 3D chromatin architecture maps of somatotroph tumors and offer a valuable resource for furthering the understanding of the underlying biology and mechanisms of gene expression regulation.
Collapse
Affiliation(s)
- Jing Guo
- Department of NeurosurgeryBeijing Tiantan Hospital affiliated to Capital Medical UniversityBeijingChina
- Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| | - Yiyuan Chen
- Department of NeurosurgeryBeijing Tiantan Hospital affiliated to Capital Medical UniversityBeijingChina
- Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| | - Haibo Zhu
- Department of NeurosurgeryBeijing Tiantan Hospital affiliated to Capital Medical UniversityBeijingChina
| | - Xinyu Tong
- Annoroad Gene Technology Co., LtdBeijingChina
| | - Lei Cao
- Department of NeurosurgeryBeijing Tiantan Hospital affiliated to Capital Medical UniversityBeijingChina
| | - Yazhuo Zhang
- Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
- Beijing Institute for Brain Disorders Brain Tumor CenterBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Weiyan Xie
- Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| | - Chuzhong Li
- Department of NeurosurgeryBeijing Tiantan Hospital affiliated to Capital Medical UniversityBeijingChina
- Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
- Beijing Institute for Brain Disorders Brain Tumor CenterBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| |
Collapse
|
84
|
Lee KH, Kim J, Kim JH. 3D epigenomics and 3D epigenopathies. BMB Rep 2024; 57:216-231. [PMID: 38627948 PMCID: PMC11139681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/15/2024] [Accepted: 03/18/2024] [Indexed: 05/25/2024] Open
Abstract
Mammalian genomes are intricately compacted to form sophisticated 3-dimensional structures within the tiny nucleus, so called 3D genome folding. Despite their shapes reminiscent of an entangled yarn, the rapid development of molecular and next-generation sequencing technologies (NGS) has revealed that mammalian genomes are highly organized in a hierarchical order that delicately affects transcription activities. An increasing amount of evidence suggests that 3D genome folding is implicated in diseases, giving us a clue on how to identify novel therapeutic approaches. In this review, we will study what 3D genome folding means in epigenetics, what types of 3D genome structures there are, how they are formed, and how the technologies have developed to explore them. We will also discuss the pathological implications of 3D genome folding. Finally, we will discuss how to leverage 3D genome folding and engineering for future studies. [BMB Reports 2024; 57(5): 216-231].
Collapse
Affiliation(s)
- Kyung-Hwan Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Jungyu Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Ji Hun Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| |
Collapse
|
85
|
Raimer Young HM, Hou PC, Bartosik AR, Atkin N, Wang L, Wang Z, Ratan A, Zang C, Wang YH. DNA fragility at topologically associated domain boundaries is promoted by alternative DNA secondary structure and topoisomerase II activity. Nucleic Acids Res 2024; 52:3837-3855. [PMID: 38452213 PMCID: PMC11040008 DOI: 10.1093/nar/gkae164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/03/2024] [Accepted: 02/23/2024] [Indexed: 03/09/2024] Open
Abstract
CCCTC-binding factor (CTCF) binding sites are hotspots of genome instability. Although many factors have been associated with CTCF binding site fragility, no study has integrated all fragility-related factors to understand the mechanism(s) of how they work together. Using an unbiased, genome-wide approach, we found that DNA double-strand breaks (DSBs) are enriched at strong, but not weak, CTCF binding sites in five human cell types. Energetically favorable alternative DNA secondary structures underlie strong CTCF binding sites. These structures coincided with the location of topoisomerase II (TOP2) cleavage complex, suggesting that DNA secondary structure acts as a recognition sequence for TOP2 binding and cleavage at CTCF binding sites. Furthermore, CTCF knockdown significantly increased DSBs at strong CTCF binding sites and at CTCF sites that are located at topologically associated domain (TAD) boundaries. TAD boundary-associated CTCF sites that lost CTCF upon knockdown displayed increased DSBs when compared to the gained sites, and those lost sites are overrepresented with G-quadruplexes, suggesting that the structures act as boundary insulators in the absence of CTCF, and contribute to increased DSBs. These results model how alternative DNA secondary structures facilitate recruitment of TOP2 to CTCF binding sites, providing mechanistic insight into DNA fragility at CTCF binding sites.
Collapse
Affiliation(s)
- Heather M Raimer Young
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908-0733, USA
| | - Pei-Chi Hou
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908-0733, USA
| | - Anna R Bartosik
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908-0733, USA
| | - Naomi D Atkin
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908-0733, USA
| | - Lixin Wang
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Zhenjia Wang
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA 22908-0717, USA
| | - Aakrosh Ratan
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908-0733, USA
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA 22908-0717, USA
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- University of Virginia Comprehensive Cancer Center, Charlottesville, VA 22908, USA
| | - Chongzhi Zang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908-0733, USA
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA 22908-0717, USA
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- University of Virginia Comprehensive Cancer Center, Charlottesville, VA 22908, USA
| | - Yuh-Hwa Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908-0733, USA
- University of Virginia Comprehensive Cancer Center, Charlottesville, VA 22908, USA
| |
Collapse
|
86
|
Nuno K, Azizi A, Koehnke T, Lareau C, Ediriwickrema A, Corces MR, Satpathy AT, Majeti R. Convergent epigenetic evolution drives relapse in acute myeloid leukemia. eLife 2024; 13:e93019. [PMID: 38647535 PMCID: PMC11034943 DOI: 10.7554/elife.93019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 03/26/2024] [Indexed: 04/25/2024] Open
Abstract
Relapse of acute myeloid leukemia (AML) is highly aggressive and often treatment refractory. We analyzed previously published AML relapse cohorts and found that 40% of relapses occur without changes in driver mutations, suggesting that non-genetic mechanisms drive relapse in a large proportion of cases. We therefore characterized epigenetic patterns of AML relapse using 26 matched diagnosis-relapse samples with ATAC-seq. This analysis identified a relapse-specific chromatin accessibility signature for mutationally stable AML, suggesting that AML undergoes epigenetic evolution at relapse independent of mutational changes. Analysis of leukemia stem cell (LSC) chromatin changes at relapse indicated that this leukemic compartment underwent significantly less epigenetic evolution than non-LSCs, while epigenetic changes in non-LSCs reflected overall evolution of the bulk leukemia. Finally, we used single-cell ATAC-seq paired with mitochondrial sequencing (mtscATAC) to map clones from diagnosis into relapse along with their epigenetic features. We found that distinct mitochondrially-defined clones exhibit more similar chromatin accessibility at relapse relative to diagnosis, demonstrating convergent epigenetic evolution in relapsed AML. These results demonstrate that epigenetic evolution is a feature of relapsed AML and that convergent epigenetic evolution can occur following treatment with induction chemotherapy.
Collapse
Affiliation(s)
- Kevin Nuno
- Cancer Biology Graduate Program, Stanford University School of MedicineStanfordUnited States
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
- Cancer Institute, Stanford University School of MedicineStanfordUnited States
- Department of Medicine, Division of Hematology, Stanford University School of MedicineStanfordUnited States
| | - Armon Azizi
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
- Cancer Institute, Stanford University School of MedicineStanfordUnited States
- Department of Medicine, Division of Hematology, Stanford University School of MedicineStanfordUnited States
- University of California Irvine School of MedicineIrvineUnited States
| | - Thomas Koehnke
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
- Cancer Institute, Stanford University School of MedicineStanfordUnited States
- Department of Medicine, Division of Hematology, Stanford University School of MedicineStanfordUnited States
| | - Caleb Lareau
- Department of Pathology, Stanford UniversityStanfordUnited States
- Program in Immunology, Stanford UniversityStanfordUnited States
| | - Asiri Ediriwickrema
- Cancer Biology Graduate Program, Stanford University School of MedicineStanfordUnited States
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
- Cancer Institute, Stanford University School of MedicineStanfordUnited States
- Department of Medicine, Division of Hematology, Stanford University School of MedicineStanfordUnited States
| | - M Ryan Corces
- Cancer Biology Graduate Program, Stanford University School of MedicineStanfordUnited States
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
- Cancer Institute, Stanford University School of MedicineStanfordUnited States
- Department of Medicine, Division of Hematology, Stanford University School of MedicineStanfordUnited States
- Gladstone Institute of Neurological DiseaseSan FranciscoUnited States
- Gladstone Institute of Data Science and BiotechnologySan FranciscoUnited States
- Department of Neurology, University of California, San FranciscoSan FranciscoUnited States
| | - Ansuman T Satpathy
- Department of Pathology, Stanford UniversityStanfordUnited States
- Program in Immunology, Stanford UniversityStanfordUnited States
- Parker Institute for Cancer Immunotherapy, Stanford UniversityStanfordUnited States
- Gladstone-UCSF Institute of Genomic ImmunologySan FranciscoUnited States
| | - Ravindra Majeti
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
- Cancer Institute, Stanford University School of MedicineStanfordUnited States
- Department of Medicine, Division of Hematology, Stanford University School of MedicineStanfordUnited States
| |
Collapse
|
87
|
Yu A, Yesilkanal AE, Thakur A, Wang F, Yang Y, Phillips W, Wu X, Muir A, He X, Spitz F, Yang L. HYENA detects oncogenes activated by distal enhancers in cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.09.523321. [PMID: 38076958 PMCID: PMC10705271 DOI: 10.1101/2023.01.09.523321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Somatic structural variations (SVs) in cancer can shuffle DNA content in the genome, relocate regulatory elements, and alter genome organization. Enhancer hijacking occurs when SVs relocate distal enhancers to activate proto-oncogenes. However, most enhancer hijacking studies have only focused on protein-coding genes. Here, we develop a computational algorithm "HYENA" to identify candidate oncogenes (both protein-coding and non-coding) activated by enhancer hijacking based on tumor whole-genome and transcriptome sequencing data. HYENA detects genes whose elevated expression is associated with somatic SVs by using a rank-based regression model. We systematically analyze 1,146 tumors across 25 types of adult tumors and identify a total of 108 candidate oncogenes including many non-coding genes. A long non-coding RNA TOB1-AS1 is activated by various types of SVs in 10% of pancreatic cancers through altered 3-dimensional genome structure. We find that high expression of TOB1-AS1 can promote cell invasion and metastasis. Our study highlights the contribution of genetic alterations in non-coding regions to tumorigenesis and tumor progression.
Collapse
Affiliation(s)
- Anqi Yu
- Ben May Department for Cancer Research, University of Chicago, Chicago IL, USA
| | - Ali E. Yesilkanal
- Ben May Department for Cancer Research, University of Chicago, Chicago IL, USA
| | - Ashish Thakur
- Department of Human Genetics, University of Chicago, Chicago IL, USA
| | - Fan Wang
- Ben May Department for Cancer Research, University of Chicago, Chicago IL, USA
| | - Yang Yang
- Ben May Department for Cancer Research, University of Chicago, Chicago IL, USA
| | - William Phillips
- Ben May Department for Cancer Research, University of Chicago, Chicago IL, USA
| | - Xiaoyang Wu
- Ben May Department for Cancer Research, University of Chicago, Chicago IL, USA
- University of Chicago Comprehensive Cancer Center, Chicago, IL, USA
| | - Alexander Muir
- Ben May Department for Cancer Research, University of Chicago, Chicago IL, USA
- University of Chicago Comprehensive Cancer Center, Chicago, IL, USA
| | - Xin He
- Department of Human Genetics, University of Chicago, Chicago IL, USA
| | - Francois Spitz
- Department of Human Genetics, University of Chicago, Chicago IL, USA
| | - Lixing Yang
- Ben May Department for Cancer Research, University of Chicago, Chicago IL, USA
- Department of Human Genetics, University of Chicago, Chicago IL, USA
- University of Chicago Comprehensive Cancer Center, Chicago, IL, USA
| |
Collapse
|
88
|
Kim KL, Rahme GJ, Goel VY, El Farran CA, Hansen AS, Bernstein BE. Dissection of a CTCF topological boundary uncovers principles of enhancer-oncogene regulation. Mol Cell 2024; 84:1365-1376.e7. [PMID: 38452764 PMCID: PMC10997458 DOI: 10.1016/j.molcel.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/03/2024] [Accepted: 02/08/2024] [Indexed: 03/09/2024]
Abstract
Enhancer-gene communication is dependent on topologically associating domains (TADs) and boundaries enforced by the CCCTC-binding factor (CTCF) insulator, but the underlying structures and mechanisms remain controversial. Here, we investigate a boundary that typically insulates fibroblast growth factor (FGF) oncogenes but is disrupted by DNA hypermethylation in gastrointestinal stromal tumors (GISTs). The boundary contains an array of CTCF sites that enforce adjacent TADs, one containing FGF genes and the other containing ANO1 and its putative enhancers, which are specifically active in GIST and its likely cell of origin. We show that coordinate disruption of four CTCF motifs in the boundary fuses the adjacent TADs, allows the ANO1 enhancer to contact FGF3, and causes its robust induction. High-resolution micro-C maps reveal specific contact between transcription initiation sites in the ANO1 enhancer and FGF3 promoter that quantitatively scales with FGF3 induction such that modest changes in contact frequency result in strong changes in expression, consistent with a causal relationship.
Collapse
Affiliation(s)
- Kyung Lock Kim
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA 02215, USA
| | - Gilbert J Rahme
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA 02215, USA
| | - Viraat Y Goel
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA
| | - Chadi A El Farran
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA 02215, USA
| | - Anders S Hansen
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA
| | - Bradley E Bernstein
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
89
|
Tang X, Zeng P, Liu K, Qing L, Sun Y, Liu X, Lu L, Wei C, Wang J, Jiang S, Sun J, Chang W, Yu H, Chen H, Zhou J, Xu C, Fan L, Miao YL, Ding J. The PTM profiling of CTCF reveals the regulation of 3D chromatin structure by O-GlcNAcylation. Nat Commun 2024; 15:2813. [PMID: 38561336 PMCID: PMC10985093 DOI: 10.1038/s41467-024-47048-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
CCCTC-binding factor (CTCF), a ubiquitously expressed and highly conserved protein, is known to play a critical role in chromatin structure. Post-translational modifications (PTMs) diversify the functions of protein to regulate numerous cellular processes. However, the effects of PTMs on the genome-wide binding of CTCF and the organization of three-dimensional (3D) chromatin structure have not been fully understood. In this study, we uncovered the PTM profiling of CTCF and demonstrated that CTCF can be O-GlcNAcylated and arginine methylated. Functionally, we demonstrated that O-GlcNAcylation inhibits CTCF binding to chromatin. Meanwhile, deficiency of CTCF O-GlcNAcylation results in the disruption of loop domains and the alteration of chromatin loops associated with cellular development. Furthermore, the deficiency of CTCF O-GlcNAcylation increases the expression of developmental genes and negatively regulates maintenance and establishment of stem cell pluripotency. In conclusion, these results provide key insights into the role of PTMs for the 3D chromatin structure.
Collapse
Affiliation(s)
- Xiuxiao Tang
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China
- Department of Pharmacology and Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Pengguihang Zeng
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Kezhi Liu
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Li Qing
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yifei Sun
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xinyi Liu
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Lizi Lu
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Chao Wei
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Jia Wang
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Shaoshuai Jiang
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Jun Sun
- West China Biomedical Big Data Center, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, 610041, China
- Med-X Center for Informatics, Sichuan University, Chengdu, 610041, China
| | - Wakam Chang
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Haopeng Yu
- West China Biomedical Big Data Center, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, 610041, China
- Med-X Center for Informatics, Sichuan University, Chengdu, 610041, China
| | - Hebing Chen
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, China
| | - Jiaguo Zhou
- Department of Pharmacology and Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Chengfang Xu
- The obstetric and gynecology Department of The third affiliated hospital of Sun Yat-Sen University, Guangzhou, China.
| | - Lili Fan
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, China.
| | - Yi-Liang Miao
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.
| | - Junjun Ding
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China.
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China.
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China.
- West China Biomedical Big Data Center, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
90
|
Han MH, Park J, Park M. Advances in the multimodal analysis of the 3D chromatin structure and gene regulation. Exp Mol Med 2024; 56:763-771. [PMID: 38658704 PMCID: PMC11059362 DOI: 10.1038/s12276-024-01246-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024] Open
Abstract
Recent studies have demonstrated that the three-dimensional conformation of the chromatin plays a crucial role in gene regulation, with aberrations potentially leading to various diseases. Advanced methodologies have revealed a link between the chromatin conformation and biological function. This review divides these methodologies into sequencing-based and imaging-based methodologies, tracing their development over time. We particularly highlight innovative techniques that facilitate the simultaneous mapping of RNAs, histone modifications, and proteins within the context of the 3D architecture of chromatin. This multimodal integration substantially improves our ability to establish a robust connection between the spatial arrangement of molecular components in the nucleus and their functional roles. Achieving a comprehensive understanding of gene regulation requires capturing diverse data modalities within individual cells, enabling the direct inference of functional relationships between these components. In this context, imaging-based technologies have emerged as an especially promising approach for gathering spatial information across multiple components in the same cell.
Collapse
Affiliation(s)
- Man-Hyuk Han
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jihyun Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Minhee Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
- Graduate School of Engineering Biology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
- KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
- KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
91
|
Yoon I, Kim U, Jung KO, Song Y, Park T, Lee DS. 3C methods in cancer research: recent advances and future prospects. Exp Mol Med 2024; 56:788-798. [PMID: 38658701 PMCID: PMC11059347 DOI: 10.1038/s12276-024-01236-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/15/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
In recent years, Hi-C technology has revolutionized cancer research by elucidating the mystery of three-dimensional chromatin organization and its role in gene regulation. This paper explored the impact of Hi-C advancements on cancer research by delving into high-resolution techniques, such as chromatin loops, structural variants, haplotype phasing, and extrachromosomal DNA (ecDNA). Distant regulatory elements interact with their target genes through chromatin loops. Structural variants contribute to the development and progression of cancer. Haplotype phasing is crucial for understanding allele-specific genomic rearrangements and somatic clonal evolution in cancer. The role of ecDNA in driving oncogene amplification and drug resistance in cancer cells has also been revealed. These innovations offer a deeper understanding of cancer biology and the potential for personalized therapies. Despite these advancements, challenges, such as the accurate mapping of repetitive sequences and precise identification of structural variants, persist. Integrating Hi-C with multiomics data is key to overcoming these challenges and comprehensively understanding complex cancer genomes. Thus, Hi-C is a powerful tool for guiding precision medicine in cancer research and treatment.
Collapse
Affiliation(s)
- Insoo Yoon
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Uijin Kim
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Kyung Oh Jung
- Department of Anatomy, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Yousuk Song
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Taesoo Park
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Dong-Sung Lee
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea.
| |
Collapse
|
92
|
Friedman MJ, Wagner T, Lee H, Rosenfeld MG, Oh S. Enhancer-promoter specificity in gene transcription: molecular mechanisms and disease associations. Exp Mol Med 2024; 56:772-787. [PMID: 38658702 PMCID: PMC11058250 DOI: 10.1038/s12276-024-01233-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 04/26/2024] Open
Abstract
Although often located at a distance from their target gene promoters, enhancers are the primary genomic determinants of temporal and spatial transcriptional specificity in metazoans. Since the discovery of the first enhancer element in simian virus 40, there has been substantial interest in unraveling the mechanism(s) by which enhancers communicate with their partner promoters to ensure proper gene expression. These research efforts have benefited considerably from the application of increasingly sophisticated sequencing- and imaging-based approaches in conjunction with innovative (epi)genome-editing technologies; however, despite various proposed models, the principles of enhancer-promoter interaction have still not been fully elucidated. In this review, we provide an overview of recent progress in the eukaryotic gene transcription field pertaining to enhancer-promoter specificity. A better understanding of the mechanistic basis of lineage- and context-dependent enhancer-promoter engagement, along with the continued identification of functional enhancers, will provide key insights into the spatiotemporal control of gene expression that can reveal therapeutic opportunities for a range of enhancer-related diseases.
Collapse
Affiliation(s)
- Meyer J Friedman
- Department and School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Tobias Wagner
- Department and School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Haram Lee
- College of Pharmacy Korea University, 2511 Sejong-ro, Sejong, 30019, Republic of Korea
| | - Michael G Rosenfeld
- Department and School of Medicine, University of California, San Diego, La Jolla, CA, USA.
| | - Soohwan Oh
- College of Pharmacy Korea University, 2511 Sejong-ro, Sejong, 30019, Republic of Korea.
| |
Collapse
|
93
|
Jeong D, Shi G, Li X, Thirumalai D. Structural basis for the preservation of a subset of topologically associating domains in interphase chromosomes upon cohesin depletion. eLife 2024; 12:RP88564. [PMID: 38502563 PMCID: PMC10950330 DOI: 10.7554/elife.88564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024] Open
Abstract
Compartment formation in interphase chromosomes is a result of spatial segregation between euchromatin and heterochromatin on a few megabase pairs (Mbp) scale. On the sub-Mbp scales, topologically associating domains (TADs) appear as interacting domains along the diagonal in the ensemble averaged Hi-C contact map. Hi-C experiments showed that most of the TADs vanish upon deleting cohesin, while the compartment structure is maintained, and perhaps even enhanced. However, closer inspection of the data reveals that a non-negligible fraction of TADs is preserved (P-TADs) after cohesin loss. Imaging experiments show that, at the single-cell level, TAD-like structures are present even without cohesin. To provide a structural basis for these findings, we first used polymer simulations to show that certain TADs with epigenetic switches across their boundaries survive after depletion of loops. More importantly, the three-dimensional structures show that many of the P-TADs have sharp physical boundaries. Informed by the simulations, we analyzed the Hi-C maps (with and without cohesin) in mouse liver and human colorectal carcinoma cell lines, which affirmed that epigenetic switches and physical boundaries (calculated using the predicted 3D structures using the data-driven HIPPS method that uses Hi-C as the input) explain the origin of the P-TADs. Single-cell structures display TAD-like features in the absence of cohesin that are remarkably similar to the findings in imaging experiments. Some P-TADs, with physical boundaries, are relevant to the retention of enhancer-promoter/promoter-promoter interactions. Overall, our study shows that preservation of a subset of TADs upon removing cohesin is a robust phenomenon that is valid across multiple cell lines.
Collapse
Affiliation(s)
- Davin Jeong
- Department of Chemistry, University of Texas at AustinAustinUnited States
| | - Guang Shi
- Department of Chemistry, University of Texas at AustinAustinUnited States
| | - Xin Li
- Department of Chemistry, University of Texas at AustinAustinUnited States
| | - D Thirumalai
- Department of Chemistry, University of Texas at AustinAustinUnited States
- Department of Physics, University of Texas at AustinAustinUnited States
| |
Collapse
|
94
|
Liu E, Lyu H, Liu Y, Fu L, Cheng X, Yin X. Identifying TAD-like domains on single-cell Hi-C data by graph embedding and changepoint detection. Bioinformatics 2024; 40:btae138. [PMID: 38449288 PMCID: PMC10960928 DOI: 10.1093/bioinformatics/btae138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 01/10/2024] [Accepted: 03/05/2024] [Indexed: 03/08/2024] Open
Abstract
MOTIVATION Topologically associating domains (TADs) are fundamental building blocks of 3D genome. TAD-like domains in single cells are regarded as the underlying genesis of TADs discovered in bulk cells. Understanding the organization of TAD-like domains helps to get deeper insights into their regulatory functions. Unfortunately, it remains a challenge to identify TAD-like domains on single-cell Hi-C data due to its ultra-sparsity. RESULTS We propose scKTLD, an in silico tool for the identification of TAD-like domains on single-cell Hi-C data. It takes Hi-C contact matrix as the adjacency matrix for a graph, embeds the graph structures into a low-dimensional space with the help of sparse matrix factorization followed by spectral propagation, and the TAD-like domains can be identified using a kernel-based changepoint detection in the embedding space. The results tell that our scKTLD is superior to the other methods on the sparse contact matrices, including downsampled bulk Hi-C data as well as simulated and experimental single-cell Hi-C data. Besides, we demonstrated the conservation of TAD-like domain boundaries at single-cell level apart from heterogeneity within and across cell types, and found that the boundaries with higher frequency across single cells are more enriched for architectural proteins and chromatin marks, and they preferentially occur at TAD boundaries in bulk cells, especially at those with higher hierarchical levels. AVAILABILITY AND IMPLEMENTATION scKTLD is freely available at https://github.com/lhqxinghun/scKTLD.
Collapse
Affiliation(s)
- Erhu Liu
- School of Information and Control Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Hongqiang Lyu
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi’an Jiaotong University, Xi'an 710049, China
| | - Yuan Liu
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi’an Jiaotong University, Xi'an 710049, China
| | - Laiyi Fu
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi’an Jiaotong University, Xi'an 710049, China
| | - Xiaoliang Cheng
- Department of Pharmacy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi'an 710061, China
| | - Xiaoran Yin
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi'an 710004, China
| |
Collapse
|
95
|
Wall BPG, Nguyen M, Harrell JC, Dozmorov MG. Machine and deep learning methods for predicting 3D genome organization. ARXIV 2024:arXiv:2403.03231v1. [PMID: 38495565 PMCID: PMC10942493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Three-Dimensional (3D) chromatin interactions, such as enhancer-promoter interactions (EPIs), loops, Topologically Associating Domains (TADs), and A/B compartments play critical roles in a wide range of cellular processes by regulating gene expression. Recent development of chromatin conformation capture technologies has enabled genome-wide profiling of various 3D structures, even with single cells. However, current catalogs of 3D structures remain incomplete and unreliable due to differences in technology, tools, and low data resolution. Machine learning methods have emerged as an alternative to obtain missing 3D interactions and/or improve resolution. Such methods frequently use genome annotation data (ChIP-seq, DNAse-seq, etc.), DNA sequencing information (k-mers, Transcription Factor Binding Site (TFBS) motifs), and other genomic properties to learn the associations between genomic features and chromatin interactions. In this review, we discuss computational tools for predicting three types of 3D interactions (EPIs, chromatin interactions, TAD boundaries) and analyze their pros and cons. We also point out obstacles of computational prediction of 3D interactions and suggest future research directions.
Collapse
Affiliation(s)
- Brydon P. G. Wall
- Center for Biological Data Science, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - My Nguyen
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - J. Chuck Harrell
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, 23284, USA
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
- Center for Pharmaceutical Engineering, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Mikhail G. Dozmorov
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, 23298, USA
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, 23284, USA
| |
Collapse
|
96
|
Kapoor U, Kim YC, Mittal J. Coarse-Grained Models to Study Protein-DNA Interactions and Liquid-Liquid Phase Separation. J Chem Theory Comput 2024; 20:1717-1731. [PMID: 37988476 PMCID: PMC10911113 DOI: 10.1021/acs.jctc.3c00525] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/20/2023] [Accepted: 10/27/2023] [Indexed: 11/23/2023]
Abstract
Recent advances in coarse-grained (CG) computational models for DNA have enabled molecular-level insights into the behavior of DNA in complex multiscale systems. However, most existing CG DNA models are not compatible with CG protein models, limiting their applications for emerging topics such as protein-nucleic acid assemblies. Here, we present a new computationally efficient CG DNA model. We first use experimental data to establish the model's ability to predict various aspects of DNA behavior, including melting thermodynamics and relevant local structural properties such as the major and minor grooves. We then employ an all-atom hydropathy scale to define nonbonded interactions between protein and DNA sites, to make our DNA model compatible with an existing CG protein model (HPS-Urry), which is extensively used to study protein phase separation, and show that our new model reasonably reproduces the experimental binding affinity for a prototypical protein-DNA system. To further demonstrate the capabilities of this new model, we simulate a full nucleosome with and without histone tails, on a microsecond time scale, generating conformational ensembles and provide molecular insights into the role of histone tails in influencing the liquid-liquid phase separation (LLPS) of HP1α proteins. We find that histone tails interact favorably with DNA, influencing the conformational ensemble of the DNA and antagonizing the contacts between HP1α and DNA, thus affecting the ability of DNA to promote LLPS of HP1α. These findings shed light on the complex molecular framework that fine-tunes the phase transition properties of heterochromatin proteins and contributes to heterochromatin regulation and function. Overall, the CG DNA model presented here is suitable to facilitate micrometer-scale studies with sub-nm resolution in many biological and engineering applications and can be used to investigate protein-DNA complexes, such as nucleosomes, or LLPS of proteins with DNA, enabling a mechanistic understanding of how molecular information may be propagated at the genome level.
Collapse
Affiliation(s)
- Utkarsh Kapoor
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 78743, United States
| | - Young C. Kim
- Center
for Materials Physics and Technology, Naval
Research Laboratory, Washington, District of Columbia 20375, United States
| | - Jeetain Mittal
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 78743, United States
- Department
of Chemistry, Texas A&M University, College Station, Texas 78743, United States
- Interdisciplinary
Graduate Program in Genetics in Genomics, Texas A&M University, College
Station, Texas 78743, United States
| |
Collapse
|
97
|
Wang Y, Guo X, Niu Z, Huang X, Wang B, Gao L. DeepCBS: shedding light on the impact of mutations occurring at CTCF binding sites. Front Genet 2024; 15:1354208. [PMID: 38463168 PMCID: PMC10920299 DOI: 10.3389/fgene.2024.1354208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/30/2024] [Indexed: 03/12/2024] Open
Abstract
CTCF-mediated chromatin loops create insulated neighborhoods that constrain promoter-enhancer interactions, serving as a unit of gene regulation. Disruption of the CTCF binding sites (CBS) will lead to the destruction of insulated neighborhoods, which in turn can cause dysregulation of the contained genes. In a recent study, it is found that CTCF/cohesin binding sites are a major mutational hotspot in the cancer genome. Mutations can affect CTCF binding, causing the disruption of insulated neighborhoods. And our analysis reveals a significant enrichment of well-known proto-oncogenes in insulated neighborhoods with mutations specifically occurring in anchor regions. It can be assumed that some mutations disrupt CTCF binding, leading to the disruption of insulated neighborhoods and subsequent activation of proto-oncogenes within these insulated neighborhoods. To explore the consequences of such mutations, we develop DeepCBS, a computational tool capable of analyzing mutations at CTCF binding sites, predicting their influence on insulated neighborhoods, and investigating the potential activation of proto-oncogenes. Futhermore, DeepCBS is applied to somatic mutation data of liver cancer. As a result, 87 mutations that disrupt CTCF binding sites are identified, which leads to the identification of 237 disrupted insulated neighborhoods containing a total of 135 genes. Integrative analysis of gene expression differences in liver cancer further highlights three genes: ARHGEF39, UBE2C and DQX1. Among them, ARHGEF39 and UBE2C have been reported in the literature as potential oncogenes involved in the development of liver cancer. The results indicate that DQX1 may be a potential oncogene in liver cancer and may contribute to tumor immune escape. In conclusion, DeepCBS is a promising method to analyze impacts of mutations occurring at CTCF binding sites on the insulator function of CTCF, with potential extensions to shed light on the effects of mutations on other functions of CTCF.
Collapse
Affiliation(s)
| | - Xingli Guo
- School of Computer Science and Technology, Xidian University, Xi’an, China
| | | | | | | | | |
Collapse
|
98
|
Izumiya Y, Algalil A, Espera JM, Miura H, Izumiya C, Inagaki T, Kumar A. Kaposi's sarcoma-associated herpesvirus terminal repeat regulates inducible lytic gene promoters. J Virol 2024; 98:e0138623. [PMID: 38240593 PMCID: PMC10878276 DOI: 10.1128/jvi.01386-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/02/2024] [Indexed: 02/21/2024] Open
Abstract
The Kaposi's sarcoma-associated herpesvirus (KSHV) genome consists of an approximately 140-kb unique coding region flanked by 30-40 copies of a 0.8-kb terminal repeat (TR) sequence. A gene enhancer recruits transcription-related enzymes by having arrays of transcription factor binding sites. Here, we show that KSHV TR possesses transcription regulatory function with latency-associated nuclear antigen (LANA). Cleavage under targets and release using nuclease demonstrated that TR fragments were occupied by LANA-interacting histone-modifying enzymes in naturally infected cells. The TR was enriched with histone H3K27 acetylation (H3K27Ac) and H3K4 tri-methylation (H3K4me3) modifications and also expressed nascent RNAs. The sites of H3K27Ac and H3K4me3 modifications were also conserved in the KSHV unique region among naturally infected primary effusion lymphoma cells. KSHV origin of lytic replication (Ori-Lyt) showed similar protein and histone modification occupancies with that of TR. In the Ori-Lyt region, the LANA and LANA-interacting proteins colocalized with an H3K27Ac-modified nucleosome along with paused RNA polymerase II. The KSHV transactivator KSHV replication and transcription activator (K-Rta) recruitment sites franked the LANA-bound nucleosome, and reactivation evicted the LANA-bound nucleosome. Including TR fragments in reporter plasmid enhanced inducible viral gene promoter activities independent of the orientations. In the presence of TR in reporter plasmids, K-Rta transactivation was drastically increased, while LANA acquired the promoter repression function. KSHV TR, therefore, functions as an enhancer for KSHV inducible genes. However, in contrast to cellular enhancers bound by multiple transcription factors, perhaps the KSHV enhancer is predominantly regulated by the LANA nuclear body.IMPORTANCEEnhancers are a crucial regulator of differential gene expression programs. Enhancers are the cis-regulatory sequences determining target genes' spatiotemporal and quantitative expression. Here, we show that Kaposi's sarcoma-associated herpesvirus (KSHV) terminal repeats fulfill the enhancer definition for KSHV inducible gene promoters. The KSHV enhancer is occupied by latency-associated nuclear antigen (LANA) and its interacting proteins, such as CHD4. Neighboring terminal repeat (TR) fragments to lytic gene promoters drastically enhanced KSHV replication and transcription activator and LANA transcription regulatory functions. This study, thus, proposes a new latency-lytic switch model in which TR accessibility to the KSHV gene promoters regulates viral inducible gene expression.
Collapse
Affiliation(s)
- Yoshihiro Izumiya
- Department of Dermatology, School of Medicine, University of California Davis, Sacramento, California, USA
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, California, USA
| | - Adhraa Algalil
- Department of Dermatology, School of Medicine, University of California Davis, Sacramento, California, USA
- Midwestern University College of Dental Medicine, Glendale, Arizona, USA
| | - Jonna M. Espera
- Department of Dermatology, School of Medicine, University of California Davis, Sacramento, California, USA
| | - Hiroki Miura
- Department of Dermatology, School of Medicine, University of California Davis, Sacramento, California, USA
| | - Chie Izumiya
- Department of Dermatology, School of Medicine, University of California Davis, Sacramento, California, USA
| | - Tomoki Inagaki
- Department of Dermatology, School of Medicine, University of California Davis, Sacramento, California, USA
| | - Ashish Kumar
- Department of Dermatology, School of Medicine, University of California Davis, Sacramento, California, USA
| |
Collapse
|
99
|
Allyn BM, Hayer KE, Oyeniran C, Nganga V, Lee K, Mishra B, Sacan A, Oltz EM, Bassing CH. Locus folding mechanisms determine modes of antigen receptor gene assembly. J Exp Med 2024; 221:e20230985. [PMID: 38189780 PMCID: PMC10772921 DOI: 10.1084/jem.20230985] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/12/2023] [Accepted: 12/15/2023] [Indexed: 01/09/2024] Open
Abstract
The dynamic folding of genomes regulates numerous biological processes, including antigen receptor (AgR) gene assembly. We show that, unlike other AgR loci, homotypic chromatin interactions and bidirectional chromosome looping both contribute to structuring Tcrb for efficient long-range V(D)J recombination. Inactivation of the CTCF binding element (CBE) or promoter at the most 5'Vβ segment (Trbv1) impaired loop extrusion originating locally and extending to DβJβ CBEs at the opposite end of Tcrb. Promoter or CBE mutation nearly eliminated Trbv1 contacts and decreased RAG endonuclease-mediated Trbv1 recombination. Importantly, Trbv1 rearrangement can proceed independent of substrate orientation, ruling out scanning by DβJβ-bound RAG as the sole mechanism of Vβ recombination, distinguishing it from Igh. Our data indicate that CBE-dependent generation of loops cooperates with promoter-mediated activation of chromatin to juxtapose Vβ and DβJβ segments for recombination through diffusion-based synapsis. Thus, the mechanisms that fold a genomic region can influence molecular processes occurring in that space, which may include recombination, repair, and transcriptional programming.
Collapse
Affiliation(s)
- Brittney M. Allyn
- Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Katharina E. Hayer
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Biomedical Engineering Doctoral Degree Program, School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Perelman School of Medicine, Philadelphia, PA, USA
| | - Clement Oyeniran
- Department of Microbial Infection and Immunity, Ohio State College of Medicine, Ohio State University, Columbus, OH, USA
| | - Vincent Nganga
- Department of Microbial Infection and Immunity, Ohio State College of Medicine, Ohio State University, Columbus, OH, USA
| | - Kyutae Lee
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bikash Mishra
- Department of Microbial Infection and Immunity, Ohio State College of Medicine, Ohio State University, Columbus, OH, USA
| | - Ahmet Sacan
- Biomedical Engineering Doctoral Degree Program, School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Eugene M. Oltz
- Department of Microbial Infection and Immunity, Ohio State College of Medicine, Ohio State University, Columbus, OH, USA
| | - Craig H. Bassing
- Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
100
|
Gu M, Ren B, Fang Y, Ren J, Liu X, Wang X, Zhou F, Xiao R, Luo X, You L, Zhao Y. Epigenetic regulation in cancer. MedComm (Beijing) 2024; 5:e495. [PMID: 38374872 PMCID: PMC10876210 DOI: 10.1002/mco2.495] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/21/2024] Open
Abstract
Epigenetic modifications are defined as heritable changes in gene activity that do not involve changes in the underlying DNA sequence. The oncogenic process is driven by the accumulation of alterations that impact genome's structure and function. Genetic mutations, which directly disrupt the DNA sequence, are complemented by epigenetic modifications that modulate gene expression, thereby facilitating the acquisition of malignant characteristics. Principals among these epigenetic changes are shifts in DNA methylation and histone mark patterns, which promote tumor development and metastasis. Notably, the reversible nature of epigenetic alterations, as opposed to the permanence of genetic changes, positions the epigenetic machinery as a prime target in the discovery of novel therapeutics. Our review delves into the complexities of epigenetic regulation, exploring its profound effects on tumor initiation, metastatic behavior, metabolic pathways, and the tumor microenvironment. We place a particular emphasis on the dysregulation at each level of epigenetic modulation, including but not limited to, the aberrations in enzymes responsible for DNA methylation and histone modification, subunit loss or fusions in chromatin remodeling complexes, and the disturbances in higher-order chromatin structure. Finally, we also evaluate therapeutic approaches that leverage the growing understanding of chromatin dysregulation, offering new avenues for cancer treatment.
Collapse
Affiliation(s)
- Minzhi Gu
- Department of General SurgeryPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingP. R. China
- Key Laboratory of Research in Pancreatic TumorChinese Academy of Medical SciencesBeijingP. R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College HospitalBeijingP. R. China
| | - Bo Ren
- Department of General SurgeryPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingP. R. China
- Key Laboratory of Research in Pancreatic TumorChinese Academy of Medical SciencesBeijingP. R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College HospitalBeijingP. R. China
| | - Yuan Fang
- Department of General SurgeryPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingP. R. China
- Key Laboratory of Research in Pancreatic TumorChinese Academy of Medical SciencesBeijingP. R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College HospitalBeijingP. R. China
| | - Jie Ren
- Department of General SurgeryPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingP. R. China
- Key Laboratory of Research in Pancreatic TumorChinese Academy of Medical SciencesBeijingP. R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College HospitalBeijingP. R. China
| | - Xiaohong Liu
- Department of General SurgeryPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingP. R. China
- Key Laboratory of Research in Pancreatic TumorChinese Academy of Medical SciencesBeijingP. R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College HospitalBeijingP. R. China
| | - Xing Wang
- Department of General SurgeryPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingP. R. China
- Key Laboratory of Research in Pancreatic TumorChinese Academy of Medical SciencesBeijingP. R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College HospitalBeijingP. R. China
| | - Feihan Zhou
- Department of General SurgeryPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingP. R. China
- Key Laboratory of Research in Pancreatic TumorChinese Academy of Medical SciencesBeijingP. R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College HospitalBeijingP. R. China
| | - Ruiling Xiao
- Department of General SurgeryPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingP. R. China
- Key Laboratory of Research in Pancreatic TumorChinese Academy of Medical SciencesBeijingP. R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College HospitalBeijingP. R. China
| | - Xiyuan Luo
- Department of General SurgeryPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingP. R. China
- Key Laboratory of Research in Pancreatic TumorChinese Academy of Medical SciencesBeijingP. R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College HospitalBeijingP. R. China
| | - Lei You
- Department of General SurgeryPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingP. R. China
- Key Laboratory of Research in Pancreatic TumorChinese Academy of Medical SciencesBeijingP. R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College HospitalBeijingP. R. China
| | - Yupei Zhao
- Department of General SurgeryPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingP. R. China
- Key Laboratory of Research in Pancreatic TumorChinese Academy of Medical SciencesBeijingP. R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College HospitalBeijingP. R. China
| |
Collapse
|