51
|
Zhao J, Hu Y, Li H, Liu C, Nie Z, Chen Z, Ling Q, Li Z, Zhao P, Song B, Zhang K, Bian L. Liquid-Liquid Phase Separation-Mediated Cellular-Scale Compartmentalization of Hydrogel Covalent Cross-Linking Promotes Microtubule-Based Mechanosensing. J Am Chem Soc 2025; 147:14336-14347. [PMID: 40252026 DOI: 10.1021/jacs.5c00079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2025]
Abstract
Controlled liquid-liquid phase separation (LLPS) plays an important role in the formation of a heterogeneously structured extracellular matrix (ECM) consisting of densely cross-linked stiff structures compartmentalized in a loosely cross-linked matrix. Moreover, the mechanical cues presented by the cellular-scale structural heterogeneity of the ECM facilitate the mechanotransduction of cells and subsequent cellular development. Therefore, developing ECM-mimetic hydrogels with compartmentalized structural heterogeneity as inductive cell carriers is highly desirable but challenging. Inspired by the ECM formation process, we capitalized on the temperature-assisted LLPS of a custom-designed temperature-responsive macromer (TRM) to concentrate and compartmentalize the TRM in the dense phase of the phase-separated precursor solution while keeping the gelatin comacromer complex in the dilute phase. The subsequent cross-linking produces the cellular (micron)-scale microdomains with dense covalent cross-linking interspersed in the loosely cross-linked cell-adaptable interdomain hydrogel matrix. The obtained ECM-mimetic heterogeneous hydrogel, which is solely cross-linked by covalent bonds, promotes extensive spreading, microtubule-based mechanotransduction, and autophagic flux of encapsulated human mesenchymal stem cells (hMSCs), thereby enhancing osteogenesis and bone regeneration. Our findings not only provide valuable guidance for the fabrication of ECM-mimetic biomaterials via LLPS-mediated assembly but also shed light on the mechanobiological mechanism underlying the regulation of cellular development by mechanical cues of the ECM.
Collapse
Affiliation(s)
- Jianyang Zhao
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 511442, P.R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P.R. China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, P.R. China
| | - Yuan Hu
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 511442, P.R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P.R. China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, P.R. China
| | - Hao Li
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, P.R. China
| | - Caikun Liu
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 511442, P.R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P.R. China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, P.R. China
| | - Zhiqiang Nie
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 511442, P.R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P.R. China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, P.R. China
| | - Zekun Chen
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 511442, P.R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P.R. China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, P.R. China
| | - Qiangjun Ling
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 511442, P.R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P.R. China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, P.R. China
| | - Zhuo Li
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong 999077, P.R. China
| | - Pengchao Zhao
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 511442, P.R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P.R. China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, P.R. China
| | - Bin Song
- Department of Joint Surgery and Sports Medicine, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510655, P.R. China
| | - Kunyu Zhang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 511442, P.R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P.R. China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, P.R. China
| | - Liming Bian
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 511442, P.R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P.R. China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, P.R. China
| |
Collapse
|
52
|
Patel CK, Mallik A, Rath DK, Kumar R, Mukherjee TK. Coalescence-Driven Local Crowding Promotes Liquid-to-Solid-Like Phase Transition in a Homogeneous and Heterogeneous Droplet Assembly: Regulatory Role of Ligands. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:10562-10575. [PMID: 40229215 DOI: 10.1021/acs.langmuir.5c00633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Liquid-to-solid-like phase transition (LSPT) of disordered proteins via metastable liquid-like droplets is a well-documented phenomenon in biology and is linked to many pathological conditions including neurodegenerative diseases. However, very less is known about the early microscopic events and transient intermediates involved in the irreversible protein aggregation of functional globular proteins. Herein, using a range of microscopic and spectroscopic techniques, we show that the LSPT of a functional globular protein, human serum albumin (HSA), is exclusively driven by spontaneous coalescence of liquid-like droplets involving various transient intermediates in a temporal manner. We show that interdroplet communication via coalescence is essential for both initial aggregation and growth of amorphous aggregates within individual droplets, which subsequently transform to amyloid-like fibrils. Immobilized droplets neither show any nucleation nor any growth upon aging. Moreover, we found that the exchange of materials with the dilute dispersed phase has negligible influence on the LSPT of HSA. Our findings reveal that interfacial properties effectively modulate the feasibility and kinetics of LSPT of HSA via ligand binding, suggesting a possible regulatory mechanism that cells utilize to control the dynamics of LSPT. Furthermore, using a dynamic heterogeneous droplet assembly of two functional proteins, HSA and human serum transferrin (Tf), we show an intriguing phenomenon within the fused droplets where both liquid-like and solid-like phases coexist within the same droplet, which eventually transform to a mixed fibrillar assembly. These microscopic insights not only highlight the importance of interdroplet interactions behind the LSPT of biomolecules but also showcase its adverse effect on the structure and function of other functional proteins in a crowded and heterogeneous protein assembly.
Collapse
Affiliation(s)
- Chinmaya Kumar Patel
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Simrol, Indore, Madhya Pradesh 453552, India
| | - Abhradip Mallik
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Simrol, Indore, Madhya Pradesh 453552, India
| | - Deb Kumar Rath
- Department of Physics, Indian Institute of Technology (IIT) Indore, Simrol, Indore, Madhya Pradesh 453552, India
| | - Rajesh Kumar
- Department of Physics, Indian Institute of Technology (IIT) Indore, Simrol, Indore, Madhya Pradesh 453552, India
| | - Tushar Kanti Mukherjee
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Simrol, Indore, Madhya Pradesh 453552, India
| |
Collapse
|
53
|
Shukla S, Lastorka SS, Uversky VN. Intrinsic Disorder and Phase Separation Coordinate Exocytosis, Motility, and Chromatin Remodeling in the Human Acrosomal Proteome. Proteomes 2025; 13:16. [PMID: 40407495 PMCID: PMC12101322 DOI: 10.3390/proteomes13020016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 04/23/2025] [Accepted: 04/25/2025] [Indexed: 05/26/2025] Open
Abstract
Intrinsic disorder refers to protein regions that lack a fixed three-dimensional structure under physiological conditions, enabling conformational plasticity. This flexibility allows for diverse functions, including transient interactions, signaling, and phase separation via disorder-to-order transitions upon binding. Our study focused on investigating the role of intrinsic disorder and liquid-liquid phase separation (LLPS) in the human acrosome, a sperm-specific organelle essential for fertilization. Using computational prediction models, network analysis, Structural Classification of Proteins (SCOP) functional assessments, and Gene Ontology, we analyzed 250 proteins within the acrosomal proteome. Our bioinformatic analysis yielded 97 proteins with high levels (>30%) of structural disorder. Further analysis of functional enrichment identified associations between disordered regions overlapping with SCOP domains and critical acrosomal processes, including vesicle trafficking, membrane fusion, and enzymatic activation. Examples of disordered SCOP domains include the PLC-like phosphodiesterase domain, the t-SNARE domain, and the P-domain of calnexin/calreticulin. Protein-protein interaction networks revealed acrosomal proteins as hubs in tightly interconnected systems, emphasizing their functional importance. LLPS propensity modeling determined that over 30% of these proteins are high-probability LLPS drivers (>60%), underscoring their role in dynamic compartmentalization. Proteins such as myristoylated alanine-rich C-kinase substrate and nuclear transition protein 2 exhibited both high LLPS propensities and high levels of structural disorder. A significant relationship (p < 0.0001, R² = 0.649) was observed between the level of intrinsic disorder and LLPS propensity, showing the role of disorder in facilitating phase separation. Overall, these findings provide insights into how intrinsic disorder and LLPS contribute to the structural adaptability and functional precision required for fertilization, with implications for understanding disorders associated with the human acrosome reaction.
Collapse
Affiliation(s)
- Shivam Shukla
- Department of Integrative Biology, College of Arts and Sciences, University of South Florida-St. Petersburg, 140 7th Ave. South, St. Petersburg, FL 33701, USA;
| | - Sean S. Lastorka
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
- USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
54
|
Cheng Z, Wang H, Zhang Y, Ren B, Fu Z, Li Z, Tu C. Deciphering the role of liquid-liquid phase separation in sarcoma: Implications for pathogenesis and treatment. Cancer Lett 2025; 616:217585. [PMID: 39999920 DOI: 10.1016/j.canlet.2025.217585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/04/2025] [Accepted: 02/21/2025] [Indexed: 02/27/2025]
Abstract
Liquid-liquid phase separation (LLPS) is a significant reversible and dynamic process in organisms. Cells form droplets that are distinct from membrane-bound cell organelles by phase separation to keep biochemical processes in order. Nevertheless, the pathological state of LLPS contributes to the progression of a variety of tumor-related pathogenic issues. Sarcoma is one kind of highly malignant tumor characterized by aggressive metastatic potential and resistance to conventional therapeutic agents. Despite the significant clinical relevance, research on phase separation in sarcomas currently faces several major challenges. These include the limited availability of sarcoma samples, insufficient attention from the research community, and the complex genetic heterogeneity of sarcomas. Recently, emerging evidence have elaborated the specific effects and pathways of phase separation on different sarcoma subtypes, including the effect of sarcoma fusion proteins and other physicochemical factors on phase separation. This review aims to summarize the multiple roles of phase separation in sarcoma and novel molecular inhibitors that target phase separation. These insights will broaden the understanding of the mechanisms concerning sarcoma and offer new perspectives for future therapeutic strategies.
Collapse
Affiliation(s)
- Zehao Cheng
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, Hunan Engineering Research Center of AI Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Xiangya School of Medicine, Central South University, Changsha, Hunan, 410011, China
| | - Hua Wang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, Hunan Engineering Research Center of AI Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Yibo Zhang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, Hunan Engineering Research Center of AI Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Xiangya School of Medicine, Central South University, Changsha, Hunan, 410011, China
| | - Bolin Ren
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Zheng Fu
- Shanghai Xinyi Biomedical Technology Co., Ltd, Shanghai, 201306, China
| | - Zhihong Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, Hunan Engineering Research Center of AI Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Chao Tu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, Hunan Engineering Research Center of AI Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Changsha Medical University, Changsha, Hunan, 410219, China.
| |
Collapse
|
55
|
Vangala VNP, Uversky VN. Intrinsic disorder in protein interaction networks linking cancer with metabolic diseases. Comput Biol Chem 2025; 118:108493. [PMID: 40319601 DOI: 10.1016/j.compbiolchem.2025.108493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/20/2025] [Accepted: 04/24/2025] [Indexed: 05/07/2025]
Abstract
Complex diseases are usually driven by numerous proteins that operate as intricate network systems. Deciphering of their signals is required for more advanced level understanding of the cellular processes driven by protein interactions. Therefore, placing diseases into a framework, where they can be viewed together, represents an important and fruitful approach. The goal of this study was to assess the intrinsic disorder present in the proteins forming PPI networks linking cancer with different human diseases. To this end, we used a set of bioinformatics tools to explore intrinsic disorder and liquid-liquid phase separation predispositions of 340 proteins reported earlier by Hirsch et al. (Cancer Cell (2010) 17(4), 348-361; doi: 10.1016/j.ccr.2010.01.022) as differently expressed in common chronic diseases, such as cancer, obesity, diabetes, and cardiovascular diseases. We further examined selected proteins from this set for their interactability and intrinsic disorder-based functionality. Our analyses demonstrated that intrinsically disordered proteins and proteins with intrinsically disordered regions may act as active network promoters and operate as highly connected hubs, which further enables them to play key roles in the disease pathways. The study also indicated that differently expressed proteins involved in disease progression could be characterized by diverse degrees of intrinsic disorder and LLPS propensity. We hope that our findings in combination with the outputs of the proteomic and functional genomic analyses contain essential clues that can be used in further medical research leading to the design of better therapies.
Collapse
Affiliation(s)
- Veda Naga Priya Vangala
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| |
Collapse
|
56
|
Yao Y, Yan C, Huang H, Wang S, Li J, Chen Y, Qu X, Bao Q, Xu L, Zhang Y, Fan D, He X, Liu Y, Zhang Y, Yang Y, Tang Z. LncRNA-MEG3 Regulates Muscle Mass and Metabolic Homeostasis by Facilitating SUZ12 Liquid-Liquid Phase Separation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2417715. [PMID: 40285575 DOI: 10.1002/advs.202417715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/30/2025] [Indexed: 04/29/2025]
Abstract
Skeletal muscle plays a crucial role in maintaining motor function and metabolic homeostasis, with its loss or atrophy leading to significant health consequences. Long non-coding RNAs (lncRNAs) have emerged as key regulators in muscle biology; however, their precise roles in muscle function and pathology remain to be fully elucidated. This study demonstrates that lncRNA maternally expressed gene 3 (MEG3) is preferentially expressed in slow-twitch muscle fibers and dynamically regulated during muscle development, aging, and in the context of Duchenne muscular dystrophy (DMD). Using both loss- and gain-of-function mice models, this study shows that lncRNA-MEG3 is critical for preserving muscle mass and function. Its depletion leads to muscle atrophy, mitochondrial dysfunction, and impaired regenerative capacity, while overexpression enhances muscle mass, increases oxidative muscle fiber content, and improves endurance. Notably, lncRNA-MEG3 overexpression in MDX mice significantly alleviates muscle wasting and adipose tissue infiltration. Mechanistically, this study uncovers a novel interaction between lncRNA-MEG3 and the polycomb repressive complex 2 (PRC2), where lncRNA-MEG3 binds to SUZ12 polycomb repressive complex 2 subunit (Suz12), stabilizes PRC2, facilitates SUZ12 liquid-liquid phase separation (LLPS), and regulates the epigenetic modulation of four and a half lim domains 3 (Fhl3) and ring finger protein 128 (Rnf128). These findings not only highlight the crucial role of lncRNA-MEG3 in muscle homeostasis but also provide new insights into lncRNA-based therapeutic strategies for muscle-related diseases.
Collapse
Affiliation(s)
- Yilong Yao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
- Kunpeng Institute of Modern Agriculture at Foshan, Chinese Academy of Agricultural Sciences, Foshan, 528226, China
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Chao Yan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
- Kunpeng Institute of Modern Agriculture at Foshan, Chinese Academy of Agricultural Sciences, Foshan, 528226, China
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Haibo Huang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
- Kunpeng Institute of Modern Agriculture at Foshan, Chinese Academy of Agricultural Sciences, Foshan, 528226, China
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Shilong Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
- Kunpeng Institute of Modern Agriculture at Foshan, Chinese Academy of Agricultural Sciences, Foshan, 528226, China
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Jiaying Li
- Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Yun Chen
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Xiaolu Qu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qi Bao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Lingna Xu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Yuanyuan Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Danyang Fan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xia He
- School of Animal Science and Technology, Foshan University, Foshan, 528225, China
| | - Yanwen Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yongsheng Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Yalan Yang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Zhonglin Tang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
- Kunpeng Institute of Modern Agriculture at Foshan, Chinese Academy of Agricultural Sciences, Foshan, 528226, China
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| |
Collapse
|
57
|
Schmitt MT, Kroll J, Ruiz-Fernandez MJA, Hauschild R, Ghosh S, Kameritsch P, Merrin J, Schmid J, Stefanowski K, Thomae AW, Cheng J, Öztan GN, Konopka P, Ortega GC, Penz T, Bach L, Baumjohann D, Bock C, Straub T, Meissner F, Kiermaier E, Renkawitz J. Protecting centrosomes from fracturing enables efficient cell navigation. SCIENCE ADVANCES 2025; 11:eadx4047. [PMID: 40279414 PMCID: PMC12024656 DOI: 10.1126/sciadv.adx4047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Accepted: 03/20/2025] [Indexed: 04/27/2025]
Abstract
The centrosome is a microtubule orchestrator, nucleating and anchoring microtubules that grow radially and exert forces on cargos. At the same time, mechanical stresses from the microenvironment and cellular shape changes compress and bend microtubules. Yet, centrosomes are membraneless organelles, raising the question of how centrosomes withstand mechanical forces. Here, we discover that centrosomes can deform and even fracture. We reveal that centrosomes experience deformations during navigational pathfinding within motile cells. Coherence of the centrosome is maintained by Dyrk3 and cNAP1, preventing fracturing by forces. While cells can compensate for the depletion of centriolar-based centrosomes, the fracturing of centrosomes impedes cellular function by generating coexisting microtubule organizing centers that compete during path navigation and thereby cause cellular entanglement in the microenvironment. Our findings show that cells actively maintain the integrity of the centrosome to withstand mechanical forces. These results suggest that centrosome stability preservation is fundamental, given that almost all cells in multicellular organisms experience forces.
Collapse
Affiliation(s)
- Madeleine T. Schmitt
- Biomedical Center, Walter Brendel Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig Maximilians Universität München, Munich, Germany
| | - Janina Kroll
- Biomedical Center, Walter Brendel Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig Maximilians Universität München, Munich, Germany
| | - Mauricio J. A. Ruiz-Fernandez
- Biomedical Center, Walter Brendel Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig Maximilians Universität München, Munich, Germany
| | - Robert Hauschild
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Shaunak Ghosh
- Life and Medical Sciences (LIMES) Institute, Immune and Tumor Biology, University of Bonn, Bonn, Germany
| | - Petra Kameritsch
- Biomedical Center, Walter Brendel Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig Maximilians Universität München, Munich, Germany
| | - Jack Merrin
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Johanna Schmid
- Biomedical Center, Walter Brendel Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig Maximilians Universität München, Munich, Germany
| | - Kasia Stefanowski
- Biomedical Center, Walter Brendel Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig Maximilians Universität München, Munich, Germany
| | - Andreas W. Thomae
- Bioimaging Facility, Biomedical Center, Faculty of Medicine, Ludwig Maximilians Universität München, Munich, Germany
| | - Jingyuan Cheng
- Institute of Innate Immunity, Department of Systems Immunology and Proteomics, Medical Faculty, University of Bonn, Bonn, Germany
| | - Gamze Naz Öztan
- Biomedical Center, Walter Brendel Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig Maximilians Universität München, Munich, Germany
| | - Peter Konopka
- Life and Medical Sciences (LIMES) Institute, Immune and Tumor Biology, University of Bonn, Bonn, Germany
| | - Germán Camargo Ortega
- Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians University, Munich, Germany
| | - Thomas Penz
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Luisa Bach
- Medical Clinic III for Oncology, Hematology, Immuno-Oncology and Rheumatology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Dirk Baumjohann
- Medical Clinic III for Oncology, Hematology, Immuno-Oncology and Rheumatology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Medical University of Vienna, Institute of Artificial Intelligence, Center for Medical Data Science, Vienna, Austria
| | - Tobias Straub
- Bioinformatics Unit, Biomedical Center, Faculty of Medicine, Ludwig Maximilians Universität München, Munich, Germany
| | - Felix Meissner
- Institute of Innate Immunity, Department of Systems Immunology and Proteomics, Medical Faculty, University of Bonn, Bonn, Germany
| | - Eva Kiermaier
- Life and Medical Sciences (LIMES) Institute, Immune and Tumor Biology, University of Bonn, Bonn, Germany
| | - Jörg Renkawitz
- Biomedical Center, Walter Brendel Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig Maximilians Universität München, Munich, Germany
| |
Collapse
|
58
|
Pougy KC, Brito BA, Melo GS, Pinheiro AS. Phase separation as a key mechanism in plant development, environmental adaptation, and abiotic stress response. J Biol Chem 2025:108548. [PMID: 40286852 DOI: 10.1016/j.jbc.2025.108548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 04/14/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025] Open
Abstract
Liquid-liquid phase separation is a fundamental biophysical process in which biopolymers, such as proteins, nucleic acids, and their complexes, spontaneously demix into distinct coexisting phases. This phenomenon drives the formation of membraneless organelles-cellular subcompartments without a lipid bilayer that perform specialized functions. In plants, phase-separated biomolecular condensates play pivotal roles in regulating gene expression, from genome organization to transcriptional and post-transcriptional processes. In addition, phase separation governs plant-specific traits, such as flowering and photosynthesis. As sessile organisms, plants have evolved to leverage phase separation for rapid sensing and response to environmental fluctuations and stress conditions. Recent studies highlight the critical role of phase separation in plant adaptation, particularly in response to abiotic stress. This review compiles the latest research on biomolecular condensates in plant biology, providing examples of their diverse functions in development, environmental adaptation, and stress responses. We propose that phase separation represents a conserved and dynamic mechanism enabling plants to adapt efficiently to ever-changing environmental conditions. Deciphering the molecular mechanisms underlying phase separation in plant stress responses opens new avenues for biotechnological strategies aimed at engineering stress-resistant crops. These advancements have significant implications for agriculture, particularly in addressing crop productivity in the face of climate change.
Collapse
Affiliation(s)
- Karina C Pougy
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941 909, Brazil.
| | - Bruna A Brito
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941 909, Brazil
| | - Giovanna S Melo
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941 909, Brazil
| | - Anderson S Pinheiro
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941 909, Brazil
| |
Collapse
|
59
|
Pert EK, Batton CH, Li X, Dunne S, Rotskoff GM. Scaling Field-Theoretic Simulation for Multicomponent Mixtures with Neural Operators. J Chem Theory Comput 2025; 21:4167-4175. [PMID: 40168529 DOI: 10.1021/acs.jctc.5c00102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
Multicomponent polymer mixtures are ubiquitous in biological self-organization but are notoriously difficult to study computationally. Plagued by both slow single molecule relaxation times and slow equilibration within dense mixtures, molecular dynamics simulations are typically infeasible at the spatial scales required to study the stability of mesophase structure. Polymer field theories offer an attractive alternative, but analytical calculations are only tractable for mean-field theories and nearby perturbations, constraints that become especially problematic for fluctuation-induced effects such as coacervation. Here, we show that a recently developed technique for obtaining numerical solutions to partial differential equations based on operator learning, neural operators, lends itself to a highly scalable training strategy by parallelizing per-species operator maps. We illustrate the efficacy of our approach on six-component mixtures with randomly selected compositions and that it significantly outperforms the state-of-the-art pseudospectral integrators for field-theoretic simulations, especially as polymer lengths become long.
Collapse
Affiliation(s)
- Emmit K Pert
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Clay H Batton
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Xiang Li
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Steven Dunne
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Grant M Rotskoff
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
60
|
So CL, Lee YJ, Vokshi BH, Chen W, Huang B, De Sousa E, Gao Y, Portuallo ME, Begum S, Jagirdar K, Linehan WM, Rebecca VW, Ji H, Toska E, Cai D. TFE3 fusion oncoprotein condensates drive transcriptional reprogramming and cancer progression in translocation renal cell carcinoma. Cell Rep 2025; 44:115539. [PMID: 40222010 PMCID: PMC12077596 DOI: 10.1016/j.celrep.2025.115539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/28/2025] [Accepted: 03/18/2025] [Indexed: 04/15/2025] Open
Abstract
Translocation renal cell carcinoma (tRCC) presents a significant clinical challenge due to its aggressiveness and limited treatment options. It is primarily driven by fusion oncoproteins (FOs), yet their role in oncogenesis is not fully understood. Here, we investigate TFE3 fusions in tRCC, focusing on NONO::TFE3 and SFPQ::TFE3. We demonstrate that TFE3 FOs form liquid-like condensates with increased transcriptional activity, localizing to TFE3 target genes and promoting cell proliferation and migration. The coiled-coil domains (CCDs) of NONO and SFPQ are essential for condensate formation, prolonging TFE3 FOs' chromatin binding time and enhancing transcription. Compared with wild-type TFE3, TFE3 FOs bind to new chromatin regions, alter chromatin accessibility, and form new enhancers and super-enhancers at pro-growth gene loci. Disruption of condensate formation via CCD modification abolishes these genome-wide changes. Altogether, our integrated analyses underscore the critical functions of TFE3 FO condensates in driving tumor cell growth, providing key insights for future therapeutic strategies.
Collapse
Affiliation(s)
- Choon Leng So
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Ye Jin Lee
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Bujamin H Vokshi
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Wanlu Chen
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Binglin Huang
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Emily De Sousa
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Yangzhenyu Gao
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Marie Elena Portuallo
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Sumaiya Begum
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Kasturee Jagirdar
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - W Marston Linehan
- Urologic Oncology Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - Vito W Rebecca
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Hongkai Ji
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Eneda Toska
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| | - Danfeng Cai
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
61
|
Ohno H, Kijima J, Ochi Y, Shoji M, Taira J, Mabuchi T, Sato Y. Oligolysine Enhances and Inhibits DNA Condensate Formation. ACS OMEGA 2025; 10:15781-15789. [PMID: 40290937 PMCID: PMC12019750 DOI: 10.1021/acsomega.5c01928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 03/21/2025] [Accepted: 03/28/2025] [Indexed: 04/30/2025]
Abstract
The formation of biomolecular condensates via phase separation relates to various cellular functions. Reconstituting these condensates with designed molecules facilitates the exploration of their mechanisms and potential applications. Sequence-designed DNA nanostructures enable the investigation of how structural design influences condensate formation and the construction of functional artificial condensates. Despite the high designability of DNA-based condensates, free nanostructures that do not assemble into condensates remain a challenge. Combining DNA nanostructures with other molecules, such as peptides, represents a promising approach to overcoming the limitations of DNA condensates and gaining a deeper understanding of molecular condensates. Herein, we report the effects of cationic oligolysines with several residues on DNA condensate formation assembled from Y-shaped DNA nanostructures. DNA condensate formation was enhanced by oligolysines at an appropriate L/P ratio, which refers to the ratio of positively charged amine groups in lysine (L) to negatively charged nucleic acid phosphate groups (P). Oligolysines with five residues enhanced condensate formation while maintaining the sequence-specific interaction of DNA. In contrast, oligolysines inhibited condensate formation depending on the L/P ratio and residue number. This was attributed to nanostructure deformation caused by oligolysines. These results suggest that the amount and length of cationic peptides significantly affect the self-assembly of branched DNA nanostructures. This study offers important insights into biomolecular condensates that can guide further development of DNA/peptide hybrid condensates to enhance the functions of artificial condensates for use in artificial cells and molecular robots.
Collapse
Affiliation(s)
- Hiroaki Ohno
- Department
of Intelligent and Control Systems, Kyushu
Institute of Technology 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan
| | - Junko Kijima
- Institute
of Fluid Science, Tohoku University 2-1-1
Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Yosuke Ochi
- Department
of Bioscience and Bioinformatics, Kyushu
Institute of Technology 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan
| | - Masaaki Shoji
- Department
of Intelligent and Control Systems, Kyushu
Institute of Technology 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan
| | - Junichi Taira
- Department
of Bioscience and Bioinformatics, Kyushu
Institute of Technology 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan
| | - Takuya Mabuchi
- Institute
of Fluid Science, Tohoku University 2-1-1
Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Yusuke Sato
- Department
of Intelligent and Control Systems, Kyushu
Institute of Technology 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan
| |
Collapse
|
62
|
Pandey V, Hosokawa T, Hayashi Y, Urakubo H. Multiphasic protein condensation governed by shape and valency. Cell Rep 2025; 44:115504. [PMID: 40199325 DOI: 10.1016/j.celrep.2025.115504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 02/05/2025] [Accepted: 03/12/2025] [Indexed: 04/10/2025] Open
Abstract
Liquid-liquid phase separation (LLPS) of biological macromolecules leads to the formation of various membraneless organelles. The multilayered and multiphasic form of LLPS can mediate complex cellular functions; however, the determinants of its topological features are not fully understood. Herein, we focus on synaptic proteins consisting of Ca2+/calmodulin-dependent protein kinase II (CaMKII) and its interacting partners and present a computational model that reproduces forms of LLPS, including a form of two-phase condensates, phase-in-phase (PIP) organization. The model analyses reveal that the PIP formation requires competitive binding between the proteins. The PIP forms only when CaMKII has high valency and a short linker length. Such CaMKII exhibits low surface tension, a modular structure, and slow diffusion, enabling it to stay in small biochemical domains for a long time, which is necessary for synaptic plasticity. Thus, the computational modeling reveals new structure-function relationships for CaMKII as a synaptic memory unit.
Collapse
Affiliation(s)
- Vikas Pandey
- Department of Biomedical Data Science, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan; International Center for Brain Science (ICBS), Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan; National Institute for Physiological Sciences, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Tomohisa Hosokawa
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Yasunori Hayashi
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Hidetoshi Urakubo
- Department of Biomedical Data Science, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan; International Center for Brain Science (ICBS), Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan; National Institute for Physiological Sciences, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan.
| |
Collapse
|
63
|
Huang X, Feng X, Yan YH, Xu D, Wang K, Zhu C, Dong MQ, Huang X, Guang S, Chen X. Compartmentalized localization of perinuclear proteins within germ granules in C. elegans. Dev Cell 2025; 60:1251-1270.e3. [PMID: 39742661 DOI: 10.1016/j.devcel.2024.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/26/2024] [Accepted: 12/06/2024] [Indexed: 01/04/2025]
Abstract
Germ granules, or nuage, are RNA-rich condensates that are often docked on the cytoplasmic surface of germline nuclei. C. elegans perinuclear germ granules are composed of multiple subcompartments, including P granules, Mutator foci, Z granules, SIMR foci, P -bodies, and E granules. Although many perinuclear proteins have been identified, their precise localization within the subcompartments of the germ granule is still unclear. Here, we systematically labeled perinuclear proteins with fluorescent tags via CRISPR-Cas9 technology. Using this nematode strain library, we identified a series of proteins localized in Z or E granules and extended the characterization of the D granule. Finally, we found that the LOTUS domain protein MIP-1/EGGD-1 regulated the multiphase organization of the germ granule. Overall, our work identified the germ-granule architecture and redefined the compartmental localization of perinuclear proteins. Additionally, the library of genetically modified nematode strains will facilitate research on C. elegans germ granules.
Collapse
Affiliation(s)
- Xiaona Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Xuezhu Feng
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Yong-Hong Yan
- National Institute of Biological Sciences, Beijing 102206, China
| | - Demin Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Ke Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Chengming Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing 102206, China
| | - Xinya Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China.
| | - Shouhong Guang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China.
| | - Xiangyang Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China.
| |
Collapse
|
64
|
Begeman A, Smolka JA, Shami A, Waingankar TP, Lewis SC. Spatial analysis of mitochondrial gene expression reveals dynamic translation hubs and remodeling in stress. SCIENCE ADVANCES 2025; 11:eads6830. [PMID: 40249810 PMCID: PMC12007585 DOI: 10.1126/sciadv.ads6830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 03/14/2025] [Indexed: 04/20/2025]
Abstract
Protein- and RNA-rich bodies contribute to the spatial organization of gene expression in the cell and are also sites of quality control critical to cell fitness. In most eukaryotes, mitochondria harbor their own genome, and all steps of mitochondrial gene expression co-occur within a single compartment-the matrix. Here, we report that processed mitochondrial RNAs are consolidated into micrometer-scale translation hubs distal to mitochondrial DNA transcription and RNA processing sites in human cells. We find that, during stress, mitochondrial messenger and ribosomal RNA are sequestered in mesoscale bodies containing mitoribosome components, concurrent with suppression of active translation. Stress bodies are triggered by proteotoxic stress downstream of double-stranded RNA accumulation in cells lacking unwinding activity of the highly conserved helicase SUPV3L1/SUV3. We propose that the spatial organization of nascent polypeptide synthesis into discrete domains serves to throttle the flow of genetic information to support recovery of mitochondrial quality control.
Collapse
Affiliation(s)
- Adam Begeman
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - John A. Smolka
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Ahmad Shami
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | | | - Samantha C. Lewis
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Innovative Genomics Institute, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, Berkeley, CA, USA
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, USA
| |
Collapse
|
65
|
Wang H, Hoffmann C, Tromm JV, Su X, Elliott J, Wang H, Deng M, McClenaghan C, Baum J, Pang ZP, Milovanovic D, Shi Z. Live-cell quantification reveals viscoelastic regulation of synapsin condensates by α-synuclein. SCIENCE ADVANCES 2025; 11:eads7627. [PMID: 40249817 PMCID: PMC12007584 DOI: 10.1126/sciadv.ads7627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 03/12/2025] [Indexed: 04/20/2025]
Abstract
Synapsin and α-synuclein represent a growing list of condensate-forming proteins where the material states of condensates are directly linked to cellular functions (e.g., neurotransmission) and pathology (e.g., neurodegeneration). However, quantifying condensate material properties in living systems has been a substantial challenge. Here, we develop micropipette aspiration and whole-cell patch-clamp (MAPAC), a platform that allows direct material quantification of condensates in live cells. We find 10,000-fold variations in the viscoelasticity of synapsin condensates, regulated by the partitioning of α-synuclein, a marker for synucleinopathies. Through in vitro reconstitutions, we identify multiple molecular factors that distinctly regulate the viscosity, interfacial tension, and maturation of synapsin condensates, confirming the cellular roles of α-synuclein. Overall, our study provides unprecedented quantitative insights into the material properties of neuronal condensates and reveals a crucial role of α-synuclein in regulating condensate viscoelasticity. Furthermore, we envision MAPAC applicable to study a broad range of condensates in vivo.
Collapse
Affiliation(s)
- Huan Wang
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Christian Hoffmann
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), Berlin 10117, Germany
| | - Johannes V. Tromm
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), Berlin 10117, Germany
| | - Xiao Su
- The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA
| | - Jordan Elliott
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Han Wang
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), Berlin 10117, Germany
| | - Mengying Deng
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Conor McClenaghan
- Center for Advanced Biotechnology and Medicine, and Departments of Pharmacology and Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Jean Baum
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Zhiping P. Pang
- The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA
| | - Dragomir Milovanovic
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), Berlin 10117, Germany
- Einstein Center for Neuroscience, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin and Berlin Institute of Health, Berlin 10117, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn 53127, Germany
| | - Zheng Shi
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
- Cancer Pharmacology Research Program, Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
66
|
Gao C, Gao A, Jiang Y, Gao R, Guo Y, Peng Z, Jiang W, Zhang M, Zhou Z, Yan C, Fang W, Hu H, Zhu G, Zhang J. Hypoxia-induced phase separation of ZHX2 alters chromatin looping to drive cancer metastasis. Mol Cell 2025; 85:1525-1542.e10. [PMID: 40185097 DOI: 10.1016/j.molcel.2025.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 01/12/2025] [Accepted: 03/07/2025] [Indexed: 04/07/2025]
Abstract
Hypoxia and dysregulated phase separation can both activate oncogenic transcriptomic profiles. However, whether hypoxia regulates transcription-associated phase separation remains unknown. Here, we find that zinc fingers and homeoboxes 2 (ZHX2) undergoes phase separation in response to hypoxia, promoting their occupancy on chromatin and activating a cluster of oncogene transcription that is enriched by metastatic genes distinct from the targets of hypoxia-inducible factor (HIF) and pathologically relevant to breast cancer. Hypoxia induces ZHX2 phase separation via a proline-rich intrinsically disordered region (IDR), enhancing phosphorylation of ZHX2 at S625 and S628 that incorporates CCCTC-binding factor (CTCF) in condensates to alter chromatin looping, consequently driving metastatic gene transcription and cancer metastasis. Our findings provide significant insight into oncogene activation and suggest a phase-separation-based therapeutic strategy for cancer.
Collapse
Affiliation(s)
- Chuan Gao
- Department of Urology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Ang Gao
- Department of Urology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Yulong Jiang
- Department of Urology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Ronghui Gao
- Department of Urology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Yan Guo
- Lingang Laboratory, Shanghai 201210, China
| | - Zirou Peng
- Department of Urology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Weiwei Jiang
- Department of Urology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Mengyao Zhang
- Department of Urology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Zirui Zhou
- Department of Urology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Chaojun Yan
- Department of Urology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Wentong Fang
- Department of Pharmacy, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Hankun Hu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | | | - Jing Zhang
- Department of Urology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Hubei Key Laboratory of Tumor Biological Behavior, Wuhan 430071, China.
| |
Collapse
|
67
|
Park KH, Yu E, Choi S, Kim S, Park C, Lee JE, Kim KW. Optogenetic induction of TDP-43 aggregation impairs neuronal integrity and behavior in Caenorhabditis elegans. Transl Neurodegener 2025; 14:20. [PMID: 40234916 PMCID: PMC12001655 DOI: 10.1186/s40035-025-00480-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 03/10/2025] [Indexed: 04/17/2025] Open
Abstract
BACKGROUND Cytoplasmic aggregation of TAR DNA binding protein 43 (TDP-43) in neurons is one of the hallmarks of TDP-43 proteinopathy. Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are closely associated with TDP-43 proteinopathy; however, it remains uncertain whether TDP-43 aggregation initiates the pathology or is a consequence of it. METHODS To demonstrate the pathology of TDP-43 aggregation, we applied the optoDroplet technique in Caenorhabditis elegans (C. elegans), which allows spatiotemporal modulation of TDP-43 phase separation and assembly. RESULTS We demonstrate that optogenetically induced TDP-43 aggregates exhibited insolubility similar to that observed in TDP-43 proteinopathy. These aggregates increased the severity of neurodegeneration, particularly in GABAergic motor neurons, and exacerbated sensorimotor dysfunction in C. elegans. CONCLUSIONS We present an optogenetic C. elegans model of TDP-43 proteinopathy that provides insight into the neuropathological mechanisms of TDP-43 aggregates. Our model serves as a promising tool for identifying therapeutic targets for TDP-43 proteinopathy.
Collapse
Affiliation(s)
- Kyung Hwan Park
- Department of Life Science, Multidisciplinary Genome Institute, Hallym University, Chuncheon, South Korea
| | - Euihyeon Yu
- Department of Life Science, Multidisciplinary Genome Institute, Hallym University, Chuncheon, South Korea
| | - Sooji Choi
- Department of Life Science, Multidisciplinary Genome Institute, Hallym University, Chuncheon, South Korea
| | - Sangyeong Kim
- Department of Life Science, Multidisciplinary Genome Institute, Hallym University, Chuncheon, South Korea
| | - Chanbin Park
- Biometrology Group, Division of Biomedical Metrology, Korea Research Institute of Standards and Science, Daejeon, South Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, South Korea
| | - J Eugene Lee
- Biometrology Group, Division of Biomedical Metrology, Korea Research Institute of Standards and Science, Daejeon, South Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, South Korea
| | - Kyung Won Kim
- Department of Life Science, Multidisciplinary Genome Institute, Hallym University, Chuncheon, South Korea.
| |
Collapse
|
68
|
Long T, Lu Y, Ma Y, Song Y, Yi X, Chen X, Zhou M, Ma J, Chen J, Liu Z, Zhu F, Hu Z, Zhou Z, Li C, Hou FF, Zhang L, Chen Y, Nie J. Condensation of cellular prion protein promotes renal fibrosis through the TBK1-IRF3 signaling axis. Sci Transl Med 2025; 17:eadj9095. [PMID: 40238918 DOI: 10.1126/scitranslmed.adj9095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 07/19/2024] [Accepted: 03/26/2025] [Indexed: 04/18/2025]
Abstract
Cellular prion protein (PrPC), known for its pathological isoform in prion diseases such as Creutzfeldt-Jakob disease, is primarily expressed in the nervous system but has also been detected in the blood and urine of individuals with renal dysfunction. However, the role of PrPC in the development of renal disease is unexplored. Here, we showed that PrPC was up-regulated in fibrotic renal lesions in biopsies from patients with chronic kidney disease (CKD), predominantly in proximal tubular epithelial cells (PTECs). Furthermore, renal expression of PrPC was positively correlated with the severity of renal failure and the decline in estimated glomerular filtration rate in patients with CKD. In mice, tubular-specific deletion of PrPC mitigated renal fibrosis induced by unilateral ureteral obstruction (UUO) or unilateral ischemia-reperfusion injury (UIRI). Mechanistically, PrPC was up-regulated by transforming growth factor-β1-suppressor of mothers against decapentaplegic 3 signaling. PrPC activated TANK binding kinase 1 (TBK1)-interferon regulatory factor 3 (IRF3) signaling through its capacity for liquid-liquid phase separation, which promoted a profibrotic response in PTECs and fibroblasts. Treating mice with amlexanox, a US Food and Drug Administration-approved inhibitor of TBK1, either before the onset of renal fibrosis (in UUO and UIRI models) or after its establishment (in adenine- and aristolochic acid-induced CKD models), mitigated worsening of renal fibrosis and renal function. Collectively, our findings uncovered a mechanism involving phase separation of PrPC underlying renal fibrosis and support further study of the PrPC-TBK1-IRF3 axis as a potential therapeutic target for CKD.
Collapse
Affiliation(s)
- Tantan Long
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yumei Lu
- Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yuanyuan Ma
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yandong Song
- Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xiaoping Yi
- Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xiaomei Chen
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Miaomiao Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jingyi Ma
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jiayuan Chen
- Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Zhuoliang Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Fengxin Zhu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zheng Hu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhanmei Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Chaoyang Li
- Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer, Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, School of Basic Medical Sciences, University of South China, Hengyang 421001, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
- Guangzhou Institute of Cancer Research, Affiliated Cancer Hospital, Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou 510095, China
| | - Fan Fan Hou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Lirong Zhang
- Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yupeng Chen
- Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Jing Nie
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Biobank of Peking University First Hospital, Peking University First Hospital, Beijing 100034, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
69
|
Skelly E, Bayard CJ, Jarusek J, Clark B, Rebolledo LP, Radwan Y, Nguyen P, Andrade-Muñoz M, Deaton TA, Lushnikov A, LeBlanc SJ, Krasnoslobodtsev AV, Yingling YG, Afonin KA. Design and Characterization of DNA-Driven Condensates: Regulating Topology, Mechanical Properties, and Immunorecognition. ACS APPLIED MATERIALS & INTERFACES 2025; 17:22322-22336. [PMID: 40168179 PMCID: PMC12012714 DOI: 10.1021/acsami.5c00428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/07/2025] [Accepted: 03/19/2025] [Indexed: 04/03/2025]
Abstract
Cells maintain spatiotemporal control over biochemical processes through the formation and dissolution of biomolecular condensates, dynamic membraneless organelles formed via liquid-liquid phase separation. Composed primarily of proteins and nucleic acids, these condensates regulate key cellular functions, and their properties are influenced by the concentration and type of molecules involved. The structural versatility challenges the de novo design and assembly of condensates with predefined properties. Through feedback between computational and experimental approaches, we introduce a modular system for assembling condensates using nucleic acid nanotechnology. By utilizing programmable oligonucleotides and orthogonal synthesis methods, we control the structural parameters, responsive behavior, and immunorecognition of the products. Dissipative particle dynamics simulations predict some conditions to produce larger, well-defined condensates with compact, globular cores, while others result in smaller, more diffuse analogs. Fluorescence microscopy confirms these findings and microrheology demonstrates the viscoelastic adaptability of tested condensates. Nucleases trigger disruption of structures, and ethidium bromide intercalation protects condensates from digestion. Immunostimulatory assays suggest condensate-specific activation of the IRF pathway via cGAS-STING signaling. This study provides a framework for developing biomolecular condensates with customizable properties and immunorecognition for various biological applications.
Collapse
Affiliation(s)
- Elizabeth Skelly
- Chemistry
and Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Christina J. Bayard
- Department
of Materials Science and Engineering, North
Carolina State University, Raleigh, North Carolina 27695, United States
| | - Joel Jarusek
- Department
of Physics, University of Nebraska Omaha, Omaha, Nebraska 68182, United States
| | - Benjamin Clark
- Department
of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202, United
States
| | - Laura P. Rebolledo
- Chemistry
and Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Yasmine Radwan
- Chemistry
and Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Phong Nguyen
- Chemistry
and Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Melanie Andrade-Muñoz
- Chemistry
and Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Thomas A. Deaton
- Department
of Materials Science and Engineering, North
Carolina State University, Raleigh, North Carolina 27695, United States
| | - Alexander Lushnikov
- Department
of Physics, University of Nebraska Omaha, Omaha, Nebraska 68182, United States
| | - Sharonda J. LeBlanc
- Department
of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202, United
States
| | | | - Yaroslava G. Yingling
- Department
of Materials Science and Engineering, North
Carolina State University, Raleigh, North Carolina 27695, United States
| | - Kirill A. Afonin
- Chemistry
and Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| |
Collapse
|
70
|
Huang LY, Wang TT, Shi PT, Song ZY, Chen WF, Liu NN, Ai X, Li HH, Hou XM, Wang LB, Chen KM, Rety S, Xi XG. NAL1 forms a molecular cage to regulate FZP phase separation. Proc Natl Acad Sci U S A 2025; 122:e2419961122. [PMID: 40203040 PMCID: PMC12012508 DOI: 10.1073/pnas.2419961122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/27/2025] [Indexed: 04/11/2025] Open
Abstract
NARROW LEAF 1 (NAL1), originally identified for its role in shaping leaf morphology, plant architecture, and various agronomic traits in rice, has remained enigmatic in terms of the molecular mechanisms governing its multifaceted functions. In this study, we present a comprehensive structural analysis of NAL1 proteins, shedding light on how NAL1 regulates the phase separation of its physiological substrate, FRIZZY PANICLE (FZP), a transcription factor. We determined that NAL1 assembles as a hexamer and forms a molecular cage with a wide central channel and three narrower lateral channels, which could discriminate its different substrates into the catalytic sites. Most notably, our investigation unveils that FZP readily forms molecular condensates via phase separation both in vitro and in vivo. NAL1 fine-tunes FZP condensation, maintaining optimal concentrations to enhance transcriptional activity. While phase separation roles include sequestration and suppression of transcriptional or enzymatic activity, our study highlights its context-dependent contribution to transcriptional regulation. NAL1 assumes a pivotal role in regulating the states of these molecular condensates through its proteolytic activity, subsequently enhancing transcriptional cascades. Our findings offer insights into comprehending the molecular mechanisms underpinning NAL1's diverse functions, with far-reaching implications for the field of plant biology. Additionally, these insights provide valuable guidance for the development of rational breeding strategies aimed at enhancing crop productivity.
Collapse
Affiliation(s)
- Ling-Yun Huang
- Department of Biotechnology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi712100, China
- Department of Forestry, College of Forestry, Northwest A&F University, Yangling, Shaanxi712100, China
| | - Ting-Ting Wang
- Department of Biotechnology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi712100, China
| | - Peng-Tao Shi
- Department of Biotechnology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi712100, China
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi712100, China
| | - Ze-Yu Song
- Department of Biotechnology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi712100, China
| | - Wei-Fei Chen
- Department of Biotechnology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi712100, China
| | - Na-Nv Liu
- Department of Biotechnology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi712100, China
| | - Xia Ai
- Department of Biotechnology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi712100, China
| | - Hai-Hong Li
- Department of Biotechnology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi712100, China
| | - Xi-Miao Hou
- Department of Biotechnology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi712100, China
| | - Li-Bing Wang
- Department of Forestry, College of Forestry, Northwest A&F University, Yangling, Shaanxi712100, China
| | - Kun-Ming Chen
- Department of Biotechnology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi712100, China
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi712100, China
| | - Stephane Rety
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, Lyon69364, France
| | - Xu-Guang Xi
- Department of Biotechnology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi712100, China
- Laboratoire de Biologie et Pharmacologie Appliquée, CNRS UMR8113, Gif-sur-Yvette91190, France
| |
Collapse
|
71
|
Boccalini M, Berezovska Y, Bussi G, Paloni M, Barducci A. Exploring RNA destabilization mechanisms in biomolecular condensates through atomistic simulations. Proc Natl Acad Sci U S A 2025; 122:e2425261122. [PMID: 40203038 PMCID: PMC12012522 DOI: 10.1073/pnas.2425261122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/09/2025] [Indexed: 04/11/2025] Open
Abstract
Biomolecular condensates are currently recognized to play a key role in organizing cellular space and in orchestrating biochemical processes. Despite an increasing interest in characterizing their internal organization at the molecular scale, not much is known about how the densely crowded environment within these condensates affects the structural properties of recruited macromolecules. Here, we adopted explicit-solvent all-atom simulations based on a combination of enhanced sampling approaches to investigate how the conformational ensemble of an RNA hairpin is reshaped in a highly concentrated peptide solution that mimics the interior of a biomolecular condensate. Our simulations indicate that RNA structure is greatly perturbed by this distinctive physico-chemical environment, which weakens RNA secondary structure and promotes extended nonnative conformations. The resulting high-resolution picture reveals that RNA unfolding is driven by the effective solvation of nucleobases through hydrogen bonding and stacking interactions with surrounding peptides. This solvent effect can be modulated by the amino acid composition of the model condensate as proven by the differential RNA behavior observed in the case of arginine-rich and lysine-rich peptides.
Collapse
Affiliation(s)
- Matteo Boccalini
- Centre de Biologie Structurale, Université de Montpellier, CNRS, INSERM, Montpellier34090, France
| | - Yelyzaveta Berezovska
- Centre de Biologie Structurale, Université de Montpellier, CNRS, INSERM, Montpellier34090, France
| | - Giovanni Bussi
- Molecular and Statistical Biophysics, Scuola Internazionale Superiore di Studi Avanzati, Trieste34136, Italy
| | - Matteo Paloni
- Centre de Biologie Structurale, Université de Montpellier, CNRS, INSERM, Montpellier34090, France
- Department of Chemical Engineering, Thomas Young Centre, University College London, LondonWC1E 7JE, United Kingdom
| | - Alessandro Barducci
- Centre de Biologie Structurale, Université de Montpellier, CNRS, INSERM, Montpellier34090, France
| |
Collapse
|
72
|
Li W, Xu K. Super-Resolution Mapping and Quantification of Molecular Diffusion via Single-Molecule Displacement/Diffusivity Mapping (SM dM). Acc Chem Res 2025; 58:1224-1235. [PMID: 40183356 PMCID: PMC12032829 DOI: 10.1021/acs.accounts.4c00850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
ConspectusDiffusion underlies vital physicochemical and biological processes and provides a valuable window into molecular states and interactions. However, it remains a challenge to map molecular diffusion at subcellular and submicrometer scales. Whereas single-particle tracking of fluorescent molecules provides a path to quantify motion at the nanoscale, its typical pursuit of long trajectories limits wide-field mapping to the slow diffusion of bound molecules.Single-molecule displacement/diffusivity mapping (SMdM) rises to the challenge. Rather than following each fluorescent molecule longitudinally as it randomly visits potentially heterogeneous environments, SMdM flips the question to ask, for every location (e.g., a 100 × 100 nm2 spatial bin) in a wide field, how different single molecules of identical nature move locally. This location-centered strategy is naturally effective for spatial mapping of diffusivity. Moreover, by focusing on local motion, each molecule only needs to be detected for its transient displacement within a fixed short time window to achieve local statistics. This task is fulfilled for fast-diffusing molecules using a tandem excitation scheme in which a pair of closely timed stroboscopic excitation pulses are applied across two tandem frames, so that wide-field single-molecule images are recorded at a pulse-defined ≲1 ms separation unlimited by the camera frame rate. With fitting models robust against mismatched molecules and diffusion anisotropy, SMdM thus successfully achieves super-resolution D mapping for fluorescently labeled molecules of contrasting sizes and properties in diverse cellular and in vitro systems.For intracellular protein diffusion, SMdM uncovers nanoscale diffusion heterogeneities in the mammalian cytoplasm and nucleus and further elucidates their origins from the macromolecular crowding effects of cytoskeletal and chromatin ultrastructures, respectively, through correlated single-molecule localization microscopy (SMLM). Across diverse compartments of the mammalian cell, including the cytoplasm, the nucleus, the endoplasmic reticulum (ER) lumen, and the mitochondrial matrix, SMdM further unveils a striking charge effect, in which the diffusion of positively charged proteins is biasedly impeded. For cellular membranes, the integration of SMdM with fluorogenic probes enables diffusivity fine-mapping, which, in combination with spectrally resolved SMLM (SR-SMLM), elucidates nanoscale diffusional heterogeneities of different origins. For biomolecular condensates, another synergy of SMdM and SR-SMLM uncovers the gradual formation of diffusion-suppressed, hydrophobic amyloid nanoaggregates at the surface of FUS (fused in sarcoma) protein condensates during aging. Beyond spatial mapping, the mass accumulation of single-molecule displacements in SMdM further affords a valuable means to quantify D with exceptional precision. This advantage is harnessed to show no enhanced diffusion of enzymes in reactions, to uncover ubiquitous net charge-driven protein-protein interactions in solution, and to show with strategically manipulated cytoplasmic extracts that molecular interaction in the crowded cell is defined by an overwhelmingly negatively charged macromolecular environment with dense meshworks, echoing our parallel results in the mammalian cell.Together, by uniquely enabling super-resolution mapping and high-precision quantification of molecular diffusion across diverse systems, SMdM opens a new door to reveal fascinating spatiotemporal heterogeneities in living cells and beyond.
Collapse
Affiliation(s)
- Wan Li
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Ke Xu
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
73
|
Liu S, Wang C, Zhang B. Toward Predictive Coarse-Grained Simulations of Biomolecular Condensates. Biochemistry 2025; 64:1750-1761. [PMID: 40172489 DOI: 10.1021/acs.biochem.4c00737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Phase separation is a fundamental process that enables cellular organization by forming biomolecular condensates. These assemblies regulate diverse functions by creating distinct environments, influencing reaction kinetics, and facilitating processes such as genome organization, signal transduction, and RNA metabolism. Recent studies highlight the complexity of condensate properties, shaped by intrinsic molecular features and external factors such as temperature and pH. Molecular simulations serve as an effective approach to establishing a comprehensive framework for analyzing these influences, offering high-resolution insights into condensate stability, dynamics, and material properties. This review evaluates recent advancements in biomolecular condensate simulations, with a particular focus on coarse-grained 1-bead-per-amino-acid (1BPA) protein models, and emphasizes OpenABC, a tool designed to simplify and streamline condensate simulations. OpenABC supports the implementation of various coarse-grained force fields, enabling their performance evaluation. Our benchmarking identifies inconsistencies in phase behavior predictions across force fields, even though these models accurately capture single-chain statistics. This finding underscores the need for enhanced force field accuracy, achievable through enriched training data sets, many-body potentials, and advanced optimization techniques. Such refinements could significantly improve the predictive capacity of coarse-grained models, bridging molecular details with emergent condensate behaviors.
Collapse
Affiliation(s)
- Shuming Liu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Cong Wang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
74
|
Duan X, Duan S, Han Z, Lv H, Yu H, Liu B. Aqueous Two-Phase Submicron Droplets Catalyze DNA Nanostructure Assembly for Confined Fluorescent Biosensing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2417287. [PMID: 40231848 DOI: 10.1002/advs.202417287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/15/2025] [Indexed: 04/16/2025]
Abstract
Membraneless organelles (MLOs) are fundamental to cellular organization, enabling biochemical processes by concentrating biomolecules and regulating reactions within confined environments. While micrometer-scale synthetic droplets are extensively studied as models of MLOs, submicron droplets remain largely unexplored despite their potential to uniquely regulate biomolecular processes. Here, submicron droplets are generated by a polyethylene glycol (PEG)/dextran aqueous two-phase system (ATPS) as a model to investigate their effect on DNA assembly in crowded environments. The findings reveal that submicron droplets exhibit distinct advantages over microdroplets by acting as submicron catalytic centers that concentrate DNA and accelerate assembly kinetics. This enhancement is driven by a cooperative mechanism wherein global crowding from PEG induces an excluded volume effect, while local crowding from dextran provides weak but nonspecific interactions with DNA. By exploiting both the confinement and phase properties of submicron droplets, a rapid and sensitive assay is developed for miRNA detection using confined fluorescent readouts. These findings highlight the unique ability of submicron droplets to amplify biomolecular assembly processes, provide new insights into the interplay between global and local crowding effects in cellular-like environments, and present a platform for biomarker detection and visualization.
Collapse
Affiliation(s)
- Xiaoman Duan
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Siyi Duan
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Zhaoyu Han
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Haoyue Lv
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Haozhen Yu
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Biwu Liu
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| |
Collapse
|
75
|
Seth S, Bhattacharya A. Accelerated Missense Mutation Identification in Intrinsically Disordered Proteins Using Deep Learning. Biomacromolecules 2025; 26:2106-2115. [PMID: 40072940 DOI: 10.1021/acs.biomac.4c01124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
We use a combination of Brownian dynamics (BD) simulation results and deep learning (DL) strategies for the rapid identification of large structural changes caused by missense mutations in intrinsically disordered proteins (IDPs). We used ∼6500 IDP sequences from MobiDB database of length 20-300 to obtain gyration radii from BD simulation on a coarse-grained single-bead amino acid model (HPS2 model) used by us and others [Dignon, G. L. PLoS Comput. Biol. 2018, 14, e1005941,Tesei, G. Proc. Natl. Acad. Sci. U.S.A. 2021, 118, e2111696118,Seth, S. J. Chem. Phys. 2024, 160, 014902] to generate the training sets for the DL algorithm. Using the gyration radii ⟨Rg⟩ of the simulated IDPs as the training set, we develop a multilayer perceptron neural net (NN) architecture that predicts the gyration radii of 33 IDPs previously studied by using BD simulation with 97% accuracy from the sequence and the corresponding parameters from the HPS model. We now utilize this NN to predict gyration radii of every permutation of missense mutations in IDPs. Our approach successfully identifies mutation-prone regions that induce significant alterations in the radius of gyration when compared to the wild-type IDP sequence. We further validate the prediction by running BD simulations on the subset of identified mutants. The neural network yields a (104-106)-fold faster computation in the search space for potentially harmful mutations. Our findings have substantial implications for rapid identification and understanding of diseases related to missense mutations in IDPs and for the development of potential therapeutic interventions. The method can be extended to accurate predictions of other mutation effects in disordered proteins.
Collapse
Affiliation(s)
- Swarnadeep Seth
- Department of Physics, University of Central Florida, Orlando, Florida 32816-2385, United States
| | - Aniket Bhattacharya
- Department of Physics, University of Central Florida, Orlando, Florida 32816-2385, United States
| |
Collapse
|
76
|
Yang S, Lee KH. Spontaneous Hollow Coacervate Transition of Silk Fibroin via Dilution and Its Transition to Microcapsules. Biomacromolecules 2025; 26:2513-2528. [PMID: 40063534 PMCID: PMC12004510 DOI: 10.1021/acs.biomac.5c00003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 03/05/2025] [Accepted: 03/05/2025] [Indexed: 04/15/2025]
Abstract
Polymeric microcapsules are useful for drug delivery, microreactors, and cargo transport, but traditional fabrication methods require complex processes and harsh conditions. Coacervates, formed by liquid-liquid phase separation (LLPS), offer a promising alternative for microcapsule fabrication. Recent studies have shown that coacervates can spontaneously form hollow cavities under specific conditions. Here, we investigate the spontaneous hollow coacervate transition of silk fibroin (SF). SF coacervates, induced by mixing SF with dextran, calcium ions, and copper ions, transition to hollow coacervates upon dilution. Adding ethylenediaminetetraacetic acid (EDTA) further transforms them into vesicle-like capsule coacervates, which solidify into microcapsules. As a proof-of-concept, we successfully loaded a high-molecular-weight polymer cargo into the hollow cavity and bioactive enzyme cargo into the capsule layer by simply mixing the cargo with the coacervate solution. Our results demonstrate a facile, organic-solvent-free approach for fabricating SF-based microcapsules and provide insight into the mechanisms driving hollow coacervate formation.
Collapse
Affiliation(s)
- Sejun Yang
- Department
of Agriculture, Forestry and Bioresources, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Ki Hoon Lee
- Department
of Agriculture, Forestry and Bioresources, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
- Research
Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| |
Collapse
|
77
|
Velichko AK, Petrova NV, Deriglazov DA, Kovina AP, Luzhin AV, Kazakov EP, Kireev II, Razin S, Kantidze OL. Treacle's ability to form liquid-like phase condensates is essential for nucleolar fibrillar center assembly, efficient rRNA transcription and processing, and rRNA gene repair. eLife 2025; 13:RP96722. [PMID: 40223701 PMCID: PMC11996177 DOI: 10.7554/elife.96722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025] Open
Abstract
We investigated the role of the nucleolar protein Treacle in organizing and regulating the nucleolus in human cells. Our results support Treacle's ability to form liquid-like phase condensates through electrostatic interactions among molecules. The formation of these biomolecular condensates is crucial for segregating nucleolar fibrillar centers from the dense fibrillar component and ensuring high levels of ribosomal RNA (rRNA) gene transcription and accurate rRNA processing. Both the central and C-terminal domains of Treacle are required to form liquid-like condensates. The initiation of phase separation is attributed to the C-terminal domain. The central domain is characterized by repeated stretches of alternatively charged amino acid residues and is vital for condensate stability. Overexpression of mutant forms of Treacle that cannot form liquid-like phase condensates compromises the assembly of fibrillar centers, suppressing rRNA gene transcription and disrupting rRNA processing. These mutant forms also fail to recruit DNA topoisomerase II binding protein 1 (TOPBP1), suppressing the DNA damage response in the nucleolus.
Collapse
Affiliation(s)
- Artem K Velichko
- Department of Cellular Genomics, Institute of Gene Biology RASMoscowRussian Federation
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology RASMoscowRussian Federation
- Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical UniversityMoscowRussian Federation
| | - Nadezhda V Petrova
- Department of Cellular Genomics, Institute of Gene Biology RASMoscowRussian Federation
| | - Dmitry A Deriglazov
- Department of Cellular Genomics, Institute of Gene Biology RASMoscowRussian Federation
| | - Anastasia P Kovina
- Department of Cellular Genomics, Institute of Gene Biology RASMoscowRussian Federation
| | - Artem V Luzhin
- Department of Cellular Genomics, Institute of Gene Biology RASMoscowRussian Federation
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology RASMoscowRussian Federation
| | - Eugene P Kazakov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State UniversityMoscowRussian Federation
| | - Igor I Kireev
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State UniversityMoscowRussian Federation
| | - Sergey Razin
- Department of Cellular Genomics, Institute of Gene Biology RASMoscowRussian Federation
- Biological Faculty, Lomonosov Moscow State UniversityMoscowRussian Federation
| | - Omar L Kantidze
- Department of Cellular Genomics, Institute of Gene Biology RASMoscowRussian Federation
| |
Collapse
|
78
|
Huang H, Hu J. Applications of Liquid-Liquid Phase Separation in Biosensing. Chembiochem 2025; 26:e202500028. [PMID: 39920037 DOI: 10.1002/cbic.202500028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 02/09/2025]
Abstract
Phase separation, particularly liquid-liquid phase separation (LLPS), has emerged as a powerful tool in biological research, offering unique advantages for visualizing and analyzing biomolecular interactions. This review highlights recent advances in leveraging LLPS to develop experimental techniques for studying protein-protein interactions (PPIs), protein-RNA interactions, and enzyme activity. The integration of LLPS with advanced techniques has expanded its applications, offering new possibilities for unraveling the complexities of cellular function and disease mechanisms. Looking forward, the development of more versatile, sensitive, and targeted LLPS-based methods is poised to transform molecular biology, providing deeper insights into cellular dynamics and facilitating therapeutic advancements.
Collapse
Affiliation(s)
- Huizhen Huang
- Synthetic Biology Center, Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jun Hu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Synthetic Biology Center, Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
79
|
Bal S, Gupta S, Mahato C, Das D. Catalytically Active Coacervates Sustained Out-of-Equilibrium. Angew Chem Int Ed Engl 2025:e202505296. [PMID: 40228063 DOI: 10.1002/anie.202505296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/08/2025] [Accepted: 04/14/2025] [Indexed: 04/16/2025]
Abstract
Metabolically active membraneless organelles of extant biology have the capability to maintain their structure under nonequilibrium conditions by leveraging chemical reactions. Herein, we report active coacervates accessed via a mixture of minimal building blocks that featured π-electron rich short peptide, positively charged aldehyde, and a cyclic ketone under nonequilibrium conditions. Peptide bound with the aldehyde by a dynamic covalent bond and demixed to form coacervates through hydrophobic interactions. Importantly, the short-peptide could utilize its free amine (β-alanine) to catalyze C─C bond formation which eventually led to the depletion of one of the building blocks (aldehyde) via aldol reaction; an intrinsic catalytic role that helped the coacervate to suppress coalescence. Notably, under continuous additions (open system) of the depleting precursors, the active coacervates were able to demonstrate spatial stability for longer duration. This out-of-equilibrium behavior of phase separated droplets in presence of flux of building blocks is reminiscent of the active membraneless organelles seen in contemporary biochemistry.
Collapse
Affiliation(s)
- Subhajit Bal
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, India
| | - Saurabh Gupta
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, India
| | - Chiranjit Mahato
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, India
| | - Dibyendu Das
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, India
| |
Collapse
|
80
|
Chen S, Wang Y, Zhang J, Liu B, Liu W, Cao G, Li R, Li H, Zhai N, Song X, Zhang S, Lv C. YTHDC1 phase separation drives the nuclear export of m 6A-modified lncNONMMUT062668.2 through the transport complex SRSF3-ALYREF-XPO5 to aggravate pulmonary fibrosis. Cell Death Dis 2025; 16:279. [PMID: 40221424 PMCID: PMC11993731 DOI: 10.1038/s41419-025-07608-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 03/23/2025] [Accepted: 03/31/2025] [Indexed: 04/14/2025]
Abstract
Fibroblast-to-myofibroblast differentiation is the main cytopathologic characteristic of pulmonary fibrosis. However, its underlying molecular mechanism remains poorly understood. This study elucidated that the nuclear export of lncNONMMUT062668.2 (lnc668) exacerbated pulmonary fibrosis by activating fibroblast-to-myofibroblast differentiation. Mechanistic research revealed that histone H3K9 lactylation in the promoter region of the N6-methyladenosine (m6A) writer METTL3 was enriched to enhance METTL3 transcription, leading to the lnc668 m6A modification. Meanwhile, the m6A reader YTHDC1 recognized m6A-modified lnc668 and elevated the METTL3-mediated lnc668 modification. Subsequently, phase-separating YTHDC1 promoted the nuclear export of m6A-modified lnc668. In this process, the phase-separating YTHDC1 formed a nuclear pore complex with serine/arginine-rich splicing factor 3, Aly/REF export factor, and exportin-5 to assist the translocation of m6A-modified lnc668 from nucleus to cytoplasm. After nuclear export, lnc668 facilitated the translation and stability of its host gene phosphatidylinositol-binding clathrin assembly protein to activate fibroblast-to-myofibroblast differentiation, leading to the aggravation of pulmonary fibrosis, which also depended on YTHDC1 phase separation. This study first clarified that YTHDC1 phase separation is crucial for the m6A modification, nuclear export, and profibrotic role of lnc668 in exacerbating pulmonary fibrosis. These findings provide new insights into the nuclear export of cytoplasmic lncRNAs and identified potential targets for pulmonary fibrosis therapy.
Collapse
Affiliation(s)
- Shengjun Chen
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, China
| | - Yujie Wang
- Department of Cellular and Genetic Medicine, Binzhou Medical University, Yantai, China
| | - Jinjin Zhang
- Department of Cellular and Genetic Medicine, Binzhou Medical University, Yantai, China
| | - Bo Liu
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, China
| | - Weili Liu
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, China
| | - Guohong Cao
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, China
| | - Rongrong Li
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, China
| | - Hongbo Li
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, China
| | - Nailiang Zhai
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, China
| | - Xiaodong Song
- Department of Cellular and Genetic Medicine, Binzhou Medical University, Yantai, China.
| | - Songzi Zhang
- Department of Cellular and Genetic Medicine, Binzhou Medical University, Yantai, China.
- CHA Bundang Medical Center, CHA University, Seongnam-si, Republic of Korea.
| | - Changjun Lv
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, China.
| |
Collapse
|
81
|
Erkamp NA, Farag M, Qiu Y, Qian D, Sneideris T, Wu T, Welsh TJ, Ausserwöger H, Krug TJ, Chauhan G, Weitz DA, Lew MD, Knowles TPJ, Pappu RV. Differential interactions determine anisotropies at interfaces of RNA-based biomolecular condensates. Nat Commun 2025; 16:3463. [PMID: 40216775 PMCID: PMC11992113 DOI: 10.1038/s41467-025-58736-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 04/01/2025] [Indexed: 04/14/2025] Open
Abstract
Biomolecular condensates form via macromolecular phase separation. Here, we report results from our characterization of synthetic condensates formed by phase separation of mixtures comprising two types of RNA molecules and the biocompatible polymer polyethylene glycol. Purine-rich RNAs are scaffolds that drive phase separation via heterotypic interactions. Conversely, pyrimidine-rich RNA molecules are adsorbents defined by weaker heterotypic interactions. They adsorb onto and wet the interfaces of coexisting phases formed by scaffolds. Lattice-based simulations reproduce the phenomenology observed in experiments and these simulations predict that scaffolds and adsorbents have different non-random orientational preferences at interfaces. Dynamics at interfaces were probed using single-molecule tracking of fluorogenic probes bound to RNA molecules. These experiments revealed dynamical anisotropy at interfaces whereby motions of probe molecules parallel to the interface are faster than motions perpendicular to the interface. Taken together, our findings have broad implications for designing synthetic condensates with tunable interfacial properties.
Collapse
Affiliation(s)
- Nadia A Erkamp
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Disease, University of Cambridge, Cambridge, UK
- Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA
- Institute for Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Mina Farag
- Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA
- Department of Biomedical Engineering, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Yuanxin Qiu
- Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA
- Department of Electrical and Systems Engineering, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Daoyuan Qian
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Disease, University of Cambridge, Cambridge, UK
| | - Tomas Sneideris
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Disease, University of Cambridge, Cambridge, UK
| | - Tingting Wu
- Department of Electrical and Systems Engineering, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Timothy J Welsh
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Disease, University of Cambridge, Cambridge, UK
| | - Hannes Ausserwöger
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Disease, University of Cambridge, Cambridge, UK
| | - Tommy J Krug
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Gaurav Chauhan
- Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA
- Department of Biomedical Engineering, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA
- Department of Chemical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, India
| | - David A Weitz
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Department of Physics, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA
| | - Matthew D Lew
- Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA.
- Department of Electrical and Systems Engineering, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA.
| | - Tuomas P J Knowles
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Disease, University of Cambridge, Cambridge, UK.
- Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, UK.
| | - Rohit V Pappu
- Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA.
- Department of Biomedical Engineering, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
82
|
Bagchi D, Maity A, Saini K, Tabassum H, Nath P, Vishwakarma S, Chakraborty A. Visual Monitoring of Biomolecular Self-Assembly Dynamics and Imaging of Protein Aggregates by Distinct Emission of a Unique Hydrophobic Carbon Dot. J Phys Chem Lett 2025; 16:3501-3508. [PMID: 40162582 DOI: 10.1021/acs.jpclett.5c00129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Here, we report a novel and unique application of a special hydrophobic carbon dot (HCD) to monitor biomolecular self-assembly, along with the detection of metastable intermediates and self-aggregates. We exploited the restricted rotation of the S-S bond of the HCD synthesized from dithiosalicylic acid and melamine to illuminate different emission behaviors during the self-assembly of amino acids and proteins. The HCD that exhibits blue emission in amino acid droplets or protein aggregates dynamically changes its emission from blue to red over the time course of the amino acid self-assembly process. This unique and distinct change in emission can be visualized by the naked eye under a UV lamp. The ability of HCD to distinguish the biomolecular self-aggregated structures and monitor the self-assembly dynamics can be utilized for the visual detection of uncontrolled aggregation of proteins and peptides related to neurodegenerative diseases like Alzheimer's disease and Parkinson's disease.
Collapse
Affiliation(s)
- Debanjan Bagchi
- Indian Institute of Technology Indore, Department of Chemistry, Indore 453552, Madhya Pradesh, India
| | - Avijit Maity
- Indian Institute of Technology Indore, Department of Chemistry, Indore 453552, Madhya Pradesh, India
| | - Khushwant Saini
- Indian Institute of Technology Indore, Department of Chemistry, Indore 453552, Madhya Pradesh, India
| | - Huma Tabassum
- Indian Institute of Technology Indore, Department of Chemistry, Indore 453552, Madhya Pradesh, India
| | - Priyanka Nath
- Indian Institute of Technology Indore, Department of Chemistry, Indore 453552, Madhya Pradesh, India
| | - Sachin Vishwakarma
- Indian Institute of Technology Indore, Department of Chemistry, Indore 453552, Madhya Pradesh, India
| | - Anjan Chakraborty
- Indian Institute of Technology Indore, Department of Chemistry, Indore 453552, Madhya Pradesh, India
| |
Collapse
|
83
|
Tang D, Zhu J, Wang H, Chen N, Wang H, Huang Y, Jiang L. Universal membranization of synthetic coacervates and biomolecular condensates towards ultrastability and spontaneous emulsification. Nat Chem 2025:10.1038/s41557-025-01800-4. [PMID: 40211087 DOI: 10.1038/s41557-025-01800-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 03/10/2025] [Indexed: 04/12/2025]
Abstract
Membranization of membraneless coacervates and condensates is emerging as a promising strategy to resolve their inherent susceptibility to fusion, ripening and environmental variations. Yet current membranization agents by design are largely limited to a subclass or a specific kind of coacervate or condensate systems. Here we develop a library of condensate-amphiphilic block polymers that can efficiently form a polymeric layer on the droplet interface for a wide spectrum of synthetic coacervates and biomolecular condensates. Condensate-amphiphilic block polymers are designed with a condenophilic block firmly anchored to the condensed phase, a condenophobic block extended to the dilute phase and a self-association block to promote membrane formation. Critical to our design is the condenophilic block of phenylboronic acid and amidoamine that target the disparate chemistry of condensed droplets via multivalent affinities. The condensate-amphiphilic block polymer membranes render the droplets mechanically robust against fusion, regulate interfacial properties such as permeability and stiffness, and substantially improve droplet tolerance to challenging conditions of temperature, salinity, pH and organic solvents.
Collapse
Affiliation(s)
- Da Tang
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), State Key Laboratory of Pulp and Paper Engineering, School of Emergent Soft Matter, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, South China University of Technology, Guangzhou, China
| | - Jun Zhu
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), State Key Laboratory of Pulp and Paper Engineering, School of Emergent Soft Matter, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, South China University of Technology, Guangzhou, China
| | - Hao Wang
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), State Key Laboratory of Pulp and Paper Engineering, School of Emergent Soft Matter, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, South China University of Technology, Guangzhou, China
| | - Nannan Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Hui Wang
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), State Key Laboratory of Pulp and Paper Engineering, School of Emergent Soft Matter, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, South China University of Technology, Guangzhou, China
| | - Yongqi Huang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Lingxiang Jiang
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), State Key Laboratory of Pulp and Paper Engineering, School of Emergent Soft Matter, South China University of Technology, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, South China University of Technology, Guangzhou, China.
| |
Collapse
|
84
|
Jiang X, Hou Z. Activity-Induced Droplet Inversion in Multicomponent Liquid-Liquid Phase Separation. J Chem Theory Comput 2025; 21:3745-3751. [PMID: 40138573 DOI: 10.1021/acs.jctc.5c00162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Liquid-liquid phase separation (LLPS) is a vital process in forming membrane-free organelles, crucial for cell physiology and recently gaining significant attention. However, the effects of nonequilibrium factors, which are common in real life, on the process of LLPS have not been fully explored. To address this issue, we developed a model for nonequilibrium phase separation involving three components (A, B, and C) by integrating a nonequilibrium term into the chemical potential for active component B. We find significant changes in the morphology and dynamics of nonequilibrium phase-separated droplets compared to their equilibrium counterparts. Remarkably, with a large enough activity, the B-A-C structure (B at the center, surrounded by A, then enveloped by C) under equilibrium conditions may change to a C-A-B structure. Further simulations give a global picture of the system under both active and passive conditions, revealing the shifts of the phase boundaries and unraveling the effect of activity on different droplet structures. We derived an effective free energy for the active LLPS system to provide a qualitative understanding of our observations. Our study presents a basic model for nonequilibrium phase separation processes, providing crucial insights into LLPS alongside intracellular nonequilibrium phenomena.
Collapse
Affiliation(s)
- Xianyun Jiang
- Department of Chemical Physics, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhonghuai Hou
- Department of Chemical Physics, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
85
|
Conti BA, Novikov L, Tong D, Xiang Q, Vigil S, McLellan TJ, Nguyen C, De La Cruz N, Veettil RT, Pradhan P, Sahasrabudhe P, Arroyo JD, Shang L, Sabari BR, Shields DJ, Oppikofer M. N6-methyladenosine in DNA promotes genome stability. eLife 2025; 13:RP101626. [PMID: 40193195 PMCID: PMC11975372 DOI: 10.7554/elife.101626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025] Open
Abstract
DNA base lesions, such as incorporation of uracil into DNA or base mismatches, can be mutagenic and toxic to replicating cells. To discover factors in repair of genomic uracil, we performed a CRISPR knockout screen in the presence of floxuridine, a chemotherapeutic agent that incorporates uracil and fluorouracil into DNA. We identified known factors, such as uracil DNA N-glycosylase (UNG), and unknown factors, such as the N6-adenosine methyltransferase, METTL3, as required to overcome floxuridine-driven cytotoxicity. Visualized with immunofluorescence, the product of METTL3 activity, N6-methyladenosine, formed nuclear foci in cells treated with floxuridine. The observed N6-methyladenosine was embedded in DNA, called 6mA, and these results were confirmed using an orthogonal approach, liquid chromatography coupled to tandem mass spectrometry. METTL3 and 6mA were required for repair of lesions driven by additional base-damaging agents, including raltitrexed, gemcitabine, and hydroxyurea. Our results establish a role for METTL3 and 6mA in promoting genome stability in mammalian cells, especially in response to base damage.
Collapse
Affiliation(s)
- Brooke A Conti
- Centers for Therapeutic Innovation, Emerging Sciences and Innovation, PfizerNew YorkUnited States
| | - Leo Novikov
- Centers for Therapeutic Innovation, Emerging Sciences and Innovation, PfizerNew YorkUnited States
| | - Deyan Tong
- Target Sciences, Emerging Sciences and Innovation, PfizerNew YorkUnited States
| | - Qing Xiang
- Target Sciences, Emerging Sciences and Innovation, PfizerNew YorkUnited States
| | - Savon Vigil
- Discovery Sciences, PfizerGrotonUnited States
| | | | | | - Nancy De La Cruz
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical CenterDallasUnited States
| | - Reshma T Veettil
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical CenterDallasUnited States
| | - Prashant Pradhan
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical CenterDallasUnited States
| | | | - Jason D Arroyo
- Target Sciences, Emerging Sciences and Innovation, PfizerCambridgeUnited States
| | - Lei Shang
- Target Sciences, Emerging Sciences and Innovation, PfizerCambridgeUnited States
| | - Benjamin R Sabari
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical CenterDallasUnited States
| | - David J Shields
- Centers for Therapeutic Innovation, Emerging Sciences and Innovation, PfizerNew YorkUnited States
| | - Mariano Oppikofer
- Centers for Therapeutic Innovation, Emerging Sciences and Innovation, PfizerNew YorkUnited States
| |
Collapse
|
86
|
Anderson PJ, Xiao P, Zhong Y, Kaakati A, Alfonso-DeSouza J, Zhang T, Zhang C, Yu K, Qi L, Ding W, Liu S, Pani B, Krishnan A, Chen O, Jassal C, Strawn J, Sun JP, Rajagopal S. β-Arrestin Condensates Regulate G Protein-Coupled Receptor Function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.05.647240. [PMID: 40236194 PMCID: PMC11996538 DOI: 10.1101/2025.04.05.647240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
G protein-coupled receptors (GPCRs) are the largest class of receptors in the genome and control many signaling cascades essential for survival. GPCR signaling is regulated by β-arrestins, multifunctional adapter proteins that direct receptor desensitization, internalization, and signaling. While at many GPCRs, β-arrestins interact with a wide array of signaling effectors, it is unclear how β-arrestins promote such varied functions. Here we show that β-arrestins undergo liquid-liquid phase separation (LLPS) to form condensates that regulate GPCR function. We demonstrate that β-arrestin oligomerization occurs in proximity to the GPCR and regulates GPCR functions such as internalization and signaling. This model is supported by a cryoEM structure of the adhesion receptor ADGRE1 in a 2:2 complex with β-arrestin 1, with a β-arrestin orientation that can promote oligomerization. Our work provides a paradigm for β-arrestin condensates as regulators of GPCR function, with LLPS serving as an important promoter of signaling compartmentalization at GPCRs.
Collapse
|
87
|
Zhan A, Zhong K, Zhang K. Novel subcellular regulatory mechanisms of protein homeostasis and its implications in amyotrophic lateral sclerosis. Biochem Biophys Res Commun 2025; 756:151582. [PMID: 40056503 DOI: 10.1016/j.bbrc.2025.151582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/26/2025] [Accepted: 03/03/2025] [Indexed: 03/10/2025]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron degenerative disorder. Protein aggregates induce various forms of neuronal dysfunction and represent pathological hallmarks in ALS patients. Reducing protein aggregates could be a promising therapeutic strategy for ALS. While most studies have focused on cytoplasmic protein homeostasis, neurons adaptively reduce aggregates across subcellular compartments during stress through previously uncharacterized mechanisms. Here, we summarize novel compartment-specific proteostatic mechanisms: (1) the ERAD/RESET pathways, (2) HSPs-mediated nuclear sequestration, (3) mitochondrial aggregate import (MAGIC), (4) neurite-localized UPS/autophagosome and NMP, and (5) exopher-mediated extracellular disposal. These mechanisms collectively ensure cellular stress adaptation and provide novel therapeutic targets for ALS treatment.
Collapse
Affiliation(s)
- Aisheng Zhan
- Institute of Translational Medicine, First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Keke Zhong
- Institute of Translational Medicine, First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Kejing Zhang
- Institute of Translational Medicine, First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China.
| |
Collapse
|
88
|
Dave R, Pandey K, Patel R, Solanki R, Gour N, Bhatia D. Phase Separation in Biological Systems: Implications for Disease Pathogenesis. Chembiochem 2025:e2400883. [PMID: 40180594 DOI: 10.1002/cbic.202400883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 04/03/2025] [Accepted: 04/03/2025] [Indexed: 04/05/2025]
Abstract
Phase separation is the phenomenon where distinct liquid phases, within solution, play a critical role in the organization and function of biomolecular condensates within cells. Dysregulation of phase separation has been implicated, which can be witnessed in various diseases including neurodegenerative disorders, metabolic syndromes, and cancer. This review provides a comprehensive analysis of the role of phase separation in disease pathogenesis, which focuses on single amino acids, carbohydrates, and nucleotides. Molecular mechanisms underlying phase separation are also discussed with specific examples of diseases associated with dysregulated phase separation. Furthermore, consideration of therapeutic strategies targeting phase separation for disease intervention is explored.
Collapse
Affiliation(s)
- Raj Dave
- Department of Chemistry, Indrashil University, Kadi, Mehsana, Gujarat, 382740, India
| | - Kshipra Pandey
- Department of Biosciences, Indrashil University, Kadi, Mehsana, Gujarat, 382740, India
| | - Ritu Patel
- Department of Biosciences, Indrashil University, Kadi, Mehsana, Gujarat, 382740, India
| | - Raghu Solanki
- Department of Biological Sciences and Engineering, Indian Institute of Technology, Palaj, Gujarat, 382355, India
| | - Nidhi Gour
- Department of Chemistry, Indrashil University, Kadi, Mehsana, Gujarat, 382740, India
| | - Dhiraj Bhatia
- Department of Biological Sciences and Engineering, Indian Institute of Technology, Palaj, Gujarat, 382355, India
| |
Collapse
|
89
|
Pérez-Sala D, Zorrilla S. Versatility of vimentin assemblies: From filaments to biomolecular condensates and back. Eur J Cell Biol 2025; 104:151487. [PMID: 40194320 DOI: 10.1016/j.ejcb.2025.151487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/26/2025] [Accepted: 03/24/2025] [Indexed: 04/09/2025] Open
Abstract
Cytoskeletal structures shape and confer resistance to cells. The intermediate filament protein vimentin forms versatile structures that play key roles in cytoskeletal crosstalk, in the integration of cellular responses to a variety of external and internal cues, and in the defense against stress. Such multifaceted roles can be fulfilled thanks to the vast variety of vimentin proteoforms, which in turn arise from the combinations of a myriad of tightly regulated posttranslational modifications. Diverse vimentin proteoforms will differentially shape its polymeric assemblies, underlying vimentin ability to organize in filaments, bundles, squiggles, droplets, cell surface-bound and/or various secreted forms. Interestingly, certain vimentin dots or droplets have been lately categorized as biomolecular condensates. Biomolecular condensates are phase-separated membraneless structures that are critical for the organization of cellular components and play important roles in pathophysiology. Recent findings have unveiled the importance of low complexity sequence domains in vimentin filament assembly. Moreover, several oxidants trigger the transition of vimentin filaments into phase-separated biomolecular condensates, a reversible process that may provide clues on the role of condensates as seeds for filament formation. Revisiting previous results in the light of recent knowledge prompts the hypothesis that vimentin condensates could play a role in traffic of filament precursors, cytoskeletal crosstalk and cellular responses to stress. Deciphering the "vimentin posttranslational modification code", that is, the structure-function relationships of vimentin proteoforms, constitutes a major challenge to understand the regulation of vimentin behavior and its multiple personalities. This will contribute to unveil essential cellular mechanisms and foster novel opportunities for drug discovery.
Collapse
Affiliation(s)
- Dolores Pérez-Sala
- Department of Molecular and Cellular Biosciences, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain.
| | - Silvia Zorrilla
- Department of Molecular and Cellular Biosciences, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| |
Collapse
|
90
|
Hashimoto Y, Shil S, Tsuruta M, Kawauchi K, Miyoshi D. Three- and four-stranded nucleic acid structures and their ligands. RSC Chem Biol 2025; 6:466-491. [PMID: 40007865 PMCID: PMC11848209 DOI: 10.1039/d4cb00287c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/18/2025] [Indexed: 02/27/2025] Open
Abstract
Nucleic acids have the potential to form not only duplexes, but also various non-canonical secondary structures in living cells. Non-canonical structures play regulatory functions mainly in the central dogma. Therefore, nucleic acid targeting molecules are potential novel therapeutic drugs that can target 'undruggable' proteins in various diseases. One of the concerns of small molecules targeting nucleic acids is selectivity, because nucleic acids have only four different building blocks. Three- and four-stranded non-canonical structures, triplexes and quadruplexes, respectively, are promising targets of small molecules because their three-dimensional structures are significantly different from the canonical duplexes, which are the most abundant in cells. Here, we describe some basic properties of the triplexes and quadruplexes and small molecules targeting the triplexes and tetraplexes.
Collapse
Affiliation(s)
- Yoshiki Hashimoto
- Frontiers of Innovative Research in Science and Technology, Konan University 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe Hyogo 650-0047 Japan
| | - Sumit Shil
- Frontiers of Innovative Research in Science and Technology, Konan University 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe Hyogo 650-0047 Japan
| | - Mitsuki Tsuruta
- Frontiers of Innovative Research in Science and Technology, Konan University 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe Hyogo 650-0047 Japan
| | - Keiko Kawauchi
- Frontiers of Innovative Research in Science and Technology, Konan University 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe Hyogo 650-0047 Japan
| | - Daisuke Miyoshi
- Frontiers of Innovative Research in Science and Technology, Konan University 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe Hyogo 650-0047 Japan
| |
Collapse
|
91
|
Wang Q, Gong Z, Zhu Z. High temperature-responsive DEAR4 condensation confers thermotolerance through recruiting TOPLESS in Arabidopsis nucleus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 122:e70172. [PMID: 40265976 DOI: 10.1111/tpj.70172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/25/2025] [Accepted: 04/08/2025] [Indexed: 04/24/2025]
Abstract
Global warming is harmful to plants and threatens crop yields in the world. In contrast to other abiotic stresses, the molecular mechanisms for plant high temperature perception and signaling are still not fully understood. Here, we report that transcription factor DREB AND EAR MOTIF PROTEIN 4 (DEAR4) positively regulates heat tolerance in Arabidopsis thaliana. We further reveal that DEAR4 proteins undergo liquid-liquid phase separation (LLPS) and high temperature could induce DEAR4 condensate formation in the nucleus. Moreover, DEAR4 recruits the transcriptional co-repressor TOPLESS (TPL) into the nuclear speckles under high temperature. The high temperature triggered DEAR4-TPL co-condensates enhance their transcriptional repression activity through modulating histone deacetylation levels of GASA5, which is a reported negative regulator of HEAT SHOCK PROTEINs (HSPs). A genome-wide transcriptional landscape study confirms that DEAR4 induces the expression of multiple HSPs. Taken together, we illustrate a transcriptional repression mechanism mediated by DEAR4 through LLPS to confer plants thermotolerance and open a new avenue for translating this knowledge into crops for improving their heat resistance.
Collapse
Affiliation(s)
- Qi Wang
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Zhen Gong
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Ziqiang Zhu
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
- State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
92
|
Zou G, Tang Y, Yang J, Fu S, Li Y, Ren X, Zhou N, Zhao W, Gao J, Ruan Z, Jiang Z. Signal-induced NLRP3 phase separation initiates inflammasome activation. Cell Res 2025:10.1038/s41422-025-01096-6. [PMID: 40164768 DOI: 10.1038/s41422-025-01096-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/03/2025] [Indexed: 04/02/2025] Open
Abstract
NLRP3 inflammasome is activated by diverse stimuli including infections, intracellular and environmental irritants. How NLRP3 senses these unrelated stimuli and what activates NLRP3 remain unknown. Here we report that signal-dependent NLRP3 phase separation initiated its activation, in which the palmitoyltransferase ZDHHC7-mediated tonic NLRP3 palmitoylation and an IDR region in the FISNA domain of NLRP3 play important roles. Moreover, three conserved hydrophobic residues in the IDR critically mediate multivalent weak interactions. NLRP3-activating stimuli including K+ efflux and NLRP3-interacting molecules imiquimod, palmitate, and cardiolipin all cause NLRP3 conformational change and induce its phase separation and activation in cells and/or in vitro. Surprisingly, amphiphilic molecules like di-alcohols used to inhibit biomolecular phase separation and chemotherapeutic drugs doxorubicin and paclitaxel activate NLRP3 independently of ZDHHC7 by directly inducing NLRP3 phase separation. Mechanistically, amphiphilic molecules decrease the solubility of both palmitoylated and non-palmitoylated NLRP3 to directly induce its phase separation and activation while NLRP3 palmitoylation reduces its solubility to some extent without activation. Therefore, ZDHHC7-mediated NLRP3 palmitoylation in resting cells licenses its activation by lowering the threshold for NLRP3 phase separation in response to any of the diverse stimuli whereas NLRP3 solubility-reducing molecules like di-alcohols and chemotherapeutic drugs activate NLRP3 directly. The signal-induced NLRP3 phase separation likely provides the simplest and most direct mechanistic basis for NLRP3 activation.
Collapse
Affiliation(s)
- Gonglu Zou
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yuluan Tang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Jie Yang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Shuo Fu
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yuheng Li
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Xuanyao Ren
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Nanhai Zhou
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Wenlong Zhao
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Juyi Gao
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Ziran Ruan
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Zhengfan Jiang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
93
|
Mayfield A, Zhang X, Efremov I, Kauffman MG, Reilly JF, Eftekharzadeh B. Corelet™ platform: Precision high throughput screening for targeted drug discovery of biomolecular condensates. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2025; 32:100224. [PMID: 40024444 DOI: 10.1016/j.slasd.2025.100224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 02/22/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
Biomolecular condensates (BMCs) are crucial for cellular organization and function, and their dysregulation is linked to neurological, oncologic and inflammatory diseases. This highlights the need for advanced investigative tools leading to targeted BMC therapeutics. To address this need, Nereid Therapeutics uses Corelet™ technology and an automated high-throughput screening (HTS) platform to precisely quantify phase separation events and identify BMC modulators for previously undruggable targets. Hundreds of thousands of small molecules have been screened utilizing Corelet technology, yielding small molecule BMC-modulating compounds which serve as the basis for the development of targeted therapies for diseases with high unmet need.
Collapse
Affiliation(s)
- Aislinn Mayfield
- Nereid Therapeutics, 451 D Street, Suite 912, Boston, MA 02210, USA
| | - Xin Zhang
- Nereid Therapeutics, 451 D Street, Suite 912, Boston, MA 02210, USA
| | - Ivan Efremov
- Nereid Therapeutics, 451 D Street, Suite 912, Boston, MA 02210, USA
| | | | - John F Reilly
- Nereid Therapeutics, 451 D Street, Suite 912, Boston, MA 02210, USA
| | | |
Collapse
|
94
|
Yang J, Wan SY, Song QY, Xie YH, Wan J, Zhou YH, Zhang ZT, Xiao YS, Li X, Chen H, Liu XR, Xu L, You HJ, Hu DS, Petersen RB, Zhang YH, Zheng L, Zhang Y, Huang K. Angiopoietin-like protein 8 directs DNA damage responses towards apoptosis by stabilizing PARP1-DNA condensates. Cell Death Differ 2025; 32:672-688. [PMID: 39592710 PMCID: PMC11982567 DOI: 10.1038/s41418-024-01422-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 11/14/2024] [Accepted: 11/20/2024] [Indexed: 11/28/2024] Open
Abstract
Upon genotoxic stresses, cells employ various DNA damage responses (DDRs), including DNA damage repair or apoptosis, to safeguard genome integrity. However, the determinants among different DDRs choices are largely unknown. Here, we report angiopoietin-like protein 8 (ANGPTL8), a secreted regulator of lipid metabolism, localizes to the nucleus and acts as a dynamic switch that directs DDRs towards apoptosis rather than DNA repair after genotoxin exposure. ANGPTL8 deficiency alleviates DNA damage and apoptosis in cells exposed to genotoxins, as well as in the liver or kidney of mice injured by hepatic ischemia/reperfusion or cisplatin treatment. Mechanistically, ANGPTL8 physically interacts with Poly (ADP-ribose) polymerase 1 (PARP1), in a PARylation-independent manner, and reduces the fluidity of PARP1-DNA condensates, thereby enhancing the pro-apoptotic accumulation of PARP1 and PAR chains on DNA lesions. However, the transcription of ANGPTL8 is gradually decreased following genotoxin treatment, partly due to downregulation of CCAAT enhancer binding protein alpha (CEBPA), presumably to avoid further cytotoxicity. Together, we provide new insights by which genotoxic stress induced DDRs are channeled to suicidal apoptosis to safeguard genome integrity.
Collapse
Affiliation(s)
- Jing Yang
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shi-Yuan Wan
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qiu-Yi Song
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yun-Hao Xie
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jun Wan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yi-Hao Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zi-Tong Zhang
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu-Shuo Xiao
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xi Li
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hong Chen
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xin-Ran Liu
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Li Xu
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hui-Juan You
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - De-Sheng Hu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
- China-Russia Medical Research Center for Stress Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Robert B Petersen
- Foundational Sciences, Central Michigan University College of Medicine, Mt. Pleasant, MI, 48858, USA
| | - Yong-Hui Zhang
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ling Zheng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yu Zhang
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Kun Huang
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Tongji-Rong Cheng Biomedical Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
95
|
Wang H, Zhao B, Zhang J, Hu Q, Zhou L, Zhang Y, Cai Y, Qu Y, Jiang T, Zhang D. N4-Acetylcytidine-Mediated CD2BP2-DT Drives YBX1 Phase Separation to Stabilize CDK1 and Promote Breast Cancer Progression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411834. [PMID: 39976088 PMCID: PMC12005790 DOI: 10.1002/advs.202411834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 02/03/2025] [Indexed: 02/21/2025]
Abstract
Long noncoding RNAs (lncRNAs) play critical roles in the initiation and progression of breast cancer. However, the specific mechanisms and biological functions of lncRNAs in breast cancer remain incompletely understood. Bioinformatics analysis identifies a novel lncRNA, CD2BP2-DT, that is overexpressed in breast cancer and correlates with adverse clinicopathological features and poor overall survival. Both in vivo and in vitro experiments demonstrate that CD2BP2-DT promotes proliferation of breast cancer cells. Mechanistically, NAT10 mediates the N4-acetylcytidine (ac4C) modification of CD2BP2-DT, enhancing its RNA stability and expression. More importantly, CD2BP2-DT enhances the stability of CDK1 mRNA by mediating YBX1 phase separation, thereby promoting the proliferation of breast cancer cells. In conclusion, the lncRNA CD2BP2-DT is identified as a crucial driver of breast cancer cell proliferation through the YBX1/CDK1 axis, highlighting its potential as a promising biomarker and therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Hongyu Wang
- Department of General SurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbin150086China
| | - Bozhi Zhao
- Department of General SurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbin150086China
| | - Jiayu Zhang
- Department of General SurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbin150086China
| | - Qunyu Hu
- Department of General SurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbin150086China
| | - Linlin Zhou
- Department of General SurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbin150086China
| | - Yinghui Zhang
- Department of General SurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbin150086China
| | - Yixin Cai
- Department of General SurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbin150086China
| | - Yuansong Qu
- Department of General SurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbin150086China
| | - Tao Jiang
- Department of General SurgeryThe Affiliated Hospital of Xuzhou Medical UniversityInstitute of Digestive DiseasesXuzhou Medical UniversityXuzhou221002China
| | - Dongwei Zhang
- Department of General SurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbin150086China
| |
Collapse
|
96
|
von Bülow S, Tesei G, Zaidi FK, Mittag T, Lindorff-Larsen K. Prediction of phase-separation propensities of disordered proteins from sequence. Proc Natl Acad Sci U S A 2025; 122:e2417920122. [PMID: 40131954 PMCID: PMC12002312 DOI: 10.1073/pnas.2417920122] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 02/12/2025] [Indexed: 03/27/2025] Open
Abstract
Phase separation is one possible mechanism governing the selective cellular enrichment of biomolecular constituents for processes such as transcriptional activation, mRNA regulation, and immune signaling. Phase separation is mediated by multivalent interactions of macromolecules including intrinsically disordered proteins and regions (IDRs). Despite considerable advances in experiments, theory, and simulations, the prediction of the thermodynamics of IDR phase behavior remains challenging. We combined coarse-grained molecular dynamics simulations and active learning to develop a fast and accurate machine learning model to predict the free energy and saturation concentration for phase separation directly from sequence. We validate the model using computational and previously measured experimental data, as well as new experimental data for six proteins. We apply our model to all 27,663 IDRs of chain length up to 800 residues in the human proteome and find that 1,420 of these (5%) are predicted to undergo homotypic phase separation with transfer free energies < -2 kBT. We use our model to understand the relationship between single-chain compaction and phase separation and find that changes from charge- to hydrophobicity-mediated interactions can break the symmetry between intra- and intermolecular interactions. We also provide proof of principle for how the model can be used in force field refinement. Our work refines and quantifies the established rules governing the connection between sequence features and phase-separation propensities, and our prediction models will be useful for interpreting and designing cellular experiments on the role of phase separation, and for the design of IDRs with specific phase-separation propensities.
Collapse
Affiliation(s)
- Sören von Bülow
- Department of Biology, Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Copenhagen2200, Denmark
| | - Giulio Tesei
- Department of Biology, Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Copenhagen2200, Denmark
| | - Fatima Kamal Zaidi
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN38105
| | - Tanja Mittag
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN38105
| | - Kresten Lindorff-Larsen
- Department of Biology, Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Copenhagen2200, Denmark
| |
Collapse
|
97
|
Jang GJ, Payne-Dwyer AL, Maple R, Wu Z, Liu F, Lopez SG, Wang Y, Fang X, Leake MC, Dean C. Modular in vivo assembly of Arabidopsis FCA oligomers into condensates competent for RNA 3' processing. EMBO J 2025; 44:2056-2074. [PMID: 39994485 PMCID: PMC11962161 DOI: 10.1038/s44318-025-00394-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 01/26/2025] [Accepted: 02/06/2025] [Indexed: 02/26/2025] Open
Abstract
Our understanding of the functional requirements underpinning biomolecular condensation in vivo is still relatively poor. The Arabidopsis RNA binding protein FLOWERING CONTROL LOCUS A (FCA) is found in liquid-like nuclear condensates that function in transcription termination, promoting proximal polyadenylation at many target genes in the Arabidopsis genome. To further understand the properties of these condensates in vivo, we used single-particle tracking experiments on FCA reporters stably expressed at endogenous levels in plant nuclei. SEC-MALS analyses suggested that FCA forms a core oligomer consistent with a size of four molecules; in vivo particle tracking indicated that this core molecule multimerizes into higher-order particles. The ensuing assemblies coalesce into macromolecular condensates via the coiled-coil protein FLL2, which is genetically required for FCA function. Accordingly, FLL2 predominately co-localizes with FCA in larger-sized condensates. A missense mutation in the FCA RRM domain, also genetically required for FCA function, reduced average size of both FCA particles and condensates, but did not perturb the core oligomer. Our work points to a modular structure for FCA condensates, involving multimerization of core oligomers assembled into functional macromolecular condensates via associated RNA and FLL2 interactions.
Collapse
Affiliation(s)
- Geng-Jen Jang
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Alex L Payne-Dwyer
- School of Physics, Engineering and Technology, University of York, York, UK
| | - Robert Maple
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Zhe Wu
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, UK
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Fuquan Liu
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, UK
- Institute of Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Sergio G Lopez
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Yanning Wang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaofeng Fang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Mark C Leake
- School of Physics, Engineering and Technology, University of York, York, UK
- Department of Biology, University of York, York, UK
| | - Caroline Dean
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, UK.
| |
Collapse
|
98
|
Sabari BR, Hyman AA, Hnisz D. Functional specificity in biomolecular condensates revealed by genetic complementation. Nat Rev Genet 2025; 26:279-290. [PMID: 39433596 DOI: 10.1038/s41576-024-00780-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2024] [Indexed: 10/23/2024]
Abstract
Biomolecular condensates are thought to create subcellular microenvironments that regulate specific biochemical activities. Extensive in vitro work has helped link condensate formation to a wide range of cellular processes, including gene expression, nuclear transport, signalling and stress responses. However, testing the relationship between condensate formation and function in cells is more challenging. In particular, the extent to which the cellular functions of condensates depend on the nature of the molecular interactions through which the condensates form is a major outstanding question. Here, we review results from recent genetic complementation experiments in cells, and highlight how genetic complementation provides important insights into cellular functions and functional specificity of biomolecular condensates. Combined with observations from human genetic disease, these experiments suggest that diverse condensate-promoting regions within cellular proteins confer different condensate compositions, biophysical properties and functions.
Collapse
Affiliation(s)
- Benjamin R Sabari
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Anthony A Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| | - Denes Hnisz
- Max Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
99
|
Liu J, Li X, Wang K, Wang T, Meng Y, Peng Z, Huang J, Huo J, Zhu X, Yang J, Fan Y, Xu F, Zhang Q, Wang Z, Wang Y, Chen H, Xu W. The splicing auxiliary factor OsU2AF35a enhances thermotolerance via protein separation and promoting proper splicing of OsHSA32 pre-mRNA in rice. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:1308-1328. [PMID: 39844526 PMCID: PMC11933845 DOI: 10.1111/pbi.14587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/20/2024] [Accepted: 12/31/2024] [Indexed: 01/24/2025]
Abstract
Heat stress significantly impacts global rice production, highlighting the critical need to understand the genetic basis of heat resistance in rice. U2AF (U2 snRNP auxiliary factor) is an essential splicing complex with critical roles in recognizing the 3'-splice site of precursor messenger RNAs (pre-mRNAs). The U2AF small subunit (U2AF35) can bind to the 3'-AG intron border and promote U2 snRNP binding to the branch-point sequences of introns through interaction with the U2AF large subunit (U2AF65). However, the functions of U2AF35 in plants are poorly understood. In this study, we discovered that the OsU2AF35a gene was vigorously induced by heat stress and could positively regulate rice thermotolerance during both the seedling and reproductive growth stages. OsU2AF35a interacts with OsU2AF65a within the nucleus, and both of them can form condensates through liquid-liquid phase separation (LLPS) following heat stress. The intrinsically disordered regions (IDR) are accountable for their LLPS. OsU2AF35a condensation is indispensable for thermotolerance. RNA-seq analysis disclosed that, subsequent to heat treatment, the expression levels of several genes associated with water deficiency and oxidative stress in osu2af35a-1 were markedly lower than those in ZH11. In accordance with this, OsU2AF35a is capable of positively regulating the oxidative stress resistance of rice. The pre-mRNAs of a considerable number of genes in the osu2af35a-1 mutant exhibited defective splicing, among which was the OsHSA32 gene. Knocking out OsHSA32 significantly reduced the thermotolerance of rice, while overexpressing OsHSA32 could partially rescue the heat sensitivity of osu2af35a-1. Together, our findings uncovered the essential role of OsU2AF35a in rice heat stress response through protein separation and regulating alternative pre-mRNA splicing.
Collapse
Affiliation(s)
- Jianping Liu
- Center for Plant Water‐use and Nutrition Regulation and College of JunCao Science and Ecology, Joint International Research Laboratory of Water and Nutrient in CropFujian Agriculture and Forestry UniversityFuzhouChina
| | - Xin Li
- Center for Plant Water‐use and Nutrition Regulation and College of JunCao Science and Ecology, Joint International Research Laboratory of Water and Nutrient in CropFujian Agriculture and Forestry UniversityFuzhouChina
| | - Ke Wang
- Institute of Resources, Environment and Soil FertilizerFujian Academy of Agricultural SciencesFuzhouChina
| | - Tao Wang
- College of Resources and EnvironmentFujian Agriculture and Forestry UniversityFuzhouChina
| | - Yang Meng
- College of Resources and EnvironmentFujian Agriculture and Forestry UniversityFuzhouChina
| | - Zhi Peng
- College of Resources and EnvironmentFujian Agriculture and Forestry UniversityFuzhouChina
| | - Jinli Huang
- College of Resources and EnvironmentFujian Agriculture and Forestry UniversityFuzhouChina
| | - Jiaohan Huo
- College of Resources and EnvironmentFujian Agriculture and Forestry UniversityFuzhouChina
| | - Xiaoqi Zhu
- Center for Plant Water‐use and Nutrition Regulation and College of JunCao Science and Ecology, Joint International Research Laboratory of Water and Nutrient in CropFujian Agriculture and Forestry UniversityFuzhouChina
| | - Jinyong Yang
- Center for Plant Water‐use and Nutrition Regulation and College of JunCao Science and Ecology, Joint International Research Laboratory of Water and Nutrient in CropFujian Agriculture and Forestry UniversityFuzhouChina
| | - Yongxi Fan
- Center for Plant Water‐use and Nutrition Regulation and College of JunCao Science and Ecology, Joint International Research Laboratory of Water and Nutrient in CropFujian Agriculture and Forestry UniversityFuzhouChina
| | - Feiyun Xu
- Center for Plant Water‐use and Nutrition Regulation and College of JunCao Science and Ecology, Joint International Research Laboratory of Water and Nutrient in CropFujian Agriculture and Forestry UniversityFuzhouChina
| | - Qian Zhang
- College of Resources and EnvironmentFujian Agriculture and Forestry UniversityFuzhouChina
| | - Zhengrui Wang
- College of Resources and EnvironmentFujian Agriculture and Forestry UniversityFuzhouChina
| | - Ya Wang
- Cereal Crops Research InstituteHenan Academy of Agricultural SciencesZhengzhouChina
| | - Hao Chen
- Rice Research InstituteGuangdong Academy of Agricultural SciencesGuangzhouChina
| | - Weifeng Xu
- Center for Plant Water‐use and Nutrition Regulation and College of JunCao Science and Ecology, Joint International Research Laboratory of Water and Nutrient in CropFujian Agriculture and Forestry UniversityFuzhouChina
| |
Collapse
|
100
|
Lalchand P, Ashley DD, Pan X. Biomolecular condensates at the plasma membrane: Insights into plant cell signaling. CURRENT OPINION IN PLANT BIOLOGY 2025; 84:102697. [PMID: 39999604 DOI: 10.1016/j.pbi.2025.102697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 01/31/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025]
Abstract
Biomolecular condensates, often formed through liquid-liquid phase separation (LLPS), are increasingly recognized as a critical mechanism for cellular compartmentalization across diverse biological systems. Although traditionally considered membrane-less entities, recent discoveries highlight their dynamic interactions with membranes, where they regulate various processes, including signal transduction. Signaling lipids are observed in condensates. Despite these advancements, our understanding of such condensates in plant biology remains limited. This review highlights recent studies involving membrane-associated condensates in plants, focusing particularly on their interactions with the plasma membrane (PM) and their potential roles in PM-based signaling.
Collapse
Affiliation(s)
- Punita Lalchand
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, M1C 1A4 Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5 Canada
| | - Didier-Deschamps Ashley
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, M1C 1A4 Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5 Canada
| | - Xue Pan
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, M1C 1A4 Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5 Canada.
| |
Collapse
|