51
|
Communication, Cross Talk, and Signal Integration in the Adult Hippocampal Neurogenic Niche. Neuron 2020; 105:220-235. [PMID: 31972145 DOI: 10.1016/j.neuron.2019.11.029] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/21/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022]
Abstract
Radial glia-like neural stem cells (RGLs) in the dentate gyrus subregion of the hippocampus give rise to dentate granule cells (DGCs) and astrocytes throughout life, a process referred to as adult hippocampal neurogenesis. Adult hippocampal neurogenesis is sensitive to experiences, suggesting that it may represent an adaptive mechanism by which hippocampal circuitry is modified in response to environmental demands. Experiential information is conveyed to RGLs, progenitors, and adult-born DGCs via the neurogenic niche that is composed of diverse cell types, extracellular matrix, and afferents. Understanding how the niche performs its functions may guide strategies to maintain its health span and provide a permissive milieu for neurogenesis. Here, we first discuss representative contributions of niche cell types to regulation of neural stem cell (NSC) homeostasis and maturation of adult-born DGCs. We then consider mechanisms by which the activity of multiple niche cell types may be coordinated to communicate signals to NSCs. Finally, we speculate how NSCs integrate niche-derived signals to govern their regulation.
Collapse
|
52
|
Quiescent Neural Stem Cells for Brain Repair and Regeneration: Lessons from Model Systems. Trends Neurosci 2020; 43:213-226. [PMID: 32209453 DOI: 10.1016/j.tins.2020.02.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/26/2020] [Accepted: 02/05/2020] [Indexed: 12/29/2022]
Abstract
Neural stem cells (NSCs) are multipotent progenitors that are responsible for producing all of the neurons and macroglia in the nervous system. In adult mammals, NSCs reside predominantly in a mitotically dormant, quiescent state, but they can proliferate in response to environmental inputs such as feeding or exercise. It is hoped that quiescent NSCs could be activated therapeutically to contribute towards repair in humans. This will require an understanding of quiescent NSC heterogeneities and regulation during normal physiology and following brain injury. Non-mammalian vertebrates (zebrafish and salamanders) and invertebrates (Drosophila) offer insights into brain repair and quiescence regulation that are difficult to obtain using rodent models alone. We review conceptual progress from these various models, a first step towards harnessing quiescent NSCs for therapeutic purposes.
Collapse
|
53
|
Lucassen PJ, Fitzsimons CP, Salta E, Maletic-Savatic M. Adult neurogenesis, human after all (again): Classic, optimized, and future approaches. Behav Brain Res 2020; 381:112458. [DOI: 10.1016/j.bbr.2019.112458] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 11/29/2019] [Accepted: 12/28/2019] [Indexed: 02/08/2023]
|
54
|
Sensory Neurons Contacting the Cerebrospinal Fluid Require the Reissner Fiber to Detect Spinal Curvature In Vivo. Curr Biol 2020; 30:827-839.e4. [PMID: 32084399 DOI: 10.1016/j.cub.2019.12.071] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/28/2019] [Accepted: 12/24/2019] [Indexed: 02/04/2023]
Abstract
Recent evidence indicates active roles for the cerebrospinal fluid (CSF) on body axis development and morphogenesis of the spine, implying CSF-contacting neurons (CSF-cNs) in the spinal cord. CSF-cNs project a ciliated apical extension into the central canal that is enriched in the channel PKD2L1 and enables the detection of spinal curvature in a directional manner. Dorsolateral CSF-cNs ipsilaterally respond to lateral bending although ventral CSF-cNs respond to longitudinal bending. Historically, the implication of the Reissner fiber (RF), a long extracellular thread in the CSF, to CSF-cN sensory functions has remained a subject of debate. Here, we reveal, using electron microscopy in zebrafish larvae, that the RF is in close vicinity with cilia and microvilli of ventral and dorsolateral CSF-cNs. We investigate in vivo the role of cilia and the RF in the mechanosensory functions of CSF-cNs by combining calcium imaging with patch-clamp recordings. We show that disruption of cilia motility affects CSF-cN sensory responses to passive and active curvature of the spinal cord without affecting the Pkd2l1 channel activity. Because ciliary defects alter the formation of the RF, we investigated whether the RF contributes to CSF-cN mechanosensitivity in vivo. Using a hypomorphic mutation in the scospondin gene that forbids the aggregation of SCO-spondin into a fiber, we demonstrate in vivo that the RF per se is critical for CSF-cN mechanosensory function. Our study uncovers that neurons contacting the cerebrospinal fluid functionally interact with the RF to detect spinal curvature in the vertebrate spinal cord.
Collapse
|
55
|
Mizrak D, Levitin HM, Delgado AC, Crotet V, Yuan J, Chaker Z, Silva-Vargas V, Sims PA, Doetsch F. Single-Cell Analysis of Regional Differences in Adult V-SVZ Neural Stem Cell Lineages. Cell Rep 2020; 26:394-406.e5. [PMID: 30625322 PMCID: PMC6368857 DOI: 10.1016/j.celrep.2018.12.044] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 11/20/2018] [Accepted: 12/11/2018] [Indexed: 12/23/2022] Open
Abstract
The ventricular-subventricular zone (V-SVZ) harbors adult neural stem cells. V-SVZ neural stem cells exhibit features of astrocytes, have a regional identity, and depending on their location in the lateral or septal wall of the lateral ventricle, generate different types of neuronal and glial progeny. We performed large-scale single-cell RNA sequencing to provide a molecular atlas of cells from the lateral and septal adult V-SVZ of male and female mice. This revealed regional and sex differences among adult V-SVZ cells. We uncovered lineage potency bias at the single-cell level among lateral and septal wall astrocytes toward neurogenesis and oligodendrogenesis, respectively. Finally, we identified transcription factor co-expression modules marking key temporal steps in neurogenic and oligodendrocyte lineage progression. Our data suggest functionally important spatial diversity in neurogenesis and oligodendrogenesis in the adult brain and reveal molecular correlates of adult NSC dormancy and lineage specialization. Mizrak et al. performed large-scale, single-cell RNA sequencing of the adult ventricular-subventricular zone neural stem cell niche. They identify regional differences between the lateral wall and septal wall, as well as sex differences in cell types and signaling pathways.
Collapse
Affiliation(s)
- Dogukan Mizrak
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Hanna Mendes Levitin
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Ana C Delgado
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Valerie Crotet
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Jinzhou Yuan
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Zayna Chaker
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | | | - Peter A Sims
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA; Sulzberger Columbia Genome Center, Columbia University Medical Center, New York, NY 10032, USA; Department of Biochemistry & Molecular Biophysics, Columbia University Medical Center, New York, NY 10032, USA.
| | - Fiona Doetsch
- Biozentrum, University of Basel, 4056 Basel, Switzerland.
| |
Collapse
|
56
|
Thouvenin O, Keiser L, Cantaut-Belarif Y, Carbo-Tano M, Verweij F, Jurisch-Yaksi N, Bardet PL, van Niel G, Gallaire F, Wyart C. Origin and role of the cerebrospinal fluid bidirectional flow in the central canal. eLife 2020; 9:e47699. [PMID: 31916933 PMCID: PMC6989091 DOI: 10.7554/elife.47699] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 01/07/2020] [Indexed: 12/22/2022] Open
Abstract
Circulation of the cerebrospinal fluid (CSF) contributes to body axis formation and brain development. Here, we investigated the unexplained origins of the CSF flow bidirectionality in the central canal of the spinal cord of 30 hpf zebrafish embryos and its impact on development. Experiments combined with modeling and simulations demonstrate that the CSF flow is generated locally by caudally-polarized motile cilia along the ventral wall of the central canal. The closed geometry of the canal imposes the average flow rate to be null, explaining the reported bidirectionality. We also demonstrate that at this early stage, motile cilia ensure the proper formation of the central canal. Furthermore, we demonstrate that the bidirectional flow accelerates the transport of particles in the CSF via a coupled convective-diffusive transport process. Our study demonstrates that cilia activity combined with muscle contractions sustain the long-range transport of extracellular lipidic particles, enabling embryonic growth.
Collapse
Affiliation(s)
- Olivier Thouvenin
- Institut du Cerveau et de la Moelle épinière (ICM), Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, AP-HP, Hôpital Pitié-SalpêtrièreParisFrance
- ESPCI Paris, PSL University, CNRS, Institut LangevinParisFrance
| | - Ludovic Keiser
- Laboratory of Fluid Mechanics and InstabilitiesÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Yasmine Cantaut-Belarif
- Institut du Cerveau et de la Moelle épinière (ICM), Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, AP-HP, Hôpital Pitié-SalpêtrièreParisFrance
| | - Martin Carbo-Tano
- Institut du Cerveau et de la Moelle épinière (ICM), Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, AP-HP, Hôpital Pitié-SalpêtrièreParisFrance
| | - Frederik Verweij
- Institute of Psychiatry and Neuroscience of Paris, Hôpital Saint-Anne, Université Descartes, INSERM U1266ParisFrance
| | - Nathalie Jurisch-Yaksi
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, The Faculty of MedicineNorwegian University of Science and TechnologyTrondheimNorway
- Department of Clinical and Molecular Medicine, The Faculty of MedicineNorwegian University of Science and TechnologyTrondheimNorway
| | - Pierre-Luc Bardet
- Institut du Cerveau et de la Moelle épinière (ICM), Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, AP-HP, Hôpital Pitié-SalpêtrièreParisFrance
| | - Guillaume van Niel
- Institute of Psychiatry and Neuroscience of Paris, Hôpital Saint-Anne, Université Descartes, INSERM U1266ParisFrance
| | - Francois Gallaire
- Laboratory of Fluid Mechanics and InstabilitiesÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Claire Wyart
- Institut du Cerveau et de la Moelle épinière (ICM), Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, AP-HP, Hôpital Pitié-SalpêtrièreParisFrance
| |
Collapse
|
57
|
Kudryashov NV, Kalinina TS, Shimshirt AA, Volkova AV, Narkevich VB, Naplekova PL, Kasabov KA, Kudrin VS, Voronina TA, Fisenko VP. The Behavioral and Neurochemical Aspects of the Interaction between Antidepressants and Unpredictable Chronic Mild Stress. Acta Naturae 2020; 12:63-72. [PMID: 32477600 PMCID: PMC7245955 DOI: 10.32607/actanaturae.10942] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/29/2020] [Indexed: 01/28/2023] Open
Abstract
The behavioral and neurochemical effects of amitriptyline (10 mg/kg, i.p.) and fluoxetine (20 mg/kg, i.p.) after single and chronic administration in the setting of unpredictable mild stress in outbred ICR (CD-1) mice were studied. After a 28-day exposure to stress, we observed an increase in depressive reaction in a forced swim test in mice, as well as reduced hippocampal levels of serotonin (5-hydroxytryptamine, 5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) and an increased hypothalamic level of noradrenaline (NA). Single and chronic administration of amitriptyline and fluoxetine shortened the immobility period and increased the time corresponding to active swimming in the forced swim test. The antidepressant-like effect of fluoxetine - but not of amitriptyline - after a single injection coincided with an increase in the 5-HT turnover in the hippocampus. Chronic administration of the antidepressants increased the hypothalamic levels of NA. Thus, the antidepressant- like effect of amitriptyline and fluoxetine may result from an enhancement of the stress-dependent adaptive mechanisms depleted by chronic stress.
Collapse
Affiliation(s)
- N. V. Kudryashov
- Federal State Budgetary Institution «Research Zakusov Institute of Pharmacology», Moscow, 125315 Russia
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119991 Russia
- N.K. Koltsov Institute of Developmental Biology RAS, Moscow, 119334 Russia
| | - T. S. Kalinina
- Federal State Budgetary Institution «Research Zakusov Institute of Pharmacology», Moscow, 125315 Russia
- N.K. Koltsov Institute of Developmental Biology RAS, Moscow, 119334 Russia
| | - A. A. Shimshirt
- Federal State Budgetary Institution «Research Zakusov Institute of Pharmacology», Moscow, 125315 Russia
| | - A. V. Volkova
- Federal State Budgetary Institution «Research Zakusov Institute of Pharmacology», Moscow, 125315 Russia
| | - V. B. Narkevich
- Federal State Budgetary Institution «Research Zakusov Institute of Pharmacology», Moscow, 125315 Russia
| | - P. L. Naplekova
- Federal State Budgetary Institution «Research Zakusov Institute of Pharmacology», Moscow, 125315 Russia
| | - K. A. Kasabov
- Federal State Budgetary Institution «Research Zakusov Institute of Pharmacology», Moscow, 125315 Russia
| | - V. S. Kudrin
- Federal State Budgetary Institution «Research Zakusov Institute of Pharmacology», Moscow, 125315 Russia
| | - T. A. Voronina
- Federal State Budgetary Institution «Research Zakusov Institute of Pharmacology», Moscow, 125315 Russia
| | - V. P. Fisenko
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119991 Russia
| |
Collapse
|
58
|
Bacigaluppi M, Sferruzza G, Butti E, Ottoboni L, Martino G. Endogenous neural precursor cells in health and disease. Brain Res 2019; 1730:146619. [PMID: 31874148 DOI: 10.1016/j.brainres.2019.146619] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/25/2019] [Accepted: 12/19/2019] [Indexed: 12/15/2022]
Abstract
Neurogenesis persists in the adult brain of mammals in the subventricular zone (SVZ) of the lateral ventricles and in the subgranular zone (SGZ) of the dentate gyrus (DG). The complex interactions between intrinsic and extrinsic signals provided by cells in the niche but also from distant sources regulate the fate of neural stem/progenitor cells (NPCs) in these sites. This fine regulation is perturbed in aging and in pathological conditions leading to a different NPC behavior, tailored to the specific physio-pathological features. Indeed, NPCs exert in physiological and pathological conditions important neurogenic and non-neurogenic regulatory functions and participate in maintaining and protecting brain tissue homeostasis. In this review, we discuss intrinsic and extrinsic signals that regulate NPC activation and NPC functional role in various homeostatic and non-homeostatic conditions.
Collapse
Affiliation(s)
- Marco Bacigaluppi
- Neuroimmunology Unit and Department of Neurology, Institute of Experimental Neurology, San Raffaele Hospital and Università Vita- Salute San Raffaele, Via Olgettina 60, 20132 Milano, Italy.
| | - Giacomo Sferruzza
- Neuroimmunology Unit and Department of Neurology, Institute of Experimental Neurology, San Raffaele Hospital and Università Vita- Salute San Raffaele, Via Olgettina 60, 20132 Milano, Italy
| | - Erica Butti
- Neuroimmunology Unit and Department of Neurology, Institute of Experimental Neurology, San Raffaele Hospital and Università Vita- Salute San Raffaele, Via Olgettina 60, 20132 Milano, Italy
| | - Linda Ottoboni
- Neuroimmunology Unit and Department of Neurology, Institute of Experimental Neurology, San Raffaele Hospital and Università Vita- Salute San Raffaele, Via Olgettina 60, 20132 Milano, Italy
| | - Gianvito Martino
- Neuroimmunology Unit and Department of Neurology, Institute of Experimental Neurology, San Raffaele Hospital and Università Vita- Salute San Raffaele, Via Olgettina 60, 20132 Milano, Italy
| |
Collapse
|
59
|
Abstract
The transition between proliferating and quiescent states must be carefully regulated to ensure that cells divide to create the cells an organism needs only at the appropriate time and place. Cyclin-dependent kinases (CDKs) are critical for both transitioning cells from one cell cycle state to the next, and for regulating whether cells are proliferating or quiescent. CDKs are regulated by association with cognate cyclins, activating and inhibitory phosphorylation events, and proteins that bind to them and inhibit their activity. The substrates of these kinases, including the retinoblastoma protein, enforce the changes in cell cycle status. Single cell analysis has clarified that competition among factors that activate and inhibit CDK activity leads to the cell's decision to enter the cell cycle, a decision the cell makes before S phase. Signaling pathways that control the activity of CDKs regulate the transition between quiescence and proliferation in stem cells, including stem cells that generate muscle and neurons. © 2020 American Physiological Society. Compr Physiol 10:317-344, 2020.
Collapse
Affiliation(s)
- Hilary A Coller
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, California, USA.,Department of Biological Chemistry, David Geffen School of Medicine, and the Molecular Biology Institute, University of California, Los Angeles, California, USA.,Molecular Biology Institute, University of California, Los Angeles, California, USA
| |
Collapse
|
60
|
Quiescence of Adult Mammalian Neural Stem Cells: A Highly Regulated Rest. Neuron 2019; 104:834-848. [DOI: 10.1016/j.neuron.2019.09.026] [Citation(s) in RCA: 225] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/05/2019] [Accepted: 09/17/2019] [Indexed: 12/14/2022]
|
61
|
Jung E, Alfonso J, Osswald M, Monyer H, Wick W, Winkler F. Emerging intersections between neuroscience and glioma biology. Nat Neurosci 2019; 22:1951-1960. [PMID: 31719671 DOI: 10.1038/s41593-019-0540-y] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 10/17/2019] [Indexed: 12/22/2022]
Abstract
The establishment of neuronal and glial networks in the brain depends on the activities of neural progenitors, which are influenced by cell-intrinsic mechanisms, interactions with the local microenvironment and long-range signaling. Progress in neuroscience has helped identify key factors in CNS development. In parallel, studies in recent years have increased our understanding of molecular and cellular factors in the development and growth of primary brain tumors. To thrive, glioma cells exploit pathways that are active in normal CNS progenitor cells, as well as in normal neurotransmitter signaling. Furthermore, tumor cells of incurable gliomas integrate into communicating multicellular networks, where they are interconnected through neurite-like cellular protrusions. In this Review, we discuss evidence that CNS development, organization and function share a number of common features with glioma progression and malignancy. These include mechanisms used by cells to proliferate and migrate, interact with their microenvironment and integrate into multicellular networks. The emerging intersections between the fields of neuroscience and neuro-oncology considered in this review point to new research directions and novel therapeutic opportunities.
Collapse
Affiliation(s)
- Erik Jung
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 400, Heidelberg, Germany.,Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Julieta Alfonso
- Department of Clinical Neurobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Matthias Osswald
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 400, Heidelberg, Germany.,Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hannah Monyer
- Department of Clinical Neurobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Clinical Neurobiology, Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Wolfgang Wick
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 400, Heidelberg, Germany.,Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Frank Winkler
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 400, Heidelberg, Germany. .,Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
62
|
Andreotti JP, Silva WN, Costa AC, Picoli CC, Bitencourt FCO, Coimbra-Campos LMC, Resende RR, Magno LAV, Romano-Silva MA, Mintz A, Birbrair A. Neural stem cell niche heterogeneity. Semin Cell Dev Biol 2019; 95:42-53. [PMID: 30639325 PMCID: PMC6710163 DOI: 10.1016/j.semcdb.2019.01.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/02/2018] [Accepted: 01/08/2019] [Indexed: 12/15/2022]
Abstract
In mammals, new neurons can be generated from neural stem cells in specific regions of the adult brain. Neural stem cells are characterized by their abilities to differentiate into all neural lineages and to self-renew. The specific microenvironments regulating neural stem cells, commonly referred to as neurogenic niches, comprise multiple cell populations whose precise contributions are under active current exploration. Understanding the cross-talk between neural stem cells and their niche components is essential for the development of therapies against neurological disorders in which neural stem cells function is altered. In this review, we describe and discuss recent studies that identified novel components in the neural stem cell niche. These discoveries bring new concepts to the field. Here, we evaluate these recent advances that change our understanding of the neural stem cell niche heterogeneity and its influence on neural stem cell function.
Collapse
Affiliation(s)
- Julia P Andreotti
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Walison N Silva
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Alinne C Costa
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Caroline C Picoli
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Flávia C O Bitencourt
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Rodrigo R Resende
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luiz A V Magno
- Department of Mental Health, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marco A Romano-Silva
- Department of Mental Health, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Akiva Mintz
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
| | - Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Department of Radiology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
63
|
Differential effects of oxytocin on olfactory, hippocampal and hypothalamic neurogenesis in adult sheep. Neurosci Lett 2019; 713:134520. [PMID: 31562884 DOI: 10.1016/j.neulet.2019.134520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 12/29/2022]
Abstract
New neurons are continuously added in the dentate gyrus of the hippocampus, the olfactory bulb and the hypothalamus of mammalian brain. In sheep, while the control of adult neurogenesis by the social environment or the photoperiod has been the subject of several studies, its regulation by intrinsic factors, like hormones or neurotransmitters is less documented. We addressed this question by investigating the effects of central oxytocin administration on hippocampal, olfactory and hypothalamic neurogenesis. Endogenous markers, Ki67, Sox2 and DCX were used to assess cell proliferation, progenitor cells density and cell survival respectively in non-gestant ewes receiving a steroid treatment followed by intracerebroventricular injections of either oxytocin or saline. The results showed that oxytocin treatment significantly decreases the density of neuroblasts in the olfactory bulb, increases the density of neuroblasts in the ventromedian nucleus of the hypothalamus while no change is observed in both ventral and dorsal dentate gyrus. In addition, no change in the density of progenitor cells is found in the three neurogenic niches. These findings show for the first time that in females, oxytocin can regulate adult neurogenesis by acting on neuroblasts but not on progenitor cells and that this regulation is region specific.
Collapse
|
64
|
Wegleiter T, Jessberger S. Sleep or deplete: how the choroid plexus helps to keep neural stem cells in balance. EMBO J 2019; 38:e103013. [PMID: 31432524 DOI: 10.15252/embj.2019103013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The activity of stem cells in the adult brain is controlled by various niche-dependent mechanisms. A new article by Lepko et al (2019) shows that proliferation of neural stem cells in the ventricular-subventricular zone is regulated by choroid plexus-derived miR-204, identifying a novel mechanism of how the delicate balance between stem cell quiescence and activation is controlled.
Collapse
Affiliation(s)
- Thomas Wegleiter
- Brain Research Institute, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
65
|
Petrik D, Encinas JM. Perspective: Of Mice and Men - How Widespread Is Adult Neurogenesis? Front Neurosci 2019; 13:923. [PMID: 31555083 PMCID: PMC6727861 DOI: 10.3389/fnins.2019.00923] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/16/2019] [Indexed: 12/16/2022] Open
Abstract
These are exciting times for research on adult hippocampal neurogenesis (AHN). Debate and controversy regarding the existence of generation of new neurons in the adult, and even diseased human brain flourishes as articles against and in favor accumulate. Adult neurogenesis in the human brain is a phenomenon that does not share the qualities of quantum mechanics. The scientific community should agree that human AHN exists or does not, but not both at the same time. In this commentary, we discuss the latest research articles about hAHN and what their findings imply for the neurogenesis field.
Collapse
Affiliation(s)
- David Petrik
- School of Biosciences, Cardiff University, Cardiff, United Kingdom.,Institute of Stem Cell Research, Helmholtz Zentrum München, Munich, Germany.,Department of Physiological Genomics, Ludwig Maximilian University of Munich, Munich, Germany
| | - Juan M Encinas
- Laboratory of Neural Stem Cells and Neurogenesis, Achucarro Basque Center for Neuroscience, Leioa, Spain.,IKERBASQUE, The Basque Foundation for Science, Bilbao, Spain.,Department of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
66
|
Michaelidesová A, Konířová J, Bartůněk P, Zíková M. Effects of Radiation Therapy on Neural Stem Cells. Genes (Basel) 2019; 10:E640. [PMID: 31450566 PMCID: PMC6770913 DOI: 10.3390/genes10090640] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/19/2019] [Accepted: 08/22/2019] [Indexed: 12/29/2022] Open
Abstract
Brain and nervous system cancers in children represent the second most common neoplasia after leukemia. Radiotherapy plays a significant role in cancer treatment; however, the use of such therapy is not without devastating side effects. The impact of radiation-induced damage to the brain is multifactorial, but the damage to neural stem cell populations seems to play a key role. The brain contains pools of regenerative neural stem cells that reside in specialized neurogenic niches and can generate new neurons. In this review, we describe the advances in radiotherapy techniques that protect neural stem cell compartments, and subsequently limit and prevent the occurrence and development of side effects. We also summarize the current knowledge about neural stem cells and the molecular mechanisms underlying changes in neural stem cell niches after brain radiotherapy. Strategies used to minimize radiation-related damages, as well as new challenges in the treatment of brain tumors are also discussed.
Collapse
Affiliation(s)
- Anna Michaelidesová
- Laboratory of Cell Differentiation, Institute of Molecular Genetics of the Czech Academy of Sciences, v. v. i., Vídeňská 1083, 142 20 Prague 4, Czech Republic
- Department of Radiation Dosimentry, Nuclear Physics Institute of the Czech Academy of Sciences, v. v. i., Na Truhlářce 39/64, 180 00 Prague 8, Czech Republic
| | - Jana Konířová
- Laboratory of Cell Differentiation, Institute of Molecular Genetics of the Czech Academy of Sciences, v. v. i., Vídeňská 1083, 142 20 Prague 4, Czech Republic
- Department of Radiation Dosimentry, Nuclear Physics Institute of the Czech Academy of Sciences, v. v. i., Na Truhlářce 39/64, 180 00 Prague 8, Czech Republic
| | - Petr Bartůněk
- Laboratory of Cell Differentiation, Institute of Molecular Genetics of the Czech Academy of Sciences, v. v. i., Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Martina Zíková
- Laboratory of Cell Differentiation, Institute of Molecular Genetics of the Czech Academy of Sciences, v. v. i., Vídeňská 1083, 142 20 Prague 4, Czech Republic.
| |
Collapse
|
67
|
Remaud S, Demeneix B. [Thyroid hormones regulate neural stem cell fate]. Biol Aujourdhui 2019; 213:7-16. [PMID: 31274098 DOI: 10.1051/jbio/2019007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Indexed: 01/02/2023]
Abstract
Thyroid hormones (THs) are vital for vertebrate brain function throughout life, from early development to ageing. Epidemiological studies show an adequate supply of maternal TH during pregnancy to be necessary for normal brain development, and this from the first trimester of onwards. Maternal TH deficiency irreversibly affects fetal brain development, increasing the risk of offspring cognitive disorders and IQ loss. Mammalian and non-mammalian (zebrafish, xenopus, chicken) models are useful to dissect TH-dependent cellular and molecular mechanisms governing embryonic and fetal brain development: a complex process including cell proliferation, survival, determination, migration, differentiation and maturation of neural stem cells (NSCs). Notably, rodent models have strongly contributed to understand the key neurogenic roles of TH still at work in adult life. Neurogenesis continues in two main areas, the sub-ventricular zone lining the lateral ventricles (essential for olfaction) and the sub-granular zone in the dentate gyrus of the hippocampus (involved in memory, learning and mood control). In both niches, THs tightly regulate the balance between neurogenesis and oligodendrogenesis under physiological and pathological contexts. Understanding how THs modulate NSCs determination toward a neuronal or a glial fate throughout life is a crucial question in neural stem cell biology. Providing answers to this question can offer therapeutic strategies for brain repair, notably in neurodegenerative diseases, demyelinating diseases or stroke where new neurons and/or oligodendrocytes are required. The review focuses on TH regulation of NSC fate in mammals and humans both during development and in the adult.
Collapse
Affiliation(s)
- Sylvie Remaud
- Muséum National d'Histoire Naturelle, CNRS UMR 7221, Laboratoire Physiologie moléculaire de l'adaptation, 7 rue Cuvier 75005 Paris, France
| | - Barbara Demeneix
- Muséum National d'Histoire Naturelle, CNRS UMR 7221, Laboratoire Physiologie moléculaire de l'adaptation, 7 rue Cuvier 75005 Paris, France
| |
Collapse
|
68
|
Andreotti JP, Lousado L, Magno LAV, Birbrair A. Hypothalamic Neurons Take Center Stage in the Neural Stem Cell Niche. Cell Stem Cell 2019; 21:293-294. [PMID: 28886362 DOI: 10.1016/j.stem.2017.08.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Neural stem cells (NSCs) are a heterogeneous population of cells that generate new neurons in adult animals. Recently in Science, Paul et al. (2017) show that hypothalamic neurons control activation of a subset of NSCs in response to feeding, providing insights into how physiological cues may influence stem cell activation.
Collapse
Affiliation(s)
- Julia P Andreotti
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luiza Lousado
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA; Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
69
|
Stratton JA, Shah P, Sinha S, Crowther E, Biernaskie J. A tale of two cousins: Ependymal cells, quiescent neural stem cells and potential mechanisms driving their functional divergence. FEBS J 2019; 286:3110-3116. [PMID: 31111999 DOI: 10.1111/febs.14930] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/20/2019] [Accepted: 05/15/2019] [Indexed: 12/18/2022]
Abstract
Recent work has suggested that stem cells exhibit far greater heterogeneity than initially thought. Indeed, their dynamic nature and shared traits with surrounding niche cells have made prospective identification of adult neural stem cells (NSCs) challenging. Refined fate mapping strategies and single-cell omics techniques have begun to clarify functionally distinct states within the adult NSC pool, the molecular signatures that govern these states, and the functional contributions/interactions with neighboring cells within the subventricular niche. Ependymal cells are the epithelial cells which line the ventricular system and reside in the same niche as NSCs. Our own work has revealed that, despite sharing similar embryonic origins with NSCs and close geographic proximity, ependymal cells are transcriptionally distinct and fail to exhibit stem cell function in vivo, even following injury. Intriguingly, comparison of ependymal cells with qNSCs revealed transcriptional signatures that are largely overlapping, suggesting that post-transcriptional regulation might underlie their divergent phenotypes. Additional analysis of ependymal versus qNSC gene regulatory network activation supports this notion. This Viewpoint summarizes the historical confusion regarding the identity of NSCs within the lateral ventricle niche and describes recent work that provides greater appreciation for the diverse functional states within the NSC niche.
Collapse
Affiliation(s)
- Jo Anne Stratton
- Hotchkiss Brain Institute, University of Calgary, Canada.,Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Canada
| | - Prajay Shah
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Canada
| | - Sarthak Sinha
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Canada
| | - Emilie Crowther
- Hotchkiss Brain Institute, University of Calgary, Canada.,Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Canada
| | - Jeff Biernaskie
- Hotchkiss Brain Institute, University of Calgary, Canada.,Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Canada
| |
Collapse
|
70
|
Kandasamy M, Yesudhas A, Poornimai Abirami GP, Radhakrishnan RK, Roshan SA, Johnson E, Ravichandran VR, Biswas A, Shanmugaapriya S, Anusuyadevi M, Aigner L. Genetic reprogramming of somatic cells into neuroblasts through a co-induction of the doublecortin gene along the Yamanaka factors: A promising approach to model neuroregenerative disorders. Med Hypotheses 2019; 127:105-111. [PMID: 31088631 DOI: 10.1016/j.mehy.2019.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/28/2019] [Accepted: 04/11/2019] [Indexed: 12/25/2022]
Abstract
Neural stem cell (NSC) mediated adult neurogenesis represents the regenerative plasticity of the brain. The functionality of the neurogenic process appears to be operated by neuroblasts, the multipotent immature neuronal population of the adult brain. While neuroblasts have been realized to play a major role in synaptic remodeling and immunogenicity, neurodegenerative disorders have been characterized by failure in the terminal differentiation, maturation, integration and survival of newborn neuroblasts. Advancement in understanding the impaired neuroregenerative process along the neuropathological conditions has currently been limited by lack of an appropriate experimental model of neuroblasts. The genetic reprogramming of somatic cells into pluripotent state offers a potential strategy for the experimental modeling of brain disorders. Thus, the induced pluripotent stem cell (iPSC) based direct reprogramming of somatic cells into neuroblasts would represent a potential tool to understand the regenerative biology of the adult brain. Therefore, this concise article discusses the significance of iPSCs, the functional roles of neuroblasts in the adult brain and provides a research hypothesis for the direct reprogramming of somatic cells into neuroblasts through the co-induction of a potential proneurogenic marker, the doublecortin (DCX) gene along with the Yamanaka factors. The proposed cellular model of adult neurogenesis may provide us with further insights into neuropathogenesis of many neurodegenerative disorders and will provide a potential experimental platform for diagnostic, drug discovery and regenerative therapeutic strategies.
Collapse
Affiliation(s)
- Mahesh Kandasamy
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India; School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India; UGC-Faculty Recharge Programme (UGC-FRP), University Grants Commission, New Delhi, India.
| | - Ajisha Yesudhas
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - G P Poornimai Abirami
- School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Risna Kanjirassery Radhakrishnan
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Syed Aasish Roshan
- Molecular Gerontology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Esther Johnson
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Vijaya Roobini Ravichandran
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Abir Biswas
- Molecular Gerontology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | | | - Muthuswamy Anusuyadevi
- School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India; Molecular Gerontology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria; Spinal Cord Injury and Tissue Regeneration Center, Salzburg, Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
71
|
Baldini G, Phelan KD. The melanocortin pathway and control of appetite-progress and therapeutic implications. J Endocrinol 2019; 241:R1-R33. [PMID: 30812013 PMCID: PMC6500576 DOI: 10.1530/joe-18-0596] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 01/22/2019] [Indexed: 12/19/2022]
Abstract
The initial discovery that ob/ob mice become obese because of a recessive mutation of the leptin gene has been crucial to discover the melanocortin pathway to control appetite. In the melanocortin pathway, the fed state is signaled by abundance of circulating hormones such as leptin and insulin, which bind to receptors expressed at the surface of pro-opiomelanocortin (POMC) neurons to promote processing of POMC to the mature hormone α-melanocyte-stimulating hormone (α-MSH). The α-MSH released by POMC neurons then signals to decrease energy intake by binding to melanocortin-4 receptor (MC4R) expressed by MC4R neurons to the paraventricular nucleus (PVN). Conversely, in the 'starved state' activity of agouti-related neuropeptide (AgRP) and of neuropeptide Y (NPY)-expressing neurons is increased by decreased levels of circulating leptin and insulin and by the orexigenic hormone ghrelin to promote food intake. This initial understanding of the melanocortin pathway has recently been implemented by the description of the complex neuronal circuit that controls the activity of POMC, AgRP/NPY and MC4R neurons and downstream signaling by these neurons. This review summarizes the progress done on the melanocortin pathway and describes how obesity alters this pathway to disrupt energy homeostasis. We also describe progress on how leptin and insulin receptors signal in POMC neurons, how MC4R signals and how altered expression and traffic of MC4R change the acute signaling and desensitization properties of the receptor. We also describe how the discovery of the melanocortin pathway has led to the use of melanocortin agonists to treat obesity derived from genetic disorders.
Collapse
Affiliation(s)
- Giulia Baldini
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Kevin D. Phelan
- Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
72
|
Obernier K, Alvarez-Buylla A. Neural stem cells: origin, heterogeneity and regulation in the adult mammalian brain. Development 2019; 146:146/4/dev156059. [PMID: 30777863 DOI: 10.1242/dev.156059] [Citation(s) in RCA: 351] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the adult rodent brain, neural stem cells (NSCs) persist in the ventricular-subventricular zone (V-SVZ) and the subgranular zone (SGZ), which are specialized niches in which young neurons for the olfactory bulb (OB) and hippocampus, respectively, are generated. Recent studies have significantly modified earlier views on the mechanisms of NSC self-renewal and neurogenesis in the adult brain. Here, we discuss the molecular control, heterogeneity, regional specification and cell division modes of V-SVZ NSCs, and draw comparisons with NSCs in the SGZ. We highlight how V-SVZ NSCs are regulated by local signals from their immediate neighbors, as well as by neurotransmitters and factors that are secreted by distant neurons, the choroid plexus and vasculature. We also review recent advances in single cell RNA analyses that reveal the complexity of adult neurogenesis. These findings set the stage for a better understanding of adult neurogenesis, a process that one day may inspire new approaches to brain repair.
Collapse
Affiliation(s)
- Kirsten Obernier
- Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, CA 94143, USA.,Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| | - Arturo Alvarez-Buylla
- Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, CA 94143, USA .,Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
73
|
Thaler DS, Head MG, Horsley A. Precision public health to inhibit the contagion of disease and move toward a future in which microbes spread health. BMC Infect Dis 2019; 19:120. [PMID: 30727964 PMCID: PMC6364421 DOI: 10.1186/s12879-019-3715-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 01/10/2019] [Indexed: 12/15/2022] Open
Abstract
Antimicrobial resistance continues to outpace the development of new chemotherapeutics. Novel pathogens continue to evolve and emerge. Public health innovation has the potential to open a new front in the war of "our wits against their genes" (Joshua Lederberg). Dense sampling coupled to next generation sequencing can increase the spatial and temporal resolution of microbial characterization while sensor technologies precisely map physical parameters relevant to microbial survival and spread. Microbial, physical, and epidemiological big data could be combined to improve prospective risk identification. However, applied in the wrong way, these approaches may not realize their maximum potential benefits and could even do harm. Minimizing microbial-human interactions would be a mistake. There is evidence that microbes previously thought of at best "benign" may actually enhance human health. Benign and health-promoting microbiomes may, or may not, spread via mechanisms similar to pathogens. Infectious vaccines are approaching readiness to make enhanced contributions to herd immunity. The rigorously defined nature of infectious vaccines contrasts with indigenous "benign or health-promoting microbiomes" but they may converge. A "microbial Neolithic revolution" is a possible future in which human microbial-associations are understood and managed analogously to the macro-agriculture of plants and animals. Tradeoffs need to be framed in order to understand health-promoting potentials of benign, and/or health-promoting microbiomes and infectious vaccines while also discouraging pathogens. Super-spreaders are currently defined as individuals who play an outsized role in the contagion of infectious disease. A key unanswered question is whether the super-spreader concept may apply similarly to health-promoting microbes. The complex interactions of individual rights, community health, pathogen contagion, the spread of benign, and of health-promoting microbiomes including infectious vaccines require study. Advancing the detailed understanding of heterogeneity in microbial spread is very likely to yield important insights relevant to public health.
Collapse
Affiliation(s)
- David S. Thaler
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| | - Michael G. Head
- Clinical Informatics Research Unit, Faculty of Medicine, University of Southampton, University Hospital Southampton, Coxford Road, Southampton, SO16 6YD UK
| | - Andrew Horsley
- Research School of Physics and Engineering, The Australian National University, Mills Rd., Canberra, ACT 2601 Australia
| |
Collapse
|
74
|
Rushing GV, Bollig MK, Ihrie RA. Heterogeneity of Neural Stem Cells in the Ventricular-Subventricular Zone. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1169:1-30. [PMID: 31487016 DOI: 10.1007/978-3-030-24108-7_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this chapter, heterogeneity is explored in the context of the ventricular-subventricular zone, the largest stem cell niche in the mammalian brain. This niche generates up to 10,000 new neurons daily in adult mice and extends over a large spatial area with dorso-ventral and medio-lateral subdivisions. The stem cells of the ventricular-subventricular zone can be subdivided by their anatomical position and transcriptional profile, and the stem cell lineage can also be further subdivided into stages of pre- and post-natal quiescence and activation. Beyond the stem cells proper, additional differences exist in their interactions with other cellular constituents of the niche, including neurons, vasculature, and cerebrospinal fluid. These variations in stem cell potential and local interactions are discussed, as well as unanswered questions within this system.
Collapse
Affiliation(s)
- Gabrielle V Rushing
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.,Neuroscience Program, Vanderbilt University, Nashville, TN, USA
| | - Madelyn K Bollig
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.,Neuroscience Program, Vanderbilt University, Nashville, TN, USA
| | - Rebecca A Ihrie
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA. .,Neuroscience Program, Vanderbilt University, Nashville, TN, USA. .,Department of Neurological Surgery, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
75
|
Katsimpardi L, Lledo PM. Regulation of neurogenesis in the adult and aging brain. Curr Opin Neurobiol 2018; 53:131-138. [DOI: 10.1016/j.conb.2018.07.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/12/2018] [Accepted: 07/16/2018] [Indexed: 12/29/2022]
|
76
|
Bardella C, Al-Shammari AR, Soares L, Tomlinson I, O'Neill E, Szele FG. The role of inflammation in subventricular zone cancer. Prog Neurobiol 2018; 170:37-52. [PMID: 29654835 DOI: 10.1016/j.pneurobio.2018.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 03/10/2018] [Accepted: 04/07/2018] [Indexed: 12/12/2022]
Abstract
The adult subventricular zone (SVZ) stem cell niche has proven vital for discovering neurodevelopmental mechanisms and holds great potential in medicine for neurodegenerative diseases. Yet the SVZ holds a dark side - it can become tumorigenic. Glioblastomas can arise from the SVZ via cancer stem cells (CSCs). Glioblastoma and other brain cancers often have dismal prognoses since they are resistant to treatment. In this review we argue that the SVZ is susceptible to cancer because it contains stem cells, migratory progenitors and unusual inflammation. Theoretically, SVZ stem cells can convert to CSCs more readily than can postmitotic neural cells. Additionally, the robust long-distance migration of SVZ progenitors can be subverted upon tumorigenesis to an infiltrative phenotype. There is evidence that the SVZ, even in health, exhibits chronic low-grade cellular and molecular inflammation. Its inflammatory response to brain injuries and disease differs from that of other brain regions. We hypothesize that the SVZ inflammatory environment can predispose cells to novel mutations and exacerbate cancer phenotypes. This can be studied in animal models in which human mutations related to cancer are knocked into the SVZ to induce tumorigenesis and the CSC immune interactions that precede full-blown cancer. Importantly inflammation can be pharmacologically modulated providing an avenue to brain cancer management and treatment. The SVZ is accessible by virtue of its location surrounding the lateral ventricles and CSCs in the SVZ can be targeted with a variety of pharmacotherapies. Thus, the SVZ can yield aggressive tumors but can be targeted via several strategies.
Collapse
Affiliation(s)
- Chiara Bardella
- Institute of Cancer and Genomics Sciences, University of Birmingham, Birmingham, UK
| | - Abeer R Al-Shammari
- Research and Development, Qatar Research Leadership Program, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Luana Soares
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK; Department of Oncology, University of Oxford, Oxford, UK
| | - Ian Tomlinson
- Institute of Cancer and Genomics Sciences, University of Birmingham, Birmingham, UK
| | - Eric O'Neill
- Department of Oncology, University of Oxford, Oxford, UK
| | - Francis G Szele
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
77
|
Janowska J, Gargas J, Ziemka-Nalecz M, Zalewska T, Buzanska L, Sypecka J. Directed glial differentiation and transdifferentiation for neural tissue regeneration. Exp Neurol 2018; 319:112813. [PMID: 30171864 DOI: 10.1016/j.expneurol.2018.08.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/10/2018] [Accepted: 08/28/2018] [Indexed: 02/06/2023]
Abstract
Glial cells which are indispensable for the central nervous system development and functioning, are proven to be vulnerable to a harmful influence of pathological cues and tissue misbalance. However, they are also highly sensitive to both in vitro and in vivo modulation of their commitment, differentiation, activity and even the fate-switch by different types of bioactive molecules. Since glial cells (comprising macroglia and microglia) are an abundant and heterogeneous population of neural cells, which are almost uniformly distributed in the brain and the spinal cord parenchyma, they all create a natural endogenous reservoir of cells for potential neurogenerative processes required to be initiated in response to pathophysiological cues present in the local tissue microenvironment. The past decade of intensive investigation on a spontaneous and enforced conversion of glial fate into either alternative glial (for instance from oligodendrocytes to astrocytes) or neuronal phenotypes, has considerably extended our appreciation of glial involvement in restoring the nervous tissue cytoarchitecture and its proper functions. The most effective modulators of reprogramming processes have been identified and tested in a series of pre-clinical experiments. A list of bioactive compounds which are potent in guiding in vivo cell fate conversion and driving cell differentiation includes a selection of transcription factors, microRNAs, small molecules, exosomes, morphogens and trophic factors, which are helpful in boosting the enforced neuro-or gliogenesis and promoting the subsequent cell maturation into desired phenotypes. Herein, an issue of their utility for a directed glial differentiation and transdifferentiation is discussed in the context of elaborating future therapeutic options aimed at restoring the diseased nervous tissue.
Collapse
Affiliation(s)
- Justyna Janowska
- Mossakowski Medical Research Centre, Polish Academy of Sciences, NeuroRepair Department, 5, Pawinskiego str., 02-106 Warsaw, Poland
| | - Justyna Gargas
- Mossakowski Medical Research Centre, Polish Academy of Sciences, NeuroRepair Department, 5, Pawinskiego str., 02-106 Warsaw, Poland
| | - Malgorzata Ziemka-Nalecz
- Mossakowski Medical Research Centre, Polish Academy of Sciences, NeuroRepair Department, 5, Pawinskiego str., 02-106 Warsaw, Poland
| | - Teresa Zalewska
- Mossakowski Medical Research Centre, Polish Academy of Sciences, NeuroRepair Department, 5, Pawinskiego str., 02-106 Warsaw, Poland
| | - Leonora Buzanska
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Stem Cell Bioengineering Unit, 5, Pawinskiego str., 02-106 Warsaw, Poland
| | - Joanna Sypecka
- Mossakowski Medical Research Centre, Polish Academy of Sciences, NeuroRepair Department, 5, Pawinskiego str., 02-106 Warsaw, Poland.
| |
Collapse
|
78
|
Cantaut-Belarif Y, Sternberg JR, Thouvenin O, Wyart C, Bardet PL. The Reissner Fiber in the Cerebrospinal Fluid Controls Morphogenesis of the Body Axis. Curr Biol 2018; 28:2479-2486.e4. [PMID: 30057305 PMCID: PMC6089837 DOI: 10.1016/j.cub.2018.05.079] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/15/2018] [Accepted: 05/25/2018] [Indexed: 01/12/2023]
Abstract
Organ development depends on the integration of coordinated long-range communication between cells. The cerebrospinal fluid composition and flow properties regulate several aspects of central nervous system development, including progenitor proliferation, neurogenesis, and migration [1-3]. One understudied component of the cerebrospinal fluid, described over a century ago in vertebrates, is the Reissner fiber. This extracellular thread forming early in development results from the assembly of the SCO-spondin protein in the third and fourth brain ventricles and central canal of the spinal cord [4]. Up to now, the function of the Reissner fiber has remained elusive, partly due to the lack of genetic invalidation models [4]. Here, by mutating the scospondin gene, we demonstrate that the Reissner fiber is critical for the morphogenesis of a straight posterior body axis. In zebrafish mutants where the Reissner fiber is lost, ciliogenesis and cerebrospinal fluid flow are intact but body axis morphogenesis is impaired. Our results also explain the frequently observed phenotype that mutant embryos with defective cilia exhibit defects in body axis curvature. Here, we reveal that these mutants systematically fail to assemble the Reissner fiber. We show that cilia promote the formation of the Reissner fiber and that the fiber is necessary for proper body axis morphogenesis. Our study sets the stage for future investigations of the mechanisms linking the Reissner fiber to the control of body axis curvature during vertebrate development.
Collapse
Affiliation(s)
- Yasmine Cantaut-Belarif
- Institut du Cerveau et de la Moelle Épinière (ICM), Inserm U 1127, CNRS UMR 7225, Sorbonne Université, 75013 Paris, France
| | - Jenna R Sternberg
- Institut du Cerveau et de la Moelle Épinière (ICM), Inserm U 1127, CNRS UMR 7225, Sorbonne Université, 75013 Paris, France
| | - Olivier Thouvenin
- Institut du Cerveau et de la Moelle Épinière (ICM), Inserm U 1127, CNRS UMR 7225, Sorbonne Université, 75013 Paris, France; Institut Langevin ESPCI, PSL Research University, CNRS UMR 7587, 1 Rue Jussieu, 75005 Paris, France
| | - Claire Wyart
- Institut du Cerveau et de la Moelle Épinière (ICM), Inserm U 1127, CNRS UMR 7225, Sorbonne Université, 75013 Paris, France.
| | - Pierre-Luc Bardet
- Institut du Cerveau et de la Moelle Épinière (ICM), Inserm U 1127, CNRS UMR 7225, Sorbonne Université, 75013 Paris, France.
| |
Collapse
|
79
|
Kandasamy M, Aigner L. Neuroplasticity, limbic neuroblastosis and neuro-regenerative disorders. Neural Regen Res 2018; 13:1322-1326. [PMID: 30106033 PMCID: PMC6108200 DOI: 10.4103/1673-5374.235214] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2018] [Indexed: 12/17/2022] Open
Abstract
The brain is a dynamic organ of the biological renaissance due to the existence of neuroplasticity. Adult neurogenesis abides by every aspect of neuroplasticity in the intact brain and contributes to neural regeneration in response to brain diseases and injury. The occurrence of adult neurogenesis has unequivocally been witnessed in human subjects, experimental and wildlife research including rodents, bats and cetaceans. Adult neurogenesis is a complex cellular process, in which generation of neuroblasts namely, neuroblastosis appears to be an integral process that occur in the limbic system and basal ganglia in addition to the canonical neurogenic niches. Neuroblastosis can be regulated by various factors and contributes to different functions of the brain. The characteristics and fate of neuroblasts have been found to be different among mammals regardless of their cognitive functions. Recently, regulation of neuroblastosis has been proposed for the sensorimotor interface and regenerative neuroplasticity of the adult brain. Hence, the understanding of adult neurogenesis at the functional level of neuroblasts requires a great scientific attention. Therefore, this mini-review provides a glimpse into the conceptual development of neuroplasticity, discusses the possible role of different types of neuroblasts and signifies neuroregenerative failure as a potential cause of dementia.
Collapse
Affiliation(s)
- Mahesh Kandasamy
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
- Faculty Recharge Programme, University Grants Commission (UGC-FRP), New Delhi, India
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Salzburg, Paracelsus Medical University, Salzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center, Salzburg, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
80
|
Adams KV, Morshead CM. Neural stem cell heterogeneity in the mammalian forebrain. Prog Neurobiol 2018; 170:2-36. [PMID: 29902499 DOI: 10.1016/j.pneurobio.2018.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 05/23/2018] [Accepted: 06/07/2018] [Indexed: 12/21/2022]
Abstract
The brain was long considered an organ that underwent very little change after development. It is now well established that the mammalian central nervous system contains neural stem cells that generate progeny that are capable of making new neurons, astrocytes, and oligodendrocytes throughout life. The field has advanced rapidly as it strives to understand the basic biology of these precursor cells, and explore their potential to promote brain repair. The purpose of this review is to present current knowledge about the diversity of neural stem cells in vitro and in vivo, and highlight distinctions between neural stem cell populations, throughout development, and within the niche. A comprehensive understanding of neural stem cell heterogeneity will provide insights into the cellular and molecular regulation of neural development and lifelong neurogenesis, and will guide the development of novel strategies to promote regeneration and neural repair.
Collapse
Affiliation(s)
- Kelsey V Adams
- Institute of Medical Science, Terrence Donnelly Centre, University of Toronto, Toronto ON, M5S 3E2, Canada.
| | - Cindi M Morshead
- Institute of Medical Science, Terrence Donnelly Centre, University of Toronto, Toronto ON, M5S 3E2, Canada; Department of Surgery, Division of Anatomy, Canada; Institute of Biomaterials and Biomedical Engineering, Canada; Rehabilitation Science Institute, University of Toronto, Canada.
| |
Collapse
|
81
|
Kolb J, Anders-Maurer M, Müller T, Hau AC, Grebbin BM, Kallenborn-Gerhardt W, Behrends C, Schulte D. Arginine Methylation Regulates MEIS2 Nuclear Localization to Promote Neuronal Differentiation of Adult SVZ Progenitors. Stem Cell Reports 2018; 10:1184-1192. [PMID: 29641989 PMCID: PMC5998649 DOI: 10.1016/j.stemcr.2018.03.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 03/12/2018] [Accepted: 03/13/2018] [Indexed: 01/19/2023] Open
Abstract
Adult neurogenesis is regulated by stem cell niche-derived extrinsic factors and cell-intrinsic regulators, yet the mechanisms by which niche signals impinge on the activity of intrinsic neurogenic transcription factors remain poorly defined. Here, we report that MEIS2, an essential regulator of adult SVZ neurogenesis, is subject to posttranslational regulation in the SVZ olfactory bulb neurogenic system. Nuclear accumulation of MEIS2 in adult SVZ-derived progenitor cells follows downregulation of EGFR signaling and is modulated by methylation of MEIS2 on a conserved arginine, which lies in close proximity to nested binding sites for the nuclear export receptor CRM1 and the MEIS dimerization partner PBX1. Methylation impairs interaction with CRM1 without affecting PBX1 dimerization and thereby allows MEIS2 nuclear accumulation, a prerequisite for neuronal differentiation. Our results describe a form of posttranscriptional modulation of adult SVZ neurogenesis whereby an extrinsic signal fine-tunes neurogenesis through posttranslational modification of a transcriptional regulator of cell fate.
Collapse
Affiliation(s)
- Jasmine Kolb
- Institute of Neurology, Edinger Institute, University Hospital Frankfurt, 60528 Frankfurt, Germany
| | - Marie Anders-Maurer
- Institute of Neurology, Edinger Institute, University Hospital Frankfurt, 60528 Frankfurt, Germany
| | - Tanja Müller
- Institute of Neurology, Edinger Institute, University Hospital Frankfurt, 60528 Frankfurt, Germany
| | - Ann-Christin Hau
- Institute of Neurology, Edinger Institute, University Hospital Frankfurt, 60528 Frankfurt, Germany
| | - Britta Moyo Grebbin
- Institute of Neurology, Edinger Institute, University Hospital Frankfurt, 60528 Frankfurt, Germany
| | | | - Christian Behrends
- Institute of Biochemistry II, University Hospital Frankfurt, 60528 Frankfurt, Germany
| | - Dorothea Schulte
- Institute of Neurology, Edinger Institute, University Hospital Frankfurt, 60528 Frankfurt, Germany.
| |
Collapse
|
82
|
Habroun SS, Schaffner AA, Taylor EN, Strand CR. Food consumption increases cell proliferation in the python brain. ACTA ACUST UNITED AC 2018; 221:jeb.173377. [PMID: 29496780 DOI: 10.1242/jeb.173377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 02/20/2018] [Indexed: 11/20/2022]
Abstract
Pythons are model organisms for investigating physiological responses to food intake. While systemic growth in response to food consumption is well documented, what occurs in the brain is currently unexplored. In this study, male ball pythons (Python regius) were used to test the hypothesis that food consumption stimulates cell proliferation in the brain. We used 5-bromo-12'-deoxyuridine (BrdU) as a cell-birth marker to quantify and compare cell proliferation in the brain of fasted snakes and those at 2 and 6 days after a meal. Throughout the telencephalon, cell proliferation was significantly increased in the 6 day group, with no difference between the 2 day group and controls. Systemic postprandial plasticity occurs quickly after a meal is ingested, during the period of active digestion; however, the brain displays a surge of cell proliferation after most digestion and absorption is complete.
Collapse
Affiliation(s)
- Stacy S Habroun
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, CA 93407-0401, USA.,Neurosciences Department, University of California-San Diego, Biomedical Research Facility, La Jolla, CA 92093, USA
| | - Andrew A Schaffner
- Statistics Department, California Polytechnic State University, San Luis Obispo, CA 93407-0405 , USA
| | - Emily N Taylor
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, CA 93407-0401, USA
| | - Christine R Strand
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, CA 93407-0401, USA
| |
Collapse
|
83
|
Káradóttir RT, Kuo CT. Neuronal Activity-Dependent Control of Postnatal Neurogenesis and Gliogenesis. Annu Rev Neurosci 2018; 41:139-161. [PMID: 29618286 DOI: 10.1146/annurev-neuro-072116-031054] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The addition of new neurons and oligodendroglia in the postnatal and adult mammalian brain presents distinct forms of gray and white matter plasticity. Substantial effort has been devoted to understanding the cellular and molecular mechanisms controlling postnatal neurogenesis and gliogenesis, revealing important parallels to principles governing the embryonic stages. While during central nervous system development, scripted temporal and spatial patterns of neural and glial progenitor proliferation and differentiation are necessary to create the nervous system architecture, it remains unclear what driving forces maintain and sustain postnatal neural stem cell (NSC) and oligodendrocyte progenitor cell (OPC) production of new neurons and glia. In recent years, neuronal activity has been identified as an important modulator of these processes. Using the distinct properties of neurotransmitter ionotropic and metabotropic channels to signal downstream cellular events, NSCs and OPCs share common features in their readout of neuronal activity patterns. Here we review the current evidence for neuronal activity-dependent control of NSC/OPC proliferation and differentiation in the postnatal brain, highlight some potential mechanisms used by the two progenitor populations, and discuss future studies that might advance these research areas further.
Collapse
Affiliation(s)
- Ragnhildur T Káradóttir
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, United Kingdom; .,Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, United Kingdom
| | - Chay T Kuo
- Departments of Cell Biology and Neurobiology, Duke University School of Medicine, Durham, North Carolina 27710, USA; .,Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina 27710, USA.,Institute for Brain Sciences, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|
84
|
Kandasamy M, Aigner L. Reactive Neuroblastosis in Huntington's Disease: A Putative Therapeutic Target for Striatal Regeneration in the Adult Brain. Front Cell Neurosci 2018; 12:37. [PMID: 29593498 PMCID: PMC5854998 DOI: 10.3389/fncel.2018.00037] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 01/31/2018] [Indexed: 01/19/2023] Open
Abstract
The cellular and molecular mechanisms underlying the reciprocal relationship between adult neurogenesis, cognitive and motor functions have been an important focus of investigation in the establishment of effective neural replacement therapies for neurodegenerative disorders. While neuronal loss, reactive gliosis and defects in the self-repair capacity have extensively been characterized in neurodegenerative disorders, the transient excess production of neuroblasts detected in the adult striatum of animal models of Huntington's disease (HD) and in post-mortem brain of HD patients, has only marginally been addressed. This abnormal cellular response in the striatum appears to originate from the selective proliferation and ectopic migration of neuroblasts derived from the subventricular zone (SVZ). Based on and in line with the term "reactive astrogliosis", we propose to name the observed cellular event "reactive neuroblastosis". Although, the functional relevance of reactive neuroblastosis is unknown, we speculate that this process may provide support for the tissue regeneration in compensating the structural and physiological functions of the striatum in lieu of aging or of the neurodegenerative process. Thus, in this review article, we comprehend different possibilities for the regulation of striatal neurogenesis, neuroblastosis and their functional relevance in the context of HD.
Collapse
Affiliation(s)
- Mahesh Kandasamy
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
- Faculty Recharge Programme, University Grants Commission (UGC-FRP), New Delhi, India
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
85
|
Ghersi-Egea JF, Strazielle N, Catala M, Silva-Vargas V, Doetsch F, Engelhardt B. Molecular anatomy and functions of the choroidal blood-cerebrospinal fluid barrier in health and disease. Acta Neuropathol 2018; 135:337-361. [PMID: 29368213 DOI: 10.1007/s00401-018-1807-1] [Citation(s) in RCA: 277] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/07/2018] [Accepted: 01/13/2018] [Indexed: 02/07/2023]
Abstract
The barrier between the blood and the ventricular cerebrospinal fluid (CSF) is located at the choroid plexuses. At the interface between two circulating fluids, these richly vascularized veil-like structures display a peculiar morphology explained by their developmental origin, and fulfill several functions essential for CNS homeostasis. They form a neuroprotective barrier preventing the accumulation of noxious compounds into the CSF and brain, and secrete CSF, which participates in the maintenance of a stable CNS internal environment. The CSF circulation plays an important role in volume transmission within the developing and adult brain, and CSF compartments are key to the immune surveillance of the CNS. In these contexts, the choroid plexuses are an important source of biologically active molecules involved in brain development, stem cell proliferation and differentiation, and brain repair. By sensing both physiological changes in brain homeostasis and peripheral or central insults such as inflammation, they also act as sentinels for the CNS. Finally, their role in the control of immune cell traffic between the blood and the CSF confers on the choroid plexuses a function in neuroimmune regulation and implicates them in neuroinflammation. The choroid plexuses, therefore, deserve more attention while investigating the pathophysiology of CNS diseases and related comorbidities.
Collapse
Affiliation(s)
- Jean-François Ghersi-Egea
- Fluid Team, Lyon Neurosciences Research Center, INSERM U1028, CNRS, UMR5292, University Lyon-1, Lyon, France.
| | - Nathalie Strazielle
- Fluid Team, Lyon Neurosciences Research Center, INSERM U1028, CNRS, UMR5292, University Lyon-1, Lyon, France
- Brain-i, Lyon, France
| | | | | | | | | |
Collapse
|
86
|
Meares GP, Rajbhandari R, Gerigk M, Tien CL, Chang C, Fehling SC, Rowse A, Mulhern KC, Nair S, Gray GK, Berbari NF, Bredel M, Benveniste EN, Nozell SE. MicroRNA-31 is required for astrocyte specification. Glia 2018; 66:987-998. [PMID: 29380422 DOI: 10.1002/glia.23296] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 10/30/2017] [Accepted: 01/08/2018] [Indexed: 12/21/2022]
Abstract
Previously, we determined microRNA-31 (miR-31) is a noncoding tumor suppressive gene frequently deleted in glioblastoma (GBM); miR-31 suppresses tumor growth, in part, by limiting the activity of NF-κB. Herein, we expand our previous studies by characterizing the role of miR-31 during neural precursor cell (NPC) to astrocyte differentiation. We demonstrate that miR-31 expression and activity is suppressed in NPCs by stem cell factors such as Lin28, c-Myc, SOX2 and Oct4. However, during astrocytogenesis, miR-31 is induced by STAT3 and SMAD1/5/8, which mediate astrocyte differentiation. We determined miR-31 is required for terminal astrocyte differentiation, and that the loss of miR-31 impairs this process and/or prevents astrocyte maturation. We demonstrate that miR-31 promotes astrocyte development, in part, by reducing the levels of Lin28, a stem cell factor implicated in NPC renewal. These data suggest that miR-31 deletions may disrupt astrocyte development and/or homeostasis.
Collapse
Affiliation(s)
- Gordon P Meares
- Departments of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, West Virginia, 26506
| | - Rajani Rajbhandari
- Departments of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| | - Magda Gerigk
- Departments of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| | - Chih-Liang Tien
- Departments of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| | - Chenbei Chang
- Departments of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| | - Samuel C Fehling
- Departments of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| | - Amber Rowse
- Departments of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| | - Kayln C Mulhern
- Departments of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| | - Sindhu Nair
- Departments of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| | - G Kenneth Gray
- Departments of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| | - Nicolas F Berbari
- Departments of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, 46202
| | - Markus Bredel
- Departments of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| | - Etty N Benveniste
- Departments of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| | - Susan E Nozell
- Departments of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| |
Collapse
|
87
|
Hamilton LK, Fernandes KJL. Neural stem cells and adult brain fatty acid metabolism: Lessons from the 3xTg model of Alzheimer's disease. Biol Cell 2017; 110:6-25. [DOI: 10.1111/boc.201700037] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 09/24/2017] [Accepted: 09/26/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Laura K. Hamilton
- Department of Neurosciences; Faculty of Medicine; University of Montreal; Montreal Canada
- The Research Center of the University of Montreal Hospital (CRCHUM); Montreal Canada
| | - Karl J. L. Fernandes
- Department of Neurosciences; Faculty of Medicine; University of Montreal; Montreal Canada
- The Research Center of the University of Montreal Hospital (CRCHUM); Montreal Canada
| |
Collapse
|
88
|
Area-Specific Regulation of Quiescent Neural Stem Cells by Notch3 in the Adult Mouse Subependymal Zone. J Neurosci 2017; 37:11867-11880. [PMID: 29101245 DOI: 10.1523/jneurosci.0001-17.2017] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 10/17/2017] [Accepted: 10/20/2017] [Indexed: 12/15/2022] Open
Abstract
In the adult mammalian brain, neural stem cells (NSCs) generate new neurons throughout the mammal's lifetime. The balance between quiescence and active cell division among NSCs is crucial in producing appropriate numbers of neurons while maintaining the stem cell pool for a long period. The Notch signaling pathway plays a central role in both maintaining quiescent NSCs (qNSCs) and promoting cell division of active NSCs (aNSCs), although no one knows how this pathway regulates these apparently opposite functions. Notch1 has been shown to promote proliferation of aNSCs without affecting qNSCs in the adult mouse subependymal zone (SEZ). In this study, we found that Notch3 is expressed to a higher extent in qNSCs than in aNSCs while Notch1 is preferentially expressed in aNSCs and transit-amplifying progenitors in the adult mouse SEZ. Furthermore, Notch3 is selectively expressed in the lateral and ventral walls of the SEZ. Knockdown of Notch3 in the lateral wall of the adult SEZ increased the division of NSCs. Moreover, deletion of the Notch3 gene resulted in significant reduction of qNSCs specifically in the lateral and ventral walls, compared with the medial and dorsal walls, of the lateral ventricles. Notch3 deletion also reduced the number of qNSCs activated after antimitotic cytosine β-D-arabinofuranoside (Ara-C) treatment. Importantly, Notch3 deletion preferentially reduced specific subtypes of newborn neurons in the olfactory bulb derived from the lateral walls of the SEZ. These results indicate that Notch isoforms differentially control the quiescent and proliferative steps of adult SEZ NSCs in a domain-specific manner.SIGNIFICANCE STATEMENT In the adult mammalian brain, the subependymal zone (SEZ) of the lateral ventricles is the largest neurogenic niche, where neural stem cells (NSCs) generate neurons. In this study, we found that Notch3 plays an important role in the maintenance of quiescent NSCs (qNSCs), while Notch1 has been reported to act as a regulator of actively cycling NSCs. Furthermore, we found that Notch3 is specifically expressed in qNSCs located in the lateral and ventral walls of the lateral ventricles and regulates neuronal production of NSCs in a region-specific manner. Our results indicate that Notch3, by maintaining the quiescence of a subpopulation of NSCs, confers a region-specific heterogeneity among NSCs in the adult SEZ.
Collapse
|
89
|
Nasello M, Schirò G, Crapanzano F, Balistreri CR. Stem Cells and Other Emerging Agents as Innovative "Drugs" in Neurodegenerative Diseases: Benefits and Limitations. Rejuvenation Res 2017; 21:123-140. [PMID: 28728479 DOI: 10.1089/rej.2017.1946] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The brain has a limited process of repair/regeneration linked to the restricted and localized activity of neuronal stem cells. Consequently, it shows a reduced capacity to counteract the age-related loss of neural and glial cells and to repair the consequent injuries/lesions of nervous system. This progressively determines nervous dysfunction and onset/progression of neurodegenerative diseases, which represent a serious social (and economic) problem of our populations. Thus, the research of efficient treatments is encouraged. Stem cell therapy might represent a solution. Today, it, indeed, represents the object of intensive research with the hope of using it, in a near future, as effective therapy for these diseases and preventive treatment in susceptible individuals. Here, we report and discuss the data of the recent studies on this field, underling the obstacles and benefits. We also illustrate alternative measures of intervention, which represent another parallel aim for the care of neurodegenerative pathology-affected individuals. Thus, the road for delaying or retarding these diseases appears hard and long, but the advances might be different.
Collapse
Affiliation(s)
- Martina Nasello
- Department of Pathobiology and Medical Biotechnologies, University of Palermo , Palermo, Italy
| | - Giuseppe Schirò
- Department of Pathobiology and Medical Biotechnologies, University of Palermo , Palermo, Italy
| | - Floriana Crapanzano
- Department of Pathobiology and Medical Biotechnologies, University of Palermo , Palermo, Italy
| | - Carmela Rita Balistreri
- Department of Pathobiology and Medical Biotechnologies, University of Palermo , Palermo, Italy
| |
Collapse
|
90
|
Regional influence. Nat Rev Neurosci 2017; 18:455. [DOI: 10.1038/nrn.2017.96] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
91
|
Regulatory Role of Redox Balance in Determination of Neural Precursor Cell Fate. Stem Cells Int 2017; 2017:9209127. [PMID: 28804501 PMCID: PMC5540383 DOI: 10.1155/2017/9209127] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 06/22/2017] [Indexed: 12/15/2022] Open
Abstract
In 1990s, reports of discovery of a small group of cells capable of proliferation and contribution to formation of new neurons in the central nervous system (CNS) reversed a century-old concept on lack of neurogenesis in the adult mammalian brain. These cells are found in all stages of human life and contribute to normal cellular turnover of the CNS. Therefore, the identity of regulating factors that affect their proliferation and differentiation is a highly noteworthy issue for basic scientists and their clinician counterparts for therapeutic purposes. The cues for such control are embedded in developmental and environmental signaling through a highly regulated tempo-spatial expression of specific transcription factors. Novel findings indicate the importance of reactive oxygen species (ROS) in the regulation of this signaling system. The elusive nature of ROS signaling in many vital processes from cell proliferation to cell death creates a complex literature in this field. Here, we discuss the emerging thoughts on the importance of redox regulation of proliferation and maintenance in mammalian neural stem and progenitor cells under physiological and pathological conditions. The current knowledge on ROS-mediated changes in redox-sensitive proteins that govern the molecular mechanisms in proliferation and differentiation of these cells is reviewed.
Collapse
|
92
|
Hauser KF, Knapp PE. Opiate Drugs with Abuse Liability Hijack the Endogenous Opioid System to Disrupt Neuronal and Glial Maturation in the Central Nervous System. Front Pediatr 2017; 5:294. [PMID: 29410949 PMCID: PMC5787058 DOI: 10.3389/fped.2017.00294] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 12/20/2017] [Indexed: 01/19/2023] Open
Abstract
The endogenous opioid system, comprised of multiple opioid neuropeptide and receptor gene families, is highly expressed by developing neural cells and can significantly influence neuronal and glial maturation. In many central nervous system (CNS) regions, the expression of opioid peptides and receptors occurs only transiently during development, effectively disappearing with subsequent maturation only to reemerge under pathologic conditions, such as with inflammation or injury. Opiate drugs with abuse liability act to modify growth and development by mimicking the actions of endogenous opioids. Although typically mediated by μ-opioid receptors, opiate drugs can also act through δ- and κ-opioid receptors to modulate growth in a cell-type, region-specific, and developmentally regulated manner. Opioids act as biological response modifiers and their actions are highly contextual, plastic, modifiable, and influenced by other physiological processes or pathophysiological conditions, such as neuro-acquired immunodeficiency syndrome. To date, most studies have considered the acute effects of opiates on cellular maturation. For example, activating opioid receptors typically results in acute growth inhibition in both neurons and glia. However, with sustained opioid exposure, compensatory factors become operative, a concept that has been largely overlooked during CNS maturation. Accordingly, this article surveys prior studies on the effects of opiates on CNS maturation, and also suggests new directions for future research in this area. Identifying the cellular and molecular mechanisms underlying the adaptive responses to chronic opiate exposure (e.g., tolerance) during maturation is crucial toward understanding the consequences of perinatal opiate exposure on the CNS.
Collapse
Affiliation(s)
- Kurt F Hauser
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.,Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.,Institute for Drug and Alcohol Studies, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Pamela E Knapp
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.,Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.,Institute for Drug and Alcohol Studies, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| |
Collapse
|