51
|
Liu L, Wang T, Yang X, Xu C, Liao Z, Wang X, Su D, Li Y, Zhou H, Qiu X, Chen Y, Huang D, Lian C, Su P. MTNR1B loss promotes chordoma recurrence by abrogating melatonin-mediated β-catenin signaling repression. J Pineal Res 2019; 67:e12588. [PMID: 31140197 DOI: 10.1111/jpi.12588] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/16/2019] [Accepted: 05/22/2019] [Indexed: 01/03/2023]
Abstract
Chordoma is an extremely rare malignant bone tumor with a high rate of relapse. While cancer stem cells (CSCs) are closely associated with tumor recurrence, which depend on its capacity to self-renew and induce chemo-/radioresistance, whether and how CSCs participate in chordoma recurrence remains unclear. The current study found that tumor cells in recurrent chordoma displayed more dedifferentiated CSC-like properties than those in corresponding primary tumor tissues. Meanwhile, MTNR1B deletion along with melatonin receptor 1B (MTNR1B) down-regulation was observed in recurrent chordoma. Further investigation revealed that activation of Gαi2 by MTNR1B upon melatonin stimulation could inhibit SRC kinase activity via recruiting CSK and SRC, increasing SRC Y530 phosphorylation, and decreasing SRC Y419 phosphorylation. This subsequently suppressed β-catenin signaling and stemness via decreasing β-catenin p-Y86/Y333/Y654. However, MTNR1B loss in chordoma mediated increased CSC properties, chemoresistance, and tumor progression by releasing melatonin's repression of β-catenin signaling. Clinically, MTNR1B deletion was found to correlate with patients' survival. Together, our study establishes a novel convergence between melatonin and β-catenin signaling pathways and reveals the significance of this cross talk in chordoma recurrence. Besides, we propose that MTNR1B is a potential biomarker for prediction of chordoma prognosis and selection of treatment options, and chordoma patients might benefit from targeting MTNR1B/Gαi2/SRC/β-catenin axis.
Collapse
MESH Headings
- Animals
- Biomarkers, Tumor/deficiency
- Biomarkers, Tumor/genetics
- Bone Neoplasms/drug therapy
- Bone Neoplasms/genetics
- Bone Neoplasms/metabolism
- Bone Neoplasms/pathology
- Cell Line, Tumor
- Chondroma/drug therapy
- Chondroma/genetics
- Chondroma/metabolism
- Chondroma/pathology
- Female
- Humans
- Melatonin/pharmacology
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Neoplasm Recurrence, Local/drug therapy
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/metabolism
- Neoplasm Recurrence, Local/pathology
- Receptor, Melatonin, MT2/deficiency
- Receptor, Melatonin, MT2/metabolism
- Signal Transduction/drug effects
- Xenograft Model Antitumor Assays
- beta Catenin/genetics
- beta Catenin/metabolism
Collapse
Affiliation(s)
- Lei Liu
- Department of Orthopaedic Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Center for Peripheral Nerve Tissue Engineering and Technology Research, Guangzhou, China
- Guangdong Province Engineering Laboratory for Soft Tissue Biofabrication, Guangzhou, China
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Tingting Wang
- Department of Orthopaedic Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoming Yang
- Department of Orthopaedic Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Caixia Xu
- Research Centre for Translational Medicine, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhiheng Liao
- Department of Orthopaedic Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xudong Wang
- Department of Spine Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Deying Su
- Department of Orthopaedic Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yongyong Li
- Research Centre for Translational Medicine, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hang Zhou
- Department of Orthopaedic Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xianjian Qiu
- Department of Spine Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuyu Chen
- Department of Orthopaedic Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dongsheng Huang
- Department of Spine Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chengjie Lian
- Department of Orthopaedic Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Peiqiang Su
- Department of Orthopaedic Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Center for Peripheral Nerve Tissue Engineering and Technology Research, Guangzhou, China
- Guangdong Province Engineering Laboratory for Soft Tissue Biofabrication, Guangzhou, China
| |
Collapse
|
52
|
Küppers J, Benkel T, Annala S, Schnakenburg G, Kostenis E, Gütschow M. BIM-46174 fragments as potential ligands of G proteins. MEDCHEMCOMM 2019; 10:1838-1843. [PMID: 32180917 DOI: 10.1039/c9md00269c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/16/2019] [Indexed: 12/31/2022]
Abstract
The 5,6,7,8-tetrahydroimidazo[1,2-a]pyrazine derivative BIM-46174 has received attention as Gαq inhibitor. We conducted structural reductions to monocyclic and bicyclic substructures to explore the chemical space of BIM fragments and to gain insights into the pharmacophore of BIM-type Gαq inhibitors. Two piperazin-2-one-containing fragments and a small library of bicyclic lactams featuring fused pyrazine and diazepine rings were synthesized and evaluated. The results of a second messenger-based cellular assay indicate that the entire BIM structure is required for efficient Gαq inhibition.
Collapse
Affiliation(s)
- Jim Küppers
- Pharmaceutical Institute , Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , 53121 Bonn , Germany .
| | - Tobias Benkel
- Molecular, Cellular and Pharmacobiology Section , Institute for Pharmaceutical Biology , University of Bonn , Nussallee 6 , 53115 Bonn , Germany.,Research Training Group 1873 , University of Bonn , Bonn , Germany
| | - Suvi Annala
- Molecular, Cellular and Pharmacobiology Section , Institute for Pharmaceutical Biology , University of Bonn , Nussallee 6 , 53115 Bonn , Germany
| | - Gregor Schnakenburg
- Institute of Inorganic Chemistry , University of Bonn , Gerhard-Domagk-Str. 1 , 53121 Bonn , Germany
| | - Evi Kostenis
- Molecular, Cellular and Pharmacobiology Section , Institute for Pharmaceutical Biology , University of Bonn , Nussallee 6 , 53115 Bonn , Germany
| | - Michael Gütschow
- Pharmaceutical Institute , Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , 53121 Bonn , Germany .
| |
Collapse
|
53
|
Klosen P, Lapmanee S, Schuster C, Guardiola B, Hicks D, Pevet P, Felder-Schmittbuhl MP. MT1 and MT2 melatonin receptors are expressed in nonoverlapping neuronal populations. J Pineal Res 2019; 67:e12575. [PMID: 30937953 DOI: 10.1111/jpi.12575] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/07/2019] [Accepted: 03/25/2019] [Indexed: 12/15/2022]
Abstract
Melatonin (MLT) exerts its physiological effects principally through two high-affinity membrane receptors MT1 and MT2. Understanding the exact mechanism of MLT action necessitates the use of highly selective agonists/antagonists to stimulate/inhibit a given MLT receptor. The respective distribution of MT1 and MT2 within the CNS and elsewhere is controversial, and here we used a "knock-in" strategy replacing MT1 or MT2 coding sequences with a LacZ reporter. The data show striking differences in the distribution of MT1 and MT2 receptors in the mouse brain: whereas the MT1 subtype was expressed in very few structures (notably including the suprachiasmatic nucleus and pars tuberalis), MT2 subtype receptors were identified within numerous brain regions including the olfactory bulb, forebrain, hippocampus, amygdala and superior colliculus. Co-expression of the two subtypes was observed in very few structures, and even within these areas they were rarely present in the same individual cell. In conclusion, the expression and distribution of MT2 receptors are much more widespread than previously thought, and there is virtually no correspondence between MT1 and MT2 cellular expression. The precise phenotyping of cells/neurons containing MT1 or MT2 receptor subtypes opens new perspectives for the characterization of links between MLT brain targets, MLT actions and specific MLT receptor subtypes.
Collapse
Affiliation(s)
- Paul Klosen
- Institute for Cellular and Integrative Neurosciences (UPR 3212), CNRS and University of Strasbourg, Strasbourg, France
| | - Sarawut Lapmanee
- Institute for Cellular and Integrative Neurosciences (UPR 3212), CNRS and University of Strasbourg, Strasbourg, France
| | | | | | - David Hicks
- Institute for Cellular and Integrative Neurosciences (UPR 3212), CNRS and University of Strasbourg, Strasbourg, France
| | - Paul Pevet
- Institute for Cellular and Integrative Neurosciences (UPR 3212), CNRS and University of Strasbourg, Strasbourg, France
| | | |
Collapse
|
54
|
Melatonin MT1 receptor as a novel target in neuropsychopharmacology: MT1 ligands, pathophysiological and therapeutic implications, and perspectives. Pharmacol Res 2019; 144:343-356. [DOI: 10.1016/j.phrs.2019.04.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/06/2019] [Accepted: 04/11/2019] [Indexed: 12/15/2022]
|
55
|
Felder-Schmittbuhl MP, Buhr ED, Dkhissi-Benyahya O, Hicks D, Peirson SN, Ribelayga CP, Sandu C, Spessert R, Tosini G. Ocular Clocks: Adapting Mechanisms for Eye Functions and Health. Invest Ophthalmol Vis Sci 2019; 59:4856-4870. [PMID: 30347082 PMCID: PMC6181243 DOI: 10.1167/iovs.18-24957] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Vision is a highly rhythmic function adapted to the extensive changes in light intensity occurring over the 24-hour day. This adaptation relies on rhythms in cellular and molecular processes, which are orchestrated by a network of circadian clocks located within the retina and in the eye, synchronized to the day/night cycle and which, together, fine-tune detection and processing of light information over the 24-hour period and ensure retinal homeostasis. Systematic or high throughput studies revealed a series of genes rhythmically expressed in the retina, pointing at specific functions or pathways under circadian control. Conversely, knockout studies demonstrated that the circadian clock regulates retinal processing of light information. In addition, recent data revealed that it also plays a role in development as well as in aging of the retina. Regarding synchronization by the light/dark cycle, the retina displays the unique property of bringing together light sensitivity, clock machinery, and a wide range of rhythmic outputs. Melatonin and dopamine play a particular role in this system, being both outputs and inputs for clocks. The retinal cellular complexity suggests that mechanisms of regulation by light are diverse and intricate. In the context of the whole eye, the retina looks like a major determinant of phase resetting for other tissues such as the retinal pigmented epithelium or cornea. Understanding the pathways linking the cell-specific molecular machineries to their cognate outputs will be one of the major challenges for the future.
Collapse
Affiliation(s)
- Marie-Paule Felder-Schmittbuhl
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives (UPR 3212), Strasbourg, France
| | - Ethan D Buhr
- Department of Ophthalmology, University of Washington Medical School, Seattle, Washington, United States
| | - Ouria Dkhissi-Benyahya
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - David Hicks
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives (UPR 3212), Strasbourg, France
| | - Stuart N Peirson
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Christophe P Ribelayga
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, United States
| | - Cristina Sandu
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives (UPR 3212), Strasbourg, France
| | - Rainer Spessert
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Gianluca Tosini
- Neuroscience Institute and Department of Pharmacology & Toxicology, Morehouse School of Medicine, Atlanta, Georgia, United States
| |
Collapse
|
56
|
Moreno E, Cavic M, Krivokuca A, Casadó V, Canela E. The Endocannabinoid System as a Target in Cancer Diseases: Are We There Yet? Front Pharmacol 2019; 10:339. [PMID: 31024307 PMCID: PMC6459931 DOI: 10.3389/fphar.2019.00339] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 03/19/2019] [Indexed: 12/15/2022] Open
Abstract
The endocannabinoid system (ECS) has been placed in the anti-cancer spotlight in the last decade. The immense data load published on its dual role in both tumorigenesis and inhibition of tumor growth and metastatic spread has transformed the cannabinoid receptors CB1 (CB1R) and CB2 (CB2R), and other members of the endocannabinoid-like system, into attractive new targets for the treatment of various cancer subtypes. Although the clinical use of cannabinoids has been extensively documented in the palliative setting, clinical trials on their application as anti-cancer drugs are still ongoing. As drug repurposing is significantly faster and more economical than de novo introduction of a new drug into the clinic, there is hope that the existing pharmacokinetic and safety data on the ECS ligands will contribute to their successful translation into oncological healthcare. CB1R and CB2R are members of a large family of membrane proteins called G protein-coupled receptors (GPCR). GPCRs can form homodimers, heterodimers and higher order oligomers with other GPCRs or non-GPCRs. Currently, several CB1R and CB2R-containing heteromers have been reported and, in cancer cells, CB2R form heteromers with the G protein-coupled chemokine receptor CXCR4, the G protein-coupled receptor 55 (GPR55) and the tyrosine kinase receptor (TKR) human V-Erb-B2 Avian Erythroblastic Leukemia Viral Oncogene Homolog 2 (HER2). These protein complexes possess unique pharmacological and signaling properties, and their modulation might affect the antitumoral activity of the ECS. This review will explore the potential of the endocannabinoid network in the anti-cancer setting as well as the clinical and ethical pitfalls behind it, and will develop on the value of cannabinoid receptor heteromers as potential new targets for anti-cancer therapies and as prognostic biomarkers.
Collapse
Affiliation(s)
- Estefanía Moreno
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Milena Cavic
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Ana Krivokuca
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Vicent Casadó
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Enric Canela
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
57
|
Mel1c Mediated Monochromatic Light-Stimulated IGF-I Synthesis through the Intracellular G αq/PKC/ERK Signaling Pathway. Int J Mol Sci 2019; 20:ijms20071682. [PMID: 30987295 PMCID: PMC6480035 DOI: 10.3390/ijms20071682] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/09/2019] [Accepted: 03/29/2019] [Indexed: 02/06/2023] Open
Abstract
Previous studies have demonstrated that monochromatic light affects plasma melatonin (MEL) levels, which in turn regulates hepatic insulin-like growth factor I (IGF-I) secretion via the Mel1c receptor. However, the intracellular signaling pathway initiated by Mel1c remains unclear. In this study, newly hatched broilers, including intact, sham operation, and pinealectomy groups, were exposed to either white (WL), red (RL), green (GL), or blue (BL) light for 14 days. Experiments in vivo showed that GL significantly promoted plasma MEL formation, which was accompanied by an increase in the MEL receptor, Mel1c, as well as phosphorylated extracellular regulated protein kinases (p-ERK1/2), and IGF-I expression in the liver, compared to the other light-treated groups. In contrast, this GL stimulation was attenuated by pinealectomy. Exogenous MEL elevated the hepatocellular IGF-I level, which is consistent with increases in cyclic adenosine monophosphate (cAMP), Gαq, phosphorylated protein kinase C (p-PKC), and p-ERK1/2 expression. However, the Mel1c selective antagonist prazosin suppressed the MEL-induced expression of IGF-I, Gαq, p-PKC, and p-ERK1/2, while the cAMP concentration was barely affected. In addition, pretreatment with Ym254890 (a Gαq inhibitor), Go9863 (a PKC inhibitor), and PD98059 (an ERK1/2 inhibitor) markedly attenuated MEL-stimulated IGF-I expression and p-ERK1/2 activity. These results indicate that Mel1c mediates monochromatic GL-stimulated IGF-I synthesis through intracellular Gαq/PKC/ERK signaling.
Collapse
|
58
|
Gao Y, Wu X, Zhao S, Zhang Y, Ma H, Yang Z, Yang W, Zhao C, Wang L, Zhang Q. Melatonin receptor depletion suppressed hCG-induced testosterone expression in mouse Leydig cells. Cell Mol Biol Lett 2019; 24:21. [PMID: 30915128 PMCID: PMC6416941 DOI: 10.1186/s11658-019-0147-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 03/04/2019] [Indexed: 12/22/2022] Open
Abstract
Melatonin receptors MT1 and MT2 (genes officially named MTNR1A and MTNR1B, respectively) play crucial roles in melatonin-mediated regulation of circadian rhythms, the immune system, and control of reproduction in seasonally breeding animals. In this study, immunolocalization assay showed that MT1 and MT2 are highly expressed in Leydig cell membrane. To understand the biological function of melatonin receptors in hCG-induced testosterone synthesis, we generated melatonin receptor knockdown cells using specific siRNA and performed testosterone detection after hCG treatment. We found that knockdown of melatonin receptors, especially MTNR1A, led to an obvious decrease (> 60%) of testosterone level. Our further study revealed that knockdown of melatonin receptors repressed expression, at both the mRNA level and the protein level, of key steroidogenic genes, such as p450scc, p450c17 and StAR, which are essential for testosterone synthesis. hCG triggered endoplasmic reticulum (ER) stress to regulate steroidogenic genes' expression and apoptosis. To further investigate the potential roles of melatonin receptors in hCG-induced regulation of ER stress and apoptosis, we examined expression of some crucial ER stress markers, including Grp78, Chop, ATF4, Xbp1, and IRE1. We found that inhibition of melatonin receptors increased hCG-induced expression of Grp78, Chop and ATF4, but not Xbp1 and IRE1, suggesting that hCG may modulate IRE1 signaling pathways in a melatonin receptor-dependent manner. In addition, our further data showed that knockdown of MTNR1A and MTNR1B promoted hCG-induced expression of apoptosis markers, including p53, caspase-3 and Bcl-2. These results suggested that the melatonin receptors MTNR1A and MTNR1B are essential to repress hCG-induced ER stress and cell apoptosis. Our studies demonstrated that the mammalian melatonin receptors MT1 and MT2 are involved in testosterone synthesis via mediating multiple cell pathways.
Collapse
Affiliation(s)
- Yuan Gao
- 1College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070 Gansu China
| | - Xiaochun Wu
- 2College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu China
| | - Shuqin Zhao
- 1College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070 Gansu China
| | - Yujun Zhang
- 1College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070 Gansu China
| | - Hailong Ma
- 1College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070 Gansu China
| | - Zhen Yang
- 1College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070 Gansu China
| | - Wanghao Yang
- 1College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070 Gansu China
| | - Chen Zhao
- 1College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070 Gansu China
| | - Li Wang
- 1College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070 Gansu China
| | - Quanwei Zhang
- 1College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070 Gansu China.,2College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu China
| |
Collapse
|
59
|
Gobbi G, Comai S. Differential Function of Melatonin MT 1 and MT 2 Receptors in REM and NREM Sleep. Front Endocrinol (Lausanne) 2019; 10:87. [PMID: 30881340 PMCID: PMC6407453 DOI: 10.3389/fendo.2019.00087] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/31/2019] [Indexed: 11/13/2022] Open
Abstract
The pathophysiological function of the G-protein coupled melatonin MT1 and MT2 receptors has not yet been well-clarified. Recent advancements using selective MT1/ MT2 receptor ligands and MT1/MT2 receptor knockout mice have suggested that the activation of the MT1 receptors are mainly implicated in the regulation of rapid eye movement (REM) sleep, whereas the MT2 receptors selectively increase non-REM (NREM) sleep. Studies in mutant mice show that MT1 knockout mice have an increase in NREM sleep and a decrease in REM sleep, while MT2 knockout mice a decrease in NREM sleep. The localization of MT1 receptors is also distinct from MT2 receptors; for example, MT2 receptors are located in the reticular thalamus (NREM area), while the MT1 receptors in the Locus Coeruleus and lateral hypothalamus (REM areas). Altogether, these findings suggest that these two receptors not only have a very specialized function in sleep, but that they may also modulate opposing effects. These data also suggest that mixed MT1-MT2 receptors ligands are not clinically recommended given their opposite roles in physiological functions, confirmed by the modest effects of melatonin or MT1/MT2 non-selective agonists when used in both preclinical and clinical studies as hypnotic drugs. In sum, MT1 and MT2 receptors have specific roles in the modulation of sleep, and consequently, selective ligands with agonist, antagonist, or partial agonist properties could have therapeutic potential for sleep; while the MT2 agonists or partial agonists might be indicated for NREM-related sleep and/or anxiety disorders, the MT1 agonists or partial agonists might be so for REM-related sleep disorders. Furthermore, MT1 but not MT2 receptors seem involved in the regulation of the circadian rhythm. Future research will help further develop MT1 and/or MT2 receptors as targets for neuropsychopharmacology drug development.
Collapse
Affiliation(s)
- Gabriella Gobbi
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Stefano Comai
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, QC, Canada
- San Raffaele Scientific Institute and Vita Salute University, Milan, Italy
| |
Collapse
|
60
|
Cecon E, Ivanova A, Luka M, Gbahou F, Friederich A, Guillaume JL, Keller P, Knoch K, Ahmad R, Delagrange P, Solimena M, Jockers R. Detection of recombinant and endogenous mouse melatonin receptors by monoclonal antibodies targeting the C-terminal domain. J Pineal Res 2019; 66:e12540. [PMID: 30475390 DOI: 10.1111/jpi.12540] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/04/2018] [Accepted: 11/16/2018] [Indexed: 02/06/2023]
Abstract
Melatonin receptors play important roles in the regulation of circadian and seasonal rhythms, sleep, retinal functions, the immune system, depression, and type 2 diabetes development. Melatonin receptors are approved drug targets for insomnia, non-24-hour sleep-wake disorders, and major depressive disorders. In mammals, two melatonin receptors (MTRs) exist, MT1 and MT2 , belonging to the G protein-coupled receptor (GPCR) superfamily. Similar to most other GPCRs, reliable antibodies recognizing melatonin receptors proved to be difficult to obtain. Here, we describe the development of the first monoclonal antibodies (mABs) for mouse MT1 and MT2 . Purified antibodies were extensively characterized for specific reactivity with mouse, rat, and human MT1 and MT2 by Western blot, immunoprecipitation, immunofluorescence, and proximity ligation assay. Several mABs were specific for either mouse MT1 or MT2 . None of the mABs cross-reacted with rat MTRs, and some were able to react with human MTRs. The specificity of the selected mABs was validated by immunofluorescence microscopy in three established locations (retina, suprachiasmatic nuclei, pituitary gland) for MTR expression in mice using MTR-KO mice as control. MT2 expression was not detected in mouse insulinoma MIN6 cells or pancreatic beta-cells. Collectively, we report the first monoclonal antibodies recognizing recombinant and native mouse melatonin receptors that will be valuable tools for future studies.
Collapse
Affiliation(s)
- Erika Cecon
- Inserm U1016, Institut Cochin, Paris, France
- CNRS UMR 8104, Paris, France
- Sorbonne Paris Cité, Univ. Paris Descartes, Paris, France
| | - Anna Ivanova
- Molecular Diabetology, Faculty of Medicine, University Hospital, TU Dresden, Dresden, Germany
- Faculty of Medicine, Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD), Munich Neuherberg, Germany
| | - Marine Luka
- Inserm U1016, Institut Cochin, Paris, France
- CNRS UMR 8104, Paris, France
- Sorbonne Paris Cité, Univ. Paris Descartes, Paris, France
| | - Florence Gbahou
- Inserm U1016, Institut Cochin, Paris, France
- CNRS UMR 8104, Paris, France
- Sorbonne Paris Cité, Univ. Paris Descartes, Paris, France
| | - Anne Friederich
- Molecular Diabetology, Faculty of Medicine, University Hospital, TU Dresden, Dresden, Germany
- Faculty of Medicine, Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD), Munich Neuherberg, Germany
| | - Jean-Luc Guillaume
- Inserm U1016, Institut Cochin, Paris, France
- CNRS UMR 8104, Paris, France
- Sorbonne Paris Cité, Univ. Paris Descartes, Paris, France
| | - Patrick Keller
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany
| | - Klaus Knoch
- Molecular Diabetology, Faculty of Medicine, University Hospital, TU Dresden, Dresden, Germany
- Faculty of Medicine, Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD), Munich Neuherberg, Germany
| | - Raise Ahmad
- Inserm U1016, Institut Cochin, Paris, France
- CNRS UMR 8104, Paris, France
- Sorbonne Paris Cité, Univ. Paris Descartes, Paris, France
| | - Philippe Delagrange
- Pôle d'Innovation Thérapeutique Neuropsychiatrie, Institut de Recherches Servier, Croissy, France
| | - Michele Solimena
- Molecular Diabetology, Faculty of Medicine, University Hospital, TU Dresden, Dresden, Germany
- Faculty of Medicine, Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD), Munich Neuherberg, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany
| | - Ralf Jockers
- Inserm U1016, Institut Cochin, Paris, France
- CNRS UMR 8104, Paris, France
- Sorbonne Paris Cité, Univ. Paris Descartes, Paris, France
| |
Collapse
|
61
|
Cortés A, Casadó-Anguera V, Moreno E, Casadó V. The heterotetrameric structure of the adenosine A 1-dopamine D 1 receptor complex: Pharmacological implication for restless legs syndrome. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2019; 84:37-78. [PMID: 31229177 DOI: 10.1016/bs.apha.2019.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Dopaminergic and purinergic signaling play a pivotal role in neurological diseases associated with motor symptoms, including Parkinson's disease (PD), multiple sclerosis, amyotrophic lateral sclerosis, Huntington disease, Restless Legs Syndrome (RLS), spinal cord injury (SCI), and ataxias. Extracellular dopamine and adenosine exert their functions interacting with specific dopamine (DR) or adenosine (AR) receptors, respectively, expressed on the surface of target cells. These receptors are members of the family A of G protein-coupled receptors (GPCRs), which is the largest protein superfamily in mammalian genomes. GPCRs are target of about 40% of all current marketed drugs, highlighting their importance in clinical medicine. The striatum receives the densest dopamine innervations and contains the highest density of dopamine receptors. The modulatory role of adenosine on dopaminergic transmission depends largely on the existence of antagonistic interactions mediated by specific subtypes of DRs and ARs, the so-called A2AR-D2R and A1R-D1R interactions. Due to the dopamine/adenosine antagonism in the CNS, it was proposed that ARs and DRs could form heteromers in the neuronal cell surface. Therefore, adenosine can affect dopaminergic signaling through receptor-receptor interactions and by modulations in their shared intracellular pathways in the striatum and spinal cord. In this work we describe the allosteric modulations between GPCR protomers, focusing in those of adenosine and dopamine within the A1R-D1R heteromeric complex, which is involved in RLS. We also propose that the knowledge about the intricate allosteric interactions within the A1R-D1R heterotetramer, may facilitate the treatment of motor alterations, not only when the dopamine pathway is hyperactivated (RLS, chorea, etc.) but also when motor function is decreased (SCI, aging, PD, etc.).
Collapse
Affiliation(s)
- Antoni Cortés
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain; Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Verònica Casadó-Anguera
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain; Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Estefanía Moreno
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain; Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Vicent Casadó
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain; Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
62
|
Abstract
Despite considerable advances in the past few years, obesity and type 2 diabetes mellitus (T2DM) remain two major challenges for public health systems globally. In the past 9 years, genome-wide association studies (GWAS) have established a major role for genetic variation within the MTNR1B locus in regulating fasting plasma levels of glucose and in affecting the risk of T2DM. This discovery generated a major interest in the melatonergic system, in particular the melatonin MT2 receptor (which is encoded by MTNR1B). In this Review, we discuss the effect of melatonin and its receptors on glucose homeostasis, obesity and T2DM. Preclinical and clinical post-GWAS evidence of frequent and rare variants of the MTNR1B locus confirmed its importance in regulating glucose homeostasis and T2DM risk with minor effects on obesity. However, these studies did not solve the question of whether melatonin is beneficial or detrimental, an issue that will be discussed in the context of the peculiarities of the melatonergic system. Melatonin receptors might have therapeutic potential as they belong to the highly druggable G protein-coupled receptor superfamily. Clarifying the precise role of melatonin and its receptors on glucose homeostasis is urgent, as melatonin is widely used for other indications, either as a prescribed medication or as a supplement without medical prescription, in many countries in Europe and in the USA.
Collapse
Affiliation(s)
- Angeliki Karamitri
- Inserm, U1016, Institut Cochin, Paris, France
- CNRS UMR 8104, Paris, France
- Université Paris Descartes, Université Sorbonne Paris Cité, Paris, France
| | - Ralf Jockers
- Inserm, U1016, Institut Cochin, Paris, France.
- CNRS UMR 8104, Paris, France.
- Université Paris Descartes, Université Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
63
|
Karamitri A, Sadek MS, Journé AS, Gbahou F, Gerbier R, Osman MB, Habib SAM, Jockers R, Zlotos DP. O-linked melatonin dimers as bivalent ligands targeting dimeric melatonin receptors. Bioorg Chem 2019; 85:349-356. [PMID: 30658234 DOI: 10.1016/j.bioorg.2019.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/30/2018] [Accepted: 01/02/2019] [Indexed: 12/17/2022]
Abstract
A series of dimeric melatonin analogues 3a-e obtained by connecting two melatonin molecules through the methoxy oxygen atoms with spacers spanning 16-24 atoms and the agomelatine dimer 7 were synthesized and characterized in 2-[125-I]-iodomelatonin binding assays, bioluminescence resonance energy transfer (BRET) experiments, and in functional cAMP and β-arrestin recruitment assays at MT1 and MT2 receptors. The binding affinity of 3a-e generally increased with increasing linker length. Bivalent ligands 3a-e increased BRET signals of MT1 dimers up to 3-fold compared to the monomeric control ligand indicating the simultaneous binding of the two pharmacophores to dimeric receptors. Bivalent ligands 3c and 7 exhibited important changes in functional properties on the Gi/cAMP pathway but not on the β-arrestin pathway compared to their monomeric counterparts. Interestingly, 3c (20 atoms spacer) shows inverse agonistic properties at MT2 on the Gi/cAMP pathway. In conclusion, these findings indicate that O-linked melatonin dimers are promising tools to develop signaling pathway-based bivalent melatonin receptor ligands.
Collapse
Affiliation(s)
- Angeliki Karamitri
- Inserm, U1016, Institut Cochin, Paris, France; CNRS UMR 8104, Paris, France; Univ. Paris Descartes, Sorbonne Paris Cite, Paris, France
| | - Mirna S Sadek
- The German University in Cairo, Department of Pharmaceutical Chemistry, New Cairo City, 11835 Cairo, Egypt.
| | - Anne-Sophie Journé
- Inserm, U1016, Institut Cochin, Paris, France; CNRS UMR 8104, Paris, France; Univ. Paris Descartes, Sorbonne Paris Cite, Paris, France
| | - Florence Gbahou
- Inserm, U1016, Institut Cochin, Paris, France; CNRS UMR 8104, Paris, France; Univ. Paris Descartes, Sorbonne Paris Cite, Paris, France.
| | - Romain Gerbier
- Inserm, U1016, Institut Cochin, Paris, France; CNRS UMR 8104, Paris, France; Univ. Paris Descartes, Sorbonne Paris Cite, Paris, France
| | - Mai B Osman
- The German University in Cairo, Department of Pharmaceutical Chemistry, New Cairo City, 11835 Cairo, Egypt
| | - Samy A M Habib
- The German University in Cairo, Department of Pharmaceutical Chemistry, New Cairo City, 11835 Cairo, Egypt
| | - Ralf Jockers
- Inserm, U1016, Institut Cochin, Paris, France; CNRS UMR 8104, Paris, France; Univ. Paris Descartes, Sorbonne Paris Cite, Paris, France.
| | - Darius P Zlotos
- The German University in Cairo, Department of Pharmaceutical Chemistry, New Cairo City, 11835 Cairo, Egypt.
| |
Collapse
|
64
|
Piano I, Baba K, Claudia Gargini, Tosini G. Heteromeric MT 1/MT 2 melatonin receptors modulate the scotopic electroretinogram via PKCζ in mice. Exp Eye Res 2018; 177:50-54. [PMID: 30059666 PMCID: PMC6261696 DOI: 10.1016/j.exer.2018.07.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 07/05/2018] [Accepted: 07/25/2018] [Indexed: 01/12/2023]
Abstract
Melatonin plays an important role in the regulation of retinal functions, and previous studies have also reported that the action of melatonin on photoreceptors is mediated by melatonin receptor heterodimers. Furthermore, it has been reported that the melatonin-induced increase in the amplitude of the a- and b-wave is significantly blunted by inhibition of PKC. Previous work has also shown that PKCζ is present in the photoreceptors, thus suggesting that PCKζ may be implicated in the modulation of melatonin signaling in photoreceptors. To investigate the role PKCζ plays in the modulation of the melatonin effect on the scotopic ERG, mice were injected with melatonin and with specific inhibitors of different PKC isoforms. PKCζ knockout mice were also used in this study. PKCζ activation in photoreceptors following melatonin injection was also investigated with immunocytochemistry. Inhibition of PKCζ by PKCζ-pseudosubstrate inhibitor (20 μM) significantly reduced the melatonin-induced increase in the amplitude of the a- and b-wave. To further investigate the role of different PKCs in the modulation of the ERGs, we tested whether intra-vitreal injection of Enzastaurin (a potent inhibitor of PCKα, PKCβ, PKCγ, and PKCε) has any effect on the melatonin-induced increase in the a- and b-wave of the scotopic ERGs. Enzastaurin (100 nM) did not prevent the melatonin-induced increase in the amplitude of the a-wave, thus suggesting that PCKα, PKCβ, PKCγ, and PKCε are not involved in this phenomenon. Finally, our data indicated that, in mice lacking PKCζ, melatonin injection failed to increase the amplitude of the a- and b-waves of the scotopic ERGs. An increase in PKCζ phosphorylation in the photoreceptors was also observed by immunocytochemistry. Our data indicate that melatonin signaling does indeed use the PKCζ pathway to increase the amplitude of the a- and b-wave of the scotopic ERG.
Collapse
Affiliation(s)
- Ilaria Piano
- Neuroscience Institute, Department of Pharmacology and Toxicology Morehouse School of Medicine, Atlanta, GA, USA; Dipartimento di Farmacia, Universita di Pisa, Pisa, Italy
| | - Kenkichi Baba
- Neuroscience Institute, Department of Pharmacology and Toxicology Morehouse School of Medicine, Atlanta, GA, USA
| | | | - Gianluca Tosini
- Neuroscience Institute, Department of Pharmacology and Toxicology Morehouse School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
65
|
García-Caballero C, Lieppman B, Arranz-Romera A, Molina-Martínez IT, Bravo-Osuna I, Young M, Baranov P, Herrero-Vanrell R. Photoreceptor preservation induced by intravitreal controlled delivery of GDNF and GDNF/melatonin in rhodopsin knockout mice. Mol Vis 2018; 24:733-745. [PMID: 30581280 PMCID: PMC6279195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 11/14/2018] [Indexed: 11/19/2022] Open
Abstract
Purpose To evaluate the potential of a poly(lactic-co-glycolic acid) (PLGA)-based slow release formulation of glial cell line-derived neurotrophic factor (GDNF) alone or in combination with melatonin to rescue photoreceptors in a mouse model of retinal degeneration. Methods GDNF and GDNF/melatonin-loaded PLGA microspheres (MSs) were prepared using a solid-in-oil-in-water emulsion solvent extraction-evaporation technique. A combination of PLGA and vitamin E (VitE) was used to create the microcarriers. The structure, particle size, encapsulation efficiency, and in vitro release profile of the microparticulate formulations were characterized. Microparticulate systems (non-loaded, GDNF, and GDNF/melatonin-loaded MSs) were administered intravitreally to 3-week-old rhodopsin knockout mice (rho (-/-); n=7). The functional neuroprotective effect was assessed with electroretinography at 6, 9, and 12 weeks old. The rescue of the structure was determined with photoreceptor quantification at 12 weeks (9 weeks after administration of MSs). Immunohistochemistry for photoreceptor, glial, and proliferative markers was also performed. Results The microspheres were able to deliver GDNF or to codeliver GDNF and melatonin in a sustained manner. Intravitreal injection of GDNF or GDNF/melatonin-loaded MSs led to partial functional and structural rescue of photoreceptors compared to blank microspheres or vehicle. No significant intraocular inflammatory reaction was observed after intravitreal injection of the microspheres. Conclusions A single intravitreal injection of GDNF or GDNF/melatonin-loaded microspheres in the PLGA/VitE combination promoted the rescue of the photoreceptors in rho (-/-) mice. These intraocular drug delivery systems enable the efficient codelivery of therapeutically active substances for the treatment of retinal diseases.
Collapse
Affiliation(s)
- Cristina García-Caballero
- Pharmaceutical Innovation in Ophthalmology Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University, Madrid, Spain
| | - Burke Lieppman
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary; Harvard Medical School, Boston, MA
| | - Alicia Arranz-Romera
- Pharmaceutical Innovation in Ophthalmology Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University, Madrid, Spain
| | - Irene. T. Molina-Martínez
- Pharmaceutical Innovation in Ophthalmology Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University, Madrid, Spain,Red Temática de Investigación Cooperativa Sanitaria en Enfermedades Oculares Oftared e Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC)
| | - Irene Bravo-Osuna
- Pharmaceutical Innovation in Ophthalmology Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University, Madrid, Spain,Red Temática de Investigación Cooperativa Sanitaria en Enfermedades Oculares Oftared e Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC)
| | - Michael Young
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary; Harvard Medical School, Boston, MA
| | - Petr Baranov
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary; Harvard Medical School, Boston, MA
| | - Rocío Herrero-Vanrell
- Pharmaceutical Innovation in Ophthalmology Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University, Madrid, Spain,Red Temática de Investigación Cooperativa Sanitaria en Enfermedades Oculares Oftared e Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC)
| |
Collapse
|
66
|
Han Z, Li X, Xu W, She Q, Liang S, Li X, Li Y. Melatonin concentrations in Chinese mitten crabs (Eriocheir sinesis) are affected by artificial photoperiods. BIOL RHYTHM RES 2018. [DOI: 10.1080/09291016.2018.1533725] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Zhibin Han
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Xin Li
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Weibin Xu
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Qiuxin She
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Shudong Liang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Xiaodong Li
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yingdong Li
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
67
|
Karamitri A, Plouffe B, Bonnefond A, Chen M, Gallion J, Guillaume JL, Hegron A, Boissel M, Canouil M, Langenberg C, Wareham NJ, Le Gouill C, Lukasheva V, Lichtarge O, Froguel P, Bouvier M, Jockers R. Type 2 diabetes-associated variants of the MT 2 melatonin receptor affect distinct modes of signaling. Sci Signal 2018; 11:11/545/eaan6622. [PMID: 30154102 DOI: 10.1126/scisignal.aan6622] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Melatonin is produced during the night and regulates sleep and circadian rhythms. Loss-of-function variants in MTNR1B, which encodes the melatonin receptor MT2, a G protein-coupled receptor (GPCR), are associated with an increased risk of type 2 diabetes (T2D). To identify specific T2D-associated signaling pathway(s), we profiled the signaling output of 40 MT2 variants by monitoring spontaneous (ligand-independent) and melatonin-induced activation of multiple signaling effectors. Genetic association analysis showed that defects in the melatonin-induced activation of Gαi1 and Gαz proteins and in spontaneous β-arrestin2 recruitment to MT2 were the most statistically significantly associated with an increased T2D risk. Computational variant impact prediction by in silico evolutionary lineage analysis strongly correlated with the measured phenotypic effect of each variant, providing a predictive tool for future studies on GPCR variants. Together, this large-scale functional study provides an operational framework for the postgenomic analysis of the multiple GPCR variants present in the human population. The association of T2D risk with signaling pathway-specific defects opens avenues for pathway-specific personalized therapeutic intervention and reveals the potential relevance of MT2 function during the day, when melatonin is undetectable, but spontaneous activity of the receptor occurs.
Collapse
Affiliation(s)
- Angeliki Karamitri
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS UMR 8104, Paris, France.,Université Paris Descartes, Paris, France
| | - Bianca Plouffe
- Institute for Research in Immunology and Cancer and Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, Québec H3C 3J7, Canada
| | - Amélie Bonnefond
- Université Lille, CNRS UMR 8199-EGID, Institut Pasteur de Lille, Lille, France
| | - Min Chen
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS UMR 8104, Paris, France.,Université Paris Descartes, Paris, France
| | - Jonathan Gallion
- Structural Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jean-Luc Guillaume
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS UMR 8104, Paris, France.,Université Paris Descartes, Paris, France
| | - Alan Hegron
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS UMR 8104, Paris, France.,Université Paris Descartes, Paris, France
| | - Mathilde Boissel
- Université Lille, CNRS UMR 8199-EGID, Institut Pasteur de Lille, Lille, France
| | - Mickaël Canouil
- Université Lille, CNRS UMR 8199-EGID, Institut Pasteur de Lille, Lille, France
| | - Claudia Langenberg
- Medical Research Council (MRC) Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Nicholas J Wareham
- Medical Research Council (MRC) Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Christian Le Gouill
- Institute for Research in Immunology and Cancer and Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, Québec H3C 3J7, Canada
| | - Viktoria Lukasheva
- Institute for Research in Immunology and Cancer and Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, Québec H3C 3J7, Canada
| | - Olivier Lichtarge
- Structural Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Philippe Froguel
- Université Lille, CNRS UMR 8199-EGID, Institut Pasteur de Lille, Lille, France. .,Department of Genomics of Common Disease, School of Public Health, Imperial College London, Hammersmith Hospital, W12 0NN London, UK
| | - Michel Bouvier
- Institute for Research in Immunology and Cancer and Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, Québec H3C 3J7, Canada.
| | - Ralf Jockers
- Inserm, U1016, Institut Cochin, Paris, France. .,CNRS UMR 8104, Paris, France.,Université Paris Descartes, Paris, France
| |
Collapse
|
68
|
Cecon E, Oishi A, Jockers R. Melatonin receptors: molecular pharmacology and signalling in the context of system bias. Br J Pharmacol 2018; 175:3263-3280. [PMID: 28707298 PMCID: PMC6057902 DOI: 10.1111/bph.13950] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 07/05/2017] [Accepted: 07/10/2017] [Indexed: 12/15/2022] Open
Abstract
Melatonin, N-acetyl-5-methoxytryptamine, an evolutionally old molecule, is produced by the pineal gland in vertebrates, and it binds with high affinity to melatonin receptors, which are members of the GPCR family. Among the multiple effects attributed to melatonin, we will focus here on those that are dependent on the activation of the two mammalian MT1 and MT2 melatonin receptors. We briefly summarize the latest developments on synthetic melatonin receptor ligands, including multi-target-directed ligands, and the characterization of signalling-biased ligands. We discuss signalling pathways activated by melatonin receptors that appear to be highly cell- and tissue-dependent, emphasizing the impact of system bias on the functional outcome. Different proteins have been demonstrated to interact with melatonin receptors, and thus, we postulate that part of this system bias has its molecular basis in differences of the expression of receptor-associated proteins including heterodimerization partners. Finally, bias at the level of the receptor, by the expression of genetic receptor variants, will be discussed to show how a modified receptor function can have an effect on the risk for common diseases like type 2 diabetes in humans. LINKED ARTICLES: This article is part of a themed section on Recent Developments in Research of Melatonin and its Potential Therapeutic Applications. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.16/issuetoc.
Collapse
Affiliation(s)
- Erika Cecon
- Institut CochinInserm, U1016ParisFrance
- CNRS UMR 8104ParisFrance
- Univ. Paris Descartes, Sorbonne Paris CitéParisFrance
| | - Atsuro Oishi
- Institut CochinInserm, U1016ParisFrance
- CNRS UMR 8104ParisFrance
- Univ. Paris Descartes, Sorbonne Paris CitéParisFrance
| | - Ralf Jockers
- Institut CochinInserm, U1016ParisFrance
- CNRS UMR 8104ParisFrance
- Univ. Paris Descartes, Sorbonne Paris CitéParisFrance
| |
Collapse
|
69
|
Gurevich VV, Gurevich EV. GPCRs and Signal Transducers: Interaction Stoichiometry. Trends Pharmacol Sci 2018; 39:672-684. [PMID: 29739625 PMCID: PMC6005764 DOI: 10.1016/j.tips.2018.04.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/11/2018] [Accepted: 04/13/2018] [Indexed: 12/12/2022]
Abstract
Until the late 1990s, class A G protein-coupled receptors (GPCRs) were believed to function as monomers. Indirect evidence that they might internalize or even signal as dimers has emerged, along with proof that class C GPCRs are obligatory dimers. Crystal structures of GPCRs and their much larger binding partners were consistent with the idea that two receptors might engage a single G protein, GRK, or arrestin. However, recent biophysical, biochemical, and structural evidence invariably suggests that a single GPCR binds G proteins, GRKs, and arrestins. Here we review existing evidence of the stoichiometry of GPCR interactions with signal transducers and discuss potential biological roles of class A GPCR oligomers, including proposed homo- and heterodimers.
Collapse
Affiliation(s)
- Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.
| | - Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
70
|
Clough SJ, Hudson RL, Dubocovich ML. Food-induced reinforcement is abrogated by the genetic deletion of the MT 1 or MT 2 melatonin receptor in C3H/HeN mice. Behav Brain Res 2018; 343:28-35. [PMID: 29374562 PMCID: PMC5842708 DOI: 10.1016/j.bbr.2018.01.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/17/2017] [Accepted: 01/22/2018] [Indexed: 01/08/2023]
Abstract
Palatable food is known for its ability to enhance reinforcing responses. Studies have suggested a circadian variation in both drug and natural reinforcement, with each following its own time course. The goal of this study was to determine the role of the MT1 and MT2 melatonin receptors in palatable snack food-induced reinforcement, as measured by the conditioned place preference (CPP) paradigm during the light and dark phases. C3H/HeN wild-type mice were trained for snack food-induced CPP at either ZT 6 - 8 (ZT: Zeitgeber time; ZT 0 = lights on), when endogenous melatonin levels are low, or ZT 19 - 21, when melatonin levels are high. These time points also correspond to the high and low points for expression of the circadian gene Period1, respectively. The amount of snack food (chow, Cheetos®, Froot Loops® and Oreos®) consumed was of similar magnitude at both times, however only C3H/HeN mice conditioned to snack food at ZT 6 - 8 developed a place preference. C3H/HeN mice with a genetic deletion of either the MT1 (MT1KO) or MT2 (MT2KO) receptor tested at ZT 6 - 8 did not develop a place preference for snack food. Although the MT2KO mice showed a similar amount of snack food consumed when compared to wild-type mice, the MT1KO mice consumed significantly less than either genotype. We conclude that in our mouse model snack food-induced CPP is dependent on time of day and the presence of the MT1 or MT2 receptors, suggesting a role for melatonin and its receptors in snack food-induced reinforcement.
Collapse
MESH Headings
- Animals
- Conditioning, Psychological/physiology
- Feeding Behavior/physiology
- Feeding Behavior/psychology
- Food
- Male
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Mice, Knockout
- Photoperiod
- Receptor, Melatonin, MT1/deficiency
- Receptor, Melatonin, MT1/genetics
- Receptor, Melatonin, MT2/deficiency
- Receptor, Melatonin, MT2/genetics
- Reinforcement, Psychology
- Spatial Behavior/physiology
Collapse
Affiliation(s)
- Shannon J Clough
- Department of Pharmacology & Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, United States
| | - Randall L Hudson
- Department of Physiology & Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, United States
| | - Margarita L Dubocovich
- Department of Pharmacology & Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, United States.
| |
Collapse
|
71
|
|
72
|
Rivara S, Scalvini L, Lodola A, Mor M, Caignard DH, Delagrange P, Collina S, Lucini V, Scaglione F, Furiassi L, Mari M, Lucarini S, Bedini A, Spadoni G. Tetrahydroquinoline Ring as a Versatile Bioisostere of Tetralin for Melatonin Receptor Ligands. J Med Chem 2018; 61:3726-3737. [DOI: 10.1021/acs.jmedchem.8b00359] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Silvia Rivara
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, I-43124 Parma, Italy
| | - Laura Scalvini
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, I-43124 Parma, Italy
| | - Alessio Lodola
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, I-43124 Parma, Italy
| | - Marco Mor
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, I-43124 Parma, Italy
| | - Daniel-Henri Caignard
- Institut de Recherches Servier, 125 Chemin de Ronde, F-78290 Croissy sur Seine, France
| | - Philippe Delagrange
- Institut de Recherches Servier, 125 Chemin de Ronde, F-78290 Croissy sur Seine, France
| | - Simona Collina
- Dipartimento di Scienze del Farmaco, Università degli Studi di Pavia, Viale Taramelli 12, I-27100 Pavia, Italy
| | - Valeria Lucini
- Dipartimento di Oncologia ed Emato-oncologia, Università degli Studi di Milano, Via Vanvitelli 32, I-20129 Milano, Italy
| | - Francesco Scaglione
- Dipartimento di Oncologia ed Emato-oncologia, Università degli Studi di Milano, Via Vanvitelli 32, I-20129 Milano, Italy
| | - Lucia Furiassi
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino “Carlo Bo”, Piazza Rinascimento 6, I-61029 Urbino, Italy
| | - Michele Mari
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino “Carlo Bo”, Piazza Rinascimento 6, I-61029 Urbino, Italy
| | - Simone Lucarini
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino “Carlo Bo”, Piazza Rinascimento 6, I-61029 Urbino, Italy
| | - Annalida Bedini
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino “Carlo Bo”, Piazza Rinascimento 6, I-61029 Urbino, Italy
| | - Gilberto Spadoni
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino “Carlo Bo”, Piazza Rinascimento 6, I-61029 Urbino, Italy
| |
Collapse
|
73
|
Oishi A, Cecon E, Jockers R. Melatonin Receptor Signaling: Impact of Receptor Oligomerization on Receptor Function. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 338:59-77. [DOI: 10.1016/bs.ircmb.2018.02.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
74
|
Sánchez-Bretaño A, Baba K, Janjua U, Piano I, Gargini C, Tosini G. Melatonin partially protects 661W cells from H 2O 2-induced death by inhibiting Fas/FasL-caspase-3. Mol Vis 2017; 23:844-852. [PMID: 29259391 PMCID: PMC5723148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 12/01/2017] [Indexed: 11/30/2022] Open
Abstract
PURPOSE Previous studies have shown that melatonin (MEL) signaling is involved in the modulation of photoreceptor viability during aging. Recent work by our laboratory suggested that MEL may protect cones by modulating the Fas/FasL-caspase-3 pathway. In this study, we first investigated the presence of MEL receptors (MT1 and MT2) in 661W cells, then whether MEL can prevent H2O2-induced cell death, and last, through which pathway MEL confers protection. METHODS The mRNA and proteins of the MEL receptors were detected with quantitative PCR (q-PCR) and immunocytochemistry, respectively. To test the protective effect of MEL, 661W cells were treated with H2O2 for 2 h in the presence or absence of MEL, a MEL agonist, and an antagonist. To study the pathways involved in H2O2-mediated cell death, a Fas/FasL antagonist was used before the exposure to H2O2. Finally, Fas/FasL and caspase-3 mRNA was analyzed with q-PCR and immunocytochemistry in cells treated with H2O2 and/or MEL. Cell viability was analyzed by using Trypan Blue. RESULTS Both MEL receptors (MT1 and MT2) were detected at the mRNA and protein levels in 661W cells. MEL partially prevented H2O2-mediated cell death (20-25%). This effect was replicated with IIK7 (a melatonin receptor agonist) when used at a concentration of 1 µM. Preincubation with luzindole (a melatonin receptor antagonist) blocked MEL protection. Kp7-6, an antagonist of Fas/FasL, blocked cell death caused by H2O2 similarly to what was observed for MEL. Fas, FasL, and caspase-3 expression was increased in cells treated with H2O2, and this effect was prevented by MEL. Finally, MEL treatment partially prevented the activation of caspase-3 caused by H2O2. CONCLUSIONS The results demonstrate that MEL receptors are present and functional in 661W cells. MEL can prevent photoreceptor cell death induced by H2O2 via the inhibition of the proapoptotic pathway Fas/FasL-caspase-3.
Collapse
Affiliation(s)
- Aída Sánchez-Bretaño
- Department of Pharmacology and Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA
| | - Kenkichi Baba
- Department of Pharmacology and Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA
| | - Uzair Janjua
- Department of Pharmacology and Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA
| | - Ilaria Piano
- Department of Pharmacology and Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA,Dipartimento di Farmacia, Universita di Pisa, Pisa, Italy
| | | | - Gianluca Tosini
- Department of Pharmacology and Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA
| |
Collapse
|
75
|
Mayo JC, Sainz RM, González-Menéndez P, Hevia D, Cernuda-Cernuda R. Melatonin transport into mitochondria. Cell Mol Life Sci 2017; 74:3927-3940. [PMID: 28828619 PMCID: PMC11107582 DOI: 10.1007/s00018-017-2616-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 08/03/2017] [Indexed: 12/15/2022]
Abstract
Melatonin is a well-known, nighttime-produced indole found in bacteria, eukaryotic unicellulars, animals or vascular plants. In vertebrates, melatonin is the major product of the pineal gland, which accounts for its increase in serum during the dark phase, but it is also produced by many other organs and cell types. Such a wide distribution is consistent with its multiple and well-described functions which include from the circadian regulation and adaptation to seasonal variations to immunomodulatory and oncostatic actions in different types of tumors. The discovery of its antioxidant properties in the early 1990s opened a new field of potential protective functions in multiple tissues. A special mention should be made regarding the nervous system, where the indole is considered a major neuroprotector. Furthermore, mitochondria appear as one of the most important targets for the indole's protective actions. Melatonin's mechanisms of action vary from the direct molecular interaction with free radicals (free radical scavenger) to the binding to membrane (MLT1A and MLT1B) or nuclear receptors (RZR/RORα). Receptor binding has been associated with some, but not all of the indole functions reported to date. Recently, two new mechanisms of cellular uptake involving the facilitative glucose transporters GLUT/SLC2A and the proton-driven oligopeptide transporter PEPT1/2 have been reported. Here we discuss the potential importance that these newly discovered transport systems could have in determining the actions of melatonin, particularly in the mitochondria. We also argue the relative importance of passive diffusion vs active transport in different parts of the cell.
Collapse
Affiliation(s)
- Juan C Mayo
- Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, C/Julián Clavería, 6, 33006, Oviedo, Asturias, Spain.
- Instituto Universitario Oncológico del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain.
| | - Rosa M Sainz
- Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, C/Julián Clavería, 6, 33006, Oviedo, Asturias, Spain
- Instituto Universitario Oncológico del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Pedro González-Menéndez
- Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, C/Julián Clavería, 6, 33006, Oviedo, Asturias, Spain
- Instituto Universitario Oncológico del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - David Hevia
- Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, C/Julián Clavería, 6, 33006, Oviedo, Asturias, Spain
- Instituto Universitario Oncológico del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Rafael Cernuda-Cernuda
- Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, C/Julián Clavería, 6, 33006, Oviedo, Asturias, Spain
| |
Collapse
|
76
|
Gnaz couples the circadian and dopaminergic system to G protein-mediated signaling in mouse photoreceptors. PLoS One 2017; 12:e0187411. [PMID: 29088301 PMCID: PMC5663513 DOI: 10.1371/journal.pone.0187411] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 10/19/2017] [Indexed: 01/08/2023] Open
Abstract
The mammalian retina harbors a circadian clockwork that regulates vision and promotes healthiness of retinal neurons, mainly through directing the rhythmic release of the neurohormones dopamine—acting on dopamine D4 receptors—and melatonin—acting on MT1 and MT2 receptors. The gene Gnaz—a unique Gi/o subfamily member—was seen in the present study to be expressed in photoreceptors where its protein product Gαz shows a daily rhythm in its subcellular localization. Apart from subcellular localization, Gnaz displays a daily rhythm in expression—with peak values at night—in preparations of the whole retina, microdissected photoreceptors and photoreceptor-related pinealocytes. In retina, Gnaz rhythmicity was observed to persist under constant darkness and to be abolished in retina deficient for Clock or dopamine D4 receptors. Furthermore, circadian regulation of Gnaz was disturbed in the db/db mouse, a model of diabetic retinopathy. The data of the present study suggest that Gnaz links the circadian clockwork—via dopamine acting on D4 receptors—to G protein-mediated signaling in intact but not diabetic retina.
Collapse
|
77
|
Laurent V, Sengupta A, Sánchez-Bretaño A, Hicks D, Tosini G. Melatonin signaling affects the timing in the daily rhythm of phagocytic activity by the retinal pigment epithelium. Exp Eye Res 2017; 165:90-95. [PMID: 28941766 DOI: 10.1016/j.exer.2017.09.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/07/2017] [Accepted: 09/17/2017] [Indexed: 11/30/2022]
Abstract
Earlier studies in Xenopus have indicated a role for melatonin in the regulation of retinal disk shedding, but the role of melatonin in the regulation of daily rhythm in mammalian disk shedding and phagocytosis is still unclear. We recently produced a series of transgenic mice lacking melatonin receptor type 1 (MT1) or type 2 (MT2) in a melatonin-proficient background and have shown that removal of MT1 and MT2 receptors induces significant effects on daily and circadian regulation of the electroretinogram as well as on the viability of photoreceptor cells during aging. In this study we investigated the daily rhythm of phagocytic activity by the retinal pigment epithelium in MT1 and MT2 knock-out mice. Our data indicate that in MT1 and MT2 knock-out mice the peak of phagocytosis is advanced by 3 h with respect to wild-type mice and occurred in dark rather than after the onset of light, albeit the mean phagocytic activity over the 24-h period did not change among the three genotypes. Nevertheless, this small change in the profile of daily phagocytic rhythms may produce a significant effect on retinal health since MT1 and MT2 knock-out mice showed a significant increase in lipofuscin accumulation in the retinal pigment epithelium.
Collapse
Affiliation(s)
- Virgine Laurent
- Institut des Neurosciences Cellulaires et Intégratives (INCI), CNRS UPR3212, 5 rue Blaise Pascal, 67084 Strasbourg, France
| | - Anamika Sengupta
- Neuroscience Institute, Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, USA
| | - Aída Sánchez-Bretaño
- Neuroscience Institute, Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, USA
| | - David Hicks
- Institut des Neurosciences Cellulaires et Intégratives (INCI), CNRS UPR3212, 5 rue Blaise Pascal, 67084 Strasbourg, France
| | - Gianluca Tosini
- Neuroscience Institute, Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, USA.
| |
Collapse
|
78
|
Onphachanh X, Lee HJ, Lim JR, Jung YH, Kim JS, Chae CW, Lee SJ, Gabr AA, Han HJ. Enhancement of high glucose-induced PINK1 expression by melatonin stimulates neuronal cell survival: Involvement of MT 2 /Akt/NF-κB pathway. J Pineal Res 2017; 63. [PMID: 28580603 DOI: 10.1111/jpi.12427] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/31/2017] [Indexed: 12/11/2022]
Abstract
Hyperglycemia is a representative hallmark and risk factor for diabetes mellitus (DM) and is closely linked to DM-associated neuronal cell death. Previous investigators reported on a genome-wide association study and showed relationships between DM and melatonin receptor (MT), highlighting the role of MT signaling by assessing melatonin in DM. However, the role of MT signaling in DM pathogenesis is unclear. Therefore, we investigated the role of mitophagy regulators in high glucose-induced neuronal cell death and the effect of melatonin against high glucose-induced mitophagy regulators in neuronal cells. In our results, high glucose significantly increased PTEN-induced putative kinase 1 (PINK1) and LC-3B expressions; as well it decreased cytochrome c oxidase subunit 4 expression and Mitotracker™ fluorescence intensity. Silencing of PINK1 induced mitochondrial reactive oxygen species (ROS) accumulation and mitochondrial membrane potential impairment, increased expressions of cleaved caspases, and increased the number of annexin V-positive cells. In addition, high glucose-stimulated melatonin receptor 1B (MTNR1B) mRNA and PINK1 expressions were reversed by ROS scavenger N-acetyl cysteine pretreatment. Upregulation of PINK1 expression in neuronal cells is suppressed by pretreatment with MT2 receptor-specific inhibitor 4-P-PDOT. We further showed melatonin stimulated Akt phosphorylation, which was followed by nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) phosphorylation and nuclear translocation. Silencing of PINK1 expression abolished melatonin-regulated mitochondrial ROS production, cleaved caspase-3 and caspase-9 expressions, and the number of annexin V-positive cells. In conclusion, we have demonstrated the melatonin stimulates PINK1 expression via an MT2 /Akt/NF-κB pathway, and such stimulation is important for the prevention of neuronal cell apoptosis under high glucose conditions.
Collapse
Affiliation(s)
- Xaykham Onphachanh
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
- Animal Science Department, Faculty of Agriculture and Forest Resource, Souphanouvong University, Luang Prabang, Lao PDR
| | - Hyun Jik Lee
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
- BK21 PLUS Program for Creative Veterinary Science Research Center, Seoul National University, Seoul, Korea
| | - Jae Ryong Lim
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
- BK21 PLUS Program for Creative Veterinary Science Research Center, Seoul National University, Seoul, Korea
| | - Young Hyun Jung
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
- BK21 PLUS Program for Creative Veterinary Science Research Center, Seoul National University, Seoul, Korea
| | - Jun Sung Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
- BK21 PLUS Program for Creative Veterinary Science Research Center, Seoul National University, Seoul, Korea
| | - Chang Woo Chae
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
- BK21 PLUS Program for Creative Veterinary Science Research Center, Seoul National University, Seoul, Korea
| | - Sei-Jung Lee
- Department of Pharmaceutical Engineering, Daegu Haany University, Gyeongsan, South Korea
| | - Amr Ahmed Gabr
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
- Department of Physiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Ho Jae Han
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
- BK21 PLUS Program for Creative Veterinary Science Research Center, Seoul National University, Seoul, Korea
| |
Collapse
|
79
|
Gatti G, Lucini V, Dugnani S, Calastretti A, Spadoni G, Bedini A, Rivara S, Mor M, Canti G, Scaglione F, Bevilacqua A. Antiproliferative and pro-apoptotic activity of melatonin analogues on melanoma and breast cancer cells. Oncotarget 2017; 8:68338-68353. [PMID: 28978121 PMCID: PMC5620261 DOI: 10.18632/oncotarget.20124] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/29/2017] [Indexed: 12/15/2022] Open
Abstract
Melatonin plays different physiological functions ranging from the regulation of circadian rhythms to tumor inhibition, owing to its antioxidant, immunomodulatory and anti-aging properties. Due to its pleiotropic functions, melatonin has been shown to elicit cytoprotective processes in normal cells and trigger pro-apoptotic signals in cancer cells. The therapeutic potential of melatonin analogues prompted us to investigate the in vitro and in vivo antitumor activity of new melatonin derivatives and explore the underlying molecular mechanisms. The experiments revealed that the new melatonin analogues inhibited the growth of melanoma and breast cancer cells in a dose- and time-dependent manner. In addition, our results indicated that melatonin derivative UCM 1037 could induce apoptosis in melanoma and breast cancer cells, as well as cell necrosis, in MCF-7. Together, apoptosis and necrosis could be two possible mechanisms to explain the cytotoxic effect of the melatonin analogue against cancer cells. The suppression of tumor growth by the melatonin analogues was further demonstrated in vivo in a xenograft mice model. A decrease in the activation of MAPK pathway was observed in all cancer cells following UCM 1037 treatment. Overall, this study describes a promising antitumor compound showing antiproliferative and cytotoxic activity in melanoma and breast cancer cells.
Collapse
Affiliation(s)
- Giuliana Gatti
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Valeria Lucini
- Department of Oncology and Hemato-oncology, Università degli Studi di Milano, Milan, Italy
| | - Silvana Dugnani
- Department of Oncology and Hemato-oncology, Università degli Studi di Milano, Milan, Italy
| | - Angela Calastretti
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Gilberto Spadoni
- Department of Biomolecular Sciences, Università degli Studi di Urbino "Carlo Bo", Urbino, Italy
| | - Annalida Bedini
- Department of Biomolecular Sciences, Università degli Studi di Urbino "Carlo Bo", Urbino, Italy
| | - Silvia Rivara
- Department of Food and Drug, Università degli Studi di Parma, Parma, Italy
| | - Marco Mor
- Department of Food and Drug, Università degli Studi di Parma, Parma, Italy
| | - Gianfranco Canti
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Francesco Scaglione
- Department of Oncology and Hemato-oncology, Università degli Studi di Milano, Milan, Italy
| | - Annamaria Bevilacqua
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
80
|
Dopamine 2 Receptor Activation Entrains Circadian Clocks in Mouse Retinal Pigment Epithelium. Sci Rep 2017; 7:5103. [PMID: 28698578 PMCID: PMC5505969 DOI: 10.1038/s41598-017-05394-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 05/24/2017] [Indexed: 01/11/2023] Open
Abstract
Many of the physiological, cellular, and molecular rhythms that are present within the eye are under the control of circadian clocks. Experimental evidence suggests that the retinal circadian clock, or its output signals (e.g., dopamine and melatonin), may contribute to eye disease and pathology. We recently developed a retinal pigment ephithelium (RPE)-choroid preparation to monitor the circadian clock using PERIOD2 (PER2)::LUC knock-in mouse. In this study we report that dopamine, but not melatonin, is responsible for entrainment of the PER2::LUC bioluminescence rhythm in mouse RPE-choroid. Dopamine induced phase-advances of the PER2::LUC bioluminescence rhythm during the subjective day and phase-delays in the late subjective night. We found that dopamine acts exclusively through Dopamine 2 Receptors to entrain the circadian rhythm in PER2::LUC bioluminescence. Finallly, we found that DA-induced expression of core circadian clock genes Period1 and Period2 accompanied both phase advances and phase delays of the RPE-choroid clock, thus suggesting that - as in other tissues - the rapid induction of these circadian clock genes drives the resetting process. Since the RPE cells persist for the entire lifespan of an organism, we believe that RPE-choroid preparation may represent a new and unique tool to study the effects of circadian disruption during aging.
Collapse
|
81
|
Gbahou F, Cecon E, Viault G, Gerbier R, Jean-Alphonse F, Karamitri A, Guillaumet G, Delagrange P, Friedlander RM, Vilardaga JP, Suzenet F, Jockers R. Design and validation of the first cell-impermeant melatonin receptor agonist. Br J Pharmacol 2017; 174:2409-2421. [PMID: 28493341 DOI: 10.1111/bph.13856] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/27/2017] [Accepted: 05/03/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE The paradigm that GPCRs are able to prolong or initiate cellular signalling through intracellular receptors recently emerged. Melatonin binds to G protein-coupled MT1 and MT2 receptors. In contrast to most other hormones targeting GPCRs, melatonin and its synthetic analogues are amphiphilic molecules easily penetrating into cells, but the existence of intracellular receptors is still unclear mainly due to a lack of appropriate tools. EXPERIMENTAL APPROACH We therefore designed and synthesized a series of hydrophilic melatonin receptor ligands coupled to the Cy3 cyanin fluorophore to reliably monitor its inability to penetrate cells. Two compounds, one lipophilic and one hydrophilic, were then functionally characterized in terms of their affinity for human and murine melatonin receptors expressed in HEK293 cells and their signalling efficacy. KEY RESULTS Among the different ligands, ICOA-13 showed the desired properties as it was cell-impermeant and bound to human and mouse MT1 and MT2 receptors. ICOA-13 showed differential activities on melatonin receptors ranging from partial to full agonistic properties for the Gi /cAMP and ERK pathway and β-arrestin 2 recruitment. Notably, ICOA-13 enabled us to discriminate between Gi /cAMP signalling of the MT1 receptor initiated at the cell surface and neuronal mitochondria. CONCLUSIONS AND IMPLICATIONS We report here the first cell-impermeant melatonin receptor agonist, ICOA-13, which allows us to discriminate between signalling events initiated at the cell surface and intracellular compartments. Detection of mitochondrial MT1 receptors may have an important impact on the development of novel melatonin receptor ligands relevant for neurodegenerative diseases, such as Huntington disease.
Collapse
Affiliation(s)
- Florence Gbahou
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS UMR 8104, Paris, France.,Université Paris Descartes, Paris, France
| | - Erika Cecon
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS UMR 8104, Paris, France.,Université Paris Descartes, Paris, France
| | - Guillaume Viault
- Institut de Chimie Organique et Analytique (ICOA), Université d'Orléans, UMR CNRS 7311, B.P. 6759, Orléans Cedex 2, France
| | - Romain Gerbier
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS UMR 8104, Paris, France.,Université Paris Descartes, Paris, France
| | - Frederic Jean-Alphonse
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Angeliki Karamitri
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS UMR 8104, Paris, France.,Université Paris Descartes, Paris, France
| | - Gérald Guillaumet
- Institut de Chimie Organique et Analytique (ICOA), Université d'Orléans, UMR CNRS 7311, B.P. 6759, Orléans Cedex 2, France
| | - Philippe Delagrange
- Pôle d'Innovation Thérapeutique Neuropsychiatrie, Institut de Recherches Servier, Croissy, France
| | - Robert M Friedlander
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jean-Pierre Vilardaga
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Franck Suzenet
- Institut de Chimie Organique et Analytique (ICOA), Université d'Orléans, UMR CNRS 7311, B.P. 6759, Orléans Cedex 2, France
| | - Ralf Jockers
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS UMR 8104, Paris, France.,Université Paris Descartes, Paris, France
| |
Collapse
|
82
|
Gupta T, Sahni D, Gupta R, Gupta S. Expanding the horizons of melatonin use: An immunohistochemical neuroanatomic distribution of MT1 and MT2 receptors in human brain and retina. J ANAT SOC INDIA 2017. [DOI: 10.1016/j.jasi.2017.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
83
|
Mendoza-Vargas L, Báez-Saldaña A, Alvarado R, Fuentes-Pardo B, Flores-Soto E, Solís-Chagoyán H. Circadian rhythm in melatonin release as a mechanism to reinforce the temporal organization of the circadian system in crayfish. INVERTEBRATE NEUROSCIENCE 2017; 17:6. [PMID: 28540583 DOI: 10.1007/s10158-017-0199-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 05/12/2017] [Indexed: 01/25/2023]
Abstract
Melatonin (MEL) is a conserved molecule with respect to its synthesis pathway and functions. In crayfish, MEL content in eyestalks (Ey) increases at night under the photoperiod, and this indoleamine synchronizes the circadian rhythm of electroretinogram amplitude, which is expressed by retinas and controlled by the cerebroid ganglion (CG). The aim of this study was to determine whether MEL content in eyestalks and CG or circulating MEL in hemolymph (He) follows a circadian rhythm under a free-running condition; in addition, it was tested whether MEL might directly influence the spontaneous electrical activity of the CG. Crayfish were maintained under constant darkness and temperature, a condition suitable for studying the intrinsic properties of circadian systems. MEL was quantified in samples obtained from He, Ey, and CG by means of an enzyme-linked immunosorbent assay, and the effect of exogenous MEL on CG spontaneous activity was evaluated by electrophysiological recording. Variation of MEL content in He, Ey, and CG followed a circadian rhythm that peaked at the same circadian time (CT). In addition, a single dose of MEL injected into the crayfish at different CTs reduced the level of spontaneous electrical activity in the CG. Results suggest that the circadian increase in MEL content directly affects the CG, reducing its spontaneous electrical activity, and that MEL might act as a periodical signal to reinforce the organization of the circadian system in crayfish.
Collapse
Affiliation(s)
- Leonor Mendoza-Vargas
- Departamento El Hombre Y Su Ambiente, Universidad Autónoma Metropolitana Unidad Xochimilco, CP 04960, Mexico, Mexico
| | - Armida Báez-Saldaña
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Nueva Sede, Universidad Nacional Autónoma de México, CP 04510, Mexico, Mexico
| | - Ramón Alvarado
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, CP 04510, Mexico, Mexico
| | - Beatriz Fuentes-Pardo
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, CP 04510, Mexico, Mexico
| | - Edgar Flores-Soto
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CP 04510, Mexico, Mexico
| | - Héctor Solís-Chagoyán
- Laboratorio de Neurofarmacología, Instituto Nacional de Psiquiatría Ramón de La Fuente Muñiz, CP 14370, Mexico, D.F, Mexico.
| |
Collapse
|
84
|
Liu J, Clough SJ, Dubocovich ML. Role of the MT1and MT2melatonin receptors in mediating depressive- and anxiety-like behaviors in C3H/HeN mice. GENES BRAIN AND BEHAVIOR 2017; 16:546-553. [DOI: 10.1111/gbb.12369] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 12/20/2016] [Accepted: 01/23/2017] [Indexed: 12/29/2022]
Affiliation(s)
- J. Liu
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences; University at Buffalo (SUNY); Buffalo NY USA
| | - S. J. Clough
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences; University at Buffalo (SUNY); Buffalo NY USA
| | - M. L. Dubocovich
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences; University at Buffalo (SUNY); Buffalo NY USA
| |
Collapse
|
85
|
Farran B. An update on the physiological and therapeutic relevance of GPCR oligomers. Pharmacol Res 2017; 117:303-327. [PMID: 28087443 DOI: 10.1016/j.phrs.2017.01.008] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/06/2017] [Accepted: 01/09/2017] [Indexed: 01/17/2023]
Abstract
The traditional view on GPCRs held that they function as single monomeric units composed of identical subunits. This notion was overturned by the discovery that GPCRs can form homo- and hetero-oligomers, some of which are obligatory, and can further assemble into receptor mosaics consisting of three or more protomers. Oligomerisation exerts significant impacts on receptor function and physiology, offering a platform for the diversification of receptor signalling, pharmacology, regulation, crosstalk, internalization and trafficking. Given their involvement in the modulation of crucial physiological processes, heteromers could constitute important therapeutic targets for a wide range of diseases, including schizophrenia, Parkinson's disease, substance abuse or obesity. This review aims at depicting the current developments in GPCR oligomerisation research, documenting various class A, B and C GPCR heteromers detected in vitro and in vivo using biochemical and biophysical approaches, as well as recently identified higher-order oligomeric complexes. It explores the current understanding of dimerization dynamics and the possible interaction interfaces that drive oligomerisation. Most importantly, it provides an inventory of the wide range of physiological processes and pathophysiological conditions to which GPCR oligomers contribute, surveying some of the oligomers that constitute potential drug targets. Finally, it delineates the efforts to develop novel classes of ligands that specifically target and tether to receptor oligomers instead of a single monomeric entity, thus ameliorating their ability to modulate GPCR function.
Collapse
Affiliation(s)
- Batoul Farran
- Department of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, United Kingdom.
| |
Collapse
|
86
|
Sotthibundhu A, Ekthuwapranee K, Govitrapong P. Comparison of melatonin with growth factors in promoting precursor cells proliferation in adult mouse subventricular zone. EXCLI JOURNAL 2016; 15:829-841. [PMID: 28275319 PMCID: PMC5341012 DOI: 10.17179/excli2016-606] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/21/2016] [Indexed: 11/23/2022]
Abstract
Melatonin, secreted mainly by the pineal gland, plays roles in various physiological functions including protecting cell death. We showed in previous study that the proliferation and differentiation of precursor cells from the adult mouse subventricular zone (SVZ) can be modulated by melatonin via the MT1 melatonin receptor. Since melatonin and epidermal growth factor receptor (EGFR) share some signaling pathway components, we investigated whether melatonin can promote the proliferation of precursor cells from the adult mouse SVZ via the extracellular signal-regulated protein kinase /mitogen-activated protein kinase (ERK/MAPK) pathways in comparison with epidermal growth factor (EGF). Melatonin-induced ERK/MAPK pathways compared with EGF were measured by using in vitro and vivo models. We used neurosphere proliferation assay, immunocytochemistry, and immuno-blotting to analyze significant differences between melatonin and growth factor treatment. We also used specific antagonist and inhibitors to confirm the exactly signaling pathway including luzindole and U0126. We found that significant increase in proliferation was observed when two growth factors (EGF+bFGF) and melatonin were used simultaneously compared with EGF + bFGF or compared with melatonin alone. In addition, the present result suggested the synergistic effect occurred of melatonin and growth factors on the activating the ERK/MAPK pathway. This study exhibited that melatonin could act as a trophic factor, increasing proliferation in precursor cells mediated through the melatonin receptor coupled to ERK/MAPK signaling pathways. Understanding the mechanism by which melatonin regulates precursor cells may conduct to the development of novel strategies for neurodegenerative disease therapy.
Collapse
Affiliation(s)
- Areechun Sotthibundhu
- Center for Neuroscience, Faculty of Science, Mahidol University, Bangkok, Thailand; Chulabhorn International College of Medicine, Thammasat University, Patumthani, 12120, Thailand
| | - Kasima Ekthuwapranee
- Physical therapy, Srinakharinwirot University, Ongkharak, Nakhonnayok 26120, Thailand; Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakornpathom, Thailand
| | - Piyarat Govitrapong
- Center for Neuroscience, Faculty of Science, Mahidol University, Bangkok, Thailand; Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakornpathom, Thailand; Chulabhorn Graduate Institute, Kamphaeng Phet 6 Road, Lak Si, Bangkok 10210, Thailand
| |
Collapse
|
87
|
Gomes I, Sierra S, Devi LA. Detection of Receptor Heteromerization Using In Situ Proximity Ligation Assay. CURRENT PROTOCOLS IN PHARMACOLOGY 2016; 75:2.16.1-2.16.31. [PMID: 27960030 PMCID: PMC5758307 DOI: 10.1002/cpph.15] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Although G protein-coupled receptor (GPCR) heteromerization has been extensively demonstrated in vitro using heterologous cells that overexpress epitope-tagged receptors, their presence in endogenous systems is less well established. This is because a criterion to identify receptor heteromerization is the demonstration that the two interacting receptors are present not only in the same cell but also in the same subcellular compartment in close enough proximity to allow for direct receptor-receptor interaction. This has been difficult to study in native tissues due to a lack of sensitive and selective tools not only capable of detecting low-abundance proteins but also of demonstrating that they are in sufficiently close proximity to interact. The latter can be achieved using a proximity ligation assay (PLA). Detailed in this unit are protocols for demonstrating the presence of GPCR heteromers in endogenous cells as well as animal and human tissues, the controls required for these assays, and troubleshooting tips. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Ivone Gomes
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Salvador Sierra
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Lakshmi A Devi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
88
|
Gaitonde SA, González-Maeso J. Contribution of heteromerization to G protein-coupled receptor function. Curr Opin Pharmacol 2016; 32:23-31. [PMID: 27835800 DOI: 10.1016/j.coph.2016.10.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/22/2016] [Accepted: 10/24/2016] [Indexed: 12/22/2022]
Abstract
G protein-coupled receptors (GPCRs) are a remarkably multifaceted family of transmembrane proteins that exert a variety of physiological effects. Although family A GPCRs are able to operate as monomers, there is increasing evidence that heteromerization represents a fundamental aspect of receptor function, trafficking and pharmacology. Most recently, it has been suggested that GPCR heteromers may play a crucial role as new molecular targets of heteromer-selective and bivalent ligands. The current review summarizes key recent developments in these topics.
Collapse
Affiliation(s)
- Supriya A Gaitonde
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, United States
| | - Javier González-Maeso
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, United States.
| |
Collapse
|
89
|
Quintana C, Cabrera J, Perdomo J, Estévez F, Loro JF, Reiter RJ, Quintana J. Melatonin enhances hyperthermia-induced apoptotic cell death in human leukemia cells. J Pineal Res 2016; 61:381-95. [PMID: 27465521 DOI: 10.1111/jpi.12356] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/25/2016] [Indexed: 12/26/2022]
Abstract
Melatonin is an endogenous indoleamine with a wide range of biological functions. In addition to modulating circadian rhythms, it plays important roles in the health as an antioxidant. Melatonin has also the ability to induce apoptosis in cancer cells and to enhance the antitumoral activity of chemotherapeutic agents. In this study, the effect of melatonin on hyperthermia-induced apoptosis was explored using human leukemia cells. The results demonstrate that melatonin greatly improved the cytotoxicity of hyperthermia in U937 cells. The potentiation of cell death was achieved with 1 mmol/L concentrations of the indoleamine but not with concentrations close to physiological levels in blood (1 nmol/L). This effect was associated to an enhancement of the apoptotic response, revealed by an increase in cells with hypodiploid DNA content and activation of multiple caspases (caspase-2, caspase-3, caspase-8, and caspase-9). Melatonin also increased hyperthermia-induced Bid activation as well as translocation of Bax from the cytosol to mitochondria and cytochrome c release. Hyperthermia-provoked apoptosis and potentiation by melatonin were abrogated by a broad-spectrum caspase inhibitor (z-VAD-fmk) as well as by specific inhibitors against caspase-8 or caspase-3. In contrast, blocking of the mitochondrial pathway of apoptosis either with a caspase-9 inhibitor or overexpressing the anti-apoptotic protein Bcl-2 (U937/Bcl-2) reduced the number of apoptotic cells in response to hyperthermia but it was unable to suppress melatonin enhancement. Melatonin appears to modulate the apoptotic response triggered by hyperthermia in a cell type-specific manner as similar results were observed in HL-60 but not in K562 or MOLT-3 cells.
Collapse
Affiliation(s)
- Carlos Quintana
- Departamento de Bioquímica y Biología Molecular, Fisiología, Genética e Inmunología, Facultad de Ciencias de la Salud, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Javier Cabrera
- Departamento de Ciencias Clínicas, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Juan Perdomo
- Departamento de Bioquímica y Biología Molecular, Fisiología, Genética e Inmunología, Facultad de Ciencias de la Salud, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Francisco Estévez
- Departamento de Bioquímica y Biología Molecular, Fisiología, Genética e Inmunología, Facultad de Ciencias de la Salud, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Juan F Loro
- Departamento de Ciencias Clínicas, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Russel J Reiter
- Department of Cellular and Structural Biology, The University of Texas Health Science at San Antonio, San Antonio, TX, USA
| | - José Quintana
- Departamento de Bioquímica y Biología Molecular, Fisiología, Genética e Inmunología, Facultad de Ciencias de la Salud, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.
| |
Collapse
|
90
|
Martínez-Pinilla E, Rabal O, Reyes-Resina I, Zamarbide M, Navarro G, Sánchez-Arias JA, de Miguel I, Lanciego JL, Oyarzabal J, Franco R. Two Affinity Sites of the Cannabinoid Subtype 2 Receptor Identified by a Novel Homogeneous Binding Assay. J Pharmacol Exp Ther 2016; 358:580-7. [PMID: 27358483 DOI: 10.1124/jpet.116.234948] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 06/27/2016] [Indexed: 03/08/2025] Open
Abstract
Endocannabinoids act on G protein-coupled receptors that are considered potential targets for a variety of diseases. There are two different cannabinoid receptor types: ligands for cannabinoid type 2 receptors (CB2Rs) show more promise than those for cannabinoid type 1 receptors (CB1Rs) because they lack psychotropic actions. However, the complex pharmacology of these receptors, coupled with the lipophilic nature of ligands, is delaying the translational success of medications targeting the endocannabinoid system. We here report the discovery and synthesis of a fluorophore-conjugated CB2R-selective compound, CM-157 (3-[[4-[2-tert-butyl-1-(tetrahydropyran-4-ylmethyl)benzimidazol-5-yl]sulfonyl-2-pyridyl]oxy]propan-1-amine), which was useful for pharmacological characterization of CB2R by using a time-resolved fluorescence resonance energy transfer assay. This methodology does not require radiolabeled compounds and may be undertaken in homogeneous conditions and in living cells (i.e., without the need to isolate receptor-containing membranes). The affinity of the labeled compound was similar to that of the unlabeled molecule. Time-resolved fluorescence resonance energy transfer assays disclosed a previously unreported second affinity site and showed conformational changes in CB2R forming receptor heteromers with G protein-coupled receptor GPR55, a receptor for l-α-lysophosphatidylinositol. The populations displaying subnanomolar and nanomolar affinities were undisclosed in competitive assays using a well known cannabinoid receptor ligand, AM630 (1-[2-(morpholin-4-yl)ethyl]-2-methyl-3-(4-methoxybenzoyl)-6-iodoindole), and TH-chrysenediol, not previously tested on binding to cannabinoid receptors. Variations in binding parameters upon formation of dimers with GPR55 may reflect decreases in binding sites or alterations of the quaternary structure of the macromolecular G protein-coupled receptor complexes. In summary, the homogeneous binding assay described here may serve to better characterize agonist binding to CB2R and to identify specific properties of CB2R on living cells.
Collapse
Affiliation(s)
- Eva Martínez-Pinilla
- Neurosciences Division (E.M.-P., M.Z., J.L.L.) and Small Molecule Discovery Platform, Molecular Therapeutics Program (O.R., J.A.S.-A., I.d.M., J.O.), Centre for Applied Medical Research, University of Navarra, Pamplona, Spain; Instituto de Neurociencias del Principado de Asturias, Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, Asturias, Spain (E.M.-P.); Departament de Bioquímica i Biología Molecular, Facultat de Biología,. Universitat de Barcelona, Barcelona, Spain (I.R.-R., G.N., R.F.); Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas, Madrid, Spain (I.R.-R., G.N., J.L.L., R.F.); Instituto de Investigaciones Sanitarias de Navarra, Pamplona, Spain (J.L.L.); and Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Spain (R.F.)
| | - Obdulia Rabal
- Neurosciences Division (E.M.-P., M.Z., J.L.L.) and Small Molecule Discovery Platform, Molecular Therapeutics Program (O.R., J.A.S.-A., I.d.M., J.O.), Centre for Applied Medical Research, University of Navarra, Pamplona, Spain; Instituto de Neurociencias del Principado de Asturias, Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, Asturias, Spain (E.M.-P.); Departament de Bioquímica i Biología Molecular, Facultat de Biología,. Universitat de Barcelona, Barcelona, Spain (I.R.-R., G.N., R.F.); Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas, Madrid, Spain (I.R.-R., G.N., J.L.L., R.F.); Instituto de Investigaciones Sanitarias de Navarra, Pamplona, Spain (J.L.L.); and Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Spain (R.F.)
| | - Irene Reyes-Resina
- Neurosciences Division (E.M.-P., M.Z., J.L.L.) and Small Molecule Discovery Platform, Molecular Therapeutics Program (O.R., J.A.S.-A., I.d.M., J.O.), Centre for Applied Medical Research, University of Navarra, Pamplona, Spain; Instituto de Neurociencias del Principado de Asturias, Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, Asturias, Spain (E.M.-P.); Departament de Bioquímica i Biología Molecular, Facultat de Biología,. Universitat de Barcelona, Barcelona, Spain (I.R.-R., G.N., R.F.); Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas, Madrid, Spain (I.R.-R., G.N., J.L.L., R.F.); Instituto de Investigaciones Sanitarias de Navarra, Pamplona, Spain (J.L.L.); and Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Spain (R.F.)
| | - Marta Zamarbide
- Neurosciences Division (E.M.-P., M.Z., J.L.L.) and Small Molecule Discovery Platform, Molecular Therapeutics Program (O.R., J.A.S.-A., I.d.M., J.O.), Centre for Applied Medical Research, University of Navarra, Pamplona, Spain; Instituto de Neurociencias del Principado de Asturias, Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, Asturias, Spain (E.M.-P.); Departament de Bioquímica i Biología Molecular, Facultat de Biología,. Universitat de Barcelona, Barcelona, Spain (I.R.-R., G.N., R.F.); Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas, Madrid, Spain (I.R.-R., G.N., J.L.L., R.F.); Instituto de Investigaciones Sanitarias de Navarra, Pamplona, Spain (J.L.L.); and Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Spain (R.F.)
| | - Gemma Navarro
- Neurosciences Division (E.M.-P., M.Z., J.L.L.) and Small Molecule Discovery Platform, Molecular Therapeutics Program (O.R., J.A.S.-A., I.d.M., J.O.), Centre for Applied Medical Research, University of Navarra, Pamplona, Spain; Instituto de Neurociencias del Principado de Asturias, Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, Asturias, Spain (E.M.-P.); Departament de Bioquímica i Biología Molecular, Facultat de Biología,. Universitat de Barcelona, Barcelona, Spain (I.R.-R., G.N., R.F.); Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas, Madrid, Spain (I.R.-R., G.N., J.L.L., R.F.); Instituto de Investigaciones Sanitarias de Navarra, Pamplona, Spain (J.L.L.); and Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Spain (R.F.)
| | - Juan A Sánchez-Arias
- Neurosciences Division (E.M.-P., M.Z., J.L.L.) and Small Molecule Discovery Platform, Molecular Therapeutics Program (O.R., J.A.S.-A., I.d.M., J.O.), Centre for Applied Medical Research, University of Navarra, Pamplona, Spain; Instituto de Neurociencias del Principado de Asturias, Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, Asturias, Spain (E.M.-P.); Departament de Bioquímica i Biología Molecular, Facultat de Biología,. Universitat de Barcelona, Barcelona, Spain (I.R.-R., G.N., R.F.); Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas, Madrid, Spain (I.R.-R., G.N., J.L.L., R.F.); Instituto de Investigaciones Sanitarias de Navarra, Pamplona, Spain (J.L.L.); and Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Spain (R.F.)
| | - Irene de Miguel
- Neurosciences Division (E.M.-P., M.Z., J.L.L.) and Small Molecule Discovery Platform, Molecular Therapeutics Program (O.R., J.A.S.-A., I.d.M., J.O.), Centre for Applied Medical Research, University of Navarra, Pamplona, Spain; Instituto de Neurociencias del Principado de Asturias, Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, Asturias, Spain (E.M.-P.); Departament de Bioquímica i Biología Molecular, Facultat de Biología,. Universitat de Barcelona, Barcelona, Spain (I.R.-R., G.N., R.F.); Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas, Madrid, Spain (I.R.-R., G.N., J.L.L., R.F.); Instituto de Investigaciones Sanitarias de Navarra, Pamplona, Spain (J.L.L.); and Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Spain (R.F.)
| | - José L Lanciego
- Neurosciences Division (E.M.-P., M.Z., J.L.L.) and Small Molecule Discovery Platform, Molecular Therapeutics Program (O.R., J.A.S.-A., I.d.M., J.O.), Centre for Applied Medical Research, University of Navarra, Pamplona, Spain; Instituto de Neurociencias del Principado de Asturias, Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, Asturias, Spain (E.M.-P.); Departament de Bioquímica i Biología Molecular, Facultat de Biología,. Universitat de Barcelona, Barcelona, Spain (I.R.-R., G.N., R.F.); Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas, Madrid, Spain (I.R.-R., G.N., J.L.L., R.F.); Instituto de Investigaciones Sanitarias de Navarra, Pamplona, Spain (J.L.L.); and Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Spain (R.F.)
| | - Julen Oyarzabal
- Neurosciences Division (E.M.-P., M.Z., J.L.L.) and Small Molecule Discovery Platform, Molecular Therapeutics Program (O.R., J.A.S.-A., I.d.M., J.O.), Centre for Applied Medical Research, University of Navarra, Pamplona, Spain; Instituto de Neurociencias del Principado de Asturias, Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, Asturias, Spain (E.M.-P.); Departament de Bioquímica i Biología Molecular, Facultat de Biología,. Universitat de Barcelona, Barcelona, Spain (I.R.-R., G.N., R.F.); Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas, Madrid, Spain (I.R.-R., G.N., J.L.L., R.F.); Instituto de Investigaciones Sanitarias de Navarra, Pamplona, Spain (J.L.L.); and Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Spain (R.F.)
| | - Rafael Franco
- Neurosciences Division (E.M.-P., M.Z., J.L.L.) and Small Molecule Discovery Platform, Molecular Therapeutics Program (O.R., J.A.S.-A., I.d.M., J.O.), Centre for Applied Medical Research, University of Navarra, Pamplona, Spain; Instituto de Neurociencias del Principado de Asturias, Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, Asturias, Spain (E.M.-P.); Departament de Bioquímica i Biología Molecular, Facultat de Biología,. Universitat de Barcelona, Barcelona, Spain (I.R.-R., G.N., R.F.); Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas, Madrid, Spain (I.R.-R., G.N., J.L.L., R.F.); Instituto de Investigaciones Sanitarias de Navarra, Pamplona, Spain (J.L.L.); and Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Spain (R.F.)
| |
Collapse
|
91
|
Jockers R, Delagrange P, Dubocovich ML, Markus RP, Renault N, Tosini G, Cecon E, Zlotos DP. Update on melatonin receptors: IUPHAR Review 20. Br J Pharmacol 2016; 173:2702-25. [PMID: 27314810 DOI: 10.1111/bph.13536] [Citation(s) in RCA: 304] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/15/2016] [Accepted: 05/19/2016] [Indexed: 02/06/2023] Open
Abstract
Melatonin receptors are seven transmembrane-spanning proteins belonging to the GPCR superfamily. In mammals, two melatonin receptor subtypes exist - MT1 and MT2 - encoded by the MTNR1A and MTNR1B genes respectively. The current review provides an update on melatonin receptors by the corresponding subcommittee of the International Union of Basic and Clinical Pharmacology. We will highlight recent developments of melatonin receptor ligands, including radioligands, and give an update on the latest phenotyping results of melatonin receptor knockout mice. The current status and perspectives of the structure of melatonin receptor will be summarized. The physiological importance of melatonin receptor dimers and biologically important and type 2 diabetes-associated genetic variants of melatonin receptors will be discussed. The role of melatonin receptors in physiology and disease will be further exemplified by their functions in the immune system and the CNS. Finally, antioxidant and free radical scavenger properties of melatonin and its relation to melatonin receptors will be critically addressed.
Collapse
Affiliation(s)
- Ralf Jockers
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS UMR 8104, Paris, France.,University Paris Descartes, Paris, France
| | | | - Margarita L Dubocovich
- Department Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Science, University at Buffalo (SUNY), Buffalo, USA
| | - Regina P Markus
- Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | | | - Gianluca Tosini
- Neuroscience Institute and Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Erika Cecon
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS UMR 8104, Paris, France.,University Paris Descartes, Paris, France
| | - Darius P Zlotos
- Department of Pharmaceutical Chemistry, The German University in Cairo, New Cairo City, Cairo, Egypt
| |
Collapse
|
92
|
Gianesini C, Hiragaki S, Laurent V, Hicks D, Tosini G. Cone Viability Is Affected by Disruption of Melatonin Receptors Signaling. Invest Ophthalmol Vis Sci 2016; 57:94-104. [PMID: 26780313 PMCID: PMC4727519 DOI: 10.1167/iovs.15-18235] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Purpose Previous studies have demonstrated that melatonin has an important role in the modulation of photoreceptor viability during aging and may be involved in the pathogenesis of age-related macular degeneration.This hormone exerts its influence by binding to G-protein coupled receptors named melatonin receptor 1 (MT1) and 2 (MT2). Melatonin receptors 1 and 2 activate a wide variety of signaling pathways. Methods Melatonin-proficient mice (C3H/f+/+) and melatonin-proficient mice lacking MT1 or MT2 receptors (MT1−/− and MT2−/−) were used in this study. Mice were killed at the ages of 3 and 18 months, and photoreceptor viability was determined by counting nuclei number in the outer nuclear layer (ONL). Cones were identified by immunohistochemistry using peanut agglutinin (PNA) and green/red and blue opsin antibodies. Protein kinase B (AKT) and forkhead box O (FOXO1) were assessed by Western blotting and immunohistochemistry. Results The number of nuclei in the ONL was significantly reduced in C3Hf+/+, MT1−/−, and MT2−/− mice at 18 months of age with respect to 3-month-old animals. In 18-month-old MT1−/− and MT2−/− mice, but not in C3H/f+/+, the number of cones was significantly reduced with respect to young MT1−/− and MT2−/− mice or age-matched C3H/f+/+. In C3H/f+/+, activation of the AKT-FOXO1 pathway in the photoreceptors showed a significant difference between night and day. Conclusions Our data indicate that disruption of MT1/MT2 heteromer signaling induces a reduction in the number of photoreceptors during aging and also suggest that the AKT-FOXO1 survival pathway may be involved in the mechanism by which melatonin protects photoreceptors.
Collapse
Affiliation(s)
- Coralie Gianesini
- Department of Pharmacology and Toxicology and Neuroscience Institute Morehouse School of Medicine, Atlanta, Georgia, United States 2Centre National de la Recherche Scientifique Unités Propres de Recherche 3212, Institute for Cellular and Integrative Neuro
| | - Susumu Hiragaki
- Department of Pharmacology and Toxicology and Neuroscience Institute Morehouse School of Medicine, Atlanta, Georgia, United States
| | - Virginie Laurent
- Centre National de la Recherche Scientifique Unités Propres de Recherche 3212, Institute for Cellular and Integrative Neurosciences, Strasbourg, France
| | - David Hicks
- Centre National de la Recherche Scientifique Unités Propres de Recherche 3212, Institute for Cellular and Integrative Neurosciences, Strasbourg, France
| | - Gianluca Tosini
- Department of Pharmacology and Toxicology and Neuroscience Institute Morehouse School of Medicine, Atlanta, Georgia, United States
| |
Collapse
|
93
|
Evely KM, Hudson RL, Dubocovich ML, Haj-Dahmane S. Melatonin receptor activation increases glutamatergic synaptic transmission in the rat medial lateral habenula. Synapse 2016; 70:181-186. [PMID: 26799638 DOI: 10.1002/syn.21892] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Melatonin (MLT) is secreted from the pineal gland and mediates its physiological effects through activation of two G protein-coupled receptors, MT1 and MT2 . These receptors are expressed in several brain areas, including the habenular complex, a pair of nuclei that relay information from forebrain to midbrain and modulate a plethora of behaviors, including sleep, mood, and pain. However, so far, the precise mechanisms by which MLT control the function of habenula neurons remain unknown. Using whole cell recordings from male rat brain slices, we examined the effects of MLT on the excitability of medial lateral habenula (MLHb) neurons. We found that MLT had no significant effects on the intrinsic excitability of MLHb neurons, but profoundly increased the amplitude of glutamate-mediated evoked excitatory post-synaptic currents (EPSC). The increase in strength of glutamate synapses onto MLHb neurons was mediated by an increase in glutamate release. The MLT-induced increase in glutamatergic synaptic transmission was blocked by the competitive MT1 /MT2 receptor antagonist luzindole (LUZ). These results unravel a potential cellular mechanism by which MLT receptor activation enhances the excitability of MLHb neurons. The MLT-mediated control of glutamatergic inputs to the MLHb may play a key role in the modulation of various behaviors controlled by the habenular complex.
Collapse
Affiliation(s)
- Katherine M Evely
- Department of Pharmacology and Toxicology, University at Buffalo, State University of New York, Buffalo, New York
- Research Institute on Addictions, University at Buffalo, State University of New York, Buffalo, New York
| | - Randall L Hudson
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York
| | - Margarita L Dubocovich
- Department of Pharmacology and Toxicology, University at Buffalo, State University of New York, Buffalo, New York
| | - Samir Haj-Dahmane
- Department of Pharmacology and Toxicology, University at Buffalo, State University of New York, Buffalo, New York
- Research Institute on Addictions, University at Buffalo, State University of New York, Buffalo, New York
| |
Collapse
|
94
|
Zhao L, Liu H, Yue L, Zhang J, Li X, Wang B, Lin Y, Qu Y. Melatonin Attenuates Early Brain Injury via the Melatonin Receptor/Sirt1/NF-κB Signaling Pathway Following Subarachnoid Hemorrhage in Mice. Mol Neurobiol 2016; 54:1612-1621. [DOI: 10.1007/s12035-016-9776-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/02/2016] [Indexed: 12/25/2022]
|
95
|
Owino S, Contreras-Alcantara S, Baba K, Tosini G. Melatonin Signaling Controls the Daily Rhythm in Blood Glucose Levels Independent of Peripheral Clocks. PLoS One 2016; 11:e0148214. [PMID: 26824606 PMCID: PMC4732609 DOI: 10.1371/journal.pone.0148214] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 01/14/2016] [Indexed: 01/01/2023] Open
Abstract
Melatonin is rhythmically secreted by both the pineal gland and retina in a circadian fashion, with its peak synthesis occurring during the night. Once synthesized, melatonin exerts its effects by binding to two specific G-protein coupled receptors-melatonin receptor type 1(MT1) and melatonin receptor type 2(MT2). Recent studies suggest the involvement of MT1 and MT2 in the regulation of glucose homeostasis; however the ability of melatonin signaling to impart timing cues on glucose metabolism remains poorly understood. Here we report that the removal of MT1 or MT2 in mice abolishes the daily rhythm in blood glucose levels. Interestingly, removal of melatonin receptors produced small effects on the rhythmic expression patterns of clock genes within skeletal muscle, liver, and adipose tissue. Taken together, our data suggest that the loss of the daily rhythm in blood glucose observed in MT1(-/-) and MT2(-/-) mice does not occur as a consequence of 'disrupted' clocks within insulin sensitive tissues. Finally our results highlight a diurnal contribution of melatonin receptor signaling in the daily regulation of blood glucose levels.
Collapse
MESH Headings
- Adipose Tissue/metabolism
- Animals
- Blood Glucose/metabolism
- CLOCK Proteins/genetics
- CLOCK Proteins/metabolism
- Circadian Rhythm/genetics
- Gene Expression Regulation
- Homeostasis
- Liver/metabolism
- Male
- Melatonin/metabolism
- Mice
- Mice, Knockout
- Muscle, Skeletal/metabolism
- Pineal Gland/metabolism
- Receptor, Melatonin, MT1/deficiency
- Receptor, Melatonin, MT1/genetics
- Receptor, Melatonin, MT2/deficiency
- Receptor, Melatonin, MT2/genetics
- Retina/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Sharon Owino
- Neuroscience Institute and Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Susana Contreras-Alcantara
- Neuroscience Institute and Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Kenkichi Baba
- Neuroscience Institute and Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
- * E-mail: (KB); (GT)
| | - Gianluca Tosini
- Neuroscience Institute and Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
- * E-mail: (KB); (GT)
| |
Collapse
|
96
|
Kunst S, Wolloscheck T, Kelleher DK, Wolfrum U, Sargsyan SA, Iuvone PM, Baba K, Tosini G, Spessert R. Pgc-1α and Nr4a1 Are Target Genes of Circadian Melatonin and Dopamine Release in Murine Retina. Invest Ophthalmol Vis Sci 2016; 56:6084-94. [PMID: 26393668 DOI: 10.1167/iovs.15-17503] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
PURPOSE The neurohormones melatonin and dopamine mediate clock-dependent/circadian regulation of inner retinal neurons and photoreceptor cells and in this way promote their functional adaptation to time of day and their survival. To fulfill this function they act on melatonin receptor type 1 (MT1 receptors) and dopamine D4 receptors (D4 receptors), respectively. The aim of the present study was to screen transcriptional regulators important for retinal physiology and/or pathology (Dbp, Egr-1, Fos, Nr1d1, Nr2e3, Nr4a1, Pgc-1α, Rorβ) for circadian regulation and dependence on melatonin signaling/MT1 receptors or dopamine signaling/D4 receptors. METHODS This was done by gene profiling using quantitative polymerase chain reaction in mice deficient in MT1 or D4 receptors. RESULTS The data obtained determined Pgc-1α and Nr4a1 as transcriptional targets of circadian melatonin and dopamine signaling, respectively. CONCLUSIONS The results suggest that Pgc-1α and Nr4a1 represent candidate genes for linking circadian neurohormone release with functional adaptation and healthiness of retina and photoreceptor cells.
Collapse
Affiliation(s)
- Stefanie Kunst
- Institute of Functional and Clinical Anatomy University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany 2Department of Cell and Matrix Biology, Institute of Zoology, Johannes Gutenberg University, Mainz, Germany
| | - Tanja Wolloscheck
- Institute of Functional and Clinical Anatomy University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Debra K Kelleher
- Institute of Functional and Clinical Anatomy University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Uwe Wolfrum
- Department of Cell and Matrix Biology, Institute of Zoology, Johannes Gutenberg University, Mainz, Germany
| | - S Anna Sargsyan
- Departments of Ophthalmology and Pharmacology, Emory University School of Medicine, Atlanta, Georgia, United States
| | - P Michael Iuvone
- Departments of Ophthalmology and Pharmacology, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Kenkichi Baba
- Neuroscience Institute and Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, Georgia, United States
| | - Gianluca Tosini
- Neuroscience Institute and Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, Georgia, United States
| | - Rainer Spessert
- Institute of Functional and Clinical Anatomy University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
97
|
Abstract
Since their discovery, G protein-coupled receptors (GPCRs) constitute one of the most studied proteins leading to important discoveries and perspectives in terms of their biology and implication in physiology and pathophysiology. This is mostly linked to the remarkable advances in the development and application of the biophysical resonance energy transfer (RET)-based approaches, including bioluminescence and fluorescence resonance energy transfer (BRET and FRET, respectively). Indeed, BRET and FRET have been extensively applied to study different aspects of GPCR functioning such as their activation and regulation either statically or dynamically, in real-time and intact cells. Consequently, our view on GPCRs has considerably changed opening new challenges for the study of GPCRs in their native tissues in the aim to get more knowledge on how these receptors control the biological responses. Moreover, the technological aspect of this field of research promises further developments for robust and reliable new RET-based assays that may be compatible with high-throughput screening as well as drug discovery programs.
Collapse
Affiliation(s)
- Mohammed Akli Ayoub
- Biologie et Bioinformatique des Systèmes de Signalisation, Institut National de la Recherche Agronomique, UMR85, Unité Physiologie de la Reproduction et des Comportements; CNRS, UMR7247, Nouzilly, France; LE STUDIUM(®) Loire Valley Institute for Advanced Studies, Orléans, France.
| |
Collapse
|
98
|
Scarselli M, Annibale P, McCormick PJ, Kolachalam S, Aringhieri S, Radenovic A, Corsini GU, Maggio R. Revealing G-protein-coupled receptor oligomerization at the single-molecule level through a nanoscopic lens: methods, dynamics and biological function. FEBS J 2015; 283:1197-217. [PMID: 26509747 DOI: 10.1111/febs.13577] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 09/29/2015] [Accepted: 10/23/2015] [Indexed: 11/30/2022]
Abstract
The introduction of super-resolution fluorescence microscopy has allowed the visualization of single proteins in their biological environment. Recently, these techniques have been applied to determine the organization of class A G-protein-coupled receptors (GPCRs), and to determine whether they exist as monomers, dimers and/or higher-order oligomers. On this subject, this review highlights recent evidence from photoactivated localization microscopy (PALM), which allows the visualization of single molecules in dense samples, and single-molecule tracking (SMT), which determines how GPCRs move and interact in living cells in the presence of different ligands. PALM has demonstrated that GPCR oligomerization depends on the receptor subtype, the cell type, the actin cytoskeleton, and other proteins. Conversely, SMT has revealed the transient dynamics of dimer formation, whereby receptors show a monomer-dimer equilibrium characterized by rapid association and dissociation. At steady state, depending on the subtype, approximately 30-50% of receptors are part of dimeric complexes. Notably, the existence of many GPCR dimers/oligomers is also supported by well-known techniques, such as resonance energy transfer methodologies, and by approaches that exploit fluorescence fluctuations, such as fluorescence correlation spectroscopy (FCS). Future research using single-molecule methods will deepen our knowledge related to the function and druggability of homo-oligomers and hetero-oligomers.
Collapse
Affiliation(s)
- Marco Scarselli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Paolo Annibale
- Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Engineering, EPFL, Lausanne, Switzerland
| | | | - Shivakumar Kolachalam
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Stefano Aringhieri
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Aleksandra Radenovic
- Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Engineering, EPFL, Lausanne, Switzerland
| | - Giovanni U Corsini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Roberto Maggio
- Biotechnological and Applied Clinical Sciences Department, University of L'Aquila, Italy
| |
Collapse
|
99
|
Liu J, Clough SJ, Hutchinson AJ, Adamah-Biassi EB, Popovska-Gorevski M, Dubocovich ML. MT1 and MT2 Melatonin Receptors: A Therapeutic Perspective. Annu Rev Pharmacol Toxicol 2015; 56:361-83. [PMID: 26514204 PMCID: PMC5091650 DOI: 10.1146/annurev-pharmtox-010814-124742] [Citation(s) in RCA: 423] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Melatonin, or 5-methoxy-N-acetyltryptamine, is synthesized and released by the pineal gland and locally in the retina following a circadian rhythm, with low levels during the day and elevated levels at night. Melatonin activates two high-affinity G protein-coupled receptors, termed MT1 and MT2, to exert beneficial actions in sleep and circadian abnormality, mood disorders, learning and memory, neuroprotection, drug abuse, and cancer. Progress in understanding the role of melatonin receptors in the modulation of sleep and circadian rhythms has led to the discovery of a novel class of melatonin agonists for treating insomnia, circadian rhythms, mood disorders, and cancer. This review describes the pharmacological properties of a slow-release melatonin preparation (i.e., Circadin®) and synthetic ligands (i.e., agomelatine, ramelteon, tasimelteon), with emphasis on identifying specific therapeutic effects mediated through MT1 and MT2 receptor activation. Discovery of selective ligands targeting the MT1 or the MT2 melatonin receptors may promote the development of novel and more efficacious therapeutic agents.
Collapse
Affiliation(s)
- Jiabei Liu
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214; , , , , ,
| | - Shannon J Clough
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214; , , , , ,
| | - Anthony J Hutchinson
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214; , , , , ,
| | - Ekue B Adamah-Biassi
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214; , , , , ,
| | - Marina Popovska-Gorevski
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214; , , , , ,
| | - Margarita L Dubocovich
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214; , , , , ,
| |
Collapse
|
100
|
Abstract
G protein-coupled receptors (GPCRs) compose one of the largest families of membrane proteins involved in intracellular signaling. They are involved in numerous physiological and pathological processes and are prime candidates for drug development. Over the past decade, an increasing number of studies have reported heteromerization between GPCRs. Many investigations in heterologous systems have provided important indications of potential novel pharmacology; however, the physiological relevance of these findings has yet to be established with endogenous receptors in native tissues. In this review, we focus on family A GPCRs and describe the techniques and criteria to assess their heteromerization. We conclude that advances in approaches to study receptor complex functionality in heterologous systems, coupled with techniques that enable specific examination of native receptor heteromers in vivo, are likely to establish GPCR heteromers as novel therapeutic targets.
Collapse
Affiliation(s)
- Ivone Gomes
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029;
| | - Mohammed Akli Ayoub
- Biologie et Bioinformatique des Systèmes de Signalisation (BIOS) Group, INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements; CNRS, UMR7247, F-37380 Nouzilly, France
- LE STUDIUM Loire Valley Institute for Advanced Studies, F-45000 Orleans, France
| | - Wakako Fujita
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029;
- Current address: Department of Frontier Life Sciences, Nagasaki University, Nagasaki City, Nagasaki Prefecture 852-8588, Japan
| | - Werner C Jaeger
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia
- Centre for Medical Research, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Kevin D G Pfleger
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia
- Centre for Medical Research, The University of Western Australia, Crawley, Western Australia 6009, Australia
- Dimerix Bioscience Limited, Nedlands, Western Australia 6009, Australia
| | - Lakshmi A Devi
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029;
| |
Collapse
|