51
|
Caillet-Saguy C, Wolff N. PDZ-Containing Proteins Targeted by the ACE2 Receptor. Viruses 2021; 13:2281. [PMID: 34835087 PMCID: PMC8624105 DOI: 10.3390/v13112281] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/28/2022] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2) is a main receptor for SARS-CoV-2 entry to the host cell. Indeed, the first step in viral entry is the binding of the viral trimeric spike (S) protein to ACE2. Abundantly present in human epithelial cells of many organs, ACE2 is also expressed in the human brain. ACE2 is a type I membrane protein with an extracellular N-terminal peptidase domain and a C-terminal collectrin-like domain that ends with a single transmembrane helix and an intracellular 44-residue segment. This C-terminal segment contains a PDZ-binding motif (PBM) targeting protein-interacting domains called PSD-95/Dlg/ZO-1 (PDZ). Here, we identified the human PDZ specificity profile of the ACE2 PBM using the high-throughput holdup assay and measuring the binding intensities of the PBM of ACE2 against the full human PDZome. We discovered 14 human PDZ binders of ACE2 showing significant binding with dissociation constants' values ranging from 3 to 81 μM. NHERF, SHANK, and SNX27 proteins found in this study are involved in protein trafficking. The PDZ/PBM interactions with ACE2 could play a role in ACE2 internalization and recycling that could be of benefit for the virus entry. Interestingly, most of the ACE2 partners we identified are expressed in neuronal cells, such as SHANK and MAST families, and modifications of the interactions between ACE2 and these neuronal proteins may be involved in the neurological symptoms of COVID-19.
Collapse
Affiliation(s)
- Célia Caillet-Saguy
- Unité Récepteurs-Canaux, Institut Pasteur, UMR CNRS 3571, 75015 Paris, France
| | - Nicolas Wolff
- Unité Récepteurs-Canaux, Institut Pasteur, UMR CNRS 3571, 75015 Paris, France
| |
Collapse
|
52
|
Amruta N, Engler-Chiurazzi EB, Murray-Brown IC, Gressett TE, Biose IJ, Chastain WH, Befeler JB, Bix G. In Vivo protection from SARS-CoV-2 infection by ATN-161 in k18-hACE2 transgenic mice. Life Sci 2021; 284:119881. [PMID: 34389403 PMCID: PMC8352850 DOI: 10.1016/j.lfs.2021.119881] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/01/2021] [Accepted: 08/05/2021] [Indexed: 02/06/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an infectious disease that has spread worldwide. Current treatments are limited in both availability and efficacy, such that improving our understanding of the factors that facilitate infection is urgently needed to more effectively treat infected individuals and to curb the pandemic. We and others have previously demonstrated the significance of interactions between the SARS-CoV-2 spike protein, integrin α5β1, and human ACE2 to facilitate viral entry into host cells in vitro. We previously found that inhibition of integrin α5β1 by the clinically validated small peptide ATN-161 inhibits these spike protein interactions and cell infection in vitro. In continuation with our previous findings, here we have further evaluated the therapeutic potential of ATN-161 on SARS-CoV-2 infection in k18-hACE2 transgenic (SARS-CoV-2 susceptible) mice in vivo. We discovered that treatment with single or repeated intravenous doses of ATN-161 (1 mg/kg) within 48 h after intranasal inoculation with SARS-CoV-2 lead to a reduction of lung viral load, viral immunofluorescence, and improved lung histology in a majority of mice 72 h post-infection. Furthermore, ATN-161 reduced SARS-CoV-2-induced increased expression of lung integrin α5 and αv (an α5-related integrin that has also been implicated in SARS-CoV-2 interactions) as well as the C-X-C motif chemokine ligand 10 (Cxcl10), further supporting the potential involvement of these integrins, and the anti-inflammatory potential of ATN-161, respectively, in SARS-CoV-2 infection. To the best of our knowledge, this is the first study demonstrating the potential therapeutic efficacy of targeting integrin α5β1 in SARS-CoV-2 infection in vivo and supports the development of ATN-161 as a novel SARS-CoV-2 therapy.
Collapse
Affiliation(s)
- Narayanappa Amruta
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Elizabeth B Engler-Chiurazzi
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA; Tulane Brain Institute, Tulane University, New Orleans, LA 70112, USA; Department of Neurology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Isabel C Murray-Brown
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Timothy E Gressett
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Ifechukwude J Biose
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Wesley H Chastain
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jaime B Befeler
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Gregory Bix
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA; Tulane Brain Institute, Tulane University, New Orleans, LA 70112, USA; Department of Neurology, Tulane University School of Medicine, New Orleans, LA 70112, USA; Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA; Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70122, USA.
| |
Collapse
|
53
|
Simons P, Rinaldi DA, Bondu V, Kell AM, Bradfute S, Lidke DS, Buranda T. Integrin activation is an essential component of SARS-CoV-2 infection. Sci Rep 2021; 11:20398. [PMID: 34650161 PMCID: PMC8516859 DOI: 10.1038/s41598-021-99893-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/30/2021] [Indexed: 02/07/2023] Open
Abstract
SARS-CoV-2 infection depends on binding its spike (S) protein to angiotensin-converting enzyme 2 (ACE2). The S protein expresses an RGD motif, suggesting that integrins may be co-receptors. Here, we UV-inactivated SARS-CoV-2 and fluorescently labeled the envelope membrane with octadecyl rhodamine B (R18) to explore the role of integrin activation in mediating cell entry and productive infection. We used flow cytometry and confocal microscopy to show that SARS-CoV-2R18 particles engage basal-state integrins. Furthermore, we demonstrate that Mn2+, which induces integrin extension, enhances cell entry of SARS-CoV-2R18. We also show that one class of integrin antagonist, which binds to the αI MIDAS site and stabilizes the inactive, closed conformation, selectively inhibits the engagement of SARS-CoV-2R18 with basal state integrins, but is ineffective against Mn2+-activated integrins. RGD-integrin antagonists inhibited SARS-CoV-2R18 binding regardless of integrin activation status. Integrins transmit signals bidirectionally: 'inside-out' signaling primes the ligand-binding function of integrins via a talin-dependent mechanism, and 'outside-in' signaling occurs downstream of integrin binding to macromolecular ligands. Outside-in signaling is mediated by Gα13. Using cell-permeable peptide inhibitors of talin and Gα13 binding to the cytoplasmic tail of an integrin's β subunit, we demonstrate that talin-mediated signaling is essential for productive infection.
Collapse
Affiliation(s)
- Peter Simons
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Derek A Rinaldi
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Virginie Bondu
- Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Alison M Kell
- Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
- Center for Infectious Diseases and Immunity, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Steven Bradfute
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
- Center for Infectious Diseases and Immunity, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Diane S Lidke
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
- Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Tione Buranda
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA.
- Center for Infectious Diseases and Immunity, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA.
| |
Collapse
|
54
|
Knyazev E, Nersisyan S, Tonevitsky A. Endocytosis and Transcytosis of SARS-CoV-2 Across the Intestinal Epithelium and Other Tissue Barriers. Front Immunol 2021; 12:636966. [PMID: 34557180 PMCID: PMC8452982 DOI: 10.3389/fimmu.2021.636966] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 08/20/2021] [Indexed: 12/14/2022] Open
Abstract
Since 2003, the world has been confronted with three new betacoronaviruses that cause human respiratory infections: SARS-CoV, which causes severe acute respiratory syndrome (SARS), MERS-CoV, which causes Middle East respiratory syndrome (MERS), and SARS-CoV-2, which causes Coronavirus Disease 2019 (COVID-19). The mechanisms of coronavirus transmission and dissemination in the human body determine the diagnostic and therapeutic strategies. An important problem is the possibility that viral particles overcome tissue barriers such as the intestine, respiratory tract, blood-brain barrier, and placenta. In this work, we will 1) consider the issue of endocytosis and the possibility of transcytosis and paracellular trafficking of coronaviruses across tissue barriers with an emphasis on the intestinal epithelium; 2) discuss the possibility of antibody-mediated transcytosis of opsonized viruses due to complexes of immunoglobulins with their receptors; 3) assess the possibility of the virus transfer into extracellular vesicles during intracellular transport; and 4) describe the clinical significance of these processes. Models of the intestinal epithelium and other barrier tissues for in vitro transcytosis studies will also be briefly characterized.
Collapse
Affiliation(s)
- Evgeny Knyazev
- Laboratory of Microfluidic Technologies for Biomedicine, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics (HSE), Moscow, Russia
| | - Stepan Nersisyan
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics (HSE), Moscow, Russia
| | - Alexander Tonevitsky
- Laboratory of Microfluidic Technologies for Biomedicine, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics (HSE), Moscow, Russia
| |
Collapse
|
55
|
Koyama S, Kondo K, Ueha R, Kashiwadani H, Heinbockel T. Possible Use of Phytochemicals for Recovery from COVID-19-Induced Anosmia and Ageusia. Int J Mol Sci 2021; 22:8912. [PMID: 34445619 PMCID: PMC8396277 DOI: 10.3390/ijms22168912] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 12/14/2022] Open
Abstract
The year 2020 became the year of the outbreak of coronavirus, SARS-CoV-2, which escalated into a worldwide pandemic and continued into 2021. One of the unique symptoms of the SARS-CoV-2 disease, COVID-19, is the loss of chemical senses, i.e., smell and taste. Smell training is one of the methods used in facilitating recovery of the olfactory sense, and it uses essential oils of lemon, rose, clove, and eucalyptus. These essential oils were not selected based on their chemical constituents. Although scientific studies have shown that they improve recovery, there may be better combinations for facilitating recovery. Many phytochemicals have bioactive properties with anti-inflammatory and anti-viral effects. In this review, we describe the chemical compounds with anti- inflammatory and anti-viral effects, and we list the plants that contain these chemical compounds. We expand the review from terpenes to the less volatile flavonoids in order to propose a combination of essential oils and diets that can be used to develop a new taste training method, as there has been no taste training so far. Finally, we discuss the possible use of these in clinical settings.
Collapse
Affiliation(s)
- Sachiko Koyama
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Kenji Kondo
- Department of Otolaryngology, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan;
| | - Rumi Ueha
- Department of Otolaryngology, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan;
- Swallowing Center, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| | - Hideki Kashiwadani
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan;
| | - Thomas Heinbockel
- Department of Anatomy, College of Medicine, Howard University, Washington, DC 20059, USA
| |
Collapse
|
56
|
Shroff A, Nazarko TY. The Molecular Interplay between Human Coronaviruses and Autophagy. Cells 2021; 10:2022. [PMID: 34440791 PMCID: PMC8392315 DOI: 10.3390/cells10082022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 02/07/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by a new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has instantaneously emerged as a worldwide pandemic. However, humans encountered other coronaviruses in the past, and they caused a broad range of symptoms, from mild to life-threatening, depending on the virus and immunocompetence of the host. Most human coronaviruses interact with the proteins and/or double-membrane vesicles of autophagy, the membrane trafficking pathway that degrades and recycles the intracellular protein aggregates, organelles, and pathogens, including viruses. However, coronaviruses often neutralize and hijack this pathway to complete their life cycle. In this review, we discuss the interactions of human coronaviruses and autophagy, including recent data from SARS-CoV-2-related studies. Some of these interactions (for example, viral block of the autophagosome-lysosome fusion), while being conserved across multiple coronaviruses, are accomplished via different molecular mechanisms. Therefore, it is important to understand the molecular interplay between human coronaviruses and autophagy for developing efficient therapies against coronaviral diseases.
Collapse
Affiliation(s)
| | - Taras Y. Nazarko
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA;
| |
Collapse
|
57
|
SARS-CoV-2 Cellular Entry Is Independent of the ACE2 Cytoplasmic Domain Signaling. Cells 2021; 10:cells10071814. [PMID: 34359983 PMCID: PMC8304749 DOI: 10.3390/cells10071814] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/10/2021] [Accepted: 07/15/2021] [Indexed: 12/16/2022] Open
Abstract
Recently emerged severe acute respiratory syndrome coronavirus (SARS-CoV)-1 and -2 initiate virus infection by binding of their spike glycoprotein with the cell-surface receptor angiotensin-converting enzyme 2 (ACE2) and enter into the host cells mainly via the clathrin-mediated endocytosis pathway. However, the internalization process post attachment with the receptor is not clear for both SARS-CoV-1 and -2. Understanding the cellular factor/s or pathways used by these CoVs for internalization might provide insights into viral pathogenesis, transmission, and development of novel therapeutics. Here, we demonstrated that the cytoplasmic tail of ACE2 is not essential for the entry of SARS-CoV-1 and -2 by using bioinformatics, mutational, confocal imaging, and pseudotyped SARS-CoVs infection studies. ACE2 cytoplasmic domain (cytACE2) contains a conserved internalization motif and eight putative phosphorylation sites. Complete cytoplasmic domain deleted ACE2 (∆cytACE2) was properly synthesized and presented on the surface of HEK293T and BHK21 cells like wtACE2. The SARS-CoVs S1 or RBD of spike protein binds and colocalizes with the receptors followed by internalization into the host cells. Moreover, pseudotyped SARS-CoVs entered into wtACE2- and ∆cytACE2-transfected cells but not into dipeptidyl peptidase 4 (DPP4)-expressing cells. Their entry was significantly inhibited by treatment with dynasore, a dynamin inhibitor, and NH4Cl, an endosomal acidification inhibitor. Furthermore, SARS-CoV antibodies and the soluble form of ACE2-treated pseudotyped SARS-CoVs were unable to enter the wtACE2 and ∆cytACE2-expressing cells. Altogether, our data show that ACE2 cytoplasmic domain signaling is not essential for the entry of SARS-CoV-1 and -2 and that SARS-CoVs entry might be mediated via known/unknown host factor/s.
Collapse
|
58
|
Andrew M, Jayaraman G. Marine sulfated polysaccharides as potential antiviral drug candidates to treat Corona Virus disease (COVID-19). Carbohydr Res 2021; 505:108326. [PMID: 34015720 PMCID: PMC8091805 DOI: 10.1016/j.carres.2021.108326] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023]
Abstract
The viral infection caused by SARS-CoV-2 has increased the mortality rate and engaged several adverse effects on the affected individuals. Currently available antiviral drugs have found to be unsuccessful in the treatment of COVID-19 patients. The demand for efficient antiviral drugs has created a huge burden on physicians and health workers. Plasma therapy seems to be less accomplishable due to insufficient donors to donate plasma and low recovery rate from viral infection. Repurposing of antivirals has been evolved as a suitable strategy in the current treatment and preventive measures. The concept of drug repurposing represents new experimental approaches for effective therapeutic benefits. Besides, SARS-CoV-2 exhibits several complications such as lung damage, blood clot formation, respiratory illness and organ failures in most of the patients. Based on the accumulation of data, sulfated marine polysaccharides have exerted successful inhibition of virus entry, attachment and replication with known or unknown possible mechanisms against deadly animal and human viruses so far. Since the virus entry into the host cells is the key process, the prevention of such entry mechanism makes any antiviral strategy effective. Enveloped viruses are more sensitive to polyanions than non-enveloped viruses. Besides, the viral infection caused by RNA virus types embarks severe oxidative stress in the human body that leads to malfunction of tissues and organs. In this context, polysaccharides play a very significant role in providing shielding effect against the virus due to their polyanionic rich features and a molecular weight that hinders their reactive surface glycoproteins. Significantly the functional groups especially sulfate, sulfate pattern and addition, uronic acids, monosaccharides, glycosidic linkage and high molecular weight have greater influence in the antiviral activity. Moreover, they are very good antioxidants that can reduce the free radical generation and provokes intracellular antioxidant enzymes. Additionally, polysaccharides enable a host-virus immune response, activate phagocytosis and stimulate interferon systems. Therefore, polysaccharides can be used as candidate drugs, adjuvants in vaccines or combination with other antivirals, antioxidants and immune-activating nutritional supplements and antiviral materials in healthcare products to prevent SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Monic Andrew
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Gurunathan Jayaraman
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
59
|
ACE2 interaction with cytoplasmic PDZ protein enhances SARS-CoV-2 invasion. iScience 2021; 24:102770. [PMID: 34189428 PMCID: PMC8223119 DOI: 10.1016/j.isci.2021.102770] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/23/2021] [Accepted: 06/21/2021] [Indexed: 12/26/2022] Open
Abstract
SARS-CoV-2 is responsible for the global COVID-19 pandemic. Angiotensin converting enzyme 2 (ACE2) is the membrane-delimited receptor for SARS-CoV-2. Lung, intestine, and kidney, major sites of viral infection, express ACE2 that harbors an intracellular, carboxy-terminal PDZ-recognition motif. These organs prominently express the PDZ protein Na+/H+ exchanger regulatory factor-1 (NHERF1). Here, we report NHERF1 tethers ACE2 and augments SARS-CoV-2 cell entry. ACE2 directly binds both NHERF1 PDZ domains. Disruption of either NHERF1 PDZ core-binding motif or the ACE2 PDZ recognition sequence eliminates interaction. Proximity ligation assays establish that ACE2 and NHERF1 interact at constitutive expression levels in human lung and intestine cells. Ablating ACE2 interaction with NHERF1 accelerated SARS-CoV-2 cell entry. Conversely, elimination of the ACE2 C-terminal PDZ-binding motif decreased ACE2 membrane residence and reduced pseudotyped virus entry. We conclude that the PDZ interaction of ACE2 with NHERF1 facilitates SARS-CoV-2 internalization. β-Arrestin is likely indispensable, as with G protein-coupled receptors. The SARS-CoV-2 receptor ACE2 C-terminal PDZ-recognition motif 802QTSF805 binds to NHERF1 NHERF1 and ACE2 interact directly in SARS-CoV-2-susceptible lung and intestine cells NHERF1 expression correlates with SARS-CoV-2 entry by regulating ACE2 membrane abundance β-Arrestins may cooperate with NHERF1 to promote ACE2-mediated SARS-CoV-2 cell entry
Collapse
|
60
|
Pereira GJDS, Leão AHFF, Erustes AG, Morais IBDM, Vrechi TADM, Zamarioli LDS, Pereira CAS, Marchioro LDO, Sperandio LP, Lins ÍVF, Piacentini M, Fimia GM, Reckziegel P, Smaili SS, Bincoletto C. Pharmacological Modulators of Autophagy as a Potential Strategy for the Treatment of COVID-19. Int J Mol Sci 2021; 22:4067. [PMID: 33920748 PMCID: PMC8071111 DOI: 10.3390/ijms22084067] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/10/2021] [Accepted: 03/15/2021] [Indexed: 02/06/2023] Open
Abstract
The family of coronaviruses (CoVs) uses the autophagy machinery of host cells to promote their growth and replication; thus, this process stands out as a potential target to combat COVID-19. Considering the different roles of autophagy during viral infection, including SARS-CoV-2 infection, in this review, we discuss several clinically used drugs that have effects at different stages of autophagy. Among them, we mention (1) lysosomotropic agents, which can prevent CoVs infection by alkalinizing the acid pH in the endolysosomal system, such as chloroquine and hydroxychloroquine, azithromycin, artemisinins, two-pore channel modulators and imatinib; (2) protease inhibitors that can inhibit the proteolytic cleavage of the spike CoVs protein, which is necessary for viral entry into host cells, such as camostat mesylate, lopinavir, umifenovir and teicoplanin and (3) modulators of PI3K/AKT/mTOR signaling pathways, such as rapamycin, heparin, glucocorticoids, angiotensin-converting enzyme inhibitors (IECAs) and cannabidiol. Thus, this review aims to highlight and discuss autophagy-related drugs for COVID-19, from in vitro to in vivo studies. We identified specific compounds that may modulate autophagy and exhibit antiviral properties. We hope that research initiatives and efforts will identify novel or "off-label" drugs that can be used to effectively treat patients infected with SARS-CoV-2, reducing the risk of mortality.
Collapse
Affiliation(s)
- Gustavo José da Silva Pereira
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), 04044-020 São Paulo, Brazil; (A.H.F.F.L.); (A.G.E.); (I.B.d.M.M.); (T.A.d.M.V.); (L.d.S.Z.); (C.A.S.P.); (L.d.O.M.); (L.P.S.); (Í.V.F.L.); (P.R.); (S.S.S.); (C.B.)
| | - Anderson Henrique França Figueredo Leão
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), 04044-020 São Paulo, Brazil; (A.H.F.F.L.); (A.G.E.); (I.B.d.M.M.); (T.A.d.M.V.); (L.d.S.Z.); (C.A.S.P.); (L.d.O.M.); (L.P.S.); (Í.V.F.L.); (P.R.); (S.S.S.); (C.B.)
| | - Adolfo Garcia Erustes
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), 04044-020 São Paulo, Brazil; (A.H.F.F.L.); (A.G.E.); (I.B.d.M.M.); (T.A.d.M.V.); (L.d.S.Z.); (C.A.S.P.); (L.d.O.M.); (L.P.S.); (Í.V.F.L.); (P.R.); (S.S.S.); (C.B.)
| | - Ingrid Beatriz de Melo Morais
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), 04044-020 São Paulo, Brazil; (A.H.F.F.L.); (A.G.E.); (I.B.d.M.M.); (T.A.d.M.V.); (L.d.S.Z.); (C.A.S.P.); (L.d.O.M.); (L.P.S.); (Í.V.F.L.); (P.R.); (S.S.S.); (C.B.)
| | - Talita Aparecida de Moraes Vrechi
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), 04044-020 São Paulo, Brazil; (A.H.F.F.L.); (A.G.E.); (I.B.d.M.M.); (T.A.d.M.V.); (L.d.S.Z.); (C.A.S.P.); (L.d.O.M.); (L.P.S.); (Í.V.F.L.); (P.R.); (S.S.S.); (C.B.)
| | - Lucas dos Santos Zamarioli
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), 04044-020 São Paulo, Brazil; (A.H.F.F.L.); (A.G.E.); (I.B.d.M.M.); (T.A.d.M.V.); (L.d.S.Z.); (C.A.S.P.); (L.d.O.M.); (L.P.S.); (Í.V.F.L.); (P.R.); (S.S.S.); (C.B.)
| | - Cássia Arruda Souza Pereira
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), 04044-020 São Paulo, Brazil; (A.H.F.F.L.); (A.G.E.); (I.B.d.M.M.); (T.A.d.M.V.); (L.d.S.Z.); (C.A.S.P.); (L.d.O.M.); (L.P.S.); (Í.V.F.L.); (P.R.); (S.S.S.); (C.B.)
| | - Laís de Oliveira Marchioro
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), 04044-020 São Paulo, Brazil; (A.H.F.F.L.); (A.G.E.); (I.B.d.M.M.); (T.A.d.M.V.); (L.d.S.Z.); (C.A.S.P.); (L.d.O.M.); (L.P.S.); (Í.V.F.L.); (P.R.); (S.S.S.); (C.B.)
| | - Letícia Paulino Sperandio
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), 04044-020 São Paulo, Brazil; (A.H.F.F.L.); (A.G.E.); (I.B.d.M.M.); (T.A.d.M.V.); (L.d.S.Z.); (C.A.S.P.); (L.d.O.M.); (L.P.S.); (Í.V.F.L.); (P.R.); (S.S.S.); (C.B.)
| | - Ísis Valeska Freire Lins
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), 04044-020 São Paulo, Brazil; (A.H.F.F.L.); (A.G.E.); (I.B.d.M.M.); (T.A.d.M.V.); (L.d.S.Z.); (C.A.S.P.); (L.d.O.M.); (L.P.S.); (Í.V.F.L.); (P.R.); (S.S.S.); (C.B.)
| | - Mauro Piacentini
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy;
- Department of Epidemiology and Preclinical Research, National Institute for Infectious Diseases IRCCS ‘La Zaro Spallanzani’, 00149 Rome, Italy;
| | - Gian Maria Fimia
- Department of Epidemiology and Preclinical Research, National Institute for Infectious Diseases IRCCS ‘La Zaro Spallanzani’, 00149 Rome, Italy;
- Department of Molecular Medicine, University of Rome La Sapienza, 00185 Rome, Italy
| | - Patrícia Reckziegel
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), 04044-020 São Paulo, Brazil; (A.H.F.F.L.); (A.G.E.); (I.B.d.M.M.); (T.A.d.M.V.); (L.d.S.Z.); (C.A.S.P.); (L.d.O.M.); (L.P.S.); (Í.V.F.L.); (P.R.); (S.S.S.); (C.B.)
| | - Soraya Soubhi Smaili
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), 04044-020 São Paulo, Brazil; (A.H.F.F.L.); (A.G.E.); (I.B.d.M.M.); (T.A.d.M.V.); (L.d.S.Z.); (C.A.S.P.); (L.d.O.M.); (L.P.S.); (Í.V.F.L.); (P.R.); (S.S.S.); (C.B.)
| | - Claudia Bincoletto
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), 04044-020 São Paulo, Brazil; (A.H.F.F.L.); (A.G.E.); (I.B.d.M.M.); (T.A.d.M.V.); (L.d.S.Z.); (C.A.S.P.); (L.d.O.M.); (L.P.S.); (Í.V.F.L.); (P.R.); (S.S.S.); (C.B.)
| |
Collapse
|
61
|
Martínez YA, Guo X, Portales-Pérez DP, Rivera G, Castañeda-Delgado JE, García-Pérez CA, Enciso-Moreno JA, Lara-Ramírez EE. The analysis on the human protein domain targets and host-like interacting motifs for the MERS-CoV and SARS-CoV/CoV-2 infers the molecular mimicry of coronavirus. PLoS One 2021; 16:e0246901. [PMID: 33596252 PMCID: PMC7888644 DOI: 10.1371/journal.pone.0246901] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/28/2021] [Indexed: 12/14/2022] Open
Abstract
The MERS-CoV, SARS-CoV, and SARS-CoV-2 are highly pathogenic viruses that can cause severe pneumonic diseases in humans. Unfortunately, there is a non-available effective treatment to combat these viruses. Domain-motif interactions (DMIs) are an essential means by which viruses mimic and hijack the biological processes of host cells. To disentangle how viruses achieve this process can help to develop new rational therapies. Data mining was performed to obtain DMIs stored as regular expressions (regexp) in 3DID and ELM databases. The mined regexp information was mapped on the coronaviruses' proteomes. Most motifs on viral protein that could interact with human proteins are shared across the coronavirus species, indicating that molecular mimicry is a common strategy for coronavirus infection. Enrichment ontology analysis for protein domains showed a shared biological process and molecular function terms related to carbon source utilization and potassium channel regulation. Some of the mapped motifs were nested on B, and T cell epitopes, suggesting that it could be as an alternative way for reverse vaccinology. The information obtained in this study could be used for further theoretic and experimental explorations on coronavirus infection mechanism and development of medicines for treatment.
Collapse
Affiliation(s)
- Yamelie A. Martínez
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano Del Seguro Social, Zacatecas, México
- Laboratorio de Inmunología y Biología Celular y Molecular, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Xianwu Guo
- Laboratorio de Biotecnología Genómica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, México
| | - Diana P. Portales-Pérez
- Laboratorio de Inmunología y Biología Celular y Molecular, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Gildardo Rivera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, México
| | - Julio E. Castañeda-Delgado
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano Del Seguro Social, Zacatecas, México
- Cátedras-CONACYT, Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano Del Seguro Social, Zacatecas, México
| | - Carlos A. García-Pérez
- Information and Communication Technology Department (ICT), Complex Systems, Helmholtz Zentrum München, Neuherberg, Germany
| | - José A. Enciso-Moreno
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano Del Seguro Social, Zacatecas, México
| | - Edgar E. Lara-Ramírez
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano Del Seguro Social, Zacatecas, México
| |
Collapse
|
62
|
Mészáros B, Sámano-Sánchez H, Alvarado-Valverde J, Čalyševa J, Martínez-Pérez E, Alves R, Shields DC, Kumar M, Rippmann F, Chemes LB, Gibson TJ. Short linear motif candidates in the cell entry system used by SARS-CoV-2 and their potential therapeutic implications. Sci Signal 2021; 14:eabd0334. [PMID: 33436497 PMCID: PMC7928535 DOI: 10.1126/scisignal.abd0334] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022]
Abstract
The first reported receptor for SARS-CoV-2 on host cells was the angiotensin-converting enzyme 2 (ACE2). However, the viral spike protein also has an RGD motif, suggesting that cell surface integrins may be co-receptors. We examined the sequences of ACE2 and integrins with the Eukaryotic Linear Motif (ELM) resource and identified candidate short linear motifs (SLiMs) in their short, unstructured, cytosolic tails with potential roles in endocytosis, membrane dynamics, autophagy, cytoskeleton, and cell signaling. These SLiM candidates are highly conserved in vertebrates and may interact with the μ2 subunit of the endocytosis-associated AP2 adaptor complex, as well as with various protein domains (namely, I-BAR, LC3, PDZ, PTB, and SH2) found in human signaling and regulatory proteins. Several motifs overlap in the tail sequences, suggesting that they may act as molecular switches, such as in response to tyrosine phosphorylation status. Candidate LC3-interacting region (LIR) motifs are present in the tails of integrin β3 and ACE2, suggesting that these proteins could directly recruit autophagy components. Our findings identify several molecular links and testable hypotheses that could uncover mechanisms of SARS-CoV-2 attachment, entry, and replication against which it may be possible to develop host-directed therapies that dampen viral infection and disease progression. Several of these SLiMs have now been validated to mediate the predicted peptide interactions.
Collapse
Affiliation(s)
- Bálint Mészáros
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany.
| | - Hugo Sámano-Sánchez
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Jesús Alvarado-Valverde
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences
| | - Jelena Čalyševa
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences
| | - Elizabeth Martínez-Pérez
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
- Laboratorio de bioinformática estructural, Fundación Instituto Leloir, C1405BWE Buenos Aires, Argentina
| | - Renato Alves
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Denis C Shields
- School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Manjeet Kumar
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany.
| | - Friedrich Rippmann
- Computational Chemistry & Biology, Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Lucía B Chemes
- Instituto de Investigaciones Biotecnológicas "Dr. Rodolfo A. Ugalde", IIB-UNSAM, IIBIO-CONICET, Universidad Nacional de San Martín, CP1650 San Martín, Buenos Aires, Argentina.
| | - Toby J Gibson
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany.
| |
Collapse
|