51
|
Pseudotyping Lentiviral Vectors: When the Clothes Make the Virus. Viruses 2020; 12:v12111311. [PMID: 33207797 PMCID: PMC7697029 DOI: 10.3390/v12111311] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022] Open
Abstract
Delivering transgenes to human cells through transduction with viral vectors constitutes one of the most encouraging approaches in gene therapy. Lentivirus-derived vectors are among the most promising vectors for these approaches. When the genetic modification of the cell must be performed in vivo, efficient specific transduction of the cell targets of the therapy in the absence of off-targeting constitutes the Holy Grail of gene therapy. For viral therapy, this is largely determined by the characteristics of the surface proteins carried by the vector. In this regard, an important property of lentiviral vectors is the possibility of being pseudotyped by envelopes of other viruses, widening the panel of proteins with which they can be armed. Here, we discuss how this is achieved at the molecular level and what the properties and the potentialities of the different envelope proteins that can be used for pseudotyping these vectors are.
Collapse
|
52
|
Piccolo P, Rossi A, Brunetti-Pierri N. Liver-directed gene-based therapies for inborn errors of metabolism. Expert Opin Biol Ther 2020; 21:229-240. [PMID: 32880494 DOI: 10.1080/14712598.2020.1817375] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Inborn errors of metabolism include several genetic disorders due to disruption of cellular biochemical reactions. Although individually rare, collectively they are a large and heterogenous group of diseases affecting a significant proportion of patients. Available treatments are often unsatisfactory. Liver-directed gene therapy has potential for treatment of several inborn errors of metabolism. While lentiviral vectors and lipid nanoparticle-mRNA have shown attractive features in preclinical studies and still have to be investigated in humans, adeno-associated virus (AAV) vectors have shown clinical success in both preclinical and clinical trials for in vivo liver-directed gene therapy. AREAS COVERED In this review, we discussed the most relevant clinical applications and the challenges of liver-directed gene-based approaches for therapy of inborn errors of metabolism. EXPERT OPINION Challenges and prospects of clinical gene therapy trials and preclinical studies that are believed to have the greatest potential for clinical translation are presented.
Collapse
Affiliation(s)
- Pasquale Piccolo
- Telethon Institute of Genetics and Medicine , Pozzuoli, Italy.,Department of Translational Medicine, Federico II University of Naples , Naples, Italy
| | - Alessandro Rossi
- Department of Translational Medicine, Federico II University of Naples , Naples, Italy
| | - Nicola Brunetti-Pierri
- Telethon Institute of Genetics and Medicine , Pozzuoli, Italy.,Department of Translational Medicine, Federico II University of Naples , Naples, Italy
| |
Collapse
|
53
|
Caputo S, Grioni M, Brambillasca CS, Monno A, Brevi A, Freschi M, Piras IS, Elia AR, Pieri V, Baccega T, Lombardo A, Galli R, Briganti A, Doglioni C, Jachetti E, Bellone M. Galectin-3 in Prostate Cancer Stem-Like Cells Is Immunosuppressive and Drives Early Metastasis. Front Immunol 2020; 11:1820. [PMID: 33013832 PMCID: PMC7516304 DOI: 10.3389/fimmu.2020.01820] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
Galectin-3 (Gal-3) is an extracellular matrix glycan-binding protein with several immunosuppressive and pro-tumor functions. The role of Galectin-3 in cancer stem-like cells (CSCs) is poorly investigated. Here, we show that prostate CSCs also colonizing prostate-draining lymph nodes of transgenic adenocarcinoma of the mouse prostate (TRAMP) mice overexpress Gal-3. Gal-3 contributes to prostate CSC-mediated immune suppression because either Gal-3 silencing in CSCs, or co-culture of CSCs and T cells in the presence of the Gal-3 inhibitor N-Acetyl-D-lactosamine rescued T cell proliferation. N-Acetyl-D-lactosamine also rescued the proliferation of T cells in prostate-draining lymph nodes of TRAMP mice affected by prostate intraepithelial neoplasia. Additionally, Gal-3 impacted prostate CSC tumorigenic and metastatic potential in vivo, as Gal-3 silencing in prostate CSCs reduced both primary tumor growth and secondary invasion. Gal-3 was also found expressed in more differentiated prostate cancer cells, but with different intracellular distribution as compared to CSCs, which suggests different functions of Gal-3 in the two cell populations. In fact, the prevalent nuclear and cytoplasmic distribution of Gal-3 in prostate CSCs made them less susceptible to apoptosis, when compared to more differentiated prostate cancer cells, in which Gal-3 was predominantly intra-cytoplasmic. Finally, we found Gal-3 expressed in human and mouse prostate intraepithelial neoplasia lesions and in metastatic lymph nodes. All together, these findings identify Gal-3 as a key molecule and a potential therapeutic target already in the early phases of prostate cancer progression and metastasis.
Collapse
Affiliation(s)
- Sara Caputo
- Cellular Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.,NET-IMPACT, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Matteo Grioni
- Cellular Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.,NET-IMPACT, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara S Brambillasca
- Cellular Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.,NET-IMPACT, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Antonella Monno
- Innate Immunity and Tissue Remodeling Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Arianna Brevi
- Cellular Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.,NET-IMPACT, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Freschi
- NET-IMPACT, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Unit of Pathology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ignazio S Piras
- Neurogenomics Division, Center for Rare Childhood Disorders (C4RCD), Translational Genomics Research Institute, Phoenix, AZ, United States
| | - Angela R Elia
- Cellular Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.,NET-IMPACT, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Valentina Pieri
- Neural Stem Cell Biology Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Tania Baccega
- Vita-Salute San Raffaele University, Milan, Italy.,San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Angelo Lombardo
- Vita-Salute San Raffaele University, Milan, Italy.,San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Rossella Galli
- Neural Stem Cell Biology Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Alberto Briganti
- NET-IMPACT, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy.,Unit of Urology and URI, Division of Oncology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Claudio Doglioni
- NET-IMPACT, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy.,Unit of Pathology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elena Jachetti
- Cellular Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.,NET-IMPACT, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Matteo Bellone
- Cellular Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.,NET-IMPACT, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
54
|
Thompson WS, Mondal G, Vanlith CJ, Kaiser RA, Lillegard JB. The future of gene-targeted therapy for hereditary tyrosinemia type 1 as a lead indication among the inborn errors of metabolism. Expert Opin Orphan Drugs 2020; 8:245-256. [PMID: 33224636 PMCID: PMC7676758 DOI: 10.1080/21678707.2020.1791082] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction Inborn errors of metabolism (IEMs) often result from single-gene mutations and collectively cause liver dysfunction in neonates leading to chronic liver and systemic disease. Current treatments for many IEMs are limited to maintenance therapies that may still require orthotropic liver transplantation. Gene therapies offer a potentially superior approach by correcting or replacing defective genes with functional isoforms; however, they face unique challenges from complexities presented by individual diseases and their diverse etiology, presentation, and pathophysiology. Furthermore, immune responses, off-target gene disruption, and tumorigenesis are major concerns that need to be addressed before clinical application of gene therapy. Areas covered The current treatments for IEMs are reviewed as well as the advances in, and barriers to, gene therapy for IEMs. Attention is then given to ex vivo and in vivo gene therapy approaches for hereditary tyrosinemia type 1 (HT1). Of all IEMs, HT1 is particularly amenable to gene therapy because of a selective growth advantage conferred to corrected cells, thereby lowering the initial transduction threshold for phenotypic relevance. Expert opinion It is proposed that not only is HT1 a safe indication for gene therapy, its unique characteristics position it to be an ideal IEM to develop for clinical investigation.
Collapse
Affiliation(s)
| | - Gourish Mondal
- Department of Surgery, Research Scientist, Mayo Clinic, Rochester, MN, USA
| | | | - Robert A Kaiser
- Department of Surgery, Research Scientist, Mayo Clinic, Rochester, MN, USA.,Midwest Fetal Care Center, Childrens Hospital of Minnesota, MN, USA
| | - Joseph B Lillegard
- Midwest Fetal Care Center, Childrens Hospital of Minnesota, MN, USA.,Assistant Professor of Surgery, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
55
|
Milani M, Annoni A, Moalli F, Liu T, Cesana D, Calabria A, Bartolaccini S, Biffi M, Russo F, Visigalli I, Raimondi A, Patarroyo-White S, Drager D, Cristofori P, Ayuso E, Montini E, Peters R, Iannacone M, Cantore A, Naldini L. Phagocytosis-shielded lentiviral vectors improve liver gene therapy in nonhuman primates. Sci Transl Med 2020; 11:11/493/eaav7325. [PMID: 31118293 DOI: 10.1126/scitranslmed.aav7325] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/11/2019] [Accepted: 05/01/2019] [Indexed: 12/13/2022]
Abstract
Liver-directed gene therapy for the coagulation disorder hemophilia showed safe and effective results in clinical trials using adeno-associated viral vectors to replace a functional coagulation factor, although some unmet needs remain. Lentiviral vectors (LVs) may address some of these hurdles because of their potential for stable expression and the low prevalence of preexisting viral immunity in humans. However, systemic LV administration to hemophilic dogs was associated to mild acute toxicity and low efficacy at the administered doses. Here, exploiting intravital microscopy and LV surface engineering, we report a major role of the human phagocytosis inhibitor CD47, incorporated into LV cell membrane, in protecting LVs from uptake by professional phagocytes and innate immune sensing, thus favoring biodistribution to hepatocytes after systemic administration. By enforcing high CD47 surface content, we generated phagocytosis-shielded LVs which, upon intravenous administration to nonhuman primates, showed selective liver and spleen targeting and enhanced hepatocyte gene transfer compared to parental LV, reaching supraphysiological activity of human coagulation factor IX, the protein encoded by the transgene, without signs of toxicity or clonal expansion of transduced cells.
Collapse
Affiliation(s)
- Michela Milani
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.,Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Andrea Annoni
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | | | | | - Daniela Cesana
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Andrea Calabria
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Sara Bartolaccini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Mauro Biffi
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Fabio Russo
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Ilaria Visigalli
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | | | | | | | - Patrizia Cristofori
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.,GlaxoSmithKline R&D UK, Ware SG12 0DP, UK
| | - Eduard Ayuso
- INSERM UMR1089, University of Nantes, CHU de Nantes, 44093 Nantes, France
| | - Eugenio Montini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | | | | | - Alessio Cantore
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy. .,Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy. .,Vita-Salute San Raffaele University, 20132 Milan, Italy
| |
Collapse
|
56
|
Cantore A, Naldini L. WFH State-of-the-art paper 2020: In vivo lentiviral vector gene therapy for haemophilia. Haemophilia 2020; 27 Suppl 3:122-125. [PMID: 32537776 PMCID: PMC7984334 DOI: 10.1111/hae.14056] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 12/17/2022]
Abstract
Over the last decade, the development of new treatments for haemophilia has progressed at a very rapid pace. Despite all the promising advances in protein products, the prospect offered by gene therapy of a single potentially lifelong treatment remains attractive for people with haemophilia. Transfer to the liver of coagulation factor VIII (FVIII) or factor IX (FIX) transgenes has indeed the potential to stably restore the dysfunctional coagulation process. Recombinant adeno‐associated virus (AAV)‐derived vectors are widely employed for liver‐directed gene therapy, given their very good efficacy and safety profile, shown in several preclinical and clinical studies. However, there are some limitations associated with AAV vectors, such as their predominantly episomal nature in the nucleus of target cells and the widespread pre‐existing immunity against the parental virus in humans. By contrast, HIV‐derived lentiviral vectors (LV) integrate into the target cell chromatin and are maintained as the cells duplicate their genome, a potential advantage for establishing long‐term expression especially in paediatric patients, in which the liver undergoes substantial growth. Systemic administration of LV allowed stable multi‐year transgene expression in the liver of mice and dogs. More recently, improved phagocytosis‐shielded LV were generated, which, following intravenous administration to non‐human primates, showed selective targeting of liver and spleen and enhanced hepatocyte gene transfer, achieving up to supra‐normal activity of both human FVIII and FIX transgenes. These studies support further preclinical assessment and clinical evaluation of in vivo liver‐directed LV gene therapy for haemophilia.
Collapse
Affiliation(s)
- Alessio Cantore
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.,"Vita Salute San Raffaele" University, Milan, Italy
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.,"Vita Salute San Raffaele" University, Milan, Italy
| |
Collapse
|
57
|
Pipe SW. Delivering on the promise of gene therapy for haemophilia. Haemophilia 2020; 27 Suppl 3:114-121. [PMID: 32490590 DOI: 10.1111/hae.14027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 04/20/2020] [Indexed: 01/19/2023]
Abstract
The promise of gene therapy is a single treatment ('one and done') that leads to steady-state expression of endogenous factor VIII or factor IX sufficient to achieve a functional cure (free of recurrent haemophilic bleeding) if not normalized haemostasis. The elimination of the need for continued prophylaxis, or factor replacement following trauma or prior to surgery would lead to annual cost savings. Such optimized health and well-being would be reaching a level of health equity that was unimaginable several decades ago. 'Before anything else, preparation is the key to success'-Alexander Graham Bell. This quote from the famous inventor, scientist and engineer highlights that, although we currently stand on the threshold of this achievement, delivering on this promise will require broad-based multistakeholder preparation (scientists, manufacturers, federal regulators, health technology assessors, persons with haemophilia, national advocacy groups and multidisciplinary healthcare teams) with a focused emphasis on education, approval of safe and effective therapies, removal of barriers to access and excellence in clinical delivery.
Collapse
Affiliation(s)
- Steven W Pipe
- Pediatrics and Pathology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
58
|
Pierce GF. Uncertainty in an era of transformative therapy for haemophilia: Addressing the unknowns. Haemophilia 2020; 27 Suppl 3:103-113. [PMID: 32484283 DOI: 10.1111/hae.14023] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 03/24/2020] [Indexed: 12/12/2022]
Abstract
Haemophilia is at the dawn of a new era in therapeutic management, one that can generate greater protection from bleeding and a functional cure in some individuals. Prior advances in protein engineering and monoclonal antibody technology have facilitated therapeutic options to maintain decreased risk of bleeding and less burdensome treatment. The use of gene transfer, first proposed in 1971 for monogenic diseases, is emerging as an effective long-term treatment for a variety of diseases. Transfer of functional factor VIII (FVIII) and factor IX (FIX) genes has witnessed a series of advances and setbacks since the first non-clinical experiments in animals were initiated nearly 30 years ago. More recently, multiyear therapeutic levels of FVIII and FIX activity have been achieved in human clinical trials, translated into meaningful clinical benefit and a functional cure. While clinical progress has been definitive, many questions remain unanswered as prelicensure phase 3 clinical trials are underway. These unanswered questions translate into a state of uncertainty about the known unknowns and unknown unknowns intrinsic to any new therapeutic platform. Accepting this modality as a means to functionally cure haemophilia also means accepting the uncertainty regarding the biology of viral vector-mediated gene transfer, which remains inadequately understood. Gene therapy is a far more complex biological 'drug' than small molecule and protein drugs, where manufacturing processes and the drugs themselves are now well characterized. Extent of community acceptance of uncertainty and acknowledgement of the need for an uncompromising drive for answers to the unknowns will characterize the introduction of this first generation of gene therapy for haemophilia to the wider patient population in both resource-rich and resource-poor countries.
Collapse
|
59
|
Samelson-Jones BJ, Arruda VR. Translational Potential of Immune Tolerance Induction by AAV Liver-Directed Factor VIII Gene Therapy for Hemophilia A. Front Immunol 2020; 11:618. [PMID: 32425925 PMCID: PMC7212376 DOI: 10.3389/fimmu.2020.00618] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/18/2020] [Indexed: 12/26/2022] Open
Abstract
Hemophilia A (HA) is an X-linked bleeding disorder due to deficiencies in coagulation factor VIII (FVIII). The major complication of current protein-based therapies is the development of neutralizing anti-FVIII antibodies, termed inhibitors, that block the hemostatic effect of therapeutic FVIII. Inhibitors develop in about 20-30% of people with severe HA, but the risk is dependent on the interaction between environmental and genetic factors, including the underlying F8 gene mutation. Recently, multiple clinical trials evaluating adeno-associated viral (AAV) vector liver-directed gene therapy for HA have reported promising results of therapeutically relevant to curative FVIII levels. The inclusion criteria for most trials prevented enrollment of subjects with a history of inhibitors. However, preclinical data from small and large animal models of HA with inhibitors suggests that liver-directed gene therapy can in fact eradicate pre-existing anti-FVIII antibodies, induce immune tolerance, and provide long-term therapeutic FVIII expression to prevent bleeding. Herein, we review the accumulating evidence that continuous uninterrupted expression of FVIII and other transgenes after liver-directed AAV gene therapy can bias the immune system toward immune tolerance induction, discuss the current understanding of the immunological mechanisms of this process, and outline questions that will need to be addressed to translate this strategy to clinical trials.
Collapse
Affiliation(s)
- Benjamin J. Samelson-Jones
- The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Philadelphia, PA, United States
| | - Valder R. Arruda
- The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Philadelphia, PA, United States
| |
Collapse
|
60
|
Butterfield JSS, Hege KM, Herzog RW, Kaczmarek R. A Molecular Revolution in the Treatment of Hemophilia. Mol Ther 2020; 28:997-1015. [PMID: 31843450 PMCID: PMC7132613 DOI: 10.1016/j.ymthe.2019.11.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/31/2019] [Accepted: 11/05/2019] [Indexed: 12/15/2022] Open
Abstract
For decades, the monogenetic bleeding disorders hemophilia A and B (coagulation factor VIII and IX deficiency) have been treated with systemic protein replacement therapy. Now, diverse molecular medicines, ranging from antibody to gene to RNA therapy, are transforming treatment. Traditional replacement therapy requires twice to thrice weekly intravenous infusions of factor. While extended half-life products may reduce the frequency of injections, patients continue to face a lifelong burden of the therapy, suboptimal protection from bleeding and joint damage, and potential development of neutralizing anti-drug antibodies (inhibitors) that require less efficacious bypassing agents and further reduce quality of life. Novel non-replacement and gene therapies aim to address these remaining issues. A recently approved factor VIII-mimetic antibody accomplishes hemostatic correction in patients both with and without inhibitors. Antibodies against tissue factor pathway inhibitor (TFPI) and antithrombin-specific small interfering RNA (siRNA) target natural anticoagulant pathways to rebalance hemostasis. Adeno-associated virus (AAV) gene therapy provides lasting clotting factor replacement and can also be used to induce immune tolerance. Multiple gene-editing techniques are under clinical or preclinical investigation. Here, we provide a comprehensive overview of these approaches, explain how they differ from standard therapies, and predict how the hemophilia treatment landscape will be reshaped.
Collapse
Affiliation(s)
| | - Kerry M Hege
- Department of Pediatrics, Indiana University School of Medicine, IUPUI-Wells Center for Pediatric Research, Indianapolis, IN, USA
| | - Roland W Herzog
- Department of Pediatrics, University of Florida, Gainesville, FL, USA; Department of Pediatrics, Indiana University School of Medicine, IUPUI-Wells Center for Pediatric Research, Indianapolis, IN, USA.
| | - Radoslaw Kaczmarek
- Department of Pediatrics, Indiana University School of Medicine, IUPUI-Wells Center for Pediatric Research, Indianapolis, IN, USA; Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland.
| |
Collapse
|
61
|
Carbonaro-Sarracino DA, Tarantal AF, Lee CCI, Kaufman ML, Wandro S, Jin X, Martinez M, Clark DN, Chun K, Koziol C, Hardee CL, Wang X, Kohn DB. Dosing and Re-Administration of Lentiviral Vector for In Vivo Gene Therapy in Rhesus Monkeys and ADA-Deficient Mice. Mol Ther Methods Clin Dev 2020; 16:78-93. [PMID: 31871959 PMCID: PMC6909201 DOI: 10.1016/j.omtm.2019.11.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/04/2019] [Indexed: 12/21/2022]
Abstract
Adenosine deaminase (ADA)-deficient mice and healthy rhesus monkeys were studied to determine the impact of age at treatment, vector dosage, dosing schedule, repeat administration, biodistribution, and immunogenicity after systemic delivery of lentiviral vectors (LVs). In Ada -/- mice, neonatal treatment resulted in broad vector marking across all tissues analyzed, whereas adult treatment resulted in marking restricted to the liver, spleen, and bone marrow. Intravenous administration to infant rhesus monkeys also resulted in dose-dependent marking in the liver, spleen, and bone marrow. Using an ELISA to monitor anti-vector antibody development, Ada -/- neonatal mice did not produce an antibody response, whereas Ada -/- adult mice produced a strong antibody response to vector administration. In mice and monkeys with repeat administration of LV, a strong anti-vector antibody response was shown in response to the second LV administration, which resulted in LV inactivation. Three separate doses administered to immune competent mice resulted in acute toxicity. Pegylation of the vesicular stomatitis virus G protein (VSV-G)-enveloped LVs showed a less robust anti-vector response but did not prevent the inactivation of the second LV administration. These studies identify important factors to consider related to age and timing of administration when implementing systemic delivery of LVs as a potential therapeutic agent.
Collapse
Affiliation(s)
- Denise A. Carbonaro-Sarracino
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Alice F. Tarantal
- Center for Fetal Monkey Gene Transfer for Heart, Lung, and Blood Diseases, University of California, Davis, Davis, CA 95616, USA
- Departments of Pediatrics and Cell Biology and Human Anatomy, School of Medicine, and California National Primate Research Center, University of California, Davis, Davis, CA 95616, USA
| | - C. Chang I. Lee
- Center for Fetal Monkey Gene Transfer for Heart, Lung, and Blood Diseases, University of California, Davis, Davis, CA 95616, USA
- Departments of Pediatrics and Cell Biology and Human Anatomy, School of Medicine, and California National Primate Research Center, University of California, Davis, Davis, CA 95616, USA
| | - Michael L. Kaufman
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Stephen Wandro
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xiangyang Jin
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Michele Martinez
- Center for Fetal Monkey Gene Transfer for Heart, Lung, and Blood Diseases, University of California, Davis, Davis, CA 95616, USA
- Departments of Pediatrics and Cell Biology and Human Anatomy, School of Medicine, and California National Primate Research Center, University of California, Davis, Davis, CA 95616, USA
| | - Danielle N. Clark
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Krista Chun
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Colin Koziol
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Cinnamon L. Hardee
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xiaoyan Wang
- Department of General Internal Medicine and Health Services Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Donald B. Kohn
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- The Eli & Edythe Broad Center for Stem Cells and Regenerative Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
62
|
Abstract
Hepatocellular carcinoma (HCC) is the third most common cause of cancer death globally, mainly due to lack of effective treatments – a problem that gene therapy is poised to solve. Successful gene therapy requires safe and efficient delivery vectors, and recent advances in both viral and nonviral vectors have made an important impact on HCC gene therapy delivery. This review explores how adenoviral, retroviral and adeno-associated viral vectors have been modified to increase safety and delivery capacity, highlighting studies and clinical trials using these vectors for HCC gene therapy. Nanoparticles, liposomes, exosomes and virosomes are also featured in their roles as HCC gene delivery vectors. Finally, new discoveries in gene editing technology and their impacts on HCC gene therapy are discussed.
Collapse
|
63
|
Rajawat YS, Humbert O, Kiem HP. In-Vivo Gene Therapy with Foamy Virus Vectors. Viruses 2019; 11:v11121091. [PMID: 31771194 PMCID: PMC6950547 DOI: 10.3390/v11121091] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/20/2019] [Accepted: 11/20/2019] [Indexed: 12/16/2022] Open
Abstract
Foamy viruses (FVs) are nonpathogenic retroviruses that infect various animals including bovines, felines, nonhuman primates (NHPs), and can be transmitted to humans through zoonotic infection. Due to their non-pathogenic nature, broad tissue tropism and relatively safe integration profile, FVs have been engineered as novel vectors (foamy virus vector, FVV) for stable gene transfer into different cells and tissues. FVVs have emerged as an alternative platform to contemporary viral vectors (e.g., adeno associated and lentiviral vectors) for experimental and therapeutic gene therapy of a variety of monogenetic diseases. Some of the important features of FVVs include the ability to efficiently transduce hematopoietic stem and progenitor cells (HSPCs) from humans, NHPs, canines and rodents. We have successfully used FVV for proof of concept studies to demonstrate safety and efficacy following in-vivo delivery in large animal models. In this review, we will comprehensively discuss FVV based in-vivo gene therapy approaches established in the X-linked severe combined immunodeficiency (SCID-X1) canine model.
Collapse
Affiliation(s)
- Yogendra Singh Rajawat
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (O.H.); (Y.S.R.)
| | - Olivier Humbert
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (O.H.); (Y.S.R.)
| | - Hans-Peter Kiem
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (O.H.); (Y.S.R.)
- Departments of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
- Departments of Pathology, University of Washington School of Medicine, Seattle, WA 98195, USA
- Correspondence: ; Tel.: +1-206-667-4425
| |
Collapse
|
64
|
Guo XL, Chung TH, Qin Y, Zheng J, Zheng H, Sheng L, Wynn T, Chang LJ. Hemophilia Gene Therapy: New Development from Bench to Bed Side. Curr Gene Ther 2019; 19:264-273. [PMID: 31549954 DOI: 10.2174/1566523219666190924121836] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 06/30/2019] [Accepted: 08/12/2019] [Indexed: 12/19/2022]
Abstract
Novel gene therapy strategies have changed the prognosis of many inherited diseases in recent years. New development in genetic tools and study models has brought us closer to a complete cure for hemophilia. This review will address the latest gene therapy research in hemophilia A and B including gene therapy tools, genetic strategies and animal models. It also summarizes the results of recent clinical trials. Potential solutions are discussed regarding the current barriers in gene therapy for hemophilia.
Collapse
Affiliation(s)
- Xiao-Lu Guo
- Geno-immune Medical Institute, Shenzhen, China
| | | | - Yue Qin
- School of Medicine, University of Electronic Science and Technology of China, Sichuan, China
| | - Jie Zheng
- Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Huyong Zheng
- Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Liyuan Sheng
- PKU-HKUST Shenzhen-Hong Kong Institution, Shenzhen, China
| | - Tung Wynn
- Department of Pediatrics and Division of Hematology/Oncology, University of Florida, Gainesville, FL, United States
| | | |
Collapse
|
65
|
Novel bicistronic lentiviral vectors correct β-Hexosaminidase deficiency in neural and hematopoietic stem cells and progeny: implications for in vivo and ex vivo gene therapy of GM2 gangliosidosis. Neurobiol Dis 2019; 134:104667. [PMID: 31682993 DOI: 10.1016/j.nbd.2019.104667] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/28/2019] [Accepted: 10/31/2019] [Indexed: 01/03/2023] Open
Abstract
The favorable outcome of in vivo and ex vivo gene therapy approaches in several Lysosomal Storage Diseases suggests that these treatment strategies might equally benefit GM2 gangliosidosis. Tay-Sachs and Sandhoff disease (the main forms of GM2 gangliosidosis) result from mutations in either the HEXA or HEXB genes encoding, respectively, the α- or β-subunits of the lysosomal β-Hexosaminidase enzyme. In physiological conditions, α- and β-subunits combine to generate β-Hexosaminidase A (HexA, αβ) and β-Hexosaminidase B (HexB, ββ). A major impairment to establishing in vivo or ex vivo gene therapy for GM2 gangliosidosis is the need to synthesize the α- and β-subunits at high levels and with the correct stoichiometric ratio, and to safely deliver the therapeutic products to all affected tissues/organs. Here, we report the generation and in vitro validation of novel bicistronic lentiviral vectors (LVs) encoding for both the murine and human codon optimized Hexa and Hexb genes. We show that these LVs drive the safe and coordinate expression of the α- and β-subunits, leading to supranormal levels of β-Hexosaminidase activity with prevalent formation of a functional HexA in SD murine neurons and glia, murine bone marrow-derived hematopoietic stem/progenitor cells (HSPCs), and human SD fibroblasts. The restoration/overexpression of β-Hexosaminidase leads to the reduction of intracellular GM2 ganglioside storage in transduced and in cross-corrected SD murine neural progeny, indicating that the transgenic enzyme is secreted and functional. Importantly, bicistronic LVs safely and efficiently transduce human neurons/glia and CD34+ HSPCs, which are target and effector cells, respectively, in prospective in vivo and ex vivo GT approaches. We anticipate that these bicistronic LVs may overcome the current requirement of two vectors co-delivering the α- or β-subunits genes. Careful assessment of the safety and therapeutic potential of these bicistronic LVs in the SD murine model will pave the way to the clinical development of LV-based gene therapy for GM2 gangliosidosis.
Collapse
|
66
|
Aspesi A, Borsotti C, Follenzi A. Emerging Therapeutic Approaches for Diamond Blackfan Anemia. Curr Gene Ther 2019; 18:327-335. [PMID: 30411682 PMCID: PMC6637096 DOI: 10.2174/1566523218666181109124538] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 11/02/2018] [Accepted: 11/09/2018] [Indexed: 01/05/2023]
Abstract
Diamond Blackfan Anemia (DBA) is an inherited erythroid aplasia with onset in childhood. Patients carry heterozygous mutations in one of 19 Ribosomal Protein (RP) genes, that lead to defective ribosome biogenesis and function. Standard treatments include steroids or blood transfusions but the only definitive cure is allogeneic Hematopoietic Stem Cell Transplantation (HSCT). Although advances in HSCT have greatly improved the success rate over the last years, the risk of adverse events and mor-tality is still significant. Clinical trials employing gene therapy are now in progress for a variety of monogenic diseases and the development of innovative stem cell-based strategies may open new alternatives for DBA treatment as well. In this review, we summarize the most recent progress toward the implementation of new thera-peutic approaches for this disorder. We present different DNA- and RNA-based technologies as well as new candidate pharmacological treatments and discuss their relevance and potential applicability for the cure of DBA.
Collapse
Affiliation(s)
- Anna Aspesi
- Department of Health Sciences, University of Eastern Piedmont Amedeo Avogadro, Novara, Italy
| | - Chiara Borsotti
- Department of Health Sciences, University of Eastern Piedmont Amedeo Avogadro, Novara, Italy
| | - Antonia Follenzi
- Department of Health Sciences, University of Eastern Piedmont Amedeo Avogadro, Novara, Italy
| |
Collapse
|
67
|
Dynamics and genomic landscape of CD8 + T cells undergoing hepatic priming. Nature 2019; 574:200-205. [PMID: 31582858 PMCID: PMC6858885 DOI: 10.1038/s41586-019-1620-6] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 08/21/2019] [Indexed: 12/15/2022]
Abstract
The responses of CD8+ T cells to hepatotropic viruses such as hepatitis B range from dysfunction to differentiation into effector cells, but the mechanisms that underlie these distinct outcomes remain poorly understood. Here we show that priming by Kupffer cells, which are not natural targets of hepatitis B, leads to differentiation of CD8+ T cells into effector cells that form dense, extravascular clusters of immotile cells scattered throughout the liver. By contrast, priming by hepatocytes, which are natural targets of hepatitis B, leads to local activation and proliferation of CD8+ T cells but not to differentiation into effector cells; these cells form loose, intravascular clusters of motile cells that coalesce around portal tracts. Transcriptomic and chromatin accessibility analyses reveal unique features of these dysfunctional CD8+ T cells, with limited overlap with those of exhausted or tolerant T cells; accordingly, CD8+ T cells primed by hepatocytes cannot be rescued by treatment with anti-PD-L1, but instead respond to IL-2. These findings suggest immunotherapeutic strategies against chronic hepatitis B infection.
Collapse
|
68
|
Zabaleta N, Hommel M, Salas D, Gonzalez-Aseguinolaza G. Genetic-Based Approaches to Inherited Metabolic Liver Diseases. Hum Gene Ther 2019; 30:1190-1203. [PMID: 31347416 DOI: 10.1089/hum.2019.140] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Nerea Zabaleta
- Gene Therapy and Regulation of Gene Expression Program, Centro de Investigación Médica Aplicada, IDISNA, Universidad de Navarra, Pamplona, Spain
| | - Mirja Hommel
- Gene Therapy and Regulation of Gene Expression Program, Centro de Investigación Médica Aplicada, IDISNA, Universidad de Navarra, Pamplona, Spain
| | - David Salas
- Gene Therapy and Regulation of Gene Expression Program, Centro de Investigación Médica Aplicada, IDISNA, Universidad de Navarra, Pamplona, Spain
| | - Gloria Gonzalez-Aseguinolaza
- Gene Therapy and Regulation of Gene Expression Program, Centro de Investigación Médica Aplicada, IDISNA, Universidad de Navarra, Pamplona, Spain
- Vivet Therapeutics, Pamplona, Spain
| |
Collapse
|
69
|
Gollomp KL, Doshi BS, Arruda VR. Gene therapy for hemophilia: Progress to date and challenges moving forward. Transfus Apher Sci 2019; 58:602-612. [DOI: 10.1016/j.transci.2019.08.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
70
|
Lo Scrudato M, Poulard K, Sourd C, Tomé S, Klein AF, Corre G, Huguet A, Furling D, Gourdon G, Buj-Bello A. Genome Editing of Expanded CTG Repeats within the Human DMPK Gene Reduces Nuclear RNA Foci in the Muscle of DM1 Mice. Mol Ther 2019; 27:1372-1388. [PMID: 31253581 PMCID: PMC6697452 DOI: 10.1016/j.ymthe.2019.05.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 05/22/2019] [Accepted: 05/29/2019] [Indexed: 12/21/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is caused by a CTG repeat expansion located in the 3' UTR of the DMPK gene. Expanded DMPK transcripts aggregate into nuclear foci and alter the function of RNA-binding proteins, leading to defects in the alternative splicing of numerous pre-mRNAs. To date, there is no curative treatment for DM1. Here we investigated a gene-editing strategy using the CRISPR-Cas9 system from Staphylococcus aureus (Sa) to delete the CTG repeats in the human DMPK locus. Co-expression of SaCas9 and selected pairs of single-guide RNAs (sgRNAs) in cultured DM1 patient-derived muscle line cells carrying 2,600 CTG repeats resulted in targeted DNA deletion, ribonucleoprotein foci disappearance, and correction of splicing abnormalities in various transcripts. Furthermore, a single intramuscular injection of recombinant AAV vectors expressing CRISPR-SaCas9 components in the tibialis anterior muscle of DMSXL (myotonic dystrophy mouse line carrying the human DMPK gene with >1,000 CTG repeats) mice decreased the number of pathological RNA foci in myonuclei. These results establish the proof of concept that genome editing of a large trinucleotide expansion is feasible in muscle and may represent a useful strategy to be further developed for the treatment of myotonic dystrophy.
Collapse
Affiliation(s)
- Mirella Lo Scrudato
- Genethon, INSERM UMR_S951, Univ Evry, Université Paris Saclay, 91000 Evry, France
| | - Karine Poulard
- Genethon, INSERM UMR_S951, Univ Evry, Université Paris Saclay, 91000 Evry, France
| | - Célia Sourd
- Genethon, INSERM UMR_S951, Univ Evry, Université Paris Saclay, 91000 Evry, France
| | - Stéphanie Tomé
- INSERM UMR 1163, Institut Imagine, Université Paris Descartes-Sorbonne Paris Cité, 75015 Paris, France
| | - Arnaud F Klein
- INSERM, Association Institut de Myologie, Centre de Recherche en Myologie, Sorbonne Université, 75013 Paris, France
| | - Guillaume Corre
- Genethon, INSERM UMR_S951, Univ Evry, Université Paris Saclay, 91000 Evry, France
| | - Aline Huguet
- INSERM UMR 1163, Institut Imagine, Université Paris Descartes-Sorbonne Paris Cité, 75015 Paris, France
| | - Denis Furling
- INSERM, Association Institut de Myologie, Centre de Recherche en Myologie, Sorbonne Université, 75013 Paris, France
| | - Geneviève Gourdon
- INSERM UMR 1163, Institut Imagine, Université Paris Descartes-Sorbonne Paris Cité, 75015 Paris, France
| | - Ana Buj-Bello
- Genethon, INSERM UMR_S951, Univ Evry, Université Paris Saclay, 91000 Evry, France.
| |
Collapse
|
71
|
Miah KM, Hyde SC, Gill DR. Emerging gene therapies for cystic fibrosis. Expert Rev Respir Med 2019; 13:709-725. [PMID: 31215818 DOI: 10.1080/17476348.2019.1634547] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/18/2019] [Indexed: 01/06/2023]
Abstract
Introduction: Cystic fibrosis (CF) remains a life-threatening genetic disease, with few clinically effective treatment options. Gene therapy and gene editing strategies offer the potential for a one-time CF cure, irrespective of the CFTR mutation class. Areas covered: We review emerging gene therapies and gene delivery strategies for the treatment of CF particularly viral and non-viral approaches with potential to treat CF. Expert opinion: It was initially anticipated that the challenge of developing a gene therapy for CF lung disease would be met relatively easily. Following early proof-of-concept clinical studies, CF gene therapy has entered a new era with innovative vector designs, approaches to subvert the humoral immune system and increase gene delivery and gene correction efficiencies. Developments include integrating adenoviral vectors, rapamycin-loaded nanoparticles, and lung-tropic lentiviral vectors. The characterization of novel cell types in the lung epithelium, including pulmonary ionocytes, may also encourage cell type-specific targeting for CF correction. We anticipate preclinical studies to further validate these strategies, which should pave the way for clinical trials. We also expect gene editing efficiencies to improve to clinically translatable levels, given advancements in viral and non-viral vectors. Overall, gene delivery technologies look more convincing in producing an effective CF gene therapy.
Collapse
Affiliation(s)
- Kamran M Miah
- a Gene Medicine Group, Nuffield Division of Clinical Laboratory Science, Radcliffe Department of Medicine, University of Oxford , Oxford , UK
| | - Stephen C Hyde
- a Gene Medicine Group, Nuffield Division of Clinical Laboratory Science, Radcliffe Department of Medicine, University of Oxford , Oxford , UK
| | - Deborah R Gill
- a Gene Medicine Group, Nuffield Division of Clinical Laboratory Science, Radcliffe Department of Medicine, University of Oxford , Oxford , UK
| |
Collapse
|
72
|
Samelson-Jones BJ, Finn JD, George LA, Camire RM, Arruda VR. Hyperactivity of factor IX Padua (R338L) depends on factor VIIIa cofactor activity. JCI Insight 2019; 5:128683. [PMID: 31219805 DOI: 10.1172/jci.insight.128683] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Adeno-associated-viral (AAV) vector liver-directed gene therapy (GT) for hemophilia B (HB) is limited by a vector-dose-dependent hepatotoxicity. Recently, this obstacle has been partially circumvented by the use of a hyperactive factor IX (FIX) variant, R338L (Padua), which has an eightfold increased specific activity compared to FIX-WT. FIX-R338L has emerged as the standard for HB GT. However, the underlying mechanism of its hyperactivity is undefined; as such, safety concerns of unregulated coagulation and the potential for thrombotic complications have not been fully addressed. To this end, we evaluated the enzymatic and clotting activity as well as the activation, inactivation, and cofactor-dependence of FIX-R338L relative to FIX-WT. We observed that the high-specific-activity of FIX-R338L requires factor VIIIa (FVIIIa) cofactor. In a novel system utilizing emicizumab, a FVIII-mimicking bispecific antibody, the hyperactivity of both recombinant FIX-R338L and AAV-mediated-transgene-expressed FIX-R338L from HB GT subjects is ablated without FVIIIa activity. We conclude that the molecular regulation of activation, inactivation, and cofactor-dependence of FIX-R338L is similar to FIX-WT, but that the FVIIIa-dependent hyperactivity of FIX-R338L is the result of a faster rate of factor X activation. This mechanism helps mitigate safety concerns of unregulated coagulation and supports the expanded use of FIX-R338L in HB therapy.
Collapse
Affiliation(s)
- Benjamin J Samelson-Jones
- The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Philadelphia, Pennsylvania, USA
| | - Jonathan D Finn
- The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Lindsey A George
- The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Philadelphia, Pennsylvania, USA
| | - Rodney M Camire
- The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Philadelphia, Pennsylvania, USA
| | - Valder R Arruda
- The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Philadelphia, Pennsylvania, USA
| |
Collapse
|
73
|
Kaiser RA, Nicolas CT, Allen KL, Chilton JA, Du Z, Hickey RD, Lillegard JB. Hepatotoxicity and Toxicology of In Vivo Lentiviral Vector Administration in Healthy and Liver-Injury Mouse Models. HUM GENE THER CL DEV 2019; 30:57-66. [PMID: 30860398 PMCID: PMC6589498 DOI: 10.1089/humc.2018.249] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/07/2019] [Indexed: 12/31/2022] Open
Abstract
General safety and toxicology assessments supporting in vivo lentiviral vector-based therapeutic development are sparse. We have previously demonstrated the efficacy of a lentiviral vector expressing fumarylacetoacetate hydrolase (LV-FAH) to cure animal models of hereditary tyrosinemia type 1. Therefore, we performed a complete preclinical toxicological evaluation of LV-FAH, in a large cohort (n = 20/group) of wildtype mice and included matched groups of N-nitrosodiethylamine/carbon tetrachloride (DEN/CCl4)-induced liver injury mice to assess specific toxicity in fibrotic liver tissue. Mice receiving LV-FAH alone (109 TU/mouse) or in combination with DEN/CCl4 presented clinically similar to control animals, with only slight reductions in total body weight gains over the study period (3.2- to 3.7-fold vs. 4.2-fold). There were no indications of toxicity attributed to administration of LV-FAH alone over the duration of this study. The known hepatotoxic combination of DEN/CCl4 induced fibrotic liver injury, and co-administration with LV-FAH was associated with exaggeration of some findings such as an increased liver:body weight ratio and progression to focal hepatocyte necrosis in some animals. Hepatocellular degeneration/regeneration was present in DEN/CCl4-dosed animals regardless of LV-FAH as evaluated by Ki-67 immunohistochemistry and circulating alpha fetoprotein levels, but there were no tumors identified in any tissue in any dose group. These data demonstrate the inherent safety of LV-FAH and support broader clinical development of lentiviral vectors for in vivo administration.
Collapse
Affiliation(s)
- Robert Allen Kaiser
- Midwest Fetal Care Center, Children's Hospital of Minnesota, Minneapolis, Minnesota
- Mayo Clinic, Department of Surgery Research, Rochester, Minnesota
| | | | - Kari Lynn Allen
- Mayo Clinic, Department of Surgery Research, Rochester, Minnesota
| | | | - Zeji Du
- Mayo Clinic, Department of Surgery Research, Rochester, Minnesota
| | | | - Joseph Benjamin Lillegard
- Midwest Fetal Care Center, Children's Hospital of Minnesota, Minneapolis, Minnesota
- Mayo Clinic, Department of Surgery Research, Rochester, Minnesota
- Pediatric Surgical Associates, Minneapolis, Minnesota
| |
Collapse
|
74
|
Munis AM, Mattiuzzo G, Bentley EM, Collins MK, Eyles JE, Takeuchi Y. Use of Heterologous Vesiculovirus G Proteins Circumvents the Humoral Anti-envelope Immunity in Lentivector-Based In Vivo Gene Delivery. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 17:126-137. [PMID: 31254925 PMCID: PMC6599914 DOI: 10.1016/j.omtn.2019.05.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/16/2019] [Accepted: 05/15/2019] [Indexed: 01/12/2023]
Abstract
Vesicular stomatitis virus Indiana strain glycoprotein (VSVind.G) mediates broad tissue tropism and efficient cellular uptake. Lentiviral vectors (LVs) are particularly promising, as they can efficiently transduce non-dividing cells and facilitate stable genomic transgene integration; therefore, LVs have an enormous untapped potential for gene therapy applications, but the development of humoral and cell-mediated anti-vector responses may restrict their efficacy. We hypothesized that G proteins from different members of the vesiculovirus genus might allow the generation of a panel of serotypically distinct LV pseudotypes with potential for repeated in vivo administration. We found that mice hyperimmunized with VSVind.G were not transduced to any significant degree following intravenous injection of LVs with VSVind.G envelopes, consistent with the thesis that multiple LV administrations would likely be blunted by an adaptive immune response. Excitingly, bioluminescence imaging studies demonstrated that the VSVind-neutralizing response could be evaded by LV pseudotyped with Piry and, to a lesser extent, Cocal virus glycoproteins. Heterologous dosing regimens using viral vectors and oncolytic viruses with Piry and Cocal envelopes could represent a novel strategy to achieve repeated vector-based interventions, unfettered by pre-existing anti-envelope antibodies.
Collapse
Affiliation(s)
- Altar M Munis
- Division of Advanced Therapies, National Institute for Biological Standards and Control, South Mimms EN6 3QG, UK; Division of Infection and Immunity, University College London, London WC1E 6BT, UK.
| | - Giada Mattiuzzo
- Division of Virology, National Institute for Biological Standards and Control, South Mimms EN6 3QG, UK
| | - Emma M Bentley
- Division of Virology, National Institute for Biological Standards and Control, South Mimms EN6 3QG, UK
| | - Mary K Collins
- Division of Advanced Therapies, National Institute for Biological Standards and Control, South Mimms EN6 3QG, UK; Okinawa Institute of Science and Technology, Okinawa 904-0412, Japan
| | - James E Eyles
- Division of Advanced Therapies, National Institute for Biological Standards and Control, South Mimms EN6 3QG, UK
| | - Yasuhiro Takeuchi
- Division of Advanced Therapies, National Institute for Biological Standards and Control, South Mimms EN6 3QG, UK; Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| |
Collapse
|
75
|
Estève J, Blouin JM, Lalanne M, Azzi-Martin L, Dubus P, Bidet A, Harambat J, Llanas B, Moranvillier I, Bedel A, Moreau-Gaudry F, Richard E. Generation of induced pluripotent stem cells-derived hepatocyte-like cells for ex vivo gene therapy of primary hyperoxaluria type 1. Stem Cell Res 2019; 38:101467. [PMID: 31151050 DOI: 10.1016/j.scr.2019.101467] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 03/30/2019] [Accepted: 05/19/2019] [Indexed: 12/17/2022] Open
Abstract
Primary hyperoxaluria type 1 (PH1) is a rare autosomal recessive disorder of the liver metabolism due to functional deficiency of the peroxisomal enzyme alanine:glyoxylate aminotransferase (AGT). AGT deficiency results in overproduction of oxalate which complexes with calcium to form insoluble calcium-oxalate salts in urinary tracts, ultimately leading to end-stage renal disease. Currently, the only curative treatment for PH1 is combined liver-kidney transplantation, which is limited by donor organ shortage and lifelong requirement for immunosuppression. Transplantation of genetically modified autologous hepatocytes is an attractive therapeutic option for PH1. However, the use of fresh primary hepatocytes suffers from limitations such as organ availability, insufficient cell proliferation, loss of function, and the risk of immune rejection. We developed patient-specific induced pluripotent stem cells (PH1-iPSCs) free of reprogramming factors as a source of renewable and genetically defined autologous PH1-hepatocytes. We then investigated additive gene therapy using a lentiviral vector encoding wild-type AGT under the control of the liver-specific transthyretin promoter. Genetically modified PH1-iPSCs successfully provided hepatocyte-like cells (HLCs) that exhibited significant AGT expression at both RNA and protein levels after liver-specific differentiation process. These results pave the way for cell-based therapy of PH1 by transplantation of genetically modified autologous HLCs derived from patient-specific iPSCs.
Collapse
Affiliation(s)
- Julie Estève
- Univ.Bordeaux, INSERM, BMGIC, U1035, CHU Bordeaux, 33076 Bordeaux, France
| | - Jean-Marc Blouin
- Univ.Bordeaux, INSERM, BMGIC, U1035, CHU Bordeaux, 33076 Bordeaux, France
| | - Magalie Lalanne
- Univ.Bordeaux, INSERM, BMGIC, U1035, CHU Bordeaux, 33076 Bordeaux, France
| | | | - Pierre Dubus
- Univ.Bordeaux, INSERM, BARITON, U1053, CHU Bordeaux, 33076, France
| | - Audrey Bidet
- Laboratoire d'hématologie, CHU Bordeaux, Bordeaux, France
| | - Jérôme Harambat
- Service de Néphrologie pédiatrique, Centre de Référence Maladies Rénales Rares du Sud-Ouest, CHU Bordeaux, 33000 Bordeaux, France
| | - Brigitte Llanas
- Service de Néphrologie pédiatrique, Centre de Référence Maladies Rénales Rares du Sud-Ouest, CHU Bordeaux, 33000 Bordeaux, France
| | | | - Aurélie Bedel
- Univ.Bordeaux, INSERM, BMGIC, U1035, CHU Bordeaux, 33076 Bordeaux, France
| | | | - Emmanuel Richard
- Univ.Bordeaux, INSERM, BMGIC, U1035, CHU Bordeaux, 33076 Bordeaux, France.
| |
Collapse
|
76
|
Moshref M, Tangey B, Gilor C, Papas KK, Williamson P, Loomba-Albrecht L, Sheehy P, Kol A. Concise Review: Canine Diabetes Mellitus as a Translational Model for Innovative Regenerative Medicine Approaches. Stem Cells Transl Med 2019; 8:450-455. [PMID: 30719867 PMCID: PMC6476992 DOI: 10.1002/sctm.18-0163] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 12/18/2018] [Indexed: 12/16/2022] Open
Abstract
Diabetes mellitus (DM) is a common spontaneous endocrine disorder in dogs, which is defined by persistent hyperglycemia and insulin deficiency. Like type 1 diabetes (T1D) in people, canine DM is a complex and multifactorial disease in which genomic and epigenomic factors interact with environmental cues to induce pancreatic β‐cell loss and insulin deficiency, although the pathogenesis of canine DM is poorly defined and the role of autoimmunity is further controversial. Both diseases are incurable and require life‐long exogenous insulin therapy to maintain glucose homeostasis. Human pancreatic islet physiology, size, and cellular composition is further mirrored by canine islets. Although pancreatic or isolated islets transplantation are the only clinically validated methods to achieve long‐term normoglycemia and insulin independence, their availability does not meet the clinical need; they target a small portion of patients and have significant potential adverse effects. Therefore, providing a new source for β‐cell replacement is an unmet need. Naturally occurring DM in pet dogs, as a translational platform, is an untapped resource for various regenerative medicine applications that may offer some unique advantages given dogs' large size, longevity, heterogenic genetic background, similarity to human physiology and pathology, and long‐term clinical management. In this review, we outline different strategies for curative approaches, animal models used, and consider the value of canine DM as a translational animal/disease model for T1D in people. stem cells translational medicine2019;8:450–455
Collapse
Affiliation(s)
- Maryam Moshref
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Bonnie Tangey
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, Australia
| | - Chen Gilor
- Department of Veterinary Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Klearchos K Papas
- Department of Surgery, Institute for Cellular Transplantation, University of Arizona, Tucson, Arizona, USA
| | - Peter Williamson
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, Australia
| | - Lindsey Loomba-Albrecht
- Department of Pediatric Endocrinology, School of Medicine, University of California, Davis, Davis, California, USA
| | - Paul Sheehy
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, Australia
| | - Amir Kol
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| |
Collapse
|
77
|
Merlin S, Follenzi A. Transcriptional Targeting and MicroRNA Regulation of Lentiviral Vectors. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 12:223-232. [PMID: 30775404 PMCID: PMC6365353 DOI: 10.1016/j.omtm.2018.12.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Gene expression regulation is the result of complex interactions between transcriptional and post-transcriptional controls, resulting in cell-type-specific gene expression patterns that are determined by the developmental and differentiation stage of pathophysiological conditions. Understanding the complexity of gene expression regulatory networks is fundamental to gene therapy, an approach which has the potential to treat and cure inherited disorders by delivering the correct gene to patient specific cells or tissues by means of both viral and non-viral vectors. Besides the issues of biosafety, in recent years efforts have focused on achieving a robust and sustained transgene expression, which attains a phenotypic correction in several diseases, while avoiding transgene-related adverse effects, such as overexpression-associated cytotoxicity and/or immune responses to the transgene. In this sense, the use of cell-type-specific promoters and microRNA target sequences (miRTs) in gene transfer expression cassettes have allowed for a restricted expression after gene transfer in several studies. This review will focus on the use of transcriptional and post-transcriptional regulation to achieve a highly specific and safe transgene expression, as well as their application in ex vivo and in vivo gene therapeutic approaches.
Collapse
Affiliation(s)
- Simone Merlin
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, Novara, Italy
| | - Antonia Follenzi
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, Novara, Italy
| |
Collapse
|
78
|
Protein-Engineered Coagulation Factors for Hemophilia Gene Therapy. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 12:184-201. [PMID: 30705923 PMCID: PMC6349562 DOI: 10.1016/j.omtm.2018.12.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Hemophilia A (HA) and hemophilia B (HB) are X-linked bleeding disorders due to inheritable deficiencies in either coagulation factor VIII (FVIII) or factor IX (FIX), respectively. Recently, gene therapy clinical trials with adeno-associated virus (AAV) vectors and protein-engineered transgenes, B-domain deleted (BDD) FVIII and FIX-Padua, have reported near-phenotypic cures in subjects with HA and HB, respectively. Here, we review the biology and the clinical development of FVIII-BDD and FIX-Padua as transgenes. We also examine alternative bioengineering strategies for FVIII and FIX, as well as the immunological challenges of these approaches. Other engineered proteins and their potential use in gene therapy for hemophilia with inhibitors are also discussed. Continued advancement of gene therapy for HA and HB using protein-engineered transgenes has the potential to alleviate the substantial medical and psychosocial burdens of the disease.
Collapse
|
79
|
Olgasi C, Talmon M, Merlin S, Cucci A, Richaud-Patin Y, Ranaldo G, Colangelo D, Di Scipio F, Berta GN, Borsotti C, Valeri F, Faraldi F, Prat M, Messina M, Schinco P, Lombardo A, Raya A, Follenzi A. Patient-Specific iPSC-Derived Endothelial Cells Provide Long-Term Phenotypic Correction of Hemophilia A. Stem Cell Reports 2018; 11:1391-1406. [PMID: 30416049 PMCID: PMC6294075 DOI: 10.1016/j.stemcr.2018.10.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/12/2018] [Accepted: 10/15/2018] [Indexed: 11/15/2022] Open
Abstract
We generated patient-specific disease-free induced pluripotent stem cells (iPSCs) from peripheral blood CD34+ cells and differentiated them into functional endothelial cells (ECs) secreting factor VIII (FVIII) for gene and cell therapy approaches to cure hemophilia A (HA), an X-linked bleeding disorder caused by F8 mutations. iPSCs were transduced with a lentiviral vector carrying FVIII transgene driven by an endothelial-specific promoter (VEC) and differentiated into bona fide ECs using an optimized protocol. FVIII-expressing ECs were intraportally transplanted in monocrotaline-conditioned non-obese diabetic (NOD) severe combined immune-deficient (scid)-IL2rγ null HA mice generating a chimeric liver with functional human ECs. Transplanted cells engrafted and proliferated in the liver along sinusoids, in the long term showed stable therapeutic FVIII activity (6%). These results demonstrate that the hemophilic phenotype can be rescued by transplantation of ECs derived from HA FVIII-corrected iPSCs, confirming the feasibility of cell-reprogramming strategy in patient-derived cells as an approach for HA gene and cell therapy.
Collapse
Affiliation(s)
- Cristina Olgasi
- Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", 28100 Novara, Italy
| | - Maria Talmon
- Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", 28100 Novara, Italy
| | - Simone Merlin
- Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", 28100 Novara, Italy
| | - Alessia Cucci
- Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", 28100 Novara, Italy
| | - Yvonne Richaud-Patin
- Center of Regenerative Medicine in Barcelona (CMRB), Hospital Durans Reynals, Hospitalet de Llobregat, 08908 Barcelona, Spain; Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Gabriella Ranaldo
- Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", 28100 Novara, Italy
| | - Donato Colangelo
- Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", 28100 Novara, Italy
| | | | | | - Chiara Borsotti
- Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", 28100 Novara, Italy
| | - Federica Valeri
- A.O.U. Città della Salute e della Scienza, 10126 Torino, Italy
| | | | - Maria Prat
- Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", 28100 Novara, Italy
| | - Maria Messina
- A.O.U. Città della Salute e della Scienza, 10126 Torino, Italy
| | | | - Angelo Lombardo
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Milan, Italy; San Raffaele Scientific Institute, 20132 Milan, Italy; Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Angel Raya
- Center of Regenerative Medicine in Barcelona (CMRB), Hospital Durans Reynals, Hospitalet de Llobregat, 08908 Barcelona, Spain; Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - Antonia Follenzi
- Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", 28100 Novara, Italy.
| |
Collapse
|
80
|
Borsotti C, Follenzi A. New technologies in gene therapy for inducing immune tolerance in hemophilia A. Expert Rev Clin Immunol 2018; 14:1013-1019. [PMID: 30345839 DOI: 10.1080/1744666x.2018.1539667] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Conventional hemophilia treatment is based on repeated infusion of the missing clotting factor. This therapy is lifelong, expensive and can result in the formation of neutralizing antibodies, thus causing failure of the treatment and requiring higher doses of the replacement drug. Areas covered: Gene and cell therapies offer the advantage of providing a definitive and long-lasting correction of the mutated gene, promoting its physiological expression and preventing neutralizing antibody development. This review focuses on the most recent approaches that have been shown to prevent and even eradicate immune response toward the replaced factor. Expert commentary: Despite the encouraging data demonstrated by ongoing clinical trials and pre-clinical studies, more extensive investigations are necessary to establish the long-term safety and efficacy of gene therapy treatments in maintaining immune tolerance.
Collapse
Affiliation(s)
- Chiara Borsotti
- a Department of Health Sciences , Università del Piemonte Orientale , Novara , Italy
| | - Antonia Follenzi
- a Department of Health Sciences , Università del Piemonte Orientale , Novara , Italy
| |
Collapse
|
81
|
van Haasteren J, Hyde SC, Gill DR. Lessons learned from lung and liver in-vivo gene therapy: implications for the future. Expert Opin Biol Ther 2018; 18:959-972. [PMID: 30067117 PMCID: PMC6134476 DOI: 10.1080/14712598.2018.1506761] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 07/27/2018] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Ex-vivo gene therapy has had significant clinical impact over the last couple of years and in-vivo gene therapy products are being approved for clinical use. Gene therapy and gene editing approaches have huge potential to treat genetic disease and chronic illness. AREAS COVERED This article provides a review of in-vivo approaches for gene therapy in the lung and liver, exploiting non-viral and viral vectors with varying serotypes and pseudotypes to target-specific cells. Antibody responses inhibiting viral vectors continue to constrain effective repeat administration. Lessons learned from ex-vivo gene therapy and genome editing are also discussed. EXPERT OPINION The fields of lung and liver in-vivo gene therapy are thriving and a comparison highlights obstacles and opportunities for both. Overcoming immunological issues associated with repeated administration of viral vectors remains a key challenge. The addition of targeted small molecules in combination with viral vectors may offer one solution. A substantial bottleneck to the widespread adoption of in-vivo gene therapy is how to ensure sufficient capacity for clinical-grade vector production. In the future, the exploitation of gene editing approaches for in-vivo disease treatment may facilitate the resurgence of non-viral gene transfer approaches, which tend to be eclipsed by more efficient viral vectors.
Collapse
Affiliation(s)
- Joost van Haasteren
- Gene Medicine Group, Nuffield Division of Clinical Laboratory Science, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Stephen C. Hyde
- Gene Medicine Group, Nuffield Division of Clinical Laboratory Science, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Deborah R. Gill
- Gene Medicine Group, Nuffield Division of Clinical Laboratory Science, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
82
|
Doshi BS, Arruda VR. Gene therapy for hemophilia: what does the future hold? Ther Adv Hematol 2018; 9:273-293. [PMID: 30210756 DOI: 10.1177/2040620718791933] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 07/09/2018] [Indexed: 01/19/2023] Open
Abstract
Recent phase I/II adeno-associated viral vector-mediated gene therapy clinical trials have reported remarkable success in ameliorating disease phenotype in hemophilia A and B. These trials, which highlight the challenges overcome through decades of preclinical and first in human clinical studies, have generated considerable excitement for patients and caregivers alike. Optimization of vector and transgene expression has significantly improved the ability to achieve therapeutic factor levels in these subjects. Long-term follow-up studies will guide standardization of the approach with respect to the combination of serotype, promoter, dose, and manufacturing processes and inform safety for inclusion of young patients. Certain limitations preclude universal applicability of gene therapy, including transient liver transaminase elevations due to the immune responses to vector capsids or as yet undefined mechanisms, underlying liver disease from iatrogenic viral hepatitis, and neutralizing antibodies to clotting factors. Integrating vectors show promising preclinical results, but manufacturing and safety concerns still remain. The prospect of gene editing for correction of the underlying mutation is on the horizon with considerable potential. Herein, we review the advances and limitations that have resulted in these recent successful clinical trials and outline avenues that will allow for broader applicability of gene therapy.
Collapse
Affiliation(s)
- Bhavya S Doshi
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Valder R Arruda
- Department of Pediatrics, The Children's Hospital of Philadelphia, 3501 Civic Center Blvd, 5056 Colket Translational Research Center, Philadelphia, PA 19104, USA
| |
Collapse
|
83
|
Abstract
Hemophilia is a congenital bleeding disorder that affects nearly half a million individuals worldwide. Joint bleeding and other co-morbidities are a significant source of debilitation for this population. Current therapies are effective but must be given lifelong at regular intervals, are costly, and are available to only about 25% of the hemophilia population living in resource-rich countries. Gene therapy for hemophilia has been in development for three decades and is now entering pivotal-stage clinical trials. While many different technology platforms exist for gene therapy, all current clinical trials for hemophilia employ adeno-associated vector (AAV)-based cell transduction. This small viral particle is capable of packaging modified F8 or F9 transgenes, can be generated robustly from cell lines, and transduces several relatively end-differentiated target tissues such as the liver with high efficiency. While pre-existing neutralizing antibodies to the AAV capsid are recognized to limit current therapy, other challenges have been identified in human studies that were not seen in preclinical studies. Both liver transaminase elevations and immune-mediated loss of transgene expression have been observed in clinical trials. Toll-like receptors, cytotoxic T cells, and other components of the immune response have been implicated in the loss of factor expression, but a full understanding of the immune response awaits clarification. Despite these challenges, many patients enrolled in gene therapy trials have attained long-term expression of factors VIII and IX. This emerging technology now represents a cure for the severe bleeding and joint damage associated with hemophilia.
Collapse
Affiliation(s)
- John C Chapin
- Shire, 650 Kendall Drive, Cambridge, MA, 02142, USA.
| | | |
Collapse
|
84
|
Weber L, Poletti V, Magrin E, Antoniani C, Martin S, Bayard C, Sadek H, Felix T, Meneghini V, Antoniou MN, El-Nemer W, Mavilio F, Cavazzana M, Andre-Schmutz I, Miccio A. An Optimized Lentiviral Vector Efficiently Corrects the Human Sickle Cell Disease Phenotype. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 10:268-280. [PMID: 30140714 PMCID: PMC6105766 DOI: 10.1016/j.omtm.2018.07.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 07/29/2018] [Indexed: 12/17/2022]
Abstract
Autologous transplantation of hematopoietic stem cells transduced with a lentiviral vector (LV) expressing an anti-sickling HBB variant is a potential treatment for sickle cell disease (SCD). With a clinical trial as our ultimate goal, we generated LV constructs containing an anti-sickling HBB transgene (HBBAS3), a minimal HBB promoter, and different combinations of DNase I hypersensitive sites (HSs) from the locus control region (LCR). Hematopoietic stem progenitor cells (HSPCs) from SCD patients were transduced with LVs containing either HS2 and HS3 (β-AS3) or HS2, HS3, and HS4 (β-AS3 HS4). The inclusion of the HS4 element drastically reduced vector titer and infectivity in HSPCs, with negligible improvement of transgene expression. Conversely, the LV containing only HS2 and HS3 was able to efficiently transduce SCD bone marrow and Plerixafor-mobilized HSPCs, with anti-sickling HBB representing up to ∼60% of the total HBB-like chains. The expression of the anti-sickling HBB and the reduced incorporation of the βS-chain in hemoglobin tetramers allowed up to 50% reduction in the frequency of RBC sickling under hypoxic conditions. Together, these results demonstrate the ability of a high-titer LV to express elevated levels of a potent anti-sickling HBB transgene ameliorating the SCD cell phenotype.
Collapse
Affiliation(s)
- Leslie Weber
- Laboratory of Human Lymphohematopoiesis, INSERM UMR_S1163, 75015 Paris, France.,Paris Diderot University - Sorbonne Paris Cité, 75015 Paris, France
| | | | - Elisa Magrin
- Biotherapy Department, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, 75015 Paris, France
| | - Chiara Antoniani
- Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, 75015 Paris, France.,Laboratory of chromatin and gene regulation during development, INSERM UMR_S1163, 75015 Paris, France
| | | | - Charles Bayard
- Laboratory of Human Lymphohematopoiesis, INSERM UMR_S1163, 75015 Paris, France
| | - Hanem Sadek
- Laboratory of Human Lymphohematopoiesis, INSERM UMR_S1163, 75015 Paris, France
| | - Tristan Felix
- Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, 75015 Paris, France.,Laboratory of chromatin and gene regulation during development, INSERM UMR_S1163, 75015 Paris, France
| | - Vasco Meneghini
- Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, 75015 Paris, France.,Laboratory of chromatin and gene regulation during development, INSERM UMR_S1163, 75015 Paris, France
| | | | - Wassim El-Nemer
- Biologie Intégrée du Globule Rouge, INSERM UMR_S1134, Paris Diderot University, Sorbonne Paris Cité, Université de la Réunion, Université des Antilles, 75015 Paris, France.,Institut National de la Transfusion Sanguine, 75015 Paris, France.,Laboratoire d'Excellence GR-Ex, 75015 Paris, France
| | - Fulvio Mavilio
- Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, 75015 Paris, France.,Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Marina Cavazzana
- Laboratory of Human Lymphohematopoiesis, INSERM UMR_S1163, 75015 Paris, France.,Biotherapy Department, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, 75015 Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Isabelle Andre-Schmutz
- Laboratory of Human Lymphohematopoiesis, INSERM UMR_S1163, 75015 Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Annarita Miccio
- Genethon, INSERM UMR951, 91000 Evry, France.,Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, 75015 Paris, France.,Laboratory of chromatin and gene regulation during development, INSERM UMR_S1163, 75015 Paris, France
| |
Collapse
|
85
|
Milani M, Annoni A, Bartolaccini S, Biffi M, Russo F, Di Tomaso T, Raimondi A, Lengler J, Holmes MC, Scheiflinger F, Lombardo A, Cantore A, Naldini L. Genome editing for scalable production of alloantigen-free lentiviral vectors for in vivo gene therapy. EMBO Mol Med 2018; 9:1558-1573. [PMID: 28835507 PMCID: PMC5666310 DOI: 10.15252/emmm.201708148] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Lentiviral vectors (LV) are powerful and versatile vehicles for gene therapy. However, their complex biological composition challenges large-scale manufacturing and raises concerns for in vivo applications, because particle components and contaminants may trigger immune responses. Here, we show that producer cell-derived polymorphic class-I major histocompatibility complexes (MHC-I) are incorporated into the LV surface and trigger allogeneic T-cell responses. By disrupting the beta-2 microglobulin gene in producer cells, we obtained MHC-free LV with substantially reduced immunogenicity. We introduce this targeted editing into a novel stable LV packaging cell line, carrying single-copy inducible vector components, which can be reproducibly converted into high-yield LV producers upon site-specific integration of the LV genome of interest. These LV efficiently transfer genes into relevant targets and are more resistant to complement-mediated inactivation, because of reduced content of the vesicular stomatitis virus envelope glycoprotein G compared to vectors produced by transient transfection. Altogether, these advances support scalable manufacturing of alloantigen-free LV with higher purity and increased complement resistance that are better suited for in vivo gene therapy.
Collapse
Affiliation(s)
- Michela Milani
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita Salute San Raffaele University, Milan, Italy
| | - Andrea Annoni
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sara Bartolaccini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Mauro Biffi
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fabio Russo
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Tiziano Di Tomaso
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | | | | | | | - Angelo Lombardo
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita Salute San Raffaele University, Milan, Italy
| | - Alessio Cantore
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy .,Vita Salute San Raffaele University, Milan, Italy
| |
Collapse
|
86
|
Abstract
Haemophilia is a rare disease for which the approved therapeutic options have remained virtually unchanged for 50 years. In the past decade, however, there has been an explosion of innovation in the treatment options that are either in development or have been approved for haemophilia, including engineered clotting factors and an extensive pipeline of new approaches and modalities. Several of these new modalities, especially gene therapy, demonstrate proof of principle in haemophilia but could have broader applications. These advances, in combination with better diagnostics, are now enabling clinicians to improve the standard of care for people with haemophilia. The different mechanisms of action and modifications used in these therapies have implications for their safe and efficacious use, which must be balanced with their therapeutic utility. This Review focuses on the biological aspects of the most advanced and innovative approaches for haemophilia treatment and considers their future use.
Collapse
|
87
|
Evens H, Chuah MK, VandenDriessche T. Haemophilia gene therapy: From trailblazer to gamechanger. Haemophilia 2018; 24 Suppl 6:50-59. [DOI: 10.1111/hae.13494] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2018] [Indexed: 12/24/2022]
Affiliation(s)
- H. Evens
- Department of Gene Therapy & Regenerative Medicine Faculty of Medicine & Pharmacy Vrije Universiteit Brussel (VUB) Brussels Belgium
| | - M. K. Chuah
- Department of Gene Therapy & Regenerative Medicine Faculty of Medicine & Pharmacy Vrije Universiteit Brussel (VUB) Brussels Belgium
- Department of Cardiovascular Sciences Center for Molecular & Vascular Biology University of Leuven Leuven Belgium
| | - T. VandenDriessche
- Department of Gene Therapy & Regenerative Medicine Faculty of Medicine & Pharmacy Vrije Universiteit Brussel (VUB) Brussels Belgium
- Department of Cardiovascular Sciences Center for Molecular & Vascular Biology University of Leuven Leuven Belgium
| |
Collapse
|
88
|
Pierce GF, Iorio A. Past, present and future of haemophilia gene therapy: From vectors and transgenes to known and unknown outcomes. Haemophilia 2018; 24 Suppl 6:60-67. [DOI: 10.1111/hae.13489] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2018] [Indexed: 01/19/2023]
Affiliation(s)
- G. F. Pierce
- World Federation of Hemophilia; Montreal QC Canada
- World Federation of Hemophilia; Third Rock Ventures; San Francisco CA USA
| | - A. Iorio
- McMaster University; Hamilton ON Canada
| |
Collapse
|
89
|
Modulation of immune responses in lentiviral vector-mediated gene transfer. Cell Immunol 2018; 342:103802. [PMID: 29735164 PMCID: PMC6695505 DOI: 10.1016/j.cellimm.2018.04.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/25/2018] [Accepted: 04/26/2018] [Indexed: 02/07/2023]
Abstract
Lentiviral vectors (LV) are widely used vehicles for gene transfer and therapy in pre-clinical animal models and clinical trials with promising safety and efficacy results. However, host immune responses against vector- and/or transgene-derived antigens remain a major obstacle to the success and broad applicability of gene therapy. Here we review the innate and adaptive immunological barriers to successful gene therapy, both in the context of ex vivo and in vivo LV gene therapy, mostly concerning systemic LV delivery and discuss possible means to overcome them, including vector design and production and immune modulatory strategies.
Collapse
|
90
|
Abstract
Viral vectors provide an efficient means for modification of eukaryotic cells, and their use is now commonplace in academic laboratories and industry for both research and clinical gene therapy applications. Lentiviral vectors, derived from the human immunodeficiency virus, have been extensively investigated and optimized over the past two decades. Third-generation, self-inactivating lentiviral vectors have recently been used in multiple clinical trials to introduce genes into hematopoietic stem cells to correct primary immunodeficiencies and hemoglobinopathies. These vectors have also been used to introduce genes into mature T cells to generate immunity to cancer through the delivery of chimeric antigen receptors (CARs) or cloned T-cell receptors. CAR T-cell therapies engineered using lentiviral vectors have demonstrated noteworthy clinical success in patients with B-cell malignancies leading to regulatory approval of the first genetically engineered cellular therapy using lentiviral vectors. In this review, we discuss several aspects of lentiviral vectors that will be of interest to clinicians, including an overview of lentiviral vector development, the current uses of viral vectors as therapy for primary immunodeficiencies and cancers, large-scale manufacturing of lentiviral vectors, and long-term follow-up of patients treated with gene therapy products.
Collapse
|
91
|
Biswas M, Kumar SRP, Terhorst C, Herzog RW. Gene Therapy With Regulatory T Cells: A Beneficial Alliance. Front Immunol 2018; 9:554. [PMID: 29616042 PMCID: PMC5868074 DOI: 10.3389/fimmu.2018.00554] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 03/05/2018] [Indexed: 12/12/2022] Open
Abstract
Gene therapy aims to replace a defective or a deficient protein at therapeutic or curative levels. Improved vector designs have enhanced safety, efficacy, and delivery, with potential for lasting treatment. However, innate and adaptive immune responses to the viral vector and transgene product remain obstacles to the establishment of therapeutic efficacy. It is widely accepted that endogenous regulatory T cells (Tregs) are critical for tolerance induction to the transgene product and in some cases the viral vector. There are two basic strategies to harness the suppressive ability of Tregs: in vivo induction of adaptive Tregs specific to the introduced gene product and concurrent administration of autologous, ex vivo expanded Tregs. The latter may be polyclonal or engineered to direct specificity to the therapeutic antigen. Recent clinical trials have advanced adoptive immunotherapy with Tregs for the treatment of autoimmune disease and in patients receiving cell transplants. Here, we highlight the potential benefit of combining gene therapy with Treg adoptive transfer to achieve a sustained transgene expression. Furthermore, techniques to engineer antigen-specific Treg cell populations, either through reprogramming conventional CD4+ T cells or transferring T cell receptors with known specificity into polyclonal Tregs, are promising in preclinical studies. Thus, based upon these observations and the successful use of chimeric (IgG-based) antigen receptors (CARs) in antigen-specific effector T cells, different types of CAR-Tregs could be added to the repertoire of inhibitory modalities to suppress immune responses to therapeutic cargos of gene therapy vectors. The diverse approaches to harness the ability of Tregs to suppress unwanted immune responses to gene therapy and their perspectives are reviewed in this article.
Collapse
Affiliation(s)
- Moanaro Biswas
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, FL, United States
| | - Sandeep R P Kumar
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, FL, United States
| | - Cox Terhorst
- Division of Immunology, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, Boston, MA, United States
| | - Roland W Herzog
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, FL, United States
| |
Collapse
|
92
|
VandenDriessche T, Chuah MK. Hyperactive Factor IX Padua: A Game-Changer for Hemophilia Gene Therapy. Mol Ther 2017; 26:14-16. [PMID: 29274719 DOI: 10.1016/j.ymthe.2017.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Thierry VandenDriessche
- Department of Gene Therapy & Regenerative Medicine, Free University of Brussels (VUB), Faculty of Medicine & Pharmacy, Brussels, Belgium; Center for Molecular & Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium.
| | - Marinee K Chuah
- Department of Gene Therapy & Regenerative Medicine, Free University of Brussels (VUB), Faculty of Medicine & Pharmacy, Brussels, Belgium; Center for Molecular & Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium.
| |
Collapse
|
93
|
Hickey RD, Mao SA, Glorioso J, Elgilani F, Amiot B, Chen H, Rinaldo P, Marler R, Jiang H, DeGrado TR, Suksanpaisan L, O'Connor MK, Freeman BL, Ibrahim SH, Peng KW, Harding CO, Ho CS, Grompe M, Ikeda Y, Lillegard JB, Russell SJ, Nyberg SL. Curative ex vivo liver-directed gene therapy in a pig model of hereditary tyrosinemia type 1. Sci Transl Med 2017; 8:349ra99. [PMID: 27464750 DOI: 10.1126/scitranslmed.aaf3838] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 07/05/2016] [Indexed: 12/23/2022]
Abstract
We tested the hypothesis that ex vivo hepatocyte gene therapy can correct the metabolic disorder in fumarylacetoacetate hydrolase-deficient (Fah(-/-)) pigs, a large animal model of hereditary tyrosinemia type 1 (HT1). Recipient Fah(-/-) pigs underwent partial liver resection and hepatocyte isolation by collagenase digestion. Hepatocytes were transduced with one or both of the lentiviral vectors expressing the therapeutic Fah and the reporter sodium-iodide symporter (Nis) genes under control of the thyroxine-binding globulin promoter. Pigs received autologous transplants of hepatocytes by portal vein infusion. After transplantation, the protective drug 2-(2-nitro-4-trifluoromethylbenzyol)-1,3 cyclohexanedione (NTBC) was withheld from recipient pigs to provide a selective advantage for expansion of corrected FAH(+) cells. Proliferation of transplanted cells, assessed by both immunohistochemistry and noninvasive positron emission tomography imaging of NIS-labeled cells, demonstrated near-complete liver repopulation by gene-corrected cells. Tyrosine and succinylacetone levels improved to within normal range, demonstrating complete correction of tyrosine metabolism. In addition, repopulation of the Fah(-/-) liver with transplanted cells inhibited the onset of severe fibrosis, a characteristic of nontransplanted Fah(-/-) pigs. This study demonstrates correction of disease in a pig model of metabolic liver disease by ex vivo gene therapy. To date, ex vivo gene therapy has only been successful in small animal models. We conclude that further exploration of ex vivo hepatocyte genetic correction is warranted for clinical use.
Collapse
Affiliation(s)
- Raymond D Hickey
- Department of Surgery, Mayo Clinic, Rochester, MN 55905, USA. Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| | - Shennen A Mao
- Department of Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Jaime Glorioso
- Department of Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Faysal Elgilani
- Department of Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Bruce Amiot
- Brami Biomedical Inc., Coon Rapids, MN 55433, USA
| | - Harvey Chen
- Department of Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Piero Rinaldo
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Ronald Marler
- Department of Comparative Medicine, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Huailei Jiang
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Lukkana Suksanpaisan
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA. Imanis Life Sciences, Rochester, MN 55902, USA
| | | | - Brittany L Freeman
- Division of Pediatric Gastroenterology, Mayo Clinic, Rochester, MN 55905, USA
| | - Samar H Ibrahim
- Division of Pediatric Gastroenterology, Mayo Clinic, Rochester, MN 55905, USA
| | - Kah Whye Peng
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Cary O Harding
- Department of Molecular and Medical Genetics and Department of Pediatrics, Oregon Health and Science University, Portland, OR 97239, USA
| | - Chak-Sum Ho
- Histocompatibility Laboratory, Gift of Life Michigan, Ann Arbor, MI 48108, USA
| | - Markus Grompe
- Papé Family Pediatric Research Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Yasuhiro Ikeda
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Joseph B Lillegard
- Department of Surgery, Mayo Clinic, Rochester, MN 55905, USA. Midwest Fetal Care Center, Children's Hospitals and Clinics of Minnesota, Minneapolis, MN 55404, USA
| | - Stephen J Russell
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Scott L Nyberg
- Department of Surgery, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
94
|
Sherman A, Biswas M, Herzog RW. Innovative Approaches for Immune Tolerance to Factor VIII in the Treatment of Hemophilia A. Front Immunol 2017; 8:1604. [PMID: 29225598 PMCID: PMC5705551 DOI: 10.3389/fimmu.2017.01604] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 11/07/2017] [Indexed: 01/19/2023] Open
Abstract
Hemophilia A (coagulation factor VIII deficiency) is a debilitating genetic disorder that is primarily treated with intravenous replacement therapy. Despite a variety of factor VIII protein formulations available, the risk of developing anti-dug antibodies (“inhibitors”) remains. Overall, 20–30% of patients with severe disease develop inhibitors. Current clinical immune tolerance induction protocols to eliminate inhibitors are not effective in all patients, and there are no prophylactic protocols to prevent the immune response. New experimental therapies, such as gene and cell therapies, show promising results in pre-clinical studies in animal models of hemophilia. Examples include hepatic gene transfer with viral vectors, genetically engineered regulatory T cells (Treg), in vivo Treg induction using immune modulatory drugs, and maternal antigen transfer. Furthermore, an oral tolerance protocol is being developed based on transgenic lettuce plants, which suppressed inhibitor formation in hemophilic mice and dogs. Hopefully, some of these innovative approaches will reduce the risk of and/or more effectively eliminate inhibitor formation in future treatment of hemophilia A.
Collapse
Affiliation(s)
- Alexandra Sherman
- Department of Pediatrics, University of Florida, Gainesville, FL, United States
| | - Moanaro Biswas
- Department of Pediatrics, University of Florida, Gainesville, FL, United States
| | - Roland W Herzog
- Department of Pediatrics, University of Florida, Gainesville, FL, United States
| |
Collapse
|
95
|
Ricca A, Gritti A. Perspective on innovative therapies for globoid cell leukodystrophy. J Neurosci Res 2017; 94:1304-17. [PMID: 27638612 DOI: 10.1002/jnr.23752] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/25/2016] [Accepted: 03/30/2016] [Indexed: 12/24/2022]
Abstract
Globoid cell leukodystrophy (GLD), or Krabbe's disease, is a lysosomal storage disorder resulting from deficiency of the lysosomal hydrolase galactosylceramidase. The infantile forms are characterized by a unique relentless and aggressive progression with a wide range of neurological symptoms and complications. Here we review and discuss the basic concepts and the novel mechanisms identified as key contributors to the peculiar GLD pathology, highlighting their therapeutic implications. Then, we evaluate evidence from extensive experimental studies on GLD animal models that have highlighted fundamental requirements to obtain substantial therapeutic benefit, including early and timely intervention, high levels of enzymatic reconstitution, and global targeting of affected tissues. Continuous efforts in understanding GLD pathophysiology, the interplay between various therapies, and the mechanisms of disease correction upon intervention may allow advancing research with innovative approaches and prioritizing treatment strategies to develop more efficacious treatments. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Alessandra Ricca
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Angela Gritti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
96
|
VandenDriessche T, Chuah MK. Hemophilia Gene Therapy: Ready for Prime Time? Hum Gene Ther 2017; 28:1013-1023. [DOI: 10.1089/hum.2017.116] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Thierry VandenDriessche
- Department of Gene Therapy & Regenerative Medicine, Free University of Brussels (VUB), Brussels, Belgium
- Center for Molecular & Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Marinee K. Chuah
- Department of Gene Therapy & Regenerative Medicine, Free University of Brussels (VUB), Brussels, Belgium
- Center for Molecular & Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| |
Collapse
|
97
|
Staber JM, Pollpeter MJ, Anderson CG, Burrascano M, Cooney AL, Sinn PL, Rutkowski DT, Raschke WC, McCray PB. Long-term correction of hemophilia A mice following lentiviral mediated delivery of an optimized canine factor VIII gene. Gene Ther 2017; 24:742-748. [PMID: 28905885 PMCID: PMC5937993 DOI: 10.1038/gt.2017.67] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 07/17/2017] [Accepted: 07/18/2017] [Indexed: 01/12/2023]
Abstract
Current therapies for hemophilia A include frequent prophylactic or on-demand intravenous factor treatments which are costly, inconvenient and may lead to inhibitor formation. Viral vector delivery of factor VIII (FVIII) cDNA has the potential to alleviate the debilitating clotting defects. Lentiviral-based vectors delivered to murine models of hemophilia A mediate phenotypic correction. However, a limitation of lentiviral-mediated FVIII delivery is inefficient transduction of target cells. Here, we engineer a feline immunodeficiency virus (FIV) -based lentiviral vector pseudotyped with the baculovirus GP64 envelope glycoprotein to mediate efficient gene transfer to mouse hepatocytes. In anticipation of future studies in FVIII-deficient dogs, we investigated the efficacy of FIV-delivered canine FVIII (cFVIII). Codon-optimization of the cFVIII sequence increased activity and decreased blood loss as compared to the native sequence. Further, we compared a standard B-domain deleted FVIII cDNA to a cDNA including 256 amino acids of the B-domain with 11 potential asparagine-linked oligosaccharide linkages. Restoring a partial B-domain resulted in modest reduction of endoplasmic reticulum (ER) stress markers. Importantly, our optimized vectors achieved wild-type levels of phenotypic correction with minimal inhibitor formation. These studies provide insights into optimal design of a therapeutically relevant gene therapy vector for a devastating bleeding disorder.
Collapse
Affiliation(s)
- JM Staber
- Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA, USA
| | - MJ Pollpeter
- Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA, USA
| | | | | | - AL Cooney
- Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA, USA
- Center for Gene Therapy of Cystic Fibrosis and Other Genetic Diseases, Iowa City, IA, USA
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - PL Sinn
- Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA, USA
- Center for Gene Therapy of Cystic Fibrosis and Other Genetic Diseases, Iowa City, IA, USA
| | - DT Rutkowski
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - WC Raschke
- Department of Virogenics, San Diego, CA, USA
| | - PB McCray
- Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA, USA
- Center for Gene Therapy of Cystic Fibrosis and Other Genetic Diseases, Iowa City, IA, USA
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
98
|
Novel approaches to hemophilia therapy: successes and challenges. Blood 2017; 130:2251-2256. [PMID: 29018078 DOI: 10.1182/blood-2017-08-742312] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/03/2017] [Indexed: 12/30/2022] Open
Abstract
New therapies for hemophilia A and hemophilia B will likely continue to change clinical practice. Ranging from extended half-life to nonfactor products and gene therapy, these innovative approaches have the potential to enhance the standard of care by decreasing infusion frequency to increase compliance, promoting prophylaxis, offering alternatives to inhibitor patients, and easing route of administration. Each category has intrinsic challenges that may limit the broader application of these promising therapies. To date, none specifically address the challenge of dispersing treatment to the developing world.
Collapse
|
99
|
Baruteau J, Waddington SN, Alexander IE, Gissen P. Gene therapy for monogenic liver diseases: clinical successes, current challenges and future prospects. J Inherit Metab Dis 2017; 40:497-517. [PMID: 28567541 PMCID: PMC5500673 DOI: 10.1007/s10545-017-0053-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 02/08/2023]
Abstract
Over the last decade, pioneering liver-directed gene therapy trials for haemophilia B have achieved sustained clinical improvement after a single systemic injection of adeno-associated virus (AAV) derived vectors encoding the human factor IX cDNA. These trials demonstrate the potential of AAV technology to provide long-lasting clinical benefit in the treatment of monogenic liver disorders. Indeed, with more than ten ongoing or planned clinical trials for haemophilia A and B and dozens of trials planned for other inherited genetic/metabolic liver diseases, clinical translation is expanding rapidly. Gene therapy is likely to become an option for routine care of a subset of severe inherited genetic/metabolic liver diseases in the relatively near term. In this review, we aim to summarise the milestones in the development of gene therapy, present the different vector tools and their clinical applications for liver-directed gene therapy. AAV-derived vectors are emerging as the leading candidates for clinical translation of gene delivery to the liver. Therefore, we focus on clinical applications of AAV vectors in providing the most recent update on clinical outcomes of completed and ongoing gene therapy trials and comment on the current challenges that the field is facing for large-scale clinical translation. There is clearly an urgent need for more efficient therapies in many severe monogenic liver disorders, which will require careful risk-benefit analysis for each indication, especially in paediatrics.
Collapse
Affiliation(s)
- Julien Baruteau
- Genetics and Genomic Medicine Programme, Great Ormond Street Institute of Child Health, University College London, London, UK.
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.
- Gene Transfer Technology Group, Institute for Women's Health, University College London, London, UK.
| | - Simon N Waddington
- Gene Transfer Technology Group, Institute for Women's Health, University College London, London, UK
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Ian E Alexander
- Gene Therapy Research Unit, The Children's Hospital at Westmead and Children's Medical Research Institute, Westmead, Australia
- Discipline of Child and Adolescent Health, University of Sydney, Sydney, Australia
| | - Paul Gissen
- Genetics and Genomic Medicine Programme, Great Ormond Street Institute of Child Health, University College London, London, UK
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| |
Collapse
|
100
|
Affiliation(s)
- Jennielle Jobson
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Brian D Brown
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Diabetes Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|