51
|
Shaikh S, Cox CD, Nomura T, Martinac B. Energetics of gating MscS by membrane tension in azolectin liposomes and giant spheroplasts. Channels (Austin) 2015; 8:321-6. [PMID: 24758942 DOI: 10.4161/chan.28366] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Mechanosensitive (MS) ion channels are molecular sensors that detect and transduce signals across prokaryotic and eukaryotic cell membranes arising from external mechanical stimuli or osmotic gradients. They play an integral role in mechanosensory responses including touch, hearing, and proprioception by opening or closing in order to facilitate or prevent the flow of ions and organic osmolytes. In this study we use a linear force model of MS channel gating to determine the gating membrane tension (γ) and the gating area change (ΔA) associated with the energetics of MscS channel gating in giant spheroplasts and azolectin liposomes. Analysis of Boltzmann distribution functions describing the dependence of MscS channel gating on membrane tension indicated that the gating area change (ΔA) was the same for MscS channels recorded in both preparations. The comparison of the membrane tension (γ) gating the channel, however, showed a significant difference between the MscS channel activities in these two preparations.
Collapse
|
52
|
Activation of mechanosensitive ion channel TRPV4 normalizes tumor vasculature and improves cancer therapy. Oncogene 2015; 35:314-22. [PMID: 25867067 PMCID: PMC4948740 DOI: 10.1038/onc.2015.83] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/31/2014] [Accepted: 02/16/2015] [Indexed: 12/19/2022]
Abstract
Tumor vessels are characterized by abnormal morphology and hyper-permeability that together cause inefficient delivery of chemotherapeutic agents. Although VEGF has been established as a critical regulator of tumor angiogenesis, the role of mechanical signaling in the regulation of tumor vasculature or tumor endothelial cell (TEC) function is not known. Here, we show that the mechanosensitive ion channel TRPV4 regulates tumor angiogenesis and tumor vessel maturation via modulation of TEC mechanosensitivity. We found that TEC exhibit reduced TRPV4 expression and function, which is correlated with aberrant mechanosensitivity towards ECM stiffness, increased migration and abnormal angiogenesis by TEC. Further, syngeneic tumor experiments revealed that the absence of TRPV4 induced increased vascular density, vessel diameter and reduced pericyte coverage resulting in enhanced tumor growth in TRPV4 KO mice. Importantly, overexpression or pharmacological activation of TRPV4 restored aberrant TEC mechanosensitivity, migration and normalized abnormal angiogenesis in vitro by modulating Rho activity. Finally, a small molecule activator of TRPV4, GSK1016790A, in combination with anti-cancer drug Cisplatin, significantly reduced tumor growth in WT mice by inducing vessel maturation. Our findings demonstrate TRPV4 channels to be critical regulators of tumor angiogenesis and represent a novel target for anti-angiogenic and vascular normalization therapies.
Collapse
|
53
|
Scheiwe AC, Frank SC, Autenrieth TJ, Bastmeyer M, Wegener M. Subcellular stretch-induced cytoskeletal response of single fibroblasts within 3D designer scaffolds. Biomaterials 2015; 44:186-94. [PMID: 25617137 DOI: 10.1016/j.biomaterials.2014.12.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 12/11/2014] [Accepted: 12/16/2014] [Indexed: 01/21/2023]
Abstract
In vivo, cells are exposed to mechanical forces in many different ways. These forces can strongly influence cell functions or may even lead to diseases. Through their sensing machinery, cells are able to perceive the physical information of the extracellular matrix and translate it into biochemical signals resulting in cellular responses. Here, by virtue of two-component polymer scaffolds made via direct laser writing, we precisely control the cell matrix adhesions regarding their spatial arrangement and size. This leads to highly controlled and uniform cell morphologies, thereby allowing for averaging over the results obtained from several different individual cells, enabling quantitative analysis. We transiently deform these elastic structures by a micromanipulator, which exerts controlled stretching forces on primary fibroblasts grown in these scaffolds on a subcellular level. We find stretch-induced remodeling of both actin cytoskeleton and cell matrix adhesions. The responses to static and periodic stretching are significantly different. The amount of paxillin and phosphorylated focal adhesion kinase increases in cell matrix adhesions at the manipulated pillar after static stretching whereas it decreases after periodic stretching.
Collapse
Affiliation(s)
- Andrea C Scheiwe
- Institute of Applied Physics (APH), Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany
| | - Stephanie C Frank
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany
| | - Tatjana J Autenrieth
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany
| | - Martin Bastmeyer
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany; Zoological Institute, Department of Cell and Neurobiology, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany.
| | - Martin Wegener
- Institute of Applied Physics (APH), Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany; DFG-Center for Functional Nanostructures (CFN), and Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany.
| |
Collapse
|
54
|
Jakob U, Kriwacki R, Uversky VN. Conditionally and transiently disordered proteins: awakening cryptic disorder to regulate protein function. Chem Rev 2014; 114:6779-805. [PMID: 24502763 PMCID: PMC4090257 DOI: 10.1021/cr400459c] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Ursula Jakob
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1048, United States
| | - Richard Kriwacki
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, United States
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Vladimir N. Uversky
- Department of Molecular Medicine, University of South Florida, Tampa, Florida 33612, United States
- Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| |
Collapse
|
55
|
Jorge S, Chang S, Barzilai JJ, Leppert P, Segars JH. Mechanical signaling in reproductive tissues: mechanisms and importance. Reprod Sci 2014; 21:1093-107. [PMID: 25001021 DOI: 10.1177/1933719114542023] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The organs of the female reproductive system are among the most dynamic tissues in the human body, undergoing repeated cycles of growth and involution from puberty through menopause. To achieve such impressive plasticity, reproductive tissues must respond not only to soluble signals (hormones, growth factors, and cytokines) but also to physical cues (mechanical forces and osmotic stress) as well. Here, we review the mechanisms underlying the process of mechanotransduction-how signals are conveyed from the extracellular matrix that surrounds the cells of reproductive tissues to the downstream molecules and signaling pathways that coordinate the cellular adaptive response to external forces. Our objective was to examine how mechanical forces contribute significantly to physiological functions and pathogenesis in reproductive tissues. We highlight how widespread diseases of the reproductive tract, from preterm labor to tumors of the uterus and breast, result from an impairment in mechanical signaling.
Collapse
Affiliation(s)
- Soledad Jorge
- CRTP Scholars, NIH, Bethesda, MD, USA Yale University School of Medicine, New Haven, CT, USA
| | - Sydney Chang
- CRTP Scholars, NIH, Bethesda, MD, USA Duke University School of Medicine, Durham, NC, USA
| | | | | | | |
Collapse
|
56
|
Abstract
The availability of glucose and oxygen are important regulatory elements that help directing stem cell fate. In the undifferentiated state, stem cells, and their artificially reprogrammed equivalent-induced pluripotent stem cells (iPS) are characterized by limited oxidative capacity and active anaerobic glycolysis. Recent studies have shown that pluripotency-a characteristic of staminality-is associated with a poorly developed mitochondrial patrimony, while differentiation is accompanied by an activation of mitochondrial biogenesis. Besides being an important energy source in hypoxia, high glucose level results in hyperosmotic stress. The identification of specific metabolic pathways and biophysical factors that regulate stem cell fate, including high glucose in the extracellular medium, may therefore facilitate reprogramming efficiency and control the differentiation and fate of iPS cells, which are increasingly being explored as therapeutic tools. In this article, we review recent knowledge of the role of glucose metabolism and high glucose level as major anaerobic energy source, and a determinant of osmolarity as possible tools for reprogramming therapies in clinical applications. As in the diabetic setting hyperglycemia negatively affect the stem/progenitor cell fate and likely somatic reprogramming, we also discuss the in vivo potential transferability of the available in vitro findings.
Collapse
|
57
|
Lei Q, Pan XQ, Chang S, Malkowicz SB, Guzzo TJ, Malykhina AP. Response of the human detrusor to stretch is regulated by TREK-1, a two-pore-domain (K2P) mechano-gated potassium channel. J Physiol 2014; 592:3013-30. [PMID: 24801307 DOI: 10.1113/jphysiol.2014.271718] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The mechanisms of mechanosensitivity underlying the response of the human bladder to stretch are poorly understood. Animal data suggest that stretch-activated two-pore-domain (K2P) K(+) channels play a critical role in bladder relaxation during the filling phase. The objective of this study was to characterize the expression and function of stretch-activated K2P channels in the human bladder and to clarify their physiological role in bladder mechanosensitivity. Gene and protein analysis of the K2P channels TREK-1, TREK-2 and TRAAK in the human bladder revealed that TREK-1 is the predominantly expressed member of the mechano-gated subfamily of K2P channels. Immunohistochemical labelling of bladder wall identified higher levels of expression of TREK-1 in detrusor smooth muscle cells in comparison to bladder mucosa. Functional characterization and biophysical properties of the predominantly expressed member of the K2P family, the TREK-1 channel, were evaluated by in vitro organ bath studies and the patch-clamp technique. Electrophysiological recordings from single smooth muscle cells confirmed direct activation of TREK-1 channels by mechanical stretch and negative pressure applied to the cell membrane. Inhibition of TREK-1 channels in the human detrusor significantly delayed relaxation of the stretched bladder smooth muscle strips and triggered small-amplitude spontaneous contractions. Application of negative pressure to cell-attached patches (-20 mmHg) caused a 19-fold increase in the open probability (NPo) of human TREK-1 channels. l-Methionine (1 mm), a specific TREK-1 inhibitor, dramatically decreased the NPo of TREK-1 channels from 0.045 ± 0.003 to 0.008 ± 0.001 (n = 8, P ≤ 0.01). Subsequent addition of arachidonic acid (10 μm), a channel opener, increased the open probability of methionine-inhibited unitary currents up to 0.43 ± 0.05 at 0 mV (n = 9, P ≤ 0.05). The results of our study provide direct evidence that the response of the human detrusor to mechanical stretch is regulated by activation of mechano-gated TREK-1 channels. Impaired mechanosensation and mechanotransduction associated with the changes in stretch-activated K2P channels may underlie myogenic bladder dysfunction in humans.
Collapse
Affiliation(s)
- Qi Lei
- Division of Urology, Department of Surgery, University of Pennsylvania, PA, USA
| | - Xiao-Qing Pan
- Division of Urology, Department of Surgery, University of Pennsylvania, PA, USA
| | | | - S Bruce Malkowicz
- Division of Urology, Department of Surgery, University of Pennsylvania, PA, USA
| | - Thomas J Guzzo
- Division of Urology, Department of Surgery, University of Pennsylvania, PA, USA
| | - Anna P Malykhina
- Division of Urology, Department of Surgery, University of Pennsylvania, PA, USA
| |
Collapse
|
58
|
Alimperti S, You H, George T, Agarwal SK, Andreadis ST. Cadherin-11 regulates both mesenchymal stem cell differentiation into smooth muscle cells and the development of contractile function in vivo. J Cell Sci 2014; 127:2627-38. [PMID: 24741067 DOI: 10.1242/jcs.134833] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Although soluble factors, such as transforming growth factor β1 (TGF-β1), induce mesenchymal stem cell (MSC) differentiation towards the smooth muscle cell (SMC) lineage, the role of adherens junctions in this process is not well understood. In this study, we found that cadherin-11 but not cadherin-2 was necessary for MSC differentiation into SMCs. Cadherin-11 regulated the expression of TGF-β1 and affected SMC differentiation through a pathway that was dependent on TGF-β receptor II (TGFβRII) but independent of SMAD2 or SMAD3. In addition, cadherin-11 activated the expression of serum response factor (SRF) and SMC proteins through the Rho-associated protein kinase (ROCK) pathway. Engagement of cadherin-11 increased its own expression through SRF, indicative of the presence of an autoregulatory feedback loop that committed MSCs to the SMC fate. Notably, SMC-containing tissues (such as aorta and bladder) from cadherin-11-null (Cdh11(-/-)) mice showed significantly reduced levels of SMC proteins and exhibited diminished contractility compared with controls. This is the first report implicating cadherin-11 in SMC differentiation and contractile function in vitro as well as in vivo.
Collapse
Affiliation(s)
- Stella Alimperti
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA
| | - Hui You
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA
| | - Teresa George
- Baylor College of Medicine, Department of Medicine, Section of Allergy, Immunology, and Rheumatology, Biology of Inflammation Center, One Baylor Plaza, Suite 672E, MS, BCM285, Houston, TX 77030, USA
| | - Sandeep K Agarwal
- Baylor College of Medicine, Department of Medicine, Section of Allergy, Immunology, and Rheumatology, Biology of Inflammation Center, One Baylor Plaza, Suite 672E, MS, BCM285, Houston, TX 77030, USA
| | - Stelios T Andreadis
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA Department of Biomedical Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY 14203, USA
| |
Collapse
|
59
|
Li P, Liu C, Hu M, Long M, Zhang D, Huo B. Fluid flow-induced calcium response in osteoclasts: signaling pathways. Ann Biomed Eng 2014; 42:1250-60. [PMID: 24710796 DOI: 10.1007/s10439-014-0984-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 01/25/2014] [Indexed: 01/07/2023]
Abstract
Intracellular calcium oscillation and its downstream signaling in osteoclasts is believed to play critical roles in regulating bone resorption. Our previous study demonstrated that fluid shear stress (FSS) induced more calcium responsive peaks in the late differentiated osteoclasts than the early ones. In this paper, the signaling pathways of FSS-induced calcium response for the osteoclasts in different differentiation stages were studied. RAW264.7 macrophage cells were induced to differentiate into osteoclasts with the conditioned medium from MC3T3-E1 osteoblasts. Furthermore pharmacological agents were added to block the specific signaling pathways. Finally the cells were exposed to FSS at different levels (1 or 10 dyne/cm(2)) after being induced for 4 or 8 days. The results showed that the mechanosensitive, cation-selective channels, phospholipase C (PLC) and endoplasmic reticulum constituted the major signaling pathway for mechanical stimulation-induced calcium response in osteoclasts. Extracellular calcium or ATP involved with calcium oscillation in a FSS magnitude-dependent manner. This pathway study may help to give insight into the molecular mechanism of mechanical stimulation-regulated bone remodeling.
Collapse
Affiliation(s)
- Ping Li
- Department of Mechanics, School of Aerospace Engineering, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing, 100081, People's Republic of China
| | | | | | | | | | | |
Collapse
|
60
|
Bavi O, Vossoughi M, Naghdabadi R, Jamali Y. The effect of local bending on gating of MscL using a representative volume element and finite element simulation. Channels (Austin) 2014; 8:344-9. [PMID: 25478623 PMCID: PMC4203736 DOI: 10.4161/chan.29572] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 06/10/2014] [Accepted: 06/12/2014] [Indexed: 11/19/2022] Open
Abstract
Many physiological processes such as cell division, endocytosis and exocytosis cause severe local curvature of the cell membrane. Local curvature has been shown experimentally to modulate numerous mechanosensitive (MS) ion channels. In order to quantify the effects of local curvature we introduced a coarse grain representative volume element for the bacterial mechanosensitive ion channel of large conductance (MscL) using continuum elasticity. Our model is designed to be consistent with the channel conformation in the closed and open states to capture its major continuum rheological behavior in response to the local membrane curvature. Herein we show that change in the local curvature of the lipid bilayer can modulate MscL activity considerably by changing both bilayer thickness and lateral pressure profile. Intriguingly, although bending in any direction results in almost the same free-energy cost, inward (cytoplasmic) bending favors channel opening, whereas outward (periplasmic) bending facilitates closing of the narrowest part of the MscL pore. This quantitative study using MscL as a model channel may have wide reaching consequences for the effect of local curvature on the physiological function of other types of prokaryotic and eukaryotic membrane proteins.
Collapse
Affiliation(s)
- Omid Bavi
- Institute for Nanoscience and Nanotechnology; Sharif University of Technology; Tehran, Iran
| | - Manouchehr Vossoughi
- Institute for Nanoscience and Nanotechnology; Sharif University of Technology; Tehran, Iran
- Biochemical & Bioenvironmental Research Center (BBRC); Tehran, Iran
| | - Reza Naghdabadi
- Institute for Nanoscience and Nanotechnology; Sharif University of Technology; Tehran, Iran
- Department of Mechanical Engineering, Sharif University of Technology; Tehran, Iran
| | - Yousef Jamali
- Department of Applied Mathematics; School of Mathematical Sciences; Tarbiat Modares University; Tehran, Iran
- Computational Physics Research Laboratory; School of Nano-Science; Institute for research in Fundamental Sciences (IPM); Tehran, Iran
| |
Collapse
|
61
|
Wilson ME, Maksaev G, Haswell ES. MscS-like mechanosensitive channels in plants and microbes. Biochemistry 2013; 52:5708-22. [PMID: 23947546 DOI: 10.1021/bi400804z] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The challenge of osmotic stress is something all living organisms must face as a result of environmental dynamics. Over the past three decades, innovative research and cooperation across disciplines have irrefutably established that cells utilize mechanically gated ion channels to release osmolytes and prevent cell lysis during hypoosmotic stress. Early electrophysiological analysis of the inner membrane of Escherichia coli identified the presence of three distinct mechanosensitive activities. The subsequent discoveries of the genes responsible for two of these activities, the mechanosensitive channels of large (MscL) and small (MscS) conductance, led to the identification of two diverse families of mechanosensitive channels. The latter of these two families, the MscS family, consists of members from bacteria, archaea, fungi, and plants. Genetic and electrophysiological analysis of these family members has provided insight into how organisms use mechanosensitive channels for osmotic regulation in response to changing environmental and developmental circumstances. Furthermore, determining the crystal structure of E. coli MscS and several homologues in several conformational states has contributed to our understanding of the gating mechanisms of these channels. Here we summarize our current knowledge of MscS homologues from all three domains of life and address their structure, proposed physiological functions, electrophysiological behaviors, and topological diversity.
Collapse
Affiliation(s)
- Margaret E Wilson
- Department of Biology, Washington University in St. Louis, Missouri 63130, United States
| | | | | |
Collapse
|
62
|
Di-Poï N, Milinkovitch MC. Crocodylians evolved scattered multi-sensory micro-organs. EvoDevo 2013; 4:19. [PMID: 23819918 PMCID: PMC3711810 DOI: 10.1186/2041-9139-4-19] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Accepted: 06/04/2013] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND During their evolution towards a complete life cycle on land, stem reptiles developed both an impermeable multi-layered keratinized epidermis and skin appendages (scales) providing mechanical, thermal, and chemical protection. Previous studies have demonstrated that, despite the presence of a particularly armored skin, crocodylians have exquisite mechanosensory abilities thanks to the presence of small integumentary sensory organs (ISOs) distributed on postcranial and/or cranial scales. RESULTS Here, we analyze and compare the structure, innervation, embryonic morphogenesis and sensory functions of postcranial, cranial, and lingual sensory organs of the Nile crocodile (Crocodylus niloticus) and the spectacled caiman (Caiman crocodilus). Our molecular analyses indicate that sensory neurons of crocodylian ISOs express a large repertoire of transduction channels involved in mechano-, thermo-, and chemosensory functions, and our electrophysiological analyses confirm that each ISO exhibits a combined sensitivity to mechanical, thermal and pH stimuli (but not hyper-osmotic salinity), making them remarkable multi-sensorial micro-organs with no equivalent in the sensory systems of other vertebrate lineages. We also show that ISOs all exhibit similar morphologies and modes of development, despite forming at different stages of scale morphogenesis across the body. CONCLUSIONS The ancestral vertebrate diffused sensory system of the skin was transformed in the crocodylian lineages into an array of discrete multi-sensory micro-organs innervated by multiple pools of sensory neurons. This discretization of skin sensory expression sites is unique among vertebrates and allowed crocodylians to develop a highly-armored, but very sensitive, skin.
Collapse
Affiliation(s)
- Nicolas Di-Poï
- Department of Genetics & Evolution, Laboratory of Artificial & Natural Evolution (LANE), University of Geneva, 1211, Geneva 4, Switzerland
| | - Michel C Milinkovitch
- Department of Genetics & Evolution, Laboratory of Artificial & Natural Evolution (LANE), University of Geneva, 1211, Geneva 4, Switzerland
| |
Collapse
|
63
|
Batra N, Jiang JX. "INTEGRINating" the connexin hemichannel function in bone osteocytes through the action of integrin α5. Commun Integr Biol 2013; 5:516-8. [PMID: 23739985 PMCID: PMC3502221 DOI: 10.4161/cib.21322] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Mechanical loading influences skeletal structural integrity and bone remodeling. Application of a mechanical stimulus such as fluid flow shear stress to the bone osteocytes activates the cascade of mechanotransduction mediated by multiple signaling molecules. Hemichannels formed by connexin molecules are emerging as a candidate mechanosensor. Connexin 43 (Cx43) hemichannels open in response to mechanical stimulation to release bone modulators which influence bone remodeling. Our study identified a direct interaction between integrin α5 and Cx43 which was essential for hemichannels to open. Uncoupling the interaction blocked the hemichannels and shear stress enhanced the interaction between the two proteins to promote channel opening. More importantly, integrin α5, independent of its association with fibronectin, was activated upon shear stress through a PI3K signaling pathway. These results suggest a critical regulatory mechanism for Cx43 hemichannel opening through the association of integrin α5, resulting in release of bone anabolic factors required for bone development.
Collapse
Affiliation(s)
- Nidhi Batra
- Department of Biochemistry; University of Texas Heath Science Center; San Antonio, TX USA
| | | |
Collapse
|
64
|
Bouffanais R, Sun J, Yue DKP. Physical limits on cellular directional mechanosensing. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:052716. [PMID: 23767575 DOI: 10.1103/physreve.87.052716] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 04/10/2013] [Indexed: 05/02/2023]
Abstract
Many eukaryotic cells are able to perform directional mechanosensing by directly measuring minute spatial differences in the mechanical stress on their membranes. Here, we explore the limits of a single mechanosensitive channel activation using a two-state double-well model for the gating mechanism. We then focus on the physical limits of directional mechanosensing by a single cell having multiple mechanosensors and subjected to a shear flow inducing a nonuniform membrane tension. Our results demonstrate that the accuracy in sensing the mechanostimulus direction not only increases with cell size and exposure to a signal, but also grows for cells with a near-critical membrane prestress. Finally, the existence of a nonlinear threshold effect, fundamentally limiting the cell's ability to effectively perform directional mechanosensing at a low signal-to-noise ratio, is uncovered.
Collapse
Affiliation(s)
- Roland Bouffanais
- Singapore University of Technology and Design, 20 Dover Drive, Singapore 138682
| | | | | |
Collapse
|
65
|
Abstract
All cells are influenced by mechanical forces. In the brain, force-generating and load-bearing proteins twist, turn, ratchet, flex, compress, expand and bend to mediate neuronal signalling and plasticity. Although the functions of mechanosensitive proteins have been thoroughly described in classical sensory systems, the effects of endogenous mechanical energy on cellular function in the brain have received less attention, and many working models in neuroscience do not currently integrate principles of cellular mechanics. An understanding of cellular-mechanical concepts is essential to allow the integration of mechanobiology into ongoing studies of brain structure and function.
Collapse
|
66
|
Cell mechanosensitivity: mechanical properties and interaction with gravitational field. BIOMED RESEARCH INTERNATIONAL 2012; 2013:598461. [PMID: 23509748 PMCID: PMC3591207 DOI: 10.1155/2013/598461] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 11/17/2012] [Accepted: 11/27/2012] [Indexed: 02/08/2023]
Abstract
This paper addressed the possible mechanisms of primary reception of a mechanical stimulus by different cells. Data concerning the stiffness of muscle and nonmuscle cells as measured by atomic force microscopy are provided. The changes in the mechanical properties of cells that occur under changed external mechanical tension are presented, and the initial stages of mechanical signal transduction are considered. The possible mechanism of perception of different external mechanical signals by cells is suggested.
Collapse
|
67
|
Thompson WR, Rubin CT, Rubin J. Mechanical regulation of signaling pathways in bone. Gene 2012; 503:179-93. [PMID: 22575727 DOI: 10.1016/j.gene.2012.04.076] [Citation(s) in RCA: 287] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 03/20/2012] [Accepted: 04/22/2012] [Indexed: 12/21/2022]
Abstract
A wide range of cell types depend on mechanically induced signals to enable appropriate physiological responses. The skeleton is particularly dependent on mechanical information to guide the resident cell population towards adaptation, maintenance and repair. Research at the organ, tissue, cell and molecular levels has improved our understanding of how the skeleton can recognize the functional environment, and how these challenges are translated into cellular information that can site-specifically alter phenotype. This review first considers those cells within the skeleton that are responsive to mechanical signals, including osteoblasts, osteoclasts, osteocytes and osteoprogenitors. This is discussed in light of a range of experimental approaches that can vary parameters such as strain, fluid shear stress, and pressure. The identity of mechanoreceptor candidates is approached, with consideration of integrins, pericellular tethers, focal adhesions, ion channels, cadherins, connexins, and the plasma membrane including caveolar and non-caveolar lipid rafts and their influence on integral signaling protein interactions. Several mechanically regulated intracellular signaling cascades are detailed including activation of kinases (Akt, MAPK, FAK), β-catenin, GTPases, and calcium signaling events. While the interaction of bone cells with their mechanical environment is complex, an understanding of mechanical regulation of bone signaling is crucial to understanding bone physiology, the etiology of diseases such as osteoporosis, and to the development of interventions to improve bone strength.
Collapse
Affiliation(s)
- William R Thompson
- Department of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA.
| | | | | |
Collapse
|
68
|
Gjorevski N, Boghaert E, Nelson CM. Regulation of Epithelial-Mesenchymal Transition by Transmission of Mechanical Stress through Epithelial Tissues. CANCER MICROENVIRONMENT : OFFICIAL JOURNAL OF THE INTERNATIONAL CANCER MICROENVIRONMENT SOCIETY 2012; 5:29-38. [PMID: 21748438 PMCID: PMC3343202 DOI: 10.1007/s12307-011-0076-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 06/30/2011] [Indexed: 01/16/2023]
Abstract
Epithelial-mesenchymal transition (EMT) is a phenotypic shift wherein epithelial cells lose or loosen attachments to their neighbors and assume a mesenchymal-like morphology. EMT drives a variety of developmental processes, but may also be adopted by tumor cells during neoplastic progression. EMT is regulated by both biochemical and physical signals from the microenvironment, including mechanical stress, which is increasingly recognized to play a major role in development and disease progression. Biological systems generate, transmit and concentrate mechanical stress into spatial patterns; these gradients in mechanical stress may serve to spatially pattern developmental and pathologic EMTs. Here we review how epithelial tissues generate and respond to mechanical stress gradients, and highlight the mechanisms by which mechanical stress regulates and patterns EMT.
Collapse
Affiliation(s)
- Nikolce Gjorevski
- Department of Chemical & Biological Engineering, Princeton University, A321 Engineering Quadrangle, Princeton, NJ 08544 USA
| | - Eline Boghaert
- Department of Chemical & Biological Engineering, Princeton University, A321 Engineering Quadrangle, Princeton, NJ 08544 USA
| | - Celeste M. Nelson
- Department of Chemical & Biological Engineering, Princeton University, A321 Engineering Quadrangle, Princeton, NJ 08544 USA
| |
Collapse
|
69
|
Hoffman LM, Jensen CC, Chaturvedi A, Yoshigi M, Beckerle MC. Stretch-induced actin remodeling requires targeting of zyxin to stress fibers and recruitment of actin regulators. Mol Biol Cell 2012; 23:1846-59. [PMID: 22456508 PMCID: PMC3350550 DOI: 10.1091/mbc.e11-12-1057] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Mechanical stimulation induces zyxin-dependent actin cytoskeletal reinforcement. Stretch induces MAPK activation, zyxin phosphorylation, and recruitment to actin stress fibers, independent of p130Cas. Zyxin's C-terminal LIM domains are required for stretch-induced targeting to stress fibers, and zyxin's N-terminus is necessary for actin remodeling. Reinforcement of actin stress fibers in response to mechanical stimulation depends on a posttranslational mechanism that requires the LIM protein zyxin. The C-terminal LIM region of zyxin directs the force-sensitive accumulation of zyxin on actin stress fibers. The N-terminal region of zyxin promotes actin reinforcement even when Rho kinase is inhibited. The mechanosensitive integrin effector p130Cas binds zyxin but is not required for mitogen-activated protein kinase–dependent zyxin phosphorylation or stress fiber remodeling in cells exposed to uniaxial cyclic stretch. α-Actinin and Ena/VASP proteins bind to the stress fiber reinforcement domain of zyxin. Mutation of their docking sites reveals that zyxin is required for recruitment of both groups of proteins to regions of stress fiber remodeling. Zyxin-null cells reconstituted with zyxin variants that lack either α-actinin or Ena/VASP-binding capacity display compromised response to mechanical stimulation. Our findings define a bipartite mechanism for stretch-induced actin remodeling that involves mechanosensitive targeting of zyxin to actin stress fibers and localized recruitment of actin regulatory machinery.
Collapse
Affiliation(s)
- Laura M Hoffman
- Departments of Biology and Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | | | |
Collapse
|
70
|
Naismith JH, Booth IR. Bacterial mechanosensitive channels--MscS: evolution's solution to creating sensitivity in function. Annu Rev Biophys 2012; 41:157-77. [PMID: 22404681 PMCID: PMC3378650 DOI: 10.1146/annurev-biophys-101211-113227] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The discovery of mechanosensing channels has changed our understanding of bacterial physiology. The mechanosensitive channel of small conductance (MscS) is perhaps the most intensively studied of these channels. MscS has at least two states: closed, which does not allow solutes to exit the cytoplasm, and open, which allows rapid efflux of solvent and solutes. The ability to appropriately open or close the channel (gating) is critical to bacterial survival. We briefly review the science that led to the isolation and identification of MscS. We concentrate on the structure-function relationship of the channel, in particular the structural and biochemical approaches to understanding channel gating. We highlight the troubling discrepancies between the various models developed to understand MscS gating.
Collapse
Affiliation(s)
- James H. Naismith
- Professor Chemical Biology, Biomedical Sciences Research Complex, The North Haugh, The University, St Andrews, Fife KY16 9ST, United Kingdom;
| | - Ian R. Booth
- Professor Emeritus Microbiology, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, United Kingdom;
| |
Collapse
|
71
|
Sun Y, Chen CS, Fu J. Forcing stem cells to behave: a biophysical perspective of the cellular microenvironment. Annu Rev Biophys 2012; 41:519-42. [PMID: 22404680 DOI: 10.1146/annurev-biophys-042910-155306] [Citation(s) in RCA: 317] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Physical factors in the local cellular microenvironment, including cell shape and geometry, matrix mechanics, external mechanical forces, and nanotopographical features of the extracellular matrix, can all have strong influences on regulating stem cell fate. Stem cells sense and respond to these insoluble biophysical signals through integrin-mediated adhesions and the force balance between intracellular cytoskeletal contractility and the resistant forces originated from the extracellular matrix. Importantly, these mechanotransduction processes can couple with many other potent growth-factor-mediated signaling pathways to regulate stem cell fate. Different bioengineering tools and microscale/nanoscale devices have been successfully developed to engineer the physical aspects of the cellular microenvironment for stem cells, and these tools and devices have proven extremely powerful for identifying the extrinsic physical factors and their downstream intracellular signaling pathways that control stem cell functions.
Collapse
Affiliation(s)
- Yubing Sun
- Integrated Biosystems and Biomechanics Laboratory, Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
72
|
Mechanosensitive channels: what can they do and how do they do it? Structure 2012; 19:1356-69. [PMID: 22000509 DOI: 10.1016/j.str.2011.09.005] [Citation(s) in RCA: 257] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 09/19/2011] [Accepted: 09/20/2011] [Indexed: 12/16/2022]
Abstract
While mechanobiological processes employ diverse mechanisms, at their heart are force-induced perturbations in the structure and dynamics of molecules capable of triggering subsequent events. Among the best characterized force-sensing systems are bacterial mechanosensitive channels. These channels reflect an intimate coupling of protein conformation with the mechanics of the surrounding membrane; the membrane serves as an adaptable sensor that responds to an input of applied force and converts it into an output signal, interpreted for the cell by mechanosensitive channels. The cell can exploit this information in a number of ways: ensuring cellular viability in the presence of osmotic stress and perhaps also serving as a signal transducer for membrane tension or other functions. This review focuses on the bacterial mechanosensitive channels of large (MscL) and small (MscS) conductance and their eukaryotic homologs, with an emphasis on the outstanding issues surrounding the function and mechanism of this fascinating class of molecules.
Collapse
|
73
|
Rui H, Kumar R, Im W. Membrane tension, lipid adaptation, conformational changes, and energetics in MscL gating. Biophys J 2011; 101:671-9. [PMID: 21806935 DOI: 10.1016/j.bpj.2011.06.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 06/12/2011] [Accepted: 06/17/2011] [Indexed: 11/20/2022] Open
Abstract
This study aims to explore gating mechanisms of mechanosensitive channels in terms of membrane tension, membrane adaptation, protein conformation, and energetics. The large conductance mechanosensitive channel from Mycobacterium tuberculosis (Tb-MscL) is used as a model system; Tb-MscL acts as a safety valve by releasing small osmolytes through the channel opening under extreme hypoosmotic conditions. Based on the assumption that the channel gating involves tilting of the transmembrane (TM) helices, we have performed free energy simulations of Tb-MscL as a function of TM helix tilt angle in a dimyristoylphosphatidylcholine bilayer. Based on the change in system dimensions, TM helix tilting is shown to be essentially equivalent to applying an excess surface tension to the membrane, causing channel expansion, lipid adaptation, and membrane thinning. Such equivalence is further corroborated by the observation that the free energy cost of Tb-MscL channel expansion is comparable to the work done by the excess surface tension. Tb-MscL TM helix tilting results in an expanded water-conducting channel of an outer dimension similar to the proposed fully open MscL structure. The free energy decomposition indicates a possible expansion mechanism in which tilting and expanding of TM2 facilitates the iris-like motion of TM1, producing an expanded Tb-MscL.
Collapse
Affiliation(s)
- Huan Rui
- Department of Molecular Biosciences and Center for Bioinformatics, The University of Kansas, Lawrence, Kansas, USA
| | | | | |
Collapse
|
74
|
Moore SW, Sheetz MP. Biophysics of substrate interaction: influence on neural motility, differentiation, and repair. Dev Neurobiol 2011; 71:1090-101. [PMID: 21739614 PMCID: PMC3307797 DOI: 10.1002/dneu.20947] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The identity and behavior of a cell is shaped by the molecular and mechanical composition of its surroundings. Molecular cues have firmly established roles in guiding both neuronal fate decisions and the migration of cells and axons. However, there is growing evidence that topographical and rigidity cues in the extracellular environment act synergistically with these molecular cues. Like chemical cues, physical factors do not elicit a fixed response, but rather one that depends on the sensory makeup of the cell. Moreover, from developmental studies and the plasticity of neural tissue, it is evident that there is dynamic feedback between physical and chemical factors to produce the final morphology. Here, we focus on our current understanding of how these physical cues shape cellular differentiation and migration, and discuss their relevance to repairing the injured nervous system.
Collapse
Affiliation(s)
- Simon W Moore
- Department of Biological Sciences, Columbia University, Sherman Fairchild Center, Amsterdam Ave., New York, NY 10027, USA.
| | | |
Collapse
|
75
|
Gandhi CS, Walton TA, Rees DC. OCAM: a new tool for studying the oligomeric diversity of MscL channels. Protein Sci 2011; 20:313-26. [PMID: 21280123 DOI: 10.1002/pro.562] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We have developed a new technique to study the oligomeric state of proteins in solution. OCAM or Oligomer Characterization by Addition of Mass counts protein subunits by selectively shaving a protein mass tag added to a protein subunit via a short peptide linker. Cleavage of each mass tag reduces the total mass of the protein complex by a fixed amount. By performing limited proteolysis and separating the reaction products by size on a blue native PAGE gel, a ladder of reaction products corresponding to the number of subunits can be resolved. The pattern of bands may be used to distinguish the presence of a single homo-oligomer from a mixture of oligomeric states. We have applied OCAM to study the mechanosensitive channel of large conductance (MscL) and find that these proteins can exist in multiple oligomeric states ranging from tetramers up to possible hexamers. Our results demonstrate the existence of oligomeric forms of MscL not yet observed by X-ray crystallography or other techniques and that in some cases a single type of MscL subunit can assemble as a mixture of oligomeric states.
Collapse
Affiliation(s)
- Chris S Gandhi
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | | | | |
Collapse
|
76
|
|
77
|
Moore SW, Roca-Cusachs P, Sheetz MP. Stretchy proteins on stretchy substrates: the important elements of integrin-mediated rigidity sensing. Dev Cell 2010; 19:194-206. [PMID: 20708583 DOI: 10.1016/j.devcel.2010.07.018] [Citation(s) in RCA: 314] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 06/13/2010] [Accepted: 07/16/2010] [Indexed: 01/06/2023]
Abstract
Matrix and tissue rigidity guides many cellular processes, including the differentiation of stem cells and the migration of cells in health and disease. Cells actively and transiently test rigidity using mechanisms limited by inherent physical parameters that include the strength of extracellular attachments, the pulling capacity on these attachments, and the sensitivity of the mechanotransduction system. Here, we focus on rigidity sensing mediated through the integrin family of extracellular matrix receptors and linked proteins and discuss the evidence supporting these proteins as mechanosensors.
Collapse
Affiliation(s)
- Simon W Moore
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | | |
Collapse
|
78
|
Matthews BD, Thodeti CK, Tytell JD, Mammoto A, Overby DR, Ingber DE. Ultra-rapid activation of TRPV4 ion channels by mechanical forces applied to cell surface beta1 integrins. Integr Biol (Camb) 2010; 2:435-42. [PMID: 20725677 PMCID: PMC3147167 DOI: 10.1039/c0ib00034e] [Citation(s) in RCA: 209] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Integrins are ubiquitous transmembrane mechanoreceptors that elicit changes in intracellular biochemistry in response to mechanical force application, but these alterations generally proceed over seconds to minutes. Stress-sensitive ion channels represent another class of mechanoreceptors that are activated much more rapidly (within msec), and recent findings suggest that calcium influx through Transient Receptor Potential Vanilloid-4 (TRPV4) channels expressed in the plasma membrane of bovine capillary endothelial cells is required for mechanical strain-induced changes in focal adhesion assembly, cell orientation and directional migration. However, whether mechanically stretching a cell's extracellular matrix (ECM) adhesions might directly activate cell surface ion channels remains unknown. Here we show that forces applied to beta1 integrins result in ultra-rapid (within 4 msec) activation of calcium influx through TRPV4 channels. The TRPV4 channels were specifically activated by mechanical strain in the cytoskeletal backbone of the focal adhesion, and not by deformation of the lipid bilayer or submembranous cortical cytoskeleton alone. This early-immediate calcium signaling response required the distal region of the beta1 integrin cytoplasmic tail that contains a binding site for the integrin-associated transmembrane CD98 protein, and external force application to CD98 within focal adhesions activated the same ultra-rapid calcium signaling response. Local direct strain-dependent activation of TRPV4 channels mediated by force transfer from integrins and CD98 may therefore enable compartmentalization of calcium signaling within focal adhesions that is critical for mechanical control of many cell behaviors that underlie cell and tissue development.
Collapse
Affiliation(s)
- Benjamin D Matthews
- Department of Medicine, Harvard Medical School and Children's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
79
|
Cheng LE, Song W, Looger LL, Jan LY, Jan YN. The role of the TRP channel NompC in Drosophila larval and adult locomotion. Neuron 2010; 67:373-80. [PMID: 20696376 PMCID: PMC2933178 DOI: 10.1016/j.neuron.2010.07.004] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2010] [Indexed: 01/15/2023]
Abstract
The generation of coordinated body movements relies on sensory feedback from mechanosensitive proprioceptors. We have found that the proper function of NompC, a putative mechanosensitive TRP channel, is not only required for fly locomotion, but also crucial for larval crawling. Calcium imaging revealed that NompC is required for the activation of two subtypes of sensory neurons during peristaltic muscle contractions. Having isolated a full-length nompC cDNA with a protein coding sequence larger than previously predicted, we demonstrate its function by rescuing locomotion defects in nompC mutants, and further show that antibodies against the extended C terminus recognize NompC in chordotonal ciliary tips. Moreover, we show that the ankyrin repeats in NompC are required for proper localization and function of NompC in vivo and are required for association of NompC with microtubules. Taken together, our findings suggest that NompC mediates proprioception in locomotion and support its role as a mechanosensitive channel.
Collapse
Affiliation(s)
- Li E. Cheng
- Howard Hughes Medical Institute, Departments of Physiology, Biochemistry, and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Wei Song
- Howard Hughes Medical Institute, Departments of Physiology, Biochemistry, and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Loren L. Looger
- Howard Hughes Medical Institute, Janelia Farm Research Campus, Ashburn, VA 20147, USA
| | - Lily Yeh Jan
- Howard Hughes Medical Institute, Departments of Physiology, Biochemistry, and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yuh Nung Jan
- Howard Hughes Medical Institute, Departments of Physiology, Biochemistry, and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
80
|
Patel A, Sharif-Naeini R, Folgering JRH, Bichet D, Duprat F, Honoré E. Canonical TRP channels and mechanotransduction: from physiology to disease states. Pflugers Arch 2010; 460:571-81. [PMID: 20490539 DOI: 10.1007/s00424-010-0847-8] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 05/05/2010] [Accepted: 05/06/2010] [Indexed: 01/03/2023]
Abstract
Mechano-gated ion channels play a key physiological role in cardiac, arterial, and skeletal myocytes. For instance, opening of the non-selective stretch-activated cation channels in smooth muscle cells is involved in the pressure-dependent myogenic constriction of resistance arteries. These channels are also implicated in major pathologies, including cardiac hypertrophy or Duchenne muscular dystrophy. Seminal work in prokaryotes and invertebrates highlighted the role of transient receptor potential (TRP) channels in mechanosensory transduction. In mammals, recent findings have shown that the canonical TRPC1 and TRPC6 channels are key players in muscle mechanotransduction. In the present review, we will focus on the functional properties of TRPC1 and TRPC6 channels, on their mechano-gating, regulation by interacting cytoskeletal and scaffolding proteins, physiological role and implication in associated diseases.
Collapse
Affiliation(s)
- Amanda Patel
- IPMC-CNRS, Université de Nice Sophia Antipolis, 660 Route des Lucioles, 06560, Valbonne, France
| | | | | | | | | | | |
Collapse
|
81
|
Teo SK, Goryachev AB, Parker KH, Chiam KH. Cellular deformation and intracellular stress propagation during optical stretching. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 81:051924. [PMID: 20866278 DOI: 10.1103/physreve.81.051924] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Indexed: 05/29/2023]
Abstract
Experiments have shown that mechanical stress can regulate many cellular processes. However, in most cases, the exact regulatory mechanisms are still not well understood. One approach in improving our understanding of such mechanically induced regulation is the quantitative study of cell deformation under an externally applied stress. In this paper, an axisymmetric finite-element model is developed and used to study the deformation of single, suspended fibroblasts in an optical stretcher in which a stretching force is applied onto the surface of the cell. A feature of our physical model is a viscoelastic material equation whose parameters vary spatially to mimic the experimentally observed spatial heterogeneity of cellular material properties. Our model suggests that cell size is a more important factor in determining the maximal strain of the optically stretched fibroblasts compared to the thickness of the actin cortical region. This result could explain the higher deformability observed experimentally for malignant fibroblasts in the optical stretcher. Our model also shows that maximal stress propagates into the nuclear region for malignant fibroblasts whereas for normal fibroblasts, it does not. We discuss how this may impact the transduction of cancer signaling pathways.
Collapse
Affiliation(s)
- Soo-Kng Teo
- A*STAR Institute of High Performance Computing, Singapore, Singapore
| | | | | | | |
Collapse
|
82
|
Clause KC, Liu LJ, Tobita K. Directed stem cell differentiation: the role of physical forces. CELL COMMUNICATION & ADHESION 2010; 17:48-54. [PMID: 20560867 PMCID: PMC3285265 DOI: 10.3109/15419061.2010.492535] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A number of factors contribute to the control of stem cell fate. In particular, the evidence for how physical forces control the stem cell differentiation program is now accruing. In this review, the authors discuss the types of physical forces: mechanical forces, cell shape, extracellular matrix geometry/properties, and cell-cell contacts and morphogenic factors, which evidence suggests play a role in influencing stem cell fate.
Collapse
Affiliation(s)
- Kelly C. Clause
- Cardiovascular Development Research Program, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, PA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA
| | - Li J. Liu
- Cardiovascular Development Research Program, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, PA
- Developmental Biology, University of Pittsburgh, Pittsburgh, PA
| | - Kimimasa Tobita
- Cardiovascular Development Research Program, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, PA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA
- Developmental Biology, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
83
|
Abstract
Aging and a sedentary lifestyle conspire to reduce bone quantity and quality, decrease muscle mass and strength, and undermine postural stability, culminating in an elevated risk of skeletal fracture. Concurrently, a marked reduction in the available bone-marrow-derived population of mesenchymal stem cells (MSCs) jeopardizes the regenerative potential that is critical to recovery from musculoskeletal injury and disease. A potential way to combat the deterioration involves harnessing the sensitivity of bone to mechanical signals, which is crucial in defining, maintaining and recovering bone mass. To effectively utilize mechanical signals in the clinic as a non-drug-based intervention for osteoporosis, it is essential to identify the components of the mechanical challenge that are critical to the anabolic process. Large, intense challenges to the skeleton are generally presumed to be the most osteogenic, but brief exposure to mechanical signals of high frequency and extremely low intensity, several orders of magnitude below those that arise during strenuous activity, have been shown to provide a significant anabolic stimulus to bone. Along with positively influencing osteoblast and osteocyte activity, these low-magnitude mechanical signals bias MSC differentiation towards osteoblastogenesis and away from adipogenesis. Mechanical targeting of the bone marrow stem-cell pool might, therefore, represent a novel, drug-free means of slowing the age-related decline of the musculoskeletal system.
Collapse
|
84
|
Abstract
In reviewing the structures of membrane proteins determined up to the end of 2009, we present in words and pictures the most informative examples from each family. We group the structures together according to their function and architecture to provide an overview of the major principles and variations on the most common themes. The first structures, determined 20 years ago, were those of naturally abundant proteins with limited conformational variability, and each membrane protein structure determined was a major landmark. With the advent of complete genome sequences and efficient expression systems, there has been an explosion in the rate of membrane protein structure determination, with many classes represented. New structures are published every month and more than 150 unique membrane protein structures have been determined. This review analyses the reasons for this success, discusses the challenges that still lie ahead, and presents a concise summary of the key achievements with illustrated examples selected from each class.
Collapse
|
85
|
Lee EH, Hsin J, Sotomayor M, Comellas G, Schulten K. Discovery through the computational microscope. Structure 2010; 17:1295-306. [PMID: 19836330 DOI: 10.1016/j.str.2009.09.001] [Citation(s) in RCA: 245] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Revised: 09/01/2009] [Accepted: 09/03/2009] [Indexed: 11/17/2022]
Abstract
All-atom molecular dynamics simulations have become increasingly popular as a tool to investigate protein function and dynamics. However, researchers are concerned about the short time scales covered by simulations, the apparent impossibility to model large and integral biomolecular systems, and the actual predictive power of the molecular dynamics methodology. Here we review simulations that were in the past both hotly disputed and considered key successes, namely of proteins with mainly mechanical functions (titin, fibrinogen, ankyrin, and cadherin). The simulation work covered shows how state-of-the-art modeling alleviates some of the prior concerns and how unrefuted discoveries are made through the "computational microscope."
Collapse
Affiliation(s)
- Eric H Lee
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | |
Collapse
|
86
|
Mechanobiology and Finite Element Analysis of Cellular Injury During Microbubble Flows. CELLULAR AND BIOMOLECULAR MECHANICS AND MECHANOBIOLOGY 2010. [DOI: 10.1007/8415_2010_25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
87
|
Prager-Khoutorsky M, Bourque CW. Osmosensation in vasopressin neurons: changing actin density to optimize function. Trends Neurosci 2009; 33:76-83. [PMID: 19963290 DOI: 10.1016/j.tins.2009.11.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 10/31/2009] [Accepted: 11/13/2009] [Indexed: 11/19/2022]
Abstract
The proportional relation between circulating vasopressin concentration and plasma osmolality is fundamental for body fluid homeostasis. Although changes in the sensitivity of this relation are associated with pathophysiological conditions, central mechanisms modulating osmoregulatory gain are unknown. Here, we review recent data that sheds important light on this process. The cell autonomous osmosensitivity of vasopressin neurons depends on cation channels comprising a variant of the transient receptor potential vanilloid 1 (TRPV1) channel. Hyperosmotic activation is mediated by a mechanical process where sensitivity increases in proportion with actin filament density. Moreover, angiotensin II amplifies osmotic activation by a rapid stimulation of actin polymerization, suggesting that neurotransmitter-induced changes in cytoskeletal organization in osmosensory neurons can mediate central changes in osmoregulatory gain.
Collapse
Affiliation(s)
- Masha Prager-Khoutorsky
- Center for Research in Neuroscience, Research Institute of the McGill University Health Center, Montreal General Hospital, 1650 Cedar Avenue, Montreal, Canada
| | | |
Collapse
|
88
|
Gjorevski N, Nelson CM. Bidirectional extracellular matrix signaling during tissue morphogenesis. Cytokine Growth Factor Rev 2009; 20:459-65. [PMID: 19896886 DOI: 10.1016/j.cytogfr.2009.10.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Normal tissue development and function are regulated by the interplay between cells and their surrounding extracellular matrix (ECM). The ECM provides biochemical and mechanical contextual information that is conveyed from the cell membrane through the cytoskeleton to the nucleus to direct cell phenotype. Cells, in turn, remodel the ECM and thereby sculpt their local microenvironment. Here we review the mechanisms by which cells interact with, respond to, and influence the ECM, with particular emphasis placed on the role of this bidirectional communication during tissue morphogenesis. We also discuss the implications for successful engineering of functional tissues ex vivo.
Collapse
Affiliation(s)
- Nikolce Gjorevski
- Departments of Chemical Engineering & Molecular Biology, Princeton University, A321 Engineering Quadrangle, Princeton, NJ 08544, United States
| | | |
Collapse
|
89
|
Lim K, Park S. A mechanical model of the gating spring mechanism of stereocilia. J Biomech 2009; 42:2158-64. [PMID: 19679307 DOI: 10.1016/j.jbiomech.2009.05.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 05/17/2009] [Accepted: 05/20/2009] [Indexed: 11/24/2022]
Abstract
The stereocilium is the basic sensory unit of nature's mechanotransducers, which include the cochlear and vestibular organs. In noisy environments, stereocilia display high sensitivity to miniscule stimuli, effectively dealing with a situation that is a design challenge in micro systems. The gating spring hypothesis suggests that the mechanical stiffness of stereocilia bundle is softened by tip-link gating in combination with active bundle movement, contributing to the nonlinear amplification of miniscule stimuli. To demonstrate that the amplification is induced mechanically by the gating as hypothesized, we developed a biomimetic model of stereocilia and fabricated the model at the macro scale. The model consists of an inverted pendulum array with bistable buckled springs at its tips, which represent the mechanically gated ion channel. Model simulations showed that at the moment of gating, instantaneous stiffness softening generates an increase in response magnitude, which then sequentially occurs as the number of gating increases. This amplification mechanism appeared to be robust to the change of model parameters. Experimental data from the fabricated macro model also showed a significant increase in the open probability and pendulum deflection at the region having a smaller input magnitude. The results demonstrate that the nonlinear amplification of miniscule stimuli is mechanically produced by stiffness softening from channel gating.
Collapse
Affiliation(s)
- Koeun Lim
- Department of Mechanical Engineering, KAIST, 335 Gwahangno, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | | |
Collapse
|
90
|
Liu Z, Gandhi CS, Rees DC. Structure of a tetrameric MscL in an expanded intermediate state. Nature 2009; 461:120-4. [PMID: 19701184 PMCID: PMC2737600 DOI: 10.1038/nature08277] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Accepted: 07/02/2009] [Indexed: 11/21/2022]
Abstract
The ability of cells to sense and respond to mechanical force underlies diverse processes such as touch and hearing in animals, gravitropism in plants, and bacterial osmoregulation. In bacteria, mechanosensation is mediated by the mechanosensitive channels of large (MscL), small (MscS), potassium-dependent (MscK) and mini (MscM) conductances. These channels act as 'emergency relief valves' protecting bacteria from lysis upon acute osmotic down-shock. Among them, MscL has been intensively studied since the original identification and characterization 15 years ago. MscL is reversibly and directly gated by changes in membrane tension. In the open state, MscL forms a non-selective 3 nS conductance channel which gates at tensions close to the lytic limit of the bacterial membrane. An earlier crystal structure at 3.5 A resolution of a pentameric MscL from Mycobacterium tuberculosis represents a closed-state or non-conducting conformation. MscL has a complex gating behaviour; it exhibits several intermediates between the closed and open states, including one putative non-conductive expanded state and at least three sub-conducting states. Although our understanding of the closed and open states of MscL has been increasing, little is known about the structures of the intermediate states despite their importance in elucidating the complete gating process of MscL. Here we present the crystal structure of a carboxy-terminal truncation mutant (Delta95-120) of MscL from Staphylococcus aureus (SaMscL(CDelta26)) at 3.8 A resolution. Notably, SaMscL(CDelta26) forms a tetrameric channel with both transmembrane helices tilted away from the membrane normal at angles close to that inferred for the open state, probably corresponding to a non-conductive but partially expanded intermediate state.
Collapse
Affiliation(s)
- Zhenfeng Liu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | | | | |
Collapse
|
91
|
Corey DP. Cell biology of mechanotransduction in inner-ear hair cells. F1000 BIOLOGY REPORTS 2009; 1:58. [PMID: 20948626 PMCID: PMC2948250 DOI: 10.3410/b1-58] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The cloning of deafness genes, especially those for Usher syndrome, has helped to identify a variety of structural proteins involved in the development and function of hair-cell stereocilia. These include novel cadherins, a handful of myosin motors, and scaffolding proteins. Yet a new understanding of these proteins has upended the orthodox view of mechanosensation by hair cells.
Collapse
Affiliation(s)
- David P Corey
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School 220 Longwood Avenue, Boston, MA 02115 USA.
| |
Collapse
|
92
|
Kraichely RE, Strege PR, Sarr MG, Kendrick ML, Farrugia G. Lysophosphatidyl choline modulates mechanosensitive L-type Ca2+ current in circular smooth muscle cells from human jejunum. Am J Physiol Gastrointest Liver Physiol 2009; 296:G833-9. [PMID: 19179622 PMCID: PMC2670668 DOI: 10.1152/ajpgi.90610.2008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The L-type Ca2+ channel expressed in gastrointestinal smooth muscle is mechanosensitive. Direct membrane stretch and shear stress result in increased Ca2+ entry into the cell. The mechanism for mechanosensitivity is not known, and mechanosensitivity is not dependent on an intact cytoskeleton. The aim of this study was to determine whether L-type Ca2+ channel mechanosensitivity is dependent on tension in the lipid bilayer in human jejunal circular layer myocytes. Whole cell currents were recorded in the amphotericin-perforated-patch configuration, and lysophosphatidyl choline (LPC), lysophosphatidic acid (LPA), and choline were used to alter differentially the tension in the lipid bilayer. Shear stress (perfusion at 10 ml/min) was used to mechanostimulate L-type Ca2+ channels. The increase in L-type Ca2+ current induced by shear stress was greater in the presence of LPC (large head-to-tail proportions), but not LPA or choline, than in the control perfusion. The increased peak Ca2+ current also did not return to baseline levels as in control conditions. Furthermore, steady-state inactivation kinetics were altered in the presence of LPC, leading to a change in window current. These findings suggest that changes in tension in the plasmalemmal membrane can be transmitted to the mechanosensitive L-type Ca2+ channel, leading to altered activity and Ca2+ entry in the human jejunal circular layer myocyte.
Collapse
Affiliation(s)
- Robert E. Kraichely
- Enteric Neuroscience Program, Miles and Shirley Fiterman Center for Digestive Diseases, and Gastroenterologic and General Surgery, Mayo Clinic, Rochester, Minnesota
| | - Peter R. Strege
- Enteric Neuroscience Program, Miles and Shirley Fiterman Center for Digestive Diseases, and Gastroenterologic and General Surgery, Mayo Clinic, Rochester, Minnesota
| | - Michael G. Sarr
- Enteric Neuroscience Program, Miles and Shirley Fiterman Center for Digestive Diseases, and Gastroenterologic and General Surgery, Mayo Clinic, Rochester, Minnesota
| | - Michael L. Kendrick
- Enteric Neuroscience Program, Miles and Shirley Fiterman Center for Digestive Diseases, and Gastroenterologic and General Surgery, Mayo Clinic, Rochester, Minnesota
| | - Gianrico Farrugia
- Enteric Neuroscience Program, Miles and Shirley Fiterman Center for Digestive Diseases, and Gastroenterologic and General Surgery, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
93
|
Abstract
Mechanical stresses are ever present in the cellular environment, whether through external forces that are applied to tissues or endogenous forces that are generated within the active cytoskeleton. Despite the wide array of studies demonstrating that such forces affect cellular signaling and function, it remains unclear whether mechanotransduction in different contexts shares common mechanisms. Here, I discuss possible mechanisms by which applied forces, cell-generated forces and changes in substrate mechanics could exert changes in cell function through common mechanotransduction machinery. I draw from examples that are primarily focused on the role of adhesions in transducing mechanical forces. Based on this discussion, emerging themes arise that connect these different areas of inquiry and suggest multiple avenues for future studies.
Collapse
Affiliation(s)
- Christopher S Chen
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
94
|
Bhattacharya MRC, Bautista DM, Wu K, Haeberle H, Lumpkin EA, Julius D. Radial stretch reveals distinct populations of mechanosensitive mammalian somatosensory neurons. Proc Natl Acad Sci U S A 2008; 105:20015-20. [PMID: 19060212 PMCID: PMC2604979 DOI: 10.1073/pnas.0810801105] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2008] [Indexed: 11/18/2022] Open
Abstract
Primary afferent somatosensory neurons mediate our sense of touch in response to changes in ambient pressure. Molecules that detect and transduce thermal stimuli have been recently identified, but mechanisms underlying mechanosensation, particularly in vertebrate organisms, remain enigmatic. Traditionally, mechanically evoked responses in somatosensory neurons have been assessed one cell at a time by recording membrane currents in response to application of focal pressure, suction, or osmotic challenge. Here, we used radial stretch in combination with live-cell calcium imaging to gain a broad overview of mechanosensitive neuronal subpopulations. We found that different stretch intensities activate distinct subsets of sensory neurons as defined by size, molecular markers, or pharmacological attributes. In all subsets, stretch-evoked responses required extracellular calcium, indicating that mechanical force triggers calcium influx. This approach extends the repertoire of stimulus paradigms that can be used to examine mechanotransduction in mammalian sensory neurons, facilitating future physiological and pharmacological studies.
Collapse
Affiliation(s)
| | - Diana M. Bautista
- Department of Molecular and Cell Biology, University of California, Berkeley CA 94720; and
| | - Karin Wu
- Department of Molecular and Cell Biology, University of California, Berkeley CA 94720; and
| | - Henry Haeberle
- Department of Physiology, University of California, San Francisco CA 94158
- Departments of Neuroscience, Molecular Physiology and Biophysics, and Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
| | - Ellen A. Lumpkin
- Departments of Neuroscience, Molecular Physiology and Biophysics, and Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
| | - David Julius
- Department of Physiology, University of California, San Francisco CA 94158
| |
Collapse
|
95
|
Chatterjee S, Chapman KE, Fisher AB. Lung ischemia: a model for endothelial mechanotransduction. Cell Biochem Biophys 2008; 52:125-38. [PMID: 18982455 PMCID: PMC2667227 DOI: 10.1007/s12013-008-9030-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2008] [Indexed: 10/21/2022]
Abstract
Endothelial cells in vivo are constantly exposed to shear associated with blood flow and altered shear stress elicits cellular responses (mechanotransduction). This review describes the role of shear sensors and signal transducers in these events. The major focus is the response to removal of shear as occurs when blood flow is compromised (i.e., ischemia). Pulmonary ischemia studied with the isolated murine lung or flow adapted pulmonary microvascular endothelial cells in vitro results in endothelial generation of reactive oxygen species (ROS) and NO. The response requires caveolae and is initiated by endothelial cell depolarization via K(ATP) channel closure followed by activation of NADPH oxidase (NOX2) and NO synthase (eNOS), signaling through MAP kinases, and endothelial cell proliferation. These physiological mediators can promote vasodilation and angiogenesis as compensation for decreased tissue perfusion.
Collapse
Affiliation(s)
- Shampa Chatterjee
- Institute for Environmental Medicine, University of Pennsylvania Medical Center, 1 John Morgan Building, 3620 Hamilton Walk, Philadelphia, PA, 19104-6068, USA
| | | | | |
Collapse
|
96
|
Remote excitation of neuronal circuits using low-intensity, low-frequency ultrasound. PLoS One 2008; 3:e3511. [PMID: 18958151 PMCID: PMC2568804 DOI: 10.1371/journal.pone.0003511] [Citation(s) in RCA: 469] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Accepted: 10/03/2008] [Indexed: 12/05/2022] Open
Abstract
Possessing the ability to noninvasively elicit brain circuit activity yields immense experimental and therapeutic power. Most currently employed neurostimulation methods rely on the somewhat invasive use of stimulating electrodes or photon-emitting devices. Due to its ability to noninvasively propagate through bone and other tissues in a focused manner, the implementation of ultrasound (US) represents a compelling alternative approach to current neuromodulation strategies. Here, we investigated the influence of low-intensity, low-frequency ultrasound (LILFU) on neuronal activity. By transmitting US waveforms through hippocampal slice cultures and ex vivo mouse brains, we determined LILFU is capable of remotely and noninvasively exciting neurons and network activity. Our results illustrate that LILFU can stimulate electrical activity in neurons by activating voltage-gated sodium channels, as well as voltage-gated calcium channels. The LILFU-induced changes in neuronal activity were sufficient to trigger SNARE-mediated exocytosis and synaptic transmission in hippocampal circuits. Because LILFU can stimulate electrical activity and calcium signaling in neurons as well as central synaptic transmission we conclude US provides a powerful tool for remotely modulating brain circuit activity.
Collapse
|
97
|
Iscla I, Wray R, Blount P. On the structure of the N-terminal domain of the MscL channel: helical bundle or membrane interface. Biophys J 2008; 95:2283-91. [PMID: 18515388 PMCID: PMC2517020 DOI: 10.1529/biophysj.107.127423] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Accepted: 05/12/2008] [Indexed: 11/18/2022] Open
Abstract
The mechanosensitive channel of large conductance, MscL, serves as a biological emergency release valve protecting bacteria from acute osmotic downshock and is to date the best characterized mechanosensitive channel. A well-recognized and supported model for Escherichia coli MscL gating proposes that the N-terminal 11 amino acids of this protein form a bundle of amphipathic helices in the closed state that functionally serves as a cytoplasmic second gate. However, a recently reexamined crystal structure of a closed state of the Mycobacterium tuberculosis MscL shows these helices running along the cytoplasmic surface of the membrane. Thus, it is unclear if one structural model is correct or if they both reflect valid closed states. Here, we have systematically reevaluated this region utilizing cysteine-scanning, in vivo functional characterization, in vivo SCAM, electrophysiological studies, and disulfide-trapping experiments. The disulfide-trapping pattern and functional studies do not support the helical bundle and second-gate hypothesis but correlate well with the proposed structure for M. tuberculosis MscL. We propose a functional model that is consistent with the collective data.
Collapse
Affiliation(s)
- Irene Iscla
- Department of Physiology, University of Texas, Southwestern Medical Center at Dallas, Dallas, Texas 75390-9040, USA
| | | | | |
Collapse
|
98
|
Abstract
We suggest that bubbles are the bistable hydrophobic gates responsible for the on-off transitions of single channel currents. In this view, many types of channels gate by the same physical mechanism-dewetting by capillary evaporation-but different types of channels use different sensors to modulate hydrophobic properties of the channel wall and thereby trigger and control bubbles and gating. Spontaneous emptying of channels has been seen in many simulations. Because of the physics involved, such phase transitions are inherently sensitive, unstable threshold phenomena that are difficult to simulate reproducibly and thus convincingly. We present a thermodynamic analysis of a bubble gate using morphometric density functional theory of classical (not quantum) mechanics. Thermodynamic analysis of phase transitions is generally more reproducible and less sensitive to details than simulations. Anesthetic actions of inert gases-and their interactions with hydrostatic pressure (e.g., nitrogen narcosis)-can be easily understood by actions on bubbles. A general theory of gas anesthesia may involve bubbles in channels. Only experiments can show whether, or when, or which channels actually use bubbles as hydrophobic gates: direct observation of bubbles in channels is needed. Existing experiments show thin gas layers on hydrophobic surfaces in water and suggest that bubbles nearly exist in bulk water.
Collapse
|
99
|
Gating of the mechanosensitive channel protein MscL: the interplay of membrane and protein. Biophys J 2008; 94:3497-511. [PMID: 18212020 DOI: 10.1529/biophysj.107.109850] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mechanosensitive channel of large conductance (MscL) belongs to a family of transmembrane channel proteins in bacteria and functions as a safety valve that relieves the turgor pressure produced by osmotic downshock. MscL gating can be triggered solely by stretching of the membrane. This work reports an effort to understand this mechanotransduction by means of molecular dynamics (MD) simulation on the MscL of mycobacterium tuberculosis embedded in a palmitoyloleoylphosphatidylethanolamine membrane. Equilibrium MD under zero membrane tension produced a more compact protein structure, as measured by its radii of gyration, compared to the crystal structure, in agreement with previous experimental findings. Even under a large applied tension up to 1000 dyn/cm, the MscL lateral dimension largely remained unchanged after up to 20 ns of simulation. A nonequilibrium MD simulation of 3% membrane expansion showed a significant increase in membrane rigidity upon MscL inclusion, which can contribute to efficient mechanotransduction. Direct observation of channel opening was possible only when an explicit lateral bias force was applied to each of the five subunits of MscL in the radially outward direction. Using this force, open structures with a large pore of radius 10 A could be obtained. The channel opening takes place in a stepwise manner and concurrently with the water chain formation across the channel, which occurs without direct involvement of protein hydrophilic residues. The N-terminal S1 helices stabilize the open structure, and the membrane asymmetry (different lipid density on the two leaflets of membrane) promotes channel opening.
Collapse
|
100
|
TRP channels and mechanosensory transduction: insights into the arterial myogenic response. Pflugers Arch 2008; 456:529-40. [PMID: 18183414 DOI: 10.1007/s00424-007-0432-y] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Revised: 12/04/2007] [Accepted: 12/10/2007] [Indexed: 12/19/2022]
Abstract
Mechano-gated ion channels are implicated in a variety of key physiological functions ranging from touch sensitivity to arterial pressure regulation. Seminal work in prokaryotes and invertebrates provided strong evidence for the role of specific ion channels in volume regulation, touch sensitivity, or hearing, specifically the mechanosensitive channel subunits of large and small conductances (MscL and MscS), the mechanosensory channel subunits (MEC) and the transient receptor potential channel subunits (TRP). In mammals, recent studies further indicate that members of the TRP channel family may also be considered as possible candidate mechanosensors responding to either tension, flow, or changes in cell volume. However, contradictory results have challenged whether these TRP channels, including TRPC1 and TRPC6, are directly activated by mechanical stimulation. In the present review, we will focus on the mechanosensory function of TRP channels, discuss whether a direct or indirect mechanism is at play, and focus on the proposed role for these channels in the arterial myogenic response to changes in intraluminal pressure.
Collapse
|