51
|
Huang WE, Bailey MJ, Thompson IP, Whiteley AS, Spiers AJ. Single-cell Raman spectral profiles of Pseudomonas fluorescens SBW25 reflects in vitro and in planta metabolic history. MICROBIAL ECOLOGY 2007; 53:414-25. [PMID: 17334857 DOI: 10.1007/s00248-006-9138-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Accepted: 07/10/2006] [Indexed: 05/14/2023]
Abstract
Single-cell Raman microspectroscopy has the potential to report on the whole-cell chemical composition of bacteria, reflecting metabolic status as well as growth history. This potential has been demonstrated through the discriminant functional analysis of Raman spectral profiles (RSP) obtained from the soil and plant-associated bacterium Pseudomonas fluorescens SBW25, grown in vitro using defined media, and in planta using 3-month-old sugar beets (Beta vulgaris var. Roberta). SBW25 in vitro RSP data showed significant variation between those cells grown on different amino acids, sugars, TCA cycle intermediates, rich King's B, and culture media derived from the sugar beet phytosphere. Raman analysis was also able to follow the transition of SBW25 starved of carbon over a period of days, and SBW25 in planta RSP data also showed variation with significant differences between bacteria recovered from soil and the rhizosphere. SBW25 whole-cell chemical composition, and therefore growth and metabolic history, could be interpreted by coanalyzing in vitro and in planta RSP data. SBW25 recovered from the phytosphere was found to be more similar to SBW25 grown in vitro on Fru or Asp, rather than on Glc or Arg, and quite dissimilar to that resulting from carbon starvation. This suggests that SBW25 growth in the phytosphere is generally neither carbon-catabolite-repressed nor carbon-limited. These findings demonstrate that the analysis of single-cell RSP can differentiate between isogenic populations of bacteria with different metabolic histories or after recovery from different parts of their natural environment. In addition, Raman analysis is also capable of providing biologically relevant biochemical inferences, which might then be tested to uncover the mechanistic basis (biochemical-metabolic-genetic) differentiating bacteria growing in complex environments and exposed to different conditions.
Collapse
Affiliation(s)
- Wei E Huang
- Molecular Microbiology Ecology and Environmental Biotechnology Sections, CEH Oxford, Mansfield Road, Oxford, OX1 3SR, UK
| | | | | | | | | |
Collapse
|
52
|
Mølbak L, Molin S, Kroer N. Root growth and exudate production define the frequency of horizontal plasmid transfer in the Rhizosphere. FEMS Microbiol Ecol 2007; 59:167-76. [PMID: 17069619 DOI: 10.1111/j.1574-6941.2006.00229.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
To identify the main drivers of plasmid transfer in the rhizosphere, conjugal transfer was studied in the rhizospheres of pea and barley. The donor Pseudomonas putida KT2442, containing plasmid pKJK5::gfp, was coated onto the seeds, while the recipient P. putida LM24, having a chromosomal insertion of dsRed, was inoculated into the growth medium. Mean transconjugant-to-donor ratios in vermiculite were 4.0+/-0.8 x 10(-2) in the pea and 5.9+/-1.4 x 10(-3) in the barley rhizospheres. In soil, transfer ratios were about 10 times lower. As a result of a 2-times higher root exudation rate in pea, donor densities in pea (1 x 10(6)-2 x 10(9) CFU g(-1) root) were about 10 times higher than in barley. No difference in recipient densities was observed. In situ visualization of single cells on the rhizoplane and macroscopic visualization of the colonization pattern showed that donors and transconjugants were ubiquitously distributed in the pea rhizosphere, while they were only located on the upper parts of the barley roots. Because the barley root elongated about 10 times faster than the pea root, donors were probably outgrown by the elongating barley root. Thus by affecting the cell density and distribution, exudation and root growth appear to be key parameters controlling plasmid transfer in the rhizosphere.
Collapse
Affiliation(s)
- Lars Mølbak
- Department of Environmental Chemistry and Microbiology, National Environmental Research Institute, Roskilde, Denmark
| | | | | |
Collapse
|
53
|
McKellar RC. Effect of starvation on expression of the ribosomal RNA rrnB P2 promoter during the lag phase of Pseudomonas fluorescens. Int J Food Microbiol 2006; 114:307-15. [PMID: 17169452 DOI: 10.1016/j.ijfoodmicro.2006.09.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2006] [Revised: 08/15/2006] [Accepted: 09/30/2006] [Indexed: 11/19/2022]
Abstract
Mathematical modelling of food-borne pathogen survival and growth is an important and expanding area of food microbiology. Effective models have been developed for growth rate as influenced by the environment; however, reliable models which describe the lag phase prior to exponential growth are more difficult to obtain. In order to improve our understanding of the physiological changes that take place in the microbial cell during this adaptation period, the effect of starvation on the expression of a gene for ribosomal RNA (rRNA) synthesis-an important step in preparing the cells for growth-was examined. A strain of Pseudomonas fluorescens containing the Tn7-luxCDABE gene cassette regulated by the rRNA promoter rrnB P(2) was used as a model system. Growth was measured as optical density at 600 nm (OD(600)), and fitting was achieved with a two-phase linear model to obtain the parameters growth rate (R(OD)) and lag phase duration (LPD(OD)). The increase in bioluminescence (measured as natural log [ln] relative light units per unit OD(600)) after inoculation of stationary phase cells into fresh tryptic soy broth (TSB) followed an exponential association model, with lag (LPD(Exp)) and rate (R(Exp)) parameters. Starvation of cells in either spent TSB or in MOPS buffer resulted in time-dependent linear increases in both lag parameters and, in the case of TSB, a decrease in the R(Exp) parameter. The results show that models can be developed for expression of genes during the lag phase, which will improve our ability to make accurate predictions of food-borne pathogen growth.
Collapse
Affiliation(s)
- Robin C McKellar
- Food Research Program, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada N1G 5C9.
| |
Collapse
|
54
|
Cardon ZG, Gage DJ. Resource Exchange in the Rhizosphere: Molecular Tools and the Microbial Perspective. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2006. [DOI: 10.1146/annurev.ecolsys.37.091305.110207] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zoe G. Cardon
- Department of Ecology and Evolutionary Biology and Center for Integrative Geosciences, University of Connecticut, Storrs, Connecticut 06269;
| | - Daniel J. Gage
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269;
| |
Collapse
|
55
|
Deloge-Abarkan M, Ha TL, Robine E, Zmirou-Navier D, Mathieu L. Detection of airborne Legionella while showering using liquid impingement and fluorescent in situ hybridization (FISH). ACTA ACUST UNITED AC 2006; 9:91-7. [PMID: 17213948 DOI: 10.1039/b610737k] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aerosols of water contaminated with Legionella bacteria constitute the only mode of exposure for humans. However, the prevention strategy against this pathogenic bacteria risk is managed through the survey of water contamination. No relationship linked the Legionella bacteria water concentration and their airborne abundance. Therefore, new approaches in the field of the metrological aspects of Legionella bioaerosols are required. This study was aimed at testing the main principles for bioaerosol collection (solid impaction, liquid impingement and filtration) and the in situ hybridization (FISH) method, both in laboratory and field assays, with the intention of applying such methodologies for airborne Legionella bacteria detection while showering. An aerosolization chamber was developed to generate controlled and reproducible L. pneumophila aerosols. This tool allowed the identification of the liquid impingement method as the most appropriate one for collecting airborne Legionella bacteria. The culturable fraction of airborne L. pneumophila recovered with the liquid impingement principle was 4 and 700 times higher compared to the impaction and filtration techniques, respectively. Moreover, the concentrations of airborne L. pneumophila in the impinger fluid were on average 7.0 x 10(5) FISH-cells m(-3) air with the fluorescent in situ hybridization (FISH) method versus 9.0 x 10(4) CFU m(-3) air with the culture method. These results, recorded under well-controlled conditions, were confirmed during the field experiments performed on aerosols generated by hot water showers in health institutions. This new approach may provide a more accurate characterization of aerobiocontamination by Legionella bacteria.
Collapse
Affiliation(s)
- Magali Deloge-Abarkan
- Département Environnement et Santé Publique, INSERM ERI no 11, Faculté de Médecine, 9 avenue de la Forêt de Haye, BP 184, F-54 505, Vandoeuvre-lès-Nancy, France
| | | | | | | | | |
Collapse
|
56
|
Kiely PD, Haynes JM, Higgins CH, Franks A, Mark GL, Morrissey JP, O'Gara F. Exploiting new systems-based strategies to elucidate plant-bacterial interactions in the rhizosphere. MICROBIAL ECOLOGY 2006; 51:257-66. [PMID: 16596439 DOI: 10.1007/s00248-006-9019-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Accepted: 12/16/2005] [Indexed: 05/08/2023]
Abstract
The rhizosphere is the site of intense interactions between plant, bacterial, and fungal partners. In plant-bacterial interactions, signal molecules exuded by the plant affect both primary initiation and subsequent behavior of the bacteria in complex beneficial associations such as biocontrol. However, despite this general acceptance that plant-root exudates have an effect on the resident bacterial populations, very little is still known about the influence of these signals on bacterial gene expression and the roles of genes found to have altered expression in plant-microbial interactions. Analysis of the rhizospheric communities incorporating both established techniques, and recently developed "omic technologies" can now facilitate investigations into the molecular basis underpinning the establishment of beneficial plant-microbial interactomes in the rhizosphere. The understanding of these signaling processes, and the functions they regulate, is fundamental to understanding the basis of beneficial microbial-plant interactions, to overcoming existing limitations, and to designing improved strategies for the development of novel Pseudomonas biocontrol strains.
Collapse
Affiliation(s)
- P D Kiely
- Biomerit Research Centre, Department of Microbiology, National University of Ireland (UCC), Cork, Ireland
| | | | | | | | | | | | | |
Collapse
|
57
|
Tecon R, van der Meer JR. Information from single-cell bacterial biosensors: what is it good for? Curr Opin Biotechnol 2006; 17:4-10. [PMID: 16326092 DOI: 10.1016/j.copbio.2005.11.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2005] [Revised: 11/10/2005] [Accepted: 11/23/2005] [Indexed: 11/26/2022]
Abstract
Bacterial reporter cells (i.e. strains engineered to produce easily measurable signals in response to one or more chemical targets) can principally be used to quantify chemical signals and analytes, physicochemical conditions and gradients on a microscale (i.e. micrometer to submillimeter distances), when the reporter signal is determined in individual cells. This makes sense, as bacterial life essentially thrives in microheterogenic environments and single-cell reporter information can help us to understand the microphysiology of bacterial cells and its importance for macroscale processes like pollutant biodegradation, beneficial bacteria-eukaryote interactions, and infection. Recent findings, however, showed that clonal bacterial populations are essentially always physiologically, phenotypically and genotypically heterogeneous, thus emphasizing the need for sound statistical approaches for the interpretation of reporter response in individual bacterial cells. Serious attempts have been made to measure and interpret single-cell reporter gene expression and to understand variability in reporter expression among individuals in a population.
Collapse
Affiliation(s)
- Robin Tecon
- Department of Fundamental Microbiology, Bâtiment Biophore, Quartier UNIL-Sorge, University of Lausanne, CH 1015 Lausanne, Switzerland
| | | |
Collapse
|
58
|
Larrainzar E, O'Gara F, Morrissey JP. Applications of autofluorescent proteins for in situ studies in microbial ecology. Annu Rev Microbiol 2006; 59:257-77. [PMID: 16153170 DOI: 10.1146/annurev.micro.59.030804.121350] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
When autofluorescent proteins (AFPs), such as green fluorescent protein (GFP) and Discosoma striata red fluorescent protein (DsRed), are excited with light of a specific wavelength, they emit light of a longer wavelength, without the further addition of substrates. A range of AFPs have been identified and cloned from marine organisms, and mutagenesis techniques have been employed to develop improved variant AFPs for applications in biological research. In recent years, AFP technology has become an important tool for microbiologists and microbial ecologists studying processes such as microbe-plant interactions, biosensors, biofilm formation, and horizontal gene transfer. The ability to use AFPs with differing fluorescent spectra within a single cell has allowed simultaneous monitoring of several aspects of microbial physiology and gene expression in situ in real time. This provides a tremendous insight into microbial function and behavior in natural environments. Furthermore, the integration of AFP reporters with other markers and technologies is facilitating a systems approach to research in microbial ecology.
Collapse
|
59
|
Brandl MT. Fitness of human enteric pathogens on plants and implications for food safety. ANNUAL REVIEW OF PHYTOPATHOLOGY 2006; 44:367-92. [PMID: 16704355 DOI: 10.1146/annurev.phyto.44.070505.143359] [Citation(s) in RCA: 349] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The continuous rise in the number of outbreaks of foodborne illness linked to fresh fruit and vegetables challenges the notion that enteric pathogens are defined mostly by their ability to colonize the intestinal habitat. This review describes the epidemiology of produce-associated outbreaks of foodborne disease and presents recently acquired knowledge about the behavior of enteric pathogens on plants, with an emphasis on Salmonella enterica, Escherichia coli O157:H7, and Listeria monocytogenes. The growth and survival of enteric pathogens on plants are discussed in the light of knowledge and concepts in plant microbial ecology, including epiphytic fitness, the physicochemical nature of plant surfaces, biofilm formation, and microbe-microbe and plant-microbe interactions. Information regarding the various stresses that affect the survival of enteric pathogens and the molecular events that underlie their interactions in the plant environment provides a good foundation for assessing their role in the infectious dose of the pathogens when contaminated fresh produce is the vehicle of illness.
Collapse
Affiliation(s)
- Maria T Brandl
- Produce Safety and Microbiology Research Unit, Agricultural Research Services, U.S. Department of Agriculture, Albany, California 94710, USA.
| |
Collapse
|
60
|
Werner E, Roe F, Bugnicourt A, Franklin MJ, Heydorn A, Molin S, Pitts B, Stewart PS. Stratified growth in Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 2004; 70:6188-96. [PMID: 15466566 PMCID: PMC522130 DOI: 10.1128/aem.70.10.6188-6196.2004] [Citation(s) in RCA: 250] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, stratified patterns of protein synthesis and growth were demonstrated in Pseudomonas aeruginosa biofilms. Spatial patterns of protein synthetic activity inside biofilms were characterized by the use of two green fluorescent protein (GFP) reporter gene constructs. One construct carried an isopropyl-beta-d-thiogalactopyranoside (IPTG)-inducible gfpmut2 gene encoding a stable GFP. The second construct carried a GFP derivative, gfp-AGA, encoding an unstable GFP under the control of the growth-rate-dependent rrnBp(1) promoter. Both GFP reporters indicated that active protein synthesis was restricted to a narrow band in the part of the biofilm adjacent to the source of oxygen. The zone of active GFP expression was approximately 60 microm wide in colony biofilms and 30 microm wide in flow cell biofilms. The region of the biofilm in which cells were capable of elongation was mapped by treating colony biofilms with carbenicillin, which blocks cell division, and then measuring individual cell lengths by transmission electron microscopy. Cell elongation was localized at the air interface of the biofilm. The heterogeneous anabolic patterns measured inside these biofilms were likely a result of oxygen limitation in the biofilm. Oxygen microelectrode measurements showed that oxygen only penetrated approximately 50 microm into the biofilm. P. aeruginosa was incapable of anaerobic growth in the medium used for this investigation. These results show that while mature P. aeruginosa biofilms contain active, growing cells, they can also harbor large numbers of cells that are inactive and not growing.
Collapse
Affiliation(s)
- Erin Werner
- Center for Biofilm Engineering, Montana State University-Bozeman, Bozeman, MT 59717-3980, USA
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Espinosa-Urgel M. Plant-associated Pseudomonas populations: molecular biology, DNA dynamics, and gene transfer. Plasmid 2004; 52:139-50. [PMID: 15518872 DOI: 10.1016/j.plasmid.2004.06.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2004] [Revised: 06/03/2004] [Indexed: 10/25/2022]
Abstract
Bacteria of the genus Pseudomonas are usual colonizers of plant leaves, roots, and seeds, establishing at relatively high cell densities on plant surfaces, where they aggregate and form microcolonies similar to those observed during biofilm development on abiotic surfaces. These plant-associated biofilms undergo chromosomal rearrangements and are hot spots for conjugative plasmid transfer, favored by the close proximity between cells and the constant supply of nutrients coming from the plant in the form of exudates or leachates. The molecular determinants known to be involved in bacterial colonization of the different plant surfaces, and the mechanisms of horizontal gene transfer in plant-associated Pseudomonas populations are summarized in this review.
Collapse
Affiliation(s)
- Manuel Espinosa-Urgel
- Department of Plant Biochemistry and Molecular and Cellular Biology, Estación Experimental del Zaidín, CSIC, Profesor Albareda, 1, Granada 18008, Spain.
| |
Collapse
|
62
|
Lambertsen L, Sternberg C, Molin S. Mini-Tn7 transposons for site-specific tagging of bacteria with fluorescent proteins. Environ Microbiol 2004; 6:726-32. [PMID: 15186351 DOI: 10.1111/j.1462-2920.2004.00605.x] [Citation(s) in RCA: 225] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mini-Tn7 transposon system is a convenient tool for site-specific tagging of bacteria in which the tagging DNA is inserted at a unique and neutral chromosomal site. We have expanded the panel of mini-Tn7 delivery plasmids expressing different fluorescent proteins (stable and unstable) from the Escherichia coli lac derived promoter, P(A1/04/03), or from the growth-rate-dependent Escherichia coli promoter PrrnB P1. The mini-Tn7 transposons were inserted and tested in the soil bacterium, Pseudomonas putida KT2440. Successful and site-specific tagging was verified by Southern blots as well as by PCR. Furthermore, the effect of fluorescent protein expression on the cellular growth rate was tested by growth competition assays.
Collapse
Affiliation(s)
- Lotte Lambertsen
- Molecular Microbial Ecology Group, Centre for Biomedical Microbiology, BioCentrum-DTU, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | | | | |
Collapse
|
63
|
Brehm-Stecher BF, Johnson EA. Single-cell microbiology: tools, technologies, and applications. Microbiol Mol Biol Rev 2004; 68:538-59, table of contents. [PMID: 15353569 PMCID: PMC515252 DOI: 10.1128/mmbr.68.3.538-559.2004] [Citation(s) in RCA: 304] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The field of microbiology has traditionally been concerned with and focused on studies at the population level. Information on how cells respond to their environment, interact with each other, or undergo complex processes such as cellular differentiation or gene expression has been obtained mostly by inference from population-level data. Individual microorganisms, even those in supposedly "clonal" populations, may differ widely from each other in terms of their genetic composition, physiology, biochemistry, or behavior. This genetic and phenotypic heterogeneity has important practical consequences for a number of human interests, including antibiotic or biocide resistance, the productivity and stability of industrial fermentations, the efficacy of food preservatives, and the potential of pathogens to cause disease. New appreciation of the importance of cellular heterogeneity, coupled with recent advances in technology, has driven the development of new tools and techniques for the study of individual microbial cells. Because observations made at the single-cell level are not subject to the "averaging" effects characteristic of bulk-phase, population-level methods, they offer the unique capacity to observe discrete microbiological phenomena unavailable using traditional approaches. As a result, scientists have been able to characterize microorganisms, their activities, and their interactions at unprecedented levels of detail.
Collapse
Affiliation(s)
- Byron F Brehm-Stecher
- Department of Food Microbiology and Toxicology, University of Wisconsin-Madison Food Research Institute, 1925 Willow Drive, Madison, WI 53706, USA
| | | |
Collapse
|
64
|
Griffiths RI, Manefield M, Ostle N, McNamara N, O'Donnell AG, Bailey MJ, Whiteley AS. 13CO2 pulse labelling of plants in tandem with stable isotope probing: methodological considerations for examining microbial function in the rhizosphere. J Microbiol Methods 2004; 58:119-29. [PMID: 15177910 DOI: 10.1016/j.mimet.2004.03.011] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2004] [Revised: 03/16/2004] [Accepted: 03/20/2004] [Indexed: 11/25/2022]
Abstract
Recently developed 13CO2 pulse labelling and stable isotope probing (SIP) methods offer the potential to track 13C-labelled plant photosynthate into phylogenetic groups of microbial taxa in the rhizosphere, permitting an examination of the link between soil microbial diversity and carbon flow in situ. We tested the feasibility of this approach to detect functional differences in microbial communities utilising recently fixed plant photosynthate in moisture perturbed grassland turfs. Specifically, we addressed two questions: (1) How does moisture perturbation (three treatments; continual wetting, drying, and drying followed by rewetting) affect the assimilation of 13C-labelled exudates carbon into the soil microbial community?; (2) Can 13C deposited in soil from pulse-labelled plants be used to identify microbes utilising plant exudates using SIP methodologies? Net CO2 fluxes showed that prior to 13CO2 pulse labelling, all treatments were photosynthetically active, but differences were observed in night time respiration, indicating moisture treatments had impacted on net CO2 efflux. Measurements of pulse-derived 13C incorporated into soil RNA over 2 months showed that there was only evidence of 13C enrichment in the continuously wetted treatments. However, isotopic values represented only a 0.1-0.2 13C at.% increase over natural abundance levels and were found to be insufficient for the application of RNA-SIP. These findings reveal that in this experimental system, the microbial uptake of labelled carbon from plant exudates is low, and further optimisation of methodologies may be required for application of SIP to natural plant-soil systems where 13C tracer dilution is a consideration.
Collapse
Affiliation(s)
- Robert I Griffiths
- Molecular Microbial Ecology Section, CEH-Oxford, Mansfield Road, Oxford, OX1 3SR, UK
| | | | | | | | | | | | | |
Collapse
|
65
|
Lu Z, Tombolini R, Woo S, Zeilinger S, Lorito M, Jansson JK. In vivo study of trichoderma-pathogen-plant interactions, using constitutive and inducible green fluorescent protein reporter systems. Appl Environ Microbiol 2004; 70:3073-81. [PMID: 15128569 PMCID: PMC404383 DOI: 10.1128/aem.70.5.3073-3081.2004] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2003] [Accepted: 01/27/2004] [Indexed: 11/20/2022] Open
Abstract
Plant tissue colonization by Trichoderma atroviride plays a critical role in the reduction of diseases caused by phytopathogenic fungi, but this process has not been thoroughly studied in situ. We monitored in situ interactions between gfp-tagged biocontrol strains of T. atroviride and soilborne plant pathogens that were grown in cocultures and on cucumber seeds by confocal scanning laser microscopy and fluorescence stereomicroscopy. Spores of T. atroviride adhered to Pythium ultimum mycelia in coculture experiments. In mycoparasitic interactions of T. atroviride with P. ultimum or Rhizoctonia solani, the mycoparasitic hyphae grew alongside the pathogen mycelia, and this was followed by coiling and formation of specialized structures similar to hooks, appressoria, and papillae. The morphological changes observed depended on the pathogen tested. Branching of T. atroviride mycelium appeared to be an active response to the presence of the pathogenic host. Mycoparasitism of P. ultimum by T. atroviride occurred on cucumber seed surfaces while the seeds were germinating. The interaction of these fungi on the cucumber seeds was similar to the interaction observed in coculture experiments. Green fluorescent protein expression under the control of host-inducible promoters was also studied. The induction of specific Trichoderma genes was monitored visually in cocultures, on plant surfaces, and in soil in the presence of colloidal chitin or Rhizoctonia by confocal microscopy and fluorescence stereomicroscopy. These tools allowed initiation of the mycoparasitic gene expression cascade to be monitored in vivo.
Collapse
Affiliation(s)
- Zexun Lu
- Section for Natural Sciences, Södertörn University College, 14189 Huddinge, Sweden
| | | | | | | | | | | |
Collapse
|
66
|
Ray C, Vogel T, Dusek J. Modeling depth-variant and domain-specific sorption and biodegradation in dual-permeability media. JOURNAL OF CONTAMINANT HYDROLOGY 2004; 70:63-87. [PMID: 15068869 DOI: 10.1016/j.jconhyd.2003.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2001] [Accepted: 08/19/2003] [Indexed: 05/24/2023]
Abstract
A dual-permeability model (S_1D_DUAL) was developed to simulate the transport of land-applied pesticides in macroporous media. In this model, one flow domain was represented by the bulk matrix and the other by the preferential flow domain (PFD) where water and chemicals move at faster rates. The model assumed the validity of Darcian flow and the advective-dispersive solute transport in each of the two domains with inter-domain transfer of water and solutes due to pressure and concentration gradients. It was conceptualized that sorption and biodegradation rates vary with soil depth as well as in each of the two flow domains. In addition to equilibrium sorption, kinetic sorption was simulated in the PFD. Simulations were conducted to evaluate the combined effects of preferential flow, depth- and domain-variant sorption, and degradation on leaching of two pesticides: one with strong sorption potential (trifluralin) and the other with weak sorption potential (atrazine). Simulation results for a test case showed that water flux in the PFD was three times more than in the matrix for selected storm events. When equilibrium sorption was considered, the simulated profile of trifluralin in each domain was similar; however, the atrazine profile was deeper in the PFD than in the bulk matrix under episodic storm events. With an assumption of negligible sorption in the PFD, both the atrazine and the trifluralin profiles moved twice deeper into the PFD. The simulated concentrations of the chemicals were several orders higher in the PFD than in the matrix, even at deeper depths. The volume fraction of the macropores and the sorption and biodegradation properties of the chemicals could also affect the amount of pesticides leaving the root zone. For an intense storm event, slow sorption reaction rates in the PFD produced higher breakthrough concentrations of atrazine at the bottom of the simulated soil profile, thus posing the risk for breakthrough of chemicals from the root zone.
Collapse
Affiliation(s)
- Chittaranjan Ray
- Department of Civil and Environmental Engineering and Water Resources Research Center, University of Hawaii at Manoa, Honolulu, HI 96822, USA.
| | | | | |
Collapse
|
67
|
Boldt TS, Sørensen J, Karlson U, Molin SÃ, Ramos C. Combined use of different Gfp reporters for monitoring single-cell activities of a genetically modified PCB degrader in the rhizosphere of alfalfa. FEMS Microbiol Ecol 2004; 48:139-48. [DOI: 10.1016/j.femsec.2004.01.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
68
|
Germaine K, Keogh E, Garcia-Cabellos G, Borremans B, Lelie D, Barac T, Oeyen L, Vangronsveld J, Moore FP, Moore ER, Campbell CD, Ryan D, Dowling DN. Colonisation of poplar trees by gfp expressing bacterial endophytes. FEMS Microbiol Ecol 2004; 48:109-18. [DOI: 10.1016/j.femsec.2003.12.009] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
69
|
Kivisaar M. Stationary phase mutagenesis: mechanisms that accelerate adaptation of microbial populations under environmental stress. Environ Microbiol 2004; 5:814-27. [PMID: 14510835 DOI: 10.1046/j.1462-2920.2003.00488.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Microorganisms are exposed to constantly changing environmental conditions. In a growth-restricting environment (e.g. during starvation), mutants arise that are able to take over the population by a process known as stationary phase mutation. Genetic adaptation of a microbial population under environmental stress involves mechanisms that lead to an elevated mutation rate. Under stressful conditions, DNA synthesis may become more erroneous because of the induction of error-prone DNA polymerases, resulting in a situation in which DNA repair systems are unable to cope with increasing amounts of DNA lesions. Transposition may also increase genetic variation. One may ask whether the rate of mutation under stressful conditions is elevated as a result of malfunctioning of systems responsible for accuracy or are there specific mechanisms that regulate the rate of mutations under stress. Evidence for the presence of mutagenic pathways that have probably been evolved to control the mutation rate in a cell will be discussed.
Collapse
Affiliation(s)
- Maia Kivisaar
- Department of Genetics, Institute of Molecular and Cell Biology, Tartu University and Estonian Biocentre, 51010 Tartu, Estonia.
| |
Collapse
|
70
|
Chang WS, Halverson LJ. Reduced water availability influences the dynamics, development, and ultrastructural properties of Pseudomonas putida biofilms. J Bacteriol 2003; 185:6199-204. [PMID: 14526033 PMCID: PMC225025 DOI: 10.1128/jb.185.20.6199-6204.2003] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas putida strain mt-2 unsaturated biofilm formation proceeds through three distinct developmental phases, culminating in the formation of a microcolony. The form and severity of reduced water availability alter cell morphology, which influences microcolony size and ultrastructure. The dehydration (matric stress) treatments resulted in biofilms comprised of smaller cells, but they were taller and more porous and had a thicker extracellular polysaccharide layer at the air interface. In the solute stress treatments, cell filamentation occurred more frequently in the presence of high concentrations of ionic (but not nonionic) solutes, and these filamented cells drastically altered the biofilm architecture.
Collapse
Affiliation(s)
- Woo-Suk Chang
- Department of Agronomy. Graduate Program in Microbiology, Iowa State University, Ames, Iowa 50011-1010, USA
| | | |
Collapse
|
71
|
Rosado M, Gage DJ. Transcriptional control of a rRNA promoter of the nodulating symbiont Sinorhizobium meliloti. FEMS Microbiol Lett 2003; 226:15-22. [PMID: 13129602 DOI: 10.1016/s0378-1097(03)00603-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We constructed a stable, low-copy-number plasmid containing a fusion between a Sinorhizobium meliloti rRNA promoter and gfp(mut3). When transformed into S. meliloti the resulting strain, Rm1021/pKW1, fluoresced in proportion to its growth rate during balanced growth. This strain also showed an unexpected behavior when grown to stationary phase in TY medium: the average cellular fluorescence increased through mid-exponential phase then decreased dramatically. The explanation for this appears to be that transcription from the rRNA promoter was shut off in mid-exponential phase and intracellular Gfp was diluted by continued cell growth.
Collapse
Affiliation(s)
- Michelle Rosado
- University of Connecticut, Department of Molecular and Cell Biology, 91 N. Eagleville Rd., U-44, Storrs, CT 06269, USA
| | | |
Collapse
|
72
|
Mølbak L, Licht TR, Kvist T, Kroer N, Andersen SR. Plasmid transfer from Pseudomonas putida to the indigenous bacteria on alfalfa sprouts: characterization, direct quantification, and in situ location of transconjugant cells. Appl Environ Microbiol 2003; 69:5536-42. [PMID: 12957943 PMCID: PMC194921 DOI: 10.1128/aem.69.9.5536-5542.2003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transfer of the plasmids pJKJ5 and TOL (pWWO) from Pseudomonas putida to the indigenous bacterial community on alfalfa sprouts was studied. Tagging with fluorescent protein markers allowed direct quantification of the introduced donor bacteria and of indigenous bacteria that had received the plasmids. The sprouts were observed for 9 days; during this time alfalfa seeds, inoculated with donor bacteria, developed to edible and subsequently decaying sprouts. The first transconjugants were detected on day 6 after donor inoculation and occurred at frequencies of 3.4 x 10(-4) and 2.0 x 10(-6) transconjugant cells per donor cell for pKJK5::gfp and TOL::gfp, respectively. Confocal laser scanning microscopy revealed that the sprouts were heavily colonized with donors and that most transconjugants were located around the hypocotyl and root areas. Randomly selected members of the indigenous bacterial community from both inoculated and uninoculated sprouts, as well as a representative part of the community that had received the plasmids, were characterized by polymorphisms of PCR-amplified ribosomal DNA (rDNA) spacer regions between the 16S and 23S genes, followed by partial 16S rDNA sequencing. This showed that the initially dominating genera Erwinia and Paenibacillus were gradually replaced by Pseudomonas on the fully developed sprouts. Transconjugants carrying either of the investigated plasmids mainly belonged to the genera Pseudomonas and ERWINIA: The numbers of transconjugant cells did not reach detectable levels until 6 days after the onset of germination, at which point these species constituted the majority of the indigenous bacteria. In conclusion, the alfalfa sprouts provided an environment that allowed noteworthy frequencies of plasmid transfer from P. putida in the absence of selective pressure that could favor the presence of the investigated plasmids.
Collapse
Affiliation(s)
- Lars Mølbak
- Department of Environmental Chemistry and Microbiology, National Environmental Research Institute, DK-4000 Roskilde, Danish Veterinary and Food Administration, 2860 Søborg, Denmark
| | - Tine Rask Licht
- Department of Environmental Chemistry and Microbiology, National Environmental Research Institute, DK-4000 Roskilde, Danish Veterinary and Food Administration, 2860 Søborg, Denmark
- Corresponding author. Mailing address: Danish Veterinary and Food Administration, Mørkhøj Bygade 19, 2860 Søborg, Denmark. Phone: 45-33-95-61-86. Fax: 45-33-95-66-98. E-mail:
| | - Thomas Kvist
- Department of Environmental Chemistry and Microbiology, National Environmental Research Institute, DK-4000 Roskilde, Danish Veterinary and Food Administration, 2860 Søborg, Denmark
| | - Niels Kroer
- Department of Environmental Chemistry and Microbiology, National Environmental Research Institute, DK-4000 Roskilde, Danish Veterinary and Food Administration, 2860 Søborg, Denmark
| | - Sigrid Rita Andersen
- Department of Environmental Chemistry and Microbiology, National Environmental Research Institute, DK-4000 Roskilde, Danish Veterinary and Food Administration, 2860 Søborg, Denmark
| |
Collapse
|
73
|
|
74
|
Shaw LJ, Burns RG. Biodegradation of Organic Pollutants in the Rhizosphere. ADVANCES IN APPLIED MICROBIOLOGY 2003; 53:1-60. [PMID: 14696315 DOI: 10.1016/s0065-2164(03)53001-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Liz J Shaw
- Research School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, United Kingdom
| | | |
Collapse
|
75
|
Haas D, Keel C. Regulation of antibiotic production in root-colonizing Peudomonas spp. and relevance for biological control of plant disease. ANNUAL REVIEW OF PHYTOPATHOLOGY 2003; 41:117-53. [PMID: 12730389 DOI: 10.1146/annurev.phyto.41.052002.095656] [Citation(s) in RCA: 380] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Certain strains of fluorescent pseudomonads are important biological components of agricultural soils that are suppressive to diseases caused by pathogenic fungi on crop plants. The biocontrol abilities of such strains depend essentially on aggressive root colonization, induction of systemic resistance in the plant, and the production of diffusible or volatile antifungal antibiotics. Evidence that these compounds are produced in situ is based on their chemical extraction from the rhizosphere and on the expression of antibiotic biosynthetic genes in the producer strains colonizing plant roots. Well-characterized antibiotics with biocontrol properties include phenazines, 2,4-diacetylphloroglucinol, pyoluteorin, pyrrolnitrin, lipopeptides, and hydrogen cyanide. In vitro, optimal production of these compounds occurs at high cell densities and during conditions of restricted growth, involving (i) a number of transcriptional regulators, which are mostly pathway-specific, and (ii) the GacS/GacA two-component system, which globally exerts a positive effect on the production of extracellular metabolites at a posttranscriptional level. Small untranslated RNAs have important roles in the GacS/GacA signal transduction pathway. One challenge in future biocontrol research involves development of new strategies to overcome the broad toxicity and lack of antifungal specificity displayed by most biocontrol antibiotics studied so far.
Collapse
Affiliation(s)
- Dieter Haas
- Institut de Microbiologie Fondamentale, Universite de Lausanne, CH-1015 Lausanne, Switzerland;
| | | |
Collapse
|
76
|
Haagensen JA, Hansen S, Johansen T, Molin S. In situ detection of horizontal transfer of mobile genetic elements. FEMS Microbiol Ecol 2002; 42:261-8. [DOI: 10.1111/j.1574-6941.2002.tb01016.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
77
|
Normander B, Hendriksen NB. Effective dose of a microbial inoculant is one to four cells in the rhizosphere. Can J Microbiol 2002; 48:940-4. [PMID: 12489784 DOI: 10.1139/w02-088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A single-cell approach for studying the growth potential and the establishment of bacteria in the barley phytosphere is presented, using Pseudomonas fluorescens strain with the capability for biological control. The incidence of growth of one to four bacterial cells dispersed to the young rhizosphere approximated to 100%, and specific growth rate averaged 0.05. Net growth occurred for cells added to the rhizosphere at densities between 1 and 100,000 cells, while at higher densities population sizes declined, but always approached 10(5)-10(6) cells per rhizosphere. No net growth was observed in bulk soil, and cells died in the phyllosphere. Our results showed that bacterial establishment was more related to the availability of microhabitats supporting growth, than related to the number of bacteria released.
Collapse
Affiliation(s)
- Bo Normander
- Department of Environmental Chemistry and Microbiology, National Environmental Research Institute, P.O. Box 358, DK-4000 Roskilde, Denmark
| | | |
Collapse
|
78
|
Söderberg KH, Olsson PÃA, Bååth E. Structure and activity of the bacterial community in the rhizosphere of different plant species and the effect of arbuscular mycorrhizal colonisation. FEMS Microbiol Ecol 2002; 40:223-31. [DOI: 10.1111/j.1574-6941.2002.tb00955.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
79
|
Abstract
Bioreporters are effective research tools for gaining an understanding of a microbe's perception of the world. Fitted with a fusion of an environmentally responsive promoter to a suitable reporter gene, a bacterial or fungal bioreporter is able to communicate its metabolic or transcriptional behavior in a habitat, and furnish us with information on the chemical, physical or biological properties of its immediate surroundings. This review details recent developments in the use of such bioreporters in microbial ecology. Emphasis is placed on reporter genes that allow detection in individual microbial cells, as they provide a high-resolution description of the habitat under investigation. In an outlook on the future of bioreporter technology, this review stresses the need to interpret the activity of a bioreporter within the context of its biology.
Collapse
Affiliation(s)
- Johan H J Leveau
- University of California, Department of Plant and Microbial Biology, 111 Koshland Hall, Berkeley, California 94720, USA.
| | | |
Collapse
|
80
|
Christensen BB, Haagensen JAJ, Heydorn A, Molin S. Metabolic commensalism and competition in a two-species microbial consortium. Appl Environ Microbiol 2002; 68:2495-502. [PMID: 11976126 PMCID: PMC127540 DOI: 10.1128/aem.68.5.2495-2502.2002] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We analyzed metabolic interactions and the importance of specific structural relationships in a benzyl alcohol-degrading microbial consortium comprising two species, Pseudomonas putida strain R1 and Acinetobacter strain C6, both of which are able to utilize benzyl alcohol as their sole carbon and energy source. The organisms were grown either as surface-attached organisms (biofilms) in flow chambers or as suspended cultures in chemostats. The numbers of CFU of P. putida R1 and Acinetobacter strain C6 were determined in chemostats and from the effluents of the flow chambers. When the two species were grown together in chemostats with limiting concentrations of benzyl alcohol, Acinetobacter strain C6 outnumbered P. putida R1 (500:1), whereas under similar growth conditions in biofilms, P. putida R1 was present in higher numbers than Acinetobacter strain C6 (5:1). In order to explain this difference, investigations of microbial activities and structural relationships were carried out in the biofilms. Insertion into P. putida R1 of a fusion between the growth rate-regulated rRNA promoter rrnBP1 and a gfp gene encoding an unstable variant of the green fluorescent protein made it possible to monitor the physiological activity of P. putida R1 cells at different positions in the biofilms. Combining this with fluorescent in situ hybridization and scanning confocal laser microscopy showed that the two organisms compete or display commensal interactions depending on their relative physical positioning in the biofilm. In the initial phase of biofilm development, the growth activity of P. putida R1 was shown to be higher near microcolonies of Acinetobacter strain C6. High-pressure liquid chromatography analysis showed that in the effluent of the Acinetobacter strain C6 monoculture biofilm the metabolic intermediate benzoate accumulated, whereas in the biculture biofilms this was not the case, suggesting that in these biofilms the excess benzoate produced by Acinetobacter strain C6 leaks into the surrounding environment, from where it is metabolized by P. putida R1. After a few days, Acinetobacter strain C6 colonies were overgrown by P. putida R1 cells and new structures developed, in which microcolonies of Acinetobacter strain C6 cells were established in the upper layer of the biofilm. In this way the two organisms developed structural relationships allowing Acinetobacter strain C6 to be close to the bulk liquid with high concentrations of benzyl alcohol and allowing P. putida R1 to benefit from the benzoate leaking from Acinetobacter strain C6. We conclude that in chemostats, where the organisms cannot establish in fixed positions, the two strains will compete for the primary carbon source, benzyl alcohol, which apparently gives Acinetobacter strain C6 a growth advantage, probably because it converts benzyl alcohol to benzoate with a higher yield per time unit than P. putida R1. In biofilms, however, the organisms establish structured, surface-attached consortia, in which heterogeneous ecological niches develop, and under these conditions competition for the primary carbon source is not the only determinant of biomass and population structure.
Collapse
Affiliation(s)
- Bjarke B Christensen
- BioCentrum-DTU, Molecular Microbial Ecology Group, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | | | | | | |
Collapse
|
81
|
Gunasekera TS, Sørensen A, Attfield PV, Sørensen SJ, Veal DA. Inducible gene expression by nonculturable bacteria in milk after pasteurization. Appl Environ Microbiol 2002; 68:1988-93. [PMID: 11916722 PMCID: PMC123843 DOI: 10.1128/aem.68.4.1988-1993.2002] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The viability of bacteria in milk after heat treatments was assessed by using three different viability indicators: (i) CFU on plate count agar, (ii) de novo expression of a gfp reporter gene, and (iii) membrane integrity based on propidium iodide exclusion. In commercially available pasteurized milk, direct viable counts, based on dye exclusion, were significantly (P < 0.05) higher than viable cell counts determined from CFU, suggesting that a significant subpopulation of cells in pasteurized milk are viable but nonculturable. Heating milk at 63.5 degrees C for 30 min resulted in a >4-log-unit reduction in the number of CFU of Escherichia coli and Pseudomonas putida that were marked with lac-inducible gfp. However, the reduction in the number of gfp-expressing cells of both organisms under the same conditions was <2.5 log units. These results demonstrate that a substantial portion of cells rendered incapable of forming colonies by heat treatment are metabolically active and are able to transcribe and translate genes de novo.
Collapse
Affiliation(s)
- Thusitha S Gunasekera
- Centre for Fluorimetric Applications in Biotechnology, Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia.
| | | | | | | | | |
Collapse
|
82
|
Leveau JH, Lindow SE. Predictive and interpretive simulation of green fluorescent protein expression in reporter bacteria. J Bacteriol 2001; 183:6752-62. [PMID: 11698362 PMCID: PMC95514 DOI: 10.1128/jb.183.23.6752-6762.2001] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have formulated a numerical model that simulates the accumulation of green fluorescent protein (GFP) in bacterial cells from a generic promoter-gfp fusion. The model takes into account the activity of the promoter, the time it takes GFP to mature into its fluorescent form, the susceptibility of GFP to proteolytic degradation, and the growth rate of the bacteria. From the model, we derived a simple formula with which promoter activity can be inferred easily and quantitatively from actual measurements of GFP fluorescence in growing bacterial cultures. To test the usefulness of the formula, we determined the activity of the LacI-repressible promoter P(A1/O4/O3) in response to increasing concentrations of the inducer IPTG (isopropyl-beta-D-thiogalactopyranoside) and were able to predict cooperativity between the LacI repressors on each of the two operator sites within P(A1/O4/O3). Aided by the model, we also quantified the proteolytic degradation of GFP[AAV], GFP[ASV], and GFP[LVA], which are popular variants of GFP with reduced stability in bacteria. Best described by Michaelis-Menten kinetics, the rate at which these variants were degraded was a function of the activity of the promoter that drives their synthesis: a weak promoter yielded proportionally less GFP fluorescence than a strong one. The degree of disproportionality is species dependent: the effect was more pronounced in Erwinia herbicola than in Escherichia coli. This phenomenon has important implications for the interpretation of fluorescence from bacterial reporters based on these GFP variants. The model furthermore predicted a significant effect of growth rate on the GFP content of individual bacteria, which if not accounted for might lead to misinterpretation of GFP data. In practice, our model will be helpful for prior testing of different combinations of promoter-gfp fusions that best fit the application of a particular bacterial reporter strain, and also for the interpretation of actual GFP fluorescence data that are obtained with that reporter.
Collapse
Affiliation(s)
- J H Leveau
- Department of Plant & Microbial Biology, University of California, 111 Koshland Hall, Berkeley, CA 94720, USA.
| | | |
Collapse
|
83
|
Affiliation(s)
- C Fuqua
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | | |
Collapse
|
84
|
Ramos C, Licht TR, Sternberg C, Krogfelt KA, Molin S. Monitoring bacterial growth activity in biofilms from laboratory flow chambers, plant rhizosphere, and animal intestine. Methods Enzymol 2001; 337:21-42. [PMID: 11398430 DOI: 10.1016/s0076-6879(01)37004-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Affiliation(s)
- C Ramos
- Molecular Microbial Ecology Group, Department of Microbiology, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | | | | | | | | |
Collapse
|
85
|
Bloemberg GV, Lugtenberg BJ. Molecular basis of plant growth promotion and biocontrol by rhizobacteria. CURRENT OPINION IN PLANT BIOLOGY 2001; 4:343-50. [PMID: 11418345 DOI: 10.1016/s1369-5266(00)00183-7] [Citation(s) in RCA: 360] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Plant-growth-promoting rhizobacteria (PGPRs) are used as inoculants for biofertilization, phytostimulation and biocontrol. The interactions of PGPRs with their biotic environment, for example with plants and microorganisms, are often complex. Substantial advances in elucidating the genetic basis of the beneficial effects of PGPRs on plants have been made, some from whole-genome sequencing projects. This progress will lead to a more efficient use of these strains and possibly to their improvement by genetic modification.
Collapse
Affiliation(s)
- G V Bloemberg
- Leiden University, Institute of Molecular Plant Sciences, Wassenaarseweg 64, 2333 AL, Leiden, The Netherlands.
| | | |
Collapse
|
86
|
Jaspers MC, Meier C, Zehnder AJ, Harms H, van der Meer JR. Measuring mass transfer processes of octane with the help of an alkSalkB::gfp-tagged Escherichia coli. Environ Microbiol 2001; 3:512-24. [PMID: 11578312 DOI: 10.1046/j.1462-2920.2001.00218.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Diffusion of octane from oily droplets in different microscale settings was measured using Escherichia coli expressing the stable green fluorescent protein (GFP) from the alkB promoter of Pseudomonas oleovorans. GFP fluorescence intensities were determined quantitatively at the single-cell level after 1.0 or 2.5 h incubation and compared with different calibration series using known concentrations of octane. By immobilizing the E. coli sensor cells on the bottom glass plate of a microscope flow chamber, it was possible to monitor the diffusion process for octane in aqueous solution as a function of time and distance from non-aqueous phase droplets of octane alone or oily octane mixtures. When a gas phase was included in the flow chambers, octane transport could be demonstrated from the oily mixtures to the cells through both gas and liquid phase. Assays of non-immobilized sensor cells in microdroplets in the presence or absence of soil particles incubated with octane through the vapour phase revealed a slight reduction in the total amount of induced E. coli cells in the presence of soil. Our results indicate the power of using GFP-marked single-cell biosensors in determining microscale bioavailability of organic pollutants.
Collapse
Affiliation(s)
- M C Jaspers
- Swiss Federal Institute for Environmental Science and Technology (EAWAG), Postfach 611, Uberlandstrasse 133, CH 8600 Dübendorf, Switzerland
| | | | | | | | | |
Collapse
|
87
|
Koch B, Jensen LE, Nybroe O. A panel of Tn7-based vectors for insertion of the gfp marker gene or for delivery of cloned DNA into Gram-negative bacteria at a neutral chromosomal site. J Microbiol Methods 2001; 45:187-95. [PMID: 11348676 DOI: 10.1016/s0167-7012(01)00246-9] [Citation(s) in RCA: 201] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The use of Tn7-based systems for site-specific insertion of DNA into the chromosome of Gram-negative bacteria has been limited due to the lack of appropriate vectors. We therefore developed a flexible panel of Tn7 delivery vectors. In one group of vectors, the miniTn7 element, which is inserted into the chromosome, contains a multiple cloning site (MCS) and the kanamycin, streptomycin or gentamicin resistance markers. Another group of vectors intended for tagging with green fluorescent protein (GFP) carries the gfpmut3* gene controlled by the modified lac promoter PA1/04/03, several transcriptional terminators, and various resistance markers. These vectors insert Tn7 into a specific, neutral intergenic region immediately downstream of the gene encoding glucosamine-6-phosphate synthetase (GlmS) in the tested fluorescent Pseudomonas strains. The gfp-tagging vector containing a gentamicin-resistance marker is useful for tagging strains carrying a Tn5 transposon. Tn5 transposons often carry kanamycin-resistance-encoding genes and are frequently used to generate bacterial mutants and to deliver reporter constructions in gene expression studies. To demonstrate the utility of a dual marker/reporter system, the Tn7-gfp marker system was combined with a Tn5-delivered luxAB reporter system in Pseudomonas fluorescens. The system allowed detection of gfp-tagged cells in the barley rhizosphere, while expression of the Tn5-tagged locus could be determined by measuring bioluminescence.
Collapse
Affiliation(s)
- B Koch
- Section of Genetics and Microbiology, Department of Ecology, Royal Veterinary and Agricultural University, Thorvaldsensvej 40, 1871 C, Frederiksberg, Denmark.
| | | | | |
Collapse
|
88
|
Abstract
Population level studies demonstrate that bacterial colonization of surfaces and subsequent biofilm architecture are controlled by a variety of factors that include the hydrodynamics, surface chemistry and genotype of the cell. New molecular tools now extend our ability to investigate among bacterial cells within a surface-associated population subtle phenotypic differences that do not involve changes in genotype. Such resolution has led to new discoveries in relationships between bacterial cells and their environment.
Collapse
Affiliation(s)
- G G Geesey
- Department of Microbiology and Center for Biofilm Engineering, PO Box 173520, Montana State University, Bozeman, Montana 59717-3520, USA.
| |
Collapse
|
89
|
Allaway D, Schofield NA, Leonard ME, Gilardoni L, Finan TM, Poole PS. Use of differential fluorescence induction and optical trapping to isolate environmentally induced genes. Environ Microbiol 2001; 3:397-406. [PMID: 11472504 DOI: 10.1046/j.1462-2920.2001.00205.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The techniques of differential fluorescence induction (DFI) and optical trapping (OT) have been combined to allow the identification of environmentally induced genes in single bacterial cells. Designated DFI-OT, this technique allows the in situ isolation of genes driving the expression of green fluorescent protein (Gfp) using temporal and spatial criteria. A series of plasmid-based promoter probe vectors (pOT) was developed for the construction of random genomic libraries that are linked to gfpUV or egfp. Bacteria that do not express Gfp on laboratory medium (i.e. non-fluorescent) were inoculated into the environment, and induced genes were detected with a combined fluorescence/optical trapping microscope. Using this selection strategy, rhizosphere-induced genes with homology to thiamine pyrophosphorylase (thiE) and cyclic glucan synthase (ndvB) were isolated. Other genes were expressed late in the stationary phase or as a consequence of surface-dependent growth, including fixND and metX, and a putative ABC transporter of putrescine. This strategy provides a unique ability to combine spatial, temporal and physical information to identify environmental regulation of bacterial gene expression.
Collapse
Affiliation(s)
- D Allaway
- Division of Microbiology, School of Animal and Microbial Sciences, University of Reading, Whiteknights, Reading RG6 6AJ, UK
| | | | | | | | | | | |
Collapse
|
90
|
Bringhurst RM, Cardon ZG, Gage DJ. Galactosides in the rhizosphere: utilization by Sinorhizobium meliloti and development of a biosensor. Proc Natl Acad Sci U S A 2001; 98:4540-5. [PMID: 11274355 PMCID: PMC31870 DOI: 10.1073/pnas.071375898] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Identifying the types and distributions of organic substrates that support microbial activities around plant roots is essential for a full understanding of plant-microbe interactions and rhizosphere ecology. We have constructed a strain of the soil bacterium Sinorhizobium meliloti containing a gfp gene fused to the melA promoter which is induced on exposure to galactose and galactosides. We used the fusion strain as a biosensor to determine that galactosides are released from the seeds of several different legume species during germination and are also released from roots of alfalfa seedlings growing on artificial medium. Galactoside presence in seed wash and sterile root washes was confirmed by HPLC. Experiments examining microbial growth on alpha-galactosides in seed wash suggested that alpha-galactoside utilization could play an important role in supporting growth of S. meliloti near germinating seeds of alfalfa. When inoculated into microcosms containing legumes or grasses, the biosensor allowed us to visualize the localized presence of galactosides on and around roots in unsterilized soil, as well as the grazing of fluorescent bacteria by protozoa. Galactosides were present in patches around zones of lateral root initiation and around roots hairs, but not around root tips. Such biosensors can reveal intriguing aspects of the environment and the physiology of the free-living soil S. meliloti before and during the establishment of nodulation, and they provide a nondestructive, spatially explicit method for examining rhizosphere soil chemical composition.
Collapse
Affiliation(s)
- R M Bringhurst
- Departments of Molecular and Cell Biology, and Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | | | | |
Collapse
|
91
|
Leveau JH, Lindow SE. Appetite of an epiphyte: quantitative monitoring of bacterial sugar consumption in the phyllosphere. Proc Natl Acad Sci U S A 2001; 98:3446-53. [PMID: 11248098 PMCID: PMC30673 DOI: 10.1073/pnas.061629598] [Citation(s) in RCA: 204] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We report here the construction, characterization, and application of a bacterial bioreporter for fructose and sucrose that was designed to monitor the availability of these sugars to microbial colonizers of the phyllosphere. Plasmid pP(fruB)-gfp[AAV] carries the Escherichia coli fruB promoter upstream from the gfp[AAV] allele that codes for an unstable variant of green fluorescent protein (GFP). In Erwinia herbicola, this plasmid brings about the accumulation of GFP fluorescence in response to both fructose and sucrose. Cells of E. herbicola (pP(fruB)-gfp[AAV]) were sprayed onto bean plants, recovered from leaves at various time intervals after inoculation, and analyzed individually for GFP content by quantitative analysis of digital microscope images. We observed a positive correlation between single-cell GFP accumulation and ribosomal content as determined by fluorescence in situ hybridization, indicating that foliar growth of E. herbicola occurred at the expense of fructose and/or sucrose. One hour after inoculation, nearly all bioreporter cells appeared to be actively engaged in fructose consumption. This fraction dropped to approximately 11% after 7 h and to approximately 1% a day after inoculation. This pattern suggests a highly heterogeneous availability of fructose to individual E. herbicola cells as they colonize the phyllosphere. We estimated that individual cells were exposed to local initial fructose abundances ranging from less than 0.15 pg fructose to more than 4.6 pg.
Collapse
Affiliation(s)
- J H Leveau
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | | |
Collapse
|
92
|
Lugtenberg BJ, Dekkers L, Bloemberg GV. Molecular determinants of rhizosphere colonization by Pseudomonas. ANNUAL REVIEW OF PHYTOPATHOLOGY 2001; 39:461-90. [PMID: 11701873 DOI: 10.1146/annurev.phyto.39.1.461] [Citation(s) in RCA: 355] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Rhizosphere colonization is one of the first steps in the pathogenesis of soilborne microorganisms. It can also be crucial for the action of microbial inoculants used as biofertilizers, biopesticides, phytostimulators, and bioremediators. Pseudomonas, one of the best root colonizers, is therefore used as a model root colonizer. This review focuses on (a) the temporal-spatial description of root-colonizing bacteria as visualized by confocal laser scanning microscopal analysis of autofluorescent microorganisms, and (b) bacterial genes and traits involved in root colonization. The results show a strong parallel between traits used for the colonization of roots and of animal tissues, indicating the general importance of such a study. Finally, we identify several noteworthy areas for future research.
Collapse
Affiliation(s)
- B J Lugtenberg
- Leiden University, Institute of Molecular Plant Sciences, Clusius Laboratory Wassenaarseweg 64, 2333 AL Leiden, The Netherlands.
| | | | | |
Collapse
|
93
|
Ramos C, Molina L, Mølbak L, Ramos JL, Molin S. A bioluminescent derivative of Pseudomonas putida KT2440 for deliberate release into the environment. FEMS Microbiol Ecol 2000; 34:91-102. [PMID: 11102686 DOI: 10.1111/j.1574-6941.2000.tb00758.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Recombinant derivatives of Pseudomonas putida strain KT2440 are of potential interest as microbial inoculants to be deliberately released for agricultural applications. To facilitate tracking of this strain and its derivatives after introduction into the environment, a mini-Tn5-'luxAB transposon was introduced into the chromosome of P. putida KT2440, yielding strain P. putida S1B1. Sequencing of the DNA region located upstream of the 'luxAB genes and similarity search with the P. putida KT2440 genome sequence, localized the transposon within a 3021-bp open reading frame (ORF), whose translated sequence showed significant similarity with the hypothetical YdiJ proteins from Escherichia coli and Haemophilus influenzae. A second ORF adjacent to and divergent from the ydiJ sequence was also found and showed significant homology with various LysR-type transcriptional activator proteins from several bacteria. Disruption of the ydiJ locus in P. putida S1B1 did not affect the survival of the strain in unvegetated or vegetated soils. Bioluminescent detection of P. putida S1B1 cells enriched in selective media directly from soil allowed detection of culturable cells in soil samples over a period of at least 8 months. The addition of the luxAB biomarker facilitates tracking in the root system of several plant species grown under sterile and non-sterile conditions. The correlation of the bioluminescent phenotype with the growth activity of P. putida S1B1 cells colonizing the root system of barley and corn plants was estimated by monitoring ribosomal contents using quantitative hybridization with fluorescence-labeled ribosomal RNA probes. A correlation between inoculum density, light output, and ribosomal contents was found for P. putida cells colonizing the root system of barley seedlings grown under sterile conditions. Although ribosomal contents, and therefore growth activity, of P. putida S1B1 cells extracted from the rhizosphere of corn plants grown in non-sterile soil were similar to those found in starved cells, the luminescent system permitted non-destructive in situ detection of the strain in the upper root system.
Collapse
|
94
|
Bloemberg GV, Wijfjes AH, Lamers GE, Stuurman N, Lugtenberg BJ. Simultaneous imaging of Pseudomonas fluorescens WCS365 populations expressing three different autofluorescent proteins in the rhizosphere: new perspectives for studying microbial communities. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2000; 13:1170-6. [PMID: 11059483 DOI: 10.1094/mpmi.2000.13.11.1170] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
To visualize simultaneously different populations of pseudomonads in the rhizosphere at the single cell level in a noninvasive way, a set of four rhizosphere-stable plasmids was constructed expressing three different derivatives of the green fluorescent protein (GFP), namely enhanced cyan (ECFP), enhanced green (EGFP), enhanced yellow (EYFP), and the recently published red fluorescent protein (RFP; DsRed). Upon tomato seedling inoculation with Pseudomonas fluorescens WCS365 populations, each expressing a different autofluorescent protein followed by plant growth for 5 days, the rhizosphere was inspected using confocal laser scanning microscopy. We were able to visualize simultaneously and clearly distinguish from each other up to three different bacterial populations. Microcolonies consisting of mixed populations were frequently observed at the base of the root system, whereas microcolonies further toward the root tip predominantly consisted of a single population, suggesting a dynamic behavior of microcolonies over time. Since the cloning vector pME6010 has a broad host range for gram-negative bacteria, the constructed plasmids can be used for many purposes. In particular, they will be of great value for the analysis of microbial communities, for example in processes such as biocontrol, biofertilization, biostimulation, competition for niches, colonization, and biofilm formation.
Collapse
Affiliation(s)
- G V Bloemberg
- Leiden University, Institute of Molecular Plant Sciences, The Netherlands.
| | | | | | | | | |
Collapse
|
95
|
Affiliation(s)
- V de Lorenzo
- Centro Nacional de Biotecnología CSIC, Campus de Cantoblanco, Madrid, Spain
| |
Collapse
|