51
|
Barrett S, Delaney S, Kavanagh K, Montagner D. Evaluation of in vitro and in vivo antibacterial activity of novel Cu(II)-steroid complexes. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.04.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
52
|
Staphylococcus aureus Toxins and Their Molecular Activity in Infectious Diseases. Toxins (Basel) 2018; 10:toxins10060252. [PMID: 29921792 PMCID: PMC6024779 DOI: 10.3390/toxins10060252] [Citation(s) in RCA: 270] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 12/04/2022] Open
Abstract
Staphylococcus aureus is a microorganism resident in the skin and nasal membranes with a dreadful pathogenic potential to cause a variety of community and hospital-acquired infections. The frequency of these infections is increasing and their treatment is becoming more difficult. The ability of S. aureus to form biofilms and the emergence of multidrug-resistant strains are the main reasons determining the challenge in dealing with these infections. S. aureus' infectious capacity and its success as a pathogen is related to the expression of virulence factors, among which the production of a wide variety of toxins is highlighted. For this reason, a better understanding of S. aureus toxins is needed to enable the development of new strategies to reduce their production and consequently improve therapeutic approaches. This review focuses on understanding the toxin-based pathogenesis of S. aureus and their role on infectious diseases.
Collapse
|
53
|
Wang X, Liu Q, Zhang H, Li X, Huang W, Fu Q, Li M. Molecular Characteristics of Community-Associated Staphylococcus aureus Isolates From Pediatric Patients With Bloodstream Infections Between 2012 and 2017 in Shanghai, China. Front Microbiol 2018; 9:1211. [PMID: 29928269 PMCID: PMC5997952 DOI: 10.3389/fmicb.2018.01211] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 05/17/2018] [Indexed: 11/13/2022] Open
Abstract
Staphylococcus aureus is known as an invasive human pathogen, resulting in significant morbidity and mortality worldwide; however, information on community-associated S. aureus (CA-SA) from bloodstream infections (BSI) in children in China remains scarce. This study aimed to investigate the molecular characteristics of 78 CA-SA isolates recovered from pediatric patients with BSI between 2012 and 2017 in Shanghai. All isolates including 51 (65.4%) methicillin-susceptible S. aureus (MSSA) and 27 (34.6%) methicillin-resistant S. aureus (MRSA) isolates were characterized based on antimicrobial resistance, virulence genes, multilocus sequence typing (MLST), spa, and SCCmec typing. A total of 18 distinct sequence types (STs) and 44 spa types were identified. ST188 and ST7 were the predominant MSSA clones and ST59-MRSA-SCCmecIV/V was the most common MRSA clone. Spa t189 (9.0%, 7/78) was the most common spa type. SCCmec types IV and V were observed at frequencies of 59.3 and 40.7%, respectively. Notably, 40 (51.3%) S. aureus BSI strains were multidrug resistant (MDR), and these were mostly resistant to penicillin, erythromycin, and clindamycin. MRSA strains were associated with substantially higher rates of resistance to multiple antibiotics than MSSA strains. Fifty (64.1%, 50/78) isolates, including 19 (70.3%) MRSA isolates, harbored ≥ 10 tested virulence genes, as evaluated in this study. Ten (37.0%) MRSA isolates and four (7.8%) MSSA isolates harbored the gene encoding Panton-Valentine leukocidin (PVL). Virulence genes analysis showed diversity in different clones; the seb-sek-seq genes were present in all ST59 strains, whereas the seg-sei-sem-sen-seo genes were present in different clones including ST5, ST20, ST22, ST25, ST26, ST30, ST121, and ST487 strains. In conclusion, this study revealed that community-associated S. aureus strains from BSI in children demonstrated considerable genetic diversity, and identified major genotypes of CA-MRSA and CA-MSSA, with a high prevalence of CA-MRSA. Furthermore, major genotypes were frequently associated with specific antimicrobial resistance and toxin gene profiles. Understanding the molecular characteristics of those strains might provide further insights regarding the spread of BSI S. aureus among children between communities in China.
Collapse
Affiliation(s)
- Xing Wang
- Department of Laboratory Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Liu
- Department of Laboratory Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - He Zhang
- Department of Emergency, Hebei Provincial Hospital of Traditional Chinese Medicine, Hebei, China
| | - Xia Li
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, United States
| | - Weichun Huang
- Department of Laboratory Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qihua Fu
- Department of Laboratory Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Li
- Department of Laboratory Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
54
|
Influence of subinhibitory concentrations of NH125 on biofilm formation & virulence factors of Staphylococcus aureus. Future Med Chem 2018; 10:1319-1331. [PMID: 29846088 DOI: 10.4155/fmc-2017-0286] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
AIM l-benzyl-3-cetyl-2-methylimidazolium iodide (NH125) can inhibit Staphylococcus aureus growth. We investigated the effects of sub-MIC concentrations of NH125 on S. aureus biofilm and virulence. Methodology & results: Three strains of S. aureus were tested. Sub-lethal concentrations of NH125 repressed biofilm formation. At partial sub-MICs, NH125 downregulated the expression of most virulence, while strain-dependent effects were found in the production of α-hemolysin, δ-hemolysin, coagulase and nuclease. In Galleria mellonella model, methicillin-resistant S. aureus pre-exposed to NH125 demonstrated significantly lower killing (p = 0.032 for 1/16 and 1/8 MICs; 0.008 for 1/4 MIC; and 0.001 for 1/2 MIC). CONCLUSION Sub-MIC concentrations of NH125 inhibited biofilm formation and virulence of S. aureus. These findings provide further support for evaluating the clinical efficacy of NH125 in staphylococcal infection.
Collapse
|
55
|
Marek A, Pyzik E, Stępień-Pyśniak D, Urban-Chmiel R, Jarosz ŁS. Association Between the Methicillin Resistance of Staphylococcus aureus Isolated from Slaughter Poultry, Their Toxin Gene Profiles and Prophage Patterns. Curr Microbiol 2018; 75:1256-1266. [PMID: 29845336 PMCID: PMC6132865 DOI: 10.1007/s00284-018-1518-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 05/24/2018] [Indexed: 11/29/2022]
Abstract
In this work, 85 strains of Staphylococcus aureus were isolated from samples taken from slaughter poultry in Poland. Attempts were made to determine the prophage profile of the strains and to investigate the presence in their genome of genes responsible for the production of five classical enterotoxins (A–E), toxic shock syndrome toxin (TSST-1), exfoliative toxins (ETA and ETB) and staphylokinase (SAK). For this purpose, multiplex PCR was performed using primer-specific pairs for targeted genes. The presence of the mecA gene was found in 26 strains (30.6%). The genomes of one of the methicillin-resistant S. aureus (MRSA) strains and two methicillin-sensitive S. aureus (MSSA) strains contained the gene responsible for the production of enterotoxin A. Only one MRSA strain and two MSSA strains showed the presence of the toxic shock syndrome toxin (tst) gene. Only one of the MSSA strains had the gene (eta) responsible for the production of exfoliative toxins A. The presence of the staphylokinase gene (sak) was confirmed in 13 MRSA strains and in 5 MSSA strains. The study results indicated a high prevalence of prophages among the test isolates of Staphylococcus aureus. In all, 15 prophage patterns were observed among the isolates. The presence of 77-like prophages incorporated into bacterial genome was especially often demonstrated. Various authors emphasize the special role of these prophages in the spread of virulence factors (staphylokinase, enterotoxin A) not only within strains of the same species but also between species and even types of bacteria.
Collapse
Affiliation(s)
- Agnieszka Marek
- Sub-Department of Preventive Veterinary and Avian Diseases, Institute of Biological Bases of Animal Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 13, 20-950, Lublin, Poland.
| | - Ewelina Pyzik
- Sub-Department of Preventive Veterinary and Avian Diseases, Institute of Biological Bases of Animal Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 13, 20-950, Lublin, Poland
| | - Dagmara Stępień-Pyśniak
- Sub-Department of Preventive Veterinary and Avian Diseases, Institute of Biological Bases of Animal Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 13, 20-950, Lublin, Poland
| | - Renata Urban-Chmiel
- Sub-Department of Preventive Veterinary and Avian Diseases, Institute of Biological Bases of Animal Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 13, 20-950, Lublin, Poland
| | - Łukasz S Jarosz
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Głęboka 30, 20-612, Lublin, Poland
| |
Collapse
|
56
|
Olaniyi RO, Pancotto L, Grimaldi L, Bagnoli F. Deciphering the Pathological Role of Staphylococcal α-Toxin and Panton-Valentine Leukocidin Using a Novel Ex Vivo Human Skin Model. Front Immunol 2018; 9:951. [PMID: 29867940 PMCID: PMC5953321 DOI: 10.3389/fimmu.2018.00951] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 04/17/2018] [Indexed: 11/13/2022] Open
Abstract
Staphylococcus aureus alpha-toxin and Panton-Valentine leukocidin (PVL) have been reported to play critical roles in different animal models of skin infection. These models, however, do not completely recapitulate the human disease due to the host specificity of these toxins as well as the intrinsic anatomical and immunological differences between animals and humans. Human skin explants represent a valid alternative to animal models for studying skin infections. Herein, we developed a human skin explant wound model to study the pathogenic role of alpha-toxin and PVL; inflammatory responses elicited by these toxins; and the neutralizing ability of antibodies to mitigate skin damage. Different concentrations of alpha-toxin and/PVL were applied to superficial wounds on human skin explants. Treatment with alpha-toxin resulted in high tissue toxicity and loss of skin epithelial integrity. PVL induced a milder but significant toxicity with no loss of skin structural integrity. The combination of both toxins resulted in increased tissue toxicity as compared with the individual toxins alone. Treatment of the skin with these toxins also resulted in a decrease of CD45-positive cells in the epidermis. In addition, both toxins induced the release of pro-inflammatory cytokines and chemokines. Finally, antibodies raised against alpha-toxin were able to mitigate tissue toxicity in a concentration-dependent manner. Results from this study confirm the key role of α-toxin in staphylococcal infection of the human skin and suggest a possible cooperation of the two toxins in tissue pathology.
Collapse
Affiliation(s)
| | | | - Luca Grimaldi
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | | |
Collapse
|
57
|
Niu X, Gao Y, Yu Y, Yang Y, Wang G, Sun L, Wang H. Molecular Modelling reveals the inhibition mechanism and structure-activity relationship of curcumin and its analogues to Staphylococcal aureus Sortase A. J Biomol Struct Dyn 2018; 37:1220-1230. [PMID: 29546799 DOI: 10.1080/07391102.2018.1453380] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Previous studies found that the activity of Sortase A, a bacterial surface protein from Staphylococcus aureus, was inhibited by curcumin and its analogues. To explore this inhibitory mechanism, Sortase A and its inhibitors in complex systems were studied by molecular docking, molecular modelling, binding energy decomposition calculation and steered molecular dynamics simulations. Energy decomposition analysis indicated that PRO-163, LEU-169, GLN-172, ILE-182 and ILE-199 are key residues in Sortase A-inhibitor complexes. Furthermore, interactions between the methoxyl group on the benzene ring in the conjugated molecule (curcumin, demethoxycurcumin, bisdemethoxycurcumin) and VAL-168, LEU-169 and GLN-172 induce the inhibitory activity based on the energy decomposition and distance analyses between the whole residues and inhibitors. However, because of its coiled structure, the non-conjugated molecule, tetrahydrocurcumin, with key residues in the binding sites of Sortase A, interacted weakly with SrtA, leading to the loss of inhibitory activity. Based on these results, the methoxyl group on the benzene ring in the conjugated molecule largely influenced the inhibitory activity of the Sortase A inhibitors.
Collapse
Affiliation(s)
- Xiaodi Niu
- a College of Food Science and Engineering , Jilin University , Changchun , China
| | - Yawen Gao
- a College of Food Science and Engineering , Jilin University , Changchun , China
| | - Yiding Yu
- a College of Food Science and Engineering , Jilin University , Changchun , China
| | - Yanan Yang
- a College of Food Science and Engineering , Jilin University , Changchun , China
| | - Guizhen Wang
- a College of Food Science and Engineering , Jilin University , Changchun , China
| | - Lin Sun
- a College of Food Science and Engineering , Jilin University , Changchun , China
| | - Hongsu Wang
- a College of Food Science and Engineering , Jilin University , Changchun , China
| |
Collapse
|
58
|
Ziesemer S, Eiffler I, Schönberg A, Müller C, Hochgräfe F, Beule AG, Hildebrandt JP. Staphylococcus aureusα-Toxin Induces Actin Filament Remodeling in Human Airway Epithelial Model Cells. Am J Respir Cell Mol Biol 2018; 58:482-491. [DOI: 10.1165/rcmb.2016-0207oc] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Sabine Ziesemer
- Animal Physiology and Biochemistry, Zoological Institute, and
| | - Ina Eiffler
- Animal Physiology and Biochemistry, Zoological Institute, and
| | | | | | - Falko Hochgräfe
- Junior Research Group Pathoproteomics, Competence Center Functional Genomics, Ernst-Moritz-Arndt-University, Greifswald, Germany
| | - Achim G. Beule
- Department of Otorhinolaryngology, Head and Neck Surgery, Greifswald University Hospital, Greifswald, Germany; and
- Department of Otorhinolaryngology, University Hospital, Münster, Germany
| | | |
Collapse
|
59
|
Characterization of Human Type C Enterotoxin Produced by Clinical S. epidermidis Isolates. Toxins (Basel) 2018; 10:toxins10040139. [PMID: 29584685 PMCID: PMC5923305 DOI: 10.3390/toxins10040139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/19/2018] [Accepted: 03/20/2018] [Indexed: 11/17/2022] Open
Abstract
Staphylococcal Enterotoxins (SEs) are superantigens (SAg) originally produced by S. aureus, but their presence in coagulase negative staphylococci (CNS) has long been suspected. This study aims to better characterize a novel C-like enterotoxin expressed by clinical S. epidermidis strains, called SECepi. We isolated and characterized SECepi for its molecular and functional properties. The toxin was structurally modeled according to its significant similarity with S. aureus SEC3. Most of SEC amino acid residues important for the formation of the trimolecular Major Histocompatibility Complex II MHCII-SEC-T Cell Receptor TCR complex are conserved in SECepi. The functional properties of SECepi were estimated after cloning, expression in E. coli, and purification. The recombinant SECepi toxin exhibits biological characteristics of a SAg including stimulation of human T-cell mitogenicity, inducing and releasing high cytokines levels: IL-2, -4, -6, -8, -10, IFN-γ, TNF-α and GM-CSF at a dose as low as 3.7 pM. Compared to SECaureus, the production of pro-sepsis cytokine IL-6 is significantly higher with SECepi-activated lymphocytes. Furthermore, SECepi is stable to heat, pepsin or trypsin hydrolysis. The SECepi superantigen produced by CNS is functionally very close to that of S. aureus, possibly inducing a systemic inflammatory response at least comparable to that of SECaureus, and may account for S. epidermidis pathogenicity.
Collapse
|
60
|
Detección y expresión de superantígenos y de resistencia antimicrobiana en aislamientos obtenidos de mujeres portadoras de Staphylococcus aureus que cuidan y alimentan niños. BIOMEDICA 2018; 38:96-104. [PMID: 29676866 DOI: 10.7705/biomedica.v38i0.3653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 05/10/2017] [Indexed: 11/21/2022]
Abstract
Introducción. Staphylococcus aureus coloniza mucosas y piel, y causa graves infecciones en el hombre y los animales. Es importante establecer el estatus de portadoras de cepas enterotoxigénicas de este microorganismo en manipuladoras de alimentos, con el fin de prevenir intoxicaciones alimentarias.Objetivo. Establecer las correlaciones entre los genes de enterotoxinas clásicas, el gen tsst-1, la producción de toxinas en cultivo y la resistencia antimicrobiana en aislamientos de S. aureus provenientes de manipuladoras de alimentos que cuidan niños en sus comunidades.Materiales y métodos. Se cultivaron muestras de las fosas nasales y las yemas de los dedos de las manos, y se identificó S. aureus empleando las pruebas de rutina y métodos automatizados. La extracción de ADN se hizo mediante el método de bromuro de cetil-trimetil-amonio (Cetyl-Trimethyl-Ammonium Bromide, CTAB) modificado. Para la detección de superantígenos se emplearon pruebas de reacción en cadena de la polimerasa (PCR) simple y múltiple, y para la de toxinas, estuches comerciales.Resultados. Se encontró que el 22,0 % de los aislamientos correspondía a portadoras de S. aureus: 17,0 % en los aislamientos de fosas nasales; 5,0 % en los de las manos y 6,7 % simultáneamente en los dos sitios. La prevalencia de superantígenos fue de 73,7 %. El genotipo más frecuente fue el seatsst-1, con 10,0 %. La resistencia a un solo antibiótico fue de 74,7 % y, a cuatro antibióticos, de 3,2 %; de los aislamientos, el 93,7 % correspondía a cepas productoras de betalactamasas. La detección de genes clásicos y de tsst-1 mediante PCR fue de 48,4 % y la de toxinas en el sobrenadante, de 42,1 %,con una correlación de 95,7 %. Las mayores correlaciones se establecieron entre las toxinas TSST-1 (22/22) y SEA (17/18). La correlación del gen tsst-1 con la proteína y la resistencia fue de 100 %. Todos los aislamientos con el genotipo sea-tsst-1 t fueron resistentes y productores de las toxinas.Conclusión. La tasa de aislamientos de S. aureus toxigénicos y resistentes obtenidos de mujeres que cuidan y preparan alimentos para niños fue de más de 70 %, lo que demostró su gran virulencia y la consecuente necesidad de aplicar estrictamente las normas higiénicas y sanitarias vigentes para evitar el riesgo de intoxicación alimentaria.
Collapse
|
61
|
Speziale P, Rindi S, Pietrocola G. Antibody-Based Agents in the Management of Antibiotic-Resistant Staphylococcus aureus Diseases. Microorganisms 2018. [PMID: 29533985 PMCID: PMC5874639 DOI: 10.3390/microorganisms6010025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Staphylococcus aureus is a human pathogen that can cause a wide spectrum of diseases, including sepsis, pneumonia, arthritis, and endocarditis. Ineffective treatment of a number of staphylococcal infections with antibiotics is due to the development and spread of antibiotic-resistant strains following decades of antibiotic usage. This has generated renewed interest within the scientific community in alternative therapeutic agents, such as anti-S. aureus antibodies. Although the role of antibodies in the management of S. aureus diseases is controversial, the success of this pathogen in neutralizing humoral immunity clearly indicates that antibodies offer the host extensive protection. In this review, we report an update on efforts to develop antibody-based agents, particularly monoclonal antibodies, and their therapeutic potential in the passive immunization approach to the treatment and prevention of S. aureus infections.
Collapse
Affiliation(s)
- Pietro Speziale
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy.
- Department of Industrial and Information Engineering, University of Pavia, 27100 Pavia, Italy.
| | - Simonetta Rindi
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy.
| | | |
Collapse
|
62
|
Fisher EL, Otto M, Cheung GYC. Basis of Virulence in Enterotoxin-Mediated Staphylococcal Food Poisoning. Front Microbiol 2018; 9:436. [PMID: 29662470 PMCID: PMC5890119 DOI: 10.3389/fmicb.2018.00436] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/26/2018] [Indexed: 12/17/2022] Open
Abstract
The Staphylococcus aureus enterotoxins are a superfamily of secreted virulence factors that share structural and functional similarities and possess potent superantigenic activity causing disruptions in adaptive immunity. The enterotoxins can be separated into two groups; the classical (SEA-SEE) and the newer (SEG-SElY and counting) enterotoxin groups. Many members from both these groups contribute to the pathogenesis of several serious human diseases, including toxic shock syndrome, pneumonia, and sepsis-related infections. Additionally, many members demonstrate emetic activity and are frequently responsible for food poisoning outbreaks. Due to their robust tolerance to denaturing, the enterotoxins retain activity in food contaminated previously with S. aureus. The genes encoding the enterotoxins are found mostly on a variety of different mobile genetic elements. Therefore, the presence of enterotoxins can vary widely among different S. aureus isolates. Additionally, the enterotoxins are regulated by multiple, and often overlapping, regulatory pathways, which are influenced by environmental factors. In this review, we also will focus on the newer enterotoxins (SEG-SElY), which matter for the role of S. aureus as an enteropathogen, and summarize our current knowledge on their prevalence in recent food poisoning outbreaks. Finally, we will review the current literature regarding the key elements that govern the complex regulation of enterotoxins, the molecular mechanisms underlying their enterotoxigenic, superantigenic, and immunomodulatory functions, and discuss how these activities may collectively contribute to the overall manifestation of staphylococcal food poisoning.
Collapse
Affiliation(s)
- Emilie L Fisher
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Gordon Y C Cheung
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
63
|
Detection of methicillin resistant and toxin-associated genes in Staphylococcus aureus. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2018. [DOI: 10.1016/j.bjbas.2017.07.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
64
|
Staphylococcal Osteomyelitis: Disease Progression, Treatment Challenges, and Future Directions. Clin Microbiol Rev 2018; 31:31/2/e00084-17. [PMID: 29444953 DOI: 10.1128/cmr.00084-17] [Citation(s) in RCA: 299] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Osteomyelitis is an inflammatory bone disease that is caused by an infecting microorganism and leads to progressive bone destruction and loss. The most common causative species are the usually commensal staphylococci, with Staphylococcus aureus and Staphylococcus epidermidis responsible for the majority of cases. Staphylococcal infections are becoming an increasing global concern, partially due to the resistance mechanisms developed by staphylococci to evade the host immune system and antibiotic treatment. In addition to the ability of staphylococci to withstand treatment, surgical intervention in an effort to remove necrotic and infected bone further exacerbates patient impairment. Despite the advances in current health care, osteomyelitis is now a major clinical challenge, with recurrent and persistent infections occurring in approximately 40% of patients. This review aims to provide information about staphylococcus-induced bone infection, covering the clinical presentation and diagnosis of osteomyelitis, pathophysiology and complications of osteomyelitis, and future avenues that are being explored to treat osteomyelitis.
Collapse
|
65
|
Kurisaka C, Oku T, Itoh S, Tsuji T. Role of sialic acid-containing glycans of matrix metalloproteinase-9 (MMP-9) in the interaction between MMP-9 and staphylococcal superantigen-like protein 5. Microbiol Immunol 2018; 62:168-175. [PMID: 29328525 DOI: 10.1111/1348-0421.12573] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 12/16/2017] [Accepted: 01/08/2018] [Indexed: 12/17/2022]
Abstract
Staphylococcal superantigen-like proteins (SSL) show no superantigenic activity but have recently been considered to act as immune suppressors. It was previously reported that SSL5 bound to P-selectin glycoprotein ligand-1 (PSGL-1) and matrix metalloproteinase (MMP)-9, leading to inhibition of leukocyte adhesion and invasion. These interactions were suggested to depend on sialic acid-containing glycans of MMP-9, but the roles of sialic acids in the interaction between SSL5 and MMP-9 are still controversial. In the present study, we prepared recombinant glutathione S-transferase-tagged SSL5 (GST-SSL5) and analyzed its binding capacity to MMP-9 by pull-down assay after various modifications of its carbohydrate moieties. We observed that GST-SSL5 specifically bound to MMP-9 from a human monocytic leukemia cell line (THP-1 cells) and inhibited its enzymatic activity in a concentration-dependent manner. After MMP-9 was treated with neuraminidase, its binding activity towards GST-SSL5 was markedly decreased. Furthermore, recombinant MMP-9 produced by sialic acid-deficient Lec2 mutant cells showed much lower affinity for SSL5 than that produced by wild-type CHO-K1 cells. Treatment of MMP-9 with PNGase F to remove N-glycan resulted in no significant change in the GST-SSL5/MMP-9 interaction. In contrast, the binding of GST-SSL5 to MMP-9 secreted from THP-1 cells cultured in the presence of an inhibitor for the biosynthesis of O-glycan (benzyl-GalNAc) was weaker than the binding of GST-SSL5 to MMP-9 secreted from untreated cells. These results strongly suggest the importance of the sialic acid-containing O-glycans of MMP-9 for the interaction of MMP-9 with GST-SSL5.
Collapse
Affiliation(s)
- Chisato Kurisaka
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Teruaki Oku
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Saotomo Itoh
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Tsutomu Tsuji
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| |
Collapse
|
66
|
Gruda MC, Ruggeberg KG, O’Sullivan P, Guliashvili T, Scheirer AR, Golobish TD, Capponi VJ, Chan PP. Broad adsorption of sepsis-related PAMP and DAMP molecules, mycotoxins, and cytokines from whole blood using CytoSorb® sorbent porous polymer beads. PLoS One 2018; 13:e0191676. [PMID: 29370247 PMCID: PMC5784931 DOI: 10.1371/journal.pone.0191676] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 01/09/2018] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVE Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. In sepsis and septic shock, pathogen-associated molecular pattern molecules (PAMPS), such as bacterial exotoxins, cause direct cellular damage and/or trigger an immune response in the host often leading to excessive cytokine production, a maladaptive systemic inflammatory response syndrome response (SIRS), and tissue damage that releases DAMPs, such as activated complement and HMGB-1, into the bloodstream causing further organ injury. Cytokine reduction using extracorporeal blood filtration has been correlated with improvement in survival and clinical outcomes in experimental studies and clinical reports, but the ability of this technology to reduce a broader range of inflammatory mediators has not been well-described. This study quantifies the size-selective adsorption of a wide range of sepsis-related inflammatory bacterial and fungal PAMPs, DAMPs and cytokines, in a single compartment, in vitro whole blood recirculation system. MEASUREMENTS AND MAIN RESULTS Purified proteins were added to whole blood at clinically relevant concentrations and recirculated through a device filled with CytoSorb® hemoadsorbent polymer beads (CytoSorbents Corporation, USA) or control (no bead) device in vitro. Except for the TNF-α trimer, hemoadsorption through porous polymer bead devices reduced the levels of a broad spectrum of cytokines, DAMPS, PAMPS and mycotoxins by more than 50 percent. CONCLUSIONS This study demonstrates that CytoSorb® hemoadsorbent polymer beads efficiently remove a broad spectrum of toxic PAMPS and DAMPS from blood providing an additional means of reducing the uncontrolled inflammatory cascade that contributes to a maladaptive SIRS response, organ dysfunction and death in patients with a broad range of life-threatening inflammatory conditions such as sepsis, toxic shock syndrome, necrotizing fasciitis, and other severe inflammatory conditions.
Collapse
Affiliation(s)
- Maryann C. Gruda
- CytoSorbents Corporation, Monmouth Junction, New Jersey, United States of America
| | | | - Pamela O’Sullivan
- CytoSorbents Corporation, Monmouth Junction, New Jersey, United States of America
| | - Tamaz Guliashvili
- CytoSorbents Corporation, Monmouth Junction, New Jersey, United States of America
| | - Andrew R. Scheirer
- CytoSorbents Corporation, Monmouth Junction, New Jersey, United States of America
| | - Thomas D. Golobish
- CytoSorbents Corporation, Monmouth Junction, New Jersey, United States of America
| | - Vincent J. Capponi
- CytoSorbents Corporation, Monmouth Junction, New Jersey, United States of America
| | - Phillip P. Chan
- CytoSorbents Corporation, Monmouth Junction, New Jersey, United States of America
| |
Collapse
|
67
|
Li X, Zhou Y, Zhan X, Huang W, Wang X. Breast Milk Is a Potential Reservoir for Livestock-Associated Staphylococcus aureus and Community-Associated Staphylococcus aureus in Shanghai, China. Front Microbiol 2018; 8:2639. [PMID: 29375508 PMCID: PMC5768657 DOI: 10.3389/fmicb.2017.02639] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 12/18/2017] [Indexed: 11/13/2022] Open
Abstract
Breast milk is the first choice in feeding newborn infants and provides multiple benefits for their growth and development. Staphylococcus aureus usually exists in breast milk and is considered one of the most important causative infective agents. To be effective in preventing and controlling S. aureus infections among infants, the aim of this study was to determine the occurrence and molecular characteristics of S. aureus isolated from 1102 samples of breast milk between 2015 and 2016 in Shanghai, China. Out of 71 S. aureus strains isolated, 15 (21.1%, 15/71) were MRSA and all the strains were characterized by spa typing, Multi-Locus Sequence Typing, SCCmec typing, antibiotic resistance testing and virulence-associated genes. A total of 18 distinct sequence types (STs) and 36 spa types were identified within the 71 isolates, among which the most frequently represented was ST398 (19.7%, 14/71), followed by ST7 (18.3%, 13/71), ST59 (16.9%, 12/71). The three predominant STs accounted for more than one half of all S. aureus isolates. The most prevalent spa types were t091 (12.7%, 9/71), followed by t571 (8.5%, 6/71), t189 (7.0%, 5/71), t034 (5.6%, 4/71), t437 (5.6%, 4/71), and t701 (4.2%, 3/71). All MRSA isolates belonged to SCCmec IV and V, accounting for 66.7 and 33.3% respectively. Notably, 23 (32.4%) S. aureus strains were multidrug resistance (MDR), including 4 (5.6%) MRSA and 19 (26.8%) MSSA strains, and MDR isolates were mostly resistant to penicillin, erythromycin and clindamycin. All isolates exhibited simultaneous carriage of at least 5 of 33 possible virulence genes and the most prevalent genes detected were icaA (100%), clfA (100%), hla (100%), sdrC (94.4%), hlg2 (88.7%), lukE (57.8%). 39 (54.9%, 39/71) isolates, including 9 (12.7%) of MRSA isolates, harbored ≥10 tested virulence genes evaluated in this study. The pvl gene was detected in 8 strains, which represented 5 different STs, with ST59 being the most one. Overall, our findings showed that S. aureus strains isolated from breast milk were mainly MSSA (78.9%, 56/71) and exhibited high genetic diversity in Shanghai area of China. Breast milk was a reservoir for LA-SA (ST398) and CA-SA (ST59), which was likely a vehicle for transmission of multidrug-resistant S. aureus and MRSA lineages. This is a potential public health risk and highlights the need for good hygiene practices to reduce the risk of infant infections.
Collapse
Affiliation(s)
- Xiaoliang Li
- Department of Laboratory Medicine, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yun Zhou
- Department of Intensive Care Unit, Huashan Hospital, Fudan University, Shanghai, China
| | - Xianlin Zhan
- Department of Laboratory Medicine, The 455th Hospital of Chinese People's Liberation Army, Shanghai, China
| | - Weichun Huang
- Department of Laboratory Medicine, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xing Wang
- Department of Laboratory Medicine, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
68
|
Alizadeh N, Memar MY, Mehramuz B, Abibiglou SS, Hemmati F, Samadi Kafil H. Current advances in aptamer-assisted technologies for detecting bacterial and fungal toxins. J Appl Microbiol 2018; 124:644-651. [PMID: 29171901 DOI: 10.1111/jam.13650] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/20/2017] [Accepted: 11/15/2017] [Indexed: 01/01/2023]
Abstract
Infectious diseases are among the common leading causes of morbidity and mortality worldwide. Associated with the emergence of new infectious diseases, the increasing number of antimicrobial-resistant isolates presents a serious threat to public health and hospitalized patients. A microbial pathogen may elicit several host responses and use a variety of mechanisms to evade host defences. These methods and mechanisms include capsule, lipopolysaccharides or cell wall components, adhesions and toxins. Toxins inhibit phagocytosis, cause septic shock and host cell damages by binding to host surface receptors and invasion. Bacterial and fungal pathogens are able to apply many different toxin-dependent mechanisms to disturb signalling pathways and the structural integrity of host cells for establishing and maintaining infections Initial techniques for analysis of bacterial toxins were based on in vivo or in vitro assessments. There is a permanent demand for appropriate detection methods which are affordable, practical, careful, rapid, sensitive, efficient and economical. Aptamers are DNA or RNA oligonucleotides that are selected by systematic evolution of ligands using exponential enrichment (SELEX) methods and can be applied in diagnostic applications. This review provides an overview of aptamer-based methods as a novel approach for detecting toxins in bacterial and fungal pathogens.
Collapse
Affiliation(s)
- N Alizadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - M Y Memar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - B Mehramuz
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - S S Abibiglou
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - F Hemmati
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - H Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Iranian Center of Excellence in Health Management, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
69
|
Hu DL, Ono HK, Isayama S, Okada R, Okamura M, Lei LC, Liu ZS, Zhang XC, Liu MY, Cui JC, Nakane A. Biological characteristics of staphylococcal enterotoxin Q and its potential risk for food poisoning. J Appl Microbiol 2017; 122:1672-1679. [PMID: 28375567 DOI: 10.1111/jam.13462] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/08/2017] [Accepted: 03/24/2017] [Indexed: 11/30/2022]
Abstract
AIMS To elucidate the biological characteristics and stability of a newly identified staphylococcal enterotoxin Q (SEQ) against heating and digestive enzymes and to evaluate the risk of seq-harbouring Staphylococcus aureus in food poisoning. METHODS AND RESULTS Purified SEQ was treated with heating, pepsin and trypsin which are related to food cooking, stomach and intestine conditions, respectively. Superantigenic activity of SEQ was assessed by determining the ability of IL-2 induction in mouse spleen cells. The emetic activity of SEQ was assessed using house musk shrew, a small emetic animal model. The results revealed that SEQ exhibits a remarkable resistance to heat treatment and pepsin digestion and has significant superantigenic and emetic activities. Furthermore, a sandwich ELISA for detection of SEQ production was developed, and the results showed that seq-harboring S. aureus isolates produce a large amount of SEQ. CONCLUSIONS The newly identified SEQ had remarkable stability to heat treatment and digestive enzyme degradation and exhibited significant superantigenic and emetic activities. In addition, seq-harbouring S. aureus isolated from food poisoning outbreaks produced a large amount of SEQ, suggesting that seq-harbouring S. aureus could potentially be a hazard for food safety. SIGNIFICANCE AND IMPACT OF THE STUDY This study found, for the first time, that SEQ, a nonclassical SE, had remarkable stability to heat treatment and enzyme degradation and exhibited significant emetic activity, indicating that SEQ is a high-risk toxin in food poisoning.
Collapse
Affiliation(s)
- D-L Hu
- College of Veterinary Medicine, Jilin University, Changchun, Jiling, China.,Department of Zoonoses, Kitasato University School of Veterinary Medicine, Towada, Aomori, Japan.,Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - H K Ono
- Department of Zoonoses, Kitasato University School of Veterinary Medicine, Towada, Aomori, Japan.,Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - S Isayama
- Department of Zoonoses, Kitasato University School of Veterinary Medicine, Towada, Aomori, Japan
| | - R Okada
- Department of Zoonoses, Kitasato University School of Veterinary Medicine, Towada, Aomori, Japan
| | - M Okamura
- Department of Zoonoses, Kitasato University School of Veterinary Medicine, Towada, Aomori, Japan
| | - L C Lei
- College of Veterinary Medicine, Jilin University, Changchun, Jiling, China
| | - Z S Liu
- College of Veterinary Medicine, Jilin University, Changchun, Jiling, China
| | - X-C Zhang
- College of Veterinary Medicine, Jilin University, Changchun, Jiling, China
| | - M Y Liu
- College of Veterinary Medicine, Jilin University, Changchun, Jiling, China
| | - J C Cui
- College of Life Science, Dalian Minzu University, Dalian, Liaoning, China
| | - A Nakane
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| |
Collapse
|
70
|
Awad A, Ramadan H, Nasr S, Ateya A, Atwa S. Genetic Characterization, Antimicrobial Resistance Patterns and Virulence Determinants of Staphylococcus aureus Isolated form Bovine Mastitis. Pak J Biol Sci 2017; 20:298-305. [PMID: 29023054 DOI: 10.3923/pjbs.2017.298.305] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND OBJECTIVE Staphylococcus aureus is commonly associated with mastitis in dairy herds with potential public health implications. This study was conducted to investigate the existence of S. aureus in mastitic milk and to determine the antimicrobial resistance profiles of the isolated strains as well as the resistance and virulence associated genes. MATERIALS AND METHODS Two hundred quarter milk samples were collected from 3 dairy farms at Dakahliya (n = 2) and Damietta (n = 1) Governorates, Egypt from September to December 2016. Conventional culturing and Polymerase Chain Reaction (PCR) assays targeting nuc (thermonuclease) and coa (coagulase) genes were performed. Isolates were tested for its susceptibility against 14 antimicrobial agents using disk diffusion method. All the isolates were screened for the presence of β-lactamases (blaZ, mecA) and virulence associated (pvl and tst) genes by PCR. RESULTS The S. aureus was detected in 42% (84/200) of the total examined milk samples. Regarding the antibiogram results, S. aureus revealed a high resistance against ampicillin (95.2%) and penicillin (83.3%) and a lower resistance was observed against gentamicin (23.8%), amikacin (16.7%) and ciprofloxacin (14.3%). Multidrug resistances were detected in 83.3% of the isolated S. aureus. Of the 70 penicillin-resistant S. aureus isolates, blaZ gene was identified in 67 (95.7%) isolates. Fifty percent of S. aureus isolates harbored the specific amplicon of mecA gene. Markedly, all mecA positive strains displayed multidrug resistance and were also positive for blaZ gene. The virulence determinants pvl and tst were detected in 7.1 and 11.9% of the isolated S. aureus, respectively. CONCLUSION Presence of multidrug resistant and toxin producing S. aureus in dairy farms pose a major risk to public health. Therefore, this study highlighted the importance of developing an efficient control program to inhibit the transmission of S. aureus, particularly multidrug resistant strains to humans.
Collapse
Affiliation(s)
- Amal Awad
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Mansoura University, 35516 Mansoura, Egyp
| | - Hazem Ramadan
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, 35516 Mansoura, Egypt
| | - Sherif Nasr
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Ahmed Ateya
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Mansoura University, 35516 Mansoura, Egypt
| | - Samar Atwa
- Department of Internal Medicine, Infectious Diseases and Fish Diseases, Faculty of Veterinary Medicine, Mansoura University, 35516 Mansoura, Egypt
| |
Collapse
|
71
|
Suzuki Y, Kubota H, Ono HK, Kobayashi M, Murauchi K, Kato R, Hirai A, Sadamasu K. Food poisoning outbreak in Tokyo, Japan caused by Staphylococcus argenteus. Int J Food Microbiol 2017; 262:31-37. [DOI: 10.1016/j.ijfoodmicro.2017.09.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 06/08/2017] [Accepted: 09/10/2017] [Indexed: 10/18/2022]
|
72
|
Abstract
Staphylococcus aureus is often involved in severe infections, in which the effects of bacterial virulence factors have great importance. Antistaphylococcal regimens should take into account the different effects of antibacterial agents on the expression of virulence factors and on the host's immune response. A PubMed literature search was performed to select relevant articles on the effects of antibiotics on staphylococcal toxin production and on the host immune response. Information was sorted according to the methods used for data acquisition (bacterial strains, growth models, and antibiotic concentrations) and the assays used for readout generation. The reported mechanisms underlying S. aureus virulence modulation by antibiotics were reviewed. The relevance of in vitro observations is discussed in relation to animal model data and to clinical evidence extracted from case reports and recommendations on the management of toxin-related staphylococcal diseases. Most in vitro data point to a decreased level of virulence expression upon treatment with ribosomally active antibiotics (linezolid and clindamycin), while cell wall-active antibiotics (beta-lactams) mainly increase exotoxin production. In vivo studies confirmed the suppressive effect of clindamycin and linezolid on virulence expression, supporting their utilization as a valuable management strategy to improve patient outcomes in cases of toxin-associated staphylococcal disease.
Collapse
|
73
|
Singh VK, Ring RP, Aswani V, Stemper ME, Kislow J, Ye Z, Shukla SK. Phylogenetic distribution and expression of a penicillin-binding protein homologue, Ear and its significance in virulence of Staphylococcus aureus. J Med Microbiol 2017; 66:1811-1821. [PMID: 29099691 DOI: 10.1099/jmm.0.000630] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Staphylococcus aureus is an opportunistic human pathogen that can cause serious infections in humans. A plethora of known and putative virulence factors are produced by staphylococci that collectively orchestrate pathogenesis. Ear protein (Escherichia coli ampicillin resistance) in S. aureus is an exoprotein in COL strain, predicted to be a superantigen, and speculated to play roles in antibiotic resistance and virulence. The goal of this study was to determine if expression of ear is modulated by single nucleotide polymorphisms in its promoter and coding sequences and whether this gene plays roles in antibiotic resistance and virulence. METHODOLOGY Promoter, coding sequences and expression of the ear gene in clinical and carriage S. aureus strains with distinct genetic backgrounds were analysed. The JE2 strain and its isogenic ear mutant were used in a systemic infection mouse model to determine the competiveness of the ear mutant.Results/Key findings. The ear gene showed a variable expression, with USA300FPR3757 showing a high-level expression compared to many of the other strains tested including some showing negligible expression. Higher expression was associated with agr type 1 but not correlated with phylogenetic relatedness of the ear gene based upon single nucleotide polymorphisms in the promoter or coding regions suggesting a complex regulation. An isogenic JE2 (USA300 background) ear mutant showed no significant difference in its growth, antibiotic susceptibility or virulence in a mouse model. CONCLUSION Our data suggests that despite being highly expressed in a USA300 genetic background, Ear is not a significant contributor to virulence in that strain.
Collapse
Affiliation(s)
- Vineet K Singh
- A.T. Still University of Health Sciences, Kirksville, MO, USA
| | - Robert P Ring
- A.T. Still University of Health Sciences, Kirksville, MO, USA
| | - Vijay Aswani
- The State University of New York, Buffalo, NY, USA
| | | | | | - Zhan Ye
- Marshfield Clinic Research Institute, Marshfield, WI, USA
| | | |
Collapse
|
74
|
Takadama S, Nakaminami H, Aoki S, Akashi M, Wajima T, Ikeda M, Mochida A, Shimoe F, Kimura K, Matsuzaki Y, Sawamura D, Inaba Y, Oishi T, Nemoto O, Baba N, Noguchi N. Prevalence of skin infections caused by Panton-Valentine leukocidin-positive methicillin-resistant Staphylococcus aureus in Japan, particularly in Ishigaki, Okinawa. J Infect Chemother 2017; 23:800-803. [DOI: 10.1016/j.jiac.2017.04.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/26/2017] [Accepted: 04/30/2017] [Indexed: 11/25/2022]
|
75
|
Liang BS, Huang YM, Chen YS, Dong H, Mai JL, Xie YQ, Zhong HM, Deng QL, Long Y, Yang YY, Gong ST, Zhou ZW. Antimicrobial resistance and prevalence of CvfB, SEK and SEQ genes among Staphylococcus aureus isolates from paediatric patients with bloodstream infections. Exp Ther Med 2017; 14:5143-5148. [PMID: 29201229 PMCID: PMC5704349 DOI: 10.3892/etm.2017.5199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 07/28/2017] [Indexed: 11/05/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is one of the most frequently isolated pathogens in neonatal cases of early and late-onset sepsis. Drug resistance profiles and carriage of toxin genes may affect the treatment and outcome of an infection. The present study aimed to determine the antimicrobial resistance patterns and frequencies of the toxin-associated genes conserved virulence factor B (CvfB), staphylococcal enterotoxin Q (SEQ) and staphylococcal enterotoxin K (SEK) among S. aureus isolates recovered from paediatric patients with bloodstream infections (BSIs) in Guangzhou (China). Of the 53 isolates, 43.4% were methicillin-resistant S. aureus (MRSA), and resistance rates to penicillin, erythromycin, clindamycin, trimethoprim/sulfamethoxazole, tetracycline, and ciprofloxacin of 92.5, 66.0, 62.3, 13.2, 20.8 and 1.9% were recorded, respectively. However, no resistance to nitrofurantoin, dalfopristin/quinupristin, rifampicin, gentamicin, linezolid or vancomycin was detected. Resistance to erythromycin, clindamycin and tetracycline in the MRSA group was significantly higher than that in the methicillin-susceptible S. aureus (MSSA) group. No significant differences in antimicrobial resistance patterns were noted between two age groups (≤1 year and >1 year). The proportion of S. aureus isolates positive for CvfB, SEQ and SEK was 100, 34.0 and 35.8%, respectively, with 24.5% (13/53) of strains carrying all three genes. Compared with those in MSSA isolates, the rates of SEK, SEQ and SEK + SEQ carriage among MRSA isolates were significantly higher. Correlations were identified between the carriage of SEQ, SEK and SEQ + SEK genes and MRSA (contingency coefficient 0.500, 0.416, 0.546, respectively; P<0.01). In conclusion, MRSA isolated from the blood of paediatric patients with BSIs not only exhibited higher rates of antimicrobial resistance than MSSA from the same source, but also more frequently harboured SEK and SEQ genes. The combination of the two aspects influenced the dissemination of MRSA among children. The present study clarified the characteristics of BSI-associated S. aureus and enhanced the current understanding of the pathogenicity and treatment of MRSA.
Collapse
Affiliation(s)
- Bing-Shao Liang
- Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| | - Yan-Mei Huang
- Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| | - Yin-Shuang Chen
- Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| | - Hui Dong
- Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| | - Jia-Liang Mai
- Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| | - Yong-Qiang Xie
- Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| | - Hua-Min Zhong
- Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| | - Qiu-Lian Deng
- Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| | - Yan Long
- Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| | - Yi-Yu Yang
- Pediatric Intensive Care Unit, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| | - Si-Tang Gong
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| | - Zhen-Wen Zhou
- Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| |
Collapse
|
76
|
Sato T, Usui M, Konishi N, Kai A, Matsui H, Hanaki H, Tamura Y. Closely related methicillin-resistant Staphylococcus aureus isolates from retail meat, cows with mastitis, and humans in Japan. PLoS One 2017; 12:e0187319. [PMID: 29084288 PMCID: PMC5662215 DOI: 10.1371/journal.pone.0187319] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 10/13/2017] [Indexed: 11/18/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a pervasive healthcare-acquired (HA) pathogen with recent emergence as a community-acquired (CA) pathogen. To elucidate whether meat mediates MRSA transmission between animals and humans in Japan, this study examined MRSA isolates from retail meat (n = 8), cows with mastitis (n = 7), and humans (HA-MRSA = 46 and CA-MRSA = 54) by molecular typing, virulence gene analyses, and antimicrobial susceptibility testing. MRSA isolates from retail meat were classified into sequence type (ST) 8/spa type t1767 (n = 4), ST8/t4133 (n = 1), ST59/t3385 (n = 1), ST88/t375 (n = 1), and ST509/t375 (n = 1). All seven MRSA isolates from cows with mastitis were ST8/t1767. 46 HA-MRSA were clonal complex (CC) 5, divided into t002 (n = 30), t045 (n = 12), and t7455 (n = 4). 54 CA-MRSA were classified into 6 different CCs: CC1 (n = 14), CC5 (n = 7), CC8 (n = 29), CC45 (n = 1), CC89 (n = 1), CC509 (n = 1), and into 16 different spa types including newly identified t17177, t17193, and t17194. The majority were CC8/t1767 (n = 16). CC of one CA-MRSA isolate (spa type t1767) was not classified. Among 41 CC8 MRSA (five from meat, seven from cows with mastitis, and 29 CA-MRSA), 14 ST8/SCCmec IVl isolates (three from meat, one from a cow with mastitis, and 10 CA-MRSA) had identical pulsed-field gel electrophoresis patterns and similar spa type (t1767, t4133, and t17177), and were typed as CA-MRSA/J (ST8/SCCmec IVl, positive for sec + sel + tst but negative for Panton–Valentine leukocidin and the arginine catabolic mobile element). These results suggest that there is a transmission cycle of CA-MRSA/J among meat, cows, and humans in Japan, although it is unclear whether the origin is cow.
Collapse
Affiliation(s)
- Tomomi Sato
- Laboratory of Food Microbiology and Food Safety, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
| | - Masaru Usui
- Laboratory of Food Microbiology and Food Safety, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
| | - Noriko Konishi
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Shinjuku-ku, Tokyo, Japan
| | - Akemi Kai
- Department of Microbiology, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Hidehito Matsui
- Infection Control Research Center, Kitasato University, Minato-ku, Tokyo, Japan
| | - Hideaki Hanaki
- Infection Control Research Center, Kitasato University, Minato-ku, Tokyo, Japan
| | - Yutaka Tamura
- Laboratory of Food Microbiology and Food Safety, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
- * E-mail:
| |
Collapse
|
77
|
Dittmann KK, Chaul LT, Lee SHI, Corassin CH, Fernandes de Oliveira CA, Pereira De Martinis EC, Alves VF, Gram L, Oxaran V. Staphylococcus aureus in Some Brazilian Dairy Industries: Changes of Contamination and Diversity. Front Microbiol 2017; 8:2049. [PMID: 29123505 PMCID: PMC5662873 DOI: 10.3389/fmicb.2017.02049] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 10/06/2017] [Indexed: 12/17/2022] Open
Abstract
Staphylococcus aureus, a major food-poisoning pathogen, is a common contaminant in dairy industries worldwide, including in Brazil. We determined the occurrence of S. aureus in five dairies in Brazil over 8 months. Of 421 samples, 31 (7.4%) were positive for S. aureus and prevalence varied from 0 to 63.3% between dairies. Sixty-six isolates from the 31 samples were typed by Multi-Locus Sequence Typing to determine if these isolates were persistent or continuously reintroduced. Seven known sequence types (STs), ST1, ST5, ST30, ST97, ST126, ST188 and ST398, and four new ST were identified, ST3531, ST3540, ST3562 and ST3534. Clonal complex (CC) 1 (including the four new ST), known as an epidemic clone, was the dominant CC. However, there were no indications of persistence of particular ST. The resistance toward 11 antibiotic compounds was assessed. Twelve profiles were generated with 75.8% of strains being sensitive to all antibiotic classes and no Methicillin-resistant S. aureus (MRSA) strains were found. The enterotoxin-encoding genes involved in food-poisoning, e.g., sea, sed, see, and seg were targeted by PCR. The two toxin-encoding genes, sed and see, were not detected. Only three strains (4.5%) harbored seg and two of these also harbored sea. Despite the isolates being Methicillin-sensitive S. aureus (MSSA), the presence of CC1 clones in the processing environment, including some harboring enterotoxin encoding genes, is of concern and hygiene must have high priority to reduce contamination.
Collapse
Affiliation(s)
- Karen K. Dittmann
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Luíza T. Chaul
- Faculty of Pharmacy, Federal University of Goiás, Goiânia, Brazil
| | - Sarah H. I. Lee
- Faculty of Animal Science and Food Engineering, University of São Paulo, Ribeirão Preto, Brazil
| | - Carlos H. Corassin
- Faculty of Animal Science and Food Engineering, University of São Paulo, Ribeirão Preto, Brazil
| | | | | | | | - Lone Gram
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Virginie Oxaran
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
78
|
López de Armentia MM, Gauron MC, Colombo MI. Staphylococcus aureus Alpha-Toxin Induces the Formation of Dynamic Tubules Labeled with LC3 within Host Cells in a Rab7 and Rab1b-Dependent Manner. Front Cell Infect Microbiol 2017; 7:431. [PMID: 29046869 PMCID: PMC5632962 DOI: 10.3389/fcimb.2017.00431] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/19/2017] [Indexed: 12/22/2022] Open
Abstract
Staphylococcus aureus is a pathogen that causes severe infectious diseases that eventually lead to septic and toxic shock. S. aureus infection is characterized by the production of virulence factors, including enzymes and toxins. After internalization S. aureus resides in a phagosome labeled with Rab7 protein. Here, we show that S. aureus generates tubular structures marked with the small GTPases Rab1b and Rab7 and by the autophagic protein LC3 at early times post-infection. As shown by live cell imaging these tubular structures are highly dynamic, extend, branch and grow in length. We have named them S. aureus induced filaments (Saf). Furthermore, we demonstrate that the formation of these filaments depends on the integrity of microtubules and the activity of the motor protein Kinesin-1 (Kif5B) and the Rab-interacting lysosomal protein (RILP). Our group has previously reported that α-hemolysin, a secreted toxin of S. aureus, is responsible of the activation of the autophagic pathway induced by the bacteria. In the present report, we demonstrate that the autophagic protein LC3 is recruited to the membrane of S. aureus induced filaments and that α-hemolysin is the toxin that induces Saf formation. Interestingly, increasing the levels of intracellular cAMP significantly inhibited Saf biogenesis. Remarkably in this report we show the formation of tubular structures that emerge from the S. aureus-containing phagosome and that these tubules generation seems to be required for efficient bacteria replication.
Collapse
Affiliation(s)
- María M López de Armentia
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología, Facultad de Ciencias Médicas, CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - María C Gauron
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología, Facultad de Ciencias Médicas, CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - María I Colombo
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología, Facultad de Ciencias Médicas, CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
79
|
Karau MJ, Tilahun ME, Krogman A, Osborne BA, Goldsby RA, David CS, Mandrekar JN, Patel R, Rajagopalan G. Passive therapy with humanized anti-staphylococcal enterotoxin B antibodies attenuates systemic inflammatory response and protects from lethal pneumonia caused by staphylococcal enterotoxin B-producing Staphylococcus aureus. Virulence 2017; 8:1148-1159. [PMID: 27925510 PMCID: PMC5711449 DOI: 10.1080/21505594.2016.1267894] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 11/21/2016] [Accepted: 11/28/2016] [Indexed: 02/08/2023] Open
Abstract
Drugs such as linezolid that inhibit bacterial protein synthesis may be beneficial in treating infections caused by toxigenic Staphylococcus aureus. As protein synthesis inhibitors have no effect on preformed toxins, neutralization of pathogenic exotoxins with anti-toxin antibodies may be beneficial in conjunction with antibacterial therapy. Herein, we evaluated the efficacy of human-mouse chimeric high-affinity neutralizing anti-staphylococcal enterotoxin B (SEB) antibodies in the treatment of experimental pneumonia caused by SEB-producing S. aureus. Since HLA class II transgenic mice mount a stronger systemic immune response following challenge with SEB and are more susceptible to SEB-induced lethal toxic shock than conventional mice strains, HLA-DR3 transgenic mice were used. Lethal pneumonia caused by SEB-producing S. aureus in HLA-DR3 transgenic mice was characterized by robust T cell activation and elevated systemic levels of several pro-inflammatory cytokines and chemokines. Prophylactic administration of a single dose of linezolid 30 min prior to the onset of infection attenuated the systemic inflammatory response and protected from mortality whereas linezolid administered 60 min after the onset of infection failed to confer significant protection. Human-mouse chimeric high-affinity neutralizing anti-SEB antibodies alone, but not polyclonal human IgG, mitigated this response and protected from death when administered immediately after initiation of infection. Further, anti-SEB antibodies as well as intact polyclonal human IgG, but not its Fab or Fc fragments, protected from lethal pneumonia when followed with linezolid therapy 60 min later. In conclusion, neutralization of superantigens with high-affinity antibodies may have beneficial effects in pneumonia.
Collapse
Affiliation(s)
- Melissa J. Karau
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Mulualem E. Tilahun
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
- Department of Biology, Amherst College, Amherst, MA, USA
| | - Ashton Krogman
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Barbara A. Osborne
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | | | - Chella S. David
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Jayawant N. Mandrekar
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Robin Patel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
- Division of Infectious Diseases, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Govindarajan Rajagopalan
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
- Division of Infectious Diseases, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| |
Collapse
|
80
|
Cuevas-González PF, Heredia-Castro PY, Méndez-Romero JI, Hernández-Mendoza A, Reyes-Díaz R, Vallejo-Cordoba B, González-Córdova AF. Artisanal Sonoran cheese (Cocido cheese): an exploration of its production process, chemical composition and microbiological quality. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:4459-4466. [PMID: 28295334 DOI: 10.1002/jsfa.8309] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 03/05/2017] [Accepted: 03/06/2017] [Indexed: 06/06/2023]
Abstract
BACKGROUND The objective of this study was to explore and document the production process of artisanal Cocido cheese and to determine its chemical composition and microbiological quality, considering samples from six dairies and four retailers. RESULTS Cocido cheese is a semi-hard (506-555 g kg-1 of moisture), medium fat (178.3-219.1 g kg-1 ), pasta filata-type cheese made from raw whole cow's milk. The production process is not standardized and therefore the chemical and microbiological components of the sampled cheeses varied. Indicator microorganisms significantly decreased (P < 0.05) during the processing of Cocido cheese. Salmonella spp. were not found during the production process, and both Listeria monocytogenes and staphylococcal enterotoxin were absent in the final cheeses. CONCLUSION This study provides more information on one of the most popular artisanal cheeses with high cultural value and economic impact in northwestern Mexico. In view of the foregoing, good manufacturing practices need to be implemented for the manufacture of Cocido cheese. Also, it is of utmost importance to make sure that the heat treatment applied for cooking the curd ensures a phosphatase-negative test, otherwise it would be necessary to pasteurize milk. Nevertheless, since Cocido cheese is a non-ripened, high-moisture product, it is a highly perishable product that could present a health risk if not properly handled. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Paúl F Cuevas-González
- Laboratorio de Química y Biotecnología de Productos Lácteos, Coordinación de Tecnología de Alimentos de Origen Animal (CTAOA), Centro de Investigación en Alimentación y Desarrollo (CIAD), Hermosillo, Sonora, Mexico
| | - Priscilia Y Heredia-Castro
- Laboratorio de Química y Biotecnología de Productos Lácteos, Coordinación de Tecnología de Alimentos de Origen Animal (CTAOA), Centro de Investigación en Alimentación y Desarrollo (CIAD), Hermosillo, Sonora, Mexico
| | - José I Méndez-Romero
- Laboratorio de Química y Biotecnología de Productos Lácteos, Coordinación de Tecnología de Alimentos de Origen Animal (CTAOA), Centro de Investigación en Alimentación y Desarrollo (CIAD), Hermosillo, Sonora, Mexico
| | - Adrián Hernández-Mendoza
- Laboratorio de Química y Biotecnología de Productos Lácteos, Coordinación de Tecnología de Alimentos de Origen Animal (CTAOA), Centro de Investigación en Alimentación y Desarrollo (CIAD), Hermosillo, Sonora, Mexico
| | - Ricardo Reyes-Díaz
- Laboratorio de Química y Biotecnología de Productos Lácteos, Coordinación de Tecnología de Alimentos de Origen Animal (CTAOA), Centro de Investigación en Alimentación y Desarrollo (CIAD), Hermosillo, Sonora, Mexico
| | - Belinda Vallejo-Cordoba
- Laboratorio de Química y Biotecnología de Productos Lácteos, Coordinación de Tecnología de Alimentos de Origen Animal (CTAOA), Centro de Investigación en Alimentación y Desarrollo (CIAD), Hermosillo, Sonora, Mexico
| | - Aarón F González-Córdova
- Laboratorio de Química y Biotecnología de Productos Lácteos, Coordinación de Tecnología de Alimentos de Origen Animal (CTAOA), Centro de Investigación en Alimentación y Desarrollo (CIAD), Hermosillo, Sonora, Mexico
| |
Collapse
|
81
|
Artykov AA, Fursova KK, Ryazantsev DY, Shchannikova MP, Loskutova IV, Shepelyakovskaya AO, Laman AG, Zavriev SK, Brovko FA. Detection of staphylococcal enterotoxin a by phage display mediated immuno-PCR method. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2017. [DOI: 10.1134/s1068162017050028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
82
|
Kaur G, Balamurugan P, Vasudevan S, Jadav S, Princy SA. Antimicrobial and Antibiofilm Potential of Acyclic Amines and Diamines against Multi-Drug Resistant Staphylococcus aureus. Front Microbiol 2017; 8:1767. [PMID: 28966610 PMCID: PMC5605668 DOI: 10.3389/fmicb.2017.01767] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 08/31/2017] [Indexed: 11/13/2022] Open
Abstract
Multi-drug resistant Staphylococcus aureus (MDRSA) remains a great challenge despite a decade of research on antimicrobial compounds against their infections. In the present study, various acyclic amines and diamines were chemically synthesized and tested for their antimicrobial as well as antibiofilm activity against MDRSA. Among all the synthesized compounds, an acyclic diamine, (2,2'-((butane-1,4-diylbis(azanediyl)bis(methylene))diphenol) designated as ADM 3, showed better antimicrobial activity (minimum inhibitory concentration at 50 μg/mL) and antibiofilm activity (MBIC50 at 5 μg/mL). In addition, ADM 3 was capable of reducing the virulence factors expression (anti-virulence). Confocal laser scanning microscope analysis of the in vitro tested urinary catheters showed biofilm reduction as well as bacterial killing by ADM 3. On the whole, our data suggest that acyclic diamines, especially ADM 3 can be a potent lead for the further studies in alternative therapeutic approaches.
Collapse
Affiliation(s)
| | | | | | | | - S. A. Princy
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA UniversityThanjavur, India
| |
Collapse
|
83
|
Goldmann O, Medina E. Staphylococcus aureus strategies to evade the host acquired immune response. Int J Med Microbiol 2017; 308:625-630. [PMID: 28939437 DOI: 10.1016/j.ijmm.2017.09.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/01/2017] [Accepted: 09/13/2017] [Indexed: 12/13/2022] Open
Abstract
Staphylococcus aureus poses a significant public-health problem. Infection caused by S. aureus can manifest as acute or long-lasting persistent diseases that are often refractory to antibiotic and are associated with significant morbidity and mortality. To develop more effective strategies for preventing or treating these infections, it is crucial to understand why the immune response is incapable to eradicate the bacterium. When S. aureus first infect the host, there is a robust activation of the host innate immune responses. Generally, S. aureus can survive this initial interaction due to the expression of a wide array of virulence factors that interfere with the host innate immune defenses. After this initial interaction the acquired immune response is the arm of the host defenses that will try to clear the pathogen. However, S. aureus is capable of maintaining infection in the host even in the presence of a robust antigen-specific immune response. Thus, understanding the mechanisms underlying the ability of S. aureus to escape immune surveillance by the acquired immune response will help uncover potentially important targets for the development of immune-based adjunctive therapies and more efficient vaccines. There are several lines of evidence that lead us to believe that S. aureus can directly or indirectly disable the acquired immune response. This review will discuss the different immune evasion strategies used by S. aureus to modulate the different components of the acquired immune defenses.
Collapse
Affiliation(s)
- Oliver Goldmann
- Infection Immunology Research Group, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany.
| | - Eva Medina
- Infection Immunology Research Group, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany.
| |
Collapse
|
84
|
Zhang B, Teng Z, Li X, Lu G, Deng X, Niu X, Wang J. Chalcone Attenuates Staphylococcus aureus Virulence by Targeting Sortase A and Alpha-Hemolysin. Front Microbiol 2017; 8:1715. [PMID: 28932220 PMCID: PMC5592744 DOI: 10.3389/fmicb.2017.01715] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/24/2017] [Indexed: 12/21/2022] Open
Abstract
Staphylococcus aureus (S.aureus) resistance, considered a dilemma for the clinical treatment of this bacterial infection, is becoming increasingly intractable. Novel anti-virulence strategies will undoubtedly provide a path forward in combating these resistant bacterial infections. Sortase A (SrtA), an enzyme responsible for anchoring virulence-related surface proteins, and alpha-hemolysin (Hla), a pore-forming cytotoxin, have aroused great scientific interest, as they have been regarded as targets for promising agents against S. aureus infection. In this study, we discovered that chalcone, a natural small compound with little anti-S. aureus activity, could significantly inhibit SrtA activity with an IC50 of 53.15 μM and Hla hemolysis activity with an IC50 of 17.63 μM using a fluorescence resonance energy transfer (FRET) assay and a hemolysis assay, respectively. In addition, chalcone was proven to reduce protein A (SpA) display in intact bacteria, binding to fibronectin, formation of biofilm and S. aureus invasion. Chalcone could down-regulate the transcriptional levels of the hla gene and the agrA gene, thus leading to a reduction in the expression of Hla and significant protection against Hla-mediated A549 cell injury; more importantly, chalcone could also reduce mortality in infected mice. Additionally, molecular dynamics simulations and mutagenesis assays were used to identify the mechanism of chalcone against SrtA, which implied that the inhibitory activity lies in the bond between chalcone and SrtA residues Val168, Ile182, and Arg197. Taken together, the in vivo and in vitro experiments suggest that chalcone is a potential novel therapeutic compound for S. aureus infection via targeting SrtA and Hla.
Collapse
Affiliation(s)
- Bing Zhang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin UniversityChangchun, China.,Center of Infection and Immunity, The First Hospital, Jilin UniversityChangchun, China
| | - Zihao Teng
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin UniversityChangchun, China
| | - Xianhe Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin UniversityChangchun, China
| | - Gejin Lu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin UniversityChangchun, China
| | - Xuming Deng
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin UniversityChangchun, China.,Center of Infection and Immunity, The First Hospital, Jilin UniversityChangchun, China
| | - Xiaodi Niu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin UniversityChangchun, China
| | - Jianfeng Wang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin UniversityChangchun, China.,Center of Infection and Immunity, The First Hospital, Jilin UniversityChangchun, China
| |
Collapse
|
85
|
Jamrozy D, Coll F, Mather AE, Harris SR, Harrison EM, MacGowan A, Karas A, Elston T, Estée Török M, Parkhill J, Peacock SJ. Evolution of mobile genetic element composition in an epidemic methicillin-resistant Staphylococcus aureus: temporal changes correlated with frequent loss and gain events. BMC Genomics 2017; 18:684. [PMID: 28870171 PMCID: PMC5584012 DOI: 10.1186/s12864-017-4065-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/15/2017] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Horizontal transfer of mobile genetic elements (MGEs) that carry virulence and antimicrobial resistance genes mediates the evolution of methicillin-resistant Staphylococcus aureus, and the emergence of new MRSA clones. Most MRSA lineages show an association with specific MGEs and the evolution of MGE composition following clonal expansion has not been widely studied. RESULTS We investigated the genomes of 1193 S. aureus bloodstream isolates, 1169 of which were MRSA, collected in the UK and the Republic of Ireland between 2001 and 2010. The majority of isolates belonged to clonal complex (CC)22 (n = 923), which contained diverse MGEs including elements that were found in other MRSA lineages. Several MGEs showed variable distribution across the CC22 phylogeny, including two antimicrobial resistance plasmids (pWBG751-like and SAP078A-like, carrying erythromycin and heavy metal resistance genes, respectively), a pathogenicity island carrying the enterotoxin C gene and two phage types Sa1int and Sa6int. Multiple gains and losses of these five MGEs were identified in the CC22 phylogeny using ancestral state reconstruction. Analysis of the temporal distribution of the five MGEs between 2001 and 2010 revealed an unexpected reduction in prevalence of the two plasmids and the pathogenicity island, and an increase in the two phage types. This occurred across the lineage and was not correlated with changes in the relative prevalence of CC22, or of any sub-lineages within in. CONCLUSIONS Ancestral state reconstruction coupled with temporal trend analysis demonstrated that epidemic MRSA CC22 has an evolving MGE composition, and indicates that this important MRSA lineage has continued to adapt to changing selective pressure since its emergence.
Collapse
Affiliation(s)
- Dorota Jamrozy
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA UK
| | - Francesc Coll
- London School of Hygiene and Tropical Medicine, London, WC1E 7HT UK
| | - Alison E. Mather
- Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES UK
| | - Simon R. Harris
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA UK
| | - Ewan M. Harrison
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, CB2 0QQ UK
| | - Alasdair MacGowan
- British Society for Antimicrobial Chemotherapy, B1 3NJ, Birmingham, UK
| | - Andreas Karas
- Public Health England, Clinical Microbiology and Public Health Laboratory, Cambridge, CB21 5XA UK
| | - Tony Elston
- Colchester Hospital University NHS Foundation Trust, Colchester, CO4 5JL UK
| | - M. Estée Török
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, CB2 0QQ UK
- Public Health England, Clinical Microbiology and Public Health Laboratory, Cambridge, CB21 5XA UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ UK
| | - Julian Parkhill
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA UK
| | - Sharon J. Peacock
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA UK
- London School of Hygiene and Tropical Medicine, London, WC1E 7HT UK
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, CB2 0QQ UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ UK
| |
Collapse
|
86
|
Bastos CP, Bassani MT, Mata MM, Lopes GV, da Silva WP. Prevalence and expression of staphylococcal enterotoxin genes in Staphylococcus aureus isolated from food poisoning outbreaks. Can J Microbiol 2017; 63:834-840. [PMID: 28820948 DOI: 10.1139/cjm-2017-0316] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Staphylococcus aureus is an important pathogen of foodborne origin. The pathogen produces a variety of toxins that include the staphylococcal enterotoxins (SE). The present study aimed to evaluate the prevalence and expression of 5 SE genes (sea, seb, sec, sed, and see) in S. aureus isolated from outbreaks occurred in the state of Rio Grande do Sul, Brazil. All isolates, with the exception of 2, presented the same or higher transcriptional expression than the reference strains for at least 1 of these genes. The presence of SE genes combined with high levels of transcriptional expression suggests that 1 or more SEs were involved with the staphylococcal food poisoning outbreak analyzed in the present study.
Collapse
Affiliation(s)
- Caroline Peixoto Bastos
- Federal University of Pelotas (UFPel), Faculty of Agronomy Eliseu Maciel (FAEM), Department of Science and Food Technology, Pelotas, RS, Brazil.,Federal University of Pelotas (UFPel), Faculty of Agronomy Eliseu Maciel (FAEM), Department of Science and Food Technology, Pelotas, RS, Brazil
| | - Milena Tomasi Bassani
- Federal University of Pelotas (UFPel), Faculty of Agronomy Eliseu Maciel (FAEM), Department of Science and Food Technology, Pelotas, RS, Brazil.,Federal University of Pelotas (UFPel), Faculty of Agronomy Eliseu Maciel (FAEM), Department of Science and Food Technology, Pelotas, RS, Brazil
| | - Marcia Magalhães Mata
- Federal University of Pelotas (UFPel), Faculty of Agronomy Eliseu Maciel (FAEM), Department of Science and Food Technology, Pelotas, RS, Brazil.,Federal University of Pelotas (UFPel), Faculty of Agronomy Eliseu Maciel (FAEM), Department of Science and Food Technology, Pelotas, RS, Brazil
| | - Graciela Volz Lopes
- Federal University of Pelotas (UFPel), Faculty of Agronomy Eliseu Maciel (FAEM), Department of Science and Food Technology, Pelotas, RS, Brazil.,Federal University of Pelotas (UFPel), Faculty of Agronomy Eliseu Maciel (FAEM), Department of Science and Food Technology, Pelotas, RS, Brazil
| | - Wladimir Padilha da Silva
- Federal University of Pelotas (UFPel), Faculty of Agronomy Eliseu Maciel (FAEM), Department of Science and Food Technology, Pelotas, RS, Brazil.,Federal University of Pelotas (UFPel), Faculty of Agronomy Eliseu Maciel (FAEM), Department of Science and Food Technology, Pelotas, RS, Brazil
| |
Collapse
|
87
|
Melo MCDA, Rodrigues CG, Pol-Fachin L. Staphylococcus aureus δ-toxin in aqueous solution: Behavior in monomeric and multimeric states. Biophys Chem 2017; 227:21-28. [DOI: 10.1016/j.bpc.2017.05.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 05/15/2017] [Accepted: 05/24/2017] [Indexed: 01/01/2023]
|
88
|
Ye F, Li J, Yang CG. The development of small-molecule modulators for ClpP protease activity. MOLECULAR BIOSYSTEMS 2017; 13:23-31. [PMID: 27831584 DOI: 10.1039/c6mb00644b] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The global spread of antibiotic resistance among important human pathogens emphasizes the need to find new antibacterial drugs with a novel mode of action. The ClpP protease has been shown to demonstrate its pivotal importance to both the survival and the virulence of pathogenic bacteria during host infection. Deregulating ClpP activity either through overactivation or inhibition could lead to antibacterial activity, declaiming the dual molecular mechanism for small-molecule modulation. Recently, natural products acyldepsipeptides (ADEPs) have been identified as a new class of antibiotics that activate ClpP to a dysfunctional state in the absence of cognate ATPases. ADEPs in combination with rifampicin eradicate deep-seated mouse biofilm infections. In addition, several non-ADEP compounds have been identified as activators of the ClpP proteolytic core without the involvement of ATPases. These findings indicate a general principle for killing dormant cells, the activation and corruption of the ClpP protease, rather than through conventional inhibition. Deletion of the clpP gene reduced the virulence of Staphylococcus aureus, thus making it an ideal antivirulence target. Multiple inhibitors have been developed in order to attenuate the production of extracellular virulence factors of bacteria through covalent modifications on serine in the active site or disruption of oligomerization of ClpP. Interestingly, due to the unusual composition and activation mechanism of ClpP in Mycobacterium tuberculosis, mycobacteria are killed by ADEPs through inhibition of ClpP activity rather than overactivation. In this short review, we will summarize recent progress in the development of small molecules modulating ClpP protease activity for both antibiotics and antivirulence.
Collapse
Affiliation(s)
- Fei Ye
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jiahui Li
- Laboratory of Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Cai-Guang Yang
- Laboratory of Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|
89
|
Abatángelo V, Peressutti Bacci N, Boncompain CA, Amadio AA, Carrasco S, Suárez CA, Morbidoni HR. Broad-range lytic bacteriophages that kill Staphylococcus aureus local field strains. PLoS One 2017; 12:e0181671. [PMID: 28742812 PMCID: PMC5526547 DOI: 10.1371/journal.pone.0181671] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/05/2017] [Indexed: 01/08/2023] Open
Abstract
Staphylococcus aureus is a very successful opportunistic pathogen capable of causing a variety of diseases ranging from mild skin infections to life-threatening sepsis, meningitis and pneumonia. Its ability to display numerous virulence mechanisms matches its skill to display resistance to several antibiotics, including β-lactams, underscoring the fact that new anti-S. aureus drugs are urgently required. In this scenario, the utilization of lytic bacteriophages that kill bacteria in a genus -or even species- specific way, has become an attractive field of study. In this report, we describe the isolation, characterization and sequencing of phages capable of killing S. aureus including methicillin resistant (MRSA) and multi-drug resistant S. aureus local strains from environmental, animal and human origin. Genome sequencing and bio-informatics analysis showed the absence of genes encoding virulence factors, toxins or antibiotic resistance determinants. Of note, there was a high similarity between our set of phages to others described in the literature such as phage K. Considering that reported phages were obtained in different continents, it seems plausible that there is a commonality of genetic features that are needed for optimum, broad host range anti-staphylococcal activity of these related phages. Importantly, the high activity and broad host range of one of our phages underscores its promising value to control the presence of S. aureus in fomites, industry and hospital environments and eventually on animal and human skin. The development of a cocktail of the reported lytic phages active against S. aureus–currently under way- is thus, a sensible strategy against this pathogen.
Collapse
Affiliation(s)
- Virginia Abatángelo
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| | - Natalia Peressutti Bacci
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| | - Carina A. Boncompain
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| | - Ariel A. Amadio
- EEA Rafaela, Instituto Nacional de Tecnología Agropecuaria (INTA), Rafaela, Santa Fe, Argentina
| | - Soledad Carrasco
- Bioinformatics Program, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| | - Cristian A. Suárez
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
- * E-mail: (HRM); (CAS)
| | - Héctor R. Morbidoni
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
- * E-mail: (HRM); (CAS)
| |
Collapse
|
90
|
Elabras J, Mello FCDQ, Lupi O, Bica BERG, Papi JADS, França AT. Staphylococcal superantigen-specific IgE antibodies: degree of sensitization and association with severity of asthma. J Bras Pneumol 2017; 42:356-361. [PMID: 27812635 PMCID: PMC5094872 DOI: 10.1590/s1806-37562016000000010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 07/07/2016] [Indexed: 11/21/2022] Open
Abstract
Objective: To determine the presence of staphylococcal superantigen-specific IgE antibodies and degree of IgE-mediated sensitization, as well as whether or not those are associated with the severity of asthma in adult patients. Methods: This was a cross-sectional study involving outpatients with asthma under treatment at a tertiary care university hospital in the city of Rio de Janeiro, Brazil. Consecutive patients were divided into two groups according to the severity of asthma based on the Global Initiative for Asthma criteria: mild asthma (MA), comprising patients with mild intermittent or persistent asthma; and moderate or severe asthma (MSA). We determined the serum levels of staphylococcal toxin-specific IgE antibodies, comparing the results and performing a statistical analysis. Results: The study included 142 patients: 72 in the MA group (median age = 46 years; 59 females) and 70 in the MSA group (median age = 56 years; 60 females). In the sample as a whole, 62 patients (43.7%) presented positive results for staphylococcal toxin-specific IgE antibodies: staphylococcal enterotoxin A (SEA), in 29 (20.4%); SEB, in 35 (24.6%); SEC, in 33 (23.2%); and toxic shock syndrome toxin (TSST), in 45 (31.7%). The mean serum levels of IgE antibodies to SEA, SEB, SEC, and TSST were 0.96 U/L, 1.09 U/L, 1.21 U/L, and 1.18 U/L, respectively. There were no statistically significant differences between the two groups in terms of the qualitative or quantitative results. Conclusions: Serum IgE antibodies to SEA, SEB, SEC, and TSST were detected in 43.7% of the patients in our sample. However, neither the qualitative nor quantitative results showed a statistically significant association with the clinical severity of asthma. Objetivo: Determinar a presença de anticorpos IgE específicos para superantígenos estafilocócicos e o grau de sensibilização mediada por esses, assim como se esses estão associados à gravidade da asma em pacientes adultos. Métodos: Estudo transversal incluindo asmáticos adultos em acompanhamento ambulatorial em um hospital universitário terciário no Rio de Janeiro (RJ). Os pacientes foram alocados consecutivamente em dois grupos de gravidade da asma segundo critérios da Global Initiative for Asthma: asma leve (AL), com asmáticos leves intermitentes ou persistentes, e asma moderada ou grave (AMG). Foram determinados os níveis séricos de anticorpos IgE antitoxinas estafilocócicas, e os resultados foram comparados por análise estatística. Resultados: Foram incluídos 142 pacientes no estudo: 72 no grupo AL (mediana de idade = 46 anos; 59 do sexo feminino) e 70 do grupo AMG (mediana de idade = 56 anos; 60 do sexo feminino). Na amostra geral, 62 pacientes (43,7%) apresentaram resultados positivos para dosagens de anticorpos IgE antitoxinas estafilocócicas: enterotoxina (TX) A, em 29 (20,4%); TXB, em 35 (24,6%); TXC, em 33 (23,2%); e toxic shock syndrome toxin (TSST), em 45 (31,7%). As médias das dosagens séricas de anticorpos IgE específicos anti-TXA, TXB, TXC e TSST foram, respectivamente, de 0,96 U/l, 1,09 U/l, 1,21 U/l, e 1,18 U/l. Não houve diferença estatisticamente significativa dos resultados qualitativos ou quantitativos entre os grupos. Conclusões: A presença de anticorpos IgE séricos anti-TXA, TXB, TXC e TSST, foi detectada em 43,7% nessa amostra de pacientes, mas não houve associação estatisticamente significativa entre seus resultados qualitativos ou quantitativos e gravidade clínica da asma.
Collapse
Affiliation(s)
- José Elabras
- . Serviços de Imunologia Clínica e Reumatologia, Hospital Universitário Clementino Fraga Filho - HUCFF - Faculdade de Medicina, Universidade Federal do Rio de Janeiro - UFRJ - Rio de Janeiro (RJ) Brasil.,. Instituto de Doenças do Tórax, Faculdade de Medicina, Universidade Federal do Rio de Janeiro - UFRJ - Rio de Janeiro (RJ) Brasil
| | | | - Omar Lupi
- . Serviços de Imunologia Clínica e Reumatologia, Hospital Universitário Clementino Fraga Filho - HUCFF - Faculdade de Medicina, Universidade Federal do Rio de Janeiro - UFRJ - Rio de Janeiro (RJ) Brasil.,. Serviço de Dermatologia, Hospital Universitário Gaffrée e Guinle, Faculdade de Medicina, Universidade Federal do Estado do Rio de Janeiro - UNIRIO - Rio de Janeiro (RJ) Brasil
| | - Blanca Elena Rios Gomes Bica
- . Serviços de Imunologia Clínica e Reumatologia, Hospital Universitário Clementino Fraga Filho - HUCFF - Faculdade de Medicina, Universidade Federal do Rio de Janeiro - UFRJ - Rio de Janeiro (RJ) Brasil
| | - José Angelo de Souza Papi
- . Serviços de Imunologia Clínica e Reumatologia, Hospital Universitário Clementino Fraga Filho - HUCFF - Faculdade de Medicina, Universidade Federal do Rio de Janeiro - UFRJ - Rio de Janeiro (RJ) Brasil
| | - Alfeu Tavares França
- . Serviços de Imunologia Clínica e Reumatologia, Hospital Universitário Clementino Fraga Filho - HUCFF - Faculdade de Medicina, Universidade Federal do Rio de Janeiro - UFRJ - Rio de Janeiro (RJ) Brasil
| |
Collapse
|
91
|
Acosta AC, Santos SJD, Albuquerque L, Soares KDA, Mota RA, Medeiros ESD. Frequência de genes codificadores de toxinas em Staphylococcus aureus isolados de leite de tanques expansão comunitários. PESQUISA VETERINARIA BRASILEIRA 2017. [DOI: 10.1590/s0100-736x2017000700007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
RESUMO: A capacidade de produção de toxinas pelo Staphylococcus aureus no leite e produtos derivados está relacionado com surtos de intoxicação alimentar. Objetivou-se nesta pesquisa, estudar a ocorrência de genes que codificam para enterotoxinas estafilocócicas (sea, seb, sed, seg, seh e sei) e toxinas α e β hemolítica (hla e hlb) em S. aureus isolados de 53 amostras de leite de tanques expansão comunitários no Estado de Alagoas, Brasil. Foram identificados 27 isolados (50,94%) como S. aureus pela amplificação do gene nuc. 13/27 isolados (48,1%) foram positivos para pelo menos um gene das enterotoxinas estudadas, sendo as frequências dos genes sea 33,3%, seh 18,5%, sei 11,1% e sed 7,4%; não entanto não foram identificados os genes seb e seg nestas bactérias. Para as toxinas hemolíticas, 51,9% dos isolados portavam ambos genes (hla e hlb), sendo a frequência para o gene hla de 81,5% e para o gene hlb de 51,9%. A frequência de genes das toxinas avaliadas é alta o que constitui um risco potencial para a saúde pública em especial, as enterotoxinas por serem termoestáveis e estarem asssociados com surtos de intoxicação alimentar.
Collapse
|
92
|
Gillman AN, Breshears LM, Kistler CK, Finnegan PM, Torres VJ, Schlievert PM, Peterson ML. Epidermal Growth Factor Receptor Signaling Enhances the Proinflammatory Effects of Staphylococcus aureus Gamma-Toxin on the Mucosa. Toxins (Basel) 2017; 9:toxins9070202. [PMID: 28657583 PMCID: PMC5535149 DOI: 10.3390/toxins9070202] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 06/02/2017] [Accepted: 06/09/2017] [Indexed: 12/27/2022] Open
Abstract
Staphylococcus aureus (S. aureus) produces many different exotoxins including the gamma-toxins, HlgAB and HlgCB. Gamma-toxins form pores in both leukocyte and erythrocyte membranes, resulting in cell lysis. The genes encoding gamma-toxins are present in most strains of S. aureus, and are commonly expressed in clinical isolates recovered from menstrual Toxic Shock Syndrome (mTSS) patients. This study set out to investigate the cytotoxic and proinflammatory effects of gamma-toxins on vaginal epithelial surfaces. We found that both HlgAB and HlgCB were cytotoxic to cultured human vaginal epithelial cells (HVECs) and induced cytokine production at sub-cytotoxic doses. Cytokine production induced by gamma-toxin treatment of HVECs was found to involve epidermal growth factor receptor (EGFR) signaling and mediated by shedding of EGFR ligands from the cell surface. The gamma-toxin subunits displayed differential binding to HVECs (HlgA 93%, HlgB 97% and HlgC 28%) with both components (HlgAB or HlgCB) required for maximum detectable binding and significant stimulation of cytokine production. In studies using full thickness ex vivo porcine vaginal mucosa, HlgAB or HlgCB stimulated a dose-dependent cytokine response, which was reduced significantly by inhibition of EGFR signaling. The effects of gamma-toxins on porcine vaginal tissue and cultured HVECs were validated using ex vivo human ectocervical tissue. Collectively, these studies have identified the EGFR-signaling pathway as a key component in gamma-toxin-induced proinflammatory changes at epithelial surfaces and highlight a potential therapeutic target to diminish toxigenic effects of S. aureus infections.
Collapse
Affiliation(s)
- Aaron N Gillman
- Department of Pharmacy, University of Tromsø, Tromsø 9019, Troms, Norway.
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Laura M Breshears
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA.
| | | | | | - Victor J Torres
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA.
| | - Patrick M Schlievert
- Department of Microbiology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA.
| | - Marnie L Peterson
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA.
- Extherid Biosciences, LLC., Jackson, WY 83001, USA.
- School of Pharmacy, University of Wyoming, Laramie, WY 82071, USA.
| |
Collapse
|
93
|
Hepburn L, Hijnen D, Sellman B, Mustelin T, Sleeman M, May R, Strickland I. The complex biology and contribution of Staphylococcus aureus
in atopic dermatitis, current and future therapies. Br J Dermatol 2017; 177:63-71. [DOI: 10.1111/bjd.15139] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2016] [Indexed: 12/22/2022]
Affiliation(s)
- L. Hepburn
- MedImmune; Milstein Building; Granta Park; Cambridge CB21 6GH U.K
| | - D.J. Hijnen
- University Medical Center Utrecht; Department of Dermatology; Utrecht the Netherlands
| | | | | | - M.A. Sleeman
- MedImmune; Milstein Building; Granta Park; Cambridge CB21 6GH U.K
| | - R.D. May
- MedImmune; Milstein Building; Granta Park; Cambridge CB21 6GH U.K
| | - I. Strickland
- MedImmune; Milstein Building; Granta Park; Cambridge CB21 6GH U.K
| |
Collapse
|
94
|
Woo SG, Lee SM, Lee SY, Lim KH, Ha EJ, Kim SH, Eom YB. The effectiveness of anti-biofilm and anti-virulence properties of dihydrocelastrol and dihydrocelastryl diacetate in fighting against methicillin-resistant Staphylococcus aureus. Arch Microbiol 2017; 199:1151-1163. [DOI: 10.1007/s00203-017-1386-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/06/2017] [Accepted: 05/04/2017] [Indexed: 01/03/2023]
|
95
|
Ono HK, Hirose S, Naito I, Sato'o Y, Asano K, Hu DL, Omoe K, Nakane A. The emetic activity of staphylococcal enterotoxins, SEK, SEL, SEM, SEN and SEO in a small emetic animal model, the house musk shrew. Microbiol Immunol 2017; 61:12-16. [PMID: 28042656 DOI: 10.1111/1348-0421.12460] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 12/18/2016] [Accepted: 12/20/2016] [Indexed: 11/30/2022]
Abstract
Staphylococcal enterotoxins (SEs) produced by Staphylococcus aureus are the most recognizable causative agents of emetic food poisoning in humans. New types of SEs and SE-like (SEl) toxins have been reported. Several epidemiological investigations have shown that the SEs and SEl genes, particularly, SEK, SEL, SEM, SEN and SEO genes, are frequently detected in strains isolated from patients with food poisoning. The purpose of the present study was to evaluate the emetic activity of recently identified SEs using a small emetic animal model, the house musk shrew. The emetic activity of these SEs in house musk shrews was evaluated by intraperitoneal administration and emetic responses, including the number of shrews that vomited, emetic frequency and latency of vomiting were documented. It was found that SEs induce emetic responses in these animals. This is the first time to demonstrate that SEK, SEL, SEM, SEN and SEO possess emetic activity in the house musk shrew.
Collapse
Affiliation(s)
- Hisaya K Ono
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562.,Laboratory of Zoonoses, Kitasato University School of Veterinary Medicine, 35-1 Higashi-23-ban-cho, Towada, Aomori 034-8628
| | - Shouhei Hirose
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562
| | - Ikunori Naito
- Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Ueda 3-18-8, Morioka, Iwate 020-8550
| | - Yusuke Sato'o
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Krisana Asano
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562
| | - Dong-Liang Hu
- Laboratory of Zoonoses, Kitasato University School of Veterinary Medicine, 35-1 Higashi-23-ban-cho, Towada, Aomori 034-8628
| | - Katsuhiko Omoe
- Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Ueda 3-18-8, Morioka, Iwate 020-8550
| | - Akio Nakane
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562
| |
Collapse
|
96
|
Szabo PA, Goswami A, Mazzuca DM, Kim K, O'Gorman DB, Hess DA, Welch ID, Young HA, Singh B, McCormick JK, Haeryfar SMM. Rapid and Rigorous IL-17A Production by a Distinct Subpopulation of Effector Memory T Lymphocytes Constitutes a Novel Mechanism of Toxic Shock Syndrome Immunopathology. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 198:2805-2818. [PMID: 28219889 PMCID: PMC6635948 DOI: 10.4049/jimmunol.1601366] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 01/25/2017] [Indexed: 01/13/2023]
Abstract
Toxic shock syndrome (TSS) is caused by staphylococcal and streptococcal superantigens (SAgs) that provoke a swift hyperinflammatory response typified by a cytokine storm. The precipitous decline in the host's clinical status and the lack of targeted therapies for TSS emphasize the need to identify key players of the storm's initial wave. Using a humanized mouse model of TSS and human cells, we herein demonstrate that SAgs elicit in vitro and in vivo IL-17A responses within hours. SAg-triggered human IL-17A production was characterized by remarkably high mRNA stability for this cytokine. A distinct subpopulation of CD4+ effector memory T (TEM) cells that secrete IL-17A, but not IFN-γ, was responsible for early IL-17A production. We found mouse "TEM-17" cells to be enriched within the intestinal epithelium and among lamina propria lymphocytes. Furthermore, interfering with IL-17A receptor signaling in human PBMCs attenuated the expression of numerous inflammatory mediators implicated in the TSS-associated cytokine storm. IL-17A receptor blockade also abrogated the secondary effect of SAg-stimulated PBMCs on human dermal fibroblasts as judged by C/EBP δ expression. Finally, the early IL-17A response to SAgs was pathogenic because in vivo neutralization of IL-17A in humanized mice ameliorated hepatic and intestinal damage and reduced mortality. Together, our findings identify CD4+ TEM cells as a key effector of TSS and reveal a novel role for IL-17A in TSS immunopathogenesis. Our work thus elucidates a pathogenic, as opposed to protective, role for IL-17A during Gram-positive bacterial infections. Accordingly, the IL-17-IL-17R axis may provide an attractive target for the management of SAg-mediated illnesses.
Collapse
Affiliation(s)
- Peter A Szabo
- Department of Microbiology and Immunology, Western University, London, Ontario N6A 5C1, Canada
| | - Ankur Goswami
- Department of Microbiology and Immunology, Western University, London, Ontario N6A 5C1, Canada
| | - Delfina M Mazzuca
- Department of Microbiology and Immunology, Western University, London, Ontario N6A 5C1, Canada
| | - Kyoungok Kim
- Department of Microbiology and Immunology, Western University, London, Ontario N6A 5C1, Canada
| | - David B O'Gorman
- Cell and Molecular Biology Laboratory, Roth | McFarlane Hand and Upper Limb Centre, Western University, London, Ontario N6A 4V2, Canada
- Department of Biochemistry, Western University, London, Ontario N6A 5C1, Canada
- Lawson Health Research Institute, London, Ontario N6C 2R5, Canada
- Department of Surgery, Western University, London, Ontario N6A 4V2, Canada
| | - David A Hess
- Department of Physiology and Pharmacology, Western University, London, Ontario N6A 5C1, Canada
- Krembil Centre for Stem Cell Biology, Molecular Medicine Research Group, Robarts Research Institute, London, Ontario N6A 5B7, Canada
| | - Ian D Welch
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | - Howard A Young
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702
| | - Bhagirath Singh
- Department of Microbiology and Immunology, Western University, London, Ontario N6A 5C1, Canada
- Lawson Health Research Institute, London, Ontario N6C 2R5, Canada
- Centre for Human Immunology, Western University, London, Ontario N6A 5C1, Canada; and
| | - John K McCormick
- Department of Microbiology and Immunology, Western University, London, Ontario N6A 5C1, Canada
- Lawson Health Research Institute, London, Ontario N6C 2R5, Canada
- Centre for Human Immunology, Western University, London, Ontario N6A 5C1, Canada; and
| | - S M Mansour Haeryfar
- Department of Microbiology and Immunology, Western University, London, Ontario N6A 5C1, Canada;
- Lawson Health Research Institute, London, Ontario N6C 2R5, Canada
- Centre for Human Immunology, Western University, London, Ontario N6A 5C1, Canada; and
- Division of Clinical Immunology and Allergy, Department of Medicine, Western University, London, Ontario N6A 5A5, Canada
| |
Collapse
|
97
|
Bogdanovičová K, Necidová L, Haruštiaková D, Janštová B. Milk powder risk assessment with Staphylococcus aureus toxigenic strains. Food Control 2017. [DOI: 10.1016/j.foodcont.2016.07.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
98
|
Goleij Z, Mahmoodzadeh Hosseini H, Amin M, Halabian R, Imani Fooladi AA. Prokaryotic toxins provoke different types of cell deaths in the eukaryotic cells. TOXIN REV 2017. [DOI: 10.1080/15569543.2017.1294180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Zoleikha Goleij
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran and
| | | | - Mohsen Amin
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Raheleh Halabian
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran and
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran and
| |
Collapse
|
99
|
Staphylococcus enterotoxin profile of China isolates and the superantigenicity of some novel enterotoxins. Arch Microbiol 2017; 199:723-736. [PMID: 28235987 DOI: 10.1007/s00203-017-1345-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 12/28/2016] [Accepted: 01/20/2017] [Indexed: 10/20/2022]
Abstract
The genus of staphylococcus widely distributes in environments and contributes to a variety of animal and human diseases. The enterotoxins (SEs) secreted by this type of pathogen have been the leading cause of bacterial toxic shock syndrome and food poisoning, and thus present a substantial concern to public health. In this study, we analyzed the superantigen profile of 122 staphylococcus strains isolated from diverse sources. When screened for the presence and prevalence of 17 known se or se-like (sel) genes, except selj, all other genes were detected in these isolates. In particular, 95.9% of the isolates harbored at least one se/sel gene. Moreover, 47.5% of them bore at least 5. Remarkably, several non-pathogenic species of animal- and environment-origin were also found to carry multiple se/sels. The most frequent genes detected were tsst (62.3%), sei (54.1%), and seb (46.7%), followed by some sel genes (selo, selu, and selm), which also were present at relatively high frequency (20-30%). The generated data improved understanding of strain-specific differences in enterotoxin expression. The gene products of the latter (selo and selu) were subsequently analyzed for their antigenicity in a mouse model using purified E. coli-based recombinant proteins. The studies revealed a strong activity for SEO in induction of T-lymphocyte proliferation and production of various inflammatory cytokines either in vivo or in vitro. In contrast, SEU exhibited little superantigenic effects. The molecular basis for the difference in antigenicity was analyzed by 3D homology remodeling, which revealed a difference in binding and affinities for MHC-II molecules and TCR Vβ region.
Collapse
|
100
|
Gries CM, Kielian T. Staphylococcal Biofilms and Immune Polarization During Prosthetic Joint Infection. J Am Acad Orthop Surg 2017; 25 Suppl 1:S20-S24. [PMID: 27922945 PMCID: PMC5640443 DOI: 10.5435/jaaos-d-16-00636] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Staphylococcal species are a leading cause of community- and nosocomial-acquired infections, where the placement of foreign materials increases infection risk. Indwelling medical devices and prosthetic implants are targets for staphylococcal cell adherence and biofilm formation. Biofilm products actively suppress proinflammatory microbicidal responses, as evident by macrophage polarization toward an anti-inflammatory phenotype and the recruitment of myeloid-derived suppressor cells. With the rise in prosthetic hip and knee arthroplasty procedures, together with the recalcitrance of biofilm infections to antibiotic therapy, it is imperative to better understand the mechanism of crosstalk between biofilm-associated bacteria and host immune cells. This review describes the current understanding of how staphylococcal biofilms evade immune-mediated clearance to establish persistent infections. The findings described herein may facilitate the identification of novel treatments for these devastating biofilm-mediated infections.
Collapse
Affiliation(s)
- Casey M. Gries
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Tammy Kielian
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|