51
|
van der Geest AM, Schukking I, Brummer RJM, van de Burgwal LHM, Larsen OFA. Comparing probiotic and drug interventions in irritable bowel syndrome: a meta-analysis of randomised controlled trials. Benef Microbes 2022; 13:183-194. [PMID: 35848115 DOI: 10.3920/bm2021.0123] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Clinical decisions made by health professionals to recommend either drug or probiotic interventions for irritable bowel syndrome (IBS) should be supported by proper knowledge of the efficacy rates of both types of interventions. In this article, we performed a systematic review and meta-analysis to examine the efficacy of both probiotic- and drug interventions in IBS. Medline was searched between January 2015 - January 2021. Randomised controlled trials (RCT) recruiting participants > 18 years old with IBS and examining the effect of probiotics or drugs were eligible for inclusion. The data of the primary outcome, i.e. the persistence of IBS symptoms (dichotomous symptom data), were pooled to obtain a relative risk (RR), with a 95% confidence interval (CI). Secondary outcomes, abdominal pain- and bloating scores (continuous data), were pooled using a standardised mean difference with a 95% CI. The search identified 269 citations of which 32 RCTs were eligible. Our meta-analysis indicated that both probiotic and drug interventions are able to improve the persistence of IBS symptoms (RR 0.60 [0.51; 0.92] versus 0.87 [0.81; 0.92], respectively) and abdominal pain scores (standardised mean difference (SMD) -0.35 [-0.56; -0.14] versus -0.10 [-0.20; 0.00], respectively). However, determining the overall efficacy of both intervention types is inherently complex and such results should be interpreted with care, due to the large diversity of probiotic- and drug types and doses, which is also complicated by variety in IBS subtypes. Hence, as a first step, more large scale randomised double blind placebo-controlled trials focussing on a specific IBS subtype targeted with specific probiotic strains or specific pharmaceutical modalities should be executed, enabling a more proper comparison between trials.
Collapse
Affiliation(s)
- A M van der Geest
- Vrije Universiteit Amsterdam, Athena Institute, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| | - I Schukking
- Vrije Universiteit Amsterdam, Athena Institute, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| | - R J M Brummer
- Örebro University, School of Medical Sciences, Faculty of Medical and Health Sciences, Fakultetsgatan 1, 70182 Örebro, Sweden
| | - L H M van de Burgwal
- Vrije Universiteit Amsterdam, Athena Institute, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| | - O F A Larsen
- Vrije Universiteit Amsterdam, Athena Institute, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| |
Collapse
|
52
|
van der Geest AM, Schukking I, Brummer RJM, Pieterse H, van den Nieuwboer M, van de Burgwal LHM, Larsen OFA. Inadequate safety reporting in the publications of randomised clinical trials in irritable bowel syndrome: drug versus probiotic interventions. Benef Microbes 2022; 13:195-204. [PMID: 35848114 DOI: 10.3920/bm2021.0124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Randomised controlled clinical trials (RCTs) offer a unique opportunity to obtain controlled efficacy and safety data to support clinical decisions. However, most RCT reporting has a stronger focus on efficacy rather than safety. This study aimed to identify the safety profile of both probiotic and drug interventions in irritable bowel syndrome (IBS). In connection to this paper, an accompanying paper was published in which a meta-analysis was conducted to evaluate the efficacy of probiotic interventions compared to that of drug interventions in IBS. Together, these two studies provide a first assessment regarding the feasibility to determine a burden to benefit ratio for both probiotic and drug interventions in IBS. RCTs including participants (>18 years old) with IBS and comparing probiotic or drugs interventions with control groups were identified by a systematic search of MEDLINE (January 2015 - Jan 2021). Reported safety profiles in drug studies were completer and more detailed as compared with studies on probiotics. Several inconsistencies in safety reporting were identified between and within drug and probiotic studies, such as: didn't report on safety; only reported adverse reactions (ARs) or adverse events (AEs) with a certain severity; didn't report the total number of AEs; didn't split in the control- or experimental arm; didn't specify AEs; and used different thresholds for 'common' AEs. Hence, it is difficult to compare safety data from drug and probiotic RCTs across and between different studies. On the current approaches to safety reporting, we could not establish an unambiguous safety profile for neither probiotic and drug interventions in IBS. These shortcomings hamper a critical comparison of the burden to benefit ratio for IBS intervention.
Collapse
Affiliation(s)
- A M van der Geest
- Vrije Universiteit Amsterdam, Athena Institute, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| | - I Schukking
- Vrije Universiteit Amsterdam, Athena Institute, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| | - R J M Brummer
- Nutrition-Gut-Brain Interactions Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences, Örebro University, Fakultetsgatan 1, 70182 Örebro, Sweden
| | - H Pieterse
- University of Ghent, Heymans Institute of Pharmacology, C. Heymanslaan 10, 9000 Ghent, Belgium
| | | | - L H M van de Burgwal
- Vrije Universiteit Amsterdam, Athena Institute, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| | - O F A Larsen
- Vrije Universiteit Amsterdam, Athena Institute, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| |
Collapse
|
53
|
Qiu X, Wu Q, Li W, Tang K, Zhang J. Effects of Lactobacillus supplementation on glycemic and lipid indices in overweight or obese adults: A systematic review and meta-analysis. Clin Nutr 2022; 41:1787-1797. [PMID: 35820261 DOI: 10.1016/j.clnu.2022.06.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/05/2022] [Accepted: 06/15/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Recent evidence suggests that gut microbiota may represent an important factor to affect the development of obesity and obesity-related diseases. Although several randomized controlled trials (RCTs) have explored the ability of Lactobacillus to improve metabolic parameters in adults who are overweight or obese, their findings have been inconsistent and require further analysis. Therefore, this systematic review and meta-analysis aimed to determine the ability of Lactobacillus supplementation to improve glycemic control, the lipid profile, and blood pressure in adults who are overweight or obese. METHODS Seven electronic databases and two trial registers were searched up to April 2022 to identify eligible RCTs evaluating the effects of Lactobacillus supplementation in overweight or obese adults. Mean differences (MDs) or standardized mean differences were pooled using a random-effects model. RESULTS Nine eligible RCTs with 598 participants were included. We found that Lactobacillus supplementation significantly reduced low-density lipoprotein cholesterol (MD -5.27 mg/dL; 95% confidence interval [CI] -8.28, -2.25; P = 0.0006) and total cholesterol (MD -4.84 mg/dL; 95% CI -8.29, -1.39; P = 0.006), particularly when taken in capsule, powder, or tablet form, for 12 weeks, as ≥1 × 1010 colony forming units/day, or as part of a normal diet. Benefits of Lactobacillus on fasting plasma glucose were seen after 12 weeks of supplementation (MD -1.81 mg/dL; 95% CI -3.08, -0.54; P = 0.005) and on triglycerides when taking a normal diet (MD -14.14 mg/dL; 95% CI -24.38, -3.91; P = 0.007). Lactobacillus had only a short-term beneficial effect on fasting plasma insulin and blood pressure and no significant beneficial effect on high-density lipoprotein cholesterol. CONCLUSIONS Lactobacillus supplementation has a beneficial effect on low-density lipoprotein cholesterol and total cholesterol in adults who are overweight or obese, and also on fasting plasma glucose and triglycerides under certain conditions. Therefore, Lactobacillus supplementation represents a promising approach in the management of obesity-related diseases.
Collapse
Affiliation(s)
- Xudong Qiu
- Shanghai Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiong Wu
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenyan Li
- Shanghai Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kairan Tang
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Zhang
- School of Public Health, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
54
|
Gafar AM, Ramadan AM, ElSaid NA, Nurelhuda NM. Effect of Gum Arabic on plaque-induced gingivitis: A randomised controlled trial. Saudi Dent J 2022; 34:494-502. [PMID: 36092515 PMCID: PMC9453537 DOI: 10.1016/j.sdentj.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 12/03/2022] Open
Abstract
New approaches to treating periodontal diseases aim to balance sustaining the natural oral microbiota and modifying the host immune response. Gum Arabic (GA) is a natural polysaccharide rich in prebiotics. The aim of this study was to assess the effect of GA on clinical (Plaque Index (PI), Gingival Index (GI)) and immunological (Gingival Crevicular Fluid Interleukin 1 Beta (GCF IL-1 β)) parameters in patients with plaque-induced gingivitis. Materials and methods This placebo-controlled, double-blinded randomised clinical trial was conducted at the Department of Periodontology at Khartoum Dental Teaching Hospital, Khartoum, Sudan, from July to October 2016. Patients diagnosed with plaque-induced gingivitis meeting the study eligibility criteria were enrolled. At baseline, PI, GI and GCF IL-1β were measured. Patients received full-mouth scaling and were randomly assigned to receive either GA powder (intervention group) or Microcrystalline cellulose powder (placebo group). The patients were instructed to apply the treatment twice a day throughout the study. The PI, GI and GCF IL-1β were reassessed after 30 and 60 days. Results A total of 60 patients were enrolled (30 in each group). Compared to the placebo group, the intervention group showed a statistically significant reduction in GI scores after 30 days and improved PI scores at 30 and 60 days. Between baseline and 60 days, patients who received GA exhibited a significant reduction in GCF IL-1β levels compared to the placebo group. Conclusion GA was found to be effective in controlling plaque and gingivitis. Clinical Trial Registration. ISRCTN registry ISRCTN14209449.
Collapse
|
55
|
Characterization of New Probiotic Isolates from Fermented Ajwa Dates of Madinah and Their Anti-Inflammatory Potential. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12105082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A total of 20 Lactobacillus strains isolated from fermented dates were tested for their probiotic potential by comparing their pH stability, resistance to low pH, and ability to tolerate bile salts. Out of 20 strains, 3 strains named as Lactobacillus pentosus KAU001, Lactiplantibacillus pentosus KAU002, and Lactiplantibacillus plantarum KAU003 had a high tolerance of acids and bile salts and the capability to adhere to the intestinal wall. In addition, the three isolates were tested for their anti-oxidation, anti-glucosidase inhibition, cholesterol-lowering, and anti-inflammation properties. Among them, strain KAU001 and KAU002 inhibited α-glucosidase, lowered cholesterol level, inhibited nitric oxide production, and showed a higher anti-oxidative ability that was significantly better than strain KAU003. Both strains also significantly inhibited the release of inflammatory mediators such as TNF-α, IL-6 and IL-10 induced by LPS on RAW 264.7 macrophages (p < 0.001). The results indicated that KAU001 and KAU002 have the highest probiotic potential, potentially modulating metabolic health and reducing pro-inflammatory cytokines in response to allergic reactions.
Collapse
|
56
|
Gunasangkaran G, Ravi AK, Arumugam VA, Muthukrishnan S. Preparation, Characterization, and Anticancer Efficacy of Chitosan, Chitosan Encapsulated Piperine and Probiotics (Lactobacillus plantarum (MTCC-1407), and Lactobacillus rhamnosus (MTCC-1423) Nanoparticles. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-022-00961-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
57
|
CHOPRA A, SAHA S, KAMATH S, SİVARAMAN K. Can acids produced from probiotics demineralize the tooth and cause progression of caries: a critical review. CUMHURIYET DENTAL JOURNAL 2022. [DOI: 10.7126/cumudj.963086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
58
|
Sanchez P, Letarouilly JG, Nguyen Y, Sigaux J, Barnetche T, Czernichow S, Flipo RM, Sellam J, Daïen C. Efficacy of Probiotics in Rheumatoid Arthritis and Spondyloarthritis: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2022; 14:nu14020354. [PMID: 35057535 PMCID: PMC8779560 DOI: 10.3390/nu14020354] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/07/2022] [Accepted: 01/13/2022] [Indexed: 02/06/2023] Open
Abstract
Background: We aimed to provide a systematic review and meta-analysis of randomized controlled trials assessing the effect of probiotics supplementation on symptoms and disease activity in patients with chronic inflammatory rheumatic diseases (rheumatoid arthritis (RA), spondylarthritis (SpA), or psoriatic arthritis). Methods: A systematic literature review and meta-analysis from RA and SpA randomized controlled trials were conducted searching for articles in MEDLINE/PubMed and abstracts from recent international rheumatology meetings. The control group was a placebo or another dietary intervention. The risk of bias of the selected studies was evaluated using the Cochrane Collaboration tool and the Jadad scale. Results: The initial search yielded 173 articles. Of these, 13 studies were included in the qualitative synthesis, 8 concerning a total of 344 RA patients and 2 concerning a total of 197 SpA patients. Three meta-analyses were also analyzed. Probiotic strains and quantities used were different among trials (5 studies using Lactobacillus sp., 1 trial Bacillus coagulans and the others a mix of different probiotic strains). Time to assess response ranged from 8 weeks to one year. Two studies associated probiotic supplementation with a dietary intervention. Meta-analysis showed a statistically significant decrease of C-reactive protein (CRP) concentration (mean difference (MD)) −3.04 (95% CI −4.47, −1.62) mg/L, p < 0.001; I2 = 20%, n patients = 209) with probiotics in RA. However, after excluding high-risk-of-bias trials of meta-analysis, there was no difference between probiotics and placebo on DAS28 (standard MD −0.54; 95% CI −1.94 to 0.85, p = 0.45, I2 93%, n patients = 143). The two studies on SpA patients showed no efficacy of probiotics. Conclusions: Probiotic supplementation might decrease RA activity with a moderate decrease effect on CRP, but lack of evidence and studies’ heterogeneity do not allow us to propose them to patients with inflammatory arthritis to control their disease. Further RCTs are required in the future to determinate the efficacy of probiotics and the optimal administration design.
Collapse
Affiliation(s)
- Pauline Sanchez
- Department of Rheumatology, CHU de Montpellier, Montpellier University, F-34295 Montpellier, France;
| | | | - Yann Nguyen
- Department of Internal Medicine, Hôpital Beaujon, AP-HP Nord, Université de Paris, F-92100 Clichy, France;
| | - Johanna Sigaux
- Department of Rheumatology, Hôpital Avicenne, AP-HP, INSERM U1125, Université Paris 13, F-93017 Bobigny, France;
| | - Thomas Barnetche
- Department of Rheumatology, FHU ACRONIM, Bordeaux University Hospital, F-33076 Bordeaux, France;
| | - Sébastien Czernichow
- Department of Nutrition, Specialized Obesity Center, Hôpital Européen Georges Pompidou, Université de Paris, AP-HP, F-75015 Paris, France;
- Epidemiology and Biostatistics Sorbonne Paris City Center, UMR1153, Institut National de la Santé et de la Recherche Médicale, F-75004 Paris, France
| | - René-Marc Flipo
- Department of Rheumatology, CHU Lille, Université de Lille, F-59000 Lille, France; (J.-G.L.); (R.-M.F.)
| | - Jérémie Sellam
- Department of Rheumatology, Hôpital Saint Antoine, AP-HP, DMU 3ID, CRSA Inserm UMRS_938, Sorbonne Université, F-75012 Paris, France;
| | - Claire Daïen
- Department of Rheumatology, CHU de Montpellier, Montpellier University, F-34295 Montpellier, France;
- PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214, F-34295 Montpellier, France
- Correspondence: ; Tel.: +33-4-67-33-87-10
| |
Collapse
|
59
|
Zhang Y, Zhou L, Xia J, Dong C, Luo X. Human Microbiome and Its Medical Applications. Front Mol Biosci 2022; 8:703585. [PMID: 35096962 PMCID: PMC8793671 DOI: 10.3389/fmolb.2021.703585] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 11/18/2021] [Indexed: 11/13/2022] Open
Abstract
The commensal microbiome is essential for human health and is involved in many processes in the human body, such as the metabolism process and immune system activation. Emerging evidence implies that specific changes in the microbiome participate in the development of various diseases, including diabetes, liver diseases, tumors, and pathogen infections. Thus, intervention on the microbiome is becoming a novel and effective method to treat such diseases. Synthetic biology empowers researchers to create strains with unique and complex functions, making the use of engineered microbes for clinical applications attainable. The aim of this review is to summarize recent advances about the roles of the microbiome in certain diseases and the underlying mechanisms, as well as the use of engineered microbes in the prevention, detection, and treatment of various diseases.
Collapse
Affiliation(s)
- Yangming Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Linguang Zhou
- Department of Pharmacy, Peking University International Hospital, Beijing, China
| | - Jialin Xia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Ce Dong
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiaozhou Luo
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- *Correspondence: Xiaozhou Luo,
| |
Collapse
|
60
|
Pogačar MŠ, Mičetić-Turk D, Fijan S. Probiotics: current regulatory aspects of probiotics for use in different disease conditions. PROBIOTICS IN THE PREVENTION AND MANAGEMENT OF HUMAN DISEASES 2022:465-499. [DOI: 10.1016/b978-0-12-823733-5.00021-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
61
|
Samani SA, Moloudi MR, Ramezanzadeh R, Abdi M, Nikkhoo B, Izadpanah E, Roshani D, Abdolahi A, Esmaili P, Hassanzadeh K. Oral Administration of Probiotic Enterococcus durans to Ameliorate Experimental Autoimmune Encephalomyelitis in Mice. Basic Clin Neurosci 2022; 13:35-46. [PMID: 36589015 PMCID: PMC9790094 DOI: 10.32598/bcn.2021.1955.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 03/05/2020] [Accepted: 04/06/2020] [Indexed: 01/04/2023] Open
Abstract
Introduction Probiotics, including lactobacilli, have immunomodulatory activities with promising effects on inflammatory diseases. In this study, we evaluate the effect of Enterococcus durans (Edu) and three various strains of lactobacilli (Lacto-mix), including L. rhamnosus, L. casei, and L. plantarum, to prevent Experimental Autoimmune Encephalomyelitis (EAE) features. Methods C57BL/6 female mice were inoculated with Myelin Oigodendrocyte Glycoprotein (MOG35-55) in CFA (complete Freund's adjuvant) to induce EAE. Five groups (n=6 in each group) of animals received saline or probiotics by oral gavage with 200 μL of lactobacilli (1.5×108 CFU/mL) for 2 weeks before the immunization and during the test for one month. Results Histopathological studies showed an increase in infiltration of inflammatory cells and destruction of the myelin membrane in the EAE group but a decrease in inflammatory cells in the probiotic-treated animals. Pro-inflammatory cytokines (Interleukin [IL]-17 and Interferon [IFN]-γ) concentration in the supernatant of the brain and spinal cord tissues showed a significant increase in the EAE compared with the normal saline group (P<0.01). While in the spinal cord tissue, there was a decrease in IL-17 in those animals treated with the Lactomix and Edu + Lacto-mix (P<0.01) and a significant decrease in IFN-γ in those animals that received Edu (P<0.05). Western blot analysis of matrix metalloproteinase-9 and myelin basic protein showed a decrease and increase in treatment and EAE groups, respectively, compared to the normal control group. Conclusion Our data suggest that probiotic Enterococcus durans and Lacto-mix prevents EAE, but further studies are needed to clarify the exact mechanisms and their application in preclinical and clinical trials. Highlights Dysfunction of the blood-brain barrier, migration of inflammatory cells into the Central Nervous System (CNS), and an increase in the pro-inflammatory factors, are the hallmarks in the pathogenesis of Multiple Sclerosis (MS) and Experimental Autoimmune Encephalomyelitis (EAE).The optimal effects of probiotic strains may involve the simultaneous use of more than one strain.Probiotic Enterococcus durans and Lacto-mix have a preventive effect against EAE. Plain Language Summary Multiple Sclerosis (MS) is a myelin-degenerating autoimmune disease in the central nervous system. Experimental Autoimmune Encephalomyelitis (EAE), due to its similar clinical and pathologic features to MS, is widely used in many model studies of this disease. The microbiome refers to a genomic set of germs (bacteria, arches, fungi, and viruses), a commensal flora that lives in the intestine and niche of humans and other mammals. The microbiome affects the host's physiological system, especially the balance between health and disease. Additionally, the importance of the microbiome is evident in regulating the intestine-brain axis, or the coordination of the digestive and the central nervous system. In this regard, probiotics, including lactobacilli, have antioxidant and anti-inflammatory properties in vitro and in vivo. Probiotic strains have a wide range of health-improvement effects, and a combination of strains with specific properties provides a broader range of antimicrobial spectrum and stronger anti-inflammatory effects. Considering the critical role of probiotics in the immune system, this study aimed to investigate the possible role of Enterococcus durans alone or in combination with Lactobacillus mixture (L. rhamnosus, L. casei, and L. plantarum) on the EAE animal model of MS.
Collapse
Affiliation(s)
- Seyed Abdollah Samani
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohammad Raman Moloudi
- Liver and Digestive Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Rashid Ramezanzadeh
- Department of Microbiology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohammad Abdi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Bahram Nikkhoo
- Department of Pathology and Clinical Laboratory Sciences, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Esmael Izadpanah
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Department of Medical Physiology and Pharmacology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Daem Roshani
- Department of Epidemiology and Biostatistics, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Alina Abdolahi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Parisa Esmaili
- Department of Immunology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Kambiz Hassanzadeh
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Department of Medical Physiology and Pharmacology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
62
|
Ferreira AF, Braga RLL, Andrade MF, Rosa ACDP, Pereira-Manfro WF. SYNERGISTIC IMMUNOMODULATORY ACTIVITY OF PROBIOTICS BIFIDOBACTERIUM ANIMALIS AND LACTOBACILLUS CASEI IN ENTEROAGGREGATIVE ESCHERICHIA COLI (EAEC)-INFECTED CACO-2 CELLS. ARQUIVOS DE GASTROENTEROLOGIA 2021; 58:433-438. [PMID: 34909846 DOI: 10.1590/s0004-2803.202100000-79] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/03/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Enteroaggregative Escherichia coli (EAEC) is an E. coli pathotype that presents aggregative adhesion patterns on in vitro cultivated cells, mainly related to persistent diarrhea cases in children. EAEC virulence factors are important for host colonization and pathogeni-city. Intestinal epithelial cells (IECs) recognize pathogen-associated molecular patterns (PAMPs) and initiate an immune response. Several studies using in vivo and in vitro models emphasize the probiotic activity and immunomodulatory capacity of Lactobacillus and Bifidobacterium species. OBJECTIVE To evaluate the modulation of cytokine production by probiotics Bifidobacterium animalis and Lactobacillus casei in human intestinal Caco-2 cells exposed to different strains of EAEC. METHODS Caco-2 cells were incubated with EAEC strains in the presence or absence of probiotics. The production of cytokines IL-8, TNF-α, IL-1β and IL-10 was evaluated in the supernatants by a sandwich enzyme-linked immunosorbent assay (ELISA). RESULTS Cytokine production did not change when uninfected and EAEC-infected Caco-2 cells were exposed to probiotics separately. All EAEC induced a significant increase in IL-8 production by Caco-2 cells, but the probiotics, even together, could not reduce its production. On the other hand, the synergic activity of probiotic strains significantly increased TNF-α production but decreased the basal production of IL-1ß. Also, probiotics induced a significant increase in the production of the anti-inflammatory cytokine IL-10 during EAEC infection. CONCLUSION Our results reinforce the synergistic immunomodulatory activity of probiotics during EAEC infection.
Collapse
Affiliation(s)
- Andréa Fonseca Ferreira
- Universidade do Estado do Rio de Janeiro, Faculdade de Ciências Médicas, Departamento de Microbiologia, Imunologia e Parasitologia, Rio de Janeiro, RJ, Brasil
| | - Ricardo Luís Lopes Braga
- Universidade do Estado do Rio de Janeiro, Faculdade de Ciências Médicas, Departamento de Microbiologia, Imunologia e Parasitologia, Rio de Janeiro, RJ, Brasil
| | - Maysa Ferreira Andrade
- Universidade do Estado do Rio de Janeiro, Faculdade de Ciências Médicas, Departamento de Microbiologia, Imunologia e Parasitologia, Rio de Janeiro, RJ, Brasil
| | - Ana Claudia de Paula Rosa
- Universidade do Estado do Rio de Janeiro, Faculdade de Ciências Médicas, Departamento de Microbiologia, Imunologia e Parasitologia, Rio de Janeiro, RJ, Brasil
| | - Wânia Ferraz Pereira-Manfro
- Universidade do Estado do Rio de Janeiro, Faculdade de Ciências Médicas, Departamento de Microbiologia, Imunologia e Parasitologia, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
63
|
Interplay between Candida albicans and Lactic Acid Bacteria in the Gastrointestinal Tract: Impact on Colonization Resistance, Microbial Carriage, Opportunistic Infection, and Host Immunity. Clin Microbiol Rev 2021; 34:e0032320. [PMID: 34259567 PMCID: PMC8404691 DOI: 10.1128/cmr.00323-20] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Emerging studies have highlighted the disproportionate role of Candida albicans in influencing both early community assembly of the bacterial microbiome and dysbiosis during allergic diseases and intestinal inflammation. Nonpathogenic colonization of the human gastrointestinal (GI) tract by C. albicans is common, and the role of this single fungal species in modulating bacterial community reassembly after broad-spectrum antibiotics can be readily recapitulated in mouse studies. One of the most notable features of C. albicans-associated dysbiotic states is a marked change in the levels of lactic acid bacteria (LAB). C. albicans and LAB share metabolic niches throughout the GI tract, and in vitro studies have identified various interactions between these microbes. The two predominant LAB affected are Lactobacillus species and Enterococcus species. Lactobacilli can antagonize enterococci and C. albicans, while Enterococcus faecalis and C. albicans have been reported to exhibit a mutualistic relationship. E. faecalis and C. albicans are also causative agents of a variety of life-threatening infections, are frequently isolated together from mixed-species infections, and share certain similarities in clinical presentation-most notably their emergence as opportunistic pathogens following disruption of the microbiota. In this review, we discuss and model the mechanisms used by Lactobacillus species, E. faecalis, and C. albicans to modulate each other's growth and virulence in the GI tract. With multidrug-resistant E. faecalis and C. albicans strains becoming increasingly common in hospital settings, examining the interplay between these three microbes may provide novel insights for enhancing the efficacy of existing antimicrobial therapies.
Collapse
|
64
|
Armstrong E, Kaul R. Beyond bacterial vaginosis: vaginal lactobacilli and HIV risk. MICROBIOME 2021; 9:239. [PMID: 34893070 PMCID: PMC8665571 DOI: 10.1186/s40168-021-01183-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/01/2021] [Indexed: 05/17/2023]
Abstract
HIV incidence continues to be unacceptably high in Eastern and Southern Africa, with women disproportionately affected. An increased per-contact risk of HIV acquisition among African, Caribbean, and other Black (ACB) women has been associated with the higher prevalence of bacterial vaginosis (BV) in these communities, wherein the vaginal microbiota is predominated by diverse pro-inflammatory anaerobic bacteria. However, while the vaginal microbiota in BV-free women is typically predominated by one of several different Lactobacillus spp., the degree of HIV protection afforded by a Lactobacillus-predominant vaginal microbiota also varies considerably. Specifically, L. crispatus is associated with an immunoregulatory genital immune environment, exclusion of BV-associated bacteria, and reduced HIV risk. In contrast, less HIV protection or exclusion of BV-associated bacteria and fewer immune benefits have been associated with L. iners-which is unfortunately the most common Lactobacillus species among ACB women. These species-specific clinical differences are underpinned by substantial genomic differences between Lactobacillus species: for instance, the much smaller genome of L. iners lacks the coding sequence for D-lactic acid dehydrogenase and cannot produce the D-lactate isomer that enhances HIV trapping in mucus but encodes for epithelial cell toxins and stress resistance proteins that may enhance bacterial survival in the context of microbiota and environmental fluctuations. While more studies are needed to elucidate whether differences in HIV protection between Lactobacillus species are due to direct genital immune effects or the exclusion of proinflammatory BV-associated bacteria, the current body of work suggests that for BV treatment to succeed as an HIV prevention strategy, it may be necessary to induce a vaginal microbiota that is predominated by specific (non-iners) Lactobacillus species. Video abstract.
Collapse
Affiliation(s)
- Eric Armstrong
- Department of Medicine, University of Toronto, Toronto, Canada.
| | - Rupert Kaul
- Department of Medicine, University of Toronto, Toronto, Canada
- University Health Network, Toronto General Hospital, Immunodeficiency Clinic, Toronto, Canada
| |
Collapse
|
65
|
Liu Q, Tian H, Kang Y, Tian Y, Li L, Kang X, Yang H, Wang Y, Tian J, Zhang F, Tong M, Cai H, Fan W. Probiotics alleviate autoimmune hepatitis in mice through modulation of gut microbiota and intestinal permeability. J Nutr Biochem 2021; 98:108863. [PMID: 34517094 DOI: 10.1016/j.jnutbio.2021.108863] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 05/04/2021] [Accepted: 07/25/2021] [Indexed: 02/08/2023]
Abstract
Autoimmune hepatitis (AIH) is an immune-mediated type of chronic liver inflammation accompanied by intestinal flora imbalance. Probiotics have been reported to ameliorate imbalances in the intestinal flora. This study aimed to investigate the effects of compound probiotic in the AIH mouse model. AIH mice were gavaged with compound probiotic and injected intraperitoneally with dexamethasone (dex) for 42 days. The results showed that these treatments suppressed hepatic inflammatory cell infiltration, serum transaminase, and Th1 and Th17 cells. However, Treg cells were increased only in the probiotics group, which indicates an immunomodulatory role of the compound probiotic. The compound probiotic maintained intestinal barrier integrity, blocked lipopolysaccharide (LPS) translocation, and inhibited the activation of the TLR4/NF-κB pathway and the production of inflammatory factors in the liver and ileum. Moreover, the compound probiotic treatment increased the abundance of beneficial bacteria and reduced the abundance of potentially harmful bacteria in gut. Compound probiotic may improve ileal barrier function while increasing the diversity of the intestinal flora, blocking the translocation of gut-derived LPS to the liver and therefore preventing activation of the TLR4/NF-κB pathway. The resulting inhibition of pro-inflammatory factor production facilitates AIH remission.
Collapse
Affiliation(s)
- Qingqing Liu
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong, China
| | - Haixia Tian
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong, China
| | - Yongbo Kang
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong, China
| | - Yan Tian
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong, China
| | - Lin Li
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong, China
| | - Xing Kang
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong, China
| | - Hao Yang
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong, China
| | - Yanhong Wang
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong, China
| | - Jihua Tian
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong, China
| | - Fan Zhang
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong, China
| | - Mingwei Tong
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong, China
| | - Hongyan Cai
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong, China
| | - Weiping Fan
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong, China.
| |
Collapse
|
66
|
Zhou Y, Wang B, Wang Q, Tang L, Zou P, Zeng Z, Zhang H, Gong L, Li W. Protective Effects of Lactobacillus plantarum Lac16 on Clostridium perfringens Infection-Associated Injury in IPEC-J2 Cells. Int J Mol Sci 2021; 22:ijms222212388. [PMID: 34830269 PMCID: PMC8620398 DOI: 10.3390/ijms222212388] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 12/31/2022] Open
Abstract
Clostridium perfringens (C. perfringens) causes intestinal injury through overgrowth and the secretion of multiple toxins, leading to diarrhea and necrotic enteritis in animals, including pigs, chickens, and sheep. This study aimed to investigate the protective effects of Lactobacillus plantarum (L. plantarum) Lac16 on C. perfringens infection-associated injury in intestinal porcine epithelial cell line (IPEC-J2). The results showed that L. plantarum Lac16 significantly inhibited the growth of C. perfringens, which was accompanied by a decrease in pH levels. In addition, L. plantarum Lac16 significantly elevated the mRNA expression levels of host defense peptides (HDPs) in IPEC-J2 cells, decreased the adhesion of C. perfringens to IPEC-J2 cells, and attenuated C. perfringens-induced cellular cytotoxicity and intestinal barrier damage. Furthermore, L. plantarum Lac16 significantly suppressed C. perfringens-induced gene expressions of proinflammatory cytokines and pattern recognition receptors (PRRs) in IPEC-J2 cells. Moreover, L. plantarum Lac16 preincubation effectively inhibited the phosphorylation of p65 caused by C. perfringens infection. Collectively, probiotic L. plantarum Lac16 exerts protective effects against C. perfringens infection-associated injury in IPEC-J2 cells.
Collapse
Affiliation(s)
- Yuanhao Zhou
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China) of the Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (B.W.); (Q.W.); (L.T.); (P.Z.); (Z.Z.)
| | - Baikui Wang
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China) of the Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (B.W.); (Q.W.); (L.T.); (P.Z.); (Z.Z.)
| | - Qi Wang
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China) of the Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (B.W.); (Q.W.); (L.T.); (P.Z.); (Z.Z.)
| | - Li Tang
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China) of the Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (B.W.); (Q.W.); (L.T.); (P.Z.); (Z.Z.)
| | - Peng Zou
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China) of the Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (B.W.); (Q.W.); (L.T.); (P.Z.); (Z.Z.)
| | - Zihan Zeng
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China) of the Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (B.W.); (Q.W.); (L.T.); (P.Z.); (Z.Z.)
| | - Huihua Zhang
- Department of Animal Sciences, School of Life Science and Engineering, Foshan University, Foshan 528225, China;
| | - Li Gong
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China) of the Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (B.W.); (Q.W.); (L.T.); (P.Z.); (Z.Z.)
- Department of Animal Sciences, School of Life Science and Engineering, Foshan University, Foshan 528225, China;
- Correspondence: (L.G.); (W.L.)
| | - Weifen Li
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China) of the Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (B.W.); (Q.W.); (L.T.); (P.Z.); (Z.Z.)
- Correspondence: (L.G.); (W.L.)
| |
Collapse
|
67
|
Dehghani N, Tafvizi F, Jafari P. Cell cycle arrest and anti-cancer potential of probiotic Lactobacillus rhamnosus against HT-29 cancer cells. BIOIMPACTS 2021; 11:245-252. [PMID: 34631486 PMCID: PMC8494254 DOI: 10.34172/bi.2021.32] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/13/2020] [Accepted: 07/04/2020] [Indexed: 12/25/2022]
Abstract
![]()
Introduction: Nowadays, probiotic bacteria have been considered as a factor in the prevention and treatment of cancer, especially by induction of apoptosis. This study aimed to evaluate the cytotoxic, anti-proliferative, and apoptotic effects of the supernatant of probiotic Lactobacillus rhamnosus on HT-29 cell line.
Methods : Molecular identification of probiotic L. rhamnosus was carried out using specific primers of 16S rRNA gene and sequencing. HT-29 cells were treated with different concentrations of bacterial supernatants at 24, 48, and 72 hours. MTT assay, Annexin V-FITC, real-time PCR, cell cycle analysis, and DAPI staining tests were conducted to evaluate the induction of apoptosis. The level of cyclin D1 protein was measured by immunocytochemistry method.
Results: The supernatant of L. rhamnosus inhibited the growth of HT-29 cancer cells in a dose- and time-dependent manner. The results of flow cytometry confirmed apoptotic cell death. Probiotic bacterial supernatant caused up-regulation of pro-apoptotic genes including caspase-3, caspase-9, and Bax. In addition, they resulted in down-regulation of Bcl2 and a decrease in expression levels of cyclin D1, cyclin E, and ERBB2 genes. Cancer cells were arrested in the G0/G1 phase of the cell cycle. The results of immunocytochemistry showed significant down-regulation of cyclin D1 protein during the 48 hours treatment with bacterial supernatant compared to the untreated cells.
Conclusion: The supernatant of probiotic L. rhamnosus has a great potential to inhibit the proliferation of HT-29 cells and the induction of apoptosis. L. rhamnosus might be used as a biological anti-cancer factor in the prevention and treatment of colon cancer.
Collapse
Affiliation(s)
- Najme Dehghani
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran
| | - Farzaneh Tafvizi
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran
| | - Parvaneh Jafari
- Microbiology Department, Faculty of Science, Arak Branch, Islamic Azad University, Arak, Iran
| |
Collapse
|
68
|
Hawryłkowicz V, Lietz-Kijak D, Kaźmierczak-Siedlecka K, Sołek-Pastuszka J, Stachowska L, Folwarski M, Parczewski M, Stachowska E. Patient Nutrition and Probiotic Therapy in COVID-19: What Do We Know in 2021? Nutrients 2021; 13:3385. [PMID: 34684384 PMCID: PMC8538178 DOI: 10.3390/nu13103385] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The main nutritional consequences of COVID-19 include reduced food intake, hypercatabolism, and rapid muscle wasting. Some studies showed that malnutrition is a significant problem among patients hospitalized due to COVID-19 infection, and the outcome of patients with SARS-CoV-2 is strongly associated with their nutritional status. The purpose of this study was to collect useful information about the possible elements of nutritional and probiotic therapy in patients infected with the SARS-CoV-2 virus. METHODS A narrative review of the literature, including studies published up to 13 September 2021. RESULTS Probiotics may support patients by inhibiting the ACE2 receptor, i.e., the passage of the virus into the cell, and may also be effective in suppressing the immune response caused by the proinflammatory cytokine cascade. In patients' diet, it is crucial to ensure an adequate intake of micronutrients, such as omega-3 fatty acids (at 2-4 g/d), selenium (300-450 μg/d) and zinc (30-50 mg/d), and vitamins A (900-700 µg/d), E (135 mg/d), D (20,000-50,000 IU), C (1-2 g/d), B6, and B12. Moreover, the daily calorie intake should amount to ≥1500-2000 with 75-100 g of protein. CONCLUSION In conclusion, the treatment of gut dysbiosis involving an adequate intake of prebiotic dietary fiber and probiotics could turn out to be an immensely helpful instrument for immunomodulation, both in COVID-19 patients and prophylactically in individuals with no history of infection.
Collapse
Affiliation(s)
- Viktoria Hawryłkowicz
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, 71-460 Szczecin, Poland; (V.H.); (L.S.)
| | - Danuta Lietz-Kijak
- Department of Propedeutics, Physiodiagnostics and Dental Physiotherapy, Pomeranian Medical University, 70-111 Szczecin, Poland;
| | | | - Joanna Sołek-Pastuszka
- Department of Anaesthesiology and Intensive Care, Pomeranian Medical University, 71-242 Szczecin, Poland;
| | - Laura Stachowska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, 71-460 Szczecin, Poland; (V.H.); (L.S.)
| | - Marcin Folwarski
- Department of Clinical Nutrition, Medical University of Gdansk, 80-211 Gdansk, Poland;
| | - Miłosz Parczewski
- Department of Infectious, Tropical and Acquired Immunological Diseases, Pomeranian Medical University, 71-455 Szczecin, Poland;
| | - Ewa Stachowska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, 71-460 Szczecin, Poland; (V.H.); (L.S.)
| |
Collapse
|
69
|
Balta I, Butucel E, Mohylyuk V, Criste A, Dezmirean DS, Stef L, Pet I, Corcionivoschi N. Novel Insights into the Role of Probiotics in Respiratory Infections, Allergies, Cancer, and Neurological Abnormalities. Diseases 2021; 9:60. [PMID: 34562967 PMCID: PMC8482260 DOI: 10.3390/diseases9030060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/26/2021] [Accepted: 08/31/2021] [Indexed: 12/16/2022] Open
Abstract
In recent years, probiotics have attracted public attention and transformed the social perception of microorganisms, convening a beneficial role/state on human health. With aging, the immune system, body physiology, and intestinal microbiota tend to change unfavorably, resulting in many chronic conditions. The immune-mediated disorders can be linked to intestinal dysbiosis, consequently leading to immune dysfunctions and a cluster of conditions such as asthma, autoimmune diseases, eczema, and various allergies. Probiotic bacteria such as Lactobacillus and Bifidobacterium species are considered probiotic species that have a great immunomodulatory and anti-allergic effect. Moreover, recent scientific and clinical data illustrate that probiotics can regulate the immune system, exert anti-viral and anti-tumoral activity, and shields the host against oxidative stress. Additionally, microbiota programming by probiotic bacteria can reduce and prevent the symptoms of respiratory infections and ameliorate the neurological status in humans. This review describes the most recent clinical findings, including safe probiotic therapies aiming to medicate respiratory infections, allergies, cancer, and neurological disorders due to their physiological interconnection. Subsequently, we will describe the major biological mechanism by which probiotic bacteriotherapy expresses its anti-viral, anti-allergic, anticancer, and neuro-stimulatory effects.
Collapse
Affiliation(s)
- Igori Balta
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast BT4 3SD, Northern Ireland, UK; (I.B.); (E.B.)
- Faculty of Animal Science and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (A.C.); (D.S.D.)
- Faculty of Bioengineering of Animal Resources, Banat University of Animal Sciences and Veterinary Medicine—King Michael I of Romania, 300645 Timisoara, Romania;
| | - Eugenia Butucel
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast BT4 3SD, Northern Ireland, UK; (I.B.); (E.B.)
- Faculty of Animal Science and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (A.C.); (D.S.D.)
- Faculty of Bioengineering of Animal Resources, Banat University of Animal Sciences and Veterinary Medicine—King Michael I of Romania, 300645 Timisoara, Romania;
| | - Valentyn Mohylyuk
- School of Pharmacy, Queen’s University Belfast, Belfast BT7 1NN, Northern Ireland, UK;
| | - Adriana Criste
- Faculty of Animal Science and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (A.C.); (D.S.D.)
| | - Daniel Severus Dezmirean
- Faculty of Animal Science and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (A.C.); (D.S.D.)
| | - Lavinia Stef
- Faculty of Bioengineering of Animal Resources, Banat University of Animal Sciences and Veterinary Medicine—King Michael I of Romania, 300645 Timisoara, Romania;
| | - Ioan Pet
- Faculty of Bioengineering of Animal Resources, Banat University of Animal Sciences and Veterinary Medicine—King Michael I of Romania, 300645 Timisoara, Romania;
| | - Nicolae Corcionivoschi
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast BT4 3SD, Northern Ireland, UK; (I.B.); (E.B.)
- Faculty of Bioengineering of Animal Resources, Banat University of Animal Sciences and Veterinary Medicine—King Michael I of Romania, 300645 Timisoara, Romania;
| |
Collapse
|
70
|
Vasundhara D, Raju VN, Hemalatha R, Nagpal R, Kumar M. Vaginal & gut microbiota diversity in pregnant women with bacterial vaginosis & effect of oral probiotics: An exploratory study. Indian J Med Res 2021; 153:492-502. [PMID: 34380796 PMCID: PMC8354056 DOI: 10.4103/ijmr.ijmr_350_19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Background & objectives: The vaginal microbiota undergoes subtle changes during pregnancy and may affect several aspects of pregnancy outcomes. There has been no comprehensive study characterizing the gestational vaginal and gut microbiota and the dynamics of the microbiota with oral probiotics among Indian women. Hence, the study was aimed to explore the microbiota of pregnant women with normal microbiota and bacterial vaginosis (BV) environments and the effect of oral probiotics on the microbiota and the BV status in these women. Methods: Using high-throughput Illumina-MiSeq sequencing approach, the 16S rRNA gene amplicons were analyzed and the vaginal and gut microbiota of pregnant women with and without BV and pre- and post-probiotics (Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14) intervention for a month was characterized. Results: The study revealed a compositional difference in the vaginal and gut microbiota between BV and healthy pregnant women. The vaginal microbiota of healthy women was characteristically predominated by Lactobacillus helveticus, followed by L. iners and L. gasseri; in contrast, women positive for BV harboured higher α-diversity and had lower abundance of L. helveticus. Similarly, Prevotella copri, a gut microbe, associated with normal environment was detected in the vaginal samples of all pregnant women without BV, it remained undetected in women with the infection, while all women with BV had Gardnerella vaginalis, which decreased significantly with probiotic treatment. Gut microbiota also revealed dominant abundance of P. copri in healthy women, whereas it was significantly lower in women with BV. The bacterial clade, P. copri abundance increased from 9.17 to 16.49 per cent in the probiotic group and reduced from 7.75 to 4.84 per cent in the placebo group. Interpretation & conclusions: This study showed gestational vaginal and gut microbiota differences in normal and BV environments. With probiotic treatment, the dynamics of L. helveticus and P. copri hint towards a possible role of probiotics in modulating the vaginal microbiota.
Collapse
Affiliation(s)
- Donugama Vasundhara
- Department of Clinical Epidemiology, ICMR-National Institute of Nutrition, Hyderabad, Telangana, India
| | - Vankudavath Naik Raju
- Nutrition Information, Communication & Health Education (NICHE), ICMR-National Institute of Nutrition, Hyderabad, Telangana, India
| | | | - Ravinder Nagpal
- Department of Internal Medicine-Molecular Medicine; Department of Microbiology & Immunology, Wake Forest, School of Medicine, Winston-Salem, NC, United States
| | - Manoj Kumar
- Department of Microbiology, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India
| |
Collapse
|
71
|
Abstract
Despite the strikingly high worldwide prevalence of vulvovaginal candidiasis (VVC), treatment options for recurrent VVC (RVVC) remain limited, with many women experiencing failed clinical treatment with frontline azoles. Further, the cause of onset and recurrence of disease is largely unknown, with few studies identifying potential mechanisms of treatment failure. This study aimed to assess a panel of clinical samples from healthy women and those with RVVC to investigate the influence of Candida, the vaginal microbiome, and how their interaction influences disease pathology. 16S rRNA sequencing characterized disease by a reduction in specific health-associated Lactobacillus species, such as Lactobacillus crispatus, coupled with an increase in Lactobacillus iners. In vitro analysis showed that Candida albicans clinical isolates are capable of heterogeneous biofilm formation, and we found the presence of hyphae and C. albicans aggregates in vaginal lavage fluid. Additionally, the ability of Lactobacillus to inhibit C. albicans biofilm formation and biofilm-related gene expression was demonstrated. Using RNA sequencing technology, we were able to identify a possible mechanism by which L. crispatus may contribute to re-establishing a healthy vaginal environment through amino acid acquisition from C. albicans. This study highlights the potential formation and impact of Candida biofilms in RVVC. Additionally, it suggests that RVVC is not entirely due to an arbitrary switch in C. albicans from commensal to pathogen and that understanding interactions between this yeast and vaginal Lactobacillus species may be crucial to elucidating the cause of RVVC and developing appropriate therapies. IMPORTANCE RVVC is a significant burden, both economically and for women's health, but its prevalence is poorly documented globally due to the levels of self-treatment. Identifying triggers for development and recurrence of VVC and the pathogenesis of the microbes involved could considerably improve prevention and treatment options for women with recurrent, azole-resistant cases. This study therefore aimed to examine the interkingdom dynamics from healthy women and those with RVVC using next-generation sequencing techniques and to further investigate the molecular interactions between C. albicans and L. crispatus in a relevant biofilm coculture system.
Collapse
|
72
|
Jayashree S, Sivakumar R, Karthikeyan R, Gunasekaran P, Rajendhran J. Genome-wide identification of probiotic Escherichia coli Nissle 1917 (EcN) fitness genes during adhesion to the intestinal epithelial cells Caco-2. Gene 2021; 803:145890. [PMID: 34375634 DOI: 10.1016/j.gene.2021.145890] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/22/2021] [Accepted: 08/05/2021] [Indexed: 10/20/2022]
Abstract
Escherichia coli Nissle 1917 (EcN) is an efficient probiotic strain extensively used worldwide because of its several health benefits. Adhesion to the intestinal cells is one of the prerequisites for a probiotic strain. To identify the genes essential for the adhesion of EcN on the intestinal cells, we utilized a quantitative genetic footprinting approach called transposon insertion sequencing (INSeq). A transposon insertion mutant library of EcN comprising of ~17,000 mutants was used to screen the adherence to the intestinal epithelial cells, Caco-2. The transposon insertion sites were identified from the input and output population by employing next-generation sequencing using the Ion torrent platform. Based on the relative abundance of reads in the input and output pools, we identified 113 candidate genes that are essential for the fitness of EcN during the adhesion and colonization on the Caco-2 cells. Functional categorization revealed that these fitness genes are associated with carbohydrate transport and metabolism, cell wall/membrane/envelope biogenesis, post-translational modification, stress response, motility and adhesion, and signal transduction. To further validate the genes identified in our INSeq analysis, we constructed individual knock-out mutants in five genes (cyclic di-GMP phosphodiesterase (gmp), hda, uidC, leuO, and hypothetical protein-coding gene). We investigated their ability to adhere to Caco-2 cells. Evaluation of these mutants showed reduced adhesion on Caco-2 cells, confirming their role in adhesion. Understanding the functions of these genes may provide novel insights into molecular regulation during colonization of probiotic bacteria to the intestinal cells, and useful to develop designer probiotic strains.
Collapse
Affiliation(s)
| | - Ramamoorthy Sivakumar
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | - Raman Karthikeyan
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | | | - Jeyaprakash Rajendhran
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, India.
| |
Collapse
|
73
|
Kumar R, Tripathi AS, Sharma N, Singh G, Mohapatra L. Is Regular Probiotic Practice Safe for Management of Sepsis? Chin J Integr Med 2021; 28:185-192. [PMID: 34268649 DOI: 10.1007/s11655-021-3334-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2020] [Indexed: 12/28/2022]
Abstract
For decades, the gut has been thought to play an important role in sepsis pathogenesis. Sepsis is a serious life-threatening, chronic condition of an infection caused by dysregulated host immune response in most of the intensive care unit patients. Probiotics have dual roles in polymicrobial sepsis i.e. probiotics may induce sepsis in many cases and may prevent its prognosis in many cases. Experimental evidence from both pre-clinical and clinical studies have demonstrated that probiotic therapy ameliorates various inflammatory mediators such as tumor necrosis factor, interleukin-10 (IL-10), IL-6, etc., in septicemia. In addition, probiotic use was also found to reduce the severity of pathological conditions associated with irritable bowel disorder and prevent development of endocarditis in septicemia. On contrary, probiotic therapy in neonatal and athymic adult mice fail to provide any beneficial effects on mortality and sepsis-induced inflammation. Importantly, in few clinical trials probiotic use was found to aggravate sepsis by promoting inflammatory cascade rather than suppressing it. This review discusses various studies regarding the beneficial or harmful effects associated with probiotic therapy in sepsis.
Collapse
Affiliation(s)
- Rishabh Kumar
- Department of Pharmacology, ISF College of Pharmacy, Moga (Punjab), India
| | - Alok Shiomurti Tripathi
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Lucknow (UP), India.
| | - Nidhi Sharma
- Department of Pharmacology, ISF College of Pharmacy, Moga (Punjab), India
| | - Gaaminepreet Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga (Punjab), India
| | - Lucy Mohapatra
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Lucknow (UP), India
| |
Collapse
|
74
|
Han KJ, Lee NK, Yu HS, Park H, Paik HD. Anti-adipogenic Effects of the Probiotic Lactiplantibacillus plantarum KU15117 on 3T3-L1 Adipocytes. Probiotics Antimicrob Proteins 2021; 14:501-509. [PMID: 34264486 DOI: 10.1007/s12602-021-09818-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2021] [Indexed: 11/26/2022]
Abstract
In this study, we investigated the probiotic properties and anti-obesity effects of bacterial strains isolated from homemade kimchi. Lactiplantibacillus plantarum KU15117 was isolated using lactobacilli selective medium. L. plantarum KU15117 did not produce β-glucuronidase and showed high tolerance to artificial gastric juice and bile salt, acceptable resistance to antibiotics, and high adhesion ability to HT-29 cells. The anti-adipogenic activity of L. plantarum KU15117 at 109 CFU/well was confirmed by the reduction of oil red O staining and intracellular triglyceride level. Additionally, the expression levels of fatty acid synthase, CCAAT/enhance-binding protein-α, and peroxisome proliferator-activated receptor-γ, which are associated with the early stage of adipocyte differentiation, were significantly lower in the probiotic-treated group than in the control group. These results suggest that L. plantarum KU15117 has probiotic properties and anti-obesity effects and could be used as a prophylactic probiotics.
Collapse
Affiliation(s)
- Kyoung Jun Han
- Department of Food Science and Biotechnology of Animal Resource, Konkuk University, Seoul, 05029, Republic of Korea
| | - Na-Kyoung Lee
- Department of Food Science and Biotechnology of Animal Resource, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hyung-Seok Yu
- Department of Food Science and Biotechnology of Animal Resource, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hoon Park
- Department of Food Science, Sun Moon University, Asan, 31460, Republic of Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resource, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
75
|
Wang CH, Cherng JH, Liu CC, Fang TJ, Hong ZJ, Chang SJ, Fan GY, Hsu SD. Procoagulant and Antimicrobial Effects of Chitosan in Wound Healing. Int J Mol Sci 2021; 22:7067. [PMID: 34209202 PMCID: PMC8269297 DOI: 10.3390/ijms22137067] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 11/22/2022] Open
Abstract
Chitosan, a polysaccharide derived from chitin, has excellent wound healing properties, including intrinsic antimicrobial and hemostatic activities. This study investigated the effectiveness of chitosan dressing and compared it with that of regular gauze dressing in controlling clinically surgical bleeding wounds and profiled the community structure of the microbiota affected by these treatments. The dressings were evaluated based on biocompatibility, blood coagulation factors in rat, as well as antimicrobial and procoagulant activities, and the microbial phylogenetic profile in patients with abdominal surgical wounds. The chitosan dressing exhibited a uniformly fibrous morphology with a large surface area and good biocompatibility. Compared to regular gauze dressing, the chitosan dressing accelerated platelet aggregation, indicated by the lower ratio of prothrombin time and activated partial thromboplastin time, and had outstanding blood absorption ability. Adenosine triphosphate assay results revealed that the chitosan dressing inhibited bacterial growth up to 8 d post-surgery. Moreover, 16S rRNA-based sequencing revealed that the chitosan dressing effectively protected the wound from microbial infection and promoted the growth of probiotic microbes, thereby improving skin immunity and promoting wound healing. Our findings suggest that chitosan dressing is an effective antimicrobial and procoagulant and promotes wound repair by providing a suitable environment for beneficial microbiota.
Collapse
Affiliation(s)
- Chih-Hsin Wang
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan;
| | - Juin-Hong Cherng
- Department and Graduate Institute of Biology and Anatomy, National Defense Medical Center, Taipei 114, Taiwan;
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan
| | - Chuan-Chieh Liu
- Department of Cardiology, Cardinal Tien Hospital, New Taipei City 231, Taiwan;
| | - Tong-Jing Fang
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei 114, Taiwan;
| | - Zhi-Jie Hong
- Division of Traumatology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan;
| | - Shu-Jen Chang
- Division of Rheumatology/Immunology/Allergy, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan;
- Laboratory of Adult Stem Cell and Tissue Regeneration, National Defense Medical Center, Taipei 114, Taiwan;
| | - Gang-Yi Fan
- Laboratory of Adult Stem Cell and Tissue Regeneration, National Defense Medical Center, Taipei 114, Taiwan;
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Sheng-Der Hsu
- Division of Traumatology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan;
| |
Collapse
|
76
|
Pompilio A, Scribano D, Sarshar M, Di Bonaventura G, Palamara AT, Ambrosi C. Gram-Negative Bacteria Holding Together in a Biofilm: The Acinetobacter baumannii Way. Microorganisms 2021; 9:1353. [PMID: 34206680 PMCID: PMC8304980 DOI: 10.3390/microorganisms9071353] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/14/2021] [Accepted: 06/18/2021] [Indexed: 12/24/2022] Open
Abstract
Bacterial biofilms are a serious public-health problem worldwide. In recent years, the rates of antibiotic-resistant Gram-negative bacteria associated with biofilm-forming activity have increased worrisomely, particularly among healthcare-associated pathogens. Acinetobacter baumannii is a critically opportunistic pathogen, due to the high rates of antibiotic resistant strains causing healthcare-acquired infections (HAIs). The clinical isolates of A. baumannii can form biofilms on both biotic and abiotic surfaces; hospital settings and medical devices are the ideal environments for A. baumannii biofilms, thereby representing the main source of patient infections. However, the paucity of therapeutic options poses major concerns for human health infections caused by A. baumannii strains. The increasing number of multidrug-resistant A. baumannii biofilm-forming isolates in association with the limited number of biofilm-eradicating treatments intensify the need for effective antibiofilm approaches. This review discusses the mechanisms used by this opportunistic pathogen to form biofilms, describes their clinical impact, and summarizes the current and emerging treatment options available, both to prevent their formation and to disrupt preformed A. baumannii biofilms.
Collapse
Affiliation(s)
- Arianna Pompilio
- Center for Advanced Studies and Technology (CAST), Department of Medical, Oral and Biotechnological Sciences, Service of Clinical Microbiology, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.P.); (G.D.B.)
| | - Daniela Scribano
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy;
- Dani Di Giò Foundation-Onlus, 00193 Rome, Italy
| | - Meysam Sarshar
- Research Laboratories, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy;
| | - Giovanni Di Bonaventura
- Center for Advanced Studies and Technology (CAST), Department of Medical, Oral and Biotechnological Sciences, Service of Clinical Microbiology, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.P.); (G.D.B.)
| | - Anna Teresa Palamara
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy;
- Laboratory Affiliated to Institute Pasteur Italia-Cenci Bolognetti Foundation, Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| | - Cecilia Ambrosi
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Open University, IRCCS, 00166 Rome, Italy
| |
Collapse
|
77
|
Han Y, Liu Z, Chen T. Role of Vaginal Microbiota Dysbiosis in Gynecological Diseases and the Potential Interventions. Front Microbiol 2021; 12:643422. [PMID: 34220737 PMCID: PMC8249587 DOI: 10.3389/fmicb.2021.643422] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/19/2021] [Indexed: 12/16/2022] Open
Abstract
Vaginal microbiota dysbiosis, characterized by the loss of Lactobacillus dominance and increase of microbial diversity, is closely related to gynecological diseases; thus, intervention on microbiota composition is significant and promising in the treatment of gynecological diseases. Currently, antibiotics and/or probiotics are the mainstay of treatment, which show favorable therapeutic effects but also bring problems such as drug resistance and high recurrence. In this review, we discuss the role of vaginal microbiota dysbiosis in various gynecological infectious and non-infectious diseases, as well as the current and potential interventions.
Collapse
Affiliation(s)
- Yiwen Han
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Queen Mary School, Nanchang University, Nanchang, China
| | - Zhaoxia Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Tingtao Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| |
Collapse
|
78
|
Rittiphairoj T, Pongpirul K, Janchot K, Mueller NT, Li T. Probiotics Contribute to Glycemic Control in Patients with Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. Adv Nutr 2021; 12:722-734. [PMID: 33126241 PMCID: PMC8166562 DOI: 10.1093/advances/nmaa133] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/27/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022] Open
Abstract
This systematic review aimed to evaluate the effectiveness and safety of probiotics for glycemic control in adults with impaired glucose control, including prediabetes and type 2 diabetes mellitus (T2DM). We searched PubMed, Embase, and Cochrane databases, and trial registries up to February 2019. We included randomized controlled trials (RCTs) of participants with prediabetes or T2DM. Eligible trials compared probiotics versus either placebo, no intervention, or comparison probiotics, or compared synbiotics versus prebiotics. Primary outcomes were mean change in fasting blood glucose (FBG) and glycated hemoglobin (HbA1c) from baseline to short term (<12 wk) and long term (≥12 wk). We performed meta-analyses using the random-effects model. We included 28 RCTs (1947 participants). Overall, probiotics reduced FBG more than the placebo/no intervention group with a mean difference (MD) of -12.99 mg/dL (95% CI: -23.55, -2.42; P value: 0.016) over the short term; and -2.99 mg/dL (95% CI: -5.84, -0.13; P value: 0.040) over the long term. There was also some evidence for reduced HbA1c in the probiotics group at both short term (MD: -0.17; 95% CI: -0.37, 0.02; P value: 0.084) and long term (MD: -0.14; 95% CI: -0.34, 0.06; P value: 0.172), however, these did not reach statistical significance possibly because only a few trials reported HbA1c as an outcome. Subgroup analyses showed a greater reduction in HbA1c in participants not receiving insulin therapy than those receiving insulin therapy. Furthermore, the effect of probiotics on the reduction of FBG was more pronounced in participants with FBG >130 mg/dL and those not receiving insulin therapy than their counterparts. Probiotics were also effective in lowering serum cholesterol over the short and long term. In conclusion, we found that probiotics may have a glucose-lowering effect in T2DM participants. The effect appeared to be stronger in participants with poorly controlled diabetes and those not on insulin therapy. Systematic review registration: CRD42019121682.
Collapse
Affiliation(s)
- Thanitsara Rittiphairoj
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Preventive and Social Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Krit Pongpirul
- Department of Preventive and Social Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | - Noel T Mueller
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Welch Center for Prevention, Epidemiology and Clinical Research, Baltimore, MD, USA
| | - Tianjing Li
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Ophthalmology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
79
|
Zhao W, Wang X, Zhao C, Yan Z. Immunomodulatory mechanism of Bacillus subtilis R0179 in RAW 264.7 cells against Candida albicans challenge. Microb Pathog 2021; 157:104988. [PMID: 34044051 DOI: 10.1016/j.micpath.2021.104988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 12/26/2022]
Abstract
This study was aimed to explore the immunomodulatory and anti-Candida mechanisms of Bacillus subtilis (B. subtilis) R0179 in macrophages. RAW 264.7 cells were first challenged with B. subtilis R0179. B. subtilis R0179 was found to down-regulate the signals of Dectin-1, Card9, P-Iκ-Bα, Iκ-Bα, and NF-κB. Meanwhile, it reduced the levels of cytokines interleukin (IL)-1β, IL-6, IL-12, and tumor necrosis factor (TNF)-α, but increased the level of cytokine IL-10. Then RAW 264.7 cells were pretreated with B. subtilis R0179 before challenged with Candida albicans (C. albicans) or RAW 264.7 cells were co-treated with B. subtilis R0179 and C. albicans. In the presence of C. albicans, B. subtilis R0179 also showed the similar immunomodulatory effects on RAW 264.7 cells. Hence, this study provides the first insight into the immunomodulatory mechanisms of B. subtilis R0179 on the Dectin-1-related downstream signaling pathways in macrophages, which may prevent tissue damage caused by excessive pro-inflammatory response during the infection of C. albicans.
Collapse
Affiliation(s)
- Weiwei Zhao
- Department of Oral Medicine, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China; Central Laboratory, Peking University School and Hospital of Stomatology, China; National Center of Stomatology, Peking University School and Hospital of Stomatology, China
| | - Xu Wang
- Department of Oral Medicine, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China; Central Laboratory, Peking University School and Hospital of Stomatology, China; National Center of Stomatology, Peking University School and Hospital of Stomatology, China
| | - Chen Zhao
- Department of Oral Medicine, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China; Department of Oral Medicine, The Affiliated Stomatology Hospital of Tongji University, Shanghai, 200070, PR China
| | - Zhimin Yan
- Department of Oral Medicine, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China; Central Laboratory, Peking University School and Hospital of Stomatology, China; National Center of Stomatology, Peking University School and Hospital of Stomatology, China.
| |
Collapse
|
80
|
Liu J, Chen C, Liu Z, Luo Z, Rao S, Jin L, Wan T, Yue T, Tan Y, Yin H, Yang F, Huang F, Guo J, Wang Y, Xia K, Cao J, Wang Z, Hong C, Luo M, Hu X, Liu Y, Du W, Luo J, Hu Y, Zhang Y, Huang J, Li H, Wu B, Liu H, Chen T, Qian Y, Li Y, Feng S, Chen Y, Qi L, Xu R, Tang S, Xie H. Extracellular Vesicles from Child Gut Microbiota Enter into Bone to Preserve Bone Mass and Strength. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004831. [PMID: 33977075 PMCID: PMC8097336 DOI: 10.1002/advs.202004831] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Indexed: 05/02/2023]
Abstract
Recently, the gut microbiota (GM) has been shown to be a regulator of bone homeostasis and the mechanisms by which GM modulates bone mass are still being investigated. Here, it is found that colonization with GM from children (CGM) but not from the elderly (EGM) prevents decreases in bone mass and bone strength in conventionally raised, ovariectomy (OVX)-induced osteoporotic mice. 16S rRNA gene sequencing reveals that CGM reverses the OVX-induced reduction of Akkermansia muciniphila (Akk). Direct replenishment of Akk is sufficient to correct the OVX-induced imbalanced bone metabolism and protect against osteoporosis. Mechanistic studies show that the secretion of extracellular vesicles (EVs) is required for the CGM- and Akk-induced bone protective effects and these nanovesicles can enter and accumulate into bone tissues to attenuate the OVX-induced osteoporotic phenotypes by augmenting osteogenic activity and inhibiting osteoclast formation. The study identifies that gut bacterium Akk mediates the CGM-induced anti-osteoporotic effects and presents a novel mechanism underlying the exchange of signals between GM and host bone.
Collapse
|
81
|
Heidari Z, Tajbakhsh A, Gheibi-Hayat SM, Moattari A, Razban V, Berenjian A, Savardashtaki A, Negahdaripour M. Probiotics/ prebiotics in viral respiratory infections: implication for emerging pathogens. Recent Pat Biotechnol 2021; 15:112-136. [PMID: 33874878 DOI: 10.2174/1872208315666210419103742] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/01/2021] [Accepted: 03/10/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND Viral respiratory infections could result in perturbation of the gut microbiota due to a probable cross-talk between lungs and gut microbiota. This can affect the pulmonary health and the gastrointestinal system. OBJECTIVE This review aimed to discuss the impact of probiotics/ prebiotics and supplements on the prevention and treatment of respiratory infections, especially emerging pathogens. METHODS The data were searched were searched in PubMed, Scopus, Google Scholar, Google Patents, and The Lens-Patent using keywords of probiotics and viral respiratory infections in the title, abstract, and keywords. RESULT Probiotics consumption could decrease the susceptibility to viral respiratory infections, such as COVID-19 and simultaneously enhance vaccine efficiency in infectious disease prevention through the immune system enhancement. Probiotics improve the gut microbiota and the immune system via regulating the innate system response and production of anti-inflammatory cytokines. Moreover, treatment with probiotics contributes to the intestinal homeostasis restitution under antibiotic pressure and decreasing the risk of secondary infections due to viral respiratory infections. Probiotics present varied performances in different conditions; thus, promoting their efficacy through combining with supplements (prebiotics, postbiotics, nutraceuticals, berberine, curcumin, lactoferrin, minerals, and vitamins) is important. Several supplements reported to enhance the probiotics' efficacy and their mechanisms as well as probiotics related patents are summarized in this review. Using nanotechnology and microencapsulation techniques can also improve probiotics efficiency. CONCLUSION Given the global challenge of COVID-19, probiotic/prebiotic and following nutritional guidelines should be regarded seriously. Additionally, their role as an adjuvant in vaccination for immune response augmentation needs attention.
Collapse
Affiliation(s)
- Zahra Heidari
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz. Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz. Iran
| | - Seyed Mohammad Gheibi-Hayat
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd. Iran
| | - Afagh Moattari
- Department of Parasitology and Mycology, Shiraz University of Medical Sciences, Shiraz. Iran
| | - Vahid Razban
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz. Iran
| | - Aydin Berenjian
- School of Engineering, Faculty of Science and Engineering, The University of Waikato, Hamilton. New Zealand
| | - Amir Savardashtaki
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz. Iran
| | - Manica Negahdaripour
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz. Iran
| |
Collapse
|
82
|
Probiotic Properties and Immunomodulatory Activity of Lactobacillus Strains Isolated from Dairy Products. Microorganisms 2021; 9:microorganisms9040825. [PMID: 33924561 PMCID: PMC8069045 DOI: 10.3390/microorganisms9040825] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 01/09/2023] Open
Abstract
Lactobacilli species are an effective biotherapeutic alternative against bacterial infections and intestinal inflammatory disorders. However, it is important to evaluate their beneficial properties, before considering them as probiotics for medical use. In this study we evaluated some probiotic properties of Lactobacillus rhamnosus GG, Lactobacillus rhamnosus KLSD, Lactobacillus helveticus IMAU70129, and Lactobacillus casei IMAU60214 previously isolated from dairy products and as control Lactobacillus casei Shirota. Experimental evaluations revealed that all strains expressed hydrophobicity (25–40%), auto-aggregation (55–60%), NaCl tolerance (1–4%), adhesion to Caco-2 cells (25–33%), partial inhibition on adherence of Escherichia coli ATCC 35218, Salmonella Typhimurium ATCC 14028, and Staphylococcus aureus ATCC 23219. Cell-free supernatants (CFS) of Lactobacilli also inhibit growth of these pathogens. In immunomodulatory properties a reduction of interleukin-8 (IL-8) and nitric oxide (NO) release was observed in assays with Caco-2 cells stimulated with interleukin-1β (1 ng/mL), or lipopolysaccharide (0.1 µg/mL). On the other hand, the damage induced to Caco-2 cells with sodium dodecyl sulfate (SDS) was attenuated when the cultured cells were pretreated with L. rhamnosus KLDS, L. helveticus IMAU70129 and L. casei IMAU60214. These Lactobacilli possess probiotic properties determined by both an antagonistic activity on pathogenic bacteria and reduction in the inflammatory response of cells treated with SDS, a pro-inflammatory stimulant.
Collapse
|
83
|
Muhialdin BJ, Zawawi N, Abdull Razis AF, Bakar J, Zarei M. Antiviral activity of fermented foods and their probiotics bacteria towards respiratory and alimentary tracts viruses. Food Control 2021; 127:108140. [PMID: 33867696 PMCID: PMC8036130 DOI: 10.1016/j.foodcont.2021.108140] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/09/2021] [Accepted: 04/04/2021] [Indexed: 02/06/2023]
Abstract
The recent COVID-19, a viral outbreak calls for a high demand for non-conventional antiviral agents that can reduce the risk of infections and promote fast recovery. Fermented foods and their probiotics bacteria have recently received increasing interest due to the reported potential of high antiviral activity. Several probiotics strains demonstrated broad range of antiviral activities and different mechanisms of action. This article will review the diversity, health benefits, interaction with immune system and antiviral activity of fermented foods and their probiotics bacteria. In addition, the mechanisms of action will be reviewed to determine the broad range potential antiviral activity against the respiratory and alimentary tracts viruses. The probiotics bacteria and bioactive compounds in fermented foods demonstrated antiviral activities against respiratory and alimentary tracts viruses. The mechanism of action was reported to be due to the stimulation of the immune system function via enhancing natural killers cell toxicity, enhance the production of pro-inflammatory cytokines, and increasing the cytotoxic of T lymphocytes (CD3+, CD16+, CD56+). However, further studies are highly recommended to determine the potential antiviral activity for traditional fermented foods.
Collapse
Affiliation(s)
- Belal J Muhialdin
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM, Selangor, Malaysia.,Halal Products Research Institute, Universiti Putra Malaysia, 43400, UPM, Selangor, Malaysia
| | - Norhasnida Zawawi
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM, Selangor, Malaysia.,Natural Medicines and Product Research Laboratory, Universiti Putra Malaysia, 43400, UPM, Selangor, Malaysia
| | - Ahmad Faizal Abdull Razis
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM, Selangor, Malaysia.,Natural Medicines and Product Research Laboratory, Universiti Putra Malaysia, 43400, UPM, Selangor, Malaysia
| | - Jamilah Bakar
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM, Selangor, Malaysia
| | - Mohammad Zarei
- Department of Food Science and Technology, School of Industrial Technology, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, 40450, Selangor, Malaysia
| |
Collapse
|
84
|
Arnold JW, Whittington HD, Dagher SF, Roach J, Azcarate-Peril MA, Bruno-Barcena JM. Safety and Modulatory Effects of Humanized Galacto-Oligosaccharides on the Gut Microbiome. Front Nutr 2021; 8:640100. [PMID: 33898497 PMCID: PMC8058378 DOI: 10.3389/fnut.2021.640100] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/11/2021] [Indexed: 01/14/2023] Open
Abstract
Complex dietary carbohydrate structures including β(1-4) galacto-oligosaccharides (GOS) are resistant to digestion in the upper gastrointestinal (GI) tract and arrive intact to the colon where they benefit the host by selectively stimulating microbial growth. Studies have reported the beneficial impact of GOS (alone or in combination with other prebiotics) by serving as metabolic substrates for modulating the assembly of the infant gut microbiome while reducing GI infections. N-Acetyl-D-lactosamine (LacNAc, Galβ1,4GlcNAc) is found in breast milk as a free disaccharide. This compound is also found as a component of human milk oligosaccharides (HMOs), which have repeating and variably branched lactose and/or LacNAc units, often attached to sialic acid and fucose monosaccharides. Human glycosyl-hydrolases do not degrade most HMOs, indicating that these structures have evolved as natural prebiotics to drive the proper assembly of the infant healthy gut microbiota. Here, we sought to develop a novel enzymatic method for generating LacNAc-enriched GOS, which we refer to as humanized GOS (hGOS). We showed that the membrane-bound β-hexosyl transferase (rBHT) from Hamamotoa (Sporobolomyces) singularis was able to generate GOS and hGOS from lactose and N-Acetyl-glucosamine (GlcNAc). The enzyme catalyzed the regio-selective, repeated addition of galactose from lactose to GlcNAc forming the β-galactosyl linkage at the 4-position of the GlcNAc and at the 1-position of D-galactose generating, in addition to GOS, LacNAc, and Galactosyl-LacNAc trisaccharides which were produced by two sequential transgalactosylations. Humanized GOS is chemically distinct from HMOs, and its effects in vivo have yet to be determined. Thus, we evaluated its safety and demonstrated the prebiotic's ability to modulate the gut microbiome in 6-week-old C57BL/6J mice. Longitudinal analysis of gut microbiome composition of stool samples collected from mice fed a diet containing hGOS for 5 weeks showed a transient reduction in alpha diversity. Differences in microbiome community composition mostly within the Firmicutes phylum were observed between hGOS and GOS, compared to control-fed animals. In sum, our study demonstrated the biological synthesis of hGOS, and signaled its safety and ability to modulate the gut microbiome in vivo, promoting the growth of beneficial microorganisms, including Bifidobacterium and Akkermansia.
Collapse
Affiliation(s)
- Jason W. Arnold
- Division of Gastroenterology and Hepatology, Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
- UNC Microbiome Core, Center for Gastrointestinal Biology and Disease, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - Hunter D. Whittington
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| | - Suzanne F. Dagher
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| | - Jeffery Roach
- UNC Microbiome Core, Center for Gastrointestinal Biology and Disease, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
- UNC Information Technology Services and Research Computing, University of North Carolina, Chapel Hill, NC, United States
| | - M. Andrea Azcarate-Peril
- Division of Gastroenterology and Hepatology, Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
- UNC Microbiome Core, Center for Gastrointestinal Biology and Disease, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - Jose M. Bruno-Barcena
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
85
|
Carcelén F, López M, Martín FS, Ara M, Bezada S, Ruiz-García L, Sandoval-Monzón R, López S, Guevara J. Effect of probiotics administration at different levels on the productive parameters of guinea pigs for fattening ( Cavia porcellus). Open Vet J 2021; 11:222-227. [PMID: 34307079 PMCID: PMC8288744 DOI: 10.5455/ovj.2021.v11.i2.6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 03/30/2021] [Indexed: 11/09/2022] Open
Abstract
Background For more than 50 years, antibiotics have been used to maintain animal welfare and improve efficiency. Recently, antibiotics were found in the muscle, liver, and kidney of guinea pig carcasses put up for sale and human consumption, which is a public health issue. Probiotics are supplements of live microorganisms that, when administered in adequate doses, could replace growth-promoting antibiotics. Aim This study analyzed the effect of the administration of an oral probiotic mixture on the guinea pigs productive performance (Cavia porcellus). Methods Fifty male guinea pigs, weaned at 14 days of age, were distributed in a completely randomized design of five treatments with ten repetitions for each group. The treatments were CONTROL group without probiotic; PROB 1 given 1 ml of probiotic; PROB 2 with 2 ml of probiotic; PROB 3 with 3 ml of probiotic; and antibiotic growth promoter (AGP) was given 300 ppm zinc bacitracin. The microorganisms used in the probiotic were Enterococcus hirae, Lactobacillus reuteri, Lactobacillus frumenti, Lactobacillus johnsoni, Streptococcus thoraltensis, and Bacillus pumilus. Productive parameters were evaluated from weaning to 70 days of age. Results No statistically significant difference was found between the treatments on forage dry matter intake (DMI), concentrateconcentrate DMI, or total concentrate DMI (p > 0.05). Similarly, no statistical difference was found between the treatments in terms of final weight or weight gain (p > 0.05). Regarding the feed conversion ratio (FCR), there was a significant difference between treatments (p = 0.045); the CONTROL group had the highest FCR, followed by the AGP group, with the best FCR observed in the PROB 3 group (p < 0.05). In addition, significant statistical differences were found between CONTROL and PROB 2 (p < 0.05). Likewise, a significant linear effect of increasing doses of the probiotic was found (p = 0.01), which indicated that the feed conversion was better with a higher dose. Conclusion The treatments evaluated in this study significantly impacted the FCR in guinea pigs for fattening. Increasing doses of probiotics had a linear effect on FCR.
Collapse
Affiliation(s)
- Fernando Carcelén
- Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima, Perú
| | - Melissa López
- Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima, Perú
| | - Felipe San Martín
- Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima, Perú
| | - Miguel Ara
- Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima, Perú
| | - Sandra Bezada
- Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima, Perú
| | - Luis Ruiz-García
- Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima, Perú
| | - Rocío Sandoval-Monzón
- Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima, Perú
| | - Sofía López
- Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima, Perú
| | - Jorge Guevara
- Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos, Lima, Perú
| |
Collapse
|
86
|
Efficacy of supplementation of probiotics on maternal glycaemic control – A systematic review and meta-analysis of randomized controlled trials. CLINICAL EPIDEMIOLOGY AND GLOBAL HEALTH 2021. [DOI: 10.1016/j.cegh.2020.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
87
|
Kang HJ, Kim GC, Lee CG, Park S, Sharma G, Verma R, Im SH, Kwon HK. Probiotics-derived metabolite ameliorates skin allergy by promoting differentiation of FOXP3 + regulatory T cells. J Allergy Clin Immunol 2021; 147:1517-1521. [PMID: 33326803 DOI: 10.1016/j.jaci.2020.11.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 10/20/2020] [Accepted: 11/25/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Hye-Ji Kang
- Advanced Green Energy and Environment Institute, Handong Global University, Pohang, Korea; HEM, Pohang, Gyungbuk, Korea
| | - Gi-Cheon Kim
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, Korea; Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Korea
| | - Choong-Gu Lee
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung Institute of Natural Products, Gangneung, Korea
| | - Sunhee Park
- ImmunoBiome, Pohang University of Science and Technology Biotech Center, Pohang, Korea
| | - Garima Sharma
- ImmunoBiome, Pohang University of Science and Technology Biotech Center, Pohang, Korea
| | - Ravi Verma
- ImmunoBiome, Pohang University of Science and Technology Biotech Center, Pohang, Korea
| | - Sin-Hyoeg Im
- ImmunoBiome, Pohang University of Science and Technology Biotech Center, Pohang, Korea; Division of Integrative Biosciences and Biotechnology, Department of Life Sciences, Pohang University of Science and Technology, Pohang, Korea.
| | - Ho-Keun Kwon
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, Korea; Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Korea; Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
88
|
Demin KA, Refeld AG, Bogdanova AA, Prazdnova EV, Popov IV, Kutsevalova OY, Ermakov AM, Bren AB, Rudoy DV, Chistyakov VA, Weeks R, Chikindas ML. Mechanisms of Candida Resistance to Antimycotics and Promising Ways to Overcome It: The Role of Probiotics. Probiotics Antimicrob Proteins 2021; 13:926-948. [PMID: 33738706 DOI: 10.1007/s12602-021-09776-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2021] [Indexed: 12/12/2022]
Abstract
Pathogenic Candida and infections caused by those species are now considered as a serious threat to public health. The treatment of candidiasis is significantly complicated by the increasing resistance of pathogenic strains to current treatments and the stagnant development of new antimycotic drugs. Many species, such as Candida auris, have a wide range of resistance mechanisms. Among the currently used synthetic and semi-synthetic antifungal drugs, the most effective are azoles, echinocandins, polyenes, nucleotide analogs, and their combinations. However, the use of probiotic microorganisms and/or the compounds they produce is quite promising, although underestimated by modern pharmacology, to control the spread of pathogenic Candida species.
Collapse
Affiliation(s)
- Konstantin A Demin
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Aleksandr G Refeld
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Anna A Bogdanova
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Evgenya V Prazdnova
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Igor V Popov
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia
| | | | - Alexey M Ermakov
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia
| | - Anzhelica B Bren
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia.,Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia
| | - Dmitry V Rudoy
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia
| | - Vladimir A Chistyakov
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Richard Weeks
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, New Brunswick, NJ, USA
| | - Michael L Chikindas
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia. .,Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, New Brunswick, NJ, USA. .,I.M. Sechenov First Moscow State Medical University, Moscow, Russia.
| |
Collapse
|
89
|
Bacteriocin-Like Inhibitory Substances from Probiotics as Therapeutic Agents for Candida Vulvovaginitis. Antibiotics (Basel) 2021; 10:antibiotics10030306. [PMID: 33802636 PMCID: PMC8002407 DOI: 10.3390/antibiotics10030306] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/04/2021] [Accepted: 03/10/2021] [Indexed: 12/20/2022] Open
Abstract
Probiotics can potentially prevent and treat diseases. We examined the inhibitory activity of bacteriocin-like inhibitory substances (BLISs) from potentially probiotic lactobacilli and streptococci on Candida albicans and non-Candida albicans clinical isolates from women with vulvovaginitis. Using agar well diffusion assays, BLISs inhibited both Candida albicans and non-Candida albicans isolates. The BLIS from L. pentosus isolates had the highest anti-Candida activity (33/45; 73.3%), followed by BLISs from isolates of L. paracasei subsp. paracasei (31/45; 68.9%), L. rhamnosus I (30/45; 66.7%), L. delbrueckii subsp. lactis I (30/45; 66.7%), and S. uberis II (30/45; 66.7%). Upon characterization according to the retained activity under variable physical and chemical conditions, the BLISs showed stability against heat, pH, and surfactants, but were protease-sensitive, which suggests a proteinaceous nature of the active substances. Using crystal violet assays, the BLISs reduced the Candida biofilm biomass significantly as compared to a control group that lacked BLISs. In vivo testing of the antagonistic activity was performed using the Galleria mellonella (G. mellonella) larvae model. BLISs significantly improved survival in G. mellonella larvae treated with Candida isolates on the first, second, and seventh days, as compared to larvae inoculated with Candida only (p < 0.01). The results show that BLISs can be used as biotherapeutic agents in vulvovaginal candidiasis.
Collapse
|
90
|
The Kobe University Human Intestinal Microbiota Model for gut intervention studies. Appl Microbiol Biotechnol 2021; 105:2625-2632. [PMID: 33718974 DOI: 10.1007/s00253-021-11217-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/23/2021] [Accepted: 03/02/2021] [Indexed: 02/08/2023]
Abstract
The human gut harbors a complex microbial community that performs a range of metabolic, physiological, and immunological functions. The host and its inhabiting microorganisms are often referred to as a "superorganism." Dysbiosis of gut microflora has been associated with the pathogenesis of intestinal disorders including inflammatory bowel disease, colorectal cancer, and extra-intestinal disorders such as cardiovascular disease. Therefore, gut microbiome interventions are important for the prevention and treatment of diseases. However, ethical, economic, scientific, and time constraints limit the outcome of human intervention or animal studies targeting gut microbiota. We recently developed an in vitro batch fermentation model (the Kobe University Human Intestinal Microbiota Model, KUHIMM) that is capable of hosting a majority of gut microbial species in humans and also detects the metabolites produced by microorganisms in real time. In this mini review, we elucidated the characteristics of the KUHIMM and its applicability in analyzing the effect of diet, drugs, probiotics, and prebiotics on intestinal bacteria. In addition, we introduce as examples its application to disease models, such as ulcerative colitis, in which intestinal bacteria are intricately involved in the process of pathogenesis. We also discuss the potential of the KUHIMM in precision medicine. KEY POINTS: • In vitro gut fermentation model to simulate human colonic microbiota • Screening of potential prebiotics and probiotic candidates in healthy model • Construction of disease models of ulcerative colitis and coronary artery disease.
Collapse
|
91
|
Al-Hadidi A, Navarro J, Goodman SD, Bailey MT, Besner GE. Lactobacillus reuteri in Its Biofilm State Improves Protection from Experimental Necrotizing Enterocolitis. Nutrients 2021; 13:nu13030918. [PMID: 33809097 PMCID: PMC8000340 DOI: 10.3390/nu13030918] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/11/2022] Open
Abstract
Necrotizing enterocolitis (NEC) is a devastating disease predominately found in premature infants that is associated with significant morbidity and mortality. Despite decades of research, medical management with broad spectrum antibiotics and bowel rest has remained relatively unchanged, with no significant improvement in patient outcomes. The etiology of NEC is multi-factorial; however, gastrointestinal dysbiosis plays a prominent role in a neonate's vulnerability to and development of NEC. Probiotics have recently emerged as a new avenue for NEC therapy. However, current delivery methods are associated with potential limitations, including the need for at least daily administration in order to obtain any improvement in outcomes. We present a novel formulation of enterally delivered probiotics that addresses the current limitations. A single enteral dose of Lactobacillus reuteri delivered in a biofilm formulation increases probiotic survival in acidic gastric conditions, increases probiotic adherence to gastrointestinal epithelial cells, and reduces the incidence, severity, and neurocognitive sequelae of NEC in experimental models.
Collapse
Affiliation(s)
- Ameer Al-Hadidi
- Department of Pediatric Surgery, Nationwide Children’s Hospital, The Ohio State University College of Medicine, Center for Perinatal Research, The Research Institute at Nationwide Children’s Hospital, Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH 43205, USA;
| | - Jason Navarro
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH 43205, USA; (J.N.); (S.D.G.); (M.T.B.)
| | - Steven D. Goodman
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH 43205, USA; (J.N.); (S.D.G.); (M.T.B.)
| | - Michael T. Bailey
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH 43205, USA; (J.N.); (S.D.G.); (M.T.B.)
| | - Gail E. Besner
- Department of Pediatric Surgery, Nationwide Children’s Hospital, The Ohio State University College of Medicine, Center for Perinatal Research, The Research Institute at Nationwide Children’s Hospital, Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH 43205, USA;
- Correspondence: ; Tel.: +1-614-722-3914
| |
Collapse
|
92
|
Jin Y, Luo B, Cai J, Yang B, Zhang Y, Tian F, Ni Y. Evaluation of indigenous lactic acid bacteria of raw mare milk from pastoral areas in Xinjiang, China, for potential use in probiotic fermented dairy products. J Dairy Sci 2021; 104:5166-5184. [PMID: 33714582 DOI: 10.3168/jds.2020-19398] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 01/04/2021] [Indexed: 01/27/2023]
Abstract
In the present study 114 lactic acid bacteria strains, isolated from raw mare milks from pastoral areas for ethnic minorities in northwest China, were screened for probiotic traits, and their characteristics were compared with those of Lactobacillus rhamnosus GG, a commercial strain. Among the 114 strains identified, the most common species was Pediococcus pentosaceus (n = 52), followed by Leuconostoc lactis (n = 35), Lactobacillus helveticus (n = 7), Lactobacillus plantarum (n = 6), Lactobacillus kefiri (n = 5), Lactobacillus curvatus (n = 4), Lactobacillus paracasei (n = 3), and Lactococcus garvieae (n = 3). Based on acid and bile salt tolerance, 15 strains were further selected. All selected strains were subjected to a series of in vitro tests to assess their technological properties, including cell surface hydrophobicity (13.6-56.2%), autoaggregation ability (9.26-38.30%), coaggregation ability, and heat and lysozyme survival rates (84.74-94.01% and 80.52-99.37%, respectively). In vitro antagonism showed that Lb. plantarum (M5-19, M8-60, M8-59) exhibited the most strong inhibitory activity against 7 tested pathogens. Moreover, antibiotic resistance and hemolytic activity were investigated for safety assessment. No strain exhibited hemolytic activity, and most of the strains were sensitive to a series of 14 antibiotics of clinical importance. Ultimately, the principal component analysis of all data obtained above showed that 2 Lb. plantarum strains (M8-59, M8-60) and Lb. paracasei M1-36 exhibited the best potential for their inclusion as adjunct functional cultures in local fermented dairy products.
Collapse
Affiliation(s)
- Yamei Jin
- School of Food Sciences and Technology, Shihezi University, Shihezi 832000, Xinjiang, People's Republic of China
| | - Baolong Luo
- School of Food Sciences and Technology, Shihezi University, Shihezi 832000, Xinjiang, People's Republic of China
| | - Jingjing Cai
- School of Food Sciences and Technology, Shihezi University, Shihezi 832000, Xinjiang, People's Republic of China
| | - Bo Yang
- School of Food Sciences and Technology, Shihezi University, Shihezi 832000, Xinjiang, People's Republic of China
| | - Yan Zhang
- School of Food Sciences and Technology, Shihezi University, Shihezi 832000, Xinjiang, People's Republic of China
| | - Fengwei Tian
- School of Food Sciences and Technology, Shihezi University, Shihezi 832000, Xinjiang, People's Republic of China
| | - Yongqing Ni
- School of Food Sciences and Technology, Shihezi University, Shihezi 832000, Xinjiang, People's Republic of China.
| |
Collapse
|
93
|
Asan-Ozusaglam M, Gunyakti A. A new probiotic candidate bacterium from human milk: Limosilactobacillus vaginalis MA-10. ACTA ALIMENTARIA 2021. [DOI: 10.1556/066.2020.00073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
AbstractThe probiotic and technological potentials of lactic acid bacteria originating from human milk are becoming a remarkable research area. In the present study, Limosilactobacillus vaginalis MA-10 isolated from human milk was investigated in vitro for its probiotic and technological aspects. According to the results obtained in the study, MA-10 strain exhibited non-haemolytic activity and various degrees of sensitivity to most of the tested antibiotics. The strain showed good resistance to the gastrointestinal system and maintained its viability under these conditions. Its antimicrobial activity against human or clinical bacterial and fungal microorganisms and fish bacteria was determined in the range of 2.38–11.22 mm. The MA-10 strain was able to assimilate cholesterol ranging from 31.42 to 82.30%. The strain showed 9.34% ferrous-ion chelating and 32% DPPH free radical scavenging activities. These initial results from the present study confirm that L. vaginalis MA-10 may be a new source with appropriated probiotic and technological traits for various industries, and further in vivo assays.Due to the limited number of studies on L. vaginalis strains originated from human breast milk in the literature, the data obtained in this study are thought to be important for revealing the basic probiotic properties of the strain.
Collapse
Affiliation(s)
- M. Asan-Ozusaglam
- 1Department of Biotechnology, Faculty of Science and Letters, Aksaray University, 68100, Aksaray, Turkey
| | - A. Gunyakti
- 1Department of Biotechnology, Faculty of Science and Letters, Aksaray University, 68100, Aksaray, Turkey
- 2Institute of Biotechnology, Ankara University, 06110, Ankara, Turkey
| |
Collapse
|
94
|
Byeon JY, Park D, Kim TW, Ko CH, Choi JI. Impregnation of probiotics into porous TiO2 support for enhanced viability. KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-020-0728-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
95
|
Kumar G, Tewari S, Tagg J, Chikindas ML, Popov IV, Tiwari SK. Can Probiotics Emerge as Effective Therapeutic Agents in Apical Periodontitis? A Review. Probiotics Antimicrob Proteins 2021; 13:299-314. [PMID: 33580864 DOI: 10.1007/s12602-021-09750-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2021] [Indexed: 01/09/2023]
Abstract
Apical periodontitis (AP) is a biofilm-associated disease initiated by the invasion of dental pulp by microorganisms from the oral cavity. Eradication of intracanal microbial infection is an important goal of endodontic treatment, and this is typically accomplished by mechanical instrumentation and application of sodium hypochlorite and chlorhexidine. However, these agents are tissue-irritating at higher concentrations and cytotoxic. Certain probiotics have been found effective in controlling marginal periodontitis, as evidenced by reduction of pathogenic bacterial loads, gains in clinical attachment levels, and reduced bleeding on probing. In vitro studies have shown inhibitory activity of some probiotics against endodontic pathogens. Similarly, in vivo studies in rats have demonstrated a positive immuno-modulatory role of probiotics in AP, as manifested by decreased levels of proinflammatory markers and increased levels of anti-inflammatory markers. A role for probiotics in effecting a reduction of bone resorption has also been reported. This review provides an outline of current research into the probiotic management of AP, with a focus on understanding the mechanisms of their direct antagonistic activity against target pathogens and of their beneficial modulation of the immune system.
Collapse
Affiliation(s)
- Gaurav Kumar
- Department of Conservative Dentistry and Endodontics, Post Graduate Institute of Dental Sciences, Rohtak, India
| | - Sanjay Tewari
- Department of Conservative Dentistry and Endodontics, Post Graduate Institute of Dental Sciences, Rohtak, India
| | - John Tagg
- BLIS Technologies Ltd, Dunedin, New Zealand
| | - Michael Leonidas Chikindas
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, 65 Dudley Road, New Brunswick, NJ, 08901, USA.,Center for Agrobiotechnology, Don State Technical University, Gagarin Square 1, Rostov-on-Don, 344002, Russia.,I.M. Sechenov First Moscow State Medical University, Bol'shaya Pirogovskaya Str., 19c1, Moscow, 119146, Russia
| | - Igor V Popov
- Center for Agrobiotechnology, Don State Technical University, Gagarin Square 1, Rostov-on-Don, 344002, Russia
| | | |
Collapse
|
96
|
Wang H, Kim KP, Kim IH. Evaluation of the combined effects of different dose levels of Zinc oxide with probiotics complex supplementation on the growth performance, nutrient digestibility, faecal microbiota, noxious gas emissions and faecal score of weaning pigs. J Anim Physiol Anim Nutr (Berl) 2021; 105:286-293. [PMID: 33423308 DOI: 10.1111/jpn.13493] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 11/13/2020] [Indexed: 01/02/2023]
Abstract
This study was conducted to assess the effects of different dose levels of zinc oxide (ZnO) combined with probiotics complex supplementation on the growth, performance, nutrient digestibility, faecal lactobacillus and Enterobacteria counts, noxious gas emissions and faecal score of weaned piglets. A total of 180 crossbred weaning pigs ([Yorkshire × Landrace] × Duroc; 6.61 ± 1.29 kg [mean ± SE]; 28 days old) were used in a 42-day trial. All pigs were randomly allotted to 1 of 4 treatment diets based on initial BW and sex (9 replicate pens/treatment; 2 gilts and 3 barrows/pen). Dietary treatment groups were as follows: CON, basal diet +ZnO 3,000 ppm; BZS, basal diet +ZnO 2,100 ppm +0.1% SynerZymeF10; BZS1, basal diet +ZnO 1,200 ppm +0.1% SynerZymeF10; BZS2, basal diet +ZnO 300 ppm +0.1% SynerZymeF10. During the phase 3, decreasing the ZnO concentration led to a linear reduction in ADG (p = 0.044), and the ADG was lower (p < 0.05) in BZS2 compared with CON treatment during the whole experimental period. The effects of dietary ZnO with probiotics complex were not detected (p > 0.05) on nutrient digestibility, Lactobacillus and E. coli counts, faecal gas emissions and faecal scores. In conclusion, the diet supplementation of ZnO (1,200 ppm) with probiotics complex has been shown to have comparable efficacy to ZnO (3,000 ppm) diet on growth performance, nutrient digestibility, faecal microbiota, noxious gas emissions and faecal score of weaning pigs.
Collapse
Affiliation(s)
- Huan Wang
- Department of Animal Resource & Science, Dankook University, Cheonan, Choognam, Korea
| | - Kun Phil Kim
- Department of Animal Resource & Science, Dankook University, Cheonan, Choognam, Korea
| | - In Ho Kim
- Department of Animal Resource & Science, Dankook University, Cheonan, Choognam, Korea
| |
Collapse
|
97
|
Mohammed L, Javed M, Althwanay A, Ahsan F, Oliveri F, Goud HK, Mehkari Z, Rutkofsky IH. Live Bacteria Supplementation as Probiotic for Managing Fishy, Odorous Vaginal Discharge Disease of Bacterial Vaginosis: An Alternative Treatment Option? Cureus 2020; 12:e12362. [PMID: 33527045 PMCID: PMC7842843 DOI: 10.7759/cureus.12362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Bacterial vaginosis (BV) is a universally prevalent cause of genital discomfort in females belonging to the reproductive age group, rendering the vagina more susceptible to various other complications. The standard treatment of BV involves using metronidazole and clindamycin, which help eliminate the infection but play no role in re-flourishing the normal vaginal homeostasis, which is lactobacilli preponderant, thereby rendering the vagina more prone to re-infection. Hence, clinical research has been performed to increase vaginal lactobacillus count through oral or vaginal supplementation. This current study's main objective is to review the previously conducted research regarding the efficiency of probiotic supplementation in the prevention and treatment of BV.
Collapse
Affiliation(s)
- Lubna Mohammed
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Moiz Javed
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Aldanah Althwanay
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Farah Ahsan
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Federico Oliveri
- Cardiology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Harshit K Goud
- Internal Medicine, California Institute of Behavioural Neurosciences & Psychology, Fairfield, USA
| | - Zainab Mehkari
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Ian H Rutkofsky
- Psychiatry, Neuroscience, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
98
|
Tavares LM, de Jesus LCL, da Silva TF, Barroso FAL, Batista VL, Coelho-Rocha ND, Azevedo V, Drumond MM, Mancha-Agresti P. Novel Strategies for Efficient Production and Delivery of Live Biotherapeutics and Biotechnological Uses of Lactococcus lactis: The Lactic Acid Bacterium Model. Front Bioeng Biotechnol 2020; 8:517166. [PMID: 33251190 PMCID: PMC7672206 DOI: 10.3389/fbioe.2020.517166] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 10/09/2020] [Indexed: 12/15/2022] Open
Abstract
Lactic acid bacteria (LAB) are traditionally used in fermentation and food preservation processes and are recognized as safe for consumption. Recently, they have attracted attention due to their health-promoting properties; many species are already widely used as probiotics for treatment or prevention of various medical conditions, including inflammatory bowel diseases, infections, and autoimmune disorders. Some LAB, especially Lactococcus lactis, have been engineered as live vehicles for delivery of DNA vaccines and for production of therapeutic biomolecules. Here, we summarize work on engineering of LAB, with emphasis on the model LAB, L. lactis. We review the various expression systems for the production of heterologous proteins in Lactococcus spp. and its use as a live delivery system of DNA vaccines and for expression of biotherapeutics using the eukaryotic cell machinery. We have included examples of molecules produced by these expression platforms and their application in clinical disorders. We also present the CRISPR-Cas approach as a novel methodology for the development and optimization of food-grade expression of useful substances, and detail methods to improve DNA delivery by LAB to the gastrointestinal tract. Finally, we discuss perspectives for the development of medical applications of recombinant LABs involving animal model studies and human clinical trials, and we touch on the main safety issues that need to be taken into account so that bioengineered versions of these generally recognized as safe organisms will be considered acceptable for medical use.
Collapse
Affiliation(s)
- Laísa M Tavares
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Luís C L de Jesus
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Tales F da Silva
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Fernanda A L Barroso
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Viviane L Batista
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Nina D Coelho-Rocha
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Vasco Azevedo
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Mariana M Drumond
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Brazil.,Departamento de Ciências Biológicas, Centro Federal de Educação Tecnológica de Minas Gerais, Belo Horizonte, Brazil
| | - Pamela Mancha-Agresti
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Brazil.,FAMINAS - BH, Belo Horizonte, Brazil
| |
Collapse
|
99
|
Liu J, Zhang D, Guo Y, Cai H, Liu K, He Y, Liu Y, Guo L. The Effect of Lactobacillus Consumption on Human Blood Pressure: a Systematic Review and Meta-Analysis of Randomized Controlled Trials. Complement Ther Med 2020; 54:102547. [PMID: 33183665 DOI: 10.1016/j.ctim.2020.102547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/19/2020] [Accepted: 08/24/2020] [Indexed: 10/23/2022] Open
Abstract
OBJECTIVES Previous clinical studies have shown controversial results regarding the effect of Lactobacillus supplementation on blood pressure (BP). The purpose of this systematic review and meta-analysis is to examine the effect of Lactobacillus consumption on BP. METHODS Eligible randomized controlled trials (RCTs) were searched from five electronic databases until May 2020. In total, 18 studies were included in our meta-analysis. Quality of the selected studies was assessed, and a random-effects model was used to calculate the overall effect sizes of weighted mean differences (WMD). This systematic review was registered in PROSPERO with the number: CRD42019139294. RESULTS Lactobacillus consumption significantly reduced systolic blood pressure (SBP) by -2.74 mmHg (95% confidence interval, -4.96 to -0.51) and diastolic blood pressure (DBP) by -1.50 mmHg (95% confidence interval, -2.44 to -0.56) when comparing with the control group. Subgroup analysis showed that type 2 diabetes mellitus (T2DM) patients, Asian individuals, or borderline hypertension participants were more sensitive to daily consumption of Lactobacillus. And the effect of Lactobacillus on BP-reduction was more significant in capsule form, with the dose was above 5 × 109 colony-forming unit (CFU)/day or lasted for more than 8 weeks. CONCLUSIONS Our present study suggests that Lactobacillus consumption in capsule form when the daily dose is above 5 × 109 CFU for more than 8 weeks can decrease SBP or DBP in T2DM patients, borderline hypertension participants or Asian individuals.
Collapse
Affiliation(s)
- Jinshu Liu
- Nursing school of Jilin University, Changchun, Jilin, 130021, China.
| | - Dan Zhang
- Nursing school of Jilin University, Changchun, Jilin, 130021, China.
| | - Yingze Guo
- The first hospital of Jilin University, Changchun, Jilin, 130021, China.
| | - Hongwei Cai
- Nursing school of Jilin University, Changchun, Jilin, 130021, China.
| | - Keyuan Liu
- Basic College of Medical Sciences, Jilin University, Changchun, Jilin, 130021, China.
| | - Yayu He
- Nursing school of Jilin University, Changchun, Jilin, 130021, China.
| | - Yumo Liu
- Nursing school of Jilin University, Changchun, Jilin, 130021, China.
| | - Lirong Guo
- Nursing school of Jilin University, Changchun, Jilin, 130021, China.
| |
Collapse
|
100
|
Kim MJ, You YO, Kang JY, Kim HJ, Kang MS. Weissella cibaria CMU exerts an anti‑inflammatory effect by inhibiting Aggregatibacter actinomycetemcomitans‑induced NF‑κB activation in macrophages. Mol Med Rep 2020; 22:4143-4150. [PMID: 33000248 PMCID: PMC7533440 DOI: 10.3892/mmr.2020.11512] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/15/2020] [Indexed: 12/25/2022] Open
Abstract
Periodontitis is a chronic inflammatory disease caused by various periodontal pathogens. Weissella cibaria CMU (oraCMU) is a probiotic that promotes oral health. However, its anti‑inflammatory effects against periodontal pathogens have not yet been investigated. The present study evaluated the anti‑inflammatory effects of live oraCMU against stimulation with the formalin‑inactivated periodontal pathogen Aggregatibacter actinomycetemcomitans in RAW 264.7 macrophages. Cell viability was analyzed by the MTS assay in a dose‑dependent manner (at multiplicities of infection of 0.1, 1, 10, 100 and 1,000). Nitric oxide (NO) was monitored using the Griess test. The mRNA expression of proinflammatory cytokines such as interleukin (IL)1β and IL6 was assessed by reverse transcription‑quantitative PCR. Western blotting was used to examine the effects of oraCMU on the phosphorylation of NF‑κB inhibitor α (IκBα) and IκBα kinase (IKK), the nuclear translocation of the NF‑κB subunit p65 and the expression of inducible NO synthase (iNOS). Live oraCMU had no cytotoxic effects on RAW 264.7 macrophages. In A. actinomycetemcomitans‑stimulated RAW 264.7 macrophages, oraCMU reduced NO production by suppressing iNOS expression and downregulating the mRNA expression of proinflammatory cytokines in a dose‑dependent manner. IKK phosphorylation and IκBα degradation were dose‑dependently inhibited by oraCMU and the nuclear translocation of p65 via the canonical NF‑κB pathway was simultaneously reduced. The results indicated that oraCMU possessed anti‑inflammatory activity associated with the inhibition of NF‑κB signal activation in response to periodontal pathogens. This suggests that oraCMU is a beneficial anti‑inflammatory probiotic that can aid in the maintenance of oral health.
Collapse
Affiliation(s)
- Min-Jeong Kim
- Department of Convergence Technology for Food Industry and Dental Research Institute, School of Dentistry, Wonkwang University, Iksan, Jellabukdo 54538, Republic of Korea
| | - Yong-Ouk You
- Department of Oral Biochemistry, School of Dentistry, Wonkwang University, Iksan, Jellabukdo 54538, Republic of Korea
| | - Joo-Yi Kang
- Department of Oral Biochemistry, School of Dentistry, Wonkwang University, Iksan, Jellabukdo 54538, Republic of Korea
| | - Hyun-Jin Kim
- Department of Oral Anatomy and Dental Research Institute, School of Dentistry, Wonkwang University, Iksan, Jellabukdo 54538, Republic of Korea
| | - Mi-Sun Kang
- Research and Development Department, Research Institute, OraPharm Inc., Seoul 04782, Republic of Korea
| |
Collapse
|