51
|
Hou VC, Moe GR, Raad Z, Wuorimaa T, Granoff DM. Conformational epitopes recognized by protective anti-neisserial surface protein A antibodies. Infect Immun 2004; 71:6844-9. [PMID: 14638771 PMCID: PMC308938 DOI: 10.1128/iai.71.12.6844-6849.2003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
NspA is a conserved membrane protein that elicits protective antibody responses in mice against Neisseria meningitidis. A recent crystallographic study showed that NspA adopts an eight-stranded beta-barrel structure when reconstituted in detergent. In order to define the segments of NspA-containing epitopes recognized by protective murine anti-NspA antibodies, we studied the binding of two bactericidal and protective anti-NspA monoclonal antibodies (MAbs), AL12 and 14C7. Neither MAb binds to overlapping synthetic peptides (10-mers, 12-mers, and cyclic 12-mers) corresponding to the entire mature sequence of NspA, or to denatured recombinant NspA (rNspA), although binding to the protein can be restored by refolding in liposomes. Based on the ability of the two MAbs to bind to Escherichia coli microvesicles prepared from a set of rNspA variants created by site-specific mutagenesis, the most important contacts between the MAbs and NspA appear to be located within the LGG segment of loop 3. The conformation of loop 2 also appears to be an important determinant, as particular combinations of residues in this segment resulted in loss of antibody binding. Thus, the two anti-NspA MAbs recognize discontinuous conformational epitopes that result from the close proximity of loops 2 and 3 in the three-dimensional structure of NspA. The data suggest that optimally immunogenic vaccines using rNspA will require formulations that permit proper folding of the protein.
Collapse
Affiliation(s)
- Victor C Hou
- Children's Hospital Oakland Research Institute, Oakland, California, USA
| | | | | | | | | |
Collapse
|
52
|
Vandeputte-Rutten L, Bos MP, Tommassen J, Gros P. Crystal structure of Neisserial surface protein A (NspA), a conserved outer membrane protein with vaccine potential. J Biol Chem 2003; 278:24825-30. [PMID: 12716881 DOI: 10.1074/jbc.m302803200] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The neisserial surface protein A (NspA) from Neisseria meningitidis is a promising vaccine candidate because it is highly conserved among meningococcal strains and induces bactericidal antibodies. NspA is a homolog of the Opa proteins, which mediate adhesion to host cells. Here, we present the crystal structure of NspA, determined to 2.55-A resolution. NspA forms an eight-stranded antiparallel beta-barrel. The four loops at the extracellular side of the NspA molecule form a long cleft, which contains mainly hydrophobic residues and harbors a detergent molecule, suggesting that the protein might function in the binding of hydrophobic ligands, such as lipids. In addition, the structure provides a starting point for structure-based vaccine design.
Collapse
Affiliation(s)
- Lucy Vandeputte-Rutten
- Department of Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
53
|
de Jonge MI, Vidarsson G, van Dijken HH, Hoogerhout P, van Alphen L, Dankert J, van der Ley P. Functional activity of antibodies against the recombinant OpaJ protein from Neisseria meningitidis. Infect Immun 2003; 71:2331-40. [PMID: 12704102 PMCID: PMC153225 DOI: 10.1128/iai.71.5.2331-2340.2003] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The opacity proteins belong to the major outer membrane proteins of the pathogenic Neisseria and are involved in adhesion and invasion. We studied the functional activity of antibodies raised against the OpaJ protein from strain H44/76. Recombinant OpaJ protein was obtained from Escherichia coli in two different ways: cytoplasmic expression in the form of inclusion bodies followed by purification and refolding and cell surface expression followed by isolation of outer membrane complexes (OMCs). Immunization with purified protein and Quillaja saponin A (QuilA) induced high levels of Opa-specific antibodies, whereas the E. coli OMC preparations generally induced lower levels of antibodies. Two chimeric Opa proteins, hybrids between OpaB and OpaJ, were generated to demonstrate that the hypervariable region 2 is immunodominant. Denatured OpaJ with QuilA induced high levels of immunoglobulin G2a (IgG2a) in addition to IgG1, whereas refolded OpaJ with QuilA induced IgG1 exclusively. These sera did not induce significant complement-mediated killing. However, all sera blocked the interaction of OpaJ-expressing bacteria to CEACAM1-transfected cells. In addition, cross-reactive blocking of OpaB-expressing bacteria to both CEACAM1- and CEA-transfected cells was found for all sera. Sera raised against purified OpaJ and against OpaJ-containing meningococcal OMCs also blocked the nonopsonic interaction of Opa-expressing meningococci with human polymorphonuclear leukocytes.
Collapse
Affiliation(s)
- M I de Jonge
- Laboratory of Vaccine Research, National Institute of Public Health and the Environment RIVM Bilthoven, Bilthoven, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
54
|
Abstract
Mapping, and ultimately preventing, the dissemination of infectious agents is an important topic in public health. Newly developed molecular-microbiological methods have contributed significantly to recent advances in the efficient tracking of the nosocomial and environmental spread of microbial pathogens. Not only has the application of novel technologies led to improved understanding of microbial epidemiology, but the concepts of population structure and dynamics of many of the medically significant microorganisms have advanced significantly also. Currently, genetic identification of microbes is also within the reach of clinical microbiology laboratory professionals including those without specialized technology research interests. This review summarizes the possibilities for high-throughput molecular-microbiological typing in adequately equipped medical microbiology laboratories from both clinical and fundamental research perspectives. First, the development and application of methods for large-scale comparative typing of serially isolated microbial strains are discussed. The outcome of studies employing these methods allows for long-term epidemiologic surveillance of infectious diseases. Second, recent methods enable an almost nucleotide-by-nucleotide genetic comparison of smaller numbers of strains, thereby facilitating the identification of the genetic basis of, for instance, medically relevant microbiological traits. Whereas the first approach provides insights into the dynamic spread of infectious agents, the second provides insights into intragenomic dynamics and genetic functionality. The current state of technology is summarized, and future perspectives are sketched.
Collapse
Affiliation(s)
- A van Belkum
- Erasmus MC, Department of Medical Microbiology & Infectious Diseases, Rotterdam, The Netherlands.
| |
Collapse
|
55
|
Minnick MF, Sappington KN, Smitherman LS, Andersson SGE, Karlberg O, Carroll JA. Five-member gene family of Bartonella quintana. Infect Immun 2003; 71:814-21. [PMID: 12540561 PMCID: PMC145397 DOI: 10.1128/iai.71.2.814-821.2003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bartonella quintana, the agent of trench fever and an etiologic agent of bacillary angiomatosis, has an extraordinarily high hemin requirement for growth compared to other bacterial pathogens. We previously identified the major hemin receptor of the pathogen as a 30-kDa surface protein, termed HbpA. This report describes four additional homologues that share approximately 48% amino acid sequence identity with hbpA. Three of the genes form a paralagous cluster, termed hbpCAB, whereas the other members, hbpD and hbpE, are unlinked. Secondary structure predictions and other evidence suggest that Hbp family members are beta-barrels located in the outer membrane and contain eight transmembrane domains plus four extracellular loops. Homologs from a variety of gram-negative pathogens were identified, including Bartonella henselae Pap31, Brucella Omp31, Agrobacterium tumefaciens Omp25, and neisserial opacity proteins (Opa). Family members expressed in vitro-synthesized proteins ranging from ca. 26.5 to 35.1 kDa, with the exception of HbpB, an approximately 55.9-kDa protein whose respective gene has been disrupted by a approximately 510 GC-rich element containing variable-number tandem repeats. Transcription analysis by quantitative reverse transcriptase-PCR (RT-PCR) indicates that all family members are expressed under normal culture conditions, with hbpD and hbpB transcripts being the most abundant and the rarest, respectively. Mutagenesis of hbpA by allelic exchange produced a strain that exhibited an enhanced hemin-binding phenotype relative to the parental strain, and analysis by quantitative RT-PCR showed elevated transcript levels for the other hbp family members, suggesting that compensatory expression occurs.
Collapse
Affiliation(s)
- Michael F Minnick
- Division of Biological Sciences, The University of Montana, Missoula 59812, USA.
| | | | | | | | | | | |
Collapse
|
56
|
de Jonge MI, Bos MP, Hamstra HJ, Jiskoot W, van Ulsen P, Tommassen J, van Alphen L, van der Ley P. Conformational analysis of opacity proteins from Neisseria meningitidis. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:5215-23. [PMID: 12392553 DOI: 10.1046/j.1432-1033.2002.03228.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Opacity-associated (Opa) proteins are outer membrane proteins which play a critical role in the adhesion of pathogenic Neisseria spp. to epithelial and endothelial cells and polymorphonuclear neutrophils. The adherence is mainly mediated by the CD66-epitope-containing members of the carcinoembryonic-antigen family of human cell-adhesion molecules (CEACAM). For the analysis of the specific interactions of individual Opa proteins with their receptors, pure protein is needed in its native conformation. In this study, we describe the isolation and structural analysis of opacity proteins OpaJ129 and OpaB128 derived from Neisseria meningitidis strain H44/76. When the Opa proteins were produced with the phoE signal sequence in Escherichia coli, they were localized at the cell surface and the recombinant bacteria were found to specifically interact with CEACAM1. For refolding and purification, the proteins were overproduced without their signal sequences in E. coli, resulting in its cytoplasmic accumulation in the form of inclusion bodies. After solubilization of the inclusion bodies in urea, the proteins could be folded efficiently in vitro, under alkaline conditions by dilution in ethanolamine and the detergent n-dodecyl-N,N-dimethyl-1-ammonio-3-propanesulfonate (SB12). The structure of the refolded and purified proteins, determined by circular dichroism, indicated a high content of beta-sheet conformation, which is consistent with previously proposed topology models for Opa proteins. A clear difference was found between the binding of refolded vs. denatured OpaJ protein to the N-A1 domain of CEACAM1. Almost no binding was found with the denatured Opa protein, showing that the Opa-receptor interaction is conformation-dependent.
Collapse
Affiliation(s)
- Marien I de Jonge
- Laboratory of Vaccine Research, National Institute of Public Health and the Environment, RIVM Bilthoven, the Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Morgan CA, Molini BJ, Lukehart SA, Van Voorhis WC. Segregation of B and T cell epitopes of Treponema pallidum repeat protein K to variable and conserved regions during experimental syphilis infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:952-7. [PMID: 12097401 DOI: 10.4049/jimmunol.169.2.952] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Robust immune responses clear millions of treponemes to resolve lesions of primary and secondary syphilis, but cannot clear the treponemes that lead to debilitating and sometimes fatal tertiary syphilis. It is also known that the rabbit model and humans can be reinfected with heterologous isolates. How some treponemes are able to escape the immune system is unknown. In our laboratories rabbits immunized with the Seattle Nichols strain Treponema pallidum repeat protein K (TprK) were previously shown to have attenuated lesion development following challenge. In other isolates, TprK was shown to have seven discrete variable regions, with sequence variation among and within isolates. Using overlapping synthetic 20-aa peptides, we demonstrate that during experimental infection with the Nichols strain, the T cell responses are directed to conserved regions, while the Ab responses are directed primarily to variable regions. Abs from rabbits immunized with recombinant TprK recognized conserved and variable regions, suggesting that the conserved regions are inherently as immunogenic as the variable regions. TprK variability may allow some treponemes to escape recognition from Abs. The variable region heterogeneity may help explain the lack of protection against heterologous isolates.
Collapse
Affiliation(s)
- Cecilia A Morgan
- Department of Pathobiology, University of Washington, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
58
|
Bos MP, Kao D, Hogan DM, Grant CCR, Belland RJ. Carcinoembryonic antigen family receptor recognition by gonococcal Opa proteins requires distinct combinations of hypervariable Opa protein domains. Infect Immun 2002; 70:1715-23. [PMID: 11895933 PMCID: PMC127850 DOI: 10.1128/iai.70.4.1715-1723.2002] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neisserial Opa proteins function as a family of adhesins that bind heparan sulfate proteoglycan (HSPG) or carcinoembryonic antigen family (CEACAM) receptors on human host cells. In order to define the CEACAM binding domain on Opa proteins, we tested the binding properties of a series of gonococcal (strain MS11) recombinants producing mutant and chimeric Opa proteins with alterations in one or more of the four surface-exposed loops. Mutagenesis demonstrated that the semivariable domain, present in the first loop, was completely dispensable for CEACAM binding. In contrast, the two hypervariable (HV) regions present in the second and third loops were essential for binding; deletion of either domain resulted in loss of receptor recognition. Deletion of the fourth loop resulted in a severe decrease in Opa expression at the cell surface and could therefore not be tested for CEACAM binding. Chimeric Opa variants, containing combinations of HV regions derived from different CEACAM binding Opa proteins, lost most of their receptor binding activity. Some chimeric variants gained HSPG binding activity. Together, our results indicate that full recognition of CEACAM receptors by Opa proteins requires a highly coordinate interplay between both HV regions. Furthermore, shuffling of HV regions may result in novel HSPG receptor binding activity.
Collapse
Affiliation(s)
- Martine P Bos
- Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840, USA.
| | | | | | | | | |
Collapse
|
59
|
Prince SM, Achtman M, Derrick JP. Crystal structure of the OpcA integral membrane adhesin from Neisseria meningitidis. Proc Natl Acad Sci U S A 2002; 99:3417-21. [PMID: 11891340 PMCID: PMC122538 DOI: 10.1073/pnas.062630899] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2001] [Indexed: 11/18/2022] Open
Abstract
OpcA is an integral outer membrane protein from Neisseria meningitidis, the causative agent of meningococcal meningitis and septicemia. It mediates the adhesion of N. meningitidis to epithelial and endothelial cells by binding to vitronectin and proteoglycan cell-surface receptors. Here, we report the determination of the crystal structure of OpcA to 2.0 A resolution. OpcA adopts a 10-stranded beta-barrel structure with extensive loop regions that protrude above the predicted surface of the membrane. The second external loop adopts an unusual conformation, traversing the axis of the beta-barrel and apparently blocking formation of a pore through the membrane. Loops 2, 3, 4, and 5 associate to form one side of a crevice in the external surface of the structure, the other side being formed by loop 1. The crevice is lined by positively charged residues and would form an ideal binding site for proteoglycan polysaccharide. The structure, therefore, suggests a model for how adhesion of this important human pathogen to proteoglycan is mediated at the molecular level.
Collapse
Affiliation(s)
- Stephen M Prince
- Department of Biomolecular Sciences, University of Manchester Institute of Science and Technology, Sackville Street, Manchester M60 1QD, United Kingdom
| | | | | |
Collapse
|
60
|
Popp A, Billker O, Rudel T. Signal transduction pathways induced by virulence factors of Neisseria gonorrhoeae. Int J Med Microbiol 2001; 291:307-14. [PMID: 11680791 DOI: 10.1078/1438-4221-00134] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The obligate human pathogen Neisseria gonorrhoeae infects a variety of human tissues. In recent years, several host cell receptors for the major bacterial adhesins have been identified. While the knowledge of the molecular mechanism of colonisation has helped to understand special aspects of the infection, like the explicit tropism of gonococci for human tissues, the long-term consequences of engaging these receptors are still unknown. A variety of signalling pathways initiated by the activated receptors and by bacterial proteins transferred to the infected cell have been defined which include lipid second messenger, protein kinases, proteases and GTPases. These pathways control important steps of the infection, such as tight adhesion and invasion, the induction of cytokine release, and apoptosis. The detailed knowledge of bacteria-induced signalling pathways could allow the design of new therapeutic approaches which might be advantageous over the classical antibiotics therapy.
Collapse
Affiliation(s)
- A Popp
- Max-Planck-Institute for Infection Biology, Department of Molecular Biology, Berlin, Germany
| | | | | |
Collapse
|
61
|
Snyder LAS, Butcher SA, Saunders NJ. Comparative whole-genome analyses reveal over 100 putative phase-variable genes in the pathogenic Neisseria spp. MICROBIOLOGY (READING, ENGLAND) 2001; 147:2321-2332. [PMID: 11496009 DOI: 10.1099/00221287-147-8-2321] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Previously, a complete genome analysis of Neisseria meningitidis strain MC58 revealed the largest repertoire of putative phase-variable genes described in any species to date. Initial comparisons with two incomplete Neisseria spp. genome sequences available at that time revealed differences in the repeats associated with these genes in the form of polymorphisms, the absence of the potentially unstable elements in some alleles, and in the repertoire of the genes that were present. Analyses of the complete genomes of N. meningitidis strain Z2491 and Neisseria gonorrhoeae strain FA1090 have been performed and are combined with a comprehensive comparative analysis between the three available complete genome sequences. This has increased the sensitivity of these searches and provided additional contextual information that facilitates the interpretation of the functional consequences of repeat instability. This analysis identified: (i) 68 phase-variable gene candidates in N. meningitidis strain Z2491, rather than the 27 previously reported; (ii) 83 candidates in N. gonorrhoeae strain FA1090; and (iii) 82 candidates in N. meningitidis strain MC58, including an additional 19 identified through cross-comparisons with the other two strains. In addition to the 18 members of the opa gene family, a repertoire of 119 putative phase-variable genes is described, indicating a huge potential for diversification mediated by this mechanism of gene switching in these species that is central to their interactions with the host and environmental transitions. Eighty-two of these are either known (14) or strong (68) candidates for phase variation, which together with the opa genes make a total of 100 identified genes. The repertoires of the genes identified in this analysis diverge from the different species groupings, indicating horizontal exchange that significantly affects the species and strain complements of these genes.
Collapse
Affiliation(s)
- Lori A S Snyder
- The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK1
| | - Sarah A Butcher
- Oxford University Bioinformatics Centre, The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK2
| | - Nigel J Saunders
- The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK1
| |
Collapse
|
62
|
Zhu P, van der Ende A, Falush D, Brieske N, Morelli G, Linz B, Popovic T, Schuurman IG, Adegbola RA, Zurth K, Gagneux S, Platonov AE, Riou JY, Caugant DA, Nicolas P, Achtman M. Fit genotypes and escape variants of subgroup III Neisseria meningitidis during three pandemics of epidemic meningitis. Proc Natl Acad Sci U S A 2001; 98:5234-9. [PMID: 11287631 PMCID: PMC33193 DOI: 10.1073/pnas.061386098] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2000] [Indexed: 11/18/2022] Open
Abstract
The genetic variability at six polymorphic loci was examined within a global collection of 502 isolates of subgroup III, serogroup A Neisseria meningitidis. Nine "genoclouds" were identified, consisting of genotypes that were isolated repeatedly plus 48 descendent genotypes that were isolated rarely. These genoclouds have caused three pandemic waves of disease since the mid-1960s, the most recent of which was imported from East Asia to Europe and Africa in the mid-1990s. Many of the genotypes are escape variants, resulting from positive selection that we attribute to herd immunity. Despite positive selection, most escape variants are less fit than their parents and are lost because of competition and bottlenecks during spread from country to country. Competition between fit genotypes results in dramatic changes in population composition over short time periods.
Collapse
Affiliation(s)
- P Zhu
- Max-Planck Institut für Molekulare Genetik, 14195 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Abstract
The closely related bacterial pathogens Neisseria gonorrhoeae (gonococci, GC) and N. meningitidis (meningococci, MC) initiate infection at human mucosal epithelia. Colonization begins at apical epithelial surfaces with a multistep adhesion cascade, followed by invasion of the host cell, intracellular persistence, transcytosis, and exit. These activities are modulated by the interaction of a panoply of virulence factors with their cognate host cell receptors, and signals are sent from pathogen to host and host to pathogen at multiple stages of the adhesion cascade. Recent advances place us on the verge of understanding the colonization process at a molecular level of detail. In this review we describe the Neisseria virulence factors in the context of epithelial cell biology, placing special emphasis on the signaling functions of type IV pili, pilus-based twitching motility, and the Opa and Opc outermembrane adhesin/invasin proteins. We also summarize what is known about bacterial intracellular trafficking and growth. With the accelerated integration of tools from cell biology, biochemistry, biophysics, and genomics, experimentation in the next few years should bring unprecedented insights into the interactions of Neisseriae with their host.
Collapse
Affiliation(s)
- A J Merz
- Department of Molecular Microbiology & Immunology, L220, Oregon Health Sciences University, Portland, Oregon 97201-3098, USA
| | | |
Collapse
|
64
|
Hill DJ, Toleman MA, Evans DJ, Villullas S, Van Alphen L, Virji M. The variable P5 proteins of typeable and non-typeable Haemophilus influenzae target human CEACAM1. Mol Microbiol 2001; 39:850-62. [PMID: 11251807 DOI: 10.1046/j.1365-2958.2001.02233.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Haemophilus influenzae, a commensal of the human respiratory mucosa, is an important cause of localized and systemic infections. We have recently shown that numerous strains of capsulate (typeable) and acapsulate (non-typeable) H. influenzae target the carcinoembryonic antigen (CEA) family of cell adhesion molecules (CEACAMs). Moreover, the ligands appeared to be antigenically variable and, when using viable typeable bacteria, their adhesive functions were inhibited by the presence of capsule. In this report, we show that the antigenically variable outer membrane protein, P5, expressed by typeable and non-typeable H. influenzae targets human CEACAM1. Variants and mutants lacking the expression of P5 of all strains tested were unable to target purified soluble receptors. A non-typeable strain that did not interact with CEACAM1 was made adherent to both the soluble receptors and CEACAM1-transfected Chinese hamster ovary cells by transformation with the P5 gene derived from the adherent typeable strain Rd. However, several H. influenzae mutants lacking P5 expression continued to bind the cell-bound CEACAM1 receptors. These observations suggest that (i) CEACAM1 alone can support P5 interactions and (ii) some strains contain additional ligands with the property to target CEACAM1 but require the receptor in the cellular context. The identification of a common ligand in diverse strains of H. influenzae and the presence of multiple ligands for the same receptor suggests that targeting of members of the CEACAM family of receptors may be of primary significance in colonization and pathogenesis of H. influenzae strains.
Collapse
Affiliation(s)
- D J Hill
- Department of Pathology and Microbiology, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK
| | | | | | | | | | | |
Collapse
|
65
|
Toleman M, Aho E, Virji M. Expression of pathogen-like Opa adhesins in commensal Neisseria: genetic and functional analysis. Cell Microbiol 2001; 3:33-44. [PMID: 11207618 DOI: 10.1046/j.1462-5822.2001.00089.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Several species of commensal Neisseriae (Cn) may colonize the human nasopharynx, but little is known about their adhesion mechanisms. We have investigated structural and functional similarities between adhesins of Cn and of Neisseria meningitidis (Nm), also a frequent colonizer of the nasopharynx. In this study, we demonstrate the expression of Opa-like proteins in nine strains of Cn. Phylogenetic analysis segregated the majority of the Cn Opa in a cluster separated from the pathogenic cluster with a few exceptions. One Opa, which located within the pathogenic cluster, was strikingly similar (74%) to an Opa of a Neisseria gonorrhoeae (Ng) strain and, like Ng, it lacked the extra Y11 or the 136DKF138 triplet insert, which are conserved among many N. meningitidis Opa proteins. Most importantly, the majority of the Cn Opa proteins were able to interact with human CEACAM1 (CD66a) molecules, previously identified as receptors for pathogenic Opa proteins. By the use of CEACAM1 N-domain mutants, we demonstrate that Cn Opa target the same region of the N-domain of the receptor as that used by Nm. Furthermore, Cn strains bound to cell-expressed human CEACAM1. In competition assays, adherent Cn strain C450, exhibiting high affinity for CEACAM1, was not displaced by a Nm isolate and vice versa. But in simultaneous incubation, Nm out-competed the Cn strain. This is the first study to demonstrate the expression of adhesins in Cn that are structurally and functionally closely related to pathogenic adhesins. The studies imply that some Cn have the potential to occupy and thus compete with the pathogens for receptors on human mucosa, their common and exclusive niche.
Collapse
MESH Headings
- Adhesins, Bacterial/classification
- Adhesins, Bacterial/genetics
- Adhesins, Bacterial/metabolism
- Amino Acid Sequence
- Animals
- Antigens, Bacterial/classification
- Antigens, Bacterial/genetics
- Antigens, Bacterial/metabolism
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Differentiation/genetics
- Antigens, Differentiation/metabolism
- Bacterial Adhesion
- CHO Cells
- Cell Adhesion Molecules
- Cloning, Molecular
- Cricetinae
- Genome, Bacterial
- Humans
- Molecular Sequence Data
- Neisseria/chemistry
- Neisseria/genetics
- Neisseria/pathogenicity
- Phylogeny
- Sequence Alignment
- Transfection
Collapse
Affiliation(s)
- M Toleman
- Department of Pathology and Microbiology, School of Medical Sciences, University of Bristol, UK
| | | | | |
Collapse
|
66
|
Zhang Q, Meitzler JC, Huang S, Morishita T. Sequence polymorphism, predicted secondary structures, and surface-exposed conformational epitopes of Campylobacter major outer membrane protein. Infect Immun 2000; 68:5679-89. [PMID: 10992471 PMCID: PMC101523 DOI: 10.1128/iai.68.10.5679-5689.2000] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The major outer membrane protein (MOMP), a putative porin and a multifunction surface protein of Campylobacter jejuni, may play an important role in the adaptation of the organism to various host environments. To begin to dissect the biological functions and antigenic features of this protein, the gene (designated cmp) encoding MOMP was identified and characterized from 22 strains of C. jejuni and one strain of C. coli. It was shown that the single-copy cmp locus encoded a protein with characteristics of bacterial outer membrane proteins. Prediction from deduced amino acid sequences suggested that each MOMP subunit consisted of 18 beta-strands connected by short periplasmic turns and long irregular external loops. Alignment of the amino acid sequences of MOMP from different strains indicated that there were seven localized variable regions dispersed among highly conserved sequences. The variable regions were located in the putative external loop structures, while the predicted beta-strands were formed by conserved sequences. The sequence homology of cmp appeared to reflect the phylogenetic proximity of C. jejuni strains, since strains with identical cmp sequences had indistinguishable or closely related macrorestriction fragment patterns. Using recombinant MOMP and antibodies recognizing linear or conformational epitopes of the protein, it was demonstrated that the surface-exposed epitopes of MOMP were predominantly conformational in nature. These findings are instrumental in the design of MOMP-based diagnostic tools and vaccines.
Collapse
Affiliation(s)
- Q Zhang
- Food Animal Health Research Program, The Ohio State University, Wooster, Ohio 44691, USA.
| | | | | | | |
Collapse
|
67
|
Abstract
As outlined in this review, various experimental techniques have been employed in an attempt to understand neisserial pathogenesis. In vitro genetic analysis has been used to study the genetic basis for the structural variability of cell surface components. Transformed or primary epithelial cell cultures have provided the simplest model to analyze bacterial adherence and invasion, while the infection of polarized epithelial monolayers, fallopian tube and nasopharyngeal organ cultures, and ureteral tissue have each been used to more closely represent the events which occur in vivo. Finally, the in vivo infection of human volunteers with N. gonorrhoeae has provided a powerful means to confirm and expand the results obtained in vitro. By these various approaches, a number of neisserial adhesins (i.e. pilli, Opa, Opc and P36) and additional putative virulence determinants which affect bacterial adherence and invasion into host cells (i.e. LOS, capsule, PorB) have been identified. Clearly, neisserial surface variation serves as an adaptive mechanism which can modulate tissue tropism, immune evasion and survival in the changing host environment. Important progress has been made in recent years with respect to the host cellular receptors and subsequent signal transduction processes which are involved in neisserial adherence, invasion and transcytosis. This has led to the identification of (i) CD46 as a receptor for pilus which allows adherence to epithelial and endothelial cells, (ii) HSPGs, in cooperation with vitronectin and fibronectin, as receptors for a particular subset of Opa proteins and Opc, which may both mediate invasion into most epithelial and endothelial cells, and (iii) CD66 as the receptors for most Opa variants, potentially being involved in cellular interactions including adherence, invasion and transcytosis with epithelial, endothelial and phagocytic cells. As most of these data have been obtained using transformed cell lines growing in vitro, attempts must be made to translate these basic observations into a more natural situation. It can be expected that the successful ongoing integration of laboratory findings from the various infection models with human volunteer studies will further increase our understanding of the biology of neisserial infection. Perhaps the most difficult but also most rewarding challenge for the future will be to use volunteer studies to identify and understand the role of host factors which are important for the infectious process. Hopefully, insights gained from each of these studies will reveal new and useful strategies for the preventive and/or therapeutic intervention into infection and disease by these fascinating microbes.
Collapse
Affiliation(s)
- C Dehio
- Dept. Infektionsbiologie, Max-Planck-Institut für Biologie, Tübingen, Germany
| | | | | |
Collapse
|
68
|
The structural basis of CEACAM-receptor targeting by neisserial opa proteins: response. Trends Microbiol 2000; 8:260-1. [PMID: 10838581 DOI: 10.1016/s0966-842x(00)01772-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
69
|
Bootsma HJ, van Dijk H, Vauterin P, Verhoef J, Mooi FR. Genesis of BRO beta-lactamase-producing Moraxella catarrhalis: evidence for transformation-mediated horizontal transfer. Mol Microbiol 2000; 36:93-104. [PMID: 10760166 DOI: 10.1046/j.1365-2958.2000.01828.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The dramatic rise in BRO-producing M. catarrhalis strains observed in the last decades is without precedence. The aim of this study was to elucidate the events that led to the emergence of BRO-1 and BRO-2 beta-lactamases. Previously, we showed bro1 and bro2 to be >99% identical. Data presented here suggested that bro2 was acquired by a fortuitous event and inserted between M. catarrhalis genes orf1 and orf3. Subsequently, bro1 evolved from bro2. Promoter-up mutations increased fitness of bro2, explaining its present predominance. The highly conserved nature of bro compared with orf1 and orf3 suggested that acquisition has occurred relatively recently. The random distribution of bro among M. catarrhalis fingerprint types indicated that bro has spread by horizontal transfer. Sequence analysis revealed that 80-200 bp is generally cotransferred with bro, serving as regions of homology that target bro to the same chromosomal locus. A region of 160 bases upstream of bro1 lacked polymorphism, indicating it was derived from the original strain that acquired bro2. We observed that bro was readily transferred by transformation between M. catarrhalis strains in vitro, suggesting a mechanism by which bro has disseminated. In conclusion, we have been able to reconstruct the steps that led to the emergence of BRO-producing M. catarrhalis.
Collapse
Affiliation(s)
- H J Bootsma
- Eijkman-Winkler Institute for Microbiology, Infectious Diseases and Inflammation, University Hospital Utrecht, 3508 GA Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
70
|
Wang J, Jarvis GA, Achtman M, Rosenqvist E, Michaelsen TE, Aase A, Griffiss JM. Functional activities and immunoglobulin variable regions of human and murine monoclonal antibodies specific for the P1.7 PorA protein loop of Neisseria meningitidis. Infect Immun 2000; 68:1871-8. [PMID: 10722576 PMCID: PMC97360 DOI: 10.1128/iai.68.4.1871-1878.2000] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The meningococcal PorA protein is considered a promising vaccine candidate. Although much is understood regarding the structure of PorA proteins, little is known about the structure-function relationships of PorA antibodies. The aim of this study was to compare the functional and molecular characteristics of a human monoclonal antibody (MAb) and three murine MAbs specific for the PorA P1.7 serosubtype. Murine MAbs 207,B-4 (immunoglobulin G2a [IgG2a]) and MN14C11.6 (IgG2a) were both bactericidal and opsonophagocytic for P1.7-expressing meningococci, whereas human MAb SS269 (IgG3) and murine MAb 208,D-5 (IgA) initiated neither effector function. Epitope mapping with synthetic peptides revealed that MAbs 207,B-4 and 208,D-5 recognized the sequence ASGQ, which is the same specificity motif that a previous study had established for SS269 and MN14C11.6. Nucleotide and amino acid sequence analyses of the variable regions of the four MAbs showed that the SS269 V(H) region belonged to the VH3 family and was approximately 70% homologous to those of the murine MAbs which were all from the 7183 family, whereas the SS269 V(L) region belonged to the Vlambda1-b family and was less than 40% homologous to those of the murine MAbs which were all members of the Vkappa1 family. The Fab fragment of SS269 was cloned and expressed in Escherichia coli and was shown by enzyme-linked immunosorbent assay analyses to bind as well as intact SS269 MAb to P1.7,16 serosubtype group B strain 44/76. We conclude that distinct differences exist in the effector function activities and variable region gene sequences of human and murine P1.7-specific MAbs despite their recognition of similar epitopes.
Collapse
Affiliation(s)
- J Wang
- Department of Laboratory Medicine, University of California, San Francisco, California, USA
| | | | | | | | | | | | | |
Collapse
|
71
|
Novotny LA, Jurcisek JA, Pichichero ME, Bakaletz LO. Epitope mapping of the outer membrane protein P5-homologous fimbrin adhesin of nontypeable Haemophilus influenzae. Infect Immun 2000; 68:2119-28. [PMID: 10722609 PMCID: PMC97393 DOI: 10.1128/iai.68.4.2119-2128.2000] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To identify potential immunodominant and/or adhesin binding domains of the outer membrane protein P5-homologous fimbrin adhesin of nontypeable Haemophilus influenzae (NTHI), three sets of synthetic peptides were synthesized and assayed in an adherence inhibition assay, by Western blotting, and in a biomolecular interaction analysis (BIA) system. The first series of 34 8- to 10-mer peptides represented the entire mature protein sequentially. The second set of four peptides (each 19 to 28 residues) represented the four predicted major surface-exposed regions (or loops) of this adhesin. The third series of seven peptides (each 27 to 34 residues) were specifically designed to map the third surface-exposed region. Data obtained by BIA indicated limited reactivity of a panel of high-titered immune chinchilla sera to the 8- to 10-mer peptides representing the mature protein, likely because these linear peptides did not represent continuous epitopes. However, several of these short peptides did inhibit adherence of multiple NTHI strains to a human respiratory epithelial cell. Overall, greatest relative reactivity in both BIA and adherence inhibition assays was demonstrated against, or shown by, peptides mapping to the third and fourth predicted surface-exposed regions of this adhesin, thereby indicating the presence of immunodominant and adhesin binding domains at these sites. Middle ear fluids sequentially recovered from a chinchilla with an ongoing NTHI-induced otitis media (OM) as well as sera from children with OM due to NTHI also reacted exclusively with peptides representing the third and fourth surface-exposed regions of the P5-fimbrin adhesin, indicating a similarity in immune recognition of this bacterial protein by these two hosts. Collectively, these data together with the previously demonstrated protective efficacy of immunogens derived from this adhesin in chinchilla models support the continued development of P5-fimbrin based vaccine components.
Collapse
Affiliation(s)
- L A Novotny
- Department of Pediatrics, Division of Molecular Medicine, The Ohio State University College of Medicine and Public Health, Columbus, Ohio, USA
| | | | | | | |
Collapse
|
72
|
Moe GR, Tan S, Granoff DM. Differences in surface expression of NspA among Neisseria meningitidis group B strains. Infect Immun 1999; 67:5664-75. [PMID: 10531214 PMCID: PMC96940 DOI: 10.1128/iai.67.11.5664-5675.1999] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
NspA is a highly conserved membrane protein that is reported to elicit protective antibody responses against Neisseria meningitidis serogroups A, B and C in mice (D. Martin, N. Cadieux, J. Hanel, and B. R. Brodeur, J. Exp. Med. 185:1173-1183, 1997). To investigate the vaccine potential of NspA, we produced mouse anti-recombinant NspA (rNspA) antisera, which were used to evaluate the accessibility of NspA epitopes on the surface of different serogroup B strains by an immunofluorescence flow cytometric assay and by susceptibility to antibody-dependent, complement-mediated bacteriolysis. Among 17 genetically diverse strains tested, 11 (65%) were positive for NspA cell surface epitopes and 6 (35%) were negative. All six negative strains also were resistant to bactericidal activity induced by the anti-rNspA antiserum. In contrast, of the 11 NspA surface-positive strains, 8 (73%; P < 0.05) were killed by the antiserum and complement. In infant rats challenged with one of these eight strains, the anti-rNspA antiserum conferred protection against bacteremia, whereas the antiserum failed to protect rats challenged by one of the six NspA cell surface-negative strains. Neither NspA expression nor protein sequence accounted for differences in NspA surface accessibility, since all six negative strains expressed NspA in outer membrane preparations and since their predicted NspA amino acid sequences were 99 to 100% identical to those of three representative positive strains. However, the six NspA cell surface-negative strains produced, on average, larger amounts of group B polysaccharide than did the 11 positive strains (reciprocal geometric mean titers, 676 and 224, respectively; P < 0.05), which suggests that the capsule may limit the accessibility of NspA surface epitopes. Given these strain differences in NspA surface accessibility, an rNspA-based meningococcal B vaccine may have to be supplemented by additional antigens.
Collapse
Affiliation(s)
- G R Moe
- Children's Hospital Oakland Research Institute, Oakland, California 94609, USA
| | | | | |
Collapse
|
73
|
Virji M, Evans D, Hadfield A, Grunert F, Teixeira AM, Watt SM. Critical determinants of host receptor targeting by Neisseria meningitidis and Neisseria gonorrhoeae: identification of Opa adhesiotopes on the N-domain of CD66 molecules. Mol Microbiol 1999; 34:538-51. [PMID: 10564495 DOI: 10.1046/j.1365-2958.1999.01620.x] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The human pathogens Neisseria meningitidis and Neisseria gonorrhoeae express a family of variable outer membrane opacity-associated (Opa) proteins that recognize multiple human cell surface receptors. Most Opa proteins target the highly conserved N-terminal domain of the CD66 family of adhesion molecules, although a few also interact with heparan sulphate proteoglycans. In this study, we observed that at least two Opa proteins of a N. meningitidis strain C751 have the dual capacity to interact with both receptors. In addition, all three Opa proteins of C751 bind equally well to HeLa cells transfected with cDNA encoding the carcinoembryonic antigen [CEA (CD66e)] subgroup of the CD66 family, but show distinct tropism for CGM1- (CD66d) and NCA (CD66c)-expressing cells. Because the C751 Opa proteins make up distinct structures via the surface-exposed hypervariable domains (HV-1 and HV-2), these combinations appear to be involved in tropism for the distinct CD66 subgroups. To define the determinants of receptor recognition, we used mutant proteins of biliary glycoprotein [BGP (CD66a)] carrying substitutions at several predicted exposed sites in the N-domain and compared their interactions with several Opa proteins of both N. meningitidis and N. gonorrhoeae. The observations applied to the molecular model of the BGP N-domain that we constructed show that the binding of all Opa proteins tested occurs at the non-glycosylated (CFG) face of the molecule and, in general, appears to require Tyr-34 and Ile-91. Further, efficient interaction of distinct Opa proteins depends on different non-adjacent amino acids. In the three-dimensional model, these residues lie in close proximity to Tyr-34 and Ile-91 at the CFG face, making continuous binding domains (adhesiotopes). The epitope of the monoclonal antibody YTH71.3 that inhibits Opa/CD66 interactions was also identified within the Opa adhesiotopes on the N-domain. These studies define the molecular basis that directs the Opa specificity for the CD66 family and the rationale for tropism of the Opa proteins for the CD66 subgroups.
Collapse
MESH Headings
- Amino Acid Sequence
- Antigens, Bacterial/chemistry
- Antigens, Bacterial/genetics
- Antigens, Bacterial/metabolism
- Antigens, CD/chemistry
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Differentiation/chemistry
- Antigens, Differentiation/genetics
- Antigens, Differentiation/metabolism
- Bacterial Adhesion
- Bacterial Outer Membrane Proteins/chemistry
- Bacterial Outer Membrane Proteins/genetics
- Bacterial Outer Membrane Proteins/metabolism
- Binding Sites
- Cell Adhesion Molecules
- Heparan Sulfate Proteoglycans/metabolism
- Humans
- Models, Molecular
- Molecular Sequence Data
- Mutation
- Neisseria gonorrhoeae/chemistry
- Neisseria gonorrhoeae/genetics
- Neisseria gonorrhoeae/metabolism
- Neisseria meningitidis/chemistry
- Neisseria meningitidis/genetics
- Neisseria meningitidis/metabolism
- Protein Structure, Tertiary
- Receptors, Cell Surface/metabolism
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- M Virji
- Department of Pathology and Microbiology, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK.
| | | | | | | | | | | |
Collapse
|
74
|
Bos MP, Hogan D, Belland RJ. Homologue scanning mutagenesis reveals CD66 receptor residues required for neisserial Opa protein binding. J Exp Med 1999; 190:331-40. [PMID: 10430622 PMCID: PMC2195581 DOI: 10.1084/jem.190.3.331] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/1999] [Accepted: 06/08/1999] [Indexed: 11/04/2022] Open
Abstract
The immunoglobulin-like family of CD66 antigens, present on human neutrophils and epithelial cells, are used as receptors for adhesins expressed by the pathogenic Neisseriae. N. gonorrhoeae strain MS11 can express 11 isoforms of these adhesins, called opacity-related (Opa) proteins. Each MS11 Opa protein recognizes a distinct spectrum of CD66 receptors. CD66-Opa binding is mediated by the NH(2)-terminal domain of the receptor and occurs through protein-protein interactions. In this report, we have investigated the molecular basis for the binding between the CD66 and Opa protein families by mapping amino acids in CD66 receptors that determine Opa protein binding. We performed homologue scanning mutagenesis between CD66e, which binds multiple Opa variants, and CD66b, which binds none, and tested both loss-of-function by CD66e and gain-of-function by CD66b in solution assays and in assays involving full-length receptors expressed by epithelial cells. We found that three residues in the CD66e N-domain are required for maximal Opa protein receptor activity. Opa proteins that recognize the same spectrum of native CD66 molecules showed differential binding of receptors with submaximal activity, indicating that the binding characteristics of these Opa proteins are actually slightly different. These data provide a first step toward resolving the structural requirements for Opa-CD66 interaction.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, Bacterial/metabolism
- Antigens, CD/biosynthesis
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, CD/physiology
- Antigens, Differentiation/biosynthesis
- Antigens, Differentiation/genetics
- Antigens, Differentiation/metabolism
- Antigens, Differentiation/physiology
- Bacterial Outer Membrane Proteins/metabolism
- CHO Cells
- Cell Adhesion Molecules
- Cricetinae
- Epithelial Cells/metabolism
- Epithelial Cells/microbiology
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Neisseria gonorrhoeae/metabolism
- Neisseria gonorrhoeae/physiology
- Peptide Fragments/chemistry
- Peptide Fragments/genetics
- Peptide Fragments/metabolism
- Peptide Fragments/physiology
- Peptide Mapping
- Protein Binding/genetics
- Sequence Homology, Amino Acid
- Transfection
Collapse
Affiliation(s)
- M P Bos
- Laboratory of Microbial Structure and Function, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana 59840-2999, USA.
| | | | | |
Collapse
|
75
|
Merz AJ, Enns CA, So M. Type IV pili of pathogenic Neisseriae elicit cortical plaque formation in epithelial cells. Mol Microbiol 1999; 32:1316-32. [PMID: 10383771 DOI: 10.1046/j.1365-2958.1999.01459.x] [Citation(s) in RCA: 160] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The pathogenic Neisseriae Neisseria meningitidis and Neisseria gonorrhoeae, initiate colonization by attaching to host cells using type IV pili. Subsequent adhesive interactions are mediated through the binding of other bacterial adhesins, in particular the Opa family of outer membrane proteins. Here, we have shown that pilus-mediated adhesion to host cells by either meningococci or gonococci triggers the rapid, localized formation of dramatic cortical plaques in host epithelial cells. Cortical plaques are enriched in both components of the cortical cytoskeleton and a subset of integral membrane proteins. These include: CD44v3, a heparan sulphate proteoglycan that may serve as an Opa receptor; EGFR, a receptor tyrosine kinase; CD44 and ICAM-1, adhesion molecules known to mediate inflammatory responses; f-actin; and ezrin, a component that tethers membrane components to the actin cytoskeleton. Genetic analyses reveal that cortical plaque formation is highly adhesin specific. Both pilE and pilC null mutants fail to induce cortical plaques, indicating that neisserial type IV pili are required for cortical plaque induction. Mutations in pilT, a gene required for pilus-mediated twitching motility, confer a partial defect in cortical plaque formation. In contrast to type IV pili, many other neisserial surface structures are not involved in cortical plaque induction, including Opa, Opc, glycolipid GgO4-binding adhesins, polysialic acid capsule or a particular lipooligosaccharide variant. Furthermore, it is shown that type IV pili allow gonococci to overcome the inhibitory effect of heparin, a soluble receptor analogue, on gonococcal invasion of Chang and A431 epithelial cells. These and other observations strongly suggest that type IV pili play an active role in initiating neisserial infection of the mucosal surface in vivo. The functions of type IV pili and other neisserial adhesins are discussed in the specific context of the mucosal microenvironment, and a multistep model for neisserial colonization of mucosal epithelia is proposed.
Collapse
Affiliation(s)
- A J Merz
- Molecular Microbiology and Immunology, Oregon Health Sciences University, Portland, 97201-3098, USA.
| | | | | |
Collapse
|
76
|
Grant CC, Bos MP, Belland RJ. Proteoglycan receptor binding by Neisseria gonorrhoeae MS11 is determined by the HV-1 region of OpaA. Mol Microbiol 1999; 32:233-42. [PMID: 10231481 DOI: 10.1046/j.1365-2958.1999.01293.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The interaction of the OpaA protein of Neisseria gonorrhoeae MS11mk with heparan sulphate-containing proteoglycan receptors on Chang conjunctiva epithelial cells was examined using isolated receptor binding and cell adherence/internalization assays. OpaA deletion proteins, in which the four surface-exposed regions of the protein were deleted individually, and chimeric OpaA/B proteins, in which the surface-exposed regions of the OpaA and OpaB proteins were exchanged, were expressed in N. gonorrhoeae. The recombinant deletion proteins and the chimeric OpaA/B proteins were surface exposed in the outer membrane of N. gonorrhoeae. Isolated receptor-binding assays and Chang cell infection assays with OpaA deletion variants indicated that hypervariable region 1 was essential for the interaction of N. gonorrhoeae with the proteoglycan receptor. Expression of chimeric OpaA/B proteins confirmed the central role of hypervariable region 1 in receptor binding and demonstrated that this domain alone confers the invasive biological phenotype in a non-heparan sulphate proteoglycan-binding Opa protein. The other variable regions of OpaA enhanced receptor binding in the presence of region 1, but did not constitute binding domains on their own. The results indicate that proteoglycan receptor binding results from a hierarchical interaction between the variable domains of the OpaA protein of MS11mk.
Collapse
Affiliation(s)
- C C Grant
- Laboratory of Microbial Structure and Function, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, 903 South 4th Street, Hamilton, MT 59840-2999, USA
| | | | | |
Collapse
|