51
|
Pandey H, Jain D, Tang DWT, Wong SH, Lal D. Gut microbiota in pathophysiology, diagnosis, and therapeutics of inflammatory bowel disease. Intest Res 2024; 22:15-43. [PMID: 37935653 PMCID: PMC10850697 DOI: 10.5217/ir.2023.00080] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/23/2023] [Accepted: 08/27/2023] [Indexed: 11/09/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a multifactorial disease, which is thought to be an interplay between genetic, environment, microbiota, and immune-mediated factors. Dysbiosis in the gut microbial composition, caused by antibiotics and diet, is closely related to the initiation and progression of IBD. Differences in gut microbiota composition between IBD patients and healthy individuals have been found, with reduced biodiversity of commensal microbes and colonization of opportunistic microbes in IBD patients. Gut microbiota can, therefore, potentially be used for diagnosing and prognosticating IBD, and predicting its treatment response. Currently, there are no curative therapies for IBD. Microbiota-based interventions, including probiotics, prebiotics, synbiotics, and fecal microbiota transplantation, have been recognized as promising therapeutic strategies. Clinical studies and studies done in animal models have provided sufficient evidence that microbiota-based interventions may improve inflammation, the remission rate, and microscopic aspects of IBD. Further studies are required to better understand the mechanisms of action of such interventions. This will help in enhancing their effectiveness and developing personalized therapies. The present review summarizes the relationship between gut microbiota and IBD immunopathogenesis. It also discusses the use of gut microbiota as a noninvasive biomarker and potential therapeutic option.
Collapse
Affiliation(s)
| | | | - Daryl W. T. Tang
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Sunny H. Wong
- Centre for Microbiome Medicine, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Devi Lal
- Department of Zoology, Ramjas College, University of Delhi, Delhi, India
| |
Collapse
|
52
|
Paudel D, Nair DVT, Tian S, Hao F, Goand UK, Joseph G, Prodes E, Chai Z, Robert CE, Chassaing B, Patterson AD, Singh V. Dietary fiber guar gum-induced shift in gut microbiota metabolism and intestinal immune activity enhances susceptibility to colonic inflammation. Gut Microbes 2024; 16:2341457. [PMID: 38630030 PMCID: PMC11028019 DOI: 10.1080/19490976.2024.2341457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 04/04/2024] [Indexed: 04/19/2024] Open
Abstract
With an increasing interest in dietary fibers (DFs) to promote intestinal health and the growth of beneficial gut bacteria, there is a continued rise in the incorporation of refined DFs in processed foods. It is still unclear how refined fibers, such as guar gum, affect the gut microbiota activity and pathogenesis of inflammatory bowel disease (IBD). Our study elucidated the effect and underlying mechanisms of guar gum, a fermentable DF (FDF) commonly present in a wide range of processed foods, on colitis development. We report that guar gum containing diet (GuD) increased the susceptibility to colonic inflammation. Specifically, GuD-fed group exhibited severe colitis upon dextran sulfate sodium (DSS) administration, as evidenced by reduced body weight, diarrhea, rectal bleeding, and shortening of colon length compared to cellulose-fed control mice. Elevated levels of pro-inflammatory markers in both serum [serum amyloid A (SAA), lipocalin 2 (Lcn2)] and colon (Lcn2) and extensive disruption of colonic architecture further affirmed that GuD-fed group exhibited more severe colitis than control group upon DSS intervention. Amelioration of colitis in GuD-fed group pre-treated with antibiotics suggest a vital role of intestinal microbiota in GuD-mediated exacerbation of intestinal inflammation. Gut microbiota composition and metabolite analysis in fecal and cecal contents, respectively, revealed that guar gum primarily enriches Actinobacteriota, specifically Bifidobacterium. Guar gum also altered multiple genera belonging to phyla Bacteroidota and Firmicutes. Such shift in gut microbiota composition favored luminal accumulation of intermediary metabolites succinate and lactate in the GuD-fed mice. Colonic IL-18 and tight junction markers were also decreased in the GuD-fed group. Importantly, GuD-fed mice pre-treated with recombinant IL-18 displayed attenuated colitis. Collectively, unfavorable changes in gut microbiota activity leading to luminal accumulation of lactate and succinate, reduced colonic IL-18, and compromised gut barrier function following guar gum feeding contributed to increased colitis susceptibility.
Collapse
Affiliation(s)
- Devendra Paudel
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Divek V. T. Nair
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Sangshan Tian
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Fuhua Hao
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Umesh K. Goand
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Grace Joseph
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Eleni Prodes
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Zhi Chai
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chloé E.M. Robert
- INSERM U1016, team “Mucosal microbiota in chronic inflammatory diseases”, CNRS UMR 8104, Université Paris Cité, Paris, France
- INSERM U1306, Microbiome-Host Interaction group, Institut Pasteur, Université Paris Cité, Paris, France
| | - Benoit Chassaing
- INSERM U1016, team “Mucosal microbiota in chronic inflammatory diseases”, CNRS UMR 8104, Université Paris Cité, Paris, France
- INSERM U1306, Microbiome-Host Interaction group, Institut Pasteur, Université Paris Cité, Paris, France
| | - Andrew D. Patterson
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Vishal Singh
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
53
|
Jadhav A, Jagtap S, Vyavahare S, Sharbidre A, Kunchiraman B. Reviewing the potential of probiotics, prebiotics and synbiotics: advancements in treatment of ulcerative colitis. Front Cell Infect Microbiol 2023; 13:1268041. [PMID: 38145046 PMCID: PMC10739422 DOI: 10.3389/fcimb.2023.1268041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/22/2023] [Indexed: 12/26/2023] Open
Abstract
Inflammatory bowel diseases (IBD) like Crohn's and ulcerative colitis (UC) are multifactorial pathologies caused by environmental factors and genetic background. UC is a chronic inflammatory disorder that specifically targets the colon, resulting in inflammation. Various chemical interventions, including aminosalicylates, corticosteroids, immunomodulators, and biological therapies, have been extensively employed for the purpose of managing symptoms associated with UC. Nevertheless, it is important to note that these therapeutic interventions may give rise to undesirable consequences, including, but not limited to, the potential for weight gain, fluid retention, and heightened vulnerability to infections. Emerging therapeutic approaches for UC are costly due to their chronic nature. Alternatives like synbiotic therapy, combining prebiotics and probiotics, have gained attention for mitigating dysbiosis in UC patients. Prebiotics promote beneficial bacteria proliferation, while probiotics establish a balanced gut microbiota and regulate immune system functionality. The utilisation of synbiotics has been shown to improve the inflammatory response and promote the resolution of symptoms in individuals with UC through the stimulation of beneficial bacteria growth and the enhancement of intestinal barrier integrity. Hence, this review article aims to explore the potential benefits and underlying reasons for incorporating alternative approaches in the management of UC with studies performed using prebiotics, probiotics, and synbiotics to treat ulcerative colitis and to highlight safety and considerations in UC and future perspectives. This will facilitate the utilisation of novel treatment strategies for the safer and more efficacious management of patients with UC.
Collapse
Affiliation(s)
- Apurva Jadhav
- Herbal Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to be University), Pune, Maharashtra, India
| | - Suresh Jagtap
- Herbal Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to be University), Pune, Maharashtra, India
| | - Suresh Vyavahare
- Sai Ayurved Medical College, Maharashtra University of Health Sciences, Solapur, Maharashtra, India
| | - Archana Sharbidre
- Department of Zoology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Bipinraj Kunchiraman
- Microbial Biotechnology, Rajiv Gandhi Institute of IT & Biotechnology, Bharati Vidyapeeth (Deemed to be University), Pune, Maharashtra, India
| |
Collapse
|
54
|
Cui G, Li S, Ye H, Yang Y, Jia X, Lin M, Chu Y, Feng Y, Wang Z, Shi Z, Zhang X. Gut microbiome and frailty: insight from genetic correlation and mendelian randomization. Gut Microbes 2023; 15:2282795. [PMID: 37990415 PMCID: PMC10730212 DOI: 10.1080/19490976.2023.2282795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 11/08/2023] [Indexed: 11/23/2023] Open
Abstract
Observational studies have shown that the gut microbiome is associated with frailty. However, whether these associations underlie causal effects remains unknown. Thus, this study aimed to assess the genetic correlation and causal relationships between the genetically predicted gut microbiome and frailty using linkage disequilibrium score regression (LDSC) and Mendelian Randomization (MR). Summary statistics for the gut microbiome were obtained from a genome-wide association study (GWAS) meta-analysis of the MiBioGen consortium (N = 18,340). Summary statistics for frailty were obtained from a GWAS meta-analysis, including the UK Biobank and TwinGene (N = 175,226). We used LDSC and MR analyses to estimate the genetic correlation and causality between the genetically predicted gut microbiome and frailty. Our findings indicate a suggestive genetic correlation between Christensenellaceae R-7 and frailty. Moreover, we found evidence for suggestive causal effects of twelve genus-level gut microbes on frailty using at least two MR methods. There was no evidence of horizontal pleiotropy or heterogeneity in the MR analysis. This study provides suggestive evidence for a potential genetic correlation and causal association between several genetically predicted gut microbes and frailty. More population-based observational studies and animal experiments are required to clarify this association and the underlying mechanisms.
Collapse
Affiliation(s)
- Guanghui Cui
- Department of Integrated Traditional Chinese and Western Medicine, Peking University First Hospital; Institute of Integrated Traditional Chinese and Western Medicine, Peking University, Beijing, China
| | - Shaojie Li
- School of Public Health, Peking University, Beijing, China
- China Center for Health Development Studies, Peking University, Beijing, China
| | - Hui Ye
- Department of Integrated Traditional Chinese and Western Medicine, Peking University First Hospital; Institute of Integrated Traditional Chinese and Western Medicine, Peking University, Beijing, China
| | - Yao Yang
- Department of Integrated Traditional Chinese and Western Medicine, Peking University First Hospital; Institute of Integrated Traditional Chinese and Western Medicine, Peking University, Beijing, China
| | - Xiaofen Jia
- Department of Integrated Traditional Chinese and Western Medicine, Peking University First Hospital; Institute of Integrated Traditional Chinese and Western Medicine, Peking University, Beijing, China
| | - Miaomiao Lin
- Department of Integrated Traditional Chinese and Western Medicine, Peking University First Hospital; Institute of Integrated Traditional Chinese and Western Medicine, Peking University, Beijing, China
| | - Yingming Chu
- Department of Integrated Traditional Chinese and Western Medicine, Peking University First Hospital; Institute of Integrated Traditional Chinese and Western Medicine, Peking University, Beijing, China
| | - Yue Feng
- Department of Integrated Traditional Chinese and Western Medicine, Peking University First Hospital; Institute of Integrated Traditional Chinese and Western Medicine, Peking University, Beijing, China
| | - Zicheng Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zongming Shi
- Department of Integrated Traditional Chinese and Western Medicine, Peking University First Hospital; Institute of Integrated Traditional Chinese and Western Medicine, Peking University, Beijing, China
| | - Xuezhi Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Peking University First Hospital; Institute of Integrated Traditional Chinese and Western Medicine, Peking University, Beijing, China
| |
Collapse
|
55
|
Wu R, Xiong R, Li Y, Chen J, Yan R. Gut microbiome, metabolome, host immunity associated with inflammatory bowel disease and intervention of fecal microbiota transplantation. J Autoimmun 2023; 141:103062. [PMID: 37246133 DOI: 10.1016/j.jaut.2023.103062] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/30/2023]
Abstract
Gut dysbiosis has been associated with inflammatory bowel disease (IBD), one of the most common gastrointestinal diseases. The microbial communities play essential roles in host physiology, with profound effects on immune homeostasis, directly or via their metabolites and/or components. There are increasing clinical trials applying fecal microbiota transplantation (FMT) with Crohn's disease (CD) and ulcerative colitis (UC). The restoration of dysbiotic gut microbiome is considered as one of the mechanisms of FMT therapy. In this work, latest advances in the alterations in gut microbiome and metabolome features in IBD patients and experimental mechanistic understanding on their contribution to the immune dysfunction were reviewed. Then, the therapeutic outcomes of FMT on IBD were summarized based on clinical remission, endoscopic remission and histological remission of 27 clinical trials retrieved from PubMed which have been registered on ClinicalTrials.gov with the results been published in the past 10 years. Although FMT is established as an effective therapy for both subtypes of IBD, the promising outcomes are not always achieved. Among the 27 studies, only 11 studies performed gut microbiome profiling, 5 reported immune response alterations and 3 carried out metabolome analysis. Generally, FMT partially restored typical changes in IBD, resulted in increased α-diversity and species richness in responders and similar but less pronounced shifts of patient microbial and metabolomics profiles toward donor profiles. Measurements of immune responses to FMT mainly focused on T cells and revealed divergent effects on pro-/anti-inflammatory functions. The very limited information and the extremely confounding factors in the designs of the FMT trials significantly hindered a reasonable conclusion on the mechanistic involvement of gut microbiota and metabolites in clinical outcomes and an analysis of the inconsistencies.
Collapse
Affiliation(s)
- Rongrong Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China.
| | - Rui Xiong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China.
| | - Yan Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China.
| | - Junru Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China.
| | - Ru Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China.
| |
Collapse
|
56
|
Salimi A, Sepehr A, Hejazifar N, Talebi M, Rohani M, Pourshafie MR. The Anti-Inflammatory Effect of a Probiotic Cocktail in Human Feces Induced-Mouse Model. Inflammation 2023; 46:2178-2192. [PMID: 37599322 DOI: 10.1007/s10753-023-01870-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 06/18/2023] [Accepted: 07/03/2023] [Indexed: 08/22/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disease of the gastrointestinal tract due to altered interaction between the immune system and the gut microbiota. The aim of this study was to investigate the role of a probiotic cocktail in modulating immune dysregulation induced in mice. Mice were divided into 5 groups (n = 5/group), and inflammation was induced in two separate groups by fecal microbiota transplantation (FMT) from the stool of human with IBD and dextran sulfate sodium (DSS). In the other two groups, the cocktail of Lactobacillus spp. and Bifidobacterium spp. (108CFU/kg/day) was administered daily for a total of 28days in addition to inducing inflammation. A group as a contcxsrol group received only water and food. The alteration of the selected genera of gut microbiota and the expression of some genes involved in the regulation of the inflammatory response were studied in the probiotic-treated and untreated groups by quantitative real-time PCR. The selected genera of gut microbiota of the FMT and DSS groups showed similar patterns on day 28 after each treatment. In the probiotic-treated groups, the population of the selected genera of gut microbiota normalized and the abundance of Firmicutes and Actinobacteria increased compared to the DSS and FMT groups. The expression of genes related to immune response and tight junctions was positively affected by the probiotic. Changes in the gut microbiota could influence the inflammatory status in the gut, and probiotics as a preventive or complementary treatment could improve the well-being of patients with inflammatory bowel disease symptoms.
Collapse
Affiliation(s)
- Afsaneh Salimi
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Amin Sepehr
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Niloofar Hejazifar
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Maliheh Talebi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahdi Rohani
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran.
| | | |
Collapse
|
57
|
Qiu B, Shen Z, Yang D, Qin X, Ren W, Wang Q. Gut microbiota and common gastrointestinal diseases: a bidirectional two-sample Mendelian randomized study. Front Microbiol 2023; 14:1273269. [PMID: 38045030 PMCID: PMC10691374 DOI: 10.3389/fmicb.2023.1273269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/31/2023] [Indexed: 12/05/2023] Open
Abstract
Background Several recent studies have shown an association between gut microbiota and gastrointestinal diseases. However, the causal relationship between gut microbiota and gastrointestinal disorders is unclear. Methods We assessed causal relationships between gut microbiota and eight common gastrointestinal diseases using Mendelian randomization (MR) analyses. IVW results were considered primary results. Cochrane's Q and MR-Egger tests were used to test for heterogeneity and pleiotropy. Leave-one-out was used to test the stability of the MR results, and Bonferroni correction was used to test the strength of the causal relationship between exposure and outcome. Results MR analyses of 196 gut microbiota and eight common gastrointestinal disease phenotypes showed 62 flora and common gastrointestinal diseases with potential causal relationships. Among these potential causal relationships, after the Bonferroni-corrected test, significant causal relationships remained between Genus Oxalobacter and CD (OR = 1.29, 95% CI: 1.13-1.48, p = 2.5 × 10-4, q = 4.20 × 10-4), and between Family Clostridiaceae1 and IBS (OR = 0.9967, 95% CI: 0.9944-0.9991, p = 1.3 × 10-3, q = 1.56 × 10-3). Cochrane's Q-test showed no significant heterogeneity among the various single nucleotide polymorphisms (SNPs). In addition, no significant level of pleiotropy was found according to the MR-Egger. Conclusion This study provides new insights into the mechanisms of gut microbiota-mediated gastrointestinal disorders and some guidance for targeting specific gut microbiota for treating gastrointestinal disorders.
Collapse
Affiliation(s)
- Binxu Qiu
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Zixiong Shen
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Dongliang Yang
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Xinxin Qin
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Wenyong Ren
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Quan Wang
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
58
|
Do KH, Ko SH, Kim KB, Seo K, Lee WK. Comparative Study of Intestinal Microbiome in Patients with Ulcerative Colitis and Healthy Controls in Korea. Microorganisms 2023; 11:2750. [PMID: 38004761 PMCID: PMC10673479 DOI: 10.3390/microorganisms11112750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Ulcerative colitis (UC) poses a contemporary medical challenge, with its exact cause still eluding researchers. This is due to various factors, such as the rising incidence, diagnostic complexities, and difficulties associated with its management. We compared the intestinal microbiome of patients with UC to that of healthy controls to determine the qualitative and quantitative changes associated with UC that occur in the intestinal microbiota. The intestinal bacterial abundance in 40 Korean patients with UC and 25 healthy controls was assayed using via next-generation sequencing. There were five major phyla in both groups: Firmicutes (UC patients: 51.12%; healthy controls: 46.90%), Bacteroidota (UC patients: 37.04%; healthy controls: 40.34%), Proteobacteria (UC patients: 6.01%; healthy controls: 11.05%), Actinobacteriota (UC patients: 5.71%; healthy controls: 1.56%), and Desulfobacteriota (UC patients: 0.13%; healthy controls: 0.14%). Firmicutes was more prevalent in patients with UC (51.12%) compared to that of healthy controls (46.90%). Otherwise, Bacteroidota was more prevalent in healthy controls (40.34%) compared to patients with UC (37.04%). Although there was no significant difference, our results showed a substantially lower gut microbiome diversity in patients with UC (mean: 16.5; 95% confidence interval (CI) = 14.956-18.044) than in healthy controls (mean: 17.84; 95% CI = 15.989-19.691), the beta diversity and the flora structure of the microbiome in patients with UC differed from those in healthy controls. This will be helpful for the development of new treatment options and lay the groundwork for future research on UC. To understand the disease mechanism, it is essential to define the different types of microbes in the guts of patients with UC.
Collapse
Affiliation(s)
- Kyung-Hyo Do
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea;
| | - Seung-Hyun Ko
- GutBiomeTech Co., Ltd., Cheongju 28644, Republic of Korea
| | - Ki Bae Kim
- Department of Internal Medicine, Chungbuk National University Hospital, Cheongju 28644, Republic of Korea
| | - Kwangwon Seo
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea;
| | - Wan-Kyu Lee
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea;
- GutBiomeTech Co., Ltd., Cheongju 28644, Republic of Korea
| |
Collapse
|
59
|
Tian S, Paudel D, Hao F, Neupane R, Castro R, Patterson AD, Tiwari AK, Prabhu KS, Singh V. Refined fiber inulin promotes inflammation-associated colon tumorigenesis by modulating microbial succinate production. Cancer Rep (Hoboken) 2023; 6:e1863. [PMID: 37489647 PMCID: PMC10644334 DOI: 10.1002/cnr2.1863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/21/2023] [Accepted: 06/30/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND AND AIM There is an increased risk of colon cancer associated with inflammatory bowel disease (IBD). Dietary fibers (DFs) naturally present in vegetables and whole grains offer numerous beneficial effects on intestinal health. However, the effects of refined DFs on intestinal health remain unclear. Therefore, we elucidated the impact of the refined DF inulin on colonic inflammation and tumorigenesis. METHODS Four-week-old wild-type (WT) mice were fed diets containing insoluble DF cellulose (control) or refined DF inulin for 4 weeks. A subgroup of mice was then switched to drinking water containing dextran sulfate sodium (DSS, 1.4% wt/vol) for colitis induction. In another subgroup of mice, colitis-associated colorectal cancer (CRC) was initiated with three 7-day alternate cycles of DSS following an initial dose of mutagenic substance azoxymethane (AOM; 7.5 mg/kg body weight; i.p.). Post 7 weeks of AOM treatment, mice were euthanized and examined for CRC development. RESULTS Mice consuming inulin-containing diet exhibited severe colitis upon DSS administration, as evidenced by more body weight loss, rectal bleeding, and increased colonic inflammation than the DSS-treated control group. Correspondingly, histological analysis revealed extensive disruption of colon architecture and massive infiltration of immune cells in the inulin-fed group. We next examined the effect of inulin on CRC development. Surprisingly, significant mortality (~50%) was observed in the inulin-fed but not in the control group during the DSS cycle. Consequently, the remaining inulin-fed mice, which completed the study exhibited extensive colon tumorigenesis. Immunohistochemical characterization showed comparatively high expression of the cell proliferation marker Ki67 and activation of the Wnt signaling in tumor sections obtained from the inulin-fed group. Gut microbiota and metabolite analysis revealed expansion of succinate producers and elevated cecal succinate in inulin-fed mice. Human colorectal carcinoma cells (HCT116) proliferated more rapidly when supplemented with succinate in an inflamed environment, suggesting that elevated luminal succinate may contribute to tumorigenesis. CONCLUSIONS Our study uncovers that supplementation of diet with refined inulin induces abnormal succinate accumulation in the intestinal lumen, which in part contributes to promoting colon inflammation and tumorigenesis.
Collapse
Affiliation(s)
- Sangshan Tian
- Department of Nutritional SciencesThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Devendra Paudel
- Department of Nutritional SciencesThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Fuhua Hao
- Department of Veterinary and Biomedical SciencesThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Rabin Neupane
- Department of Pharmacology and Experimental TherapeuticsUniversity of ToledoToledoOhioUSA
| | - Rita Castro
- Department of Nutritional SciencesThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Andrew D. Patterson
- Department of Veterinary and Biomedical SciencesThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Amit K. Tiwari
- Department of Pharmacology and Experimental TherapeuticsUniversity of ToledoToledoOhioUSA
| | - K. Sandeep Prabhu
- Department of Veterinary and Biomedical SciencesThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Vishal Singh
- Department of Nutritional SciencesThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| |
Collapse
|
60
|
Bellini G, Benvenuti L, Ippolito C, Frosini D, Segnani C, Rettura F, Pancetti A, Bertani L, D'Antongiovanni V, Palermo G, Del Prete E, Antonioli L, Nardini V, Morganti R, Pellegrini C, Bernardini N, Ceravolo R, Fornai M, Bellini M. Intestinal histomorphological and molecular alterations in patients with Parkinson's disease. Eur J Neurol 2023; 30:3440-3450. [PMID: 36263629 DOI: 10.1111/ene.15607] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/22/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND PURPOSE Changes in gut microbiota composition, enteric inflammation, impairments of the intestinal epithelial barrier and neuroplastic changes in the enteric nervous system have been reported in Parkinson's disease (PD) patients and could contribute to the onset of both neurological and gastrointestinal symptoms. However, their mutual interplay has rarely been investigated. This study evaluated, in an integrated manner, changes in faecal microbiota composition, morphofunctional alterations of colonic mucosal barrier and changes of inflammatory markers in blood and stools of PD patients. METHODS Nineteen PD patients and nineteen asymptomatic subjects were enrolled. Blood lipopolysaccharide binding protein (LBP, marker of altered intestinal permeability) and interleukin-1β (IL-1β) levels, as well as stool IL-1β and tumour necrosis factor (TNF) levels, were evaluated. Gut microbiota analysis was performed. Epithelial mucins, collagen fibres, claudin-1 and S100-positive glial cells as markers of an impairment of the intestinal barrier, mucosal remodelling and enteric glial activation were evaluated on colonic mucosal specimens collected during colonoscopy. RESULTS Faecal microbiota analysis revealed a significant difference in the α-diversity in PD patients compared to controls, while no differences were found in the β-diversity. Compared to controls, PD patients showed significant chenags in plasma LBP levels, as well as faecal TNF and IL-1β levels. The histological analysis showed a decrease in epithelial neutral mucins and claudin-1 expression and an increased expression of acidic mucins, collagen fibres and S100-positive glial cells. CONCLUSIONS Parkinson's disease patients are characterized by enteric inflammation and increased intestinal epithelial barrier permeability, as well as colonic mucosal barrier remodelling, associated with changes in gut microbiota composition.
Collapse
Affiliation(s)
- Gabriele Bellini
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Laura Benvenuti
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Chiara Ippolito
- Unit of Histology and Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Daniela Frosini
- Department of Medical Specialties, Neurology Unit, AOUP, Pisa, Italy
| | - Cristina Segnani
- Unit of Histology and Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Francesco Rettura
- Gastrointestinal Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Andrea Pancetti
- Gastrointestinal Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Lorenzo Bertani
- Gastrointestinal Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
- Department of Surgery and Gastroenterology, Tuscany North-West ASL, Pontedera Hospital, Pisa, Italy
| | - Vanessa D'Antongiovanni
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giovanni Palermo
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Luca Antonioli
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Vincenzo Nardini
- Anatomia Patologica 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | | | - Carolina Pellegrini
- Unit of Histology and Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Nunzia Bernardini
- Unit of Histology and Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Roberto Ceravolo
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Center for Neurodegenerative Diseases, Unit of Neurology, Parkinson's Disease and Movement Disorders, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Matteo Fornai
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Massimo Bellini
- Gastrointestinal Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
61
|
Geng ZH, Zhu Y, Chen WF, Fu PY, Xu JQ, Wang TY, Yao L, Liu ZQ, Li XQ, Zhang ZC, Wang Y, Ma LY, Lin SL, He MJ, Zhao C, Li QL, Zhou PH. The role of type II esophageal microbiota in achalasia: Activation of macrophages and degeneration of myenteric neurons. Microbiol Res 2023; 276:127470. [PMID: 37574627 DOI: 10.1016/j.micres.2023.127470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/15/2023]
Abstract
OBJECTIVE The gut microbiota plays a critical role in the appropriate development and maintenance of the enteric nervous system (ENS). Esophageal achalasia (EA) is a rare motility disorder characterized by the selective degeneration of inhibitory neurons in the esophageal myenteric plexus. This study aimed to evaluate the composition of the esophageal microbiota in achalasia and explore the potential microbial mechanisms involved in its pathogenesis. DESIGN The lower esophageal mucosal microbiota was analyzed in patients with achalasia and control participants using 16 S rRNA sequencing. The association between the esophageal microbiota and achalasia was validated by inducing esophageal dysbiosis in C57BL/10 J and C57BL/10ScNJ (TLR4KO) mice via chronic exposure to ampicillin sodium in their drinking water. RESULTS The esophageal microbiota in EA patients had lower diversity and a predominance of Gram-negative bacteria (Type II microbiota) compared to that in the healthy controls. Additionally, the relative abundance of Rhodobacter decreased significantly in patients with achalasia, which correlated with an enrichment of lipopolysaccharide (LPS) biosynthesis based on the COG database. Antibiotic-treated mice showed an esophageal microbiota characterized by increased abundance of Gram-negative bacteria (Type II microbiome), decreased abundance of Rhodobacter, and enriched LPS biosynthesis. Compared to the control and TLR4KO mice, the antibiotic-treated wild-type mice had higher LES resting pressure, increased LES contraction rate after carbachol stimulation, and decreased relaxation response to L-arginine. Moreover, the number of myenteric neurons decreased, while the number of lamina propria macrophages (LpMs) increased after antibiotic exposure. Furthermore, the TLR4-MYD88-NF-κB pathway was up-regulated, and the production of TNF-α, IL-1β, and IL-6 increased in the antibiotic-treated mice. CONCLUSIONS Patients with achalasia exhibit esophageal dysbiosis, which may induce aberrant esophageal motility.
Collapse
Affiliation(s)
- Zi-Han Geng
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Collaborative Innovation Center of Endoscopy, Shanghai, China
| | - Yan Zhu
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Collaborative Innovation Center of Endoscopy, Shanghai, China
| | - Wei-Feng Chen
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Collaborative Innovation Center of Endoscopy, Shanghai, China
| | - Pei-Yao Fu
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Collaborative Innovation Center of Endoscopy, Shanghai, China
| | - Jia-Qi Xu
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Collaborative Innovation Center of Endoscopy, Shanghai, China
| | - Tong-Yao Wang
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Lu Yao
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Collaborative Innovation Center of Endoscopy, Shanghai, China
| | - Zu-Qiang Liu
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Collaborative Innovation Center of Endoscopy, Shanghai, China
| | - Xiao-Qing Li
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Collaborative Innovation Center of Endoscopy, Shanghai, China
| | - Zhao-Chao Zhang
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Collaborative Innovation Center of Endoscopy, Shanghai, China
| | - Yun Wang
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Collaborative Innovation Center of Endoscopy, Shanghai, China
| | - Li-Yun Ma
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Collaborative Innovation Center of Endoscopy, Shanghai, China
| | - Sheng-Li Lin
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Collaborative Innovation Center of Endoscopy, Shanghai, China
| | - Meng-Jiang He
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Collaborative Innovation Center of Endoscopy, Shanghai, China
| | - Chao Zhao
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.
| | - Quan-Lin Li
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Collaborative Innovation Center of Endoscopy, Shanghai, China.
| | - Ping-Hong Zhou
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Collaborative Innovation Center of Endoscopy, Shanghai, China.
| |
Collapse
|
62
|
Wang W, Cheng Z, Wang X, An Q, Huang K, Dai Y, Meng Q, Zhang Y. Lactoferrin deficiency during lactation increases the risk of depressive-like behavior in adult mice. BMC Biol 2023; 21:242. [PMID: 37907907 PMCID: PMC10617225 DOI: 10.1186/s12915-023-01748-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 10/24/2023] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND Lactoferrin is an active protein in breast milk that plays an important role in the growth and development of infants and is implicated as a neuroprotective agent. The incidence of depression is currently increasing, and it is unclear whether the lack of lactoferrin during lactation affects the incidence of depressive-like behavior in adulthood. RESULTS Lack of lactoferrin feeding during lactation affected the barrier and innate immune functions of the intestine, disrupted the intestinal microflora, and led to neuroimmune dysfunction and neurodevelopmental delay in the hippocampus. When exposed to external stimulation, adult lactoferrin feeding-deficient mice presented with worse depression-like symptoms; the mechanisms involved were activation of the LPS-TLR4 signalling pathway in the intestine and hippocampus, reduced BDNF-CREB signaling pathway in hippocampus, increased abundance of depression-related bacteria, and decreased abundance of beneficial bacteria. CONCLUSIONS Overall, our findings reveal that lactoferrin feeding deficient during lactation can increase the risk of depressive-like behavior in adults. The mechanism is related to the regulatory effect of lactoferrin on the development of the "microbial-intestinal-brain" axis.
Collapse
Affiliation(s)
- Wenli Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Zhimei Cheng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xiong Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Qin An
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Kunlun Huang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yunping Dai
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qingyong Meng
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yali Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.
| |
Collapse
|
63
|
Stolzer I, Scherer E, Süß P, Rothhammer V, Winner B, Neurath MF, Günther C. Impact of Microbiome-Brain Communication on Neuroinflammation and Neurodegeneration. Int J Mol Sci 2023; 24:14925. [PMID: 37834373 PMCID: PMC10573483 DOI: 10.3390/ijms241914925] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 09/27/2023] [Accepted: 10/01/2023] [Indexed: 10/15/2023] Open
Abstract
The gut microbiome plays a pivotal role in maintaining human health, with numerous studies demonstrating that alterations in microbial compositions can significantly affect the development and progression of various immune-mediated diseases affecting both the digestive tract and the central nervous system (CNS). This complex interplay between the microbiota, the gut, and the CNS is referred to as the gut-brain axis. The role of the gut microbiota in the pathogenesis of neurodegenerative diseases has gained increasing attention in recent years, and evidence suggests that gut dysbiosis may contribute to disease development and progression. Clinical studies have shown alterations in the composition of the gut microbiota in multiple sclerosis patients, with a decrease in beneficial bacteria and an increase in pro-inflammatory bacteria. Furthermore, changes within the microbial community have been linked to the pathogenesis of Parkinson's disease and Alzheimer's disease. Microbiota-gut-brain communication can impact neurodegenerative diseases through various mechanisms, including the regulation of immune function, the production of microbial metabolites, as well as modulation of host-derived soluble factors. This review describes the current literature on the gut-brain axis and highlights novel communication systems that allow cross-talk between the gut microbiota and the host that might influence the pathogenesis of neuroinflammation and neurodegeneration.
Collapse
Affiliation(s)
- Iris Stolzer
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Eveline Scherer
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Patrick Süß
- Department of Molecular Neurology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Veit Rothhammer
- Department of Neurology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Beate Winner
- Department of Stem Cell Biology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Center of Rare Diseases Erlangen (ZSEER), Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Markus F. Neurath
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Claudia Günther
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| |
Collapse
|
64
|
Li C, Peng K, Xiao S, Long Y, Yu Q. The role of Lactobacillus in inflammatory bowel disease: from actualities to prospects. Cell Death Discov 2023; 9:361. [PMID: 37773196 PMCID: PMC10541886 DOI: 10.1038/s41420-023-01666-w] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 10/01/2023] Open
Abstract
Inflammatory Bowel Disease (IBD), a chronic nonspecific intestinal inflammatory disease, is comprised of Ulcerative Colitis (UC) and Crohn's Disease (CD). IBD is closely related to a systemic inflammatory reaction and affects the progression of many intestinal and extraintestinal diseases. As one of the representative bacteria for probiotic-assisted therapy in IBD, multiple strains of Lactobacillus have been proven to alleviate intestinal damage and strengthen the intestinal immunological barrier, epithelial cell barrier, and mucus barrier. Lactobacillus also spares no effort in the alleviation of IBD-related diseases such as Colitis-associated Colorectal cancer (CAC), Alzheimer's Disease (AD), Depression, Anxiety, Autoimmune Hepatitis (AIH), and so on via gut-brain axis and gut-liver axis. This article aims to discuss the role of Lactobacillus in IBD and IBD-related diseases, including its underlying mechanisms and related curative strategies from the present to the future.
Collapse
Affiliation(s)
- Congxin Li
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
- Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Kaixin Peng
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
- Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Siqi Xiao
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
- Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Yuanyuan Long
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
- Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Qin Yu
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China.
- Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China.
| |
Collapse
|
65
|
Widjaja F, Rietjens IMCM. From-Toilet-to-Freezer: A Review on Requirements for an Automatic Protocol to Collect and Store Human Fecal Samples for Research Purposes. Biomedicines 2023; 11:2658. [PMID: 37893032 PMCID: PMC10603957 DOI: 10.3390/biomedicines11102658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/29/2023] Open
Abstract
The composition, viability and metabolic functionality of intestinal microbiota play an important role in human health and disease. Studies on intestinal microbiota are often based on fecal samples, because these can be sampled in a non-invasive way, although procedures for sampling, processing and storage vary. This review presents factors to consider when developing an automated protocol for sampling, processing and storing fecal samples: donor inclusion criteria, urine-feces separation in smart toilets, homogenization, aliquoting, usage or type of buffer to dissolve and store fecal material, temperature and time for processing and storage and quality control. The lack of standardization and low-throughput of state-of-the-art fecal collection procedures promote a more automated protocol. Based on this review, an automated protocol is proposed. Fecal samples should be collected and immediately processed under anaerobic conditions at either room temperature (RT) for a maximum of 4 h or at 4 °C for no more than 24 h. Upon homogenization, preferably in the absence of added solvent to allow addition of a buffer of choice at a later stage, aliquots obtained should be stored at either -20 °C for up to a few months or -80 °C for a longer period-up to 2 years. Protocols for quality control should characterize microbial composition and viability as well as metabolic functionality.
Collapse
Affiliation(s)
- Frances Widjaja
- Division of Toxicology, Wageningen University & Research, 6708 WE Wageningen, The Netherlands;
| | | |
Collapse
|
66
|
Kohil A, Abdalla W, Ibrahim WN, Al-Harbi KM, Al-Haidose A, Al-Asmakh M, Abdallah AM. The Immunomodulatory Role of Microbiota in Rheumatic Heart Disease: What Do We Know and What Can We Learn from Other Rheumatic Diseases? MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1629. [PMID: 37763748 PMCID: PMC10536446 DOI: 10.3390/medicina59091629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
Rheumatic heart disease (RHD) represents a serious cardiac sequela of acute rheumatic fever, occurring in 30-45% of patients. RHD is multifactorial, with a strong familial predisposition and known environmental risk factors that drive loss of immunological tolerance. The gut and oral microbiome have recently been implicated in the pathogenesis of RHD. Disruption of the delicate balance of the microbiome, or dysbiosis, is thought to lead to autoimmune responses through several different mechanisms including molecular mimicry, epitope spreading, and bystander activation. However, data on the microbiomes of RHD patients are scarce. Therefore, in this comprehensive review, we explore the various dimensions of the intricate relationship between the microbiome and the immune system in RHD and other rheumatic diseases to explore the potential effect of microbiota on RHD and opportunities for diagnosis and treatment.
Collapse
Affiliation(s)
- Amira Kohil
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha 34110, Qatar
| | - Wafa Abdalla
- Department of Biomedical Sciences, College of Health Sciences, QU-Health, Qatar University, Doha 2713, Qatar (M.A.-A.)
| | - Wisam N. Ibrahim
- Department of Biomedical Sciences, College of Health Sciences, QU-Health, Qatar University, Doha 2713, Qatar (M.A.-A.)
| | - Khalid M. Al-Harbi
- Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah 41491, Saudi Arabia
| | - Amal Al-Haidose
- Department of Biomedical Sciences, College of Health Sciences, QU-Health, Qatar University, Doha 2713, Qatar (M.A.-A.)
| | - Maha Al-Asmakh
- Department of Biomedical Sciences, College of Health Sciences, QU-Health, Qatar University, Doha 2713, Qatar (M.A.-A.)
- Biomedical Research Center, Qatar University, Doha 2713, Qatar
| | - Atiyeh M. Abdallah
- Department of Biomedical Sciences, College of Health Sciences, QU-Health, Qatar University, Doha 2713, Qatar (M.A.-A.)
| |
Collapse
|
67
|
Cai X, Zhou N, Zou Q, Peng Y, Xu L, Feng L, Liu X. Integration of taxa abundance and occurrence frequency to identify key gut bacteria correlated to clinics in Crohn's disease. BMC Microbiol 2023; 23:247. [PMID: 37661264 PMCID: PMC10476393 DOI: 10.1186/s12866-023-02999-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 08/29/2023] [Indexed: 09/05/2023] Open
Abstract
Bacteria abundance alternation in the feces or mucosa of Crohn's disease (CD) patients has long been applied to identify potential biomarkers for this disease, while the taxa occurrence frequency and their correlations with clinical traits were understudied. A total of 97 samples from the feces and gut mucosa were collected from CD patients and healthy controls (HCs), 16S rRNA-based analyses were performed to determine the changes in taxa abundance and occurrence frequency along CD and to correlate them with clinical traits. The results showed that bacteria communities were divergent between feces and mucosa, while the taxa abundance and occurrence frequency in both partitions showed similar exponential correlations. The decrease of specific fecal bacteria was much more effective in classifying the CD and HCs than that of the mucosal bacteria. Among them, Christensenellaceae_R-7_group and Ruminococcus were predicted as biomarkers by using random forest algorithm, which were persistently presented (> 71.40% in frequency) in the feces of the HCs with high abundance, whereas transiently presented in the feces (< 5.5% in frequency) and mucosa (< 18.18% in frequency) of CD patients with low abundance. Co-occurrence network analysis then identified them as hub taxa that drive the alternations of other bacteria and were positively correlated to the circuiting monocytes. The loss of specific bacteria in the healthy gut may cause great disturbance of gut microbiota, causing gut bacteria dysbiosis and correlated to immune disorders along CD, which might not only be developed as effective noninvasive biomarkers but also as therapy targets.
Collapse
Affiliation(s)
- Xunchao Cai
- Department of Gastroenterology and Hepatology, Shenzhen University General Hospital, Shenzhen, 518055, China
| | - Nan Zhou
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Qian Zou
- Department of Gastroenterology and Hepatology, Shenzhen University General Hospital, Shenzhen, 518055, China
| | - Yao Peng
- Department of Gastroenterology and Hepatology, Shenzhen University General Hospital, Shenzhen, 518055, China
| | - Long Xu
- Department of Gastroenterology and Hepatology, Shenzhen University General Hospital, Shenzhen, 518055, China
| | - Lijuan Feng
- Department of Gastroenterology and Hepatology, Shenzhen University General Hospital, Shenzhen, 518055, China.
| | - Xiaowei Liu
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
68
|
Alegre GFS, Pastore GM. NAD+ Precursors Nicotinamide Mononucleotide (NMN) and Nicotinamide Riboside (NR): Potential Dietary Contribution to Health. Curr Nutr Rep 2023; 12:445-464. [PMID: 37273100 PMCID: PMC10240123 DOI: 10.1007/s13668-023-00475-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2023] [Indexed: 06/06/2023]
Abstract
PURPOSE OF REVIEW NAD+ is a vital molecule that takes part as a redox cofactor in several metabolic reactions besides being used as a substrate in important cellular signaling in regulation pathways for energetic, genotoxic, and infectious stress. In stress conditions, NAD+ biosynthesis and levels decrease as well as the activity of consuming enzymes rises. Dietary precursors can promote NAD+ biosynthesis and increase intracellular levels, being a potential strategy for reversing physiological decline and preventing diseases. In this review, we will show the biochemistry and metabolism of NAD+ precursors NR (nicotinamide riboside) and NMN (nicotinamide mononucleotide), the latest findings on their beneficial physiological effects, their interplay with gut microbiota, and the future perspectives for research in nutrition and food science fields. RECENT FINDINGS NMN and NR demonstrated protect against diabetes, Alzheimer disease, endothelial dysfunction, and inflammation. They also reverse gut dysbiosis and promote beneficial effects at intestinal and extraintestinal levels. NR and NMN have been found in vegetables, meat, and milk, and microorganisms in fermented beverages can also produce them. NMN and NR can be obtained through the diet either in their free form or as metabolites derivate from the digestion of NAD+. The prospection of NR and NMN to find potential food sources and their dietary contribution in increasing NAD+ levels are still an unexplored field of research. Moreover, it could enable the development of new functional foods and processing strategies to maintain and enhance their physiological benefits, besides the studies of new raw materials for extraction and biotechnological development.
Collapse
Affiliation(s)
- Gabriela Fabiana Soares Alegre
- Department of Food Science and Nutrition, Faculty of Food Engineering, State University of Campinas, Campinas, Brazil.
- Laboratory of Bioflavours and Bioactive Compounds-Rua Monteiro Lobato, Cidade Universitária "Zeferino Vaz" Barão Geraldo, 80-CEP 13083-862, Campinas, SP, Brazil.
| | - Glaucia Maria Pastore
- Department of Food Science and Nutrition, Faculty of Food Engineering, State University of Campinas, Campinas, Brazil
- Laboratory of Bioflavours and Bioactive Compounds-Rua Monteiro Lobato, Cidade Universitária "Zeferino Vaz" Barão Geraldo, 80-CEP 13083-862, Campinas, SP, Brazil
| |
Collapse
|
69
|
Renardy M, Prokopienko AJ, Maxwell JR, Flusberg DA, Makaryan S, Selimkhanov J, Vakilynejad M, Subramanian K, Wille L. A Quantitative Systems Pharmacology Model Describing the Cellular Kinetic-Pharmacodynamic Relationship for a Live Biotherapeutic Product to Support Microbiome Drug Development. Clin Pharmacol Ther 2023; 114:633-643. [PMID: 37218407 DOI: 10.1002/cpt.2952] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/30/2023] [Indexed: 05/24/2023]
Abstract
Live biotherapeutic products (LBPs) are human microbiome therapies showing promise in the clinic for a range of diseases and conditions. Describing the kinetics and behavior of LBPs poses a unique modeling challenge because, unlike traditional therapies, LBPs can expand, contract, and colonize the host digestive tract. Here, we present a novel cellular kinetic-pharmacodynamic quantitative systems pharmacology model of an LBP. The model describes bacterial growth and competition, vancomycin effects, binding and unbinding to the epithelial surface, and production and clearance of butyrate as a therapeutic metabolite. The model is calibrated and validated to published data from healthy volunteers. Using the model, we simulate the impact of treatment dose, frequency, and duration as well as vancomycin pretreatment on butyrate production. This model enables model-informed drug development and can be used for future microbiome therapies to inform decision making around antibiotic pretreatment, dose selection, loading dose, and dosing duration.
Collapse
Affiliation(s)
| | | | - Joseph R Maxwell
- Takeda Development Center Americas, Inc., Cambridge, Massachusetts, USA
| | | | | | | | - Majid Vakilynejad
- Takeda Development Center Americas, Inc., Cambridge, Massachusetts, USA
| | | | - Lucia Wille
- Takeda Development Center Americas, Inc., Cambridge, Massachusetts, USA
| |
Collapse
|
70
|
Yang M, Wang JH, Shin JH, Lee D, Lee SN, Seo JG, Shin JH, Nam YD, Kim H, Sun X. Pharmaceutical efficacy of novel human-origin Faecalibacterium prausnitzii strains on high-fat-diet-induced obesity and associated metabolic disorders in mice. Front Endocrinol (Lausanne) 2023; 14:1220044. [PMID: 37711887 PMCID: PMC10497875 DOI: 10.3389/fendo.2023.1220044] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/04/2023] [Indexed: 09/16/2023] Open
Abstract
INTRODUCTION Obesity and related metabolic issues are a growing global health concern. Recently, the discovery of new probiotics with anti-obesity properties has gained interest. METHODS In this study, four Faecalibacte-rium prausnitzii strains were isolated from healthy human feces and evaluated on a high-fat diet-induced mouse model for 12 weeks. RESULTS The F. prausnitzii strains reduced body weight gain, liver and fat weights, and calorie intake while improving lipid and glucose metabolism in the liver and adipose tissue, as evidenced by regulating lipid metabolism-associated gene expression, including ACC1, FAS, SREBP1c, leptin, and adiponectin. Moreover, the F. prausnitzii strains inhibited low-grade inflammation, restored gut integrity, and ameliorated hepatic function and insulin resistance. Interestingly, the F. prausnitzii strains modulated gut and neural hormone secretion and reduced appetite by affecting the gut-brain axis. Supplementation with F. prausnitzii strains noticeably changed the gut microbiota composition. DISCUSSION In summary, the novel isolated F. prausnitzii strains have therapeutic effects on obesity and associated metabolic disorders through modulation of the gut-brain axis. Additionally, the effectiveness of different strains might not be achieved through identical mechanisms. Therefore, the present findings provide a reliable clue for developing novel therapeutic probiotics against obesity and associated metabolic disorders.
Collapse
Affiliation(s)
- Meng Yang
- Department of Nephrology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, Goyang-si, Republic of Korea
| | - Jing-Hua Wang
- Institute of Bioscience & Integrative Medicine, Daejeon University, Daejeon, Republic of Korea
| | - Joo-Hyun Shin
- R&D Center, Enterobiome Inc., Goyang-si, Republic of Korea
| | - Dokyung Lee
- R&D Center, Enterobiome Inc., Goyang-si, Republic of Korea
| | - Sang-Nam Lee
- R&D Center, Enterobiome Inc., Goyang-si, Republic of Korea
| | - Jae-Gu Seo
- R&D Center, Enterobiome Inc., Goyang-si, Republic of Korea
| | - Ji-Hee Shin
- Research Group of Healthcare, Korea Food Research Institute, Wanju-gun, Republic of Korea
| | - Young-Do Nam
- Research Group of Healthcare, Korea Food Research Institute, Wanju-gun, Republic of Korea
| | - Hojun Kim
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, Goyang-si, Republic of Korea
| | - Xiaomin Sun
- Department of Nephrology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
71
|
Campagnoli LIM, Varesi A, Barbieri A, Marchesi N, Pascale A. Targeting the Gut-Eye Axis: An Emerging Strategy to Face Ocular Diseases. Int J Mol Sci 2023; 24:13338. [PMID: 37686143 PMCID: PMC10488056 DOI: 10.3390/ijms241713338] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/20/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023] Open
Abstract
The human microbiota refers to a large variety of microorganisms (bacteria, viruses, and fungi) that live in different human body sites, including the gut, oral cavity, skin, and eyes. In particular, the presence of an ocular surface microbiota with a crucial role in maintaining ocular surface homeostasis by preventing colonization from pathogen species has been recently demonstrated. Moreover, recent studies underline a potential association between gut microbiota (GM) and ocular health. In this respect, some evidence supports the existence of a gut-eye axis involved in the pathogenesis of several ocular diseases, including age-related macular degeneration, uveitis, diabetic retinopathy, dry eye, and glaucoma. Therefore, understanding the link between the GM and these ocular disorders might be useful for the development of new therapeutic approaches, such as probiotics, prebiotics, symbiotics, or faecal microbiota transplantation through which the GM could be modulated, thus allowing better management of these diseases.
Collapse
Affiliation(s)
| | - Angelica Varesi
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy;
| | - Annalisa Barbieri
- Department of Drug Sciences, Unit of Pharmacology, University of Pavia, 27100 Pavia, Italy; (A.B.); (N.M.)
| | - Nicoletta Marchesi
- Department of Drug Sciences, Unit of Pharmacology, University of Pavia, 27100 Pavia, Italy; (A.B.); (N.M.)
| | - Alessia Pascale
- Department of Drug Sciences, Unit of Pharmacology, University of Pavia, 27100 Pavia, Italy; (A.B.); (N.M.)
| |
Collapse
|
72
|
Kayama H, Takeda K. Emerging roles of host and microbial bioactive lipids in inflammatory bowel diseases. Eur J Immunol 2023; 53:e2249866. [PMID: 37191284 DOI: 10.1002/eji.202249866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/11/2023] [Accepted: 05/15/2023] [Indexed: 05/17/2023]
Abstract
The intestinal tract harbors diverse microorganisms, host- and microbiota-derived metabolites, and potentially harmful dietary antigens. The epithelial barrier separates the mucosa, where diverse immune cells exist, from the lumen to avoid excessive immune reactions against microbes and dietary antigens. Inflammatory bowel disease (IBD), such as ulcerative colitis and Crohn's disease, is characterized by a chronic and relapsing disorder of the gastrointestinal tract. Although the precise etiology of IBD is still largely unknown, accumulating evidence suggests that IBD is multifactorial, involving host genetics and microbiota. Alterations in the metabolomic profiles and microbial community are features of IBD. Advances in mass spectrometry-based lipidomic technologies enable the identification of changes in the composition of intestinal lipid species in IBD. Because lipids have a wide range of functions, including signal transduction and cell membrane formation, the dysregulation of lipid metabolism drastically affects the physiology of the host and microorganisms. Therefore, a better understanding of the intimate interactions of intestinal lipids with host cells that are implicated in the pathogenesis of intestinal inflammation might aid in the identification of novel biomarkers and therapeutic targets for IBD. This review summarizes the current knowledge on the mechanisms by which host and microbial lipids control and maintain intestinal health and diseases.
Collapse
Affiliation(s)
- Hisako Kayama
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- WPI, Osaka University, Suita, Osaka, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, Suita, Osaka, Japan
| | - Kiyoshi Takeda
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- WPI, Osaka University, Suita, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
- Center for Infection Disease Education and Research, Osaka University, Suita, Japan
| |
Collapse
|
73
|
Calzadilla N, Qazi A, Sharma A, Mongan K, Comiskey S, Manne J, Youkhana AG, Khanna S, Saksena S, Dudeja PK, Alrefai WA, Gill RK. Mucosal Metabolomic Signatures in Chronic Colitis: Novel Insights into the Pathophysiology of Inflammatory Bowel Disease. Metabolites 2023; 13:873. [PMID: 37512580 PMCID: PMC10386370 DOI: 10.3390/metabo13070873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Inflammatory bowel diseases (IBD) involve complex interactions among genetic factors, aberrant immune activation, and gut microbial dysbiosis. While metabolomic studies have focused on feces and serum, fewer investigations have examined the intestinal mucosa despite its crucial role in metabolite absorption and transport. The goals of this study were twofold: to test the hypothesis that gut microbial dysbiosis from chronic intestinal inflammation leads to mucosal metabolic alterations suitable for therapeutic targeting, and to address gaps in metabolomic studies of intestinal inflammation that have overlooked the mucosal metabolome. The chronic DSS colitis was induced for five weeks in 7-9-week-old wild-type C57BL/6J male mice followed by microbial profiling with targeted 16srRNA sequencing service. Mucosal metabolite measurements were performed by Metabolon (Morrisville, NC). The data were analyzed using the bioinformatic tools Pathview, MetOrigin, and Metaboanalyst. The novel findings demonstrated increases in several host- and microbe-derived purine, pyrimidine, endocannabinoid, and ceramide metabolites in colitis. Origin analysis revealed that microbial-related tryptophan metabolites kynurenine, anthranilate, 5-hydroxyindoleacetate, and C-glycosyltryptophan were significantly increased in colon mucosa during chronic inflammation and strongly correlated with disease activity. These findings offer new insights into the pathophysiology of IBD and provide novel potential targets for microbial-based therapeutics.
Collapse
Affiliation(s)
- Nathan Calzadilla
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Aisha Qazi
- Division of Gastroenterology & Hepatology, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Anchal Sharma
- Division of Gastroenterology & Hepatology, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Kai Mongan
- Division of Gastroenterology & Hepatology, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Shane Comiskey
- Division of Gastroenterology & Hepatology, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Jahnavi Manne
- Division of Gastroenterology & Hepatology, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Alvin G Youkhana
- Division of Gastroenterology & Hepatology, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Sonam Khanna
- Division of Gastroenterology & Hepatology, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Seema Saksena
- Division of Gastroenterology & Hepatology, University of Illinois Chicago, Chicago, IL 60612, USA
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Pradeep K Dudeja
- Division of Gastroenterology & Hepatology, University of Illinois Chicago, Chicago, IL 60612, USA
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Waddah A Alrefai
- Division of Gastroenterology & Hepatology, University of Illinois Chicago, Chicago, IL 60612, USA
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Ravinder K Gill
- Division of Gastroenterology & Hepatology, University of Illinois Chicago, Chicago, IL 60612, USA
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
74
|
Banzragch M, Sanli K, Stensvold CR, Kurt O, Ari S. Metabarcoding of colonic cleansing fluid reveals unique bacterial members of mucosal microbiota associated with Inflammatory Bowel Disease. Scand J Gastroenterol 2023; 58:1253-1263. [PMID: 37337895 DOI: 10.1080/00365521.2023.2223708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/27/2023] [Accepted: 06/06/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND Inflammatory Bowel Disease (IBD) is a group of chronic idiopathic inflammatory diseases of the gastrointestinal (GI) tract associated with the dysbiosis of gut microbiota. Metabarcoding-based profiling of the gut microbiota of IBD patients is generally based on the stool samples collected from individual patients which rarely represent the mucosa-associated microbiota. The ideal sampling strategy for routine monitoring of the mucosal component of IBD has yet to be determined. METHODS We hereby compare the microbiota composition of the colonic cleansing fluid (CCF) collected during colonoscopy with stool samples from IBD patients. The relationship between IBD and gut microbiota was revealed through the application of the 16S rRNA amplicon sequencing-based metabarcoding approach. CCF and stool samples were collected from IBD patients with Crohn's disease and ulcerative colitis. RESULTS The present study shows significant differences in the microbial composition of CCF samples, presumably indicating changes in the mucosal microbiota of IBD patients as compared to the control group. Short-chain fatty acid-producing bacteria under the family Lachnospiraceae, the actinobacterial genus Bifidobacterium, the proteobacterial Sutterella and Raoultella are found to contribute to the microbial dysbiosis of the mucosal flora in IBD patients. CONCLUSIONS CCF microbiota has the capacity to distinguish IBD patients from healthy controls and, thus, may constitute an alternative analysis strategy for the early diagnosis and disease progression in IBD biomarker research.
Collapse
Affiliation(s)
| | - Kemal Sanli
- Department of Molecular Biology and Genetics, Istanbul University, Istanbul, Turkey
- Life Sciences, TUBITAK Marmara Research Center, Kocaeli, Turkey
| | - Christen Rune Stensvold
- Department of Microbiology and Infection Control, Statens Serum Institute, Copenhagen, Denmark
| | - Ozgur Kurt
- Department of Medical Microbiology, School of Medicine, Acıbadem Mehmet Ali Aydınlar University, Istanbul, Turkey
| | - Sule Ari
- Department of Molecular Biology and Genetics, Istanbul University, Istanbul, Turkey
| |
Collapse
|
75
|
Martín-Adrados B, Wculek SK, Fernández-Bravo S, Torres-Ruiz R, Valle-Noguera A, Gomez-Sánchez MJ, Hernández-Walias JC, Ferreira FM, Corraliza AM, Sancho D, Esteban V, Rodriguez-Perales S, Cruz-Adalia A, Nakaya HI, Salas A, Bernardo D, Campos-Martín Y, Martínez-Zamorano E, Muñoz-López D, Gómez del Moral M, Cubero FJ, Blumberg RS, Martínez-Naves E. Expression of HMGCS2 in intestinal epithelial cells is downregulated in inflammatory bowel disease associated with endoplasmic reticulum stress. Front Immunol 2023; 14:1185517. [PMID: 37457727 PMCID: PMC10348483 DOI: 10.3389/fimmu.2023.1185517] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction The Unfolded Protein Response, a mechanism triggered by the cell in response to Endoplasmic reticulum stress, is linked to inflammatory responses. Our aim was to identify novel Unfolded Protein Response-mechanisms that might be involved in triggering or perpetuating the inflammatory response carried out by the Intestinal Epithelial Cells in the context of Inflammatory Bowel Disease. Methods We analyzed the transcriptional profile of human Intestinal Epithelial Cell lines treated with an Endoplasmic Reticulum stress inducer (thapsigargin) and/or proinflammatory stimuli. Several genes were further analyzed in colonic biopsies from Ulcerative Colitis patients and healthy controls. Lastly, we generated Caco-2 cells lacking HMGCS2 by CRISPR Cas-9 and analyzed the functional implications of its absence in Intestinal Epithelial Cells. Results Exposure to a TLR ligand after thapsigargin treatment resulted in a powerful synergistic modulation of gene expression, which led us to identify new genes and pathways that could be involved in inflammatory responses linked to the Unfolded Protein Response. Key differentially expressed genes in the array also exhibited transcriptional alterations in colonic biopsies from active Ulcerative Colitis patients, including NKG2D ligands and the enzyme HMGCS2. Moreover, functional studies showed altered metabolic responses and epithelial barrier integrity in HMGCS2 deficient cell lines. Conclusion We have identified new genes and pathways that are regulated by the Unfolded Protein Response in the context of Inflammatory Bowel Disease including HMGCS2, a gene involved in the metabolism of Short Chain Fatty Acids that may have an important role in intestinal inflammation linked to Endoplasmic Reticulum stress and the resolution of the epithelial damage.
Collapse
Affiliation(s)
- Beatriz Martín-Adrados
- Department of Immunology, Ophthalmology and ORL, School of Medicine, Universidad Complutense of Madrid (UCM), Instituto de Investigación Sanitaria Hospital 12 de octubre (imas12), Madrid, Spain
| | - Stefanie K. Wculek
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Sergio Fernández-Bravo
- Department of Allergy and Immunology, IIS-Fundación Jiménez Díaz, Universidad Autónoma of Madrid, Madrid, Spain
| | - Raúl Torres-Ruiz
- Molecular Cytogenetics & Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), Melchor Fernández Almagro, Madrid, Spain
- Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Advanced Therapies Unit, Hematopoietic Innovative Therapies Division, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Ana Valle-Noguera
- Department of Immunology, Ophthalmology and ORL, School of Medicine, Universidad Complutense of Madrid (UCM), Instituto de Investigación Sanitaria Hospital 12 de octubre (imas12), Madrid, Spain
| | - Maria José Gomez-Sánchez
- Department of Immunology, Ophthalmology and ORL, School of Medicine, Universidad Complutense of Madrid (UCM), Instituto de Investigación Sanitaria Hospital 12 de octubre (imas12), Madrid, Spain
| | - José Carlos Hernández-Walias
- Department of Immunology, Ophthalmology and ORL, School of Medicine, Universidad Complutense of Madrid (UCM), Instituto de Investigación Sanitaria Hospital 12 de octubre (imas12), Madrid, Spain
| | | | - Ana María Corraliza
- Department of Gastroenterology, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Hospital Clinic of Barcelona, Centro de Investigación Biomédica en Red-Enfermedades Hepáticas y Digestivas (CIBER-EHD), Barcelona, Spain
| | - David Sancho
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Vanesa Esteban
- Department of Allergy and Immunology, IIS-Fundación Jiménez Díaz, Universidad Autónoma of Madrid, Madrid, Spain
| | - Sandra Rodriguez-Perales
- Molecular Cytogenetics & Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), Melchor Fernández Almagro, Madrid, Spain
| | - Aránzazu Cruz-Adalia
- Department of Immunology, Ophthalmology and ORL, School of Medicine, Universidad Complutense of Madrid (UCM), Instituto de Investigación Sanitaria Hospital 12 de octubre (imas12), Madrid, Spain
| | - Helder I. Nakaya
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo (USP), Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Azucena Salas
- Department of Gastroenterology, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Hospital Clinic of Barcelona, Centro de Investigación Biomédica en Red-Enfermedades Hepáticas y Digestivas (CIBER-EHD), Barcelona, Spain
| | - David Bernardo
- Gut Immunology Research Group, Instituto de Investigación del Hospital Universitario de la Princesa, Madrid, Spain
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM, Universidad de Valladolid-Consejo Superior de Investigaciones Científicas (CSIC)), Valladolid, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | | | | | - Diego Muñoz-López
- Department of Pathology, Hospital Universitario de Toledo, Toledo, Spain
| | - Manuel Gómez del Moral
- Department of Cellular Biology, School of Medicine, Universidad Complutense of Madrid (UCM), Madrid, Spain
| | - Francisco Javier Cubero
- Department of Immunology, Ophthalmology and ORL, School of Medicine, Universidad Complutense of Madrid (UCM), Instituto de Investigación Sanitaria Hospital 12 de octubre (imas12), Madrid, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermeddes Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Richard S. Blumberg
- Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Eduardo Martínez-Naves
- Department of Immunology, Ophthalmology and ORL, School of Medicine, Universidad Complutense of Madrid (UCM), Instituto de Investigación Sanitaria Hospital 12 de octubre (imas12), Madrid, Spain
| |
Collapse
|
76
|
Gao K, Yu X, Li F, Huang Y, Liu J, Liu S, Lu L, Yang R, Wang C. Qishen granules regulate intestinal microecology to improve cardiac function in rats with heart failure. Front Microbiol 2023; 14:1202768. [PMID: 37396388 PMCID: PMC10307979 DOI: 10.3389/fmicb.2023.1202768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 05/17/2023] [Indexed: 07/04/2023] Open
Abstract
Introduction Qishen Granule (QSG), a clinically approved traditional Chinese medicine, has been researched for treating heart failure (HF) for many years. However, the effect of QSG on intestinal microecology remains unconfirmed. Therefore, this study aimed to elucidate the possible mechanism of QSG regulating HF in rats based on intestinal microecological changes. Methods A rat model with HF induced by myocardial infarction was prepared by left coronary artery ligation. Cardiac functions were assessed by echocardiography, pathological changes in the heart and ileum by hematoxylin-eosin (HE) and Masson staining, mitochondrial ultrastructure by transmission electron microscope, and gut microbiota by 16S rRNA sequencing. Results QSG administration improved cardiac function, tightened cardiomyocytes alignment, decreased fibrous tissue and collagen deposition, and reduced inflammatory cell infiltration. Electron microscopic observation of mitochondria revealed that QSG could arrange mitochondria neatly, reduce swelling, and improve the structural integrity of the crest. Firmicutes were the dominant component in the model group, and QSG could significantly increase the abundance of Bacteroidetes and Prevotellaceae_NK3B31_group. Furthermore, QSG significantly reduced plasma lipopolysaccharide (LPS), improved intestinal structure, and recovered barrier protection function in rats with HF. Conclusion These results demonstrated that QSG was able to improve cardiac function by regulating intestinal microecology in rats with HF, suggesting promising therapeutic targets for HF.
Collapse
Affiliation(s)
- Kuo Gao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xue Yu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Fanghe Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yiran Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jiali Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Siqi Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Linghui Lu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Ran Yang
- Guanganmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chao Wang
- Zang-xiang Teaching and Research Department, The Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
77
|
Lu F, MacPherson CW, Tremblay J, Iskandar MM, Kubow S. Anthocyanin-rich blue potato meals protect against polychlorinated biphenyl-mediated disruption of short-chain fatty acid production and gut microbiota profiles in a simulated human digestion model. Front Nutr 2023; 10:1130841. [PMID: 37324735 PMCID: PMC10266533 DOI: 10.3389/fnut.2023.1130841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/09/2023] [Indexed: 06/17/2023] Open
Abstract
Background Polychlorinated biphenyls (PCBs) are ubiquitous environmental pollutants associated with a wide variety of adverse human health outcomes. PCB 126 and PCB 153 are among the most prevalent congeners associated with human exposure. Emerging studies have suggested that PCB exposure leads to lower gut microbial diversity although their effects on microbial production of health promoting short-chain fatty acids (SCFAs) has been scarcely studied. Blue potatoes are rich in anthocyanins (ACNs), which is a class of polyphenols that promote the growth of beneficial intestinal bacteria such as Bifidobacterium and Lactobacillus and increase the generation of SCFAs. A batch-culture, pH-controlled, stirred system containing human fecal microbial communities was utilized to assess whether human gut microbiota composition and SCFA production are affected by: (a) PCB 126 and PCB 153 exposure; and (b) ACN-rich digests in the presence and absence of the PCB congeners. Methods Anthocyanin-rich blue potato meals (11.03 g) were digested over 12 h with and without PCB 126 (0.5 mM) and PCB 153 (0.5 mM) using an in vitro simulated gut digestion model involving upper gastrointestinal digestion followed by metabolism by human fecal microbiota. Fecal digests were collected for analysis of gut microbial and SCFA profiles. Results Polychlorinated biphenyl-exposed fecal samples showed a significant (p < 0.05) decrease in species richness and a significantly (p < 0.05) different microbial community structure. PCB treatment was associated with an increased (p < 0.05) relative abundance of Akkermansia, Eggerthella, and Bifidobacterium and a decreased (p < 0.05) relative abundance of Veillonella, Streptococcus, and Holdemanella. ACN digests counteracted the altered abundances of Akkermansia and Bifidobacterium seen with the PCB treatment. PCB exposure was associated with a significant (p < 0.05) decrease in total SCFA and acetate concentrations. ACN digests were associated with significantly (p < 0.05) higher SCFA and acetate concentrations in the presence and absence of PCBs. Conclusion Human fecal matter exposed to PCB 126 and PCB 153 led to decreased abundance and altered gut microbiota profiles as well as lowered SCFA and acetate levels. Importantly, this study showed that prebiotic ACN-rich potatoes counteract PCB-mediated disruptions in human gut microbiota profiles and SCFA production.
Collapse
Affiliation(s)
- Fang Lu
- School of Human Nutrition, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | | | - Julien Tremblay
- Energy, Mining and Environment, National Research Council Canada, Montreal, QC, Canada
| | - Michèle M. Iskandar
- School of Human Nutrition, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Stan Kubow
- School of Human Nutrition, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| |
Collapse
|
78
|
Cui X, Wang X, Chang X, Bao L, Wu J, Tan Z, Chen J, Li J, Gao X, Ke P, Chen C. A new capacity of gut microbiota: Fermentation of engineered inorganic carbon nanomaterials into endogenous organic metabolites. Proc Natl Acad Sci U S A 2023; 120:e2218739120. [PMID: 37155879 PMCID: PMC10193999 DOI: 10.1073/pnas.2218739120] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 04/16/2023] [Indexed: 05/10/2023] Open
Abstract
Carbon-based nanomaterials (CNMs) have recently been found in humans raising a great concern over their adverse roles in the hosts. However, our knowledge of the in vivo behavior and fate of CNMs, especially their biological processes elicited by the gut microbiota, remains poor. Here, we uncovered the integration of CNMs (single-walled carbon nanotubes and graphene oxide) into the endogenous carbon flow through degradation and fermentation, mediated by the gut microbiota of mice using isotope tracing and gene sequencing. As a newly available carbon source for the gut microbiota, microbial fermentation leads to the incorporation of inorganic carbon from the CNMs into organic butyrate through the pyruvate pathway. Furthermore, the butyrate-producing bacteria are identified to show a preference for the CNMs as their favorable source, and excessive butyrate derived from microbial CNMs fermentation further impacts on the function (proliferation and differentiation) of intestinal stem cells in mouse and intestinal organoid models. Collectively, our results unlock the unknown fermentation processes of CNMs in the gut of hosts and underscore an urgent need for assessing the transformation of CNMs and their health risk via the gut-centric physiological and anatomical pathways.
Collapse
Affiliation(s)
- Xuejing Cui
- Chinese Academy of Sciences Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing100190, China
- The GBA National Institute for Nanotechnology Innovation, Guangzhou510700, Guangdong, China
| | - Xiaoyu Wang
- Chinese Academy of Sciences Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing100190, China
- School of Nano Science and Technology, University of Chinese Academy of Sciences, Beijing101400, China
| | - Xueling Chang
- Chinese Academy of Sciences Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Beijing100049, China
| | - Lin Bao
- Chinese Academy of Sciences Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing100190, China
- School of Nano Science and Technology, University of Chinese Academy of Sciences, Beijing101400, China
| | - Junguang Wu
- Chinese Academy of Sciences Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing100190, China
- School of Nano Science and Technology, University of Chinese Academy of Sciences, Beijing101400, China
| | - Zhiqiang Tan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
| | | | - Jiayang Li
- Chinese Academy of Sciences Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing100190, China
| | - Xingfa Gao
- Chinese Academy of Sciences Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing100190, China
| | - Pu Chun Ke
- The GBA National Institute for Nanotechnology Innovation, Guangzhou510700, Guangdong, China
| | - Chunying Chen
- Chinese Academy of Sciences Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing100190, China
- The GBA National Institute for Nanotechnology Innovation, Guangzhou510700, Guangdong, China
- School of Nano Science and Technology, University of Chinese Academy of Sciences, Beijing101400, China
| |
Collapse
|
79
|
Markelova M, Senina A, Khusnutdinova D, Siniagina M, Kupriyanova E, Shakirova G, Odintsova A, Abdulkhakov R, Kolesnikova I, Shagaleeva O, Lyamina S, Abdulkhakov S, Zakharzhevskaya N, Grigoryeva T. Association between Taxonomic Composition of Gut Microbiota and Host Single Nucleotide Polymorphisms in Crohn's Disease Patients from Russia. Int J Mol Sci 2023; 24:ijms24097998. [PMID: 37175705 PMCID: PMC10178390 DOI: 10.3390/ijms24097998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Crohn's disease (CD) is a chronic relapsing inflammatory bowel disease of unknown etiology. Genetic predisposition and dysbiotic gut microbiota are important factors in the pathogenesis of CD. In this study, we analyzed the taxonomic composition of the gut microbiota and genotypes of 24 single nucleotide polymorphisms (SNP) associated with the risk of CD. The studied cohorts included 96 CD patients and 24 healthy volunteers from Russia. Statistically significant differences were found in the allele frequencies for 8 SNPs and taxonomic composition of the gut microbiota in CD patients compared with controls. In addition, two types of gut microbiota communities were identified in CD patients. The main distinguishing driver of bacterial families for the first community type are Bacteroidaceae and unclassified members of the Clostridiales order, and the second type is characterized by increased abundance of Streptococcaceae and Enterobacteriaceae. Differences in the allele frequencies of the rs9858542 (BSN), rs3816769 (STAT3), and rs1793004 (NELL1) were also found between groups of CD patients with different types of microbiota communities. These findings confirm the complex multifactorial nature of CD.
Collapse
Affiliation(s)
- Maria Markelova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Anastasia Senina
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Dilyara Khusnutdinova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Maria Siniagina
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Elena Kupriyanova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | | | | | - Rustam Abdulkhakov
- Hospital Therapy Department, Kazan State Medical University, 420012 Kazan, Russia
| | - Irina Kolesnikova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Olga Shagaleeva
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Svetlana Lyamina
- Molecular Pathology of Digestion Laboratory, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
| | - Sayar Abdulkhakov
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Natalia Zakharzhevskaya
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Tatiana Grigoryeva
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| |
Collapse
|
80
|
Golpour F, Abbasi-Alaei M, Babaei F, Mirzababaei M, Parvardeh S, Mohammadi G, Nassiri-Asl M. Short chain fatty acids, a possible treatment option for autoimmune diseases. Biomed Pharmacother 2023; 163:114763. [PMID: 37105078 DOI: 10.1016/j.biopha.2023.114763] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/09/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023] Open
Abstract
Gut microbiota can interact with the immune system through its metabolites. Short-chain fatty acids (SCFAs), as one of the most abundant metabolites of the resident gut microbiota play an important role in this crosstalk. SCFAs (acetate, propionate, and butyrate) regulate nearly every type of immune cell in the gut's immune cell repertoire regarding their development and function. SCFAs work through several pathways to impose protection towards colonic health and against local or systemic inflammation. Additionally, SCFAs play a role in the regulation of immune or non-immune pathways that can slow the development of autoimmunity either systematically or in situ. The present study aims to summarize the current knowledge on the immunomodulatory roles of SCFAs and the association between the SCFAs and autoimmune disorders such as celiac disease (CD), inflammatory bowel disease (IBD), rheumatoid arthritis (RA), multiple sclerosis (MS), systemic lupus erythematosus (SLE), type 1 diabetes (T1D) and other immune-mediated diseases, uncovering a brand-new therapeutic possibility to prevent or treat autoimmunity.
Collapse
Affiliation(s)
- Faezeh Golpour
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrsa Abbasi-Alaei
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Babaei
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Mirzababaei
- Department of Clinical Biochemistry, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Siavash Parvardeh
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Mohammadi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran; Department of Molecular Medicine, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran.
| | - Marjan Nassiri-Asl
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
81
|
Pu W, Zhang H, Zhang T, Guo X, Wang X, Tang S. Inhibitory effects of Clostridium butyricum culture and supernatant on inflammatory colorectal cancer in mice. Front Immunol 2023; 14:1004756. [PMID: 37081884 PMCID: PMC10111964 DOI: 10.3389/fimmu.2023.1004756] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/16/2023] [Indexed: 04/07/2023] Open
Abstract
Clostridium butyricum (CB) is a spore-forming, gram-positive and obligate anaerobic rod bacterium. CB can modulate the composition of the gut microbiome and promote the growth of beneficial microbes in the intestine by generating short-chain fatty acids (SCFAs), which in turn protect against colitis and prevents the formation of inflammatory-associated colorectal cancer (CRC) by ameliorating colon inflammatory processes. Yet, it remains unclear whether the culture and supernatant of CB could directly influence inflammatory CRC in mice. In this study, azoxymethane (AOM)+dextran sodium sulphate (DSS) was used to induce CRC model in C57BL/6 mice. Next, the serum levels of inflammatory cytokines, including interleukin-6 (IL-6), interleukin-10 (IL-10), and cytokines TNF-α, were measured and the pathohistological examination of the large intestine was performed. Both CB culture and supernatant were found to have anti-inflammatory properties. Subsequently, Western blot and Real-Time Quantitative PCR (RT-qPCR) revealed that CB and supernatant regulate the NF-κB/p65 pathway to inhibit the development and progression of inflammatory CRC in AOM+DSS-treated mice, which could be due to the high levels of butyric acid in the supernatant.
Collapse
Affiliation(s)
- Wenfeng Pu
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
- Department of Gastroenterology, Nan Chong Central Hospital, the Second Affiliated Hospital of North Sichuan Medical College, Sichuan, Nanchong, China
| | - Hong Zhang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Sichuan, Nanchong, China
- Department of Gastroenterology, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Zhang
- Department of Gastroenterology, Nan Chong Central Hospital, the Second Affiliated Hospital of North Sichuan Medical College, Sichuan, Nanchong, China
| | - Xiaoguang Guo
- Department of Pathology, Nan Chong Central Hospital, the Second Affiliated Hospital of North Sichuan Medical College, Sichuan, Nanchong, China
| | - Xiaoqing Wang
- Department of Nucler Medicine, Nan Chong Central Hospital, the Second Affiliated Hospital of North Sichuan Medical College, Sichuan, Nanchong, China
| | - Shaohui Tang
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
- *Correspondence: Shaohui Tang,
| |
Collapse
|
82
|
Singh S, Sharma P, Sarma DK, Kumawat M, Tiwari R, Verma V, Nagpal R, Kumar M. Implication of Obesity and Gut Microbiome Dysbiosis in the Etiology of Colorectal Cancer. Cancers (Basel) 2023; 15:1913. [PMID: 36980799 PMCID: PMC10047102 DOI: 10.3390/cancers15061913] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/12/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
The complexity and variety of gut microbiomes within and among individuals have been extensively studied in recent years in connection to human health and diseases. Our growing understanding of the bidirectional communication between metabolic diseases and the gut microbiome has also highlighted the significance of gut microbiome dysbiosis in the genesis and development of obesity-related cancers. Therefore, it is crucial to comprehend the possible role of the gut microbiota in the crosstalk between obesity and colorectal cancer (CRC). Through the induction of gut microbial dysbiosis, gut epithelial barrier impairment, metabolomic dysregulation, chronic inflammation, or dysregulation in energy harvesting, obesity may promote the development of colorectal tumors. It is well known that strategies for cancer prevention and treatment are most effective when combined with a healthy diet, physical activity, and active lifestyle choices. Recent studies also suggest that an improved understanding of the complex linkages between the gut microbiome and various cancers as well as metabolic diseases can potentially improve cancer treatments and overall outcomes. In this context, we herein review and summarize the clinical and experimental evidence supporting the functional role of the gut microbiome in the pathogenesis and progression of CRC concerning obesity and its metabolic correlates, which may pave the way for the development of novel prognostic tools for CRC prevention. Therapeutic approaches for restoring the microbiome homeostasis in conjunction with cancer treatments are also discussed herein.
Collapse
Affiliation(s)
- Samradhi Singh
- Indian Council of Medical Research-National Institute for Research in Environmental Health, Bhopal 462030, India
| | - Poonam Sharma
- Indian Council of Medical Research-National Institute for Research in Environmental Health, Bhopal 462030, India
| | - Devojit Kumar Sarma
- Indian Council of Medical Research-National Institute for Research in Environmental Health, Bhopal 462030, India
| | - Manoj Kumawat
- Indian Council of Medical Research-National Institute for Research in Environmental Health, Bhopal 462030, India
| | - Rajnarayan Tiwari
- Indian Council of Medical Research-National Institute for Research in Environmental Health, Bhopal 462030, India
| | - Vinod Verma
- Stem Cell Research Centre, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow 226014, India
| | - Ravinder Nagpal
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32302, USA
| | - Manoj Kumar
- Indian Council of Medical Research-National Institute for Research in Environmental Health, Bhopal 462030, India
| |
Collapse
|
83
|
Wu J, Guo W, Cui S, Tang X, Zhang Q, Lu W, Jin Y, Zhao J, Mao B, Chen W. Broccoli seed extract rich in polysaccharides and glucoraphanin ameliorates DSS-induced colitis via intestinal barrier protection and gut microbiota modulation in mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1749-1760. [PMID: 36495024 DOI: 10.1002/jsfa.12382] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 11/05/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Broccoli has received widespread attention because of its anti-inflammatory and antioxidant effects. The present study aimed to explore the composition of broccoli seed extract (BSE) and its effect on colitis induced by dextran sulfate sodium (DSS). RESULTS BSE mainly comprises glucoraphanin and polysaccharides composed of arabinose, galactose, glucose and mannose. Animal experiments suggested that BSE intervention effectively reversed body weight loss, suppressed the levels of proinflammatory interleukin-6, tumor necrosis factor-α and interleukin-1β, and elevated the levels of anti-inflammatory interleukin-10 and the activities of superoxide dismutase and glutathione in DSS-induced colitis mice. According to histopathologic and immunohistochemical analysis of colon tissue, BSE intervention may repair the intestinal barrier by upregulating mRNA levels and the expression of tight junction proteins (claudin-1, occludin and zonula occludens-1). Gas chromatography-mass spectrometry (MS) analysis demonstrated that cecal short-chain fatty acids in mice with BSE administration were significantly increased compared with the model group. Sulforaphane and sulforaphane-N-acetylcysteine were only detected in BSE group mice by ultra-performance liquid chromatography-MS analysis. In addition, BSE intervention evidently increased the abundance of Alistipeds, Coriobacteriaceae UCG-002 and Bifidobacterium and decreased the abundance of Escheichia-Shinella, Lachnospiraceae others, Parabacteroides, Ruminococcaceae others and Turicibacter, which possibly promoted carbohydrate metabolism and short-chain fatty acid production. CONCLUSION The present study aimed to elucidate the effect of BSE on colitis and found that BSE, as a novel food ingredient, has great potential for the improvement of colitis. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiaying Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Weiling Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Yan Jin
- The Affiliated Wuxi Second People's Hospital of Nanjing Medical University, Wuxi, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| |
Collapse
|
84
|
Basal Diet Fed to Recipient Mice Was the Driving Factor for Colitis and Colon Tumorigenesis, despite Fecal Microbiota Transfer from Mice with Severe or Mild Disease. Nutrients 2023; 15:nu15061338. [PMID: 36986068 PMCID: PMC10052649 DOI: 10.3390/nu15061338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Consumption of the total Western diet (TWD) in mice has been shown to increase gut inflammation, promote colon tumorigenesis, and alter fecal microbiome composition when compared to mice fed a healthy diet, i.e., AIN93G (AIN). However, it is unclear whether the gut microbiome contributes directly to colitis-associated CRC in this model. The objective of this study was to determine whether dynamic fecal microbiota transfer (FMT) from donor mice fed either the AIN basal diet or the TWD would alter colitis symptoms or colitis-associated CRC in recipient mice, which were fed either the AIN diet or the TWD, using a 2 × 2 factorial experiment design. Time-matched FMT from the donor mice fed the TWD did not significantly enhance symptoms of colitis, colon epithelial inflammation, mucosal injury, or colon tumor burden in the recipient mice fed the AIN diet. Conversely, FMT from the AIN-fed donors did not impart a protective effect on the recipient mice fed the TWD. Likewise, the composition of fecal microbiomes of the recipient mice was also affected to a much greater extent by the diet they consumed than by the source of FMT. In summary, FMT from the donor mice fed either basal diet with differing colitis or tumor outcomes did not shift colitis symptoms or colon tumorigenesis in the recipient mice, regardless of the basal diet they consumed. These observations suggest that the gut microbiome may not contribute directly to the development of disease in this animal model.
Collapse
|
85
|
Armstrong H, Rahbari M, Park H, Sharon D, Thiesen A, Hotte N, Sun N, Syed H, Abofayed H, Wang W, Madsen K, Wine E, Mason A. Mouse mammary tumor virus is implicated in severity of colitis and dysbiosis in the IL-10 -/- mouse model of inflammatory bowel disease. MICROBIOME 2023; 11:39. [PMID: 36869359 PMCID: PMC9983191 DOI: 10.1186/s40168-023-01483-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Following viral infection, genetically manipulated mice lacking immunoregulatory function may develop colitis and dysbiosis in a strain-specific fashion that serves as a model for inflammatory bowel disease (IBD). We found that one such model of spontaneous colitis, the interleukin (IL)-10 knockout (IL-10-/-) model derived from the SvEv mouse, had evidence of increased Mouse mammary tumor virus (MMTV) viral RNA expression compared to the SvEv wild type. MMTV is endemic in several mouse strains as an endogenously encoded Betaretrovirus that is passaged as an exogenous agent in breast milk. As MMTV requires a viral superantigen to replicate in the gut-associated lymphoid tissue prior to the development of systemic infection, we evaluated whether MMTV may contribute to the development of colitis in the IL-10-/- model. RESULTS Viral preparations extracted from IL-10-/- weanling stomachs revealed augmented MMTV load compared to the SvEv wild type. Illumina sequencing of the viral genome revealed that the two largest contigs shared 96.4-97.3% identity with the mtv-1 endogenous loci and the MMTV(HeJ) exogenous virus from the C3H mouse. The MMTV sag gene cloned from IL-10-/- spleen encoded the MTV-9 superantigen that preferentially activates T-cell receptor Vβ-12 subsets, which were expanded in the IL-10-/- versus the SvEv colon. Evidence of MMTV cellular immune responses to MMTV Gag peptides was observed in the IL-10-/- splenocytes with amplified interferon-γ production versus the SvEv wild type. To address the hypothesis that MMTV may contribute to colitis, we used HIV reverse transcriptase inhibitors, tenofovir and emtricitabine, and the HIV protease inhibitor, lopinavir boosted with ritonavir, for 12-week treatment versus placebo. The combination antiretroviral therapy with known activity against MMTV was associated with reduced colonic MMTV RNA and improved histological score in IL-10-/- mice, as well as diminished secretion of pro-inflammatory cytokines and modulation of the microbiome associated with colitis. CONCLUSIONS This study suggests that immunogenetically manipulated mice with deletion of IL-10 may have reduced capacity to contain MMTV infection in a mouse-strain-specific manner, and the antiviral inflammatory responses may contribute to the complexity of IBD with the development of colitis and dysbiosis. Video Abstract.
Collapse
Affiliation(s)
- Heather Armstrong
- Center of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, Canada
- Department of Internal Medicine, University of Manitoba, Winnipeg, Canada
| | - Mandana Rahbari
- Center of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, Canada
- Department of Medicine, University of Alberta, Edmonton, Canada
| | | | - David Sharon
- Center of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, Canada
- Department of Medicine, University of Alberta, Edmonton, Canada
| | - Aducio Thiesen
- Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Canada
| | - Naomi Hotte
- Center of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, Canada
- Department of Medicine, University of Alberta, Edmonton, Canada
| | - Ning Sun
- Center of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, Canada
- Department of Medicine, University of Alberta, Edmonton, Canada
- Li Ka Shing Institute for Virology, University of Alberta, Edmonton, Canada
| | - Hussain Syed
- Center of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, Canada
- Department of Medicine, University of Alberta, Edmonton, Canada
- Li Ka Shing Institute for Virology, University of Alberta, Edmonton, Canada
| | - Hiatem Abofayed
- Center of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, Canada
- Department of Medicine, University of Alberta, Edmonton, Canada
- Li Ka Shing Institute for Virology, University of Alberta, Edmonton, Canada
| | - Weiwei Wang
- Center of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, Canada
- Department of Medicine, University of Alberta, Edmonton, Canada
| | - Karen Madsen
- Center of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, Canada
- Department of Medicine, University of Alberta, Edmonton, Canada
| | - Eytan Wine
- Center of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, Canada
- Department of Physiology, University of Alberta, Edmonton, Canada
- Department of Pediatrics, University of Alberta, Edmonton, Canada
| | - Andrew Mason
- Center of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, Canada.
- Department of Medicine, University of Alberta, Edmonton, Canada.
- Li Ka Shing Institute for Virology, University of Alberta, Edmonton, Canada.
- Division of Gastroenterology, University of Alberta, Edmonton, AB, T6G 2E1, Canada.
| |
Collapse
|
86
|
Hsu C, Ghannoum M, Cominelli F, Martino LD. Mycobiome and Inflammatory Bowel Disease: Role in Disease Pathogenesis, Current Approaches and Novel Nutritional-based Therapies. Inflamm Bowel Dis 2023; 29:470-479. [PMID: 35851921 PMCID: PMC9977251 DOI: 10.1093/ibd/izac156] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Indexed: 12/09/2022]
Abstract
Inflammatory bowel disease (IBD), a disorder characterized by chronic inflammation of the gastrointestinal (GI) tract and a range of adverse health effects including diarrhea, abdominal pain, vomiting, and bloody stools, affects nearly 3.1 million genetically susceptible adults in the United States today. Although the etiology of IBD remains unclear, genetics, stress, diet, and gut microbiota dysbiosis- especially in immunocompromised individuals- have been identified as possible causes of disease. Although previous research has largely focused on the role of bacteria in IBD pathogenesis, recently observed alterations of fungal load and biodiversity in the GI tract of afflicted individuals suggest interkingdom interactions amongst different gut microbial communities, particularly between bacteria and fungi. These discoveries point to the potential utilization of treatment approaches such as antibiotics, antifungals, probiotics, and postbiotics that target both bacteria and fungi in managing IBD. In this review, we discuss the impact of specific fungi on disease pathogenesis, with a focus on the highly virulent genus Candida and how the presence of certain co-enzymes impacts its virulence. In addition, we evaluate current gut microbiome-based therapeutic approaches with the intention of better understanding the mechanisms behind novel therapies.
Collapse
Affiliation(s)
- Caitlyn Hsu
- Case Digestive Health Research Institute, Case Western University School of Medicine, Cleveland, Ohio, 44106, USA
| | - Mahmoud Ghannoum
- Center for Medical Mycology and Integrated Microbiome Core, Department of Dermatology, Case Western Reserve University, and University Hospitals Cleveland Medical Center, Cleveland, Ohio, 44106, USA
| | - Fabio Cominelli
- Case Digestive Health Research Institute, Case Western University School of Medicine, Cleveland, Ohio, 44106, USA
- Department of Medicine, Case Western University School of Medicine, Cleveland, Ohio, 44106, USA
- Department of Pathology, Case Western University School of Medicine, Cleveland, Ohio, 44106, USA
| | - Luca Di Martino
- Case Digestive Health Research Institute, Case Western University School of Medicine, Cleveland, Ohio, 44106, USA
- Department of Medicine, Case Western University School of Medicine, Cleveland, Ohio, 44106, USA
| |
Collapse
|
87
|
Song M, Wang C, Yu M, Deng D, Liu Z, Cui Y, Tian Z, Rong T, Li Z, Ma X, Ti J. Mulberry leaf extract improves intestinal barrier function and displays beneficial effects on colonic microbiota and microbial metabolism in weaned piglets. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1561-1568. [PMID: 36214060 DOI: 10.1002/jsfa.12254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/20/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Mulberry leaf extract (MLE) extracted from mulberry leaves is rich in a variety of bioactive ingredients and can be used as feed additives of weaned piglets. The present study was conducted to evaluate the effects of dietary MLE supplementation on intestinal barrier function, colon microbial numbers and microbial metabolites of weaned piglets. RESULTS MLE supplementation increased the villus height and the villus height/crypt depth ratio in jejunum and ileum (P < 0.05), increased the mRNA expression of ZO-1, Claudin-1 and MUC-2 in the ileal mucosa (P < 0.05), and decreased the serum level of lipopolysaccharide (P < 0.01). Meanwhile, MLE reduced the mRNA expression of tumor necrosis factor-α and interleukin-1β (P < 0.05) and increased secretory immunoglobulin A level in the ileal mucosa (P < 0.05). In addition, MLE increased the numbers of beneficial bacteria Bifidobacterium and Lactobacillus (P < 0.05) and decreased the number of potential pathogenic bacteria Escherichia coli (P < 0.05) in the colon. Correspondingly, MLE supplementation reduced the pH value of colonic digesta (P < 0.05) and altered the microbial fermentation pattern of the colon by increasing the concentrations of microbial metabolites derived from carbohydrates fermentation such as lactate, acetate, butyrate and total short-chain fatty acids (P < 0.05), and decreasing the concentrations of microbial metabolites derived from amino acid fermentation such as p-cresol, skatole, spermine, histamine and tryptamine (P < 0.05). CONCLUSION MLE supplementation improved intestinal barrier function and displayed beneficial effects on colon microbes and microbial metabolism in weaned piglets. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Min Song
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou, China
| | - Chaopu Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou, China
| | - Miao Yu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou, China
| | - Dun Deng
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou, China
| | - Zhichang Liu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou, China
| | - Yiyang Cui
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou, China
| | - Zhimei Tian
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou, China
| | - Ting Rong
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou, China
| | - Zhenming Li
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou, China
| | - Xianyong Ma
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
| | - Junling Ti
- Guangdong Guanghui Agriculture and Animal Husbandry Co. Ltd., Shaoguan, China
| |
Collapse
|
88
|
Zhang Y, Sun Y, Liu Y, Liu J, Sun J, Bai Y, Fan B, Lu C, Wang F. Polygonum sibiricum polysaccharides alleviate chronic unpredictable mild stress-induced depressive-like behaviors by regulating the gut microbiota composition and SCFAs levels. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
89
|
Al-Amrah H, Saadah OI, Mosli M, Annese V, Al-Hindi R, Edris S, Alshehri D, Alatawi H, Alatawy M, Bahieldin A. Composition of the gut microbiota in patients with inflammatory bowel disease in Saudi Arabia: A pilot study. Saudi J Gastroenterol 2023; 29:102-110. [PMID: 36695274 DOI: 10.4103/sjg.sjg_368_22] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
CONCLUSIONS The results of this study provide an overview of the variations in microbiota diversity present in Saudi IBD patients compared to healthy controls. RESULTS The key finding was three negative bacterial biomarkers, Paraprevotellaceae, the Muribaculaceae families of Bacteroidetes phylum, and the Leuconostocaceae family of Firmicutes phylum, which had a higher relative abundance in healthy individuals compared to IBD patients. It was also found that primary microbiota signatures at certain genera and species levels, including Prevotella copri, Bifidobacterium adolescentis, Ruminococcus callidus, Coprococcus sp., Ruminococcus gnavus, Dorea formicigenerans, Leuconostoc, Dialister, Catenibacterium, Eubacterium biforme, and Lactobacillus mucosae, were absent in almost all IBD patients, while Veillonella dispar was absent in all healthy individuals. METHODS After obtaining an informed consent, fecal samples were collected from 11 participants with IBD (patients) and 10 healthy individuals (controls). The bacterial components of the microbial population were identified by next-generation sequencing of partial 16S rRNA. Statistically significant dissimilarities were observed between samples for all metrics. BACKGROUND Inflammatory bowel disease (IBD) is a chronic intestinal inflammatory condition attributed to a complex interaction between imbalances in the gut microbiome, environmental conditions, and a deregulated immune response. The aim of the study was to investigate the composition of the gut microbiome of Saudi patients with IBD.
Collapse
Affiliation(s)
- Hadba Al-Amrah
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Omar I Saadah
- Department of Pediatrics, Faculty of Medicine; Department of Inflammatory Bowel Disease Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mahmoud Mosli
- Department of Inflammatory Bowel Disease Research Group; Department of Internal Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Vito Annese
- Fakeeh University Hospital, Dubai, United Arab Emirates
| | - Rashad Al-Hindi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sherif Edris
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University; Princess Al Jawhara Albrahim Centre of Excellence in Research of Hereditary Disorders (PACER-HD), King Abdulaziz University, Jeddah, Saudi Arabia; Department of Genetics, Ain Shams University, Cairo, Egypt; Al Borg Medical Laboratories, Al Borg Diagnostics, Jeddah, Saudi Arabia
| | - Dikhnah Alshehri
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah; Department of Biological Sciences, College of Science, Univesity of Tabuk, Tabuk, Saudi Arabia
| | - Hanan Alatawi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah; Department of Biological Sciences, College of Science, Univesity of Tabuk, Tabuk, Saudi Arabia
| | - Marfat Alatawy
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah; Department of Biological Sciences, College of Science, Univesity of Tabuk, Tabuk, Saudi Arabia
| | - Ahmad Bahieldin
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Genetics, Ain Shams University, Cairo, Egypt
| |
Collapse
|
90
|
Liu T, Jia F, Guo Y, Wang Q, Zhang X, Chang F, Xie Y. Altered intestinal microbiota composition with epilepsy and concomitant diarrhea and potential indicator biomarkers in infants. Front Microbiol 2023; 13:1081591. [PMID: 36713168 PMCID: PMC9874329 DOI: 10.3389/fmicb.2022.1081591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/19/2022] [Indexed: 01/13/2023] Open
Abstract
Introduction The diversity and dysregulation of intestinal microbiota is related to the pathology of epilepsy. Gut microbiota plays an important role in epilepsy, and regulating intestinal microbiota through exogenous intervention can alleviate symptoms. However, there are no studies about the effects of epilepsy-related diarrhea on gut microbiota. Methods The diversity and dysregulation of intestinal microbiota is related to the pathology of epilepsy. Gut microbiota plays an important role in epilepsy, and regulating intestinal microbiota through exogenous intervention can alleviate symptoms. However, there are no studies about the effects of epilepsy-related diarrhea on gut microbiota. To evaluate changes in gut microbiota structure and composition in patients with epilepsy and associated diarrhea, the structure and composition of the fecal microbiota among patients with epilepsy (EP, 13 cases), epilepsy with diarrhea (ED, 13 cases), and probiotic treatments (PT, 13 cases), and healthy controls (CK, seven cases) were investigated and validated by utilizing high-throughput 16S rRNA sequencing. Results The results showed that the α-diversity indexes indicated that richness and phylogenetic diversity had no significant differences among groups. However, the variation of β-diversity indicated that the structure and composition of intestinal microbiota were significantly different among the CK, EP, ED, and PT groups (permutational multivariate analysis of variance, p-value = 0.001). Normalized stochasticity ratio and β-nearest taxon index indicated that stochastic mechanisms exerted increasing influence on community differences with epilepsy and associated diarrhea. ED microbiome alterations include increased Proteobacteria and decreased Actinobacteria and Firmicutes at the phylum level. Bifidobacterium was the core microbe in CK, EP, and PT, whereas it decreased significantly in ED. In contrast, Escherichia/Shigella was the core microbe in CK and ED, whereas it increased significantly in ED (Tukey's multiple comparisons test, adjusted p-value <0.05). The association network in CK has higher complexity and aggregation than in the other groups. The EP network indicated high connectivity density within each community and high sparsity among communities. The bacterial community network of the ED had a more compact local interconnection, which was in contrast to that of PT. The top 7 microbial amplicon sequence variant-based markers that were selected by machine learning to distinguish the groups of epilepsy, probiotic treatments, and healthy infants had stronger discrimination ability. In addition, ASVs_1 (Escherichia/Shigella) and ASVs_3 (Bifidobacterium) had the most importance in the recognition. Discussion Our research finally showed that infants with epilepsy, epilepsy with diarrhea, and probiotic treatments exhibit substantial alterations of intestinal microbiota structure and composition, and specific intestinal strains are altered according to different clinical phenotypes and can therefore be used as potential biomarkers for disease diagnosis.
Collapse
Affiliation(s)
- Tingting Liu
- Department of Pediatrics, Northwest Women’s and Children’s Hospital, Xi’an, China
| | - Fengan Jia
- Shaanxi Institute of Microbiology, Xi’an, China
| | - Ying Guo
- Department of Pediatrics, Northwest Women’s and Children’s Hospital, Xi’an, China
| | - Qi Wang
- Department of Clinical Laboratory, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xiaoge Zhang
- Department of Pediatrics, Northwest Women’s and Children’s Hospital, Xi’an, China
| | - Fan Chang
- Shaanxi Institute of Microbiology, Xi’an, China,*Correspondence: Fan Chang,
| | - Yun Xie
- Department of Clinical Laboratory, Northwest Women’s and Children’s Hospital, Xi’an, China,Yun Xie,
| |
Collapse
|
91
|
Shin SY, Kim Y, Kim WS, Moon JM, Lee KM, Jung SA, Park H, Huh EY, Kim BC, Lee SC, Choi CH. Compositional changes in fecal microbiota associated with clinical phenotypes and prognosis in Korean patients with inflammatory bowel disease. Intest Res 2023; 21:148-160. [PMID: 35692191 PMCID: PMC9911276 DOI: 10.5217/ir.2021.00168] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/10/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND/AIMS The fecal microbiota of Korean patients with inflammatory bowel disease (IBD) was investigated with respect to disease phenotypes and taxonomic biomarkers for diagnosis and prognosis of IBD. METHODS Fecal samples from 70 ulcerative colitis (UC) patients, 39 Crohn's disease (CD) patients, and 100 healthy control individuals (HC) were collected. The fecal samples were amplified via polymerase chain reaction and sequenced using Illumina MiSeq. The relationships between fecal bacteria and clinical phenotypes were analyzed using the EzBioCloud database and 16S microbiome pipeline. RESULTS The alpha-diversity of fecal bacteria was significantly lower in UC and CD (P<0.05) compared to that in HC. Bacterial community compositions in UC and CD were significantly different from that of HC according to Bray-Curtis dissimilarities, and there was also a difference between community composition in UC and CD (P=0.01). In UC, alpha-diversity was further decreased when the disease was more severe and the extent of disease was greater, and community composition significantly differed depending on the extent of the disease. We identified 9 biomarkers of severity and 6 biomarkers of the extent of UC. We also identified 5 biomarkers of active disease and 3 biomarkers of ileocolonic involvement in CD. Lachnospiraceae and Ruminococcus gnavus were biomarkers for better prognosis in CD. CONCLUSIONS The fecal microbiota profiles of IBD patients were different from those of HC, and several bacterial taxa may be used as biomarkers to determine disease phenotypes and prognosis. These data may also help discover new therapeutic targets for IBD.
Collapse
Affiliation(s)
- Seung Yong Shin
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| | - Young Kim
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| | - Won-Seok Kim
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| | - Jung Min Moon
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| | - Kang-Moon Lee
- Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon, Korea
| | - Sung-Ae Jung
- Department of Internal Medicine, Graduate Program in System Health Science and Engineering, Ewha Womans University College of Medicine, Seoul, Korea
| | - Hyesook Park
- Department of Preventive Medicine, Graduate Program in System Health Science and Engineering, Ewha Womans University College of Medicine, Seoul, Korea
| | - Eun Young Huh
- South Texas Center of Emerging Infectious Diseases (STCEID) and Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Byung Chang Kim
- Division of Gastroenterology, Center for Colorectal Cancer, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Soo Chan Lee
- South Texas Center of Emerging Infectious Diseases (STCEID) and Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX, USA,Co-Correspondence to Soo Chan Lee, South Texas Center of Emerging Infectious Diseases (STCEID), Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249, USA. Tel: +1-210-458-5398, E-mail:
| | - Chang Hwan Choi
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea,Correspondence to Chang Hwan Choi, Department of Internal Medicine, Chung-Ang University College of Medicine, 102 Heukseok-ro, Dongjak-gu, Seoul 06973, Korea. Tel: +82-2-6299-1418, Fax: +82-2-6299-2064, E-mail:
| | | |
Collapse
|
92
|
Upadhyay KG, Desai DC, Ashavaid TF, Dherai AJ. Microbiome and metabolome in inflammatory bowel disease. J Gastroenterol Hepatol 2023; 38:34-43. [PMID: 36287112 DOI: 10.1111/jgh.16043] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/19/2022] [Accepted: 10/23/2022] [Indexed: 01/19/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic gastrointestinal disease of unknown etiology, involving complex interactions between the gut microbiome and host immune response. The microbial dysbiosis is well documented in IBD and significantly influences the host metabolic pathways. Thus, a metabolomic fingerprint resulting from the influence of gut dysbiosis in IBD could aid in assessing the disease activity. PubMed, Medline, Science Direct, and Web of Science were searched for studies exploring the association between microbiome and metabolome in IBD patients in the last 5 years. Additionally, references of cited original articles and reviews were further assessed for relevant work. We provide a literature overview of the recent metabolomic studies performed on patients with IBD. The findings report alterations in the metabolite levels of these patients. We also discuss the gut dysbiosis observed in IBD and its influence on host metabolic pathways such as lipids, amino acids, short-chain fatty acids, and others. IBD, being a chronic idiopathic disease, requires routine monitoring. The available non-invasive markers have their limitations. The metabolite changes account for both dysbiosis and its influence on the host's immune response and metabolism. A metabolome approach would thus facilitate the identification of surrogate metabolite markers reflecting the disease activity.
Collapse
Affiliation(s)
- Khushboo G Upadhyay
- Department of Laboratory Medicine, P. D. Hinduja Hospital and Medical Research Centre, Mumbai, India
| | - Devendra C Desai
- Department of Gastroenterology, P. D. Hinduja Hospital and Medical Research Centre, Mumbai, India
| | - Tester F Ashavaid
- Department of Laboratory Medicine, P. D. Hinduja Hospital and Medical Research Centre, Mumbai, India
| | - Alpa J Dherai
- Department of Laboratory Medicine, P. D. Hinduja Hospital and Medical Research Centre, Mumbai, India
| |
Collapse
|
93
|
Peng J, Gong H, Lyu X, Liu Y, Li S, Tan S, Dong L, Zhang X. Characteristics of the fecal microbiome and metabolome in older patients with heart failure and sarcopenia. Front Cell Infect Microbiol 2023; 13:1127041. [PMID: 36909727 PMCID: PMC9998919 DOI: 10.3389/fcimb.2023.1127041] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/06/2023] [Indexed: 02/26/2023] Open
Abstract
Background Increasing evidence supports that gut microbiota plays an important role in the development of cardiovascular diseases. The prevalence of sarcopenia is increasing in patients with heart failure. Muscle wasting is an independent predictor of death in heart failure patients. Aims In this study, we aimed to explore the characteristics of gut microbiota and metabolites in heart failure patients with or without sarcopenia. Methods Fecal samples of 33 heart failure patients without sarcopenia, 29 heart failure patients with sarcopenia, and 15 controls were collected. The intestinal microbiota was analyzed using 16S rRNA sequencing and the metabolites were detected using the gas chromatography-mass spectrometry method. Results There were significant differences in the overall microbial community structure and diversity between control and heart failure patients with or without sarcopenia. However, no clear clustering of samples was observed in heart failure with and without sarcopenia patients. Several bacterial, particularly Nocardiaceae, Pseudonocardiaceae, Alphaproteobacteria, and Slackia were significantly enriched in the heart failure patients without sarcopenia, while Synergistetes was more abundant in the heart failure patients with sarcopenia. Isobutyric acid, isovaleric acid, and valeric acid were lower in heart failure patients with sarcopenia than that without sarcopenia but lacked significance. Conclusions This study demonstrates that there are differences in the gut microbiota between control individuals and heart failure patients with or without sarcopenia. Modulating the gut microbiota may be a new target for the prevention and treatment of sarcopenia in heart failure patients.
Collapse
Affiliation(s)
- Jieting Peng
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hui Gong
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xing Lyu
- Laboratory of Clinical Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yang Liu
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shizhen Li
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shengyu Tan
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lini Dong
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiangyu Zhang
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- *Correspondence: Xiangyu Zhang,
| |
Collapse
|
94
|
Wang R, Cao S, Bashir MEH, Hesser LA, Su Y, Hong SMC, Thompson A, Culleen E, Sabados M, Dylla NP, Campbell E, Bao R, Nonnecke EB, Bevins CL, Wilson DS, Hubbell JA, Nagler CR. Treatment of peanut allergy and colitis in mice via the intestinal release of butyrate from polymeric micelles. Nat Biomed Eng 2023; 7:38-55. [PMID: 36550307 PMCID: PMC9870785 DOI: 10.1038/s41551-022-00972-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 10/26/2022] [Indexed: 12/24/2022]
Abstract
The microbiome modulates host immunity and aids the maintenance of tolerance in the gut, where microbial and food-derived antigens are abundant. Yet modern dietary factors and the excessive use of antibiotics have contributed to the rising incidence of food allergies, inflammatory bowel disease and other non-communicable chronic diseases associated with the depletion of beneficial taxa, including butyrate-producing Clostridia. Here we show that intragastrically delivered neutral and negatively charged polymeric micelles releasing butyrate in different regions of the intestinal tract restore barrier-protective responses in mouse models of colitis and of peanut allergy. Treatment with the butyrate-releasing micelles increased the abundance of butyrate-producing taxa in Clostridium cluster XIVa, protected mice from an anaphylactic reaction to a peanut challenge and reduced disease severity in a T-cell-transfer model of colitis. By restoring microbial and mucosal homoeostasis, butyrate-releasing micelles may function as an antigen-agnostic approach for the treatment of allergic and inflammatory diseases.
Collapse
Affiliation(s)
- Ruyi Wang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - Shijie Cao
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | | | - Lauren A Hesser
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Yanlin Su
- Biological Sciences Division, University of Chicago, Chicago, IL, USA
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Sung Min Choi Hong
- Biological Sciences Division, University of Chicago, Chicago, IL, USA
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Andrew Thompson
- Biological Sciences Division, University of Chicago, Chicago, IL, USA
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Elliot Culleen
- Biological Sciences Division, University of Chicago, Chicago, IL, USA
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Matthew Sabados
- Biological Sciences Division, University of Chicago, Chicago, IL, USA
| | - Nicholas P Dylla
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | - Evelyn Campbell
- Biological Sciences Division, University of Chicago, Chicago, IL, USA
- Committee on Microbiology, University of Chicago, Chicago, IL, USA
| | - Riyue Bao
- Department of Pediatrics, University of Chicago, Chicago, IL, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Eric B Nonnecke
- Department of Microbiology and Immunology, School of Medicine, University of California, Davis, CA, USA
| | - Charles L Bevins
- Department of Microbiology and Immunology, School of Medicine, University of California, Davis, CA, USA
| | - D Scott Wilson
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jeffrey A Hubbell
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA.
- Committee on Immunology, University of Chicago, Chicago, IL, USA.
- Committee on Cancer Biology, University of Chicago, Chicago, IL, USA.
| | - Cathryn R Nagler
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA.
- Biological Sciences Division, University of Chicago, Chicago, IL, USA.
- Department of Pathology, University of Chicago, Chicago, IL, USA.
- Committee on Immunology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
95
|
Wang D, Jia H, Du Y, Liu Y. Effects of sodium humate and glutamine on growth performance, diarrhoea incidence, blood parameters, and faecal microflora of pre-weaned calves. J Anim Physiol Anim Nutr (Berl) 2023; 107:103-112. [PMID: 35315139 DOI: 10.1111/jpn.13703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 01/10/2023]
Abstract
This study aimed to evaluate the effects of administration of sodium humate (HNa) and glutamine (Gln) on growth performance, diarrhoea incidence, serum parameters, and faecal microflora of pre-weaned Holstein calves. In a 57-day experiment, 28 healthy newborn female calves were randomly allocated to four treatment groups: (1) CON (control); (2) HNa (basal diet + 5% HNa); (3) Gln (basal diet + 1% Gln); and (4) HNa + Gln (basal diet + 5% HNa + 1% Gln). The calves in the CON group were fed with basal diet. HNa and Gln were alone or together mixed with milk (Days 1-20) or milk replacer (Days 21-57) and orally administered to each calf. The results indicated that calves combined supplemented with HNa and Gln had a higher average daily gain at 0-21 days, 21-57 days, and 0-57 days, and starter intake at 21-57 days and 0-57 days (p < 0.05). Compared with the CON group, calves in HNa, Gln, and HNa + Gln groups showed lower faecal scores and diarrhoea incidence at 0-21 days and 0-57 days (p < 0.05). Combined administration of HNa and Gln increased the concentration of IgG and IgA, activities of glutathione peroxidase (GSH-Px) and total antioxidant capacity (T-AOC) but decreased the concentration of diamine oxidase (DAO), D-lactic acid (D-lac), TNF-α, and malondialdehyde (MDA) in the serum of calves compared with the CON group throughout the entire period (p < 0.05). Furthermore, the abundances of Bifidobacterium and Lactobacillus were increased but the Escherichia coli was decreased in faecal grab samples of HNa + Gln group calves in comparison with the CON group (p < 0.05). In conclusion, combined administration of HNa and Gln effectively improved the growth performance, antioxidant and immune status, and intestinal beneficial bacteria, and further reduced the diarrhoea incidence of the pre-weaned calves.
Collapse
Affiliation(s)
- Dong Wang
- Department of Veterinary Medicine, Heilongjiang Key Laboratory of Experimental Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, P. R. China
| | - Haotian Jia
- Department of Veterinary Medicine, Heilongjiang Key Laboratory of Experimental Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, P. R. China
| | - Yuanyi Du
- Department of Veterinary Medicine, Heilongjiang Key Laboratory of Experimental Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, P. R. China
| | - Yun Liu
- Department of Veterinary Medicine, Heilongjiang Key Laboratory of Experimental Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, P. R. China
| |
Collapse
|
96
|
Association between ustekinumab therapy and changes in specific anti-microbial response, serum biomarkers, and microbiota composition in patients with IBD: A pilot study. PLoS One 2022; 17:e0277576. [PMID: 36584073 PMCID: PMC9803183 DOI: 10.1371/journal.pone.0277576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/29/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Ustekinumab, is a new therapy for patients with IBD, especially for patients suffering from Crohn's disease (CD) who did not respond to anti-TNF treatment. To shed light on the longitudinal effect of ustekinumab on the immune system, we investigated the effect on skin and gut microbiota composition, specific immune response to commensals, and various serum biomarkers. METHODOLOGY/PRINCIPAL FINDINGS We recruited 11 patients with IBD who were monitored over 40 weeks of ustekinumab therapy and 39 healthy controls (HC). We found differences in the concentrations of serum levels of osteoprotegerin, TGF-β1, IL-33, and serum IgM antibodies against Lactobacillus plantarum between patients with IBD and HC. The levels of these biomarkers did not change in response to ustekinumab treatment or with disease improvement during the 40 weeks of observation. Additionally, we identified differences in stool abundance of uncultured Subdoligranulum, Faecalibacterium, and Bacteroides between patients with IBD and HC. CONCLUSION/SIGNIFICANCE In this preliminary study, we provide a unique overview of the longitudinal monitoring of fecal and skin microbial profiles as well as various serum biomarkers and humoral and cellular response to gut commensals in a small cohort of patients with IBD on ustekinumab therapy.
Collapse
|
97
|
Butucel E, Balta I, McCleery D, Marcu A, Stef D, Pet I, Callaway T, Stef L, Corcionivoschi N. The Prebiotic Effect of an Organic Acid Mixture on Faecalibacterium prausnitzii Metabolism and Its Anti-Pathogenic Role against Vibrio parahaemolyticus in Shrimp. BIOLOGY 2022; 12:biology12010057. [PMID: 36671749 PMCID: PMC9855566 DOI: 10.3390/biology12010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
Increasing the abundance of probiotic bacteria in the gut requires either direct dietary supplementation or the inclusion of feed additives able to support the growth of beneficial commensal bacteria. In crustaceans, the increased presence of probiotic-like bacteria in the gut, including of Faecalibacterium prausnitzii (F. prausnitzii), will guarantee a positive health status and a gut environment that will ensure enhanced performance. The aim of this study was to investigate if a mixture of organic acids, AuraAqua (Aq) can stimulate the growth and the anti-pathogenic efficacy of F. prausnitzii through a combination of in vitro and ex vivo models. The results showed that 0.5% Aq was able to improve the growth rate of F. prausnitzii in vitro and in an ex vivo shrimp gut model. Moreover, we were able to demonstrate that Aq increases butyrate production and cellulose degradation in culture or in the shrimp gut model. The growth-stimulating effect of Aq also led to an improved and anti-pathogenic effect against Vibrio parahaemolyticus in a co-culture experiment with shrimp gut primary epithelial cells (SGP). In conclusion, our work demonstrates that Aq can stimulate the growth of F. prausnitzii, increase the production of short-chain fatty acid (SCFA) butyrate, improve substrate digestion, and prevent V. parahaemolyticus invasion of SGP cells.
Collapse
Affiliation(s)
- Eugenia Butucel
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast BT4 3SD, Northern Ireland, UK
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, 300645 Timisoara, Romania
| | - Igori Balta
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast BT4 3SD, Northern Ireland, UK
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, 300645 Timisoara, Romania
| | - David McCleery
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, 300645 Timisoara, Romania
| | - Adela Marcu
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, 300645 Timisoara, Romania
| | - Ducu Stef
- Faculty of Food Engineering, University of Life Sciences King Mihai I from Timisoara, 300645 Timisoara, Romania
| | - Ioan Pet
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, 300645 Timisoara, Romania
| | - Todd Callaway
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA
| | - Lavinia Stef
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, 300645 Timisoara, Romania
- Correspondence: (L.S.); (N.C.)
| | - Nicolae Corcionivoschi
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast BT4 3SD, Northern Ireland, UK
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, 300645 Timisoara, Romania
- Correspondence: (L.S.); (N.C.)
| |
Collapse
|
98
|
Dietary Supplementation with Black Raspberries Altered the Gut Microbiome Composition in a Mouse Model of Colitis-Associated Colorectal Cancer, although with Differing Effects for a Healthy versus a Western Basal Diet. Nutrients 2022; 14:nu14245270. [PMID: 36558431 PMCID: PMC9786988 DOI: 10.3390/nu14245270] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 11/30/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022] Open
Abstract
Black raspberries (BRB) are rich in anthocyanins with purported anti-inflammatory properties. However, it is not known whether dietary supplementation would ameliorate Western-diet enhanced gut inflammation and colon tumorigenesis. We employed a mouse model of colitis-associated colorectal cancer (CAC) to determine the effects of dietary supplementation with 5 to 10% (w/w) whole, freeze-dried BRB in male C57BL/6J mice fed either a standard healthy diet (AIN93G) or the total Western diet (TWD). In a pilot study, BRB suppressed colitis and colon tumorigenesis while also shifting the composition of the fecal microbiome in favor of taxa with purported health benefits, including Bifidobacterium pseudolongum. In a follow-up experiment using a 2 × 2 factorial design with AIN and TWD basal diets with and without 10% (w/w) BRB, supplementation with BRB reduced tumor multiplicity and increased colon length, irrespective of the basal diet, but it did not apparently affect colitis symptoms, colon inflammation or mucosal injury based on histopathological findings. However, BRB intake increased alpha diversity, altered beta diversity and changed the relative abundance of Erysipelotrichaceae, Bifidobacteriaceae, Streptococcaceae, Rikenellaceae, Ruminococcaceae and Akkermansiaceae, among others, of the fecal microbiome. Notably, changes in microbiome profiles were inconsistent with respect to the basal diet consumed. Overall, these studies provide equivocal evidence for in vivo anti-inflammatory effects of BRB on colitis and colon tumorigenesis; yet, BRB supplementation led to dynamic changes in the fecal microbiome composition over the course of disease development.
Collapse
|
99
|
Bustamante CC, de Paula VB, Rabelo IP, Fernandes CC, Kishi LT, Canola PA, Lemos EGDM, Valadão CAA. Effects of Starch Overload and Cecal Buffering on Fecal Microbiota of Horses. Animals (Basel) 2022; 12:ani12233435. [PMID: 36496956 PMCID: PMC9737938 DOI: 10.3390/ani12233435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/25/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Starch overload in horses causes gastrointestinal and metabolic disorders that are associated with microbiota changes. Therefore, we identified the fecal microbiota and hypothesized that intracecal injection of alkaline solution (buffer; Mg(OH)2 + Al(OH)3) could stabilize these microbiota and clinical changes in horses submitted to corn starch overload. Ten crossbred horses (females and geldings) were allocated to group I (water−saline and starch−buffer treatments) and group II (water−buffer and starch−saline treatments). Clinical signs, gross analysis of the feces, and fecal microbiota were evaluated through 72 h (T0; T8; T12; T24; T48; T72). Corn starch or water were administrated by nasogastric tube at T0, and the buffer injected into the cecum at T8 in starch−buffer and water−buffer treatments. Starch overload reduced the richness (p < 0.001) and diversity (p = 0.001) of the fecal microbiota. However, the starch−buffer treatment showed greater increase in amylolytic bacteria (Bifidobacterium 0.0% to 5.6%; Lactobacillus 0.1% to 7.4%; p < 0.05) and decrease in fibrolytic bacteria (Lachnospiraceae 10.2% to 5.0%; Ruminococcaceae 11.7% to 4.2%; p < 0.05) than starch−saline treatment. Additionally, animals that received starch−buffer treatment showed more signs of abdominal discomfort and lameness associated with dysbiosis (amylolytic r > 0.5; fribolytic r < 0.1; p < 0.05), showing that cecal infusion of buffer did not prevent, but intensified intestinal disturbances and the risk of laminitis.
Collapse
Affiliation(s)
- Caio C. Bustamante
- Department of Veterinary Medicine and Surgery, School of Agricultural and Veterinary Sciences, UNESP-São Paulo State University, Jaboticabal 14884-900, SP, Brazil
| | - Vanessa B. de Paula
- Department of Veterinary Medicine and Surgery, School of Agricultural and Veterinary Sciences, UNESP-São Paulo State University, Jaboticabal 14884-900, SP, Brazil
| | - Isabela P. Rabelo
- Department of Veterinary Medicine and Surgery, School of Agricultural and Veterinary Sciences, UNESP-São Paulo State University, Jaboticabal 14884-900, SP, Brazil
| | - Camila C. Fernandes
- Department of Technology, Multiuse Sequencing Laboratory, School of Agricultural and Veterinary Sciences, UNESP-São Paulo State University, Jaboticabal 14884-900, SP, Brazil
| | - Luciano T. Kishi
- Department of Technology, Multiuse Sequencing Laboratory, School of Agricultural and Veterinary Sciences, UNESP-São Paulo State University, Jaboticabal 14884-900, SP, Brazil
| | - Paulo A. Canola
- Department of Veterinary Medicine and Surgery, School of Agricultural and Veterinary Sciences, UNESP-São Paulo State University, Jaboticabal 14884-900, SP, Brazil
| | - Eliana Gertrudes de M. Lemos
- Department of Technology, Biochemistry of Microorganisms and Plants Laboratory, School of Agricultural and Veterinary Sciences, UNESP-São Paulo State University, Jaboticabal 14884-900, SP, Brazil
| | - Carlos Augusto A. Valadão
- Department of Veterinary Medicine and Surgery, School of Agricultural and Veterinary Sciences, UNESP-São Paulo State University, Jaboticabal 14884-900, SP, Brazil
- Correspondence:
| |
Collapse
|
100
|
Chen S, Ren Z, Huo Y, Yang W, Peng L, Lv H, Nie L, Wei H, Wan C. Targeting the gut microbiota to investigate the mechanism of Lactiplantibacillus plantarum 1201 in negating colitis aggravated by a high-salt diet. Food Res Int 2022; 162:112010. [DOI: 10.1016/j.foodres.2022.112010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/29/2022]
|