51
|
Gahbauer S, Correy GJ, Schuller M, Ferla MP, Doruk YU, Rachman M, Wu T, Diolaiti M, Wang S, Neitz RJ, Fearon D, Radchenko D, Moroz Y, Irwin JJ, Renslo AR, Taylor JC, Gestwicki JE, von Delft F, Ashworth A, Ahel I, Shoichet BK, Fraser JS. Iterative computational design and crystallographic screening identifies potent inhibitors targeting the Nsp3 Macrodomain of SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.06.27.497816. [PMID: 35794891 PMCID: PMC9258288 DOI: 10.1101/2022.06.27.497816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The nonstructural protein 3 (NSP3) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) contains a conserved macrodomain enzyme (Mac1) that is critical for pathogenesis and lethality. While small molecule inhibitors of Mac1 have great therapeutic potential, at the outset of the COVID-19 pandemic there were no well-validated inhibitors for this protein nor, indeed, the macrodomain enzyme family, making this target a pharmacological orphan. Here, we report the structure-based discovery and development of several different chemical scaffolds exhibiting low- to sub-micromolar affinity for Mac1 through iterations of computer-aided design, structural characterization by ultra-high resolution protein crystallography, and binding evaluation. Potent scaffolds were designed with in silico fragment linkage and by ultra-large library docking of over 450 million molecules. Both techniques leverage the computational exploration of tangible chemical space and are applicable to other pharmacological orphans. Overall, 160 ligands in 119 different scaffolds were discovered, and 152 Mac1-ligand complex crystal structures were determined, typically to 1 Å resolution or better. Our analyses discovered selective and cell-permeable molecules, unexpected ligand-mediated protein dynamics within the active site, and key inhibitor motifs that will template future drug development against Mac1.
Collapse
Affiliation(s)
- Stefan Gahbauer
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Galen J. Correy
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Marion Schuller
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Matteo P. Ferla
- Wellcome Centre for Human Genetics, University of Oxford, Old Road Campus, Oxford OX3 7BN, UK
- National Institute for Health Research Oxford Biomedical Research Centre, Oxford, OX4 2PG, UK
| | - Yagmur Umay Doruk
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA
| | - Moira Rachman
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Taiasean Wu
- Institute for Neurodegenerative Disease, University of California San Francisco, San Francisco, CA 94158, USA
- Chemistry and Chemical Biology Graduate Program, University of California San Francisco, San Francisco, CA 94158, USA
| | - Morgan Diolaiti
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA
| | - Siyi Wang
- Chemistry and Chemical Biology Graduate Program, University of California San Francisco, San Francisco, CA 94158, USA
| | - R. Jeffrey Neitz
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center, University of California, San Francisco, California 94158, USA
| | - Daren Fearon
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
| | - Dmytro Radchenko
- Enamine Ltd., Chervonotkatska Street 78, Kyiv 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv, 01601, Ukraine
| | - Yurii Moroz
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv, 01601, Ukraine
- Chemspace, Chervonotkatska Street 78, Kyiv, 02094, Ukraine
| | - John J. Irwin
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Adam R. Renslo
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center, University of California, San Francisco, California 94158, USA
| | - Jenny C. Taylor
- Wellcome Centre for Human Genetics, University of Oxford, Old Road Campus, Oxford OX3 7BN, UK
- National Institute for Health Research Oxford Biomedical Research Centre, Oxford, OX4 2PG, UK
| | - Jason E. Gestwicki
- Institute for Neurodegenerative Disease, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center, University of California, San Francisco, California 94158, USA
| | - Frank von Delft
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
- Centre for Medicines Discovery, University of Oxford, South Parks Road, Headington, OX3 7DQ, UK
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Headington OX3 7DQ, UK
- Department of Biochemistry, University of Johannesburg, Auckland Park 2006, South Africa
| | - Alan Ashworth
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Brian K. Shoichet
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - James S. Fraser
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
52
|
Habeichi NJ, Tannous C, Yabluchanskiy A, Altara R, Mericskay M, Booz GW, Zouein FA. Insights into the modulation of the interferon response and NAD + in the context of COVID-19. Int Rev Immunol 2022; 41:464-474. [PMID: 34378474 DOI: 10.1080/08830185.2021.1961768] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in dramatic worldwide mortality. Along with developing vaccines, the medical profession is exploring new strategies to curb this pandemic. A better understanding of the molecular consequences of SARS-CoV-2 cellular infection could lead to more effective and safer treatments. This review discusses the potential underlying impact of SARS-CoV-2 in modulating interferon (IFN) secretion and in causing mitochondrial NAD+ depletion that could be directly linked to COVID-19's deadly manifestations. What is known or surmised about an imbalanced innate immune response and mitochondrial dysfunction post-SARS-CoV-2 infection, and the potential benefits of well-timed IFN treatments and NAD+ boosting therapies in the context of the COVID-19 pandemic are discussed.
Collapse
Affiliation(s)
- Nada J Habeichi
- Department of Pharmacology and Toxicology, American University of Beirut Faculty of Medicine, Beirut, Lebanon.,Department of Signaling and Cardiovascular Pathophysiology, Université Paris-Saclay, Inserm, UMR-S 1180, Châtenay-Malabry, France
| | - Cynthia Tannous
- Department of Pharmacology and Toxicology, American University of Beirut Faculty of Medicine, Beirut, Lebanon
| | - Andriy Yabluchanskiy
- Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Raffaele Altara
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Center for Cardiac Research, Oslo, Norway.,Department of Pathology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Mathias Mericskay
- Department of Signaling and Cardiovascular Pathophysiology, Université Paris-Saclay, Inserm, UMR-S 1180, Châtenay-Malabry, France
| | - George W Booz
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Fouad A Zouein
- Department of Pharmacology and Toxicology, American University of Beirut Faculty of Medicine, Beirut, Lebanon
| |
Collapse
|
53
|
Roy A, Alhammad YM, McDonald P, Johnson DK, Zhuo J, Wazir S, Ferraris D, Lehtiö L, Leung AKL, Fehr AR. Discovery of compounds that inhibit SARS-CoV-2 Mac1-ADP-ribose binding by high-throughput screening. Antiviral Res 2022; 203:105344. [PMID: 35598780 PMCID: PMC9119168 DOI: 10.1016/j.antiviral.2022.105344] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/10/2022] [Accepted: 05/16/2022] [Indexed: 01/17/2023]
Abstract
The emergence of several zoonotic viruses in the last twenty years, especially the pandemic outbreak of SARS-CoV-2, has exposed a dearth of antiviral drug therapies for viruses with pandemic potential. Developing a diverse drug portfolio will be critical to rapidly respond to novel coronaviruses (CoVs) and other viruses with pandemic potential. Here we focus on the SARS-CoV-2 conserved macrodomain (Mac1), a small domain of non-structural protein 3 (nsp3). Mac1 is an ADP-ribosylhydrolase that cleaves mono-ADP-ribose (MAR) from target proteins, protects the virus from the anti-viral effects of host ADP-ribosyltransferases, and is critical for the replication and pathogenesis of CoVs. In this study, a luminescent-based high-throughput assay was used to screen ∼38,000 small molecules for those that could inhibit Mac1-ADP-ribose binding. We identified 5 compounds amongst 3 chemotypes that inhibit SARS-CoV-2 Mac1-ADP-ribose binding in multiple assays with IC50 values less than 100 μM, inhibit ADP-ribosylhydrolase activity, and have evidence of direct Mac1 binding. These chemotypes are strong candidates for further derivatization into highly effective Mac1 inhibitors.
Collapse
Affiliation(s)
- Anu Roy
- Infectious Disease Assay Development Laboratory/HTS, University of Kansas, Lawrence, KS, 66047, USA
| | - Yousef M Alhammad
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66045, USA
| | - Peter McDonald
- Infectious Disease Assay Development Laboratory/HTS, University of Kansas, Lawrence, KS, 66047, USA
| | - David K Johnson
- Molecular Graphics and Modeling Laboratory and the Computational Chemical Biology Core, University of Kansas, Lawrence, KS, 66047, USA
| | - Junlin Zhuo
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Sarah Wazir
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Dana Ferraris
- McDaniel College Department of Chemistry, 2 College Hill, Westminster, MD, USA
| | - Lari Lehtiö
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Anthony K L Leung
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA; McKusick-Nathans Department of Genetics Medicine, Department of Oncology, And Department of Molecular Biology and Genetics, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Anthony R Fehr
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66045, USA.
| |
Collapse
|
54
|
Correy GJ, Kneller DW, Phillips G, Pant S, Russi S, Cohen AE, Meigs G, Holton JM, Gahbauer S, Thompson MC, Ashworth A, Coates L, Kovalevsky A, Meilleur F, Fraser JS. The mechanisms of catalysis and ligand binding for the SARS-CoV-2 NSP3 macrodomain from neutron and x-ray diffraction at room temperature. SCIENCE ADVANCES 2022; 8:eabo5083. [PMID: 35622909 PMCID: PMC9140965 DOI: 10.1126/sciadv.abo5083] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/11/2022] [Indexed: 05/04/2023]
Abstract
The nonstructural protein 3 (NSP3) macrodomain of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (Mac1) removes adenosine diphosphate (ADP) ribosylation posttranslational modifications, playing a key role in the immune evasion capabilities of the virus responsible for the coronavirus disease 2019 pandemic. Here, we determined neutron and x-ray crystal structures of the SARS-CoV-2 NSP3 macrodomain using multiple crystal forms, temperatures, and pHs, across the apo and ADP-ribose-bound states. We characterize extensive solvation in the Mac1 active site and visualize how water networks reorganize upon binding of ADP-ribose and non-native ligands, inspiring strategies for displacing waters to increase the potency of Mac1 inhibitors. Determining the precise orientations of active site water molecules and the protonation states of key catalytic site residues by neutron crystallography suggests a catalytic mechanism for coronavirus macrodomains distinct from the substrate-assisted mechanism proposed for human MacroD2. These data provoke a reevaluation of macrodomain catalytic mechanisms and will guide the optimization of Mac1 inhibitors.
Collapse
Affiliation(s)
- Galen J. Correy
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Daniel W. Kneller
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- National Virtual Biotechnology Laboratory, U.S. Department of Energy, Washington, DC 20585, USA
| | - Gwyndalyn Phillips
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- National Virtual Biotechnology Laboratory, U.S. Department of Energy, Washington, DC 20585, USA
| | - Swati Pant
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- National Virtual Biotechnology Laboratory, U.S. Department of Energy, Washington, DC 20585, USA
| | - Silvia Russi
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Aina E. Cohen
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - George Meigs
- Department of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - James M. Holton
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
- Department of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Stefan Gahbauer
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Michael C. Thompson
- Department of Chemistry and Biochemistry, University of California, Merced, Merced, CA 95343, USA
| | - Alan Ashworth
- Helen Diller Family Comprehensive Cancer, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Leighton Coates
- National Virtual Biotechnology Laboratory, U.S. Department of Energy, Washington, DC 20585, USA
- Second Target Station, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Andrey Kovalevsky
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- National Virtual Biotechnology Laboratory, U.S. Department of Energy, Washington, DC 20585, USA
| | - Flora Meilleur
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - James S. Fraser
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
55
|
Liu L, Sandow JJ, Leslie Pedrioli DM, Samson AL, Silke N, Kratina T, Ambrose RL, Doerflinger M, Hu Z, Morrish E, Chau D, Kueh AJ, Fitzibbon C, Pellegrini M, Pearson JS, Hottiger MO, Webb AI, Lalaoui N, Silke J. Tankyrase-mediated ADP-ribosylation is a regulator of TNF-induced death. SCIENCE ADVANCES 2022; 8:eabh2332. [PMID: 35544574 PMCID: PMC9094663 DOI: 10.1126/sciadv.abh2332] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Tumor necrosis factor (TNF) is a key component of the innate immune response. Upon binding to its receptor, TNFR1, it promotes production of other cytokines via a membrane-bound complex 1 or induces cell death via a cytosolic complex 2. To understand how TNF-induced cell death is regulated, we performed mass spectrometry of complex 2 and identified tankyrase-1 as a native component that, upon a death stimulus, mediates complex 2 poly-ADP-ribosylation (PARylation). PARylation promotes recruitment of the E3 ligase RNF146, resulting in proteasomal degradation of complex 2, thereby limiting cell death. Expression of the ADP-ribose-binding/hydrolyzing severe acute respiratory syndrome coronavirus 2 macrodomain sensitizes cells to TNF-induced death via abolishing complex 2 PARylation. This suggests that disruption of ADP-ribosylation during an infection can prime a cell to retaliate with an inflammatory cell death.
Collapse
Affiliation(s)
- Lin Liu
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Jarrod J. Sandow
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Deena M. Leslie Pedrioli
- Department of Molecular Mechanisms of Disease (DMMD), University of Zurich, 8057 Zürich, Switzerland
| | - Andre L. Samson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Natasha Silke
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Tobias Kratina
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Rebecca L. Ambrose
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Research, Monash University, Clayton, VIC, Australia
| | - Marcel Doerflinger
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Zhaoqing Hu
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Emma Morrish
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Diep Chau
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Andrew J. Kueh
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Cheree Fitzibbon
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Marc Pellegrini
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Jaclyn S. Pearson
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Research, Monash University, Clayton, VIC, Australia
- Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Michael O. Hottiger
- Department of Molecular Mechanisms of Disease (DMMD), University of Zurich, 8057 Zürich, Switzerland
| | - Andrew I. Webb
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Najoua Lalaoui
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
- Corresponding author. (N.L.); (J.S.)
| | - John Silke
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
- Corresponding author. (N.L.); (J.S.)
| |
Collapse
|
56
|
Lüscher B, Verheirstraeten M, Krieg S, Korn P. Intracellular mono-ADP-ribosyltransferases at the host-virus interphase. Cell Mol Life Sci 2022; 79:288. [PMID: 35536484 PMCID: PMC9087173 DOI: 10.1007/s00018-022-04290-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/15/2022] [Accepted: 04/05/2022] [Indexed: 01/22/2023]
Abstract
The innate immune system, the primary defense mechanism of higher organisms against pathogens including viruses, senses pathogen-associated molecular patterns (PAMPs). In response to PAMPs, interferons (IFNs) are produced, allowing the host to react swiftly to viral infection. In turn the expression of IFN-stimulated genes (ISGs) is induced. Their products disseminate the antiviral response. Among the ISGs conserved in many species are those encoding mono-ADP-ribosyltransferases (mono-ARTs). This prompts the question whether, and if so how, mono-ADP-ribosylation affects viral propagation. Emerging evidence demonstrates that some mono-ADP-ribosyltransferases function as PAMP receptors and modify both host and viral proteins relevant for viral replication. Support for mono-ADP-ribosylation in virus–host interaction stems from the findings that some viruses encode mono-ADP-ribosylhydrolases, which antagonize cellular mono-ARTs. We summarize and discuss the evidence linking mono-ADP-ribosylation and the enzymes relevant to catalyze this reversible modification with the innate immune response as part of the arms race between host and viruses.
Collapse
Affiliation(s)
- Bernhard Lüscher
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.
| | - Maud Verheirstraeten
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Sarah Krieg
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Patricia Korn
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.
| |
Collapse
|
57
|
Treatment of SARS-CoV-2-induced pneumonia with NAD + and NMN in two mouse models. Cell Discov 2022; 8:38. [PMID: 35487885 PMCID: PMC9053567 DOI: 10.1038/s41421-022-00409-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/02/2022] [Indexed: 12/14/2022] Open
Abstract
The global COVID-19 epidemic has spread rapidly around the world and caused the death of more than 5 million people. It is urgent to develop effective strategies to treat COVID-19 patients. Here, we revealed that SARS-CoV-2 infection resulted in the dysregulation of genes associated with NAD+ metabolism, immune response, and cell death in mice, similar to that in COVID-19 patients. We therefore investigated the effect of treatment with NAD+ and its intermediate (NMN) and found that the pneumonia phenotypes, including excessive inflammatory cell infiltration, hemolysis, and embolization in SARS-CoV-2-infected lungs were significantly rescued. Cell death was suppressed substantially by NAD+ and NMN supplementation. More strikingly, NMN supplementation can protect 30% of aged mice infected with the lethal mouse-adapted SARS-CoV-2 from death. Mechanically, we found that NAD+ or NMN supplementation partially rescued the disturbed gene expression and metabolism caused by SARS-CoV-2 infection. Thus, our in vivo mouse study supports trials for treating COVID-19 patients by targeting the NAD+ pathway.
Collapse
|
58
|
Novak Kujundžić R. COVID-19: Are We Facing Secondary Pellagra Which Cannot Simply Be Cured by Vitamin B3? Int J Mol Sci 2022; 23:ijms23084309. [PMID: 35457123 PMCID: PMC9032523 DOI: 10.3390/ijms23084309] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 02/07/2023] Open
Abstract
Immune response to SARS-CoV-2 and ensuing inflammation pose a huge challenge to the host’s nicotinamide adenine dinucleotide (NAD+) metabolism. Humans depend on vitamin B3 for biosynthesis of NAD+, indispensable for many metabolic and NAD+-consuming signaling reactions. The balance between its utilization and resynthesis is vitally important. Many extra-pulmonary symptoms of COVID-19 strikingly resemble those of pellagra, vitamin B3 deficiency (e.g., diarrhoea, dermatitis, oral cavity and tongue manifestations, loss of smell and taste, mental confusion). In most developed countries, pellagra is successfully eradicated by vitamin B3 fortification programs. Thus, conceivably, it has not been suspected as a cause of COVID-19 symptoms. Here, the deregulation of the NAD+ metabolism in response to the SARS-CoV-2 infection is reviewed, with special emphasis on the differences in the NAD+ biosynthetic pathway’s efficiency in conditions predisposing for the development of serious COVID-19. SARS-CoV-2 infection-induced NAD+ depletion and the elevated levels of its metabolites contribute to the development of a systemic disease. Acute liberation of nicotinamide (NAM) in antiviral NAD+-consuming reactions potentiates “NAM drain”, cooperatively mediated by nicotinamide N-methyltransferase and aldehyde oxidase. “NAM drain” compromises the NAD+ salvage pathway’s fail-safe function. The robustness of the host’s NAD+ salvage pathway, prior to the SARS-CoV-2 infection, is an important determinant of COVID-19 severity and persistence of certain symptoms upon resolution of infection.
Collapse
Affiliation(s)
- Renata Novak Kujundžić
- Laboratory for Epigenomics, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| |
Collapse
|
59
|
Zheng M, Schultz MB, Sinclair DA. NAD + in COVID-19 and viral infections. Trends Immunol 2022; 43:283-295. [PMID: 35221228 PMCID: PMC8831132 DOI: 10.1016/j.it.2022.02.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 11/24/2022]
Abstract
NAD+, as an emerging regulator of immune responses during viral infections, may be a promising therapeutic target for coronavirus disease 2019 (COVID-19). In this Opinion, we suggest that interventions that boost NAD+ levels might promote antiviral defense and suppress uncontrolled inflammation. We discuss the association between low NAD+ concentrations and risk factors for poor COVID-19 outcomes, including aging and common comorbidities. Mechanistically, we outline how viral infections can further deplete NAD+ and its roles in antiviral defense and inflammation. We also describe how coronaviruses can subvert NAD+-mediated actions via genes that remove NAD+ modifications and activate the NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome. Finally, we explore ongoing approaches to boost NAD+ concentrations in the clinic to putatively increase antiviral responses while curtailing hyperinflammation.
Collapse
Affiliation(s)
- Minyan Zheng
- Department of Genetics, Blavatnik Institute, Paul F. Glenn Center for Biology of Aging Research, Harvard Medical School, Boston, MA, USA
| | - Michael B Schultz
- Department of Genetics, Blavatnik Institute, Paul F. Glenn Center for Biology of Aging Research, Harvard Medical School, Boston, MA, USA
| | - David A Sinclair
- Department of Genetics, Blavatnik Institute, Paul F. Glenn Center for Biology of Aging Research, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
60
|
Chan WKB, Olson KM, Wotring JW, Sexton JZ, Carlson HA, Traynor JR. In silico analysis of SARS-CoV-2 proteins as targets for clinically available drugs. Sci Rep 2022; 12:5320. [PMID: 35351926 PMCID: PMC8963407 DOI: 10.1038/s41598-022-08320-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 03/02/2022] [Indexed: 12/20/2022] Open
Abstract
The ongoing pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) requires treatments with rapid clinical translatability. Here we develop a multi-target and multi-ligand virtual screening method to identify FDA-approved drugs with potential activity against SARS-CoV-2 at traditional and understudied viral targets. 1,268 FDA-approved small molecule drugs were docked to 47 putative binding sites across 23 SARS-CoV-2 proteins. We compared drugs between binding sites and filtered out compounds that had no reported activity in an in vitro screen against SARS-CoV-2 infection of human liver (Huh-7) cells. This identified 17 "high-confidence", and 97 "medium-confidence" drug-site pairs. The "high-confidence" group was subjected to molecular dynamics simulations to yield six compounds with stable binding poses at their optimal target proteins. Three drugs-amprenavir, levomefolic acid, and calcipotriol-were predicted to bind to 3 different sites on the spike protein, domperidone to the Mac1 domain of the non-structural protein (Nsp) 3, avanafil to Nsp15, and nintedanib to the nucleocapsid protein involved in packaging the viral RNA. Our "two-way" virtual docking screen also provides a framework to prioritize drugs for testing in future emergencies requiring rapidly available clinical drugs and/or treating diseases where a moderate number of targets are known.
Collapse
Affiliation(s)
- Wallace K B Chan
- Department of Pharmacology, University of Michigan, 2301 MSRBIII, 1150 W Medical Center Dr, Ann Arbor, MI, 48190-5606, USA
- Edward F Domino Research Center, University of Michigan, Ann Arbor, MI, 48190, USA
| | - Keith M Olson
- Department of Pharmacology, University of Michigan, 2301 MSRBIII, 1150 W Medical Center Dr, Ann Arbor, MI, 48190-5606, USA
- Edward F Domino Research Center, University of Michigan, Ann Arbor, MI, 48190, USA
| | - Jesse W Wotring
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, 48190, USA
| | - Jonathan Z Sexton
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, 48190, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48190, USA
| | - Heather A Carlson
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, 48190, USA
| | - John R Traynor
- Department of Pharmacology, University of Michigan, 2301 MSRBIII, 1150 W Medical Center Dr, Ann Arbor, MI, 48190-5606, USA.
- Edward F Domino Research Center, University of Michigan, Ann Arbor, MI, 48190, USA.
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, 48190, USA.
| |
Collapse
|
61
|
Manco G, Lacerra G, Porzio E, Catara G. ADP-Ribosylation Post-Translational Modification: An Overview with a Focus on RNA Biology and New Pharmacological Perspectives. Biomolecules 2022; 12:biom12030443. [PMID: 35327636 PMCID: PMC8946771 DOI: 10.3390/biom12030443] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/02/2022] [Accepted: 03/10/2022] [Indexed: 02/04/2023] Open
Abstract
Cellular functions are regulated through the gene expression program by the transcription of new messenger RNAs (mRNAs), alternative RNA splicing, and protein synthesis. To this end, the post-translational modifications (PTMs) of proteins add another layer of complexity, creating a continuously fine-tuned regulatory network. ADP-ribosylation (ADPr) is an ancient reversible modification of cellular macromolecules, regulating a multitude of key functional processes as diverse as DNA damage repair (DDR), transcriptional regulation, intracellular transport, immune and stress responses, and cell survival. Additionally, due to the emerging role of ADP-ribosylation in pathological processes, ADP-ribosyltransferases (ARTs), the enzymes involved in ADPr, are attracting growing interest as new drug targets. In this review, an overview of human ARTs and their related biological functions is provided, mainly focusing on the regulation of ADP-ribosyltransferase Diphtheria toxin-like enzymes (ARTD)-dependent RNA functions. Finally, in order to unravel novel gene functional relationships, we propose the analysis of an inventory of human gene clusters, including ARTDs, which share conserved sequences at 3′ untranslated regions (UTRs).
Collapse
Affiliation(s)
- Giuseppe Manco
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Via P. Castellino 111, 80131 Naples, Italy;
- Correspondence: (G.M.); (G.C.)
| | - Giuseppina Lacerra
- Institute of Genetics and Biophysics “Adriano Buzzati-Traverso”, National Research Council of Italy, Via P. Castellino 111, 80131 Naples, Italy;
| | - Elena Porzio
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Via P. Castellino 111, 80131 Naples, Italy;
| | - Giuliana Catara
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Via P. Castellino 111, 80131 Naples, Italy;
- Correspondence: (G.M.); (G.C.)
| |
Collapse
|
62
|
Roy A, Alhammad YM, McDonald P, Johnson DK, Zhuo J, Wazir S, Ferraris D, Lehtiö L, Leung AKL, Fehr AR. Discovery of compounds that inhibit SARS-CoV-2 Mac1-ADP-ribose binding by high-throughput screening. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.03.01.482536. [PMID: 35262075 PMCID: PMC8902866 DOI: 10.1101/2022.03.01.482536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The emergence of several zoonotic viruses in the last twenty years, especially the pandemic outbreak of SARS-CoV-2, has exposed a dearth of antiviral drug therapies for viruses with pandemic potential. Developing a diverse drug portfolio will be critical for our ability to rapidly respond to novel coronaviruses (CoVs) and other viruses with pandemic potential. Here we focus on the SARS-CoV-2 conserved macrodomain (Mac1), a small domain of non-structural protein 3 (nsp3). Mac1 is an ADP-ribosylhydrolase that cleaves mono-ADP-ribose (MAR) from target proteins, protects the virus from the anti-viral effects of host ADP-ribosyltransferases, and is critical for the replication and pathogenesis of CoVs. In this study, a luminescent-based high-throughput assay was used to screen ∼38,000 small molecules for those that could inhibit Mac1-ADP-ribose binding. We identified 5 compounds amongst 3 chemotypes that inhibit SARS-CoV-2 Mac1-ADP-ribose binding in multiple assays with IC 50 values less than 100 µ M, inhibit ADP-ribosylhydrolase activity, and have evidence of direct Mac1 binding. These chemotypes are strong candidates for further derivatization into highly effective Mac1 inhibitors.
Collapse
|
63
|
Sherrill LM, Joya EE, Walker A, Roy A, Alhammad YM, Atobatele M, Wazir S, Abbas G, Keane P, Zhuo J, Leung AKL, Johnson DK, Lehtiö L, Fehr AR, Ferraris D. Design, Synthesis and Evaluation of Inhibitors of the SARS-CoV2 nsp3 Macrodomain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.02.27.482176. [PMID: 35262078 PMCID: PMC8902877 DOI: 10.1101/2022.02.27.482176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A series of amino acid based 7H -pyrrolo[2,3- d ]pyrimidines were designed and synthesized to discern the structure activity relationships against the SARS-CoV-2 nsp3 macrodomain (Mac1), an ADP-ribosylhydrolase that is critical for coronavirus replication and pathogenesis. Structure activity studies identified compound 15c as a low-micromolar inhibitor of Mac1 in two ADP-ribose binding assays. This compound also demonstrated inhibition in an enzymatic assay of Mac1 and displayed a thermal shift comparable to ADPr in the melting temperature of Mac1 supporting binding to the target protein. A structural model reproducibly predicted a binding mode where the pyrrolo pyrimidine forms a hydrogen bonding network with Asp 22 and the amide backbone NH of Ile 23 in the adenosine binding pocket and the carboxylate forms hydrogen bonds to the amide backbone of Phe 157 and Asp 156 , part of the oxyanion subsite of Mac1. Compound 15c also demonstrated notable selectivity for coronavirus macrodomains when tested against a panel of ADP-ribose binding proteins. Together, this study identified several low MW, low μM Mac1 inhibitors to use as small molecule chemical probes for this potential anti-viral target and offers starting points for further optimization.
Collapse
|
64
|
Correy GJ, Kneller DW, Phillips G, Pant S, Russi S, Cohen AE, Meigs G, Holton JM, Gahbauer S, Thompson MC, Ashworth A, Coates L, Kovalevsky A, Meilleur F, Fraser JS. The mechanisms of catalysis and ligand binding for the SARS-CoV-2 NSP3 macrodomain from neutron and X-ray diffraction at room temperature. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.02.07.479477. [PMID: 35169801 PMCID: PMC8845425 DOI: 10.1101/2022.02.07.479477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The NSP3 macrodomain of SARS CoV 2 (Mac1) removes ADP-ribosylation post-translational modifications, playing a key role in the immune evasion capabilities of the virus responsible for the COVID-19 pandemic. Here, we determined neutron and X-ray crystal structures of the SARS-CoV-2 NSP3 macrodomain using multiple crystal forms, temperatures, and pHs, across the apo and ADP-ribose-bound states. We characterize extensive solvation in the Mac1 active site, and visualize how water networks reorganize upon binding of ADP-ribose and non-native ligands, inspiring strategies for displacing waters to increase potency of Mac1 inhibitors. Determining the precise orientations of active site water molecules and the protonation states of key catalytic site residues by neutron crystallography suggests a catalytic mechanism for coronavirus macrodomains distinct from the substrate-assisted mechanism proposed for human MacroD2. These data provoke a re-evaluation of macrodomain catalytic mechanisms and will guide the optimization of Mac1 inhibitors.
Collapse
Affiliation(s)
- Galen J. Correy
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Daniel W. Kneller
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- National Virtual Biotechnology Laboratory, US Department of Energy, USA
| | - Gwyndalyn Phillips
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- National Virtual Biotechnology Laboratory, US Department of Energy, USA
| | - Swati Pant
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- National Virtual Biotechnology Laboratory, US Department of Energy, USA
| | - Silvia Russi
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Center, Menlo Park, CA 94025, USA
| | - Aina E. Cohen
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Center, Menlo Park, CA 94025, USA
| | - George Meigs
- Department of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, CA 94158, USA
| | - James M. Holton
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Center, Menlo Park, CA 94025, USA
- Department of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, CA 94158, USA
| | - Stefan Gahbauer
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Michael C. Thompson
- Department of Chemistry and Chemical Biology, University of California Merced, CA 95343, USA
| | - Alan Ashworth
- Helen Diller Family Comprehensive Cancer, University of California San Francisco, CA 94158, USA
| | - Leighton Coates
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- National Virtual Biotechnology Laboratory, US Department of Energy, USA
| | - Andrey Kovalevsky
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- National Virtual Biotechnology Laboratory, US Department of Energy, USA
| | - Flora Meilleur
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695
| | - James S. Fraser
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
65
|
Yan W, Zheng Y, Zeng X, He B, Cheng W. Structural biology of SARS-CoV-2: open the door for novel therapies. Signal Transduct Target Ther 2022; 7:26. [PMID: 35087058 PMCID: PMC8793099 DOI: 10.1038/s41392-022-00884-5] [Citation(s) in RCA: 169] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 02/08/2023] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is the causative agent of the pandemic disease COVID-19, which is so far without efficacious treatment. The discovery of therapy reagents for treating COVID-19 are urgently needed, and the structures of the potential drug-target proteins in the viral life cycle are particularly important. SARS-CoV-2, a member of the Orthocoronavirinae subfamily containing the largest RNA genome, encodes 29 proteins including nonstructural, structural and accessory proteins which are involved in viral adsorption, entry and uncoating, nucleic acid replication and transcription, assembly and release, etc. These proteins individually act as a partner of the replication machinery or involved in forming the complexes with host cellular factors to participate in the essential physiological activities. This review summarizes the representative structures and typically potential therapy agents that target SARS-CoV-2 or some critical proteins for viral pathogenesis, providing insights into the mechanisms underlying viral infection, prevention of infection, and treatment. Indeed, these studies open the door for COVID therapies, leading to ways to prevent and treat COVID-19, especially, treatment of the disease caused by the viral variants are imperative.
Collapse
Affiliation(s)
- Weizhu Yan
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, China
| | - Yanhui Zheng
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, China
| | - Xiaotao Zeng
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, China
| | - Bin He
- Department of Emergency Medicine, West China Hospital of Sichuan University, 610041, Chengdu, China.
- The First People's Hospital of Longquanyi District Chengdu, 610100, Chengdu, China.
| | - Wei Cheng
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
66
|
Dasovich M, Zhuo J, Goodman JA, Thomas A, McPherson RL, Jayabalan AK, Busa VF, Cheng SJ, Murphy BA, Redinger KR, Alhammad YMO, Fehr AR, Tsukamoto T, Slusher BS, Bosch J, Wei H, Leung AKL. High-Throughput Activity Assay for Screening Inhibitors of the SARS-CoV-2 Mac1 Macrodomain. ACS Chem Biol 2022; 17:17-23. [PMID: 34904435 PMCID: PMC8691451 DOI: 10.1021/acschembio.1c00721] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/16/2021] [Indexed: 12/11/2022]
Abstract
Macrodomains are a class of conserved ADP-ribosylhydrolases expressed by viruses of pandemic concern, including coronaviruses and alphaviruses. Viral macrodomains are critical for replication and virus-induced pathogenesis; therefore, these enzymes are a promising target for antiviral therapy. However, no potent or selective viral macrodomain inhibitors currently exist, in part due to the lack of a high-throughput assay for this class of enzymes. Here we developed a high-throughput ADP-ribosylhydrolase assay using the SARS-CoV-2 macrodomain Mac1. We performed a pilot screen that identified dasatinib and dihydralazine as ADP-ribosylhydrolase inhibitors. Importantly, dasatinib inhibits SARS-CoV-2 and MERS-CoV Mac1 but not the closest human homologue, MacroD2. Our study demonstrates the feasibility of identifying selective inhibitors based on ADP-ribosylhydrolase activity, paving the way for the screening of large compound libraries to identify improved macrodomain inhibitors and to explore their potential as antiviral therapies for SARS-CoV-2 and future viral threats.
Collapse
Affiliation(s)
- Morgan Dasovich
- Department of Biochemistry and Molecular Biology,
Bloomberg School of Public Health, Johns Hopkins University,
Baltimore, Maryland 21205, United States
- Department of Chemistry, Krieger School of Arts and
Sciences, Johns Hopkins University, Baltimore, Maryland 21218,
United States
| | - Junlin Zhuo
- Department of Biochemistry and Molecular Biology,
Bloomberg School of Public Health, Johns Hopkins University,
Baltimore, Maryland 21205, United States
| | - Jack A. Goodman
- Department of Biochemistry and Molecular Biology,
Bloomberg School of Public Health, Johns Hopkins University,
Baltimore, Maryland 21205, United States
| | - Ajit Thomas
- Johns Hopkins Drug Discovery,
Baltimore, Maryland 21205, United States
- Department of Neurology, School of Medicine,
Johns Hopkins University, Baltimore, Maryland 21205,
United States
| | - Robert Lyle McPherson
- Department of Biochemistry and Molecular Biology,
Bloomberg School of Public Health, Johns Hopkins University,
Baltimore, Maryland 21205, United States
| | - Aravinth Kumar Jayabalan
- Department of Biochemistry and Molecular Biology,
Bloomberg School of Public Health, Johns Hopkins University,
Baltimore, Maryland 21205, United States
| | - Veronica F. Busa
- Department of Biochemistry and Molecular Biology,
Bloomberg School of Public Health, Johns Hopkins University,
Baltimore, Maryland 21205, United States
- McKusick-Nathans Department of Genetics Medicine,
School of Medicine, Johns Hopkins
University, Baltimore, Maryland 21205, United
States
| | - Shang-Jung Cheng
- Department of Biochemistry and Molecular Biology,
Bloomberg School of Public Health, Johns Hopkins University,
Baltimore, Maryland 21205, United States
| | - Brennan A. Murphy
- Johns Hopkins Drug Discovery,
Baltimore, Maryland 21205, United States
| | - Karli R. Redinger
- Center for Global Health and Diseases, Case
Western Reserve University, Cleveland, Ohio 44106, United
States
| | - Yousef M. O. Alhammad
- Department of Molecular Biosciences,
University of Kansas, Lawrence, Kansas 66045, United
States
| | - Anthony R. Fehr
- Department of Molecular Biosciences,
University of Kansas, Lawrence, Kansas 66045, United
States
| | - Takashi Tsukamoto
- Johns Hopkins Drug Discovery,
Baltimore, Maryland 21205, United States
- Department of Neurology, School of Medicine,
Johns Hopkins University, Baltimore, Maryland 21205,
United States
| | - Barbara S. Slusher
- Johns Hopkins Drug Discovery,
Baltimore, Maryland 21205, United States
- Department of Neurology, School of Medicine,
Johns Hopkins University, Baltimore, Maryland 21205,
United States
| | - Jürgen Bosch
- Center for Global Health and Diseases, Case
Western Reserve University, Cleveland, Ohio 44106, United
States
- InterRayBio, LLC,
Cleveland, Ohio 44106, United States
| | - Huijun Wei
- Johns Hopkins Drug Discovery,
Baltimore, Maryland 21205, United States
- Department of Neurology, School of Medicine,
Johns Hopkins University, Baltimore, Maryland 21205,
United States
| | - Anthony K. L. Leung
- Department of Biochemistry and Molecular Biology,
Bloomberg School of Public Health, Johns Hopkins University,
Baltimore, Maryland 21205, United States
- McKusick-Nathans Department of Genetics Medicine,
School of Medicine, Johns Hopkins
University, Baltimore, Maryland 21205, United
States
- Department of Oncology and Department of
Molecular Biology and Genetics, School of Medicine, Johns Hopkins
University, Baltimore, Maryland 21205, United
States
| |
Collapse
|
67
|
Leung AKL, Griffin DE, Bosch J, Fehr AR. The Conserved Macrodomain Is a Potential Therapeutic Target for Coronaviruses and Alphaviruses. Pathogens 2022; 11:pathogens11010094. [PMID: 35056042 PMCID: PMC8780475 DOI: 10.3390/pathogens11010094] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 12/04/2022] Open
Abstract
Emerging and re-emerging viral diseases pose continuous public health threats, and effective control requires a combination of non-pharmacologic interventions, treatment with antivirals, and prevention with vaccines. The COVID-19 pandemic has demonstrated that the world was least prepared to provide effective treatments. This lack of preparedness has been due, in large part, to a lack of investment in developing a diverse portfolio of antiviral agents, particularly those ready to combat viruses of pandemic potential. Here, we focus on a drug target called macrodomain that is critical for the replication and pathogenesis of alphaviruses and coronaviruses. Some mutations in alphavirus and coronaviral macrodomains are not tolerated for virus replication. In addition, the coronavirus macrodomain suppresses host interferon responses. Therefore, macrodomain inhibitors have the potential to block virus replication and restore the host’s protective interferon response. Viral macrodomains offer an attractive antiviral target for developing direct acting antivirals because they are highly conserved and have a structurally well-defined (druggable) binding pocket. Given that this target is distinct from the existing RNA polymerase and protease targets, a macrodomain inhibitor may complement current approaches, pre-empt the threat of resistance and offer opportunities to develop combination therapies for combating COVID-19 and future viral threats.
Collapse
Affiliation(s)
- Anthony K. L. Leung
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
- McKusick-Nathans Department of Genetic Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Molecular Biology and Genetics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
- Correspondence: (A.K.L.L.); (D.E.G.); (A.R.F.); Tel.: +1-(410)-5028939 (A.K.L.L.); +1-(410)-955-3459 (D.E.G.); +1-(785)-864-6626 (A.R.F.)
| | - Diane E. Griffin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
- Correspondence: (A.K.L.L.); (D.E.G.); (A.R.F.); Tel.: +1-(410)-5028939 (A.K.L.L.); +1-(410)-955-3459 (D.E.G.); +1-(785)-864-6626 (A.R.F.)
| | - Jürgen Bosch
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH 44106, USA;
- InterRayBio, LLC, Cleveland, OH 44106, USA
| | - Anthony R. Fehr
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
- Correspondence: (A.K.L.L.); (D.E.G.); (A.R.F.); Tel.: +1-(410)-5028939 (A.K.L.L.); +1-(410)-955-3459 (D.E.G.); +1-(785)-864-6626 (A.R.F.)
| |
Collapse
|
68
|
von Soosten LC, Edich M, Nolte K, Kaub J, Santoni G, Thorn A. The Swiss army knife of SARS-CoV-2: the structures and functions of NSP3. CRYSTALLOGR REV 2022. [DOI: 10.1080/0889311x.2022.2098281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Lea C. von Soosten
- Institut für Nanostruktur und Festkörperphysik, Universität Hamburg, Hamburg, Germany
| | - Maximilian Edich
- Institut für Nanostruktur und Festkörperphysik, Universität Hamburg, Hamburg, Germany
| | - Kristopher Nolte
- Institut für Nanostruktur und Festkörperphysik, Universität Hamburg, Hamburg, Germany
| | - Johannes Kaub
- Institut für Nanostruktur und Festkörperphysik, Universität Hamburg, Hamburg, Germany
| | | | - Andrea Thorn
- Institut für Nanostruktur und Festkörperphysik, Universität Hamburg, Hamburg, Germany
| |
Collapse
|
69
|
Malone B, Urakova N, Snijder EJ, Campbell EA. Structures and functions of coronavirus replication-transcription complexes and their relevance for SARS-CoV-2 drug design. Nat Rev Mol Cell Biol 2022; 23:21-39. [PMID: 34824452 PMCID: PMC8613731 DOI: 10.1038/s41580-021-00432-z] [Citation(s) in RCA: 280] [Impact Index Per Article: 93.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2021] [Indexed: 02/08/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has killed millions of people and continues to cause massive global upheaval. Coronaviruses are positive-strand RNA viruses with an unusually large genome of ~30 kb. They express an RNA-dependent RNA polymerase and a cohort of other replication enzymes and supporting factors to transcribe and replicate their genomes. The proteins performing these essential processes are prime antiviral drug targets, but drug discovery is hindered by our incomplete understanding of coronavirus RNA synthesis and processing. In infected cells, the RNA-dependent RNA polymerase must coordinate with other viral and host factors to produce both viral mRNAs and new genomes. Recent research aiming to decipher and contextualize the structures, functions and interplay of the subunits of the SARS-CoV-2 replication and transcription complex proteins has burgeoned. In this Review, we discuss recent advancements in our understanding of the molecular basis and complexity of the coronavirus RNA-synthesizing machinery. Specifically, we outline the mechanisms and regulation of RNA translation, replication and transcription. We also discuss the composition of the replication and transcription complexes and their suitability as targets for antiviral therapy.
Collapse
Affiliation(s)
- Brandon Malone
- grid.134907.80000 0001 2166 1519Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY USA
| | - Nadya Urakova
- grid.10419.3d0000000089452978Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Eric J. Snijder
- grid.10419.3d0000000089452978Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Elizabeth A. Campbell
- grid.134907.80000 0001 2166 1519Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY USA
| |
Collapse
|
70
|
Sowa ST, Galera-Prat A, Wazir S, Alanen HI, Maksimainen MM, Lehtiö L. A molecular toolbox for ADP-ribosyl binding proteins. CELL REPORTS METHODS 2021; 1:100121. [PMID: 34786571 PMCID: PMC8580838 DOI: 10.1016/j.crmeth.2021.100121] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/29/2021] [Accepted: 11/04/2021] [Indexed: 12/24/2022]
Abstract
Proteins interacting with ADP-ribosyl groups are often involved in disease-related pathways or viral infections, making them attractive drug targets. We present a robust and accessible assay applicable to both hydrolyzing or non-hydrolyzing binders of mono- and poly-ADP-ribosyl groups. This technology relies on a C-terminal tag based on a Gi protein alpha subunit peptide (GAP), which allows for site-specific introduction of cysteine-linked mono- and poly-ADP-ribosyl groups or analogs. By fusing the GAP-tag and ADP-ribosyl binders to fluorescent proteins, we generate robust FRET partners and confirm the interaction with 22 known ADP-ribosyl binders. The applicability for high-throughput screening of inhibitors is demonstrated with the SARS-CoV-2 nsp3 macrodomain, for which we identify suramin as a moderate-affinity yet non-specific inhibitor. High-affinity ADP-ribosyl binders fused to nanoluciferase complement this technology, enabling simple blot-based detection of ADP-ribosylated proteins. All these tools can be produced in Escherichia coli and will help in ADP-ribosylation research and drug discovery.
Collapse
Affiliation(s)
- Sven T. Sowa
- Faculty for Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, 90220 Oulu, Finland
| | - Albert Galera-Prat
- Faculty for Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, 90220 Oulu, Finland
| | - Sarah Wazir
- Faculty for Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, 90220 Oulu, Finland
| | - Heli I. Alanen
- Faculty for Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, 90220 Oulu, Finland
| | - Mirko M. Maksimainen
- Faculty for Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, 90220 Oulu, Finland
| | - Lari Lehtiö
- Faculty for Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, 90220 Oulu, Finland
| |
Collapse
|
71
|
Xu D, Biswal M, Neal A, Hai R. Review Devil's tools: SARS-CoV-2 antagonists against innate immunity. CURRENT RESEARCH IN VIROLOGICAL SCIENCE 2021; 2:100013. [PMID: 34812428 PMCID: PMC8598260 DOI: 10.1016/j.crviro.2021.100013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 04/22/2023]
Abstract
The unprecedented Coronavirus pandemic of 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Like other coronaviruses, to establish its infection, SARS-CoV-2 is required to overcome the innate interferon (IFN) response, which is the first line of host defense. SARS-CoV-2 has also developed complex antagonism approaches involving almost all its encoding viral proteins. Here, we summarize our current understanding of these different viral factors and their roles in suppressing IFN responses. Some of them are conserved IFN evasion strategies used by SARS-CoV; others are novel countermeasures only employed by SARS-CoV-2. The filling of gaps in understanding these underlying mechanisms will provide rationale guidance for applying IFN treatment against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Duo Xu
- Department of Microbiology and Plant Pathology, University of California-Riverside, Riverside, CA, USA
| | - Mahamaya Biswal
- Department of Biochemistry, University of California-Riverside, Riverside, CA, USA
| | - Arrmund Neal
- Department of Microbiology and Plant Pathology, University of California-Riverside, Riverside, CA, USA
| | - Rong Hai
- Department of Microbiology and Plant Pathology, University of California-Riverside, Riverside, CA, USA
| |
Collapse
|
72
|
Kumar S, Sharma PP, Upadhyay C, Kempaiah P, Rathi B, Poonam. Multi-targeting approach for nsp3, nsp9, nsp12 and nsp15 proteins of SARS-CoV-2 by Diosmin as illustrated by molecular docking and molecular dynamics simulation methodologies. Methods 2021; 195:44-56. [PMID: 33639316 PMCID: PMC7904494 DOI: 10.1016/j.ymeth.2021.02.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 11/01/2022] Open
Abstract
Novel coronavirus SARS-CoV-2continues tospread rapidly worldwide and causing serious health and economic loss. In the absence of any effective treatment, various in-silico approaches are being explored towards the therapeutic discovery against COVID-19. Targeting multiple key enzymes of SARS-CoV-2 with a single potential drug could be an important in-silico strategy to tackle the therapeutic emergency. A number of Food and Drug Administration (FDA) approved drugs entered into clinical stages were originated from multi-target approaches with an increased rate, 16-21% between 2015 and 2017. In this study, we selected an FDA-approved library (Prestwick Chemical Library of 1520 compounds) and implemented in-silico virtual screening against multiple protein targets of SARS-CoV-2 on the Glide module of Schrödinger software (release 2020-1). Compounds were analyzed for their docking scores and the top-ranked against each targeted protein were further subjected to Molecular Dynamics (MD) simulations to assess the binding stability of ligand-protein complexes. A multi-targeting approach was optimized that enabled the analysis of several compounds' binding efficiency with more than one protein targets. It was demonstrated that Diosmin (6) showed the highest binding affinity towards multiple targets with binding free energy (kcal/mol) values of -63.39 (nsp3); -62.89 (nsp9); -31.23 (nsp12); and -65.58 (nsp15). Therefore, our results suggests that Diosmin (6) possesses multi-targeting capability, a potent inhibitor of various non-structural proteins of SARS-CoV-2, and thus it deserves further validation experiments before using as a therapeutic against COVID-19 disease.
Collapse
Affiliation(s)
- Sumit Kumar
- Department of Chemistry, Miranda House, University of Delhi, Delhi 110007, India
| | - Prem Prakash Sharma
- Laboratory for Translational Chemistry and Drug Discovery, Hansraj College, University of Delhi, Delhi 110007, India
| | - Charu Upadhyay
- Department of Chemistry, Miranda House, University of Delhi, Delhi 110007, India
| | - Prakasha Kempaiah
- Department of Medicine, Loyola University Stritch School of Medicine, Chicago, IL 60153, United States
| | - Brijesh Rathi
- Laboratory for Translational Chemistry and Drug Discovery, Hansraj College, University of Delhi, Delhi 110007, India
| | - Poonam
- Department of Chemistry, Miranda House, University of Delhi, Delhi 110007, India.
| |
Collapse
|
73
|
78495111110.1152/physrev.00046.2020" />
Abstract
This medical review addresses the hypothesis that CD38/NADase is at the center of a functional axis (i.e., intracellular Ca2+ mobilization/IFNγ response/reactive oxygen species burst) driven by severe acute respiratory syndrome coronavirus 2 infection, as already verified in respiratory syncytial virus pathology and CD38 activity in other cellular settings. Key features of the hypothesis are that 1) the substrates of CD38 (e.g., NAD+ and NADP+) are depleted by viral-induced metabolic changes; 2) the products of the enzymatic activity of CD38 [e.g., cyclic adenosine diphosphate-ribose (ADPR)/ADPR/nicotinic acid adenine dinucleotide phosphate] and related enzymes [e.g., poly(ADP-ribose)polymerase, Sirtuins, and ADP-ribosyl hydrolase] are involved in the anti‐viral and proinflammatory response that favors the onset of lung immunopathology (e.g., cytokine storm and organ fibrosis); and 3) the pathological changes induced by this kinetic mechanism may be reduced by distinct modulators of the CD38/NAD+ axis (e.g., CD38 blockers, NAD+ suppliers, among others). This view is supported by arrays of associative basic and applied research data that are herein discussed and integrated with conclusions reported by others in the field of inflammatory, immune, tumor, and viral diseases.
Collapse
Affiliation(s)
- Alberto L. Horenstein
- Department of Medical Science, University of Turin, Turin, Italy; and Centro Ricerca Medicina, Sperimentale (CeRMS) and Fondazione Ricerca Molinette Onlus, Turin, Italy
| | - Angelo C. Faini
- Department of Medical Science, University of Turin, Turin, Italy; and Centro Ricerca Medicina, Sperimentale (CeRMS) and Fondazione Ricerca Molinette Onlus, Turin, Italy
| | - Fabio Malavasi
- Department of Medical Science, University of Turin, Turin, Italy; and Centro Ricerca Medicina, Sperimentale (CeRMS) and Fondazione Ricerca Molinette Onlus, Turin, Italy
| |
Collapse
|
74
|
Shi R, Feng Z, Zhang X. Integrative Multi-omics Landscape of Non-structural Protein 3 of Severe Acute Respiratory Syndrome Coronaviruses. GENOMICS, PROTEOMICS & BIOINFORMATICS 2021; 19:707-726. [PMID: 34774773 PMCID: PMC8578027 DOI: 10.1016/j.gpb.2021.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 08/26/2021] [Accepted: 09/14/2021] [Indexed: 11/30/2022]
Abstract
The coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is currently a global pandemic. Extensive investigations have been performed to study the clinical and cellular effects of SARS-CoV-2 infection. Mass spectrometry-based proteomics studies have revealed the cellular changes due to the infection and identified a plethora of interactors for all SARS-CoV-2 components, except for the longest non-structural protein 3 (NSP3). Here, we expressed the full-length NSP3 proteins of SARS-CoV and SARS-CoV-2 to investigate their unique and shared functions using multi-omics methods. We conducted interactome, phosphoproteome, ubiquitylome, transcriptome, and proteome analyses of NSP3-expressing cells. We found that NSP3 plays essential roles in cellular functions such as RNA metabolism and immune response (e.g., NF-κB signal transduction). Interestingly, we showed that SARS-CoV-2 NSP3 has both endoplasmic reticulum and mitochondrial localizations. In addition, SARS-CoV-2 NSP3 is more closely related to mitochondrial ribosomal proteins, whereas SARS-CoV NSP3 is related to the cytosolic ribosomal proteins. In summary, our integrative multi-omics study of NSP3 improves the understanding of the functions of NSP3 and offers potential targets for the development of anti-SARS strategies.
Collapse
Affiliation(s)
- Ruona Shi
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenhuan Feng
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaofei Zhang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Cell Lineage and Atlas, Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510530, China.
| |
Collapse
|
75
|
Selvaraj C, Dinesh DC, Krafcikova P, Boura E, Aarthy M, Pravin MA, Singh SK. Structural Understanding of SARS-CoV-2 Drug Targets, Active Site Contour Map Analysis and COVID-19 Therapeutics. Curr Mol Pharmacol 2021; 15:418-433. [PMID: 34488601 DOI: 10.2174/1874467214666210906125959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/11/2021] [Accepted: 03/17/2021] [Indexed: 11/22/2022]
Abstract
The most iconic word of the year 2020 is 'COVID-19', the shortened name for coronavirus disease 2019. The pandemic, caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), is responsible for multiple worldwide lockdowns, an economic crisis, and a substantial increase in hospitalizations for viral pneumonia along with respiratory failure and multiorgan dysfunctions. Recently, the first few vaccines were approved by World Health Organization (WHO) and can eventually save millions of lives. Even though, few emergency use drugs like Remdesivir and several other repurposed drugs, still there is no approved drug for COVID-19. The coronaviral encoded proteins involved in host-cell entry, replication, and host-cell invading mechanism are potentially therapeutic targets. This perspective review provides the molecular overview of SARS-CoV-2 life cycle for summarizing potential drug targets, structural insights, active site contour map analyses of those selected SARS-CoV-2 protein targets for drug discovery, immunology, and pathogenesis.
Collapse
Affiliation(s)
- Chandrabose Selvaraj
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi-630004, Tamil Nadu. India
| | | | - Petra Krafcikova
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nam. 2, 166 10 Prague 6. Czech Republic
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nam. 2, 166 10 Prague 6. Czech Republic
| | - Murali Aarthy
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi-630004, Tamil Nadu. India
| | - Muthuraja Arun Pravin
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi-630004, Tamil Nadu. India
| | - Sanjeev Kumar Singh
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi-630004, Tamil Nadu. India
| |
Collapse
|
76
|
AYIPO YO, YAHAYA SN, BABAMALE HF, AHMAD I, PATEL H, MORDI MN. β-Carboline alkaloids induce structural plasticity and inhibition of SARS-CoV-2 nsp3 macrodomain more potently than remdesivir metabolite GS-441524: computational approach. Turk J Biol 2021; 45:503-517. [PMID: 34803450 PMCID: PMC8573841 DOI: 10.3906/biy-2106-64] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 07/31/2021] [Indexed: 12/28/2022] Open
Abstract
The nsp3 macrodomain is implicated in the viral replication, pathogenesis and host immune responses through the removal of ADP-ribosylation sites during infections of coronaviruses including the SARS-CoV-2. It has ever been modulated by macromolecules including the ADP-ribose until Ni and co-workers recently reported its inhibition and plasticity enhancement unprecedentedly by remdesivir metabolite, GS-441524, creating an opportunity for investigating other biodiverse small molecules such as β-Carboline (βC) alkaloids. In this study, 1497 βC analogues from the HiT2LEAD chemical database were screened, using computational approaches of Glide XP docking, molecular dynamics simulation and pk-CSM ADMET predictions. Selectively, βC ligands, 129, 584, 1303 and 1323 demonstrated higher binding affinities to the receptor, indicated by XP docking scores of -10.72, -10.01, -9.63 and -9.48 kcal/mol respectively than remdesivir and GS-441524 with -4.68 and -9.41 kcal/mol respectively. Consistently, their binding free energies were -36.07, -23.77, -24.07 and -17.76 kcal/mol respectively, while remdesivir and GS-441524 showed -21.22 and -24.20 kcal/mol respectively. Interestingly, the selected βC ligands displayed better stability and flexibility for enhancing the plasticity of the receptor than GS-441524, especially 129 and 1303. Their predicted ADMET parameters favour druggability and low expressions for toxicity. Thus, they are recommended as promising adjuvant/standalone anti-SARS-CoV-2 candidates for further study.Key words: SARS-CoV-2, nsp3 macrodomain, ADP-ribose, β-carboline, bioinformatics, drug design.
Collapse
Affiliation(s)
- Yusuf Oloruntoyin AYIPO
- Centre for Drug Research, Universiti Sains Malaysia, Pulau PinangMalaysia
- Department of Chemical, Geological and Physical Sciences, Kwara State University, IlorinNigeria
| | - Sani Najib YAHAYA
- Centre for Drug Research, Universiti Sains Malaysia, Pulau PinangMalaysia
- Department of Pharmaceutical and Medicinal Chemistry, Bayero University, KanoNigeria
| | - Halimah Funmilayo BABAMALE
- School of Chemical Sciences, Universiti Sains Malaysia, Pulau PinangMalaysia
- Department of Industrial Chemistry, University of Ilorin, IlorinNigeria
| | - Iqrar AHMAD
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, MaharashtraIndia
| | - Harun PATEL
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, MaharashtraIndia
| | - Mohd Nizam MORDI
- Centre for Drug Research, Universiti Sains Malaysia, Pulau PinangMalaysia
| |
Collapse
|
77
|
Hoch NC. Host ADP-ribosylation and the SARS-CoV-2 macrodomain. Biochem Soc Trans 2021; 49:1711-1721. [PMID: 34351418 PMCID: PMC8421052 DOI: 10.1042/bst20201212] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 11/29/2022]
Abstract
The COVID-19 pandemic has prompted intense research efforts into elucidating mechanisms of coronavirus pathogenesis and to propose antiviral interventions. The interferon (IFN) response is the main antiviral component of human innate immunity and is actively suppressed by several non-structural SARS-CoV-2 proteins, allowing viral replication within human cells. Differences in IFN signalling efficiency and timing have emerged as central determinants of the variability of COVID-19 disease severity between patients, highlighting the need for an improved understanding of host-pathogen interactions that affect the IFN response. ADP-ribosylation is an underexplored post-translational modification catalyzed by ADP-ribosyl transferases collectively termed poly(ADP-ribose) polymerases (PARPs). Several human PARPs are induced by the IFN response and participate in antiviral defences by regulating IFN signalling itself, modulating host processes such as translation and protein trafficking, as well as directly modifying and inhibiting viral target proteins. SARS-CoV-2 and other viruses encode a macrodomain that hydrolyzes ADP-ribose modifications, thus counteracting antiviral PARP activity. This mini-review provides a brief overview of the known targets of IFN-induced ADP-ribosylation and the functions of viral macrodomains, highlighting several open questions in the field.
Collapse
Affiliation(s)
- Nicolas C. Hoch
- Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
78
|
Bai C, Zhong Q, Gao GF. Overview of SARS-CoV-2 genome-encoded proteins. SCIENCE CHINA-LIFE SCIENCES 2021; 65:280-294. [PMID: 34387838 PMCID: PMC8362648 DOI: 10.1007/s11427-021-1964-4] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/17/2021] [Indexed: 02/06/2023]
Abstract
Severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) has spread rapidly throughout the world. SARS-CoV-2 is an enveloped, plus-stranded RNA virus with a single-stranded RNA genome of approximately 30,000 nucleotides. The SARS-CoV-2 genome encodes 29 proteins, including 16 nonstructural, 4 structural and 9 accessory proteins. To date, over 1,228 experimental structures of SARS-CoV-2 proteins have been deposited in the Protein Data Bank (PDB), including 16 protein structures, two functional domain structures of nucleocapsid (N) protein, and scores of complexes. Overall, they exhibit high similarity to SARS-CoV proteins. Here, we summarize the progress of structural and functional research on SARS-CoV-2 proteins. These studies provide structural and functional insights into proteins of SARS-CoV-2, and further elucidate the daedal relationship between different components at the atomic level in the viral life cycle, including attachment to the host cell, viral genome replication and transcription, genome packaging and assembly, and virus release. It is important to understand the structural and functional properties of SARS-CoV-2 proteins as it will facilitate the development of anti-CoV drugs and vaccines to prevent and control the current SARS-CoV-2 pandemic.
Collapse
Affiliation(s)
- Chongzhi Bai
- CAS Key Laboratory of Pathogenic Microbiology & Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,Central Laboratory, Shanxi Province Hospital of Traditional Chinese Medicine, Taiyuan, 030012, China.,Shanxi Academy of Advanced Research and Innovation, Taiyuan, 030032, China
| | - Qiming Zhong
- Central Laboratory, Shanxi Province Hospital of Traditional Chinese Medicine, Taiyuan, 030012, China
| | - George Fu Gao
- CAS Key Laboratory of Pathogenic Microbiology & Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China. .,Shanxi Academy of Advanced Research and Innovation, Taiyuan, 030032, China.
| |
Collapse
|
79
|
Russo LC, Tomasin R, Matos IA, Manucci AC, Sowa ST, Dale K, Caldecott KW, Lehtiö L, Schechtman D, Meotti FC, Bruni-Cardoso A, Hoch NC. The SARS-CoV-2 Nsp3 macrodomain reverses PARP9/DTX3L-dependent ADP-ribosylation induced by interferon signaling. J Biol Chem 2021; 297:101041. [PMID: 34358560 PMCID: PMC8332738 DOI: 10.1016/j.jbc.2021.101041] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/16/2021] [Accepted: 08/02/2021] [Indexed: 11/26/2022] Open
Abstract
SARS-CoV-2 nonstructural protein 3 (Nsp3) contains a macrodomain that is essential for coronavirus pathogenesis and is thus an attractive target for drug development. This macrodomain is thought to counteract the host interferon (IFN) response, an important antiviral signalling cascade, via the reversal of protein ADP-ribosylation, a posttranslational modification catalyzed by host poly(ADP-ribose) polymerases (PARPs). However, the main cellular targets of the coronavirus macrodomain that mediate this effect are currently unknown. Here, we use a robust immunofluorescence-based assay to show that activation of the IFN response induces ADP-ribosylation of host proteins and that ectopic expression of the SARS-CoV-2 Nsp3 macrodomain reverses this modification in human cells. We further demonstrate that this assay can be used to screen for on-target and cell-active macrodomain inhibitors. This IFN-induced ADP-ribosylation is dependent on PARP9 and its binding partner DTX3L, but surprisingly the expression of the Nsp3 macrodomain or the deletion of either PARP9 or DTX3L does not impair IFN signaling or the induction of IFN-responsive genes. Our results suggest that PARP9/DTX3L-dependent ADP-ribosylation is a downstream effector of the host IFN response and that the cellular function of the SARS-CoV-2 Nsp3 macrodomain is to hydrolyze this end product of IFN signaling, rather than to suppress the IFN response itself.
Collapse
Affiliation(s)
- Lilian Cristina Russo
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Rebeka Tomasin
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Isaac Araújo Matos
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Antonio Carlos Manucci
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Sven T Sowa
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Katie Dale
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| | - Keith W Caldecott
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| | - Lari Lehtiö
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Deborah Schechtman
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Flavia C Meotti
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Alexandre Bruni-Cardoso
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Nicolas Carlos Hoch
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
80
|
Kim C, Mahasenan KV, Bhardwaj A, Wiest O, Chang M, Mobashery S. Production of Proteins of the SARS-CoV-2 Proteome for Drug Discovery. ACS OMEGA 2021; 6:19983-19994. [PMID: 34337272 PMCID: PMC8315141 DOI: 10.1021/acsomega.1c02984] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/06/2021] [Indexed: 05/09/2023]
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the causative agent of the coronavirus disease of 2019 (COVID-19). Its genome encodes two open reading frames for two large proteins, PP1a and PP1ab. Within the two polypeptide stretches, there are two proteases that process the large proteins into 15 discrete proteins essential for the assembly of the virion during its replication. We describe herein the cloning of the genes for these discrete proteins optimized for expression in Escherichia coli, production of the proteins, and their purification to homogeneity. These included all but six: NSP6, which possesses eight transmembrane regions, and five that are small proteins/peptides (E, ORF3b, ORF6, ORF7b, and ORF10). These proteins are intended for experimental validation of small-molecule binders as molecular template hits. The proof of concept was established with the ADP-ribosylhydrolase (ARH) domain of NSP3 in discovery of small-molecule templates that could serve as the basis for further optimization. The hit molecules include one submicromolar and a few low-micromolar binders to the ARH domain. Availability of these proteins in soluble forms opens up the opportunity for discoveries of novel templates with the potential for anti-COVID-19 pharmaceuticals.
Collapse
|
81
|
Lin Z, Qing H, Li R, Zheng L, Yao H. Evolution trace of SARS-CoV-2 from January 19 to March 12, 2020, in the United States. J Med Virol 2021; 93:6595-6604. [PMID: 34292617 PMCID: PMC8426869 DOI: 10.1002/jmv.27225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 07/13/2021] [Indexed: 01/18/2023]
Abstract
As a kind of human betacoronavirus, SARS‐CoV‐2 has endangered globally public health. As of January 2021, the virus had resulted in 2,209,195 deaths. By studying the evolution trend and characteristics of 265 SARS‐CoV‐2 strains in the United States from January to March, it is found that the strains can be divided into six clades, USA clade‐1, USA clade‐2, USA clade‐3, USA clade‐4, USA clade‐5, and USA clade‐6, in which US clade‐1 may be the most ancestral clade, USA clade‐2 is an interim clade of USA clade‐1 and USA clade‐3, the other three clades have similar codon usage pattern, while USA clade‐6 is the newest and most adaptable clade. Mismatch analysis and protein alignment showed that the evolution of the clades arises from some special mutations in viral proteins, which may help the strain to invade, replicate, transcribe and so on. Compared with previous research and classifications, we suggest that clade O in GISAID should not be an independent clade and Wuhan‐Hu‐1 (EPI_ISL_402125) should not be an ancestral reference sequence. Our study decoded the evolutionary dynamic of SARS‐CoV‐2 in the early stage from the United States, which give some clues to infer the current evolution trend of SARS‐CoV‐2 and study the function of viral mutational protein. Basing on decoding the characteristics and evolution process of SARS‐CoV‐2 in the early stage of the USA, it is suggested that the clade O in GISAID should not be as an independent evolutionary clade by phylogenetic analysis or protein alignment. Secondly, Wuhan‐Hu‐1 (EPI_ISL_402125) should not be as an ancestral reference sequence and its candidate should be EPI_ISL_529213. Thirdly, many unique mutation sites in viral proteins were found to lay foundation to study the function of the mutational protein and to reveal the evolution trend of SARS‐CoV‐2 in coming days.
Collapse
Affiliation(s)
- Ziying Lin
- College of Life Science, Sichuan Agriculture University, Ya'an, China
| | - Hua Qing
- College of Life Science, Sichuan Agriculture University, Ya'an, China
| | - Rui Li
- College of Life Science, Sichuan Agriculture University, Ya'an, China
| | | | - Huipeng Yao
- College of Life Science, Sichuan Agriculture University, Ya'an, China
| |
Collapse
|
82
|
Unique Mutations in the Murine Hepatitis Virus Macrodomain Differentially Attenuate Virus Replication, Indicating Multiple Roles for the Macrodomain in Coronavirus Replication. J Virol 2021; 95:e0076621. [PMID: 34011547 DOI: 10.1128/jvi.00766-21] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
All coronaviruses (CoVs) contain a macrodomain, also termed Mac1, in nonstructural protein 3 (nsp3) that binds and hydrolyzes mono-ADP-ribose (MAR) covalently attached to proteins. Despite several reports demonstrating that Mac1 is a prominent virulence factor, there is still a limited understanding of its cellular roles during infection. Currently, most of the information regarding the role of CoV Mac1 during infection is based on a single point mutation of a highly conserved asparagine residue, which makes contact with the distal ribose of ADP-ribose. To determine if additional Mac1 activities contribute to CoV replication, we compared the replication of murine hepatitis virus (MHV) Mac1 mutants, D1329A and N1465A, to the previously mentioned asparagine mutant, N1347A. These residues contact the adenine and proximal ribose in ADP-ribose, respectively. N1465A had no effect on MHV replication or pathogenesis, while D1329A and N1347A both replicated poorly in bone marrow-derived macrophages (BMDMs), were inhibited by PARP enzymes, and were highly attenuated in vivo. Interestingly, D1329A was also significantly more attenuated than N1347A in all cell lines tested. Conversely, D1329A retained some ability to block beta interferon (IFN-β) transcript accumulation compared to N1347A, indicating that these mutations have different effects on Mac1 functions. Combining these two mutations resulted in a virus that was unrecoverable, suggesting that the combined activities of Mac1 are essential for MHV replication. We conclude that Mac1 has multiple functions that promote the replication of MHV, and that these results provide further evidence that Mac1 is a prominent target for anti-CoV therapeutics. IMPORTANCE In the wake of the COVID-19 epidemic, there has been a surge to better understand how CoVs replicate and to identify potential therapeutic targets that could mitigate disease caused by SARS-CoV-2 and other prominent CoVs. The highly conserved macrodomain, also termed Mac1, is a small domain within nonstructural protein 3. It has received significant attention as a potential drug target, as previous studies demonstrated that it is essential for CoV pathogenesis in multiple animal models of infection. However, the functions of Mac1 during infection remain largely unknown. Here, using targeted mutations in different regions of Mac1, we found that Mac1 has multiple functions that promote the replication of MHV, a model CoV, and, therefore, is more important for MHV replication than previously appreciated. These results will help guide the discovery of these novel functions of Mac1 and the development of inhibitory compounds targeting this domain.
Collapse
|
83
|
Understanding individual SARS-CoV-2 proteins for targeted drug development against COVID-19. Mol Cell Biol 2021; 41:e0018521. [PMID: 34124934 PMCID: PMC8384068 DOI: 10.1128/mcb.00185-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the COVID-19 pandemic, responsible for millions of deaths globally. Even with effective vaccines, SARS-CoV-2 will likely maintain a hold in the human population through gaps in efficacy, percent vaccinated, and arising new strains. Therefore, understanding how SARS-CoV-2 causes widespread tissue damage and the development of targeted pharmacological treatments will be critical in fighting this virus and preparing for future outbreaks. Herein, we summarize the progress made thus far by using in vitro or in vivo models to investigate individual SARS-CoV-2 proteins and their pathogenic mechanisms. We have grouped the SARS-CoV-2 proteins into three categories: host entry, self-acting, and host interacting. This review focuses on the self-acting and host-interacting SARS-CoV-2 proteins and summarizes current knowledge on how these proteins promote virus replication and disrupt host systems, as well as drugs that target the virus and virus interacting host proteins. Encouragingly, many of these drugs are currently in clinical trials for the treatment of COVID-19. Future coronavirus outbreaks will most likely be caused by new virus strains that evade vaccine protection through mutations in entry proteins. Therefore, study of individual self-acting and host-interacting SARS-CoV-2 proteins for targeted therapeutic interventions is not only essential for fighting COVID-19 but also valuable against future coronavirus outbreaks.
Collapse
|
84
|
Zha JJ, Tang Y, Wang YL. Role of mono-ADP-ribosylation histone modification (Review). Exp Ther Med 2021; 21:577. [PMID: 33850549 PMCID: PMC8027728 DOI: 10.3892/etm.2021.10009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
The current knowledge regarding ADP-ribosylation modifications of histones, particularly mono-ADP-ribosylation modifications, is limited. However, recent studies have identified an increasing number of mono-ADP-ribosyltransferases and the role of mono-ADP-ribosylation has become a hot research topic. In particular, histones that are substrates of several mono-ADP-ribosyltransferases and mono-ADP-ribosylated histones were indicated to be involved in numerous physiological or pathological processes. Compared to poly-ADP-ribosylation histone modification, the use of mono-ADP-ribosylation histone modification is restricted by the limited methods for research into its function in physiological or pathological processes. The aim of the present review was to discuss the details regarding mono-ADP-ribosylation modification of histones and the currently known functions thereof, such as cell physiological and pathological processes, including tumorigenesis.
Collapse
Affiliation(s)
- Jing-Jing Zha
- Pathological Department, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yi Tang
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Ya-Lan Wang
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
85
|
Bajusz D, Wade WS, Satała G, Bojarski AJ, Ilaš J, Ebner J, Grebien F, Papp H, Jakab F, Douangamath A, Fearon D, von Delft F, Schuller M, Ahel I, Wakefield A, Vajda S, Gerencsér J, Pallai P, Keserű GM. Exploring protein hotspots by optimized fragment pharmacophores. Nat Commun 2021; 12:3201. [PMID: 34045440 PMCID: PMC8159961 DOI: 10.1038/s41467-021-23443-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/29/2021] [Indexed: 02/04/2023] Open
Abstract
Fragment-based drug design has introduced a bottom-up process for drug development, with improved sampling of chemical space and increased effectiveness in early drug discovery. Here, we combine the use of pharmacophores, the most general concept of representing drug-target interactions with the theory of protein hotspots, to develop a design protocol for fragment libraries. The SpotXplorer approach compiles small fragment libraries that maximize the coverage of experimentally confirmed binding pharmacophores at the most preferred hotspots. The efficiency of this approach is demonstrated with a pilot library of 96 fragment-sized compounds (SpotXplorer0) that is validated on popular target classes and emerging drug targets. Biochemical screening against a set of GPCRs and proteases retrieves compounds containing an average of 70% of known pharmacophores for these targets. More importantly, SpotXplorer0 screening identifies confirmed hits against recently established challenging targets such as the histone methyltransferase SETD2, the main protease (3CLPro) and the NSP3 macrodomain of SARS-CoV-2.
Collapse
Affiliation(s)
- Dávid Bajusz
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Budapest, Hungary
| | | | - Grzegorz Satała
- Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| | - Andrzej J Bojarski
- Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| | - Janez Ilaš
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Jessica Ebner
- Institute for Medical Biochemistry, University of Veterinary Medicine, Vienna, Austria
| | - Florian Grebien
- Institute for Medical Biochemistry, University of Veterinary Medicine, Vienna, Austria
| | - Henrietta Papp
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Ferenc Jakab
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Alice Douangamath
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, OX11 0FA, UK
| | - Daren Fearon
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, OX11 0FA, UK
| | - Frank von Delft
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, OX11 0FA, UK
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Headington, OX3 7DQ, UK
- Centre for Medicines Discovery, University of Oxford, Old Road Campus, Roosevelt Drive, Headington, OX3 7DQ, UK
- Department of Biochemistry, University of Johannesburg, Auckland Park, 2006, South Africa
| | - Marion Schuller
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Amanda Wakefield
- Department of Chemistry, Boston University, Boston, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Sándor Vajda
- Department of Chemistry, Boston University, Boston, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | | | | | - György M Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Budapest, Hungary.
| |
Collapse
|
86
|
Fu W, Yao H, Bütepage M, Zhao Q, Lüscher B, Li J. The search for inhibitors of macrodomains for targeting the readers and erasers of mono-ADP-ribosylation. Drug Discov Today 2021; 26:2547-2558. [PMID: 34023495 DOI: 10.1016/j.drudis.2021.05.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/13/2021] [Accepted: 05/14/2021] [Indexed: 01/15/2023]
Abstract
Macrodomains are evolutionarily conserved structural elements. Many macrodomains feature as binding modules of ADP-ribose, thus participating in the recognition and removal of mono- and poly-ADP-ribosylation. Macrodomains are involved in the regulation of a variety of physiological processes and represent valuable therapeutic targets. Moreover, as part of the nonstructural proteins of certain viruses, macrodomains are also pivotal for viral replication and pathogenesis. Thus, targeting viral macrodomains with inhibitors is considered to be a promising antiviral intervention. In this review, we summarize our current understanding of human and viral macrodomains that are related to mono-ADP-ribosylation, with emphasis on the search for inhibitors. The advances summarized here will be helpful for the design of macrodomain-specific agents for therapeutic and diagnostic applications.
Collapse
Affiliation(s)
- Wei Fu
- College of Chemistry, Fuzhou University, 350116 Fuzhou, China
| | - Huiqiao Yao
- College of Chemistry, Fuzhou University, 350116 Fuzhou, China
| | - Mareike Bütepage
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, 52057 Aachen, Germany
| | - Qianqian Zhao
- College of Chemistry, Fuzhou University, 350116 Fuzhou, China
| | - Bernhard Lüscher
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, 52057 Aachen, Germany.
| | - Jinyu Li
- College of Chemistry, Fuzhou University, 350116 Fuzhou, China.
| |
Collapse
|
87
|
Mikolčević P, Hloušek-Kasun A, Ahel I, Mikoč A. ADP-ribosylation systems in bacteria and viruses. Comput Struct Biotechnol J 2021; 19:2366-2383. [PMID: 34025930 PMCID: PMC8120803 DOI: 10.1016/j.csbj.2021.04.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 12/30/2022] Open
Abstract
ADP-ribosylation is an ancient posttranslational modification present in all kingdoms of life. The system likely originated in bacteria where it functions in inter- and intra-species conflict, stress response and pathogenicity. It was repeatedly adopted via lateral transfer by eukaryotes, including humans, where it has a pivotal role in epigenetics, DNA-damage repair, apoptosis, and other crucial pathways including the immune response to pathogenic bacteria and viruses. In other words, the same ammunition used by pathogens is adapted by eukaryotes to fight back. While we know quite a lot about the eukaryotic system, expanding rather patchy knowledge on bacterial and viral ADP-ribosylation would give us not only a better understanding of the system as a whole but a fighting advantage in this constant arms race. By writing this review we hope to put into focus the available information and give a perspective on how this system works and can be exploited in the search for therapeutic targets in the future. The relevance of the subject is especially highlighted by the current situation of being amid the world pandemic caused by a virus harbouring and dependent on a representative of such a system.
Collapse
Affiliation(s)
- Petra Mikolčević
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | | | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, UK
| | - Andreja Mikoč
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
88
|
Rosado MM, Pioli C. ADP-ribosylation in evasion, promotion and exacerbation of immune responses. Immunology 2021; 164:15-30. [PMID: 33783820 DOI: 10.1111/imm.13332] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/15/2021] [Accepted: 03/23/2021] [Indexed: 12/13/2022] Open
Abstract
ADP-ribosylation is the addition of one or more (up to some hundreds) ADP-ribose moieties to acceptor proteins. This evolutionary ancient post-translational modification (PTM) is involved in fundamental processes including DNA repair, inflammation, cell death, differentiation and proliferation, among others. ADP-ribosylation is catalysed by two major families of enzymes: the cholera toxin-like ADP-ribosyltransferases (ARTCs) and the diphtheria toxin-like ADP-ribosyltransferases (ARTDs, also known as PARPs). ARTCs sense and use extracellular NAD, which may represent a danger signal, whereas ARTDs are present in the cell nucleus and/or cytoplasm. ARTCs mono-ADP-ribosylate their substrates, whereas ARTDs, according to the specific family member, are able to mono- or poly-ADP-ribosylate target proteins or are devoid of enzymatic activity. Both mono- and poly-ADP-ribosylation are dynamic processes, as specific hydrolases are able to remove single or polymeric ADP moieties. This dynamic equilibrium between addition and degradation provides plasticity for fast adaptation, a feature being particularly relevant to immune cell functions. ADP-ribosylation regulates differentiation and functions of myeloid, T and B cells. It also regulates the expression of cytokines and chemokines, production of antibodies, isotype switch and the expression of several immune mediators. Alterations in these processes involve ADP-ribosylation in virtually any acute and chronic inflammatory/immune-mediated disease. Besides, pathogens developed mechanisms to contrast the action of ADP-ribosylating enzymes by using their own hydrolases and/or to exploit this PTM to sustain their virulence. In the present review, we summarize and discuss recent findings on the role of ADP-ribosylation in immunobiology, immune evasion/subversion by pathogens and immune-mediated diseases.
Collapse
Affiliation(s)
| | - Claudio Pioli
- Division of Health Protection Technologies, ENEA, Rome, Italy
| |
Collapse
|
89
|
Ni X, Schröder M, Olieric V, Sharpe ME, Hernandez-Olmos V, Proschak E, Merk D, Knapp S, Chaikuad A. Structural Insights into Plasticity and Discovery of Remdesivir Metabolite GS-441524 Binding in SARS-CoV-2 Macrodomain. ACS Med Chem Lett 2021; 12:603-609. [PMID: 33850605 PMCID: PMC7986975 DOI: 10.1021/acsmedchemlett.0c00684] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/11/2021] [Indexed: 12/14/2022] Open
Abstract
The nsP3 macrodomain is a conserved protein interaction module that plays essential regulatory roles in the host immune response by recognizing and removing posttranslational ADP-ribosylation sites during SARS-CoV-2 infection. Thus targeting this protein domain may offer a therapeutic strategy to combat current and future virus pandemics. To assist inhibitor development efforts, we report here a comprehensive set of macrodomain crystal structures complexed with diverse naturally occurring nucleotides, small molecules, and nucleotide analogues including GS-441524 and its phosphorylated analogue, active metabolites of remdesivir. The presented data strengthen our understanding of the SARS-CoV-2 macrodomain structural plasticity and provide chemical starting points for future inhibitor development.
Collapse
Affiliation(s)
- Xiaomin Ni
- Structural
Genomics Consortium, Buchmann Institute
for Molecular Life Sciences, 60438 Frankfurt am Main, Germany
- Institute
of Pharmaceutical Chemistry, Goethe University
Frankfurt, 60438 Frankfurt am Main, Germany
| | - Martin Schröder
- Structural
Genomics Consortium, Buchmann Institute
for Molecular Life Sciences, 60438 Frankfurt am Main, Germany
- Institute
of Pharmaceutical Chemistry, Goethe University
Frankfurt, 60438 Frankfurt am Main, Germany
| | - Vincent Olieric
- Swiss
Light Source, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - May E. Sharpe
- Swiss
Light Source, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Victor Hernandez-Olmos
- Fraunhofer
Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany
| | - Ewgenij Proschak
- Institute
of Pharmaceutical Chemistry, Goethe University
Frankfurt, 60438 Frankfurt am Main, Germany
- Fraunhofer
Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany
| | - Daniel Merk
- Institute
of Pharmaceutical Chemistry, Goethe University
Frankfurt, 60438 Frankfurt am Main, Germany
| | - Stefan Knapp
- Structural
Genomics Consortium, Buchmann Institute
for Molecular Life Sciences, 60438 Frankfurt am Main, Germany
- Institute
of Pharmaceutical Chemistry, Goethe University
Frankfurt, 60438 Frankfurt am Main, Germany
| | - Apirat Chaikuad
- Structural
Genomics Consortium, Buchmann Institute
for Molecular Life Sciences, 60438 Frankfurt am Main, Germany
- Institute
of Pharmaceutical Chemistry, Goethe University
Frankfurt, 60438 Frankfurt am Main, Germany
| |
Collapse
|
90
|
Gallo A, Tsika AC, Fourkiotis NK, Cantini F, Banci L, Sreeramulu S, Schwalbe H, Spyroulias GA. 1H, 13C and 15N chemical shift assignments of the SUD domains of SARS-CoV-2 non-structural protein 3c: "the N-terminal domain-SUD-N". BIOMOLECULAR NMR ASSIGNMENTS 2021; 15:85-89. [PMID: 33225414 PMCID: PMC7680711 DOI: 10.1007/s12104-020-09987-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/13/2020] [Indexed: 06/11/2023]
Abstract
Among the proteins encoded by the SARS-CoV-2 RNA, nsP3 (non-structural Protein3) is the largest multi-domain protein. Its role is multifaceted and important for the viral life cycle. Nonetheless, regarding the specific role of each domain there are many aspects of their function that have to be investigated. SARS Unique Domains (SUDs), constitute the nsP3c region of the nsP3, and were observed for the first time in SARS-CoV. Two of them, namely SUD-N (the first SUD) and the SUD-M (sequential to SUD-N), exhibit structural homology with nsP3b ("X" or macro domain); indeed all of them are folded in a three-layer α/β/α sandwich. On the contrary, they do not exhibit functional similarities, like ADP-ribose binding properties and ADP-ribose hydrolase activity. There are reports that suggest that these two SUDs may exhibit a binding selectivity towards G-oligonucleotides, a feature which may contribute to the characterization of their role in the formation of the replication/transcription viral complex (RTC) and of the interaction of various viral "components" with the host cell. While the structures of these domains of SARS-CoV-2 have not been determined yet, SUDs interaction with oligonucleotides and/or RNA molecules may provide a platform for drug discovery. Here, we report the almost complete NMR backbone and side-chain resonance assignment (1H,13C,15N) of SARS-CoV-2 SUD-N protein, and the NMR chemical shift-based prediction of the secondary structure elements. These data may be exploited for its 3D structure determination and the screening of chemical compounds libraries, which may alter SUD-N function.
Collapse
Affiliation(s)
- Angelo Gallo
- Department of Pharmacy, University of Patras, GR-26504 Patras, Greece
| | | | | | - Francesca Cantini
- Magnetic Resonance Center–CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy
- Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Lucia Banci
- Magnetic Resonance Center–CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy
- Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Sridhar Sreeramulu
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt/M., Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt/M., Germany
| | | |
Collapse
|
91
|
Abstract
This medical review addresses the hypothesis that CD38/NADase is at the center of a functional axis (i.e., intracellular Ca2+ mobilization/IFNγ response/reactive oxygen species burst) driven by severe acute respiratory syndrome coronavirus 2 infection, as already verified in respiratory syncytial virus pathology and CD38 activity in other cellular settings. Key features of the hypothesis are that 1) the substrates of CD38 (e.g., NAD+ and NADP+) are depleted by viral-induced metabolic changes; 2) the products of the enzymatic activity of CD38 [e.g., cyclic adenosine diphosphate-ribose (ADPR)/ADPR/nicotinic acid adenine dinucleotide phosphate] and related enzymes [e.g., poly(ADP-ribose)polymerase, Sirtuins, and ADP-ribosyl hydrolase] are involved in the anti‐viral and proinflammatory response that favors the onset of lung immunopathology (e.g., cytokine storm and organ fibrosis); and 3) the pathological changes induced by this kinetic mechanism may be reduced by distinct modulators of the CD38/NAD+ axis (e.g., CD38 blockers, NAD+ suppliers, among others). This view is supported by arrays of associative basic and applied research data that are herein discussed and integrated with conclusions reported by others in the field of inflammatory, immune, tumor, and viral diseases.
Collapse
Affiliation(s)
- Alberto L Horenstein
- Department of Medical Science, University of Turin, Turin, Italy; and Centro Ricerca Medicina, Sperimentale (CeRMS) and Fondazione Ricerca Molinette Onlus, Turin, Italy
| | - Angelo C Faini
- Department of Medical Science, University of Turin, Turin, Italy; and Centro Ricerca Medicina, Sperimentale (CeRMS) and Fondazione Ricerca Molinette Onlus, Turin, Italy
| | - Fabio Malavasi
- Department of Medical Science, University of Turin, Turin, Italy; and Centro Ricerca Medicina, Sperimentale (CeRMS) and Fondazione Ricerca Molinette Onlus, Turin, Italy
| |
Collapse
|
92
|
Wang C, Konecki DM, Marciano DC, Govindarajan H, Williams AM, Wastuwidyaningtyas B, Bourquard T, Katsonis P, Lichtarge O. Identification of evolutionarily stable functional and immunogenic sites across the SARS-CoV-2 proteome and the greater coronavirus family. RESEARCH SQUARE 2021:rs.3.rs-95030. [PMID: 33106800 PMCID: PMC7587783 DOI: 10.21203/rs.3.rs-95030/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Since the first recognized case of COVID-19, more than 100 million people have been infected worldwide. Global efforts in drug and vaccine development to fight the disease have yielded vaccines and drug candidates to cure COVID-19. However, the spread of SARS-CoV-2 variants threatens the continued efficacy of these treatments. In order to address this, we interrogate the evolutionary history of the entire SARS-CoV-2 proteome to identify evolutionarily conserved functional sites that can inform the search for treatments with broader coverage across the coronavirus family. Combining this information with the mutations observed in the current COVID-19 outbreak, we systematically and comprehensively define evolutionarily stable sites that may provide useful drug and vaccine targets and which are less likely to be compromised by the emergence of new virus strains. Several experimentally-validated effective drugs interact with these proposed target sites. In addition, the same evolutionary information can prioritize cross reactive antigens that are useful in directing multi-epitope vaccine strategies to illicit broadly neutralizing immune responses to the betacoronavirus family. Although the results are focused on SARS-CoV-2, these approaches stem from evolutionary principles that are agnostic to the organism or infective agent.
Collapse
Affiliation(s)
- Chen Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Daniel M. Konecki
- Quantitative and Computational Biosciences Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - David C. Marciano
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Harikumar Govindarajan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Amanda M. Williams
- Cancer and Cell Biology Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Thomas Bourquard
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- MAbSilico, Nouzilly, Centre, France, EU
| | - Panagiotis Katsonis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Olivier Lichtarge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Quantitative and Computational Biosciences Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
- Cancer and Cell Biology Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
- Computational and Integrative Biomedical Research Center, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
93
|
Arya R, Kumari S, Pandey B, Mistry H, Bihani SC, Das A, Prashar V, Gupta GD, Panicker L, Kumar M. Structural insights into SARS-CoV-2 proteins. J Mol Biol 2021; 433:166725. [PMID: 33245961 PMCID: PMC7685130 DOI: 10.1016/j.jmb.2020.11.024] [Citation(s) in RCA: 226] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/19/2020] [Accepted: 11/19/2020] [Indexed: 01/18/2023]
Abstract
The unprecedented scale of the ongoing COVID-19 pandemic has catalyzed an intense effort of the global scientific community to unravel different aspects of the disease in a short time. One of the crucial aspects of these developments is the determination of more than three hundred experimental structures of SARS-CoV-2 proteins in the last few months. These include structures of viral non-structural, structural, and accessory proteins and their complexes determined by either X-ray diffraction or cryo-electron microscopy. These structures elucidate the intricate working of different components of the viral machinery at the atomic level during different steps of the viral life cycle, including attachment to the host cell, viral genome replication and transcription, and genome packaging and assembly of the virion. Some of these proteins are also potential targets for drug development against the disease. In this review, we discuss important structural features of different SARS-CoV-2 proteins with their function, and their potential as a target for therapeutic interventions.
Collapse
Affiliation(s)
- Rimanshee Arya
- Protein Crystallography Section, Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Shweta Kumari
- Protein Crystallography Section, Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Bharati Pandey
- Protein Crystallography Section, Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Hiral Mistry
- Protein Crystallography Section, Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Subhash C Bihani
- Protein Crystallography Section, Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Amit Das
- Protein Crystallography Section, Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Vishal Prashar
- Protein Crystallography Section, Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Gagan D Gupta
- Protein Crystallography Section, Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Lata Panicker
- Protein Crystallography Section, Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Mukesh Kumar
- Protein Crystallography Section, Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
94
|
Abdel Hameid R, Cormet-Boyaka E, Kuebler WM, Uddin M, Berdiev BK. SARS-CoV-2 may hijack GPCR signaling pathways to dysregulate lung ion and fluid transport. Am J Physiol Lung Cell Mol Physiol 2021; 320:L430-L435. [PMID: 33434105 PMCID: PMC7938641 DOI: 10.1152/ajplung.00499.2020] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The tropism of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a virus responsible for the ongoing coronavirus disease 2019 (COVID-19) pandemic, toward the host cells is determined, at least in part, by the expression and distribution of its cell surface receptor, angiotensin-converting enzyme 2 (ACE2). The virus further exploits the host cellular machinery to gain access into the cells; its spike protein is cleaved by a host cell surface transmembrane serine protease 2 (TMPRSS2) shortly after binding ACE2, followed by its proteolytic activation at a furin cleavage site. The virus primarily targets the epithelium of the respiratory tract, which is covered by a tightly regulated airway surface liquid (ASL) layer that serves as a primary defense mechanism against respiratory pathogens. The volume and viscosity of this fluid layer is regulated and maintained by a coordinated function of different transport pathways in the respiratory epithelium. We argue that SARS-CoV-2 may potentially alter evolutionary conserved second-messenger signaling cascades via activation of G protein-coupled receptors (GPCRs) or by directly modulating G protein signaling. Such signaling may in turn adversely modulate transepithelial transport processes, especially those involving cystic fibrosis transmembrane conductance regulator (CFTR) and epithelial Na+ channel (ENaC), thereby shifting the delicate balance between anion secretion and sodium absorption, which controls homeostasis of this fluid layer. As a result, activation of the secretory pathways including CFTR-mediated Cl− transport may overwhelm the absorptive pathways, such as ENaC-dependent Na+ uptake, and initiate a pathophysiological cascade leading to lung edema, one of the most serious and potentially deadly clinical manifestations of COVID-19.
Collapse
Affiliation(s)
- Reem Abdel Hameid
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | | | - Wolfgang M Kuebler
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Mohammed Uddin
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.,The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Bakhrom K Berdiev
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| |
Collapse
|
95
|
Ayyappan V, Wat R, Barber C, Vivelo CA, Gauch K, Visanpattanasin P, Cook G, Sazeides C, Leung AKL. ADPriboDB 2.0: an updated database of ADP-ribosylated proteins. Nucleic Acids Res 2021; 49:D261-D265. [PMID: 33137182 PMCID: PMC7778992 DOI: 10.1093/nar/gkaa941] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/05/2020] [Accepted: 10/31/2020] [Indexed: 12/21/2022] Open
Abstract
ADP-ribosylation is a protein modification responsible for biological processes such as DNA repair, RNA regulation, cell cycle and biomolecular condensate formation. Dysregulation of ADP-ribosylation is implicated in cancer, neurodegeneration and viral infection. We developed ADPriboDB (adpribodb.leunglab.org) to facilitate studies in uncovering insights into the mechanisms and biological significance of ADP-ribosylation. ADPriboDB 2.0 serves as a one-stop repository comprising 48 346 entries and 9097 ADP-ribosylated proteins, of which 6708 were newly identified since the original database release. In this updated version, we provide information regarding the sites of ADP-ribosylation in 32 946 entries. The wealth of information allows us to interrogate existing databases or newly available data. For example, we found that ADP-ribosylated substrates are significantly associated with the recently identified human protein interaction networks associated with SARS-CoV-2, which encodes a conserved protein domain called macrodomain that binds and removes ADP-ribosylation. In addition, we create a new interactive tool to visualize the local context of ADP-ribosylation, such as structural and functional features as well as other post-translational modifications (e.g. phosphorylation, methylation and ubiquitination). This information provides opportunities to explore the biology of ADP-ribosylation and generate new hypotheses for experimental testing.
Collapse
Affiliation(s)
- Vinay Ayyappan
- Department of Biomedical Engineering, The G.W.C. Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Ricky Wat
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Calvin Barber
- Department of Biophysics, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Christina A Vivelo
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Kathryn Gauch
- Department of Biology, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Pat Visanpattanasin
- Department of Biology, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Garth Cook
- Department of Biology, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Christos Sazeides
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Anthony K L Leung
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Molecular Biology and Genetics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
96
|
Cavasotto CN, Lamas MS, Maggini J. Functional and druggability analysis of the SARS-CoV-2 proteome. Eur J Pharmacol 2021; 890:173705. [PMID: 33137330 PMCID: PMC7604074 DOI: 10.1016/j.ejphar.2020.173705] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/21/2020] [Accepted: 10/29/2020] [Indexed: 02/08/2023]
Abstract
The infectious coronavirus disease (COVID-19) pandemic, caused by the coronavirus SARS-CoV-2, appeared in December 2019 in Wuhan, China, and has spread worldwide. As of today, more than 46 million people have been infected and over 1.2 million fatalities. With the purpose of contributing to the development of effective therapeutics, we performed an in silico determination of binding hot-spots and an assessment of their druggability within the complete SARS-CoV-2 proteome. All structural, non-structural, and accessory proteins have been studied, and whenever experimental structural data of SARS-CoV-2 proteins were not available, homology models were built based on solved SARS-CoV structures. Several potential allosteric or protein-protein interaction druggable sites on different viral targets were identified, knowledge that could be used to expand current drug discovery endeavors beyond the currently explored cysteine proteases and the polymerase complex. It is our hope that this study will support the efforts of the scientific community both in understanding the molecular determinants of this disease and in widening the repertoire of viral targets in the quest for repurposed or novel drugs against COVID-19.
Collapse
Affiliation(s)
- Claudio N Cavasotto
- Computational Drug Design and Biomedical Informatics Laboratory, Translational Medicine Research Institute (IIMT), CONICET-Universidad Austral, Pilar, Buenos Aires, Argentina; Facultad de Ciencias Biomédicas, Facultad de Ingeniería, Universidad Austral, Pilar, Buenos Aires, Argentina; Austral Institute for Applied Artificial Intelligence, Universidad Austral, Pilar, Buenos Aires, Argentina.
| | - Maximiliano Sánchez Lamas
- Austral Institute for Applied Artificial Intelligence, Universidad Austral, Pilar, Buenos Aires, Argentina; Meton AI, Inc., Wilmington, DE, 19801, USA
| | - Julián Maggini
- Austral Institute for Applied Artificial Intelligence, Universidad Austral, Pilar, Buenos Aires, Argentina; Technology Transfer Office, Universidad Austral, Pilar, Buenos Aires, Argentina
| |
Collapse
|
97
|
Yang H, Rao Z. Structural biology of SARS-CoV-2 and implications for therapeutic development. Nat Rev Microbiol 2021; 19:685-700. [PMID: 34535791 PMCID: PMC8447893 DOI: 10.1038/s41579-021-00630-8] [Citation(s) in RCA: 310] [Impact Index Per Article: 77.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2021] [Indexed: 02/04/2023]
Abstract
The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is an unprecedented global health crisis. However, therapeutic options for treatment are still very limited. The development of drugs that target vital proteins in the viral life cycle is a feasible approach for treating COVID-19. Belonging to the subfamily Orthocoronavirinae with the largest RNA genome, SARS-CoV-2 encodes a total of 29 proteins. These non-structural, structural and accessory proteins participate in entry into host cells, genome replication and transcription, and viral assembly and release. SARS-CoV-2 proteins can individually perform essential physiological roles, be components of the viral replication machinery or interact with numerous host cellular factors. In this Review, we delineate the structural features of SARS-CoV-2 from the whole viral particle to the individual viral proteins and discuss their functions as well as their potential as targets for therapeutic interventions.
Collapse
Affiliation(s)
- Haitao Yang
- grid.440637.20000 0004 4657 8879Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zihe Rao
- grid.440637.20000 0004 4657 8879Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China ,grid.12527.330000 0001 0662 3178Laboratory of Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China ,grid.216938.70000 0000 9878 7032State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences and College of Pharmacy, Nankai University, Tianjin, China ,grid.9227.e0000000119573309National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|