51
|
Zou S, Tang J, Zhang Y, Liu L, Li X, Meng Y, Zhao X, Yang L, Shu Y, Wang D. Molecular characterization of H3 subtype avian influenza viruses based on poultry-related environmental surveillance in China between 2014 and 2017. Virology 2020; 542:8-19. [PMID: 31957664 DOI: 10.1016/j.virol.2020.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 12/26/2019] [Accepted: 01/04/2020] [Indexed: 12/17/2022]
Abstract
The H3 subtype avian influenza virus (AIV) poses a threat to both animal and human health. In this study, phylogenetic analysis showed that the H3 AIVs had various genomic constellations and extensive reassortments, increasing genetic diversity and the emergence of new pathogenic viruses that might infect human beings. Molecular analysis demonstrated that the major molecular markers linked to drug resistance were identified in M genes of three studied viruses, and there might be wide range of resistant virus infections in poultry in the future. Although all the H3 viruses preferentially bound to the avian-type receptor, the growth kinetics experiments showed that the selected H3 viruses were capable of efficient replication in mammalian cells, suggesting a potential cross-species transmission of H3 viruses. Overall, our results emphasize the need for continued surveillance of H3 outbreaks and may also help us improve knowledge on H3 AIVs prevention and control.
Collapse
Affiliation(s)
- Shumei Zou
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China.
| | - Jing Tang
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China.
| | - Ye Zhang
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China.
| | - Lijun Liu
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China.
| | - Xiyan Li
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China.
| | - Yao Meng
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China.
| | - Xiang Zhao
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China.
| | - Lei Yang
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China.
| | - Yuelong Shu
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China.
| | - Dayan Wang
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China.
| |
Collapse
|
52
|
Adaptive amino acid substitutions enable transmission of an H9N2 avian influenza virus in guinea pigs. Sci Rep 2019; 9:19734. [PMID: 31875046 PMCID: PMC6930279 DOI: 10.1038/s41598-019-56122-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 12/06/2019] [Indexed: 11/30/2022] Open
Abstract
H9N2 is the most prevalent low pathogenic avian influenza virus (LPAIV) in domestic poultry in the world. Two distinct H9N2 poultry lineages, G1-like (A/quail/Hong Kong/G1/97) and Y280-like (A/Duck/Hong Kong/Y280/1997) viruses, are usually associated with binding affinity for both α 2,3 and α 2,6 sialic acid receptors (avian and human receptors), raising concern whether these viruses possess pandemic potential. To explore the impact of mouse adaptation on the transmissibility of a Y280-like virus A/Chicken/Hubei/214/2017(H9N2) (abbreviated as WT), we performed serial lung-to-lung passages of the WT virus in mice. The mouse-adapted variant (MA) exhibited enhanced pathogenicity and advantaged transmissibility after passaging in mice. Sequence analysis of the complete genomes of the MA virus revealed a total of 16 amino acid substitutions. These mutations distributed across 7 segments including PB2, PB1, PA, NP, HA, NA and NS1 genes. Furthermore, we generated a panel of recombinant or mutant H9N2 viruses using reverse genetics technology and confirmed that the PB2 gene governing the increased pathogenicity and transmissibility. The combinations of 340 K and 588 V in PB2 were important in determining the altered features. Our findings elucidate the specific mutations in PB2 contribute to the phenotype differences and emphasize the importance of monitoring the identified amino acid substitutions due to their potential threat to human health.
Collapse
|
53
|
Lestari, Wibawa H, Lubis EP, Dharmawan R, Rahayu RA, Mulyawan H, Charoenkul K, Nasamran C, Poermadjaja B, Amonsin A. Co-circulation and characterization of HPAI-H5N1 and LPAI-H9N2 recovered from a duck farm, Yogyakarta, Indonesia. Transbound Emerg Dis 2019; 67:994-1007. [PMID: 31770478 DOI: 10.1111/tbed.13434] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/30/2019] [Accepted: 11/18/2019] [Indexed: 01/27/2023]
Abstract
In July 2016, an avian influenza outbreak in duck farms in Yogyakarta province was reported to Disease Investigation Center (DIC), Wates, Indonesia, with approximately 1,000 ducks died or culled. In this study, two avian influenza (AI) virus subtypes, A/duck/Bantul/04161291-OR/2016 (H5N1) and A/duck/Bantul/04161291-OP/2016 (H9N2) isolated from ducks in the same farm during an AI outbreak in Bantul district, Yogyakarta province, were sequenced and characterized. Our results showed that H5N1 virus was closely related to the highly pathogenic AI (HPAI) H5N1 of clade 2.3.2.1c, while the H9N2 virus was clustered with LPAI viruses from China, Vietnam and Indonesia H9N2 (CVI lineage). Genetic analysis revealed virulence characteristics for both in avian and in mammalian species. In summary, co-circulation of HPAI-H5N1 of clade 2.3.2.1c and LPAI-H9N2 was identified in a duck farm during an AI outbreak in Yogyakarta province, Indonesia. Our findings raise a concern of the potential risk of the viruses, which could increase viral transmission and/or threat to human health. Routine surveillance of avian influenza viruses should be continuously conducted to understand the dynamic and diversity of the viruses for influenza prevention and control in Indonesia and SEA region.
Collapse
Affiliation(s)
- Lestari
- Department of Veterinary Public Health, Center of Excellence for Emerging and Re-emerging Infectious Diseases in Animals, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Disease Investigation Center Wates Yogyakarta, Directorate General of Livestock and Animal Health Services, Ministry of Agriculture Indonesia, Yogyakarta, Indonesia
| | - Hendra Wibawa
- Disease Investigation Center Wates Yogyakarta, Directorate General of Livestock and Animal Health Services, Ministry of Agriculture Indonesia, Yogyakarta, Indonesia
| | - Elly Puspasari Lubis
- Disease Investigation Center Wates Yogyakarta, Directorate General of Livestock and Animal Health Services, Ministry of Agriculture Indonesia, Yogyakarta, Indonesia
| | - Rama Dharmawan
- Disease Investigation Center Wates Yogyakarta, Directorate General of Livestock and Animal Health Services, Ministry of Agriculture Indonesia, Yogyakarta, Indonesia
| | - Rina Astuti Rahayu
- Disease Investigation Center Wates Yogyakarta, Directorate General of Livestock and Animal Health Services, Ministry of Agriculture Indonesia, Yogyakarta, Indonesia
| | - Herdiyanto Mulyawan
- Disease Investigation Center Wates Yogyakarta, Directorate General of Livestock and Animal Health Services, Ministry of Agriculture Indonesia, Yogyakarta, Indonesia
| | - Kamonpan Charoenkul
- Department of Veterinary Public Health, Center of Excellence for Emerging and Re-emerging Infectious Diseases in Animals, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Chanakarn Nasamran
- Department of Veterinary Public Health, Center of Excellence for Emerging and Re-emerging Infectious Diseases in Animals, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Bagoes Poermadjaja
- Disease Investigation Center Wates Yogyakarta, Directorate General of Livestock and Animal Health Services, Ministry of Agriculture Indonesia, Yogyakarta, Indonesia
| | - Alongkorn Amonsin
- Department of Veterinary Public Health, Center of Excellence for Emerging and Re-emerging Infectious Diseases in Animals, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
54
|
Song Y, Li W, Wu W, Liu Z, He Z, Chen Z, Zhao B, Wu S, Yang C, Qu X, Liao M, Jiao P. Phylogeny, Pathogenicity, Transmission, and Host Immune Responses of Four H5N6 Avian Influenza Viruses in Chickens and Mice. Viruses 2019; 11:v11111048. [PMID: 31717638 PMCID: PMC6893672 DOI: 10.3390/v11111048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 12/26/2022] Open
Abstract
H5Nx viruses have continuously emerged in the world, causing poultry industry losses and posing a potential public health risk. Here, we studied the phylogeny, pathogenicity, transmission, and immune response of four H5N6 avian influenza viruses in chickens and mice, which were isolated from waterfowl between 2013 and 2014. Their HA genes belong to Clade 2.3.4.4, circulated in China since 2008. Their NA genes fall into N6-like/Eurasian sublineage. Their internal genes originated from different H5N1 viruses. The results suggested that the four H5N6 viruses were reassortants of the H5N1 and H6N6 viruses. They cause lethal infection with high transmission capability in chickens. They also cause mild to severe pathogenicity in mice and can spread to the brain through the blood–brain barrier. During the infection, the viruses result in the up-regulation of PRRs and cytokine in brains and lungs of chickens and mice. Our results suggested that the high viral loads of several organs may result in disease severity in chickens and mice; there were varying levels of cytokines induced by the H5N6 viruses with different pathogenicity in chickens and mice.
Collapse
Affiliation(s)
- Yafen Song
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.S.); (W.L.); (W.W.); (Z.L.); (Z.H.); (Z.C.); (B.Z.); (S.W.); (X.Q.)
- China Institute of Veterinary Drug Control, Beijing 100081, China;
| | - Weiqiang Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.S.); (W.L.); (W.W.); (Z.L.); (Z.H.); (Z.C.); (B.Z.); (S.W.); (X.Q.)
| | - Wenbo Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.S.); (W.L.); (W.W.); (Z.L.); (Z.H.); (Z.C.); (B.Z.); (S.W.); (X.Q.)
| | - Zhiting Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.S.); (W.L.); (W.W.); (Z.L.); (Z.H.); (Z.C.); (B.Z.); (S.W.); (X.Q.)
| | - Zhuoliang He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.S.); (W.L.); (W.W.); (Z.L.); (Z.H.); (Z.C.); (B.Z.); (S.W.); (X.Q.)
| | - Zuxian Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.S.); (W.L.); (W.W.); (Z.L.); (Z.H.); (Z.C.); (B.Z.); (S.W.); (X.Q.)
| | - Bingbing Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.S.); (W.L.); (W.W.); (Z.L.); (Z.H.); (Z.C.); (B.Z.); (S.W.); (X.Q.)
| | - Siyu Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.S.); (W.L.); (W.W.); (Z.L.); (Z.H.); (Z.C.); (B.Z.); (S.W.); (X.Q.)
| | - Chenghuai Yang
- China Institute of Veterinary Drug Control, Beijing 100081, China;
| | - Xiaoyun Qu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.S.); (W.L.); (W.W.); (Z.L.); (Z.H.); (Z.C.); (B.Z.); (S.W.); (X.Q.)
| | - Ming Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.S.); (W.L.); (W.W.); (Z.L.); (Z.H.); (Z.C.); (B.Z.); (S.W.); (X.Q.)
- Correspondence: (P.J.); (M.L.); Tel.: +86-020-85283309 (M.L. & P.J.)
| | - Peirong Jiao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.S.); (W.L.); (W.W.); (Z.L.); (Z.H.); (Z.C.); (B.Z.); (S.W.); (X.Q.)
- Correspondence: (P.J.); (M.L.); Tel.: +86-020-85283309 (M.L. & P.J.)
| |
Collapse
|
55
|
Welkers MRA, Pawestri HA, Fonville JM, Sampurno OD, Pater M, Holwerda M, Han AX, Russell CA, Jeeninga RE, Setiawaty V, de Jong MD, Eggink D. Genetic diversity and host adaptation of avian H5N1 influenza viruses during human infection. Emerg Microbes Infect 2019; 8:262-271. [PMID: 30866780 PMCID: PMC6455201 DOI: 10.1080/22221751.2019.1575700] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The continuing pandemic threat posed by avian influenza A/H5N1 viruses calls for improved insights into their evolution during human infection. We performed whole genome deep sequencing of respiratory specimens from 44 H5N1-infected individuals from Indonesia and found substantial within-host viral diversity. At nearly 30% of genome positions multiple amino acids were observed within or across samples, including positions implicated in aerosol transmission between ferrets. Amino acid variants detected our cohort were often found more frequently in available H5N1 sequences of human than avian isolates. We additionally identified previously unreported amino acid variants and multiple variants that increased in proportion over time in available sequential samples. Given the importance of the polymerase complex for host adaptation, we tested 121 amino acid variants found in the PB2, PB1 and PA subunits for their effects on polymerase activity in human cells. We identified multiple single amino acid variants in all three polymerase subunits that substantially increase polymerase activity including some with effects comparable to that of the widely recognized adaption and virulence marker PB2-E627 K. These results indicate highly dynamic evolutionary processes during human H5N1 virus infection and the potential existence of previously undocumented adaptive pathways.
Collapse
Affiliation(s)
- Matthijs R A Welkers
- a Department of Medical Microbiology , Academic Medical Center , Amsterdam , Netherlands
| | - Hana A Pawestri
- b National Institute of Health Research and Development, Ministry of Health , Jakarta , Indonesia
| | - Judy M Fonville
- a Department of Medical Microbiology , Academic Medical Center , Amsterdam , Netherlands.,c Department of Zoology , University of Cambridge , Cambridge , UK.,e Department of Medical Microbiology , PAMM , Veldhoven , Netherlands
| | - Ondri D Sampurno
- b National Institute of Health Research and Development, Ministry of Health , Jakarta , Indonesia
| | - Maarten Pater
- a Department of Medical Microbiology , Academic Medical Center , Amsterdam , Netherlands
| | - Melle Holwerda
- a Department of Medical Microbiology , Academic Medical Center , Amsterdam , Netherlands
| | - Alvin X Han
- a Department of Medical Microbiology , Academic Medical Center , Amsterdam , Netherlands.,d Bioinformatics Institute, A*STAR , Singapore , Singapore
| | - Colin A Russell
- a Department of Medical Microbiology , Academic Medical Center , Amsterdam , Netherlands
| | - Rienk E Jeeninga
- a Department of Medical Microbiology , Academic Medical Center , Amsterdam , Netherlands
| | - Vivi Setiawaty
- b National Institute of Health Research and Development, Ministry of Health , Jakarta , Indonesia
| | - Menno D de Jong
- a Department of Medical Microbiology , Academic Medical Center , Amsterdam , Netherlands
| | - Dirk Eggink
- a Department of Medical Microbiology , Academic Medical Center , Amsterdam , Netherlands
| |
Collapse
|
56
|
Klingen TR, Loers J, Stanelle-Bertram S, Gabriel G, McHardy AC. Structures and functions linked to genome-wide adaptation of human influenza A viruses. Sci Rep 2019; 9:6267. [PMID: 31000776 PMCID: PMC6472403 DOI: 10.1038/s41598-019-42614-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 03/27/2019] [Indexed: 11/12/2022] Open
Abstract
Human influenza A viruses elicit short-term respiratory infections with considerable mortality and morbidity. While H3N2 viruses circulate for more than 50 years, the recent introduction of pH1N1 viruses presents an excellent opportunity for a comparative analysis of the genome-wide evolutionary forces acting on both subtypes. Here, we inferred patches of sites relevant for adaptation, i.e. being under positive selection, on eleven viral protein structures, from all available data since 1968 and correlated these with known functional properties. Overall, pH1N1 have more patches than H3N2 viruses, especially in the viral polymerase complex, while antigenic evolution is more apparent for H3N2 viruses. In both subtypes, NS1 has the highest patch and patch site frequency, indicating that NS1-mediated viral attenuation of host inflammatory responses is a continuously intensifying process, elevated even in the longtime-circulating subtype H3N2. We confirmed the resistance-causing effects of two pH1N1 changes against oseltamivir in NA activity assays, demonstrating the value of the resource for discovering functionally relevant changes. Our results represent an atlas of protein regions and sites with links to host adaptation, antiviral drug resistance and immune evasion for both subtypes for further study.
Collapse
MESH Headings
- Drug Resistance, Viral/genetics
- Evolution, Molecular
- Genome, Viral/genetics
- Humans
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/pathogenicity
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/pathogenicity
- Influenza, Human/genetics
- Influenza, Human/pathology
- Influenza, Human/virology
- Oseltamivir/therapeutic use
- Respiratory Tract Infections/genetics
- Respiratory Tract Infections/virology
- Viral Nonstructural Proteins/genetics
- Virus Replication/genetics
Collapse
Affiliation(s)
- Thorsten R Klingen
- Department for Computational Biology of Infection Research, Helmholtz Center for Infection Research (HZI), Braunschweig, Germany
| | - Jens Loers
- Department for Computational Biology of Infection Research, Helmholtz Center for Infection Research (HZI), Braunschweig, Germany
| | | | - Gülsah Gabriel
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
- University of Veterinary Medicine, Hannover, Germany
| | - Alice C McHardy
- Department for Computational Biology of Infection Research, Helmholtz Center for Infection Research (HZI), Braunschweig, Germany.
- German Center for Infection Research (DZIF), Braunschweig, Germany.
| |
Collapse
|
57
|
Enhanced cross-lineage protection induced by recombinant H9N2 avian influenza virus inactivated vaccine. Vaccine 2019; 37:1736-1742. [PMID: 30797637 DOI: 10.1016/j.vaccine.2019.02.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 02/08/2019] [Accepted: 02/11/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Antigenic drift of H9N2 low pathogenic avian influenza viruses (AIV) may result in vaccination failure in the poultry industry and thus a cross-protective vaccine against H9N2 AIV is highly desirable. METHODS A series of H9N2 recombinant viruses with the internal genes of A/Puerto Rico/8/34 (H1N1, PR8) were generated, based on the compatibility between HA and NA, the effect of HA deglycosylation, and protective antigenic epitopes in HA. After evaluation of their biological and immunological characteristics, three recombinant AIVs with the internal genes of the Y280-like strain SN were selected for protective efficacy studies. RESULTS The recombinant viruses rHASNNA3, rHASN-△200, rHASN-△287, and rHASN-R92G-E93K displayed good cross reactivity and induced higher neutralization antibody titers against both SN and the F98-like strain YZ4. Furthermore, those recombinant viruses had a higher EID50 in chicken embryos after the replacement of internal-gene backbone from PR8 to SN. The rSNHA-△200 induced better protection in immunized chickens against challenge of homologous and heterologous H9N2 avian influenza viruses when compared with the wild type strain. CONCLUSION The recombinant virus rSNHA-△200 can be used as a potential broad-spectrum vaccine against H9N2 avian influenza.
Collapse
|
58
|
Zhao Z, Liu L, Guo Z, Zhang C, Wang Z, Wen G, Zhang W, Shang Y, Zhang T, Jiao Z, Chen L, Zhang C, Cui H, Jin M, Wang C, Luo Q, Shao H. A Novel Reassortant Avian H7N6 Influenza Virus Is Transmissible in Guinea Pigs via Respiratory Droplets. Front Microbiol 2019; 10:18. [PMID: 30723462 PMCID: PMC6349713 DOI: 10.3389/fmicb.2019.00018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/09/2019] [Indexed: 12/13/2022] Open
Abstract
Since 2013, H7N9 and H5N6 avian influenza viruses (AIVs) have caused sporadic human infections and deaths and continued to circulate in the poultry industry. Since 2014, H7N6 viruses which might be reassortants of H7N9 and H5N6 viruses, have been isolated in China. However, the biological properties of H7N6 viruses are unknown. Here, we characterize the receptor binding preference, pathogenicity and transmissibility of a H7N6 virus A/chicken/Hubei/00095/2017(H7N6) (abbreviated HB95), and a closely related H7N9 virus, A/chicken/Hubei/00093/2017(H7N9) (abbreviated HB93), which were isolated from poultry in Hubei Province, China, in 2017. Phylogenetic analyses demonstrated that the hemagglutinin (HA) gene of HB95 is closely related to those of HB93 and human-origin H7N9 viruses, and that the neuraminidase (NA) gene of HB95 shared the highest nucleotide similarity with those of H5N6 viruses. HB95 and HB93 had binding affinity for human-like α2, 6-linked sialic acid receptors and were virulent in mice without prior adaptation. In addition, in guinea pig model, HB93 was transmissible by direct contact, but HB95 was transmissible via respiratory droplets. These results revealed the potential threat to public health posed by H7N6 influenza viruses and emphasized the need for continued surveillance of the circulation of this subtype in poultry.
Collapse
Affiliation(s)
- Zongzheng Zhao
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, China.,Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China
| | - Lina Liu
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Zhendong Guo
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China
| | - Chunmao Zhang
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China
| | - Zhongyi Wang
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China
| | - Guoyuan Wen
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Wenting Zhang
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Yu Shang
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Tengfei Zhang
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Zuwu Jiao
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Ligong Chen
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Cheng Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Huan Cui
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Meilin Jin
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Chengyu Wang
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China
| | - Qingping Luo
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Huabin Shao
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
59
|
Rajao DS, Vincent AL, Perez DR. Adaptation of Human Influenza Viruses to Swine. Front Vet Sci 2019; 5:347. [PMID: 30723723 PMCID: PMC6349779 DOI: 10.3389/fvets.2018.00347] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 12/31/2018] [Indexed: 12/24/2022] Open
Abstract
A large diversity of influenza A viruses (IAV) within the H1N1/N2 and H3N2 subtypes circulates in pigs globally, with different lineages predominating in specific regions of the globe. A common characteristic of the ecology of IAV in swine in different regions is the periodic spillover of human seasonal viruses. Such human viruses resulted in sustained transmission in swine in several countries, leading to the establishment of novel IAV lineages in the swine host and contributing to the genetic and antigenic diversity of influenza observed in pigs. In this review we discuss the frequent occurrence of reverse-zoonosis of IAV from humans to pigs that have contributed to the global viral diversity in swine in a continuous manner, describe host-range factors that may be related to the adaptation of these human-origin viruses to pigs, and how these events could affect the swine industry.
Collapse
Affiliation(s)
- Daniela S. Rajao
- Department of Population Health, University of Georgia, Athens, GA, United States
| | - Amy L. Vincent
- Virus and Prion Research Unit, USDA-ARS, National Animal Disease Center, Ames, IA, United States
| | - Daniel R. Perez
- Department of Population Health, University of Georgia, Athens, GA, United States
| |
Collapse
|
60
|
Zhu B, Shen J, Zhao T, Jiang H, Ma T, Zhang J, Dang L, Gao N, Hu Y, Shi Y, Sun S. Intact Glycopeptide Analysis of Influenza A/H1N1/09 Neuraminidase Revealing the Effects of Host and Glycosite Location on Site‐Specific Glycan Structures. Proteomics 2019; 19:e1800202. [DOI: 10.1002/pmic.201800202] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 11/23/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Bojing Zhu
- College of Life ScienceNorthwest University Xi'an Shaanxi province 710069 P. R. China
| | - Jiechen Shen
- College of Life ScienceNorthwest University Xi'an Shaanxi province 710069 P. R. China
| | - Ting Zhao
- College of Life ScienceNorthwest University Xi'an Shaanxi province 710069 P. R. China
| | - Haihai Jiang
- CAS Key Laboratory of Pathogenic Microbiology and ImmunologyInstitute of MicrobiologyChinese Academy of Sciences 100101 Beijing P. R. China
| | - Tianran Ma
- College of Life ScienceNorthwest University Xi'an Shaanxi province 710069 P. R. China
| | - Jie Zhang
- Department of Computer Science and TechnologyXidian University Xi'an Shaanxi province 710069 P. R. China
| | - Liuyi Dang
- College of Life ScienceNorthwest University Xi'an Shaanxi province 710069 P. R. China
| | - Ni Gao
- College of Life ScienceNorthwest University Xi'an Shaanxi province 710069 P. R. China
| | - Yingwei Hu
- Department of PathologyJohns Hopkins University Baltimore MD 21287 USA
| | - Yi Shi
- CAS Key Laboratory of Pathogenic Microbiology and ImmunologyInstitute of MicrobiologyChinese Academy of Sciences 100101 Beijing P. R. China
| | - Shisheng Sun
- College of Life ScienceNorthwest University Xi'an Shaanxi province 710069 P. R. China
| |
Collapse
|
61
|
Innate Immune Responses to Avian Influenza Viruses in Ducks and Chickens. Vet Sci 2019; 6:vetsci6010005. [PMID: 30634569 PMCID: PMC6466002 DOI: 10.3390/vetsci6010005] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/26/2018] [Accepted: 01/04/2019] [Indexed: 02/06/2023] Open
Abstract
Mallard ducks are important natural hosts of low pathogenic avian influenza (LPAI) viruses and many strains circulate in this reservoir and cause little harm. Some strains can be transmitted to other hosts, including chickens, and cause respiratory and systemic disease. Rarely, these highly pathogenic avian influenza (HPAI) viruses cause disease in mallards, while chickens are highly susceptible. The long co-evolution of mallard ducks with influenza viruses has undoubtedly fine-tuned many immunological host–pathogen interactions to confer resistance to disease, which are poorly understood. Here, we compare innate responses to different avian influenza viruses in ducks and chickens to reveal differences that point to potential mechanisms of disease resistance. Mallard ducks are permissive to LPAI replication in their intestinal tissues without overtly compromising their fitness. In contrast, the mallard response to HPAI infection reflects an immediate and robust induction of type I interferon and antiviral interferon stimulated genes, highlighting the importance of the RIG-I pathway. Ducks also appear to limit the duration of the response, particularly of pro-inflammatory cytokine expression. Chickens lack RIG-I, and some modulators of the signaling pathway and may be compromised in initiating an early interferon response, allowing more viral replication and consequent damage. We review current knowledge about innate response mediators to influenza infection in mallard ducks compared to chickens to gain insight into protective immune responses, and open questions for future research.
Collapse
|
62
|
Zou S, Zhang Y, Li X, Bo H, Wei H, Dong L, Yang L, Dong J, Liu J, Shu Y, Wang D. Molecular characterization and receptor binding specificity of H9N2 avian influenza viruses based on poultry-related environmental surveillance in China between 2013 and 2016. Virology 2019; 529:135-143. [PMID: 30703577 DOI: 10.1016/j.virol.2019.01.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 12/25/2018] [Accepted: 01/02/2019] [Indexed: 12/25/2022]
Abstract
H9N2 avian influenza viruses (AIVs) have become panzootic and caused sporadic human cases since 1998. Based on the poultry-related environmental surveillance data in mainland China from 2013 to 2016, a total of 68 representative environment isolates were selected and further investigated systematically. Phylogenetic analysis indicated that Y280-like H9N2 viruses have been predominant during 2013-2016 and acquired multiple specific amino acid substitutions that might favor viral transmission from avian to mammalians. Additionally, the viruses have undergone dramatic evolution and reassortment, resulting in an increased genetic diversity or acting as the gene contributors to new avian viruses. Receptor-binding tests indicated that most of the H9N2 isolates bound to human-type receptor, making them easily cross the species barrier and infect human efficiently. Our results suggested that the H9N2 AIVs prevalent in poultry may pose severe public health threat.
Collapse
Affiliation(s)
- Shumei Zou
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, and Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, People's Republic of China.
| | - Ye Zhang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, and Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, People's Republic of China.
| | - Xiyan Li
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, and Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, People's Republic of China.
| | - Hong Bo
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, and Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, People's Republic of China.
| | - Hejiang Wei
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, and Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, People's Republic of China.
| | - Libo Dong
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, and Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, People's Republic of China.
| | - Lei Yang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, and Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, People's Republic of China.
| | - Jie Dong
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, and Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, People's Republic of China.
| | - Jia Liu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, and Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, People's Republic of China.
| | - Yuelong Shu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, and Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, People's Republic of China.
| | - Dayan Wang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, and Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, People's Republic of China.
| |
Collapse
|
63
|
Han L, He W, Yan H, Li X, Wang C, Shi Q, Zhou T, Dong G. The evolution and molecular characteristics of H9N2 avian influenza viruses in Jiangxi of China. J Med Virol 2018; 91:711-716. [PMID: 30560545 PMCID: PMC6619444 DOI: 10.1002/jmv.25363] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 10/17/2018] [Indexed: 11/09/2022]
Abstract
To understand the evolution and molecular characteristics of Jiangxi H9N2 viruses, we isolated 17 viruses in 2011 and analyzed their characteristics. Phylogenetic analyses revealed that their hemagglutinin genes originate from JS/1/00-like sublineage, neuraminidase genes originate from BJ/94-like sublineage, PB1, PA, NP, and NS genes all come from SH/F/98-like sublineage, PB2 genes originate from ST/163/04-like sublineage, while M genes come from G1-like sublineage. Genotype analysis showed that our isolates were classified as genotype 57. Molecular analyses indicated that our strains contained specific sites characteristic of low-pathogenic viruses. The current study once again highlights the necessity for continued surveillance of novel H9N2 viruses.
Collapse
Affiliation(s)
- Le Han
- College of Global Change and Earth System Science, Beijing Normal University, Beijing, China
| | - Weijun He
- College of Global Change and Earth System Science, Beijing Normal University, Beijing, China
| | - Huixin Yan
- College of Global Change and Earth System Science, Beijing Normal University, Beijing, China
| | - Xianglan Li
- College of Global Change and Earth System Science, Beijing Normal University, Beijing, China
| | - Chengmin Wang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, China
| | - Qiumei Shi
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Hebei, China
| | - Tiezhong Zhou
- College of Animal Husbandry and Veterinary, Jinzhou Medical University, Jinzhou, China
| | - Guoying Dong
- College of Global Change and Earth System Science, Beijing Normal University, Beijing, China
| |
Collapse
|
64
|
Jeong JH, Kim EH, Lloren KKS, Kwon JJ, Kwon HI, Ahn SJ, Kim YI, Choi WS, Si YJ, Lee OJ, Han HJ, Baek YH, Song MS, Choi YK, Kim CJ. Preclinical evaluation of the efficacy of an H5N8 vaccine candidate (IDCDC-RG43A) in mouse and ferret models for pandemic preparedness. Vaccine 2018; 37:484-493. [PMID: 30502069 DOI: 10.1016/j.vaccine.2018.11.064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 11/09/2018] [Accepted: 11/20/2018] [Indexed: 12/14/2022]
Abstract
Because H5N1 influenza viruses continuously threaten the public health, the WHO has prepared various clades of H5N1 mock-up vaccines as one of the measures for pandemic preparedness. The recent worldwide outbreak of H5Nx virus which belongs to clade 2.3.4.4 and of which H5N6 subtype belongs and already caused human infection also increases the need of pandemic vaccine for such novel emerging viruses. In this study, we evaluated the protective efficacy and immunogenicity of an egg-based and inactivated whole-virus H5N8 (IDCDC-RG43A) developed by CDC containing HA and NA gene of the parent virus A/gyrfalcon/Washington/41088-6/2014. Mice vaccinated two times elicited low to moderate antibody titer in varying amount of antigen doses against the homologous H5N8 vaccine virus and heterologous intra-clade 2.3.4.4 H5N6 (A/Sichuan/26221/2014) virus. Mice immunized with at least 3.0 µg/dose of IDCDC-RG43A with aluminum hydroxide adjuvant were completely protected from lethal challenge with the mouse-adapted H5N8 (A/Environment/Korea/ma468/2015, maH5N8) as well as cleared the viral replication in tissues including lung, brain, spleen, and kidney. Vaccinated ferrets induced high antibody titers against clade 2.3.4.4 H5N8/H5N6 viruses and the antibody showed high cross-reactivity to clade 2.2 H5N1 but not to clade 1 and 2.3.4 viruses as measured by hemagglutinin inhibition and serum neutralization assays. Furthermore, administration of the vaccine in ferrets resulted in attenuation of clinical disease signs and virus spread to peripheral organs including lung, spleen, and kidney from high dose challenge with maH5N8 virus. The protective and immunogenic characteristic of the candidate vaccine are essential attributes to be considered for further clinical trials as a pre-pandemic vaccine for a potential pandemic virus.
Collapse
Affiliation(s)
- Ju Hwan Jeong
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Republic of Korea
| | - Eun-Ha Kim
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Republic of Korea
| | - Khristine Kaith S Lloren
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Republic of Korea
| | - Jin Jung Kwon
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Republic of Korea
| | - Hyeok-Il Kwon
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Republic of Korea
| | - Su Jeong Ahn
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Republic of Korea
| | - Young-Il Kim
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Republic of Korea
| | - Won-Suk Choi
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Republic of Korea
| | - Young-Jae Si
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Republic of Korea
| | - Ok-Jun Lee
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Republic of Korea
| | - Hae Jung Han
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Republic of Korea; Research & Development Center, Green Cross Corporation, Yongin, Republic of Korea; Research & Development Center, Green Cross Wellbeing Corporation, Seongnam, Republic of Korea
| | - Yun Hee Baek
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Republic of Korea
| | - Min-Suk Song
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Republic of Korea.
| | - Young Ki Choi
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Republic of Korea.
| | - Chul-Joong Kim
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea.
| |
Collapse
|
65
|
Qin T, Zhu J, Ma R, Yin Y, Chen S, Peng D, Liu X. Compatibility between haemagglutinin and neuraminidase drives the recent emergence of novel clade 2.3.4.4 H5Nx avian influenza viruses in China. Transbound Emerg Dis 2018; 65:1757-1769. [PMID: 29999588 DOI: 10.1111/tbed.12949] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 06/10/2018] [Accepted: 06/12/2018] [Indexed: 12/12/2022]
Abstract
Genetic reassortments between highly pathogenic avian influenza (HPAI) H5 subtype viruses with different neuraminidase (NA) subtypes have increased in prevalence since 2010 in wild birds and poultry from China. The HA gene slightly evolved from clade 2.3.4 to clade 2.3.4.4, raising the question of whether novel clade 2.3.4.4 HA broke the balance with N1 but is matched well with NAx to drive viral epidemics. To clarify the role of compatibility between HA and NA on the prevalence of H5Nx subtypes, we constructed 10 recombinant viruses in which the clade 2.3.4 or clade 2.3.4.4 HA genes were matched with different NA (N1, N2 and N8) genes and evaluated viral characteristics and pathogenicity. Combinations between clade 2.3.4 HA and N1 or between clade 2.3.4.4 HA and NAx, but not between clade 2.3.4.4 HA and N1, or between clade 2.3.4 HA and NAx, promoted viral growth, NA activity, thermostability, low-pH stability and pathogenicity in chicken and mice. These findings suggest that both clade 2.3.4 HA/N1 and clade 2.3.4.4 HA/NAx displayed a better match, which could promote the increased prevalence of clade 2.3.4 H5N1 AIV (prior to 2010) and clade 2.3.4.4 H5Nx AIV (since 2010) in China, respectively.
Collapse
Affiliation(s)
- Tao Qin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, China.,Joint Laboratory Safety of International Cooperation of Agriculture & Agricultural-Products, Yangzhou, China
| | - Jingjing Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, China.,Joint Laboratory Safety of International Cooperation of Agriculture & Agricultural-Products, Yangzhou, China
| | - Ruonan Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, China.,Joint Laboratory Safety of International Cooperation of Agriculture & Agricultural-Products, Yangzhou, China
| | - Yuncong Yin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, China.,Joint Laboratory Safety of International Cooperation of Agriculture & Agricultural-Products, Yangzhou, China
| | - Sujuan Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, China.,Joint Laboratory Safety of International Cooperation of Agriculture & Agricultural-Products, Yangzhou, China
| | - Daxin Peng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, China.,Joint Laboratory Safety of International Cooperation of Agriculture & Agricultural-Products, Yangzhou, China
| | - Xiufan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, China.,Joint Laboratory Safety of International Cooperation of Agriculture & Agricultural-Products, Yangzhou, China
| |
Collapse
|
66
|
Kumar M, Nagarajan S, Murugkar HV, Saikia B, Singh B, Mishra A, Tripathi SK, Agarwal S, Shukla S, Kulkarni DD, Singh VP, Tosh C. Emergence of novel reassortant H6N2 avian influenza viruses in ducks in India. INFECTION GENETICS AND EVOLUTION 2018. [DOI: 10.1016/j.meegid.2018.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
67
|
Marinova-Petkova A, Laplante J, Jang Y, Lynch B, Zanders N, Rodriguez M, Jones J, Thor S, Hodges E, De La Cruz JA, Belser J, Yang H, Carney P, Shu B, Berman L, Stark T, Barnes J, Havers F, Yang P, Trock SC, Fry A, Gubareva L, Bresee JS, Stevens J, Daskalakis D, Liu D, Lee CT, Torchetti MK, Newbury S, Cigel F, Toohey-Kurth K, St George K, Wentworth DE, Lindstrom S, Davis CT. Avian Influenza A(H7N2) Virus in Human Exposed to Sick Cats, New York, USA, 2016. Emerg Infect Dis 2018; 23. [PMID: 29148400 PMCID: PMC5708219 DOI: 10.3201/eid2312.170798] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
An outbreak of influenza A(H7N2) virus in cats in a shelter in New York, NY, USA, resulted in zoonotic transmission. Virus isolated from the infected human was closely related to virus isolated from a cat; both were related to low pathogenicity avian influenza A(H7N2) viruses detected in the United States during the early 2000s.
Collapse
MESH Headings
- Animals
- Antigens, Viral/chemistry
- Antigens, Viral/genetics
- Antigens, Viral/metabolism
- Binding Sites
- Birds
- Cat Diseases/epidemiology
- Cat Diseases/transmission
- Cat Diseases/virology
- Cats
- Disease Outbreaks
- Genome, Viral
- Hemagglutinin Glycoproteins, Influenza Virus/chemistry
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/metabolism
- Housing, Animal
- Humans
- Influenza A Virus, H7N2 Subtype/classification
- Influenza A Virus, H7N2 Subtype/genetics
- Influenza A Virus, H7N2 Subtype/isolation & purification
- Influenza in Birds/epidemiology
- Influenza in Birds/transmission
- Influenza in Birds/virology
- Models, Molecular
- New York/epidemiology
- Polysaccharides/chemistry
- Protein Binding
- Protein Conformation, alpha-Helical
- Protein Conformation, beta-Strand
- Protein Interaction Domains and Motifs
- Receptors, Virus/chemistry
- Receptors, Virus/genetics
- Receptors, Virus/metabolism
- Veterinarians
- Zoonoses/epidemiology
- Zoonoses/transmission
- Zoonoses/virology
Collapse
|
68
|
Abstract
Highly pathogenic avian influenza (HPAI) H5N1 viruses are currently endemic in poultry in Egypt. Eradication of the viruses has been unsuccessful due to improper application of vaccine-based control strategies among other preventive measures. The viruses have evolved rapidly with increased bird-to-human transmission efficacy, thus affecting both animal and public health. Subsequent spread of potentially zoonotic low pathogenic avian influenza (LPAI) H9N2 in poultry has also hindered efficient control of avian influenza. The H5N1 viruses acquired enhanced bird-to-human transmissibility by (1) altering amino acids in hemagglutinin (HA) that enable binding affinity to human-type receptors, (2) loss of the glycosylation site and 130 loop in the HA protein and (3) mutation of E627K in the PB2 protein to enhance viral replication in mammalian hosts. The receptor binding site of HA of Egyptian H9N2 viruses has been shown to contain the Q234L substitution along with a H191 mutation, which can increase human-like receptor specificity. Therefore, co-circulation of H5N1 and H9N2 viruses in poultry farming and live bird markets has increased the risk of human exposure, resulting in complication of the epidemiological situation and raising a concern for potential emergence of a new influenza A virus pandemic. For efficient control of infection and transmission, the efficacy of vaccine and vaccination needs to be improved with a comprehensive control strategy, including enhanced biosecurity, education, surveillance, rapid diagnosis and culling of infected poultry.
Collapse
|
69
|
Comparison of the virulence and transmissibility of canine H3N2 influenza viruses and characterization of their canine adaptation factors. Emerg Microbes Infect 2018; 7:17. [PMID: 29511200 PMCID: PMC5841232 DOI: 10.1038/s41426-017-0013-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/28/2017] [Accepted: 12/14/2017] [Indexed: 11/08/2022]
Abstract
Recent canine influenza outbreaks have raised concerns about the generation of pathogenic variants that may pose a threat to public health. Here, we examine avian-like H3N2 canine influenza viruses (CIVs) isolated from 2009 to 2013 in South Korea from dogs. Phylogenetic analysis revealed that these viruses are closely related to strains previously isolated from dogs in Korea and China. However, molecular characterization demonstrated non-synonymous mutations between the canine viruses, particularly in the putative H3 antigenic sites, NA stalk regions, and in the internal genes of the 2012–2013 isolates compared with the 2009 isolate. Animal experiments showed that three representative isolates (A/canine/Korea/AS-01/2009(AS-01/09), A/canine/Korea/AS-05/2012(AS-05/12) and A/canine/Korea/AS-11/2013(AS-11/13), were readily droplet transmitted between dogs, whereas AS-05/12 induced more severe clinical disease and was lethal in dogs compared with AS-01/09. Although all viruses were able to infect ferrets, AS-05/12 consistently yielded higher nasal wash titers and was transmissible to ferrets via airborne droplets. Using reverse genetics, we show that the NA, NP, and M genes of CIV are critical for the adaptation of avian H3N2 viruses, and the resulting reassortant genotypes promote viral growth in dogs in a manner similar to that of the wild-type AS-01/09 virus. Taken together, these results demonstrate that CIVs continuously evolve in dogs thereby allowing them to gain a foothold in mammalian hosts. Importantly, we elucidated the genetic contributions of the NA, NP, and M genes to the adaptability of CIVs derived from the avian H3N2 virus.
Collapse
|
70
|
Sun L, Ward MP, Li R, Xia C, Lynn H, Hu Y, Xiong C, Zhang Z. Global spatial risk pattern of highly pathogenic avian influenza H5N1 virus in wild birds: A knowledge-fusion based approach. Prev Vet Med 2018; 152:32-39. [PMID: 29559103 DOI: 10.1016/j.prevetmed.2018.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 01/18/2018] [Accepted: 02/09/2018] [Indexed: 11/18/2022]
Abstract
Highly pathogenic avian influenza (HPAI) H5N1 viruses have continuously circulated throughout much of the world since 2003, resulting in huge economic losses and major public health problems. Wild birds have played an important role in the spread of H5N1 HPAI. To understand its spatial distribution, H5N1 HPAI have been studied by many disciplines from different perspectives, but only one kind of disciplinary knowledge was involved, which has provided limited progress in understanding. Combining risk information from different disciplines based on knowledge fusion can provide more accurate and detailed information. In this study, local k function, phylogenetic tree analysis, and logistic spatial autoregressive models were used to explore the global spatial pattern of H5N1 HPAI based on outbreak data in wild birds, genetic sequences, and risk factors, respectively. On this basis, Dempster-Shafer (D-S) evidence theory was further applied to study the spatial distribution of H5N1 HPAI. We found D-S evidence theory was more robust and reliable than the other three methods, providing technical and methodological support for application to the research of other diseases. The shortest distance to wild bird migration routes, roads and railways, elevation, the normalized difference vegetation index (NDVI), land use and land cover (LULC) and infant mortality rates (IMR) were significantly associated with the occurrence of H5N1 HPAI. The high-risk areas were mainly located in Northern and Central Europe, the eastern Mediterranean, and East and Southeast Asia. High-risk clusters were closely related to the social, economic and ecological environment of the region. Locations where the potential transmission risk remains high should be prioritized for control efforts.
Collapse
Affiliation(s)
- Liqian Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Fudan University, Shanghai 200032, China; Department of Hospital Infection Management, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, Henan, China; Key Laboratory of Public Health Safety, Ministry of Education, Shanghai 200032, China; Collaborative Innovation Center of Social Risks Governance in Health, School of Public Health, Fudan University, China
| | - Michael P Ward
- Sydney School of Veterinary Science, The University of Sydney, NSW 2570, Australia
| | - Rui Li
- Department of Epidemiology and Biostatistics, School of Public Health, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, Shanghai 200032, China; Collaborative Innovation Center of Social Risks Governance in Health, School of Public Health, Fudan University, China
| | - Congcong Xia
- Department of Epidemiology and Biostatistics, School of Public Health, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, Shanghai 200032, China; Collaborative Innovation Center of Social Risks Governance in Health, School of Public Health, Fudan University, China
| | - Henry Lynn
- Department of Epidemiology and Biostatistics, School of Public Health, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, Shanghai 200032, China; Collaborative Innovation Center of Social Risks Governance in Health, School of Public Health, Fudan University, China
| | - Yi Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, Shanghai 200032, China; Collaborative Innovation Center of Social Risks Governance in Health, School of Public Health, Fudan University, China
| | - Chenglong Xiong
- Department of Epidemiology and Biostatistics, School of Public Health, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, Shanghai 200032, China; Collaborative Innovation Center of Social Risks Governance in Health, School of Public Health, Fudan University, China; Department of Public Health Microbiology, School of Public Health, Fudan University, Shanghai 200032, China
| | - Zhijie Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, Shanghai 200032, China; Collaborative Innovation Center of Social Risks Governance in Health, School of Public Health, Fudan University, China.
| |
Collapse
|
71
|
Molecular Markers for Interspecies Transmission of Avian Influenza Viruses in Mammalian Hosts. Int J Mol Sci 2017; 18:ijms18122706. [PMID: 29236050 PMCID: PMC5751307 DOI: 10.3390/ijms18122706] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/09/2017] [Accepted: 12/12/2017] [Indexed: 11/23/2022] Open
Abstract
In the last decade, a wide range of avian influenza viruses (AIVs) have infected various mammalian hosts and continuously threaten both human and animal health. It is a result of overcoming the inter-species barrier which is mostly associated with gene reassortment and accumulation of mutations in their gene segments. Several recent studies have shed insights into the phenotypic and genetic changes that are involved in the interspecies transmission of AIVs. These studies have a major focus on transmission from avian to mammalian species due to the high zoonotic potential of the viruses. As more mammalian species have been infected with these viruses, there is higher risk of genetic evolution of these viruses that may lead to the next human pandemic which represents and raises public health concern. Thus, understanding the mechanism of interspecies transmission and molecular determinants through which the emerging AIVs can acquire the ability to transmit to humans and other mammals is an important key in evaluating the potential risk caused by AIVs among humans. Here, we summarize previous and recent studies on molecular markers that are specifically involved in the transmission of avian-derived influenza viruses to various mammalian hosts including humans, pigs, horses, dogs, and marine mammals.
Collapse
|
72
|
Yin Y, Zhang X, Qiao Y, Wang X, Su Y, Chen S, Qin T, Peng D, Liu X. Glycosylation at 11Asn on hemagglutinin of H5N1 influenza virus contributes to its biological characteristics. Vet Res 2017; 48:81. [PMID: 29162128 PMCID: PMC5698926 DOI: 10.1186/s13567-017-0484-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 10/09/2017] [Indexed: 12/22/2022] Open
Abstract
A stem glycosylation site of hemagglutinin (HA) is important to the stability of the HA trimmer. A previous study shows that the stem 10/11 overlap glycosylation site of the H5 subtype avian influenza virus may influence the cleavage of HA, whereas the exact site and its effect on virulence remain unclear. In this study, site-directed mutagenesis was used to generate single or double mutant rSY-Δ10(10NNAT), rSY-Δ11(10NNSA), and rSY-Δ10/11(10NNAA) of the overlapping glycosylation site (10NNST) on the HA of A/Mallard/Huadong/S/2005(SY). By using Western blot analysis, we show that both rSY-Δ11 and rSY-Δ10/11 mutant viruses had significant delay on HA cleavage and a reduced HA molecular mass compared to the wild-type virus rSY, while the rSY-Δ10 mutant virus exhibited a similar HA molecular mass to that of the wild-type virus rSY. Interestingly, both rSY-Δ11 and rSY-Δ10/11 mutant viruses reverted their glycosylation sites at 11N after passage, indicating that 11N is a true and critical glycosylation site. Compared to the wild-type virus rSY, rSY-Δ11 and rSY-Δ10/11 mutant viruses had decreased growth rates, reduced thermo- and pH-stability, decreased pathogenicity, and limited systemic spread. Therefore, our study suggests that the 11N glycosylation site plays a key role in HA cleavage, structural stability and pathogenicity in H5 subtype avian influenza virus.
Collapse
Affiliation(s)
- Yuncong Yin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225009, Jiangsu, China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, 225009, Jiangsu, China
| | - Xiaojian Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225009, Jiangsu, China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, 225009, Jiangsu, China
| | - Yiyi Qiao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225009, Jiangsu, China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, 225009, Jiangsu, China
| | - Xiao Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225009, Jiangsu, China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, 225009, Jiangsu, China
| | - Yangyang Su
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225009, Jiangsu, China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, 225009, Jiangsu, China
| | - Sujuan Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225009, Jiangsu, China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, 225009, Jiangsu, China
| | - Tao Qin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225009, Jiangsu, China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, 225009, Jiangsu, China
| | - Daxin Peng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China. .,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225009, Jiangsu, China. .,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, 225009, Jiangsu, China.
| | - Xiufan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225009, Jiangsu, China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, 225009, Jiangsu, China
| |
Collapse
|
73
|
Lingel A, Bullard BL, Weaver EA. Efficacy of an Adenoviral Vectored Multivalent Centralized Influenza Vaccine. Sci Rep 2017; 7:14912. [PMID: 29097763 PMCID: PMC5668234 DOI: 10.1038/s41598-017-14891-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 10/18/2017] [Indexed: 12/17/2022] Open
Abstract
Mice were immunized with Adenovirus expressing the H1-con, H2-con, H3-con and H5-con HA consensus genes in combination (multivalent) and compared to mice immunized with the traditional 2010-2011 FluZone and FluMist seasonal vaccines. Immunized mice were challenged with 10-100 MLD50 of H1N1, H3N1, H3N2 and H5N1 influenza viruses. The traditional vaccines induced robust levels of HA inhibition (HI) titers, but failed to protect against five different heterologous lethal influenza challenges. Conversely, the multivalent consensus vaccine (1 × 1010 virus particles (vp)/mouse) induced protective HI titers of ≥40 against 8 of 10 influenza viruses that represent a wide degree of divergence within the HA subtypes and protected 100% of mice from 8 of 9 lethal heterologous influenza virus challenges. The vaccine protection was dose dependent, in general, and a dose as low as 5 × 107 vp/mouse still provided 100% survival against 7 of 9 lethal heterologous influenza challenges. These data indicate that very low doses of Adenovirus-vectored consensus vaccines induce superior levels of immunity against a wide divergence of influenza subtypes as compared to traditional vaccines. These doses are scalable and translatable to humans and may provide the foundation for complete and long-lasting anti-influenza immunity.
Collapse
MESH Headings
- Adenoviridae/genetics
- Animals
- Female
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Humans
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/immunology
- Influenza A Virus, H5N1 Subtype/genetics
- Influenza A Virus, H5N1 Subtype/immunology
- Influenza A virus/genetics
- Influenza A virus/immunology
- Influenza Vaccines/genetics
- Influenza Vaccines/immunology
- Influenza Vaccines/therapeutic use
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Influenza, Human/virology
- Mice
- Mice, Inbred BALB C
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/prevention & control
- Orthomyxoviridae Infections/virology
- Vaccination
Collapse
Affiliation(s)
- Amy Lingel
- School of Biological Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, USA
| | - Brianna L Bullard
- School of Biological Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, USA
| | - Eric A Weaver
- School of Biological Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, USA.
| |
Collapse
|
74
|
Park S, Il Kim J, Lee I, Bae JY, Yoo K, Nam M, Kim J, Sook Park M, Song KJ, Song JW, Kee SH, Park MS. Adaptive mutations of neuraminidase stalk truncation and deglycosylation confer enhanced pathogenicity of influenza A viruses. Sci Rep 2017; 7:10928. [PMID: 28883554 PMCID: PMC5589767 DOI: 10.1038/s41598-017-11348-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/23/2017] [Indexed: 01/30/2023] Open
Abstract
It has been noticed that neuraminidase (NA) stalk truncation has arisen from evolutionary adaptation of avian influenza A viruses (IAVs) from wild aquatic birds to domestic poultry. We identified this molecular alteration after the adaptation of a 2009 pandemic H1N1 virus (pH1N1) in BALB/c mice. The mouse-adapted pH1N1 lost its eight consecutive amino acids including one potential N-linked glycosite from the NA stalk region. To explore the relationship of NA stalk truncation or deglycosylation with viral pathogenicity changes, we generated NA stalk mutant viruses on the pH1N1 backbone by reverse genetics. Intriguingly, either NA stalk truncation or deglycosylation changed pH1N1 into a lethal virus to mice by resulting in extensive pathologic transformation in the mouse lungs and systemic infection affecting beyond the respiratory organs in mice. The increased pathogenicity of these NA stalk mutants was also reproduced in ferrets. In further investigation using a human-infecting H7N9 avian IAV strain, NA stalk truncation or deglycosylation enhanced the replication property and pathogenicity of H7N9 NA stalk mutant viruses in the same mouse model. Taken together, our results suggest that NA stalk truncation or deglycosylation can be the pathogenic determinants of seasonal influenza viruses associated with the evolutionary adaptation of IAVs.
Collapse
Affiliation(s)
- Sehee Park
- Department of Microbiology, and the Institute for Viral Diseases, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Jin Il Kim
- Department of Microbiology, and the Institute for Viral Diseases, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Ilseob Lee
- Department of Microbiology, and the Institute for Viral Diseases, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Joon-Yong Bae
- Department of Microbiology, and the Institute for Viral Diseases, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Kirim Yoo
- Department of Microbiology, and the Institute for Viral Diseases, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Misun Nam
- Department of Microbiology, and the Institute for Viral Diseases, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Juwon Kim
- Department of Microbiology, and the Institute for Viral Diseases, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Mee Sook Park
- Department of Microbiology, and the Institute for Viral Diseases, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Ki-Joon Song
- Department of Microbiology, and the Institute for Viral Diseases, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Jin-Won Song
- Department of Microbiology, and the Institute for Viral Diseases, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Sun-Ho Kee
- Department of Microbiology, and the Institute for Viral Diseases, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Man-Seong Park
- Department of Microbiology, and the Institute for Viral Diseases, College of Medicine, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
75
|
Bakkers MJG, Lang Y, Feitsma LJ, Hulswit RJG, de Poot SAH, van Vliet ALW, Margine I, de Groot-Mijnes JDF, van Kuppeveld FJM, Langereis MA, Huizinga EG, de Groot RJ. Betacoronavirus Adaptation to Humans Involved Progressive Loss of Hemagglutinin-Esterase Lectin Activity. Cell Host Microbe 2017; 21:356-366. [PMID: 28279346 PMCID: PMC7104930 DOI: 10.1016/j.chom.2017.02.008] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 01/07/2017] [Accepted: 02/10/2017] [Indexed: 12/17/2022]
Abstract
Human beta1-coronavirus (β1CoV) OC43 emerged relatively recently through a single zoonotic introduction. Like related animal β1CoVs, OC43 uses 9-O-acetylated sialic acid as receptor determinant. β1CoV receptor binding is typically controlled by attachment/fusion spike protein S and receptor-binding/receptor-destroying hemagglutinin-esterase protein HE. We show that following OC43’s introduction into humans, HE-mediated receptor binding was selected against and ultimately lost through progressive accumulation of mutations in the HE lectin domain. Consequently, virion-associated receptor-destroying activity toward multivalent glycoconjugates was reduced and altered such that some clustered receptor populations are no longer cleaved. Loss of HE lectin function was also observed for another respiratory human coronavirus, HKU1. This thus appears to be an adaptation to the sialoglycome of the human respiratory tract and for replication in human airways. The findings suggest that the dynamics of virion-glycan interactions contribute to host tropism. Our observations are relevant also to other human respiratory viruses of zoonotic origin, particularly influenza A virus. Adaption of coronaviruses OC43 and HKU1 to humans involved loss of HE lectin function OC43 HE receptor binding site was lost via progressive accumulation of mutations Loss of HE receptor binding alters sialate-9-O-acetylesterase receptor destroying activity Balance of receptor binding and receptor destruction contributes to host tropism
Collapse
Affiliation(s)
- Mark J G Bakkers
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Yifei Lang
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Louris J Feitsma
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Faculty of Sciences, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Ruben J G Hulswit
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Stefanie A H de Poot
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Arno L W van Vliet
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Irina Margine
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CH Utrecht, the Netherlands
| | | | - Frank J M van Kuppeveld
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Martijn A Langereis
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Eric G Huizinga
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Faculty of Sciences, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Raoul J de Groot
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CH Utrecht, the Netherlands.
| |
Collapse
|
76
|
Identification of a novel reassortant A (H9N6) virus in live poultry markets in Poyang Lake region, China. Arch Virol 2017; 162:3681-3690. [PMID: 28840439 DOI: 10.1007/s00705-017-3507-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 06/20/2017] [Indexed: 10/19/2022]
Abstract
Live poultry markets (LPM) are one of the most important sources of human infection with avian influenza virus (AIV). During our routine surveillance of AIV, we identified an H9N6 virus (JX-H9N6) in a LPM in Nanchang city, Jiangxi Province, China. Using Bayesian coalescent analysis, it was predicted that JX-H9N6 had originated from a reassortment event between H9N2 and H6N6 AIVs in early 2014, instead of being derived from an H9N6 virus reported previously. Mutations in HA, PB1, PA, M, and NS protein, which could increase mammalian transmission and virulence, were also detected. Currently, both H9N2 and H6N6 AIVs are widely distributed in poultry and contribute to the generation of novel reassortant viruses causing human infection. Our findings highlight the importance of enhanced surveillance in birds for early prediction of human infections.
Collapse
|
77
|
Krol E, Wandzik I, Krejmer-Rabalska M, Szewczyk B. Biological Evaluation of Uridine Derivatives of 2-Deoxy Sugars as Potential Antiviral Compounds against Influenza A Virus. Int J Mol Sci 2017; 18:ijms18081700. [PMID: 28777309 PMCID: PMC5578090 DOI: 10.3390/ijms18081700] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 07/22/2017] [Accepted: 07/30/2017] [Indexed: 12/29/2022] Open
Abstract
Influenza virus infection is a major cause of morbidity and mortality worldwide. Due to the limited ability of currently available treatments, there is an urgent need for new anti-influenza drugs with broad spectrum protection. We have previously shown that two 2-deoxy sugar derivatives of uridine (designated IW3 and IW7) targeting the glycan processing steps during maturation of viral glycoproteins show good anti-influenza virus activity and may be a promising alternative approach for the development of new anti-influenza therapy. In this study, a number of IW3 and IW7 analogues with different structural modifications in 2-deoxy sugar or uridine parts were synthesized and evaluated for their ability to inhibit influenza A virus infection in vitro. Using the cytopathic effect (CPE) inhibition assay and viral plaque reduction assay in vitro, we showed that compounds 2, 3, and 4 exerted the most inhibitory effect on influenza virus A/ostrich/Denmark/725/96 (H5N2) infection in Madin-Darby canine kidney (MDCK) cells, with 50% inhibitory concentrations (IC50) for virus growth ranging from 82 to 100 (μM) without significant toxicity for the cells. The most active compound (2) showed activity of 82 μM with a selectivity index value of 5.27 against type A (H5N2) virus. Additionally, compound 2 reduced the formation of HA glycoprotein in a dose-dependent manner. Moreover, an analysis of physicochemical properties of studied compounds demonstrated a significant linear correlation between lipophilicity and antiviral activity. Therefore, inhibition of influenza A virus infection by conjugates of uridine and 2-deoxy sugars is a new promising approach for the development of new derivatives with anti-influenza activities.
Collapse
Affiliation(s)
- Ewelina Krol
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland.
| | - Ilona Wandzik
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland.
| | - Martyna Krejmer-Rabalska
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland.
| | - Boguslaw Szewczyk
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland.
| |
Collapse
|
78
|
Richard M, Herfst S, van den Brand JMA, de Meulder D, Lexmond P, Bestebroer TM, Fouchier RAM. Mutations Driving Airborne Transmission of A/H5N1 Virus in Mammals Cause Substantial Attenuation in Chickens only when combined. Sci Rep 2017; 7:7187. [PMID: 28775271 PMCID: PMC5543172 DOI: 10.1038/s41598-017-07000-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/22/2017] [Indexed: 12/12/2022] Open
Abstract
A/H5N1 influenza viruses pose a threat to human and animal health. A fully avian A/H5N1 influenza virus was previously shown to acquire airborne transmissibility between ferrets upon accumulation of five or six substitutions that affected three traits: polymerase activity, hemagglutinin stability and receptor binding. Here, the impact of these traits on A/H5N1 virus replication, tissue tropism, pathogenesis and transmission was investigated in chickens. The virus containing all substitutions associated with transmission in mammals was highly attenuated in chickens. However, single substitutions that affect polymerase activity, hemagglutinin stability and receptor binding generally had a small or negligible impact on virus replication, morbidity and mortality. A virus carrying two substitutions in the receptor-binding site was attenuated, although its tissue tropism in chickens was not affected. This data indicate that an A/H5N1 virus that is airborne-transmissible between mammals is unlikely to emerge in chickens, although individual mammalian adaptive substitutions have limited impact on viral fitness in chickens.
Collapse
Affiliation(s)
- Mathilde Richard
- Department of Viroscience, Postgraduate School Molecular Medicine, Erasmus MC, Rotterdam, The Netherlands.
| | - Sander Herfst
- Department of Viroscience, Postgraduate School Molecular Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Judith M A van den Brand
- Department of Viroscience, Postgraduate School Molecular Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Dennis de Meulder
- Department of Viroscience, Postgraduate School Molecular Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Pascal Lexmond
- Department of Viroscience, Postgraduate School Molecular Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Theo M Bestebroer
- Department of Viroscience, Postgraduate School Molecular Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Ron A M Fouchier
- Department of Viroscience, Postgraduate School Molecular Medicine, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
79
|
Timofeeva T, Asatryan M, Altstein A, Narodisky B, Gintsburg A, Kaverin N. Predicting the Evolutionary Variability of the Influenza A Virus. Acta Naturae 2017; 9:48-54. [PMID: 29104775 PMCID: PMC5662273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Indexed: 11/12/2022] Open
Abstract
The influenza A virus remains one of the most common and dangerous human health concerns due to its rapid evolutionary dynamics. Since the evolutionary changes of influenza A viruses can be traced in real time, the last decade has seen a surge in research on influenza A viruses due to an increase in experimental data (selection of escape mutants followed by examination of their phenotypic characteristics and generation of viruses with desired mutations using reverse genetics). Moreover, the advances in our understanding are also attributable to the development of new computational methods based on a phylogenetic analysis of influenza virus strains and mathematical (integro-differential equations, statistical methods, probability-theory-based methods) and simulation modeling. Continuously evolving highly pathogenic influenza A viruses are a serious health concern which necessitates a coupling of theoretical and experimental approaches to predict the evolutionary trends of the influenza A virus, with a focus on the H5 subtype.
Collapse
Affiliation(s)
- T.A. Timofeeva
- Federal State Budgetary Institution «N.F. Gamaleya FRCEM» of the Ministry of Health of the Russian Federation, Gamaleya Str. 18, Moscow, 123098, Russia
| | - M.N. Asatryan
- Federal State Budgetary Institution «N.F. Gamaleya FRCEM» of the Ministry of Health of the Russian Federation, Gamaleya Str. 18, Moscow, 123098, Russia
| | - A.D. Altstein
- Federal State Budgetary Institution «N.F. Gamaleya FRCEM» of the Ministry of Health of the Russian Federation, Gamaleya Str. 18, Moscow, 123098, Russia
| | - B.S. Narodisky
- Federal State Budgetary Institution «N.F. Gamaleya FRCEM» of the Ministry of Health of the Russian Federation, Gamaleya Str. 18, Moscow, 123098, Russia
| | - A.L. Gintsburg
- Federal State Budgetary Institution «N.F. Gamaleya FRCEM» of the Ministry of Health of the Russian Federation, Gamaleya Str. 18, Moscow, 123098, Russia
| | - N.V. Kaverin
- Federal State Budgetary Institution «N.F. Gamaleya FRCEM» of the Ministry of Health of the Russian Federation, Gamaleya Str. 18, Moscow, 123098, Russia
| |
Collapse
|
80
|
Mosaad Z, Arafa A, Hussein HA, Shalaby MA. Mutation signature in neuraminidase gene of avian influenza H9N2/G1 in Egypt. Virusdisease 2017; 28:164-173. [PMID: 28770242 DOI: 10.1007/s13337-017-0367-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/18/2017] [Indexed: 10/19/2022] Open
Abstract
The low pathogenic avian influenza (LPAI) H9N2 subtype has become the most prevalent and widespread in many Asian and Middle Eastern countries. It causes an enzootic situation in commercial poultry and known as a potential facilitator virus that can be transmitted to human from birds. The neuraminidase (NA) gene plays an important role the release and spread of the virus from infected cells and throughout the bird. The complete nucleotide sequences of the NA gene of seven H9N2 viruses collected from apparent healthy chicken and quail flocks in Egypt during 2014-2015, were amplified and sequenced. The phylogenetic relationships were investigated and all viruses were belonging to the A/Q/HK/G1/97 strain (G1-like). There were no insertions or deletions or shortening in NA stalk regions when compared to Y280-lineage and the human H9N2 isolates. No obvious changes NA interactions with antiviral drugs. We found that the Egyptian H9N2 viruses have seven glycosylation sites like the most recorded H9N2 viruses in the country, except A/Q/Egypt/14864V/2014 virus which has only six. The NA has four amino acid substitutions distributed in different parts of the hemadsorbing site. The most characteristic substitutions in this site were S372A and W403R these substitutions were a distinctive feature resembling to human H9N2, H2N2 and H3N2 viruses but differs from the other avian influenza viruses. These Special features of surface glycoproteins of LPAI-H9N2 viruses refer to the tendency for enhanced introductions into humans and ensuring the importance of poultry in the transfer influenza viruses.
Collapse
Affiliation(s)
- Zienab Mosaad
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, P.O. Box 264, Dokki, Giza, 12618 Egypt
| | - Abdelsatar Arafa
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, P.O. Box 264, Dokki, Giza, 12618 Egypt
| | - Hussein A Hussein
- Virology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211 Egypt
| | - Mohamed A Shalaby
- Virology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211 Egypt
| |
Collapse
|
81
|
Yin C, Yau SST. A coevolution analysis for identifying protein-protein interactions by Fourier transform. PLoS One 2017; 12:e0174862. [PMID: 28430779 PMCID: PMC5400233 DOI: 10.1371/journal.pone.0174862] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 03/16/2017] [Indexed: 12/29/2022] Open
Abstract
Protein-protein interactions (PPIs) play key roles in life processes, such as signal transduction, transcription regulations, and immune response, etc. Identification of PPIs enables better understanding of the functional networks within a cell. Common experimental methods for identifying PPIs are time consuming and expensive. However, recent developments in computational approaches for inferring PPIs from protein sequences based on coevolution theory avoid these problems. In the coevolution theory model, interacted proteins may show coevolutionary mutations and have similar phylogenetic trees. The existing coevolution methods depend on multiple sequence alignments (MSA); however, the MSA-based coevolution methods often produce high false positive interactions. In this paper, we present a computational method using an alignment-free approach to accurately detect PPIs and reduce false positives. In the method, protein sequences are numerically represented by biochemical properties of amino acids, which reflect the structural and functional differences of proteins. Fourier transform is applied to the numerical representation of protein sequences to capture the dissimilarities of protein sequences in biophysical context. The method is assessed for predicting PPIs in Ebola virus. The results indicate strong coevolution between the protein pairs (NP-VP24, NP-VP30, NP-VP40, VP24-VP30, VP24-VP40, and VP30-VP40). The method is also validated for PPIs in influenza and E.coli genomes. Since our method can reduce false positive and increase the specificity of PPI prediction, it offers an effective tool to understand mechanisms of disease pathogens and find potential targets for drug design. The Python programs in this study are available to public at URL (https://github.com/cyinbox/PPI).
Collapse
Affiliation(s)
- Changchuan Yin
- Department of Mathematics, Statistics and Computer Science, The University of Illinois at Chicago, Chicago, IL 60607-7045, United States of America
| | - Stephen S. -T. Yau
- Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
82
|
Yokoyama M, Fujisaki S, Shirakura M, Watanabe S, Odagiri T, Ito K, Sato H. Molecular Dynamics Simulation of the Influenza A(H3N2) Hemagglutinin Trimer Reveals the Structural Basis for Adaptive Evolution of the Recent Epidemic Clade 3C.2a. Front Microbiol 2017; 8:584. [PMID: 28443077 PMCID: PMC5385362 DOI: 10.3389/fmicb.2017.00584] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/21/2017] [Indexed: 12/26/2022] Open
Abstract
Influenza A(H3N2) has been a major cause of seasonal influenza in humans since 1968, and has evolved by antigenic drift under the constantly changing human herd immunity. Increasing evidence suggests that the antigenic change occasionally occurred concomitant with the alterations of the N-glycosylation site profile and hemagglutination activity of the virion surface protein hemagglutinin (HA). However, the structural basis of these changes remains largely unclear. To address this issue, we performed molecular dynamics simulations of the glycosylated HA trimers of the A(H3N2), which has a novel pattern of Asn-X-Ser/Thr sequons unique in the new A(H3N2) epidemic clade 3C.2a and is characterized by attenuated ability to agglutinate nonhuman erythrocytes. Comparison of the equilibrated structures of the glycosylated HA trimers with and without the 3C.2a-specific mutations reveals that the mutations could induce a drastic reduction in the apical space for the ligand binding via glycan-shield rearrangement. The results suggest that the 3C.2a strain has evolved an HA structure that is advantageous for evading pre-existing antibodies, while also increasing the ligand binding specificity. These findings have structural implications for our understanding of the phenotypic changes, evolution, and fate of influenza A(H3N2).
Collapse
Affiliation(s)
- Masaru Yokoyama
- Laboratory of Viral Genomics, Pathogen Genomics Center, National Institute of Infectious DiseasesTokyo, Japan
| | - Seiichiro Fujisaki
- Influenza Virus Research Center, National Institute of Infectious DiseasesTokyo, Japan
| | - Masayuki Shirakura
- Influenza Virus Research Center, National Institute of Infectious DiseasesTokyo, Japan
| | - Shinji Watanabe
- Influenza Virus Research Center, National Institute of Infectious DiseasesTokyo, Japan
| | - Takato Odagiri
- Influenza Virus Research Center, National Institute of Infectious DiseasesTokyo, Japan
| | - Kimito Ito
- Research Center for Zoonosis Control, Hokkaido UniversityHokkaido, Japan
| | - Hironori Sato
- Laboratory of Viral Genomics, Pathogen Genomics Center, National Institute of Infectious DiseasesTokyo, Japan
| |
Collapse
|
83
|
Li M, Zhao N, Luo J, Li Y, Chen L, Ma J, Zhao L, Yuan G, Wang C, Wang Y, Liu Y, He H. Genetic Characterization of Continually Evolving Highly Pathogenic H5N6 Influenza Viruses in China, 2012-2016. Front Microbiol 2017; 8:260. [PMID: 28293218 PMCID: PMC5329059 DOI: 10.3389/fmicb.2017.00260] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 02/07/2017] [Indexed: 11/26/2022] Open
Abstract
H5N6 is a highly pathogenic avian influenza (HPAI) and a zoonotic disease that causes recurring endemics in East Asia. At least 155 H5N6 outbreaks, including 15 human infections, have been reported in China. These repeated outbreaks have increased concern that the H5N6 virus may cross over to humans and cause a pandemic. In February, 2016, peafowls in a breeding farm exhibited a highly contagious disease. Post-mortem examinations, including RT-PCR, and virus isolation, confirmed that the highly pathogenic H5N6 influenza virus was the causative agent, and the strain was named A/Pavo Cristatus/Jiangxi/JA1/2016. In animal experiments, it exhibited high pathogenicity in chickens and an estimated median lethal dose in mice of ~104.3 TCID50. A phylogenetic analysis showed that JA1/2016 was clustered in H5 clade 2.3.4.4. FG594-like H5N6 virus from Guangdong Province was the probable predecessor of JA1/2016, and the estimated divergence time was June 2014. Furthermore, we found that H5N6 influenza viruses can be classified into the two following groups: Group 1 and Group 2. Group 2 influenza viruses have not been detected since the end of 2014, whereas Group 1 influenza viruses have continually evolved and reassorted with the “gene pool” circulating in south China, resulting in the rise of novel subtypes of this influenza virus. An increase in the number of its identified hosts, the expanding range of its distribution, and the continual evolution of H5N6 AIVs enhance the risk that an H5N6 virus may spread to other continents and cause a pandemic.
Collapse
Affiliation(s)
- Meng Li
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of SciencesBeijing, China; College of Life Science, University of Chinese Academy of SciencesBeijing, China
| | - Na Zhao
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of SciencesBeijing, China; College of Life Science, University of Chinese Academy of SciencesBeijing, China
| | - Jing Luo
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences Beijing, China
| | - Yuan Li
- Department of Animal Science, Hebei Normal University of Science and Technology Qinghuangdao, China
| | - Lin Chen
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of SciencesBeijing, China; College of Life Science, University of Chinese Academy of SciencesBeijing, China
| | - Jiajun Ma
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of SciencesBeijing, China; College of Life Science, University of Chinese Academy of SciencesBeijing, China
| | - Lin Zhao
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences Beijing, China
| | - Guohui Yuan
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences Beijing, China
| | - Chengmin Wang
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences Beijing, China
| | - Yutian Wang
- Department of Microbiology, Beijing General Station of Animal Husbandry Beijing, China
| | - Yanhua Liu
- Department of Microbiology, Beijing General Station of Animal Husbandry Beijing, China
| | - Hongxuan He
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences Beijing, China
| |
Collapse
|
84
|
Shchelkanov MY, Kirillov IM, Shestopalov AM, Litvin KE, Deryabin PG, Lvov DK. Evolution of influ- 245 enza A/H5N1 virus (1996-2016). Vopr Virusol 2016; 61:245-256. [PMID: 36494983 DOI: 10.18821/0507-4088-2016-61-6-245-256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Indexed: 12/13/2022]
Abstract
Twenty years ago in the South Chinese province of Guangdong the epizooty of highly pathogenic avian influenza (HPAI) H5N1 virus, which has laid the foundation of the largest epizooty in the contemporary history, has flashed. Hemagglutinin of prototype A/goose/Guangdong/1/1996 (H5N1) changing many times and generating new genetic subgroups participated in various reassortations; it still exists today. The present review is devoted to the retrospective analysis of HPAI/H5N1evolution for the last twenty years in the territory of Eurasia, Africa and America. The basis for the discussion is ecological model according to which new genetic variants are formed in the migration pathways with close contacts between different bird populations and in the overwintering areas where the maximum values of the immune layer occur; amplification of virus variants occurs in nesting areas among juvenile populations. The updated system of designations of genetic groups introduced by WHO/OIE/FAO H5 Evolution Working Group in 2015 is used.
Collapse
Affiliation(s)
- M Y Shchelkanov
- Far Eastern Federal University.,Institute of Biology and Soil Sciences.,Hygienic and Epidemiological Center in Primorsky Krai
| | - I M Kirillov
- Federal State Budgetary Institution «Federal Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya»
| | | | - K E Litvin
- A.N. Severtsov Institute of Ecology and Evolution
| | - P G Deryabin
- Federal State Budgetary Institution «Federal Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya»
| | - D K Lvov
- Federal State Budgetary Institution «Federal Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya»
| |
Collapse
|
85
|
Gaymard A, Le Briand N, Frobert E, Lina B, Escuret V. Functional balance between neuraminidase and haemagglutinin in influenza viruses. Clin Microbiol Infect 2016; 22:975-983. [DOI: 10.1016/j.cmi.2016.07.007] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2016] [Indexed: 01/15/2023]
|
86
|
Abdelwhab ESM, Veits J, Tauscher K, Ziller M, Grund C, Hassan MK, Shaheen M, Harder TC, Teifke J, Stech J, Mettenleiter TC. Progressive glycosylation of the haemagglutinin of avian influenza H5N1 modulates virus replication, virulence and chicken-to-chicken transmission without significant impact on antigenic drift. J Gen Virol 2016; 97:3193-3204. [PMID: 27902339 DOI: 10.1099/jgv.0.000648] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Highly pathogenic H5N1 avian influenza virus (A/H5N1) devastated the poultry industry and continues to pose a pandemic threat. Studying the progressive genetic changes in A/H5N1 after long-term circulation in poultry may help us to better understand A/H5N1 biology in birds. A/H5N1 clade 2.2.1.1 antigenic drift viruses have been isolated from vaccinated commercial poultry in Egypt. They exhibit a peculiar stepwise accumulation of glycosylation sites (GS) in the haemagglutinin (HA) with viruses carrying, beyond the conserved 5 GS, additional GS at amino acid residues 72, 154, 236 and 273 resulting in 6, 7, 8 or 9 GS in the HA. Available information about the impact of glycosylation on virus fitness and pathobiology is mostly derived from mammalian models. Here, we generated recombinant viruses imitating the progressive acquisition of GS in HA and investigated their biological relevance in vitro and in vivo. Our in vitro results indicated that the accumulation of GS correlated with increased glycosylation, increased virus replication, neuraminidase activity, cell-to-cell spread and thermostability, however, strikingly, without significant impact on virus escape from neutralizing antibodies. In vivo, glycosylation modulated virus virulence, tissue tropism, replication and chicken-to-chicken transmission. Predominance in the field was towards viruses with hyperglycosylated HA. Together, progressive glycosylation of the HA may foster persistence of A/H5N1 by increasing replication, stability and bird-to-bird transmission without significant impact on antigenic drift.
Collapse
Affiliation(s)
- El-Sayed M Abdelwhab
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Dokki, Giza 12618, Egypt.,Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Jutta Veits
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Kerstin Tauscher
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Mario Ziller
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Christian Grund
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Mohamed K Hassan
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Dokki, Giza 12618, Egypt
| | - Momtaz Shaheen
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Dokki, Giza 12618, Egypt
| | - Timm C Harder
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Jens Teifke
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Jürgen Stech
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Thomas C Mettenleiter
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| |
Collapse
|
87
|
Timofeeva TA, Sadykova GK, Rudneva IA, Boravleva EY, Gambaryan AS, Lomakina NF, Mochalova LV, Bovin NV, Usachev EV, Prilipov AG. Changes in the phenotypic properties of highly pathogenic influenza A virus of H5N1 subtype induced by N186I and N186T point mutations in hemagglutinin. Mol Biol 2016. [DOI: 10.1134/s0026893316050174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
88
|
Phanich J, Rungrotmongkol T, Kungwan N, Hannongbua S. Role of R292K mutation in influenza H7N9 neuraminidase toward oseltamivir susceptibility: MD and MM/PB(GB)SA study. J Comput Aided Mol Des 2016; 30:917-926. [PMID: 27714494 DOI: 10.1007/s10822-016-9981-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 09/27/2016] [Indexed: 12/12/2022]
Abstract
The H7N9 avian influenza virus is a novel re-assortment from at least four different strains of virus. Neuraminidase, which is a glycoprotein on the surface membrane, has been the target for drug treatment. However, some H7N9 strains that have been isolated from patient after drug treatment have a R292K mutation in neuraminidase. This substitution was found to facilitate drug resistance using protein- and virus- assays, in particular it gave a high resistance to the most commonly used drug, oseltamivir. The aim of this research is to understand the source of oseltamivir resistance using MD simulations and the MM/PB(GB)SA binding free energy approaches. Both methods can predict the reduced susceptibility of oseltamivir in good agreement to the IC 50 binding energy, although MM/GBSA underestimates this prediction compared to the MM/PBSA calculation. Electrostatic interaction is the main contribution for oseltamivir binding in terms of both interaction and solvation. We found that the source of the drug resistance is a decrease in the binding interaction combined with the reduction of the dehydration penalty. The smaller K292 mutated residue has a larger binding pocket cavity compared to the wild-type resulting in the loss of drug carboxylate-K292 hydrogen bonding and an increased accessibility for water molecules around the K292 mutated residue. In addition, oseltamivir does not bind well to the R292K mutant complex as shown by the high degree of fluctuation in ligand RMSD during the simulation and the change in angular distribution of bulky side chain groups.
Collapse
Affiliation(s)
- Jiraphorn Phanich
- Computational Chemistry Unit Cell, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thanyada Rungrotmongkol
- Structural and Computational Biology Research Group, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Ph.D. Program in Bioinformatics and Computational Biology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Nawee Kungwan
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Supot Hannongbua
- Computational Chemistry Unit Cell, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
89
|
Lambert Emo K, Hyun YM, Reilly E, Barilla C, Gerber S, Fowell D, Kim M, Topham DJ. Live Imaging of Influenza Infection of the Trachea Reveals Dynamic Regulation of CD8+ T Cell Motility by Antigen. PLoS Pathog 2016; 12:e1005881. [PMID: 27644089 PMCID: PMC5028057 DOI: 10.1371/journal.ppat.1005881] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 08/19/2016] [Indexed: 12/31/2022] Open
Abstract
During a primary influenza infection, cytotoxic CD8+ T cells need to infiltrate the infected airways and engage virus-infected epithelial cells. The factors that regulate T cell motility in the infected airway tissue are not well known. To more precisely study T cell infiltration of the airways, we developed an experimental model system using the trachea as a site where live imaging can be performed. CD8+ T cell motility was dynamic with marked changes in motility on different days of the infection. In particular, significant changes in average cell velocity and confinement were evident on days 8–10 during which the T cells abruptly but transiently increase velocity on day 9. Experiments to distinguish whether infection itself or antigen affect motility revealed that it is antigen, not active infection per se that likely affects these changes as blockade of peptide/MHC resulted in increased velocity. These observations demonstrate that influenza tracheitis provides a robust experimental foundation to study molecular regulation of T cell motility during acute virus infection. Influenza virus infects the cells that line the trachea and lung airways. Virus-specific cytotoxic (cell killing) T cells are the first line of adaptive immunity responsible for elimination of infected cells. We studied the cell movement, or motility, of these T cells responding to infection in the mouse trachea. Multiphoton live imaging was used to observe the cells in real time in intact tissue and measure their movement both quantitatively and qualitatively. The behavior of the CD8+ T cells responding to influenza infection was highly variable depending on the day after infection the imaging was performed. The most dramatic changes occurred after infectious virus was eliminated from the tissue, triggering a substantial shift in cell motility between days 8 and 9. Blocking peptide/MHC complexes with antibodies reversed cell arrest, increased velocities, and reduced confinement, similar to the changes observed from days 8 to 9. This suggested antigen-presentation persists after virus clearance with continued T cell engagement, and that T cell motility in the infected tissue is dynamically regulated by the infection and the presence of antigen-bearing cells in particular. In addition, these studies establish the trachea as a suitable site for live imaging of immune responses to virus infection.
Collapse
Affiliation(s)
- Kris Lambert Emo
- David H. Smith Center for Vaccine Biology & Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Department of Microbiology & Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Young-min Hyun
- David H. Smith Center for Vaccine Biology & Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Department of Microbiology & Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Emma Reilly
- David H. Smith Center for Vaccine Biology & Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Department of Microbiology & Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Christopher Barilla
- David H. Smith Center for Vaccine Biology & Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Department of Microbiology & Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Scott Gerber
- Department of Surgery, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Deborah Fowell
- David H. Smith Center for Vaccine Biology & Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Department of Microbiology & Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Minsoo Kim
- David H. Smith Center for Vaccine Biology & Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Department of Microbiology & Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - David J. Topham
- David H. Smith Center for Vaccine Biology & Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Department of Microbiology & Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
90
|
Durrant JD, Bush RM, Amaro RE. Microsecond Molecular Dynamics Simulations of Influenza Neuraminidase Suggest a Mechanism for the Increased Virulence of Stalk-Deletion Mutants. J Phys Chem B 2016; 120:8590-9. [PMID: 27141956 PMCID: PMC5002936 DOI: 10.1021/acs.jpcb.6b02655] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
Deletions in the
stalk of the influenza neuraminidase (NA) surface
protein are associated with increased virulence, but the mechanisms
responsible for this enhanced virulence are unclear. Here we use microsecond
molecular dynamics simulations to explore the effect of stalk deletion
on enzymatic activity, contrasting NA proteins from the A/swine/Shandong/N1/2009
strain both with and without a stalk deletion. By modeling and simulating
neuraminidase apo glycoproteins embedded in complex-mixture lipid
bilayers, we show that the geometry and dynamics of the neuraminidase
enzymatic pocket may differ depending on stalk length, with possible
repercussions on the binding of the endogenous sialylated-oligosaccharide
receptors. We also use these simulations to predict previously unrecognized
druggable “hotspots” on the neuraminidase surface that
may prove useful for future efforts aimed at structure-based drug
design.
Collapse
Affiliation(s)
- Jacob D Durrant
- Department of Chemistry & Biochemistry and the National Biomedical Computation Resource, University of California San Diego , La Jolla, California 92093, United States
| | - Robin M Bush
- Department of Ecology & Evolutionary Biology, University of California Irvine , Irvine, California 92697, United States
| | - Rommie E Amaro
- Department of Chemistry & Biochemistry and the National Biomedical Computation Resource, University of California San Diego , La Jolla, California 92093, United States
| |
Collapse
|
91
|
Tosh C, Nagarajan S, Kumar M, Murugkar HV, Venkatesh G, Shukla S, Mishra A, Mishra P, Agarwal S, Singh B, Dubey P, Tripathi S, Kulkarni DD. Multiple introductions of a reassortant H5N1 avian influenza virus of clade 2.3.2.1c with PB2 gene of H9N2 subtype into Indian poultry. INFECTION GENETICS AND EVOLUTION 2016; 43:173-8. [PMID: 27174088 DOI: 10.1016/j.meegid.2016.05.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/25/2016] [Accepted: 05/06/2016] [Indexed: 12/31/2022]
Abstract
Highly pathogenic avian influenza (HPAI) H5N1 viruses are a threat to poultry in Asia, Europe, Africa and North America. Here, we report isolation and characterization of H5N1 viruses isolated from ducks and turkeys in Kerala, Chandigarh and Uttar Pradesh, India between November 2014 and March 2015. Genetic and phylogenetic analyses of haemagglutinin gene identified that the virus belonged to a new clade 2.3.2.1c which has not been detected earlier in Indian poultry. The virus possessed molecular signature for high pathogenicity to chickens, which was corroborated by intravenous pathogenicity index of 2.96. The virus was a reassortant which derives its PB2 gene from H9N2 virus isolated in China during 2007-2013. However, the neuraminidase and internal genes are of H5N1 subtype. Phylogenetic and network analysis revealed that after detection in China in 2013/2014, the virus moved to Europe, West Africa and other Asian countries including India. The analyses further indicated multiple introductions of H5N1 virus in Indian poultry and internal spread in Kerala. One of the outbreaks in ducks in Kerala is linked to the H5N1 virus isolated from wild birds in Dubai suggesting movement of virus probably through migration of wild birds. However, the outbreaks in ducks in Chandigarh and Uttar Pradesh were from an unknown source in Asia which also contributed gene pools to the outbreaks in Europe and West Africa. The widespread incidence of the novel H5N1 HPAI is similar to the spread of clade 2.2 ("Qinghai-like") virus in 2005, and should be monitored to avoid threat to animal and public health.
Collapse
Affiliation(s)
- Chakradhar Tosh
- ICAR-National Institute of High Security Animal Diseases, Bhopal 462 022, India.
| | | | - Manoj Kumar
- ICAR-National Institute of High Security Animal Diseases, Bhopal 462 022, India
| | - Harshad V Murugkar
- ICAR-National Institute of High Security Animal Diseases, Bhopal 462 022, India
| | | | - Shweta Shukla
- ICAR-National Institute of High Security Animal Diseases, Bhopal 462 022, India
| | - Amit Mishra
- ICAR-National Institute of High Security Animal Diseases, Bhopal 462 022, India
| | - Pranav Mishra
- ICAR-National Institute of High Security Animal Diseases, Bhopal 462 022, India
| | - Sonam Agarwal
- ICAR-National Institute of High Security Animal Diseases, Bhopal 462 022, India
| | - Bharati Singh
- ICAR-National Institute of High Security Animal Diseases, Bhopal 462 022, India
| | - Prashant Dubey
- ICAR-National Institute of High Security Animal Diseases, Bhopal 462 022, India
| | - Sushil Tripathi
- ICAR-National Institute of High Security Animal Diseases, Bhopal 462 022, India
| | - Diwakar D Kulkarni
- ICAR-National Institute of High Security Animal Diseases, Bhopal 462 022, India
| |
Collapse
|
92
|
Lin Y, Xie X, Zhao Y, Kalhoro DH, Lu C, Liu Y. Enhanced replication of avian-origin H3N2 canine influenza virus in eggs, cell cultures and mice by a two-amino acid insertion in neuraminidase stalk. Vet Res 2016; 47:53. [PMID: 27160077 PMCID: PMC4862097 DOI: 10.1186/s13567-016-0337-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 03/14/2016] [Indexed: 02/06/2023] Open
Abstract
Canine influenza virus (CIV) is a newly identified, highly contagious respiratory pathogen in dogs. Recent studies indicate that avian-origin H3N2 CIV are circulating in Chinese dogs. To investigate the effects of a two-amino acid (2-aa) insertion naturally occurring at the distal end of the neuraminidase (NA) stalk found in Chinese isolates since 2010 on virus replication and virulence, we rescued the CIV strain, A/canine/Jiangsu/06/2011(H3N2) and its NA mutant without the 2-aa insertion using reverse genetics. The NA stalk length affected virus growth in cell culture. Compared to the short stalk strain (without 2-aa insertion), the long stalk strain (with 2-aa insertion) exhibited higher peak titers and greater yields in Madin-Darby canine kidney (MDCK) cells, chicken embryo fibroblasts and canine bronchiolar epithelial cells, as well as much larger plaques in MDCK cell monolayers. Furthermore, mice inoculated with the long stalk strain showed more severe pathologic damage in lung and higher proportion of detectable viral RNA in tissues. The long stalk strain induced local IFN-γ production with faster kinetics and higher levels in mice. However, in chickens, the two viral strains showed no significant difference with nearly the same proportion of detectable viral RNA loads in tissues. These observations suggest that the 2-aa insertion in the NA stalk acquired by avian-origin H3N2 CIV helps to enhance viral replication and is likely a result of adaptive evolution in canine hosts.
Collapse
Affiliation(s)
- Yan Lin
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.,College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xing Xie
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanbing Zhao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | | | - Chengping Lu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yongjie Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
93
|
Ge F, Li X, Ju H, Yang D, Liu J, Qi X, Wang J, Yang X, Qiu Y, Liu P, Zhou J. Genotypic evolution and antigenicity of H9N2 influenza viruses in Shanghai, China. Arch Virol 2016; 161:1437-45. [PMID: 26935915 DOI: 10.1007/s00705-016-2767-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/20/2016] [Indexed: 10/22/2022]
Abstract
H9N2 influenza viruses have been circulating in China since 1994, but a systematic investigation of H9N2 in Shanghai has not previously been undertaken. Here, using 14 viruses we isolated from poultry and pigs in Shanghai during 2002 and 2006-2014, together with the commercial vaccine A/chicken/Shanghai/F/1998 (Ck/SH/F/98), we analyzed the evolution of H9N2 influenza viruses in Shanghai and showed that all 14 isolates originated from Ck/SH/F/98 antigenically. We evaluated the immune protection efficiency of the vaccine. Our findings demonstrate that H9N2 viruses in Shanghai have undergone extensive reassortment. Various genotypes emerged in 2002, 2006 and 2007, while during 2009-2014 only one genotype was found. Four antigenic groups, A-D, could be identified among the 14 isolates and a variety of antigenically distinct H9N2-virus-derived avian influenza viruses (AIVs) circulated simultaneously in Shanghai during this period. Challenge experiments using vaccinated chickens indicated that the vaccine prevented shedding of antigenic group A and B viruses, but not those of the more recent groups C and D. Genetic analysis showed that compared to the vaccine strain, representative viruses of antigenic groups C and D possess greater numbers of amino acid substitutions in the hemagglutinin (HA) protein than viruses in antigenic groups A and B. Many of these substitutions are located in antigenic sites. Our results indicate that the persistence of H9N2 AIV in China might be due to incomplete vaccine protection and that the avian influenza vaccine should be regularly evaluated and updated to maintain optimal protection.
Collapse
Affiliation(s)
- Feifei Ge
- Shanghai Animal Disease Control Center, Shanghai, People's Republic of China.
| | - Xin Li
- Shanghai Animal Disease Control Center, Shanghai, People's Republic of China
| | - Houbin Ju
- Shanghai Animal Disease Control Center, Shanghai, People's Republic of China
| | - Dequan Yang
- Shanghai Animal Disease Control Center, Shanghai, People's Republic of China
| | - Jian Liu
- Shanghai Animal Disease Control Center, Shanghai, People's Republic of China
| | - Xinyong Qi
- Shanghai Animal Disease Control Center, Shanghai, People's Republic of China
| | - Jian Wang
- Shanghai Animal Disease Control Center, Shanghai, People's Republic of China
| | - Xianchao Yang
- Shanghai Animal Disease Control Center, Shanghai, People's Republic of China
| | - Yafeng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Peihong Liu
- Shanghai Animal Disease Control Center, Shanghai, People's Republic of China
| | - Jinping Zhou
- Shanghai Animal Disease Control Center, Shanghai, People's Republic of China.
| |
Collapse
|
94
|
Abdelwhab EM, Hassan MK, Abdel-Moneim AS, Naguib MM, Mostafa A, Hussein ITM, Arafa A, Erfan AM, Kilany WH, Agour MG, El-Kanawati Z, Hussein HA, Selim AA, Kholousy S, El-Naggar H, El-Zoghby EF, Samy A, Iqbal M, Eid A, Ibraheem EM, Pleschka S, Veits J, Nasef SA, Beer M, Mettenleiter TC, Grund C, Ali MM, Harder TC, Hafez HM. Introduction and enzootic of A/H5N1 in Egypt: Virus evolution, pathogenicity and vaccine efficacy ten years on. INFECTION GENETICS AND EVOLUTION 2016; 40:80-90. [PMID: 26917362 DOI: 10.1016/j.meegid.2016.02.023] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/18/2016] [Accepted: 02/19/2016] [Indexed: 12/09/2022]
Abstract
It is almost a decade since the highly pathogenic H5N1 avian influenza virus (A/H5N1) of clade 2.2.1 was introduced to Egypt in 2005, most likely, via wild birds; marking the longest endemic status of influenza viruses in poultry outside Asia. The endemic A/H5N1 in Egypt still compromises the poultry industry, poses serious hazards to public health and threatens to become potentially pandemic. The control strategies adopted for A/H5N1 in Egyptian poultry using diverse vaccines in commercialized poultry neither eliminated the virus nor did they decrease its evolutionary rate. Several virus clades have evolved, a few of them disappeared and others prevailed. Disparate evolutionary traits in both birds and humans were manifested by accumulation of clade-specific mutations across viral genomes driven by a variety of selection pressures. Viruses in vaccinated poultry populations displayed higher mutation rates at the immunogenic epitopes, promoting viral escape and reducing vaccine efficiency. On the other hand, viruses isolated from humans displayed changes in the receptor binding domain, which increased the viral affinity to bind to human-type glycan receptors. Moreover, viral pathogenicity exhibited several patterns in different hosts. This review aims to provide an overview of the viral evolution, pathogenicity and vaccine efficacy of A/H5N1 in Egypt during the last ten years.
Collapse
Affiliation(s)
- E M Abdelwhab
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, D-17493 Greifswald-Insel Riems, Germany; National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Dokki, Giza 12618, Egypt
| | - M K Hassan
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Dokki, Giza 12618, Egypt
| | - A S Abdel-Moneim
- Virology Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt; Microbiology Department, Virology Division, College of Medicine, Taif University, Al-Taif 21944, Saudi Arabia
| | - M M Naguib
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, D-17493 Greifswald-Insel Riems, Germany; National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Dokki, Giza 12618, Egypt
| | - A Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre (NRC), Dokki, Giza 12311, Egypt; Institute of Medical Virology, Justus Liebig University Giessen, Schubertstrasse 81, Giessen 35392, Germany
| | - I T M Hussein
- Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - A Arafa
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Dokki, Giza 12618, Egypt
| | - A M Erfan
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Dokki, Giza 12618, Egypt
| | - W H Kilany
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Dokki, Giza 12618, Egypt
| | - M G Agour
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Dokki, Giza 12618, Egypt; Animal Health Research Institute, Dokki, 12618 Giza, Egypt
| | - Z El-Kanawati
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Dokki, Giza 12618, Egypt
| | - H A Hussein
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - A A Selim
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Dokki, Giza 12618, Egypt
| | - S Kholousy
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Dokki, Giza 12618, Egypt
| | - H El-Naggar
- Veterinary Serum and Vaccine Research Institute, Abbasia, El-Sekka El-Beida St., PO Box 131, Cairo 11381, Egypt
| | - E F El-Zoghby
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Dokki, Giza 12618, Egypt
| | - A Samy
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Dokki, Giza 12618, Egypt
| | - M Iqbal
- Avian Influenza Group, The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, United Kingdom
| | - A Eid
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - E M Ibraheem
- Animal Health Research Institute, Dokki, 12618 Giza, Egypt
| | - S Pleschka
- Institute of Medical Virology, Justus Liebig University Giessen, Schubertstrasse 81, Giessen 35392, Germany
| | - J Veits
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, D-17493 Greifswald-Insel Riems, Germany
| | - S A Nasef
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Dokki, Giza 12618, Egypt
| | - M Beer
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, D-17493 Greifswald-Insel Riems, Germany
| | - T C Mettenleiter
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, D-17493 Greifswald-Insel Riems, Germany
| | - C Grund
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, D-17493 Greifswald-Insel Riems, Germany
| | - M M Ali
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Dokki, Giza 12618, Egypt; Animal Health Research Institute, Dokki, 12618 Giza, Egypt
| | - T C Harder
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, D-17493 Greifswald-Insel Riems, Germany
| | - H M Hafez
- Institute of Poultry Diseases, Freie Universität Berlin, Königsweg 63, 14163 Berlin, Germany.
| |
Collapse
|
95
|
New England harbor seal H3N8 influenza virus retains avian-like receptor specificity. Sci Rep 2016; 6:21428. [PMID: 26888262 PMCID: PMC4757820 DOI: 10.1038/srep21428] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 01/25/2016] [Indexed: 11/30/2022] Open
Abstract
An influenza H3N8 virus, carrying mammalian adaptation mutations, was isolated from New England harbor seals in 2011. We sought to assess the risk of its human transmissibility using two complementary approaches. First, we tested the binding of recombinant hemagglutinin (HA) proteins of seal H3N8 and human-adapted H3N2 viruses to respiratory tissues of humans and ferrets. For human tissues, we observed strong tendency of the seal H3 to bind to lung alveoli, which was in direct contrast to the human-adapted H3 that bound mainly to the trachea. This staining pattern was also consistent in ferrets, the primary animal model for human influenza pathogenesis. Second, we compared the binding of the recombinant HAs to a library of 610 glycans. In contrast to the human H3, which bound almost exclusively to α-2,6 sialylated glycans, the seal H3 bound preferentially to α-2,3 sialylated glycans. Additionally, the seal H3N8 virus replicated in human lung carcinoma cells. Our data suggest that the seal H3N8 virus has retained its avian-like receptor binding specificity, but could potentially establish infection in human lungs.
Collapse
|
96
|
Rohaim MA, El-Naggar RF, Hamoud MM, Nasr SA, Ismael E, Laban SE, Ahmed HA, Munir M. Re-Emergence of a Novel H5N1 Avian Influenza Virus Variant Subclade 2.2.1.1 in Egypt During 2014. Transbound Emerg Dis 2016; 64:1306-1312. [DOI: 10.1111/tbed.12472] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Indexed: 11/28/2022]
Affiliation(s)
- M. A. Rohaim
- Department of Virology; Faculty of Veterinary Medicine; Cairo University; Giza Egypt
| | - R. F. El-Naggar
- Department of Virology; Faculty of Veterinary Medicine; University of Sadat City; Giza Egypt
| | - M. M. Hamoud
- Department of Poultry and Rabbit Diseases; Faculty of Veterinary Medicine; Cairo University; Giza Egypt
| | - S. A. Nasr
- Department of Animal Hygiene and Veterinary Management; Faculty of Veterinary Medicine; Cairo University; Giza Egypt
| | - E. Ismael
- Department of Animal Hygiene and Veterinary Management; Faculty of Veterinary Medicine; Cairo University; Giza Egypt
| | - S. E. Laban
- Department of Animal Hygiene and Veterinary Management; Faculty of Veterinary Medicine; Cairo University; Giza Egypt
| | - H. A. Ahmed
- Department of Virology; Faculty of Veterinary Medicine; Cairo University; Giza Egypt
| | - M. Munir
- Avian Viral Diseases Programme; The Pirbright Institute; Woking Surrey UK
| |
Collapse
|
97
|
Changes in the Length of the Neuraminidase Stalk Region Impact H7N9 Virulence in Mice. J Virol 2015; 90:2142-9. [PMID: 26656694 DOI: 10.1128/jvi.02553-15] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 11/30/2015] [Indexed: 11/20/2022] Open
Abstract
The neuraminidase stalk of the newly emerged H7N9 influenza virus possesses a 5-amino-acid deletion. This study focuses on characterizing the biological functions of H7N9 with varied neuraminidase stalk lengths. Results indicate that the 5-amino-acid deletion had no impact on virus infectivity or replication in vitro or in vivo compared to that of a virus with a full-length stalk, but enhanced virulence in mice was observed for H7N9 encoding a 19- to 20-amino-acid deletion, suggesting that N9 stalk length impacts virulence in mammals, as N1 stalk length does.
Collapse
|
98
|
Generation of a reassortant avian influenza virus H5N2 vaccine strain capable of protecting chickens against infection with Egyptian H5N1 and H9N2 viruses. Vaccine 2015; 34:218-224. [PMID: 26620838 DOI: 10.1016/j.vaccine.2015.11.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 11/09/2015] [Accepted: 11/15/2015] [Indexed: 12/15/2022]
Abstract
BACKGROUND Avian influenza H5N1 viruses have been enzootic in Egyptian poultry since 2006. Avian influenza H9N2 viruses which have been circulating in Egyptian poultry since 2011 showed high replication rates in embryonated chicken eggs and mammalian cells. METHODS To investigate which gene segment was responsible for increasing replication, we constructed reassortant influenza viruses using the low pathogenic H1N1 PR8 virus as backbone and included individual genes from A/chicken/Egypt/S4456B/2011(H9N2) virus. Then, we invested this finding to improve a PR8-derived H5N1 influenza vaccine strain by incorporation of the NA segment of H9N2 virus instead of the NA of H5N1. The growth properties of this virus and several other forms of reassortant H5 viruses were compared. Finally, we tested the efficacy of this reassortant vaccine strain in chickens. RESULTS We observed an increase in replication for a reassortant virus expressing the neuraminidase gene (N2) of H9N2 virus relative to that of either parental viruses or reassortant PR8 viruses expressing other genes. Then, we generated an H5N2 vaccine strain based on the H5 from an Egyptian H5N1 virus and the N2 from an Egyptian H9N2 virus on a PR8 backbone. This strain had better replication rates than an H5N2 reassortant strain on an H9N2 backbone and an H5N1 reassortant on a PR8 backbone. This virus was then used to develop a killed, oil-emulsion vaccine and tested for efficacy against H5N1 and H9N2 viruses in chickens. Results showed that this vaccine was immunogenic and reduced mortality and shedding. DISCUSSION Our findings suggest that an inactivated PR8-derived H5N2 influenza vaccine is efficacious in poultry against H5N1 and H9N2 viruses and the vaccine seed replicates at a high rate thus improving vaccine production.
Collapse
|
99
|
Choi J, Martin SJH, Tripp RA, Tompkins SM, Dluhy RA. Detection of neuraminidase stalk motifs associated with enhanced N1 subtype influenza A virulence via Raman spectroscopy. Analyst 2015; 140:7748-60. [PMID: 26460183 PMCID: PMC4687448 DOI: 10.1039/c5an00977d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Oligonucleotides corresponding to neuraminidase (NA) stalk motifs that have been associated with enhanced influenza virulence have been identified using surface-enhanced Raman spectroscopy (SERS). 5'-Thiolated ssDNA oligonucleotides were immobilized onto a hexadecyltrimethylammonium bromide (CTAB) coated Au nanoparticles (AuNP). Three synthetic RNA sequences corresponding to specific amino acid deletions in the influenza NA stalk region were attached to the CTAB-modified AuNPs. Two of these sequences were specific to sequences with amino acid deletions associated with increased virulence, and one was a low virulence sequence with no amino acid deletions. Hybridization of synthetic matched and mismatched DNA-RNA complexes were detected based on the intrinsic SERS spectra. In addition, this platform was used to analyze RNA sequences isolated from laboratory grown influenza viruses having the NA stalk motif associated with enhanced virulence, including A/WSN/33/H1N1, A/Anhui/1/2005/H5N, and A/Vietnam/1203/2004/H5N1 strains. Multivariate feature selection methods were employed to determine the specific wavenumbers in the Raman spectra that contributed the most information for class discrimination. A one-way analysis of variance (ANOVA) test identified 884 and 1196 wavenumbers as being highly significant in the high and low virulence spectra, respectively (p < 0.01). A post-hoc Tukey Honestly Significance Difference (HSD) test identified the wavenumbers that played a major role in differentiating the DNA-RNA hybrid classes. An estimate of the spectral variability, based on the Wilcoxon rank sum test, found the major source of variation to be predominately between the different classes, and not within the classes, thus confirming that the spectra reflected real class differences and not sampling artifacts. The multivariate classification methods partial least squares discriminant analysis (PLS-DA) and support vector machine discriminant analysis (SVM-DA) were able to distinguish between different NA stalk-motifs linked to NA-enhanced influenza virus virulence (NA-EIV) with >95% sensitivity and specificity in both synthetic RNA sequences as well as the isolated viral RNA. This study demonstrates the feasibility of SERS for direct identification of influenza NA stalk mutations associated with virulence without sample amplification or labeling.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Cetrimonium
- Cetrimonium Compounds/chemistry
- DNA Probes/chemistry
- DNA Probes/genetics
- Gold/chemistry
- Humans
- Immobilized Nucleic Acids/chemistry
- Immobilized Nucleic Acids/genetics
- Influenza A Virus, H1N1 Subtype/enzymology
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/pathogenicity
- Influenza A Virus, H5N1 Subtype/enzymology
- Influenza A Virus, H5N1 Subtype/genetics
- Influenza A Virus, H5N1 Subtype/pathogenicity
- Influenza, Human/virology
- Metal Nanoparticles/chemistry
- Metal Nanoparticles/ultrastructure
- Mutation
- Neuraminidase/chemistry
- Neuraminidase/genetics
- RNA, Viral/analysis
- RNA, Viral/genetics
- Spectrum Analysis, Raman/methods
Collapse
Affiliation(s)
- JooYoung Choi
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA.
| | - Sharon J H Martin
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA.
| | - Ralph A Tripp
- Department of Infectious Disease, University of Georgia, Athens, GA 30602, USA
| | - S Mark Tompkins
- Department of Infectious Disease, University of Georgia, Athens, GA 30602, USA
| | - Richard A Dluhy
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
100
|
Huang Y, Zhang H, Li X, Hu S, Cai L, Sun Q, Li W, Deng Z, Xiang X, Zhang H, Li F, Gao L. Detection and Genetic Characteristics of H9N2 Avian Influenza Viruses from Live Poultry Markets in Hunan Province, China. PLoS One 2015; 10:e0142584. [PMID: 26554921 PMCID: PMC4640513 DOI: 10.1371/journal.pone.0142584] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/24/2015] [Indexed: 12/26/2022] Open
Abstract
H9N2 avian influenza viruses (AIVs) are highly prevalent and of low pathogenicity in domestic poultry. These viruses show a high genetic compatibility with other subtypes of AIVs and have been involved in the genesis of H5N1, H7N9 and H10N8 viruses causing severe infection in humans. The first case of human infection with H9N2 viruses in Hunan province of China have been confirmed in November 2013 and identified that H9N2 viruses from live poultry markets (LPMs) near the patient’s house could be the source of infection. However, the prevalence, distribution and genetic characteristics of H9N2 viruses in LPMs all over the province are not clear. We collected and tested 3943 environmental samples from 380 LPMs covering all 122 counties/districts of Hunan province from February to April, 2014. A total of 618 (15.7%) samples were H9 subtype positive and 200 (52.6%) markets in 98 (80.3%) counties/districts were contaminated with H9 subtype AIVs. We sequenced the entire coding sequences of the genomes of eleven H9N2 isolates from environmental samples. Phylogenetic analysis showed that the gene sequences of the H9N2 AIVs exhibited high homology (94.3%-100%). All eleven viruses were in a same branch in the phylogenetic trees and belonged to a same genotype. No gene reassortment had been found. Molecular analysis demonstrated that all the viruses had typical molecular characteristics of contemporary avian H9N2 influenza viruses. Continued surveillance of AIVs in LPMs is warranted for identification of further viral evolution and novel reassortants with pandemic potential.
Collapse
Affiliation(s)
- Yiwei Huang
- Hunan Provincial Center for Disease Control and Prevention, Changsha, Hunan, People’s Republic of China
| | - Hong Zhang
- Hunan Provincial Center for Disease Control and Prevention, Changsha, Hunan, People’s Republic of China
| | - Xiaodan Li
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Shixiong Hu
- Hunan Provincial Center for Disease Control and Prevention, Changsha, Hunan, People’s Republic of China
| | - Liang Cai
- Hunan Provincial Center for Disease Control and Prevention, Changsha, Hunan, People’s Republic of China
| | - Qianlai Sun
- Hunan Provincial Center for Disease Control and Prevention, Changsha, Hunan, People’s Republic of China
| | - Wenchao Li
- Hunan Provincial Center for Disease Control and Prevention, Changsha, Hunan, People’s Republic of China
| | - Zhihong Deng
- Hunan Provincial Center for Disease Control and Prevention, Changsha, Hunan, People’s Republic of China
| | - Xingyu Xiang
- Hunan Provincial Center for Disease Control and Prevention, Changsha, Hunan, People’s Republic of China
| | - Hengjiao Zhang
- Hunan Provincial Center for Disease Control and Prevention, Changsha, Hunan, People’s Republic of China
| | - Fangcai Li
- Hunan Provincial Center for Disease Control and Prevention, Changsha, Hunan, People’s Republic of China
| | - Lidong Gao
- Hunan Provincial Center for Disease Control and Prevention, Changsha, Hunan, People’s Republic of China
- * E-mail:
| |
Collapse
|