51
|
Meng X, Kaever T, Yan B, Traktman P, Zajonc DM, Peters B, Crotty S, Xiang Y. Characterization of murine antibody responses to vaccinia virus envelope protein A14 reveals an immunodominant antigen lacking of effective neutralization targets. Virology 2018; 518:284-292. [PMID: 29558682 PMCID: PMC5911218 DOI: 10.1016/j.virol.2018.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/05/2018] [Accepted: 03/06/2018] [Indexed: 01/08/2023]
Abstract
Vaccinia virus (VACV) A14 is a major envelope protein and a dominant antibody target in the smallpox vaccine. However, the role of anti-A14 antibodies in immunity against orthopoxviruses is unclear. Here, we characterized 22 A14 monoclonal antibodies (mAb) from two mice immunized with VACV. Epitope mapping showed that 21 mAbs targeted the C-terminal hydrophilic region, while one mAb recognized the middle region predicted to be across the viral envelope from the C-terminus. However, none of the mAbs bound to virions in studies with electron microscopy. Interestingly, some mAbs showed low VACV neutralization activities in the presence of complement and provided protection to SCID mice challenged with VACV ACAM2000. Our data showed that, although A14 is an immunodominant antigen in smallpox vaccine, its B cell epitopes are either enclosed within the virions or are inaccessible on virion surface. Anti-A14 antibodies, however, could contribute to protection against VACV through a complement-dependent pathway.
Collapse
Affiliation(s)
- Xiangzhi Meng
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Thomas Kaever
- Division of Vaccine Discovery La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Bo Yan
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Paula Traktman
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC, USA; Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Dirk M Zajonc
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA; Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Bjoern Peters
- Division of Vaccine Discovery La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Shane Crotty
- Division of Vaccine Discovery La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA; Division of Infectious Diseases, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Yan Xiang
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
52
|
Novy K, Kilcher S, Omasits U, Bleck CKE, Beerli C, Vowinckel J, Martin CK, Syedbasha M, Maiolica A, White I, Mercer J, Wollscheid B. Proteotype profiling unmasks a viral signalling network essential for poxvirus assembly and transcriptional competence. Nat Microbiol 2018; 3:588-599. [DOI: 10.1038/s41564-018-0142-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/07/2018] [Indexed: 11/09/2022]
|
53
|
The Host Factor Early Growth Response Gene (EGR-1) Regulates Vaccinia virus Infectivity during Infection of Starved Mouse Cells. Viruses 2018; 10:v10040140. [PMID: 29561772 PMCID: PMC5923434 DOI: 10.3390/v10040140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 02/20/2018] [Accepted: 03/16/2018] [Indexed: 12/16/2022] Open
Abstract
Evolution has equipped poxvirus genomes with the coding capacity for several virus-host interaction products which interfere with host cell gene expression and protein function, creating an adequate intracellular environment for a productive infection. We show here that Vaccinia virus (VACV) induces the expression of the cellular transcription factor EGR-1 (early growth response-1) in Mouse Embryonic Fibroblasts (MEFs) through the MEK (mitogen-activated protein kinase (MAPK)/ERK)/ERK (extracellular signal-regulated kinases) pathway, from 3 to 12 h post infection (h.p.i.). By using starved egr-1 knockout (egr-1−/−) MEFs, we demonstrate that VACV replication is reduced by ~1 log in this cell line. Although western blotting and electron microscopy analyses revealed no difference in VACV gene expression or morphogenesis, the specific infectivity of VACV propagated in egr-1−/− MEFs was lower than virus propagated in wild type (WT) cells. This lower infectivity was due to decreased VACV DNA replication during the next cycle of infection. Taken together, these results revealed that EGR-1 appears to facilitate VACV replication in starved fibroblasts by affecting viral particles infectivity.
Collapse
|
54
|
Full Genome Sequence of the Western Reserve Strain of Vaccinia Virus Determined by Third-Generation Sequencing. GENOME ANNOUNCEMENTS 2018; 6:6/11/e01570-17. [PMID: 29545308 PMCID: PMC5854772 DOI: 10.1128/genomea.01570-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The vaccinia virus is a large, complex virus belonging to the Poxviridae family. Here, we report the complete, annotated genome sequence of the neurovirulent Western Reserve laboratory strain of this virus, which was sequenced on the Pacific Biosciences RS II and Oxford Nanopore MinION platforms.
Collapse
|
55
|
Proteomic composition of Nipah virus-like particles. J Proteomics 2018; 172:190-200. [DOI: 10.1016/j.jprot.2017.10.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/13/2017] [Accepted: 10/22/2017] [Indexed: 01/28/2023]
|
56
|
A Proteomics Survey of Junín Virus Interactions with Human Proteins Reveals Host Factors Required for Arenavirus Replication. J Virol 2018; 92:JVI.01565-17. [PMID: 29187543 DOI: 10.1128/jvi.01565-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/22/2017] [Indexed: 12/17/2022] Open
Abstract
Arenaviruses are negative-strand, enveloped RNA viruses that cause significant human disease. In particular, Junín mammarenavirus (JUNV) is the etiologic agent of Argentine hemorrhagic fever. At present, little is known about the cellular proteins that the arenavirus matrix protein (Z) hijacks to accomplish its various functions, including driving the process of virus release. Furthermore, there is little knowledge regarding host proteins incorporated into arenavirus particles and their importance for virion function. To address these deficiencies, we used mass spectrometry to identify human proteins that (i) interact with the JUNV matrix protein inside cells or within virus-like particles (VLPs) and/or (ii) are incorporated into bona fide JUNV strain Candid#1 particles. Bioinformatics analyses revealed that multiple classes of human proteins were overrepresented in the data sets, including ribosomal proteins, Ras superfamily proteins, and endosomal sorting complex required for transport (ESCRT) proteins. Several of these proteins were required for the propagation of JUNV (ADP ribosylation factor 1 [ARF1], ATPase, H+ transporting, lysosomal 38-kDa, V0 subunit d1 [ATP6V0D1], and peroxiredoxin 3 [PRDX3]), lymphocytic choriomeningitis mammarenavirus (LCMV) (Rab5c), or both viruses (ATP synthase, H+ transporting, mitochondrial F1 complex, beta polypeptide [ATP5B] and IMP dehydrogenase 2 [IMPDH2]). Furthermore, we show that the release of infectious JUNV particles, but not LCMV particles, requires a functional ESCRT pathway and that ATP5B and IMPDH2 are required for JUNV budding. In summary, we have provided a large-scale map of host machinery that associates with JUNV and identified key human proteins required for its propagation. This data set provides a resource for the field to guide antiviral target discovery and to better understand the biology of the arenavirus matrix protein and the importance of host proteins for virion function.IMPORTANCE Arenaviruses are deadly human pathogens for which there are no U.S. Food and Drug Administration-approved vaccines and only limited treatment options. Little is known about the host proteins that are incorporated into arenavirus particles or that associate with its multifunctional matrix protein. Using Junín mammarenavirus (JUNV), the causative agent of Argentine hemorrhagic fever, as a model organism, we mapped the human proteins that are incorporated into JUNV particles or that associate with the JUNV matrix protein. Functional analysis revealed host machinery that is required for JUNV propagation, including the cellular ESCRT pathway. This study improves our understanding of critical arenavirus-host interactions and provides a data set that will guide future studies to better understand arenavirus pathogenesis and identify novel host proteins that can be therapeutically targeted.
Collapse
|
57
|
Grossegesse M, Doellinger J, Fritsch A, Laue M, Piesker J, Schaade L, Nitsche A. Global ubiquitination analysis reveals extensive modification and proteasomal degradation of cowpox virus proteins, but preservation of viral cores. Sci Rep 2018; 8:1807. [PMID: 29379051 PMCID: PMC5788924 DOI: 10.1038/s41598-018-20130-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 01/15/2018] [Indexed: 11/09/2022] Open
Abstract
The emergence of Variola virus-like viruses by natural evolution of zoonotic Orthopoxviruses, like Cowpox virus (CPXV), is a global health threat. The proteasome is essential for poxvirus replication, making the viral components interacting with the ubiquitin-proteasome system attractive antiviral targets. We show that proteasome inhibition impairs CPXV replication by prevention of uncoating, suggesting that uncoating is mediated by proteasomal degradation of viral core proteins. Although Orthopoxvirus particles contain considerable amounts of ubiquitin, distinct modification sites are largely unknown. Therefore, for the first time, we analyzed globally ubiquitination sites in CPXV mature virion proteins using LC-MS/MS. Identification of 137 conserved sites in 54 viral proteins among five CPXV strains revealed extensive ubiquitination of structural core proteins. Moreover, since virions contained primarily K48-linked polyubiquitin, we hypothesized that core proteins are modified accordingly. However, quantitative analysis of ubiquitinated CPXV proteins early in infection showed no proteasomal degradation of core proteins. Instead, our data indicate that the recently suggested proteasomal regulation of the uncoating factor E5 is a prerequisite for uncoating. Expanding our understanding of poxvirus uncoating and elucidating a multitude of novel ubiquitination sites in poxvirus proteins, the present study verifies the major biological significance of ubiquitin in poxvirus infection.
Collapse
Affiliation(s)
- Marica Grossegesse
- Robert Koch Institute, Centre for Biological Threats and Special Pathogens: Highly Pathogenic Viruses (ZBS 1), Berlin, 13353, Germany
| | - Joerg Doellinger
- Robert Koch Institute, Centre for Biological Threats and Special Pathogens: Highly Pathogenic Viruses (ZBS 1), Berlin, 13353, Germany. .,Robert Koch Institute, Centre for Biological Threats and Special Pathogens: Proteomics and Spectroscopy (ZBS 6), Berlin, 13353, Germany.
| | - Annemarie Fritsch
- Robert Koch Institute, Centre for Biological Threats and Special Pathogens: Highly Pathogenic Viruses (ZBS 1), Berlin, 13353, Germany
| | - Michael Laue
- Robert Koch Institute, Centre for Biological Threats and Special Pathogens: Advanced Light and Electron Microscopy (ZBS 4), Berlin, 13353, Germany
| | - Janett Piesker
- Robert Koch Institute, Centre for Biological Threats and Special Pathogens: Advanced Light and Electron Microscopy (ZBS 4), Berlin, 13353, Germany
| | - Lars Schaade
- Robert Koch Institute, Centre for Biological Threats and Special Pathogens, Berlin, 13353, Germany
| | - Andreas Nitsche
- Robert Koch Institute, Centre for Biological Threats and Special Pathogens: Highly Pathogenic Viruses (ZBS 1), Berlin, 13353, Germany
| |
Collapse
|
58
|
Selective recruitment of nucleoporins on vaccinia virus factories and the role of Nup358 in viral infection. Virology 2017; 512:151-160. [DOI: 10.1016/j.virol.2017.09.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 09/13/2017] [Accepted: 09/14/2017] [Indexed: 12/14/2022]
|
59
|
Differential Innate Immune Signaling in Macrophages by Wild-Type Vaccinia Mature Virus and a Mutant Virus with a Deletion of the A26 Protein. J Virol 2017; 91:JVI.00767-17. [PMID: 28659486 DOI: 10.1128/jvi.00767-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 06/23/2017] [Indexed: 12/13/2022] Open
Abstract
The Western Reserve (WR) strain of mature vaccinia virus contains an A26 envelope protein that mediates virus binding to cell surface laminin and subsequent endocytic entry into HeLa cells. Removal of the A26 protein from the WR strain mature virus generates a mutant, WRΔA26, that enters HeLa cells through plasma membrane fusion. Here, we infected murine bone marrow-derived macrophages (BMDM) with wild-type strain WR and the WRΔA26 mutant and analyzed viral gene expression and cellular innate immune signaling. In contrast to previous studies, in which both HeLa cells infected with WR and HeLa cells infected with WRΔA26 expressed abundant viral late proteins, we found that WR expressed much less viral late protein than WRΔA26 in BMDM. Microarray analysis of the cellular transcripts in BMDM induced by virus infection revealed that WR preferentially activated type 1 interferon receptor (IFNAR)-dependent signaling but WRΔA26 did not. We consistently detected a higher level of soluble beta interferon secretion and phosphorylation of the STAT1 protein in BMDM infected with WR than in BMDM infected with WRΔA26. When IFNAR-knockout BMDM were infected with WR, late viral protein expression increased, confirming that IFNAR-dependent signaling was differentially induced by WR and, in turn, restricted viral late gene expression. Finally, wild-type C57BL/6 mice were more susceptible to mortality from WRΔA26 infection than to that from WR infection, whereas IFNAR-knockout mice were equally susceptible to WR and WRΔA26 infection, demonstrating that the ability of WRΔA26 to evade IFNAR signaling has an important influence on viral pathogenesis in vivoIMPORTANCE The vaccinia virus A26 protein was previously shown to mediate virus attachment and to regulate viral endocytosis. Here, we show that infection with strain WR induces a robust innate immune response that activates type 1 interferon receptor (IFNAR)-dependent cellular genes in BMDM, whereas infection with the WRΔA26 mutant does not. We further demonstrated that the differential activation of IFNAR-dependent cellular signaling between WR and WRΔA26 not only is important for differential host restriction in BMDM but also is important for viral virulence in vivo Our study reveals a new property of WRΔA26, which is in regulating host antiviral innate immunity in vitro and in vivo.
Collapse
|
60
|
Wang Y, Jin F, Wang R, Li F, Wu Y, Kitazato K, Wang Y. HSP90: a promising broad-spectrum antiviral drug target. Arch Virol 2017; 162:3269-3282. [PMID: 28780632 DOI: 10.1007/s00705-017-3511-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 06/27/2017] [Indexed: 12/13/2022]
Abstract
The emergence of antiviral drug-resistant mutants is the most important issue in current antiviral therapy. As obligate parasites, viruses require host factors for efficient replication. An ideal therapeutic target to prevent drug-resistance development is represented by host factors that are crucial for the viral life cycle. Recent studies have indicated that heat shock protein 90 (HSP90) is a crucial host factor that is required by many viruses for multiple phases of their life cycle including viral entry, nuclear import, transcription, and replication. In this review, we summarize the most recent advances regarding HSP90 function, mechanisms of action, and molecular pathways that are associated with viral infection, and provide a comprehensive understanding of the role of HSP90 in the immune response and exosome-mediated viral transmission. In addition, several HSP90 inhibitors have entered clinical trials for specific cancers that are associated with viral infection, which further implies a crucial role for HSP90 in the malignant transformation of virus-infected cells; as such, HSP90 inhibitors exhibit excellent therapeutic potential. Finally, we describe the challenge of developing HSP90 inhibitors as anti-viral drugs.
Collapse
Affiliation(s)
- Yiliang Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, People's Republic of China.,College of Pharmacy, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Fujun Jin
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, People's Republic of China
| | - Rongze Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, People's Republic of China.,College of Pharmacy, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Feng Li
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, People's Republic of China.,College of Pharmacy, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Yanting Wu
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, People's Republic of China
| | - Kaio Kitazato
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, People's Republic of China. .,Division of Molecular Pharmacology of Infectious Agents, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan.
| | - Yifei Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, People's Republic of China.
| |
Collapse
|
61
|
Abstract
Cysteine thiols are among the most reactive functional groups in proteins, and their pairing in disulfide linkages is a common post-translational modification in proteins entering the secretory pathway. This modest amino acid alteration, the mere removal of a pair of hydrogen atoms from juxtaposed cysteine residues, contrasts with the substantial changes that characterize most other post-translational reactions. However, the wide variety of proteins that contain disulfides, the profound impact of cross-linking on the behavior of the protein polymer, the numerous and diverse players in intracellular pathways for disulfide formation, and the distinct biological settings in which disulfide bond formation can take place belie the simplicity of the process. Here we lay the groundwork for appreciating the mechanisms and consequences of disulfide bond formation in vivo by reviewing chemical principles underlying cysteine pairing and oxidation. We then show how enzymes tune redox-active cofactors and recruit oxidants to improve the specificity and efficiency of disulfide formation. Finally, we discuss disulfide bond formation in a cellular context and identify important principles that contribute to productive thiol oxidation in complex, crowded, dynamic environments.
Collapse
Affiliation(s)
- Deborah Fass
- Department of Structural Biology, Weizmann Institute of Science , Rehovot 7610001, Israel
| | - Colin Thorpe
- Department of Chemistry and Biochemistry, University of Delaware , Newark, Delaware 19716, United States
| |
Collapse
|
62
|
Deletion of the Vaccinia Virus I2 Protein Interrupts Virion Morphogenesis, Leading to Retention of the Scaffold Protein and Mislocalization of Membrane-Associated Entry Proteins. J Virol 2017; 91:JVI.00558-17. [PMID: 28490596 DOI: 10.1128/jvi.00558-17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 05/05/2017] [Indexed: 11/20/2022] Open
Abstract
The I2L open reading frame of vaccinia virus (VACV) encodes a conserved 72-amino-acid protein with a putative C-terminal transmembrane domain. Previous studies with a tetracycline-inducible mutant demonstrated that I2-deficient virions are defective in cell entry. The purpose of the present study was to determine the step of replication or entry that is affected by loss of the I2 protein. Fluorescence microscopy experiments showed that I2 colocalized with a major membrane protein of immature and mature virions. We generated a cell line that constitutively expressed I2 and allowed construction of the VACV I2L deletion mutant vΔI2. As anticipated, vΔI2 was unable to replicate in cells that did not express I2. Unexpectedly, morphogenesis was interrupted at a stage after immature virion formation, resulting in the accumulation of dense spherical particles instead of brick-shaped mature virions with well-defined core structures. The abnormal particles retained the D13 scaffold protein of immature virions, were severely deficient in the transmembrane proteins that comprise the entry fusion complex (EFC), and had increased amounts of unprocessed membrane and core proteins. Total lysates of cells infected with vΔI2 also had diminished EFC proteins due to instability attributed to their hydrophobicity and failure to be inserted into viral membranes. A similar instability of EFC proteins had previously been found with unrelated mutants blocked earlier in morphogenesis that also accumulated viral membranes retaining the D13 scaffold. We concluded that I2 is required for virion morphogenesis, release of the D13 scaffold, and the association of EFC proteins with viral membranes.IMPORTANCE Poxviruses comprise a large family that infect vertebrates and invertebrates, cause disease in both in humans and in wild and domesticated animals, and are being engineered as vectors for vaccines and cancer therapy. In addition, investigations of poxviruses have provided insights into many aspects of cell biology. The I2 protein is conserved in all poxviruses that infect vertebrates, suggesting an important role. The present study revealed that this protein is essential for vaccinia virus morphogenesis and that its absence results in an accumulation of deformed virus particles retaining the scaffold protein and deficient in surface proteins needed for cell entry.
Collapse
|
63
|
Kuehnl A, Musiol A, Raabe CA, Rescher U. Emerging functions as host cell factors - an encyclopedia of annexin-pathogen interactions. Biol Chem 2017; 397:949-59. [PMID: 27366904 DOI: 10.1515/hsz-2016-0183] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 06/28/2016] [Indexed: 12/14/2022]
Abstract
Emerging infectious diseases and drug-resistant infectious agents call for the development of innovative antimicrobial strategies. With pathogenicity now considered to arise from the complex and bi-directional interplay between a microbe and the host, host cell factor targeting has emerged as a promising approach that might overcome the limitations of classical antimicrobial drug development and could open up novel and efficient therapeutic strategies. Interaction with and modulation of host cell membranes is a recurrent theme in the host-microbe relationship. In this review, we provide an overview of what is currently known about the role of the Ca2+ dependent, membrane-binding annexin protein family in pathogen-host interactions, and discuss their emerging functions as host cell derived auxiliary proteins in microbe-host interactions and host cell targets.
Collapse
|
64
|
Pham MD, Epperla CP, Hsieh CL, Chang W, Chang HC. Glycosaminoglycans-Specific Cell Targeting and Imaging Using Fluorescent Nanodiamonds Coated with Viral Envelope Proteins. Anal Chem 2017; 89:6527-6534. [PMID: 28548489 DOI: 10.1021/acs.analchem.7b00627] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Understanding virus-host interactions is crucial for vaccine development. This study investigates such interactions using fluorescent nanodiamonds (FNDs) coated with vaccinia envelope proteins as the model system. To achieve this goal, we noncovalently conjugated 100 nm FNDs with rA27(aa 21-84), a recombinant envelope protein of vaccinia virus, for glycosaminoglycans (GAGs)-specific targeting and imaging of living cells. Another recombinant protein rDA27(aa 33-84) that removes the GAGs-binding sequences was also used for comparison. Three types of A27-coated FNDs were generated, including rA27(aa 21-84)-FND, rDA27(aa 33-84)-FND, and hybrid rA27(aa 21-84)/rDA27(aa 33-84)-FND. The specificity of these viral protein-FND conjugates toward GAGs binding was examined by flow cytometry, fluorescence microscopy, and gel electrophoresis. Results obtained for normal and GAGs-deficient cells showed that the recombinant proteins maintain their GAG-targeting activities even after immobilization on the FND surface. Our studies provide a new nanoparticle-based platform not only to target specific cell types but also to track the fates of these immobilized viral proteins in targeted cells as well as to isolate and enrich GAGs-associated proteins on cell membrane.
Collapse
Affiliation(s)
- Minh D Pham
- Institute of Atomic and Molecular Sciences, Academia Sinica , Taipei 106, Taiwan.,Institute of Biotechnology, Vietnam Academy of Science and Technology , 18-Hoang Quoc Viet, Cau Giay, Ha noi, Vietnam
| | - Chandra Prakash Epperla
- Institute of Atomic and Molecular Sciences, Academia Sinica , Taipei 106, Taiwan.,Taiwan International Graduate Program-Molecular Science and Technology, Academia Sinica , Taipei 115, Taiwan.,Department of Chemistry, National Tsing Hua University , Hsinchu 300, Taiwan
| | - Chia-Lung Hsieh
- Institute of Atomic and Molecular Sciences, Academia Sinica , Taipei 106, Taiwan
| | - Wen Chang
- Institute of Molecular Biology, Academia Sinica , Taipei 115, Taiwan
| | - Huan-Cheng Chang
- Institute of Atomic and Molecular Sciences, Academia Sinica , Taipei 106, Taiwan.,Taiwan International Graduate Program-Molecular Science and Technology, Academia Sinica , Taipei 115, Taiwan.,Department of Chemical Engineering, National Taiwan University of Science and Technology , Taipei 106, Taiwan
| |
Collapse
|
65
|
Noumeavirus replication relies on a transient remote control of the host nucleus. Nat Commun 2017; 8:15087. [PMID: 28429720 PMCID: PMC5413956 DOI: 10.1038/ncomms15087] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 02/28/2017] [Indexed: 12/13/2022] Open
Abstract
Acanthamoeba are infected by a remarkable diversity of large dsDNA viruses, the infectious cycles of which have been characterized using genomics, transcriptomics and electron microscopy. Given their gene content and the persistence of the host nucleus throughout their infectious cycle, the Marseilleviridae were initially assumed to fully replicate in the cytoplasm. Unexpectedly, we find that their virions do not incorporate the virus-encoded transcription machinery, making their replication nucleus-dependent. However, instead of delivering their DNA to the nucleus, the Marseilleviridae initiate their replication by transiently recruiting the nuclear transcription machinery to their cytoplasmic viral factory. The nucleus recovers its integrity after becoming leaky at an early stage. This work highlights the importance of virion proteomic analyses to complement genome sequencing in the elucidation of the replication scheme and evolution of large dsDNA viruses. Large dsDNA viruses either replicate in or disrupt the nucleus to gain access to host RNA polymerases, or they rely on virus-encoded, packaged RNA polymerases. Here, the authors show that Noumeavirus replicates in the cytoplasm and relies on a transient recruitment of nuclear proteins to initiate replication.
Collapse
|
66
|
Gray RDM, Mercer J, Henriques R. Open-source Single-particle Analysis for Super-resolution Microscopy with VirusMapper. J Vis Exp 2017. [PMID: 28448005 PMCID: PMC5564481 DOI: 10.3791/55471] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Super-resolution fluorescence microscopy is currently revolutionizing cell biology research. Its capacity to break the resolution limit of around 300 nm allows for the routine imaging of nanoscale biological complexes and processes. This increase in resolution also means that methods popular in electron microscopy, such as single-particle analysis, can readily be applied to super-resolution fluorescence microscopy. By combining this analytical approach with super-resolution optical imaging, it becomes possible to take advantage of the molecule-specific labeling capacity of fluorescence microscopy to generate structural maps of molecular elements within a metastable structure. To this end, we have developed a novel algorithm — VirusMapper — packaged as an easy-to-use, high-performance, and high-throughput ImageJ plugin. This article presents an in-depth guide to this software, showcasing its ability to uncover novel structural features in biological molecular complexes. Here, we present how to assemble compatible data and provide a step-by-step protocol on how to use this algorithm to apply single-particle analysis to super-resolution images.
Collapse
Affiliation(s)
- Robert D M Gray
- MRC Laboratory for Molecular Cell Biology, University College London; Centre for Mathematics and Physics in Life Sciences and Experimental Biology (CoMPLEX), University College London
| | - Jason Mercer
- MRC Laboratory for Molecular Cell Biology, University College London;
| | - Ricardo Henriques
- MRC Laboratory for Molecular Cell Biology, University College London; Department of Cell and Developmental Biology, University College London;
| |
Collapse
|
67
|
Kumar A, Yogisharadhya R, Venkatesan G, Bhanuprakash V, Pandey AB, Shivachandra SB. Co-administration of recombinant major envelope proteins (rA27L and rH3L) of buffalopox virus provides enhanced immunogenicity and protective efficacy in animal models. Antiviral Res 2017; 141:174-178. [PMID: 28259752 DOI: 10.1016/j.antiviral.2017.02.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/27/2017] [Indexed: 01/09/2023]
Abstract
Buffalopox virus (BPXV) and other vaccinia-like viruses (VLVs) are causing an emerging/re-emerging zoonosis affecting buffaloes, cattle and humans in India and other countries. A27L and H3L are immuno-dominant major envelope proteins of intracellular mature virion (IMV) of orthopoxviruses (OPVs) and are highly conserved with an ability to elicit neutralizing antibodies. In the present study, two recombinant proteins namely; rA27L (21S to E110; ∼30 kDa) and rH3L(1M to I280; ∼50 kDa) of BPXV-Vij/96 produced from Escherichia coli were used in vaccine formulation. A combined recombinant subunit vaccine comprising rA27L and rH3L antigens (10 μg of each) was used for active immunization of adult mice (20μg/dose/mice) with or without adjuvant (FCA/FIA) by intramuscular route. Immune responses revealed a gradual increase in antigen specific serum IgG as well as neutralizing antibody titers measured by using indirect-ELISA and serum neutralization test (SNT) respectively, which were higher as compared to that elicited by individual antigens. Suckling mice passively administered with combined anti-A27L and anti-H3L sera showed a complete (100%) pre-exposure protection upon challenge with virulent BPXV. Conclusively, this study highlights the potential utility of rA27L and rH3L proteins as safer candidate prophylactic antigens in combined recombinant subunit vaccine for buffalopox as well as passive protective efficacy of combined sera in employing better pre-exposure protection against virulent BPXV.
Collapse
Affiliation(s)
- Amit Kumar
- Pox Virus Laboratory, Division of Virology, ICAR-Indian Veterinary Research Institute (IVRI), Regional Campus, Mukteswar, 263138, Nainital (District), Uttarakhand (UK), India
| | - Revanaiah Yogisharadhya
- Pox Virus Laboratory, Division of Virology, ICAR-Indian Veterinary Research Institute (IVRI), Regional Campus, Mukteswar, 263138, Nainital (District), Uttarakhand (UK), India
| | - Gnanavel Venkatesan
- Pox Virus Laboratory, Division of Virology, ICAR-Indian Veterinary Research Institute (IVRI), Regional Campus, Mukteswar, 263138, Nainital (District), Uttarakhand (UK), India
| | - Veerakyathappa Bhanuprakash
- Pox Virus Laboratory, Division of Virology, ICAR-Indian Veterinary Research Institute (IVRI), Regional Campus, Mukteswar, 263138, Nainital (District), Uttarakhand (UK), India.
| | - Awadh Bihari Pandey
- Pox Virus Laboratory, Division of Virology, ICAR-Indian Veterinary Research Institute (IVRI), Regional Campus, Mukteswar, 263138, Nainital (District), Uttarakhand (UK), India
| | - Sathish Bhadravati Shivachandra
- Pox Virus Laboratory, Division of Virology, ICAR-Indian Veterinary Research Institute (IVRI), Regional Campus, Mukteswar, 263138, Nainital (District), Uttarakhand (UK), India
| |
Collapse
|
68
|
Bézier A, Harichaux G, Musset K, Labas V, Herniou EA. Qualitative proteomic analysis of Tipula oleracea nudivirus occlusion bodies. J Gen Virol 2017; 98:284-295. [DOI: 10.1099/jgv.0.000661] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Annie Bézier
- Institut de Recherche sur la Biologie de l’Insecte (IRBI), UMR 7261 CNRS Université François-Rabelais, Tours 37200, France
| | - Grégoire Harichaux
- INRA, PRC UMR85-CNRS 7247-UFR-IFCE, Laboratoire de Spectrométrie de masse, Plateforme d’Analyse Intégrative des Biomolécules et de Phénomique des Animaux d’Intérêt Bio-agronomique (PAIB2), Nouzilly 37380, France
| | - Karine Musset
- Institut de Recherche sur la Biologie de l’Insecte (IRBI), UMR 7261 CNRS Université François-Rabelais, Tours 37200, France
| | - Valérie Labas
- INRA, PRC UMR85-CNRS 7247-UFR-IFCE, Laboratoire de Spectrométrie de masse, Plateforme d’Analyse Intégrative des Biomolécules et de Phénomique des Animaux d’Intérêt Bio-agronomique (PAIB2), Nouzilly 37380, France
| | - Elisabeth A Herniou
- Institut de Recherche sur la Biologie de l’Insecte (IRBI), UMR 7261 CNRS Université François-Rabelais, Tours 37200, France
| |
Collapse
|
69
|
Williams KJN, Eaton HE, Jones L, Rengan S, Burshtyn DN. Vaccinia virus Western Reserve induces rapid surface expression of a host molecule detected by the antibody 4C7 that is distinct from CLEC2D. Microbiol Immunol 2016; 60:754-769. [PMID: 27862195 DOI: 10.1111/1348-0421.12451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/25/2016] [Accepted: 11/06/2016] [Indexed: 11/27/2022]
Abstract
In this study, the effect of active infection with vaccinia virus Western Reserve (VACV WR) on expression of C-type lectin domain family 2 (CLEC2D), a ligand of the human NK cell inhibitory receptor NKR-P1, was examined. As predicted, VACV infection led to a loss of CLEC2D mRNA in 221 cells, a B cell lymphoma line. Surprisingly, VACV infection of 221 cells caused a dramatic increase in cell surface staining for one CLEC2D-specific antibody, 4C7. There were no changes in other antibodies specific for CLEC2D and no indication that NK cells with NKR-P1A were inhibited, suggesting 4C7 detects a non-CLEC2D molecule following infection. The rapid increase in 4C7 signal requires virus attachment and is disrupted by UV treatment, but does not depend on new transcription or translation of either cellular or viral proteins. 4C7 does react with intracellular compartments, suggesting the molecule that is detected at the surface following infection is derived from an intracellular store. The phenomenon extends beyond lymphoid cells: it was observed in the non-human primate cell line Cos-7, but not with myxoma, a poxvirus distinct from VACV. To our knowledge, this is the first report of VACV or any poxvirus leading to rapid externalization of a host molecule. Among the VACV strains tested, the phenomenon was restricted to VACV WR and IHD-W, suggesting it has a virulence-, as opposed to a replication-related, function.
Collapse
Affiliation(s)
- Kinola J N Williams
- Department of Medical Microbiology and Immunology and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Heather E Eaton
- Department of Medical Microbiology and Immunology and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Lena Jones
- Department of Medical Microbiology and Immunology and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Supraja Rengan
- Department of Medical Microbiology and Immunology and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Deborah N Burshtyn
- Department of Medical Microbiology and Immunology and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| |
Collapse
|
70
|
Spencer CT, Bezbradica JS, Ramos MG, Arico CD, Conant SB, Gilchuk P, Gray JJ, Zheng M, Niu X, Hildebrand W, Link AJ, Joyce S. Viral infection causes a shift in the self peptide repertoire presented by human MHC class I molecules. Proteomics Clin Appl 2016; 9:1035-52. [PMID: 26768311 DOI: 10.1002/prca.201500106] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 10/26/2015] [Accepted: 10/29/2015] [Indexed: 12/22/2022]
Abstract
PURPOSE MHC class I presentation of peptides allows T cells to survey the cytoplasmic protein milieu of host cells. During infection, presentation of self peptides is, in part, replaced by presentation of microbial peptides. However, little is known about the self peptides presented during infection, despite the fact that microbial infections alter host cell gene expression patterns and protein metabolism. EXPERIMENTAL DESIGN The self peptide repertoire presented by HLA-A*01;01, HLA-A*02;01, HLA-B*07;02, HLA-B*35;01, and HLA-B*45;01 (where HLA is human leukocyte antigen) was determined by tandem MS before and after vaccinia virus infection. RESULTS We observed a profound alteration in the self peptide repertoire with hundreds of self peptides uniquely presented after infection for which we have coined the term "self peptidome shift." The fraction of novel self peptides presented following infection varied for different HLA class I molecules. A large part (approximately 40%) of the self peptidome shift arose from peptides derived from type I interferon-inducible genes, consistent with cellular responses to viral infection. Interestingly, approximately 12% of self peptides presented after infection showed allelic variation when searched against approximately 300 human genomes. CONCLUSION AND CLINICAL RELEVANCE Self peptidome shift in a clinical transplant setting could result in alloreactivity by presenting new self peptides in the context of infection-induced inflammation.
Collapse
Affiliation(s)
- Charles T Spencer
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Jelena S Bezbradica
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Mireya G Ramos
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Chenoa D Arico
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Stephanie B Conant
- Department of Pathology, Microbiology and Immunology, Nashville, TN, USA
| | - Pavlo Gilchuk
- Department of Pathology, Microbiology and Immunology, Nashville, TN, USA.,Veterans Administration Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Jennifer J Gray
- Department of Pathology, Microbiology and Immunology, Nashville, TN, USA
| | - Mu Zheng
- Department of Pathology, Microbiology and Immunology, Nashville, TN, USA.,Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Xinnan Niu
- Department of Pathology, Microbiology and Immunology, Nashville, TN, USA.,Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - William Hildebrand
- Department of Microbiology and Immunology, University of Oklahoma Health Science Centre, Oklahoma City, OK, USA
| | - Andrew J Link
- Department of Pathology, Microbiology and Immunology, Nashville, TN, USA.,Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Sebastian Joyce
- Department of Pathology, Microbiology and Immunology, Nashville, TN, USA.,Veterans Administration Tennessee Valley Healthcare System, Nashville, TN, USA
| |
Collapse
|
71
|
Protein Primary Structure of the Vaccinia Virion at Increased Resolution. J Virol 2016; 90:9905-9919. [PMID: 27558425 DOI: 10.1128/jvi.01042-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/17/2016] [Indexed: 01/16/2023] Open
Abstract
Here we examine the protein covalent structure of the vaccinia virus virion. Within two virion preparations, >88% of the theoretical vaccinia virus-encoded proteome was detected with high confidence, including the first detection of products from 27 open reading frames (ORFs) previously designated "predicted," "uncharacterized," "inferred," or "hypothetical" polypeptides containing as few as 39 amino acids (aa) and six proteins whose detection required nontryptic proteolysis. We also detected the expression of four short ORFs, each of which was located within an ORF ("ORF-within-ORF"), including one not previously recognized or known to be expressed. Using quantitative mass spectrometry (MS), between 58 and 74 proteins were determined to be packaged. A total of 63 host proteins were also identified as candidates for packaging. Evidence is provided that some portion of virion proteins are "nicked" via a combination of endoproteolysis and concerted exoproteolysis in a manner, and at sites, independent of virus origin or laboratory procedures. The size of the characterized virion phosphoproteome was doubled from 189 (J. Matson, W. Chou, T. Ngo, and P. D. Gershon, Virology 452-453:310-323, 2014, doi:http://dx.doi.org/10.1016/j.virol.2014.01.012) to 396 confident, unique phosphorylation sites, 268 of which were within the packaged proteome. This included the unambiguous identification of phosphorylation "hot spots" within virion proteins. Using isotopically enriched ATP, 23 sites of intravirion kinase phosphorylation were detected within nine virion proteins, all at sites already partially occupied within the virion preparations. The clear phosphorylation of proteins RAP94 and RP19 was consistent with the roles of these proteins in intravirion early gene transcription. In a blind search for protein modifications, cysteine glutathionylation and O-linked glycosylation featured prominently. We provide evidence for the phosphoglycosylation of vaccinia virus proteins. IMPORTANCE Poxviruses are among the most complex and irregular virions, about whose internal structure little is known. To better understand poxvirus virion structure, imaging should be supplemented with other tools. Here, we provide a deep study of the covalent structure of the vaccinia virus virion using the various tools of contemporary mass spectrometry.
Collapse
|
72
|
Fedorova AA, Goncharova EP, Koroleva LS, Burakova EA, Ryabchikova EI, Bichenkova EV, Silnikov VN, Vlassov VV, Zenkova MA. Artificial ribonucleases inactivate a wide range of viruses using their ribonuclease, membranolytic, and chaotropic-like activities. Antiviral Res 2016; 133:73-84. [PMID: 27476043 DOI: 10.1016/j.antiviral.2016.07.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 07/12/2016] [Accepted: 07/21/2016] [Indexed: 10/21/2022]
Abstract
Artificial ribonucleases (aRNases) are small compounds catalysing RNA cleavage. Recently we demonstrated that aRNases readily inactivate various viruses in vitro. Here, for three series of aRNases (1,4-diazabicyclo [2.2.2]octane-based and peptide-like compounds) we show that apart from ribonuclease activity the aRNases display chaotropic-like and membranolytic activities. The levels of membranolytic and chaotropic-like activities correlate well with the efficiency of various viruses inactivation (enveloped, non-enveloped, RNA-, DNA-containing). We evaluated the impact of these activities on the efficiency of virus inactivation and found: i) the synergism between membranolytic and chaotropic-like activities is sufficient for the inactivation of enveloped viruses (influenza A, encephalitis, vaccinia viruses) for 1,4-diazabicyclo [2.2.2]octane based aRNases, ii) the inactivation of non-enveloped viruses (encephalomyocarditis, acute bee paralysis viruses) is totally dependent on the synergism of chaotropic-like and ribonuclease activities, iii) ribonuclease activity plays a leading role in the inactivation of RNA viruses by aRNases Dp12F6, Dtr12 and K-D-1, iv) peptide-like aRNases (L2-3, K-2) being effective virus killers have a more specific mode of action. Obtained results clearly demonstrate that aRNases represent a new class of broad-spectrum virus-inactivating agents.
Collapse
Affiliation(s)
- Antonina A Fedorova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 8, Lavrentiev Ave., Novosibirsk, 630090, Russian Federation
| | - Elena P Goncharova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 8, Lavrentiev Ave., Novosibirsk, 630090, Russian Federation
| | - Lyudmila S Koroleva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 8, Lavrentiev Ave., Novosibirsk, 630090, Russian Federation
| | - Ekatherina A Burakova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 8, Lavrentiev Ave., Novosibirsk, 630090, Russian Federation
| | - Elena I Ryabchikova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 8, Lavrentiev Ave., Novosibirsk, 630090, Russian Federation
| | - Elena V Bichenkova
- School of Pharmacy, University of Manchester, Oxford Road, M13 9PT, Manchester, United Kingdom
| | - Vladimir N Silnikov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 8, Lavrentiev Ave., Novosibirsk, 630090, Russian Federation
| | - Valentin V Vlassov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 8, Lavrentiev Ave., Novosibirsk, 630090, Russian Federation
| | - Marina A Zenkova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 8, Lavrentiev Ave., Novosibirsk, 630090, Russian Federation.
| |
Collapse
|
73
|
Moss B. Membrane fusion during poxvirus entry. Semin Cell Dev Biol 2016; 60:89-96. [PMID: 27423915 DOI: 10.1016/j.semcdb.2016.07.015] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/11/2016] [Accepted: 07/12/2016] [Indexed: 12/23/2022]
Abstract
Poxviruses comprise a large family of enveloped DNA viruses that infect vertebrates and invertebrates. Poxviruses, unlike most DNA viruses, replicate in the cytoplasm and encode enzymes and other proteins that enable entry, gene expression, genome replication, virion assembly and resistance to host defenses. Entry of vaccinia virus, the prototype member of the family, can occur at the plasma membrane or following endocytosis. Whereas many viruses encode one or two proteins for attachment and membrane fusion, vaccinia virus encodes four proteins for attachment and eleven more for membrane fusion and core entry. The entry-fusion proteins are conserved in all poxviruses and form a complex, known as the Entry Fusion Complex (EFC), which is embedded in the membrane of the mature virion. An additional membrane that encloses the mature virion and is discarded prior to entry is present on an extracellular form of the virus. The EFC is held together by multiple interactions that depend on nine of the eleven proteins. The entry process can be divided into attachment, hemifusion and core entry. All eleven EFC proteins are required for core entry and at least eight for hemifusion. To mediate fusion the virus particle is activated by low pH, which removes one or more fusion repressors that interact with EFC components. Additional EFC-interacting fusion repressors insert into cell membranes and prevent secondary infection. The absence of detailed structural information, except for two attachment proteins and one EFC protein, is delaying efforts to determine the fusion mechanism.
Collapse
Affiliation(s)
- Bernard Moss
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
74
|
VirusMapper: open-source nanoscale mapping of viral architecture through super-resolution microscopy. Sci Rep 2016; 6:29132. [PMID: 27374400 PMCID: PMC4931586 DOI: 10.1038/srep29132] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 06/15/2016] [Indexed: 11/15/2022] Open
Abstract
The nanoscale molecular assembly of mammalian viruses during their infectious life cycle remains poorly understood. Their small dimensions, generally bellow the 300nm diffraction limit of light microscopes, has limited most imaging studies to electron microscopy. The recent development of super-resolution (SR) light microscopy now allows the visualisation of viral structures at resolutions of tens of nanometers. In addition, these techniques provide the added benefit of molecular specific labelling and the capacity to investigate viral structural dynamics using live-cell microscopy. However, there is a lack of robust analytical tools that allow for precise mapping of viral structure within the setting of infection. Here we present an open-source analytical framework that combines super-resolution imaging and naïve single-particle analysis to generate unbiased molecular models. This tool, VirusMapper, is a high-throughput, user-friendly, ImageJ-based software package allowing for automatic statistical mapping of conserved multi-molecular structures, such as viral substructures or intact viruses. We demonstrate the usability of VirusMapper by applying it to SIM and STED images of vaccinia virus in isolation and when engaged with host cells. VirusMapper allows for the generation of accurate, high-content, molecular specific virion models and detection of nanoscale changes in viral architecture.
Collapse
|
75
|
Dent SD, Xia D, Wastling JM, Neuman BW, Britton P, Maier HJ. The proteome of the infectious bronchitis virus Beau-R virion. J Gen Virol 2016; 96:3499-3506. [PMID: 27257648 DOI: 10.1099/jgv.0.000304] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Infectious bronchitis is a highly contagious respiratory disease of poultry caused by the coronavirus infectious bronchitis virus (IBV). It was thought that coronavirus virions were composed of three major viral structural proteins until investigations of other coronaviruses showed that the virions also include viral non-structural and genus-specific accessory proteins as well as host-cell proteins. To study the proteome of IBV virions, virus was grown in embryonated chicken eggs, purified by sucrose-gradient ultracentrifugation and analysed by mass spectrometry. Analysis of three preparations of purified IBV yielded the three expected structural proteins plus 35 additional virion-associated host proteins. The virion-associated host proteins had a diverse range of functional attributions, being involved in cytoskeleton formation, RNA binding and protein folding pathways. Some of these proteins were unique to this study, while others were found to be orthologous to proteins identified in severe acute respiratory syndrome coronavirus virions and also virions from a number of other RNA and DNA viruses.
Collapse
Affiliation(s)
- Stuart D Dent
- Compton Laboratory, Compton, The Pirbright Institute, Newbury RG20 7NN, UK.,School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6AJ, UK
| | - Dong Xia
- Institute of Infection and Global Health, University of Liverpool, Liverpool L3 5RF, UK
| | - Jonathan M Wastling
- Institute of Infection and Global Health, University of Liverpool, Liverpool L3 5RF, UK.,Faculty of Natural Sciences, University of Keele, Keele ST5 5BG, UK
| | - Benjamin W Neuman
- School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6AJ, UK
| | - Paul Britton
- Compton Laboratory, Compton, The Pirbright Institute, Newbury RG20 7NN, UK
| | - Helena J Maier
- Compton Laboratory, Compton, The Pirbright Institute, Newbury RG20 7NN, UK
| |
Collapse
|
76
|
Oxford KL, Wendler JP, McDermott JE, White III RA, Powell JD, Jacobs JM, Adkins JN, Waters KM. The landscape of viral proteomics and its potential to impact human health. Expert Rev Proteomics 2016; 13:579-91. [DOI: 10.1080/14789450.2016.1184091] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
77
|
Stern D, Pauly D, Zydek M, Miller L, Piesker J, Laue M, Lisdat F, Dorner MB, Dorner BG, Nitsche A. Development of a Genus-Specific Antigen Capture ELISA for Orthopoxviruses - Target Selection and Optimized Screening. PLoS One 2016; 11:e0150110. [PMID: 26930499 PMCID: PMC4773239 DOI: 10.1371/journal.pone.0150110] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 02/09/2016] [Indexed: 11/18/2022] Open
Abstract
Orthopoxvirus species like cowpox, vaccinia and monkeypox virus cause zoonotic infections in humans worldwide. Infections often occur in rural areas lacking proper diagnostic infrastructure as exemplified by monkeypox, which is endemic in Western and Central Africa. While PCR detection requires demanding equipment and is restricted to genome detection, the evidence of virus particles can complement or replace PCR. Therefore, an easily distributable and manageable antigen capture enzyme-linked immunosorbent assay (ELISA) for the detection of orthopoxviruses was developed to facilitate particle detection. By comparing the virus particle binding properties of polyclonal antibodies developed against surface-exposed attachment or fusion proteins, the surface protein A27 was found to be a well-bound, highly immunogenic and exposed target for antibodies aiming at virus particle detection. Subsequently, eight monoclonal anti-A27 antibodies were generated and characterized by peptide epitope mapping and surface plasmon resonance measurements. All antibodies were found to bind with high affinity to two epitopes at the heparin binding site of A27, toward either the N- or C-terminal of the crucial KKEP-segment of A27. Two antibodies recognizing different epitopes were implemented in an antigen capture ELISA. Validation showed robust detection of virus particles from 11 different orthopoxvirus isolates pathogenic to humans, with the exception of MVA, which is apathogenic to humans. Most orthopoxviruses could be detected reliably for viral loads above 1 × 103 PFU/mL. To our knowledge, this is the first solely monoclonal and therefore reproducible antibody-based antigen capture ELISA able to detect all human pathogenic orthopoxviruses including monkeypox virus, except variola virus which was not included. Therefore, the newly developed antibody-based assay represents important progress towards feasible particle detection of this important genus of viruses.
Collapse
Affiliation(s)
- Daniel Stern
- Highly Pathogenic Viruses (ZBS 1), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Diana Pauly
- Biological Toxins (ZBS 3), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Martin Zydek
- Biosystems Technology, Institute of Applied Life Sciences, Technical University of Applied Sciences, Wildau, Germany
| | - Lilija Miller
- Highly Pathogenic Viruses (ZBS 1), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Janett Piesker
- Advanced Light and Electron Microscopy (ZBS 4), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Michael Laue
- Advanced Light and Electron Microscopy (ZBS 4), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Fred Lisdat
- Biosystems Technology, Institute of Applied Life Sciences, Technical University of Applied Sciences, Wildau, Germany
| | - Martin B. Dorner
- Biological Toxins (ZBS 3), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Brigitte G. Dorner
- Biological Toxins (ZBS 3), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Andreas Nitsche
- Highly Pathogenic Viruses (ZBS 1), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
78
|
A systems biology approach for diagnostic and vaccine antigen discovery in tropical infectious diseases. Curr Opin Infect Dis 2016; 28:438-45. [PMID: 26237545 DOI: 10.1097/qco.0000000000000193] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW There is a need for improved diagnosis and for more rapidly assessing the presence, prevalence, and spread of newly emerging or reemerging infectious diseases. An approach to the pathogen-detection strategy is based on analyzing host immune response to the infection. This review focuses on a protein microarray approach for this purpose. RECENT FINDINGS Here we take a protein microarray approach to profile the humoral immune response to numerous infectious agents, and to identify the complete antibody repertoire associated with each disease. The results of these studies lead to the identification of diagnostic markers and potential subunit vaccine candidates. These results from over 30 different organisms can also provide information about common trends in the humoral immune response. SUMMARY This review describes the implications of the findings for clinical practice or research. A systems biology approach to identify the antibody repertoire associated with infectious diseases challenge using protein microarray has become a powerful method in identifying diagnostic markers and potential subunit vaccine candidates, and moreover, in providing information on proteomic feature (functional and physically properties) of seroreactive and serodiagnostic antigens. Combining the detection of the pathogen with a comprehensive assessment of the host immune response will provide a new understanding of the correlations between specific causative agents, the host response, and the clinical manifestations of the disease.
Collapse
|
79
|
Kumar A, Yogisharadhya R, Venkatesan G, Bhanuprakash V, Shivachandra SB. Immunogenicity and protective efficacy of recombinant major envelope protein (rH3L) of buffalopox virus in animal models. Antiviral Res 2016; 126:108-16. [DOI: 10.1016/j.antiviral.2015.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/10/2015] [Accepted: 12/15/2015] [Indexed: 11/30/2022]
|
80
|
Brgles M, Bonta M, Šantak M, Jagušić M, Forčić D, Halassy B, Allmaier G, Marchetti-Deschmann M. Identification of mumps virus protein and lipid composition by mass spectrometry. Virol J 2016; 13:9. [PMID: 26768080 PMCID: PMC4712546 DOI: 10.1186/s12985-016-0463-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 01/05/2016] [Indexed: 01/19/2023] Open
Abstract
Background Mumps virus is a negative-sense, single stranded RNA virus consisting of a ribonucleocapsid core enveloped by a lipid membrane derived from host cell, which causes mumps disease preventable by vaccination. Since virus lipid envelope and glycosylation pattern are not encoded by the virus but dependent on the host cell at least to some extent, the aim of this work was to analyse L-Zagreb (L-Zg) mumps virus lipids and proteins derived from two cell types; Vero and chicken embryo fibroblasts (CEF). Jeryl Lynn 5 (JL5) mumps strain lipids were also analysed. Methods Virus lipids were isolated by organic phase extraction and subjected to 2D-high performance thin layer chromatography followed by lipid extraction and identification by matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS). Virus samples were also subjected to gel electrophoresis under denaturating conditions and protein bands were excised, in-gel trypsinized and identified by MS as well as tandem MS. Results Results showed that lipids of both mumps virus strains derived from Vero cells contained complex glycolipids with up to five monosaccharide units whereas the lipid pattern of mumps virus derived from CEF was less complex. Mumps virus was found to contain expected structural proteins with exception of fusion (F) protein which was not detected but on the other hand, V protein was detected. Most interesting finding related to the mumps proteins is the detection of several forms of nucleoprotein (NP), some of which appear to be C-terminally truncated. Conclusions Differences found in lipid and protein content of mumps virus demonstrated the importance of detailed biochemical characterization of mumps virus and the methodology described here could provide a means for a more comprehensive quality control in vaccine production. Electronic supplementary material The online version of this article (doi:10.1186/s12985-016-0463-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marija Brgles
- University of Zagreb, Centre for Research and Knowledge Transfer in Biotechnology, Rockefellerova 10, HR-10000, Zagreb, Croatia. .,Center of Excellence for Viral Immunology and Vaccines, CERVirVac, Rijeka, Zagreb, Croatia.
| | - Maximilian Bonta
- Vienna University of Technology, Institute of Chemical Technologies and Analytics, A-1060, Vienna, Austria.
| | - Maja Šantak
- University of Zagreb, Centre for Research and Knowledge Transfer in Biotechnology, Rockefellerova 10, HR-10000, Zagreb, Croatia. .,Center of Excellence for Viral Immunology and Vaccines, CERVirVac, Rijeka, Zagreb, Croatia.
| | - Maja Jagušić
- University of Zagreb, Centre for Research and Knowledge Transfer in Biotechnology, Rockefellerova 10, HR-10000, Zagreb, Croatia. .,Center of Excellence for Viral Immunology and Vaccines, CERVirVac, Rijeka, Zagreb, Croatia.
| | - Dubravko Forčić
- University of Zagreb, Centre for Research and Knowledge Transfer in Biotechnology, Rockefellerova 10, HR-10000, Zagreb, Croatia. .,Center of Excellence for Viral Immunology and Vaccines, CERVirVac, Rijeka, Zagreb, Croatia.
| | - Beata Halassy
- University of Zagreb, Centre for Research and Knowledge Transfer in Biotechnology, Rockefellerova 10, HR-10000, Zagreb, Croatia. .,Center of Excellence for Viral Immunology and Vaccines, CERVirVac, Rijeka, Zagreb, Croatia.
| | - Günter Allmaier
- Vienna University of Technology, Institute of Chemical Technologies and Analytics, A-1060, Vienna, Austria.
| | | |
Collapse
|
81
|
Doellinger J, Schaade L, Nitsche A. Comparison of the Cowpox Virus and Vaccinia Virus Mature Virion Proteome: Analysis of the Species- and Strain-Specific Proteome. PLoS One 2015; 10:e0141527. [PMID: 26556597 PMCID: PMC4640714 DOI: 10.1371/journal.pone.0141527] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 10/09/2015] [Indexed: 01/29/2023] Open
Abstract
Cowpox virus (CPXV) causes most zoonotic orthopoxvirus (OPV) infections in Europe and Northern as well as Central Asia. The virus has the broadest host range of OPV and is transmitted to humans from rodents and other wild or domestic animals. Increasing numbers of human CPXV infections in a population with declining immunity have raised concerns about the virus' zoonotic potential. While there have been reports on the proteome of other human-pathogenic OPV, namely vaccinia virus (VACV) and monkeypox virus (MPXV), the protein composition of the CPXV mature virion (MV) is unknown. This study focused on the comparative analysis of the VACV and CPXV MV proteome by label-free single-run proteomics using nano liquid chromatography and high-resolution tandem mass spectrometry (nLC-MS/MS). The presented data reveal that the common VACV and CPXV MV proteome contains most of the known conserved and essential OPV proteins and is associated with cellular proteins known to be essential for viral replication. While the species-specific proteome could be linked mainly to less genetically-conserved gene products, the strain-specific protein abundance was found to be of high variance in proteins associated with entry, host-virus interaction and protein processing.
Collapse
Affiliation(s)
- Joerg Doellinger
- Centre for Biological Threats and Special Pathogens, Highly Pathogenic Viruses (ZBS1), Robert Koch Institute, Berlin, Germany
- * E-mail:
| | - Lars Schaade
- Centre for Biological Threats and Special Pathogens, Highly Pathogenic Viruses (ZBS1), Robert Koch Institute, Berlin, Germany
| | - Andreas Nitsche
- Centre for Biological Threats and Special Pathogens, Highly Pathogenic Viruses (ZBS1), Robert Koch Institute, Berlin, Germany
| |
Collapse
|
82
|
Newsome TP, Marzook NB. Viruses that ride on the coat-tails of actin nucleation. Semin Cell Dev Biol 2015; 46:155-63. [PMID: 26459972 DOI: 10.1016/j.semcdb.2015.10.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/06/2015] [Accepted: 10/07/2015] [Indexed: 01/07/2023]
Abstract
Actin nucleation drives a diversity of critical cellular processes and the motility of a select group of viral pathogens. Vaccinia virus and baculovirus, Autographa californica multiple nucleopolyhedrovirus, recruit and activate the cellular actin nucleator, the Arp2/3 complex, at the surface of virus particles thereby instigating highly localized actin nucleation. The extension of these filaments provides a mechanical force that bestows the ability to navigate the intracellular environment and promote their infectious cycles. This review outlines the viral and cellular proteins that initiate and regulate the signalling networks leading to viral modification of the actin cytoskeleton and summarizes recent insights into the role of actin-based virus transport.
Collapse
Affiliation(s)
- Timothy P Newsome
- School of Molecular Bioscience, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - N Bishara Marzook
- School of Molecular Bioscience, The University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
83
|
Kumar A, Yogisharadhya R, Bhanuprakash V, Venkatesan G, Shivachandra SB. Structural analysis and immunogenicity of recombinant major envelope protein (rA27L) of buffalopox virus, a zoonotic Indian vaccinia-like virus. Vaccine 2015; 33:5396-5405. [DOI: 10.1016/j.vaccine.2015.08.058] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 08/12/2015] [Accepted: 08/17/2015] [Indexed: 12/30/2022]
|
84
|
Jefferson A, Cadet VE, Hielscher A. The mechanisms of genetically modified vaccinia viruses for the treatment of cancer. Crit Rev Oncol Hematol 2015; 95:407-16. [PMID: 25900073 DOI: 10.1016/j.critrevonc.2015.04.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 12/18/2014] [Accepted: 04/02/2015] [Indexed: 02/06/2023] Open
Abstract
The use of oncolytic viruses for the treatment of cancer is an emerging field of cancer research and therapy. Oncolytic viruses are designed to induce tumor specific immunity while replicating selectively within cancer cells to cause lysis of the tumor cells. While there are several forms of oncolytic viruses, the use of vaccinia viruses for oncolysis may be more beneficial than other forms of oncolytic viruses. For example, vaccinia viruses have been shown to exert their anti-tumor effects through genetic engineering strategies which enhance their therapeutic efficacy. This paper will address some of the most common forms of genetically modified vaccinia viruses and will explore the mechanisms whereby they selectively target, enter and destroy cancer cells. Furthermore, this review will highlight how vaccinia viruses activate host immune responses against cancer cells and will address clinical trials evaluating the tumor-directed and killing efficacy of these viruses against solid tumors.
Collapse
Affiliation(s)
- Artrish Jefferson
- Department of Biomedical Sciences, Georgia-Philadelphia College of Osteopathic Medicine, Suwanee, GA 30024, United States
| | - Valerie E Cadet
- Department of Biomedical Sciences, Georgia-Philadelphia College of Osteopathic Medicine, Suwanee, GA 30024, United States
| | - Abigail Hielscher
- Department of Biomedical Sciences, Georgia-Philadelphia College of Osteopathic Medicine, Suwanee, GA 30024, United States.
| |
Collapse
|
85
|
Bidgood SR, Mercer J. Cloak and Dagger: Alternative Immune Evasion and Modulation Strategies of Poxviruses. Viruses 2015; 7:4800-25. [PMID: 26308043 PMCID: PMC4576205 DOI: 10.3390/v7082844] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/10/2015] [Accepted: 08/12/2015] [Indexed: 12/20/2022] Open
Abstract
As all viruses rely on cellular factors throughout their replication cycle, to be successful they must evolve strategies to evade and/or manipulate the defence mechanisms employed by the host cell. In addition to their expression of a wide array of host modulatory factors, several recent studies have suggested that poxviruses may have evolved unique mechanisms to shunt or evade host detection. These potential mechanisms include mimicry of apoptotic bodies by mature virions (MVs), the use of viral sub-structures termed lateral bodies for the packaging and delivery of host modulators, and the formation of a second, “cloaked” form of infectious extracellular virus (EVs). Here we discuss these various strategies and how they may facilitate poxvirus immune evasion. Finally we propose a model for the exploitation of the cellular exosome pathway for the formation of EVs.
Collapse
Affiliation(s)
- Susanna R Bidgood
- Medical Research Council-Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK.
| | - Jason Mercer
- Medical Research Council-Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
86
|
Intracellular Transport of Vaccinia Virus in HeLa Cells Requires WASH-VPEF/FAM21-Retromer Complexes and Recycling Molecules Rab11 and Rab22. J Virol 2015; 89:8365-82. [PMID: 26041286 DOI: 10.1128/jvi.00209-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 05/26/2015] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED Vaccinia virus, the prototype of the Orthopoxvirus genus in the family Poxviridae, infects a wide range of cell lines and animals. Vaccinia mature virus particles of the WR strain reportedly enter HeLa cells through fluid-phase endocytosis. However, the intracellular trafficking process of the vaccinia mature virus between cellular uptake and membrane fusion remains unknown. We used live imaging of single virus particles with a combination of various cellular vesicle markers, to track fluorescent vaccinia mature virus particle movement in cells. Furthermore, we performed functional interference assays to perturb distinct vesicle trafficking processes in order to delineate the specific route undertaken by vaccinia mature virus prior to membrane fusion and virus core uncoating in cells. Our results showed that vaccinia virus traffics to early endosomes, where recycling endosome markers Rab11 and Rab22 are recruited to participate in subsequent virus trafficking prior to virus core uncoating in the cytoplasm. Furthermore, we identified WASH-VPEF/FAM21-retromer complexes that mediate endosome fission and sorting of virus-containing vesicles prior to virus core uncoating in the cytoplasm. IMPORTANCE Vaccinia mature virions of the WR strain enter HeLa cells through fluid phase endocytosis. We previously demonstrated that virus-containing vesicles are internalized into phosphatidylinositol 3-phosphate positive macropinosomes, which are then fused with Rab5-positive early endosomes. However, the subsequent process of sorting the virion-containing vesicles prior to membrane fusion remains unclear. We dissected the intracellular trafficking pathway of vaccinia mature virions in cells up to virus core uncoating in cytoplasm. We show that vaccinia mature virions first travel to early endosomes. Subsequent trafficking events require the important endosome-tethered protein VPEF/FAM21, which recruits WASH and retromer protein complexes to the endosome. There, the complex executes endosomal membrane fission and cargo sorting to the Rab11-positive and Rab22-positive recycling pathway, resulting in membrane fusion and virus core uncoating in the cytoplasm.
Collapse
|
87
|
Zheng K, Kitazato K, Wang Y, He Z. Pathogenic microbes manipulate cofilin activity to subvert actin cytoskeleton. Crit Rev Microbiol 2015; 42:677-95. [PMID: 25853495 DOI: 10.3109/1040841x.2015.1010139] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Actin-depolymerizing factor (ADF)/cofilin proteins are key players in controlling the temporal and spatial extent of actin dynamics, which is crucial for mediating host-pathogen interactions. Pathogenic microbes have evolved molecular mechanisms to manipulate cofilin activity to subvert the actin cytoskeletal system in host cells, promoting their internalization into the target cells, modifying the replication niche and facilitating their intracellular and intercellular dissemination. The study of how these pathogens exploit cofilin pathways is crucial for understanding infectious disease and providing potential targets for drug therapies.
Collapse
Affiliation(s)
- Kai Zheng
- a Department of Pharmacy, School of Medicine , Shenzhen University , Shenzhen , Guangdong , People's Republic of China .,c Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University , Guangzhou , China
| | - Kaio Kitazato
- b Division of Molecular Pharmacology of Infectious Agents, Department of Molecular Microbiology and Immunology , Nagasaki University , Nagasaki , Japan , and
| | - Yifei Wang
- c Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University , Guangzhou , China
| | - Zhendan He
- a Department of Pharmacy, School of Medicine , Shenzhen University , Shenzhen , Guangdong , People's Republic of China
| |
Collapse
|
88
|
Genetic Confirmation that the H5 Protein Is Required for Vaccinia Virus DNA Replication. J Virol 2015; 89:6312-27. [PMID: 25855734 DOI: 10.1128/jvi.00445-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 03/28/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The duplication of the poxvirus double-stranded DNA genome occurs in cytoplasmic membrane-delimited factories. This physical autonomy from the host nucleus suggests that poxvirus genomes encode the full repertoire of proteins committed for genome replication. Biochemical and genetic analyses have confirmed that six viral proteins are required for efficient DNA synthesis; indirect evidence has suggested that the multifunctional H5 protein may also have a role. Here we show that H5 localizes to replication factories, as visualized by immunofluorescence and immunoelectron microscopy, and can be retrieved upon purification of the viral polymerase holoenzyme complex. The temperature-sensitive (ts) mutant Dts57, which was generated by chemical mutagenesis and has a lesion in H5, exhibits defects in DNA replication and morphogenesis under nonpermissive conditions, depending upon the experimental protocol. The H5 variant encoded by the genome of this mutant is ts for function but not stability. For a more precise investigation of how H5 contributes to DNA synthesis, we placed the ts57 H5 allele in an otherwise wild-type viral background and also performed small interfering RNA-mediated depletion of H5. Finally, we generated a complementing cell line, CV-1-H5, which allowed us to generate a viral recombinant in which the H5 open reading frame was deleted and replaced with mCherry (vΔH5). Analysis of vΔH5 allowed us to demonstrate conclusively that viral DNA replication is abrogated in the absence of H5. The loss of H5 does not compromise the accumulation of other early viral replication proteins or the uncoating of the virion core, suggesting that H5 plays a direct and essential role in facilitating DNA synthesis. IMPORTANCE Variola virus, the causative agent of smallpox, is the most notorious member of the Poxviridae family. Poxviruses are unique among DNA viruses that infect mammalian cells, in that their replication is restricted to the cytoplasm of the cell. This physical autonomy from the nucleus has both cell biological and genetic ramifications. Poxviruses must establish cytoplasmic niches that support replication, and the genomes must encode the repertoire of proteins necessary for genome synthesis. Here we focus on H5, a multifunctional and abundant viral protein. We confirm that H5 associates with the DNA polymerase holoenzyme and localizes to the sites of DNA synthesis. By generating an H5-expressing cell line, we were able to isolate a deletion virus that lacks the H5 gene and show definitively that genome synthesis does not occur in the absence of H5. These data support the hypothesis that H5 is a crucial participant in cytoplasmic poxvirus genome replication.
Collapse
|
89
|
Abbas W, Kumar A, Herbein G. The eEF1A Proteins: At the Crossroads of Oncogenesis, Apoptosis, and Viral Infections. Front Oncol 2015; 5:75. [PMID: 25905039 PMCID: PMC4387925 DOI: 10.3389/fonc.2015.00075] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 03/12/2015] [Indexed: 12/12/2022] Open
Abstract
Eukaryotic translation elongation factors 1 alpha, eEF1A1 and eEF1A2, are not only translation factors but also pleiotropic proteins that are highly expressed in human tumors, including breast cancer, ovarian cancer, and lung cancer. eEF1A1 modulates cytoskeleton, exhibits chaperone-like activity and also controls cell proliferation and cell death. In contrast, eEF1A2 protein favors oncogenesis as shown by the fact that overexpression of eEF1A2 leads to cellular transformation and gives rise to tumors in nude mice. The eEF1A2 protein stimulates the phospholipid signaling and activates the Akt-dependent cell migration and actin remodeling that ultimately favors tumorigenesis. In contrast, inactivation of eEF1A proteins leads to immunodeficiency, neural and muscular defects, and favors apoptosis. Finally, eEF1A proteins interact with several viral proteins resulting in enhanced viral replication, decreased apoptosis, and increased cellular transformation. This review summarizes the recent findings on eEF1A proteins indicating that eEF1A proteins play a critical role in numerous human diseases through enhancement of oncogenesis, blockade of apoptosis, and increased viral pathogenesis.
Collapse
Affiliation(s)
- Wasim Abbas
- Department of Biology, SBA School of Science and Engineering, Lahore University of Management Sciences , Lahore , Pakistan
| | - Amit Kumar
- UPRES EA 4266, Laboratory of Pathogens and Inflammation, Department of Virology, CHRU Besançon, Université de Franche-Comté , Besançon , France
| | - Georges Herbein
- UPRES EA 4266, Laboratory of Pathogens and Inflammation, Department of Virology, CHRU Besançon, Université de Franche-Comté , Besançon , France
| |
Collapse
|
90
|
Croft NP, de Verteuil DA, Smith SA, Wong YC, Schittenhelm RB, Tscharke DC, Purcell AW. Simultaneous Quantification of Viral Antigen Expression Kinetics Using Data-Independent (DIA) Mass Spectrometry. Mol Cell Proteomics 2015; 14:1361-72. [PMID: 25755296 DOI: 10.1074/mcp.m114.047373] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Indexed: 11/06/2022] Open
Abstract
The generation of antigen-specific reagents is a significant bottleneck in the study of complex pathogens that express many hundreds to thousands of different proteins or to emerging or new strains of viruses that display potential pandemic qualities and therefore require rapid investigation. In these instances the development of antibodies for example can be prohibitively expensive to cover the full pathogen proteome, or the lead time may be unacceptably long in urgent cases where new highly pathogenic viral strains may emerge. Because genomic information on such pathogens can be rapidly acquired this opens up avenues using mass spectrometric approaches to study pathogen antigen expression, host responses and for screening the utility of therapeutics. In particular, data-independent acquisition (DIA) modalities on high-resolution mass spectrometers generate spectral information on all components of a complex sample providing depth of coverage hitherto only seen in genomic deep sequencing. The spectral information generated by DIA can be iteratively interrogated for potentially any protein of interest providing both evidence of protein expression and quantitation. Here we apply a solely DIA mass spectrometry based methodology to profile the viral antigen expression in cells infected with vaccinia virus up to 9 h post infection without the need for antigen specific antibodies or other reagents. We demonstrate deep coverage of the vaccinia virus proteome using a SWATH-MS acquisition approach, extracting quantitative kinetics of 100 virus proteins within a single experiment. The results highlight the complexity of vaccinia protein expression, complementing what is known at the transcriptomic level, and provide a valuable resource and technique for future studies of viral infection and replication kinetics. Furthermore, they highlight the utility of DIA and mass spectrometry in the dissection of host-pathogen interactions.
Collapse
Affiliation(s)
- Nathan P Croft
- From the ‡Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3141, Australia
| | - Danielle A de Verteuil
- From the ‡Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3141, Australia
| | - Stewart A Smith
- §Research School of Biology, The Australian National University, Canberra, ACT, 0200, Australia
| | - Yik Chun Wong
- §Research School of Biology, The Australian National University, Canberra, ACT, 0200, Australia
| | - Ralf B Schittenhelm
- From the ‡Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3141, Australia
| | - David C Tscharke
- §Research School of Biology, The Australian National University, Canberra, ACT, 0200, Australia
| | - Anthony W Purcell
- From the ‡Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3141, Australia;
| |
Collapse
|
91
|
Poxvirus membrane biogenesis. Virology 2015; 479-480:619-26. [PMID: 25728299 DOI: 10.1016/j.virol.2015.02.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 02/02/2015] [Accepted: 02/03/2015] [Indexed: 12/18/2022]
Abstract
Poxviruses differ from most DNA viruses by replicating entirely within the cytoplasm. The first discernible viral structures are crescents and spherical immature virions containing a single lipoprotein membrane bilayer with an external honeycomb lattice. Because this viral membrane displays no obvious continuity with a cellular organelle, a de novo origin was suggested. Nevertheless, transient connections between viral and cellular membranes could be difficult to resolve. Despite the absence of direct evidence, the intermediate compartment (ERGIC) between the endoplasmic reticulum (ER) and Golgi apparatus and the ER itself were considered possible sources of crescent membranes. A break-through in understanding poxvirus membrane biogenesis has come from recent studies of the abortive replication of several vaccinia virus null mutants. Novel images showing continuity between viral crescents and the ER and the accumulation of immature virions in the expanded ER lumen provide the first direct evidence for a cellular origin of this poxvirus membrane.
Collapse
|
92
|
Leite F, Way M. The role of signalling and the cytoskeleton during Vaccinia Virus egress. Virus Res 2015; 209:87-99. [PMID: 25681743 DOI: 10.1016/j.virusres.2015.01.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 01/26/2015] [Accepted: 01/26/2015] [Indexed: 01/25/2023]
Abstract
Viruses are obligate intracellular parasites that are critically dependent on their hosts to replicate and generate new progeny. To achieve this goal, viruses have evolved numerous elegant strategies to subvert and utilise the different cellular machineries and processes of their unwilling hosts. Moreover, they often accomplish this feat with a surprisingly limited number of proteins. Among the different systems of the cell, the cytoskeleton is often one of the first to be hijacked as it provides a convenient transport system for viruses to reach their site of replication with relative ease. At the latter stages of their replication cycle, the cytoskeleton also provides an efficient means for newly assembled viral progeny to reach the plasma membrane and leave the infected cell. In this review we discuss how Vaccinia virus takes advantage of the microtubule and actin cytoskeletons of its host to promote the spread of infection into neighboring cells. In particular, we highlight how analysis of actin-based motility of Vaccinia has provided unprecedented insights into how a phosphotyrosine-based signalling network is assembled and functions to stimulate Arp2/3 complex-dependent actin polymerization. We also suggest that the formin FHOD1 promotes actin-based motility of the virus by capping the fast growing ends of actin filaments rather than directly promoting filament assembly. We have come a long way since 1976, when electron micrographs of vaccinia-infected cells implicated the actin cytoskeleton in promoting viral spread. Nevertheless, there are still many unanswered questions concerning the role of signalling and the host cytoskeleton in promoting viral spread and pathogenesis.
Collapse
Affiliation(s)
- Flavia Leite
- Cell Motility Laboratory, London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London, WC2A 3LY, UK
| | - Michael Way
- Cell Motility Laboratory, London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London, WC2A 3LY, UK.
| |
Collapse
|
93
|
Lee Y, Kim YJ, Jung YJ, Kim KH, Kwon YM, Kim SI, Kang SM. Systems biology from virus to humans. J Anal Sci Technol 2015; 6:3. [PMID: 26269748 PMCID: PMC4527316 DOI: 10.1186/s40543-015-0047-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 01/15/2015] [Indexed: 12/19/2022] Open
Abstract
Natural infection and then recovery are considered to be the most effective means for hosts to build protective immunity. Thus, mimicking natural infection of pathogens, many live attenuated vaccines such as influenza virus, and yellow fever vaccine 17D were developed and have been successfully used to induce protective immunity. However, humans fail to generate long-term protective immunity to some pathogens after natural infection such as influenza virus, respiratory syncytial virus (RSV), and human immunodeficiency virus (HIV) even if they survive initial infections. Many vaccines are suboptimal since much mortality is still occurring, which is exampled by influenza and tuberculosis. It is critically important to increase our understanding on protein components of pathogens and vaccines as well as cellular and host responses to infections and vaccinations. Here, we highlight recent advances in gene transcripts and protein analysis results in the systems biology to enhance our understanding of viral pathogens, vaccines, and host cell responses.
Collapse
Affiliation(s)
- Youri Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303 USA
| | - Yu-Jin Kim
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303 USA
| | - Yu-Jin Jung
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303 USA
| | - Ki-Hye Kim
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303 USA
| | - Young-Man Kwon
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303 USA
| | - Seung Il Kim
- Division of Life Science, Korea Basic Science Institute, Daejeon, 305-333 South Korea
| | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303 USA
| |
Collapse
|
94
|
Moussatche N, Condit RC. Fine structure of the vaccinia virion determined by controlled degradation and immunolocalization. Virology 2014; 475:204-18. [PMID: 25486587 DOI: 10.1016/j.virol.2014.11.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 11/18/2014] [Indexed: 10/24/2022]
Abstract
The vaccinia virion is a membraned, slightly flattened, barrel-shaped particle, with a complex internal structure featuring a biconcave core flanked by lateral bodies. Although the architecture of the purified mature virion has been intensely characterized by electron microscopy, the distribution of the proteins within the virion has been examined primarily using biochemical procedures. Thus, it has been shown that non-ionic and ionic detergents combined or not with a sulfhydryl reagent can be used to disrupt virions and, to a limited degree, separate the constituent proteins in different fractions. Applying a controlled degradation technique to virions adsorbed on EM grids, we were able to immuno-localize viral proteins within the virion particle. Our results show after NP40 and DTT treatment, membrane proteins are removed from the virion surface revealing proteins that are associated with the lateral bodies and the outer layer of the core wall. Combined treatment using high salt and high DTT removed lateral body proteins and exposed proteins of the internal core wall. Cores treated with proteases could be disrupted and the internal components were exposed. Cts8, a mutant in the A3 protein, produces aberrant virus that, when treated with NP-40 and DTT, releases to the exterior the virus DNA associated with other internal core proteins. With these results, we are able to propose a model for the structure the vaccinia virion.
Collapse
Affiliation(s)
- Nissin Moussatche
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA.
| | - Richard C Condit
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
95
|
Leão TL, da Fonseca FG. Subversion of cellular stress responses by poxviruses. World J Clin Infect Dis 2014; 4:27-40. [DOI: 10.5495/wjcid.v4.i4.27] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 07/26/2014] [Accepted: 09/10/2014] [Indexed: 02/06/2023] Open
Abstract
Cellular stress responses are powerful mechanisms that prevent and cope with the accumulation of macromolecular damage in the cells and also boost host defenses against pathogens. Cells can initiate either protective or destructive stress responses depending, to a large extent, on the nature and duration of the stressing stimulus as well as the cell type. The productive replication of a virus within a given cell places inordinate stress on the metabolism machinery of the host and, to assure the continuity of its replication, many viruses have developed ways to modulate the cell stress responses. Poxviruses are among the viruses that have evolved a large number of strategies to manipulate host stress responses in order to control cell fate and enhance their replicative success. Remarkably, nearly every step of the stress responses that is mounted during infection can be targeted by virally encoded functions. The fine-tuned interactions between poxviruses and the host stress responses has aided virologists to understand specific aspects of viral replication; has helped cell biologists to evaluate the role of stress signaling in the uninfected cell; and has tipped immunologists on how these signals contribute to alert the cells against pathogen invasion and boost subsequent immune responses. This review discusses the diverse strategies that poxviruses use to subvert host cell stress responses.
Collapse
|
96
|
Vaccinia virus mutations in the L4R gene encoding a virion structural protein produce abnormal mature particles lacking a nucleocapsid. J Virol 2014; 88:14017-29. [PMID: 25253347 DOI: 10.1128/jvi.02126-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
UNLABELLED Electron micrographs from the 1960s revealed the presence of an S-shaped tubular structure in the center of the vaccinia virion core. Recently, we showed that packaging of virus transcription enzymes is necessary for the formation of the tubular structure, suggesting that the structure is equivalent to a nucleocapsid. Based on this study and on what is known about nucleocapsids of other viruses, we hypothesized that in addition to transcription enzymes, the tubular structure also contains the viral DNA and a structural protein as a scaffold. The vaccinia virion structural protein L4 stands out as the best candidate for the role of a nucleocapsid structural protein because it is abundant, it is localized in the center of the virion core, and it binds DNA. In order to gain more insight into the structure and relevance of the nucleocapsid, we analyzed thermosensitive and inducible mutants in the L4R gene. Using a cryo-fixation method for electron microscopy (high-pressure freezing followed by freeze-substitution) to preserve labile structures like the nucleocapsid, we were able to demonstrate that in the absence of functional L4, mature particles with defective internal structures are produced under nonpermissive conditions. These particles do not contain a nucleocapsid. In addition, the core wall of these virions is abnormal. This suggests that the nucleocapsid interacts with the core wall and that the nucleocapsid structure might be more complex than originally assumed. IMPORTANCE The vaccinia virus nucleocapsid has been neglected since the 1960s due to a lack of electron microscopy techniques to preserve this labile structure. With the advent of cryo-fixation techniques, like high-pressure freezing/freeze-substitution, we are now able to consistently preserve and visualize the nucleocapsid. Because vaccinia virus early transcription is coupled to the viral core structure, detailing the structure of the nucleocapsid is indispensable for determining the mechanisms of vaccinia virus core-directed transcription. The present study represents our second attempt to understand the structure and biological significance of the nucleocapsid. We demonstrate the importance of the protein L4 for the formation of the nucleocapsid and reveal in addition that the nucleocapsid and the core wall may be associated, suggesting a higher level of complexity of the nucleocapsid than predicted. In addition, we prove the utility of high-pressure freezing in preserving the vaccinia virus nucleocapsid.
Collapse
|
97
|
Moerdyk-Schauwecker M, Hwang SI, Grdzelishvili VZ. Cellular proteins associated with the interior and exterior of vesicular stomatitis virus virions. PLoS One 2014; 9:e104688. [PMID: 25105980 PMCID: PMC4126742 DOI: 10.1371/journal.pone.0104688] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 07/15/2014] [Indexed: 01/18/2023] Open
Abstract
Virus particles (virions) often contain not only virus-encoded but also host-encoded proteins. Some of these host proteins are enclosed within the virion structure, while others, in the case of enveloped viruses, are embedded in the host-derived membrane. While many of these host protein incorporations are likely accidental, some may play a role in virus infectivity, replication and/or immunoreactivity in the next host. Host protein incorporations may be especially important in therapeutic applications where large numbers of virus particles are administered. Vesicular stomatitis virus (VSV) is the prototypic rhabdovirus and a candidate vaccine, gene therapy and oncolytic vector. Using mass spectrometry, we previously examined cell type dependent host protein content of VSV virions using intact (“whole”) virions purified from three cell lines originating from different species. Here we aimed to determine the localization of host proteins within the VSV virions by analyzing: i) whole VSV virions; and ii) whole VSV virions treated with Proteinase K to remove all proteins outside the viral envelope. A total of 257 proteins were identified, with 181 identified in whole virions and 183 identified in Proteinase K treated virions. Most of these proteins have not been previously shown to be associated with VSV. Functional enrichment analysis indicated the most overrepresented categories were proteins associated with vesicles, vesicle-mediated transport and protein localization. Using western blotting, the presence of several host proteins, including some not previously shown in association with VSV (such as Yes1, Prl1 and Ddx3y), was confirmed and their relative quantities in various virion fractions determined. Our study provides a valuable inventory of virion-associated host proteins for further investigation of their roles in the replication cycle, pathogenesis and immunoreactivity of VSV.
Collapse
Affiliation(s)
- Megan Moerdyk-Schauwecker
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
- Center for Biomedical Engineering and Science, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| | - Sun-Il Hwang
- Proteomics Laboratory for Clinical and Translational Research, Carolinas HealthCare System, Charlotte, North Carolina, United States of America
| | - Valery Z. Grdzelishvili
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
- Center for Biomedical Engineering and Science, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
98
|
Potent neutralization of vaccinia virus by divergent murine antibodies targeting a common site of vulnerability in L1 protein. J Virol 2014; 88:11339-55. [PMID: 25031354 DOI: 10.1128/jvi.01491-14] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
UNLABELLED Vaccinia virus (VACV) L1 is an important target for viral neutralization and has been included in multicomponent DNA or protein vaccines against orthopoxviruses. To further understand the protective mechanism of the anti-L1 antibodies, we generated five murine anti-L1 monoclonal antibodies (MAbs), which clustered into 3 distinct epitope groups. While two groups of anti-L1 failed to neutralize, one group of 3 MAbs potently neutralized VACV in an isotype- and complement-independent manner. This is in contrast to neutralizing antibodies against major VACV envelope proteins, such as H3, D8, or A27, which failed to completely neutralize VACV unless the antibodies are of complement-fixing isotypes and complement is present. Compared to nonneutralizing anti-L1 MAbs, the neutralization antibodies bound to the recombinant L1 protein with a significantly higher affinity and also could bind to virions. By using a variety of techniques, including the isolation of neutralization escape mutants, hydrogen/deuterium exchange mass spectrometry, and X-ray crystallography, the epitope of the neutralizing antibodies was mapped to a conformational epitope with Asp35 as the key residue. This epitope is similar to the epitope of 7D11, a previously described potent VACV neutralizing antibody. The epitope was recognized mainly by CDR1 and CDR2 of the heavy chain, which are highly conserved among antibodies recognizing the epitope. These antibodies, however, had divergent light-chain and heavy-chain CDR3 sequences. Our study demonstrates that the conformational L1 epitope with Asp35 is a common site of vulnerability for potent neutralization by a divergent group of antibodies. IMPORTANCE Vaccinia virus, the live vaccine for smallpox, is one of the most successful vaccines in human history, but it presents a level of risk that has become unacceptable for the current population. Studying the immune protection mechanism of smallpox vaccine is important for understanding the basic principle of successful vaccines and the development of next-generation, safer vaccines for highly pathogenic orthopoxviruses. We studied antibody targets in smallpox vaccine by developing potent neutralizing antibodies against vaccinia virus and comprehensively characterizing their epitopes. We found a site in vaccinia virus L1 protein as the target of a group of highly potent murine neutralizing antibodies. The analysis of antibody-antigen complex structure and the sequences of the antibody genes shed light on how these potent neutralizing antibodies are elicited from immunized mice.
Collapse
|
99
|
Davies DH, Chun S, Hermanson G, Tucker JA, Jain A, Nakajima R, Pablo J, Felgner PL, Liang X. T cell antigen discovery using soluble vaccinia proteome reveals recognition of antigens with both virion and nonvirion association. THE JOURNAL OF IMMUNOLOGY 2014; 193:1812-27. [PMID: 25024392 DOI: 10.4049/jimmunol.1400663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Vaccinia virus (VACV) is a useful model system for understanding the immune response to a complex pathogen. Proteome-wide Ab profiling studies reveal the humoral response to be strongly biased toward virion-associated Ags, and several membrane proteins induce Ab-mediated protection against VACV challenge in mice. Some studies have indicated that the CD4 response is also skewed toward proteins with virion association, whereas the CD8 response is more biased toward proteins with early expression. In this study, we have leveraged a VACV strain Western Reserve (VACV-WR) plasmid expression library, produced previously for proteome microarrays for Ab profiling, to make a solubilized full VACV-WR proteome for T cell Ag profiling. Splenocytes from VACV-WR-infected mice were assayed without prior expansion against the soluble proteome in assays for Th1 and Th2 signature cytokines. The response to infection was polarized toward a Th1 response, with the distribution of reactive T cell Ags comprising both early and late VACV proteins. Interestingly, the proportions of different functional subsets were similar to that present in the whole proteome. In contrast, the targets of Abs from the same mice were enriched for membrane and other virion components, as described previously. We conclude that a "nonbiasing" approach to T cell Ag discovery reveals a T cell Ag profile in VACV that is broader and less skewed to virion association than the Ab profile. The T cell Ag mapping method developed in the present study should be applicable to other organisms where expressible "ORFeome" libraries are also available, and it is readily scalable for larger pathogens.
Collapse
Affiliation(s)
- D Huw Davies
- Division of Infectious Diseases, School of Medicine, University of California, Irvine, Irvine, CA 92697; Antigen Discovery, Inc., Irvine, CA 92618; and
| | - Sookhee Chun
- Division of Infectious Diseases, School of Medicine, University of California, Irvine, Irvine, CA 92697
| | | | - Jo Anne Tucker
- Division of Hematology and Oncology, School of Medicine, University of California, Irvine, Irvine, CA 92697
| | - Aarti Jain
- Division of Infectious Diseases, School of Medicine, University of California, Irvine, Irvine, CA 92697
| | - Rie Nakajima
- Division of Infectious Diseases, School of Medicine, University of California, Irvine, Irvine, CA 92697
| | - Jozelyn Pablo
- Division of Infectious Diseases, School of Medicine, University of California, Irvine, Irvine, CA 92697; Antigen Discovery, Inc., Irvine, CA 92618; and
| | - Philip L Felgner
- Division of Infectious Diseases, School of Medicine, University of California, Irvine, Irvine, CA 92697
| | | |
Collapse
|
100
|
Greco TM, Diner BA, Cristea IM. The Impact of Mass Spectrometry-Based Proteomics on Fundamental Discoveries in Virology. Annu Rev Virol 2014; 1:581-604. [PMID: 26958735 DOI: 10.1146/annurev-virology-031413-085527] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In recent years, mass spectrometry has emerged as a core component of fundamental discoveries in virology. As a consequence of their coevolution, viruses and host cells have established complex, dynamic interactions that function either in promoting virus replication and dissemination or in host defense against invading pathogens. Thus, viral infection triggers an impressive range of proteome changes. Alterations in protein abundances, interactions, posttranslational modifications, subcellular localizations, and secretion are temporally regulated during the progression of an infection. Consequently, understanding viral infection at the molecular level requires versatile approaches that afford both breadth and depth of analysis. Mass spectrometry is uniquely positioned to bridge this experimental dichotomy. Its application to both unbiased systems analyses and targeted, hypothesis-driven studies has accelerated discoveries in viral pathogenesis and host defense. Here, we review the contributions of mass spectrometry-based proteomic approaches to understanding viral morphogenesis, replication, and assembly and to characterizing host responses to infection.
Collapse
Affiliation(s)
- Todd M Greco
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544;
| | - Benjamin A Diner
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544;
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544;
| |
Collapse
|