51
|
Louie A, Bhandula V, Portnoy DA. Secretion of c-di-AMP by Listeria monocytogenes Leads to a STING-Dependent Antibacterial Response during Enterocolitis. Infect Immun 2020; 88:e00407-20. [PMID: 33020211 PMCID: PMC7671888 DOI: 10.1128/iai.00407-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/27/2020] [Indexed: 12/24/2022] Open
Abstract
Stimulator of interferon genes (STING) acts as a cytoplasmic signaling hub of innate immunity that is activated by host-derived or bacterially derived cyclic dinucleotides. Listeria monocytogenes is a foodborne, facultative intracellular pathogen that secretes c-di-AMP and activates STING, yet the in vivo role of the STING pathway during bacterial pathogenesis remains unclear. In this study, we found that STING-deficient mice had increased weight loss and roughly 10-fold-increased systemic bacterial burden during L. monocytogenes-induced enterocolitis. Infection with a L. monocytogenes mutant impaired in c-di-AMP secretion failed to elicit a protective response, whereas a mutant with increased c-di-AMP secretion triggered enhanced protection. Type I interferon (IFN) is a major output of STING signaling; however, disrupting IFN signaling during L. monocytogenes-induced enterocolitis did not recapitulate STING deficiency. In the absence of STING, the intestinal immune response was associated with a reduced influx of inflammatory monocytes. These studies suggest that in barrier sites such as the intestinal tract, where pathogen-associated molecular patterns are abundant, cytosolic surveillance systems such as STING are well positioned to detect pathogenic bacteria.
Collapse
Affiliation(s)
- Alexander Louie
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
| | - Varaang Bhandula
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
| | - Daniel A Portnoy
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
52
|
Gómez-Laguna J, Cardoso-Toset F, Meza-Torres J, Pizarro-Cerdá J, Quereda JJ. Virulence potential of Listeria monocytogenes strains recovered from pigs in Spain. Vet Rec 2020; 187:e101. [PMID: 33024008 DOI: 10.1136/vr.105945] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 07/04/2020] [Accepted: 08/16/2020] [Indexed: 11/03/2022]
Abstract
BACKGROUND Listeria monocytogenes is a foodborne bacterial pathogen that causes listeriosis, an infectious disease in animals and people, with pigs acting as asymptomatic reservoirs. In August 2019 an outbreak associated with the consumption of pork meat caused 222 human cases of listeriosis in Spain. Determining the diversity as well as the virulence potential of strains from pigs is important to public health. METHODS The behaviour of 23 L monocytogenes strains recovered from pig tonsils, meat and skin was compared by studying (1) internalin A, internalin B, listeriolysin O, actin assembly-inducing protein and PrfA expression levels, and (2) their invasion and intracellular growth in eukaryotic cells. RESULTS Marked differences were found in the expression of the selected virulence factors and the invasion and intracellular replication phenotypes of L monocytogenes strains. Strains obtained from meat samples and belonging to serotype 1/2a did not have internalin A anchored to the peptidoglycan. Some strains expressed higher levels of the studied virulence factors and invaded and replicated intracellularly more efficiently than an epidemic L monocytogenes reference strain (F2365). CONCLUSION This study demonstrates the presence of virulent L monocytogenes strains with virulent potential in pigs, with valuable implications in veterinary medicine and food safety.
Collapse
Affiliation(s)
- Jaime Gómez-Laguna
- Department of Anatomy and Comparative Pathology and Toxicology, University of Cordoba, Cordoba, Spain
| | | | - Jazmín Meza-Torres
- Yersinia Research Unit, Microbiology Department, Institut Pasteur, Paris, France
| | - Javier Pizarro-Cerdá
- Yersinia Research Unit, Microbiology Department, Institut Pasteur, Paris, France
- World Health Organization Collaborating Research & Reference Centre for Plague, Microbiology Department, Institut Pasteur, F-75724 Paris, France
| | - Juan J Quereda
- Departamento Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| |
Collapse
|
53
|
Role of GlnR in Controlling Expression of Nitrogen Metabolism Genes in Listeria monocytogenes. J Bacteriol 2020; 202:JB.00209-20. [PMID: 32690554 DOI: 10.1128/jb.00209-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/10/2020] [Indexed: 01/27/2023] Open
Abstract
Listeria monocytogenes is a fastidious bacterial pathogen that can utilize only a limited number of nitrogen sources for growth. Both glutamine and ammonium are common nitrogen sources used in listerial defined growth media, but little is known about the regulation of their uptake or utilization. The functional role of L. monocytogenes GlnR, the transcriptional regulator of nitrogen metabolism genes in low-G+C Gram-positive bacteria, was determined using transcriptome sequencing and real-time reverse transcription-PCR experiments. The GlnR regulon included transcriptional units involved in ammonium transport (amtB glnK) and biosynthesis of glutamine (glnRA) and glutamate (gdhA) from ammonium. As in other bacteria, GlnR proved to be an autoregulatory repressor of the glnRA operon. Unexpectedly, GlnR was most active during growth with ammonium as the nitrogen source and less active in the glutamine medium, apparently because listerial cells perceive growth with glutamine as a nitrogen-limiting condition. Therefore, paradoxically, expression of the glnA gene, encoding glutamine synthetase, was highest in the glutamine medium. For the amtB glnK operon, GlnR served as both a negative regulator in the presence of ammonium and a positive regulator in the glutamine medium. The gdhA gene was subject to a third mode of regulation that apparently required an elevated level of GlnR for repression. Finally, activity of glutamate dehydrogenase encoded by the gdhA gene appeared to correlate inversely with expression of gltAB, the operon that encodes the other major glutamate-synthesizing enzyme, glutamate synthase. Both gdhA and amtB were also regulated, in a negative manner, by the global transcriptional regulator CodY.IMPORTANCE L. monocytogenes is a widespread foodborne pathogen. Nitrogen-containing compounds, such as the glutamate-containing tripeptide, glutathione, and glutamine, have been shown to be important for expression of L. monocytogenes virulence genes. In this work, we showed that a transcriptional regulator, GlnR, controls expression of critical listerial genes of nitrogen metabolism that are involved in ammonium uptake and biosynthesis of glutamine and glutamate. A different mode of GlnR-mediated regulation was found for each of these three pathways.
Collapse
|
54
|
Cesinger MR, Thomason MK, Edrozo MB, Halsey CR, Reniere ML. Listeria monocytogenes SpxA1 is a global regulator required to activate genes encoding catalase and heme biosynthesis enzymes for aerobic growth. Mol Microbiol 2020; 114:230-243. [PMID: 32255216 PMCID: PMC7496741 DOI: 10.1111/mmi.14508] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 12/24/2022]
Abstract
An imbalance of cellular oxidants and reductants causes redox stress, which must be rapidly detected to restore homeostasis. In bacteria, the Firmicutes encode conserved Spx-family transcriptional regulators that modulate transcription in response to redox stress. SpxA1 is an Spx-family orthologue in the intracellular pathogen Listeria monocytogenes that is essential for aerobic growth and pathogenesis. Here, we investigated the role of SpxA1 in growth and virulence by identifying genes regulated by SpxA1 in broth and during macrophage infection. We found SpxA1-activated genes encoding heme biosynthesis enzymes and catalase (kat) were required for L. monocytogenes aerobic growth in rich medium. An Spx-recognition motif previously defined in Bacillus subtilis was identified in the promoters of SpxA1-activated genes and proved necessary for the proper activation of two genes, indicating this regulation by SpxA1 is likely direct. Together, these findings elucidated the mechanism of spxA1 essentiality in vitro and demonstrated that SpxA1 is required for basal expression of scavenging enzymes to combat redox stress generated in the presence of oxygen.
Collapse
Affiliation(s)
- Monica R. Cesinger
- Department of MicrobiologySchool of MedicineUniversity of WashingtonSeattleWAUSA
| | - Maureen K. Thomason
- Department of MicrobiologySchool of MedicineUniversity of WashingtonSeattleWAUSA
| | - Mauna B. Edrozo
- Department of MicrobiologySchool of MedicineUniversity of WashingtonSeattleWAUSA
| | - Cortney R. Halsey
- Department of MicrobiologySchool of MedicineUniversity of WashingtonSeattleWAUSA
| | - Michelle L. Reniere
- Department of MicrobiologySchool of MedicineUniversity of WashingtonSeattleWAUSA
| |
Collapse
|
55
|
YjbH Requires Its Thioredoxin Active Motif for the Nitrosative Stress Response, Cell-to-Cell Spread, and Protein-Protein Interactions in Listeria monocytogenes. J Bacteriol 2020; 202:JB.00099-20. [PMID: 32253340 PMCID: PMC7253607 DOI: 10.1128/jb.00099-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 03/28/2020] [Indexed: 12/25/2022] Open
Abstract
Listeria monocytogenes is a model facultative intracellular pathogen. Tight regulation of virulence proteins is essential for a successful infection, and the gene encoding the annotated thioredoxin YjbH was identified in two forward genetic screens as required for virulence factor production. Accordingly, an L. monocytogenes strain lacking yjbH is attenuated in a murine model of infection. However, the function of YjbH in L. monocytogenes has not been investigated. Here, we provide evidence that L. monocytogenes YjbH is involved in the nitrosative stress response, likely through its interaction with the redox-responsive transcriptional regulator SpxA1. YjbH physically interacted with SpxA1, and our data support a model in which YjbH is a protease adaptor that regulates SpxA1 protein abundance. Whole-cell proteomics identified eight additional proteins whose abundance was altered by YjbH, and we demonstrated that YjbH physically interacted with each in bacterial two-hybrid assays. Thioredoxin proteins canonically require active motif cysteines for function, but thioredoxin activity has not been tested for L. monocytogenes YjbH. We demonstrated that cysteine residues of the YjbH thioredoxin domain active motif are essential for L. monocytogenes sensitivity to nitrosative stress, cell-to-cell spread in a tissue culture model of infection, and several protein-protein interactions. Together, these results demonstrated that the function of YjbH in L. monocytogenes requires its thioredoxin active motif and that YjbH has a role in the posttranslational regulation of several proteins, including SpxA1.IMPORTANCE The annotated thioredoxin YjbH in Listeria monocytogenes has been implicated in virulence, but its function in the cell is unknown. In other bacterial species, YjbH is a protease adaptor that mediates degradation of the transcriptional regulator Spx. Here, we investigated the function of L. monocytogenes YjbH and demonstrated its role in the nitrosative stress response and posttranslational regulation of several proteins with which YjbH physically interacts, including SpxA1. Furthermore, we demonstrated that the cysteine residues of the YjbH thioredoxin active motif are required for the nitrosative stress response, cell-to-cell spread, and some protein-protein interactions. YjbH is widely conserved among Firmicutes, and this work reveals its unique requirement of the thioredoxin-active motif in L. monocytogenes.
Collapse
|
56
|
Galeev A, Suwandi A, Bakker H, Oktiviyari A, Routier FH, Krone L, Hensel M, Grassl GA. Proteoglycan-Dependent Endo-Lysosomal Fusion Affects Intracellular Survival of Salmonella Typhimurium in Epithelial Cells. Front Immunol 2020; 11:731. [PMID: 32411142 PMCID: PMC7201003 DOI: 10.3389/fimmu.2020.00731] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/31/2020] [Indexed: 11/28/2022] Open
Abstract
Proteoglycans (PGs) are glycoconjugates which are predominately expressed on cell surfaces and consist of glycosaminoglycans (GAGs) linked to a core protein. An initial step of GAGs assembly is governed by the β-D-xylosyltransferase enzymes encoded in mammals by the XylT1/XylT2 genes. PGs are essential for the interaction of a cell with other cells as well as with the extracellular matrix. A number of studies highlighted a role of PGs in bacterial adhesion, invasion, and immune response. In this work, we investigated a role of PGs in Salmonella enterica serovar Typhimurium (S. Typhimurium) infection of epithelial cells. Gentamicin protection and chloroquine resistance assays were applied to assess invasion and replication of S. Typhimurium in wild-type and xylosyltransferase-deficient (ΔXylT2) Chinese hamster ovary (CHO) cells lacking PGs. We found that S. Typhimurium adheres to and invades CHO WT and CHO ΔXylT2 cells at comparable levels. However, 24 h after infection, proteoglycan-deficient CHO ΔXylT2 cells are significantly less colonized by S. Typhimurium compared to CHO WT cells. This proteoglycan-dependent phenotype could be rescued by addition of PGs to the cell culture medium, as well as by complementation of the XylT2 gene. Chloroquine resistance assay and immunostaining revealed that in the absence of PGs, significantly less bacteria are associated with Salmonella-containing vacuoles (SCVs) due to a re-distribution of endocytosed gentamicin. Inhibition of endo-lysosomal fusion by a specific inhibitor of phosphatidylinositol phosphate kinase PIKfyve significantly increased S. Typhimurium burden in CHO ΔXylT2 cells demonstrating an important role of PGs for PIKfyve dependent vesicle fusion which is modulated by Salmonella to establish infection. Overall, our results demonstrate that PGs influence survival of intracellular Salmonella in epithelial cells via modulation of PIKfyve-dependent endo-lysosomal fusion.
Collapse
Affiliation(s)
- Alibek Galeev
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School and German Center for Infection Research (DZIF), Hanover, Germany
| | - Abdulhadi Suwandi
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School and German Center for Infection Research (DZIF), Hanover, Germany
| | - Hans Bakker
- Institute of Clinical Biochemistry, Hannover Medical School, Hanover, Germany
| | - Ade Oktiviyari
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School and German Center for Infection Research (DZIF), Hanover, Germany
| | - Françoise H Routier
- Institute of Clinical Biochemistry, Hannover Medical School, Hanover, Germany
| | - Lena Krone
- Division of Microbiology, University of Osnabrück, Osnabrück, Germany
| | - Michael Hensel
- Division of Microbiology, University of Osnabrück, Osnabrück, Germany
| | - Guntram A Grassl
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School and German Center for Infection Research (DZIF), Hanover, Germany
| |
Collapse
|
57
|
Sanchez‐Garrido J, Slater SL, Clements A, Shenoy AR, Frankel G. Vying for the control of inflammasomes: The cytosolic frontier of enteric bacterial pathogen-host interactions. Cell Microbiol 2020; 22:e13184. [PMID: 32185892 PMCID: PMC7154749 DOI: 10.1111/cmi.13184] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/13/2020] [Accepted: 01/30/2020] [Indexed: 12/13/2022]
Abstract
Enteric pathogen-host interactions occur at multiple interfaces, including the intestinal epithelium and deeper organs of the immune system. Microbial ligands and activities are detected by host sensors that elicit a range of immune responses. Membrane-bound toll-like receptors and cytosolic inflammasome pathways are key signal transducers that trigger the production of pro-inflammatory molecules, such as cytokines and chemokines, and regulate cell death in response to infection. In recent years, the inflammasomes have emerged as a key frontier in the tussle between bacterial pathogens and the host. Inflammasomes are complexes that activate caspase-1 and are regulated by related caspases, such as caspase-11, -4, -5 and -8. Importantly, enteric bacterial pathogens can actively engage or evade inflammasome signalling systems. Extracellular, vacuolar and cytosolic bacteria have developed divergent strategies to subvert inflammasomes. While some pathogens take advantage of inflammasome activation (e.g. Listeria monocytogenes, Helicobacter pylori), others (e.g. E. coli, Salmonella, Shigella, Yersinia sp.) deploy a range of virulence factors, mainly type 3 secretion system effectors, that subvert or inhibit inflammasomes. In this review we focus on inflammasome pathways and their immune functions, and discuss how enteric bacterial pathogens interact with them. These studies have not only shed light on inflammasome-mediated immunity, but also the exciting area of mammalian cytosolic immune surveillance.
Collapse
Affiliation(s)
| | | | | | - Avinash R. Shenoy
- Department of Infectious Disease, MRC Centre for Molecular Bacteriology & InfectionImperial College LondonLondonUK
| | - Gad Frankel
- Department of Life SciencesImperial College LondonLondonUK
| |
Collapse
|
58
|
Genomic Differences between Listeria monocytogenes EGDe Isolates Reveal Crucial Roles for SigB and Wall Rhamnosylation in Biofilm Formation. J Bacteriol 2020; 202:JB.00692-19. [PMID: 31964697 PMCID: PMC7167478 DOI: 10.1128/jb.00692-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/16/2020] [Indexed: 12/20/2022] Open
Abstract
Biofilms are an important mode of growth in many settings. Here, we looked at small differences in the genomes of the bacterium Listeria monocytogenes isolate EGDe and used them to find out how biofilms form. This important fundamental information may help new treatments to be developed and also highlights the fact that isolates of the same identity often diverge. Listeria monocytogenes is a Gram-positive firmicute that causes foodborne infections, in part due to its ability to use multiple strategies, including biofilm formation, to survive adverse growth conditions. As a potential way to screen for genes required for biofilm formation, we harnessed the ability of bacteria to accumulate mutations in the genome over time, diverging the properties of seemingly identical strains. By sequencing the genomes of four laboratory reference strains of the commonly used L. monocytogenes EGDe, we showed that each isolate contains single nucleotide polymorphisms (SNPs) compared with the reference genome. We discovered that two SNPs, contained in two independent genes within one of the isolates, impacted biofilm formation. Using bacterial genetics and phenotypic assays, we confirmed that rsbU and rmlA influence biofilm formation. RsbU is the upstream regulator of the alternative sigma factor SigB, and mutation of either rsbU or sigB increased biofilm formation. In contrast, deletion of rmlA, which encodes the first enzyme for TDP-l-rhamnose biosynthesis, resulted in a reduction in the amount of biofilm formed. Further analysis of biofilm formation in a strain that still produces TDP-l-rhamnose but which cannot decorate the wall teichoic acid with rhamnose (rmlT mutant) showed that it is the decorated wall teichoic acid that is required for adhesion of the cells to surfaces. Together, these data uncover novel routes by which biofilm formation by L. monocytogenes can be impacted. IMPORTANCE Biofilms are an important mode of growth in many settings. Here, we looked at small differences in the genomes of the bacterium Listeria monocytogenes isolate EGDe and used them to find out how biofilms form. This important fundamental information may help new treatments to be developed and also highlights the fact that isolates of the same identity often diverge.
Collapse
|
59
|
Varadarajan AR, Goetze S, Pavlou MP, Grosboillot V, Shen Y, Loessner MJ, Ahrens CH, Wollscheid B. A Proteogenomic Resource Enabling Integrated Analysis of Listeria Genotype-Proteotype-Phenotype Relationships. J Proteome Res 2020; 19:1647-1662. [PMID: 32091902 DOI: 10.1021/acs.jproteome.9b00842] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Listeria monocytogenes is an opportunistic foodborne pathogen responsible for listeriosis, a potentially fatal foodborne disease. Many different Listeria strains and serotypes exist, but a proteogenomic resource that bridges the gap in our molecular understanding of the relationships between the Listeria genotypes and phenotypes via proteotypes is still missing. Here, we devised a next-generation proteogenomics strategy that enables the community to rapidly proteotype Listeria strains and relate this information back to the genotype. Based on sequencing and de novo assembly of the two most commonly used Listeria model strains, EGD-e and ScottA, we established two comprehensive Listeria proteogenomic databases. A genome comparison established core- and strain-specific genes potentially responsible for virulence differences. Next, we established a DIA/SWATH-based proteotyping strategy, including a new and robust sample preparation workflow, that enables the reproducible, sensitive, and relative quantitative measurement of Listeria proteotypes. This reusable and publicly available DIA/SWATH library covers 70% of open reading frames of Listeria and represents the most extensive spectral library for Listeria proteotype analysis to date. We used these two new resources to investigate the Listeria proteotype in states mimicking the upper gastrointestinal passage. Exposure of Listeria to bile salts at 37 °C, which simulates conditions encountered in the duodenum, showed significant proteotype perturbations including an increase of FlaA, the structural protein of flagella. Given that Listeria is known to lose its flagella above 30 °C, this was an unexpected finding. The formation of flagella, which might have implications on infectivity, was validated by parallel reaction monitoring and light and scanning electron microscopy. flaA transcript levels did not change significantly upon exposure to bile salts at 37 °C, suggesting regulation at the post-transcriptional level. Together, these analyses provide a comprehensive proteogenomic resource and toolbox for the Listeria community enabling the analysis of Listeria genotype-proteotype-phenotype relationships.
Collapse
Affiliation(s)
- Adithi R Varadarajan
- Department of Health Sciences and Technology (D-HEST), ETH Zürich, 8092 Zürich, Switzerland.,Agroscope, Molecular Diagnostics, Genomics & Bioinformatics, 8820 Wädenswil, Switzerland.,Swiss Institute of Bioinformatics (SIB), 1015 Lausanne, Switzerland
| | - Sandra Goetze
- Department of Health Sciences and Technology (D-HEST), ETH Zürich, 8092 Zürich, Switzerland.,Swiss Institute of Bioinformatics (SIB), 1015 Lausanne, Switzerland.,Institute of Translational Medicine (ITM), ETH Zürich, 8093 Zürich, Switzerland
| | - Maria P Pavlou
- Department of Health Sciences and Technology (D-HEST), ETH Zürich, 8092 Zürich, Switzerland.,Institute of Translational Medicine (ITM), ETH Zürich, 8093 Zürich, Switzerland
| | - Virginie Grosboillot
- Department of Health Sciences and Technology (D-HEST), ETH Zürich, 8092 Zürich, Switzerland.,Institute of Food, Nutrition and Health (IFNH), ETH Zürich, 8092 Zürich, Switzerland
| | - Yang Shen
- Department of Health Sciences and Technology (D-HEST), ETH Zürich, 8092 Zürich, Switzerland.,Institute of Food, Nutrition and Health (IFNH), ETH Zürich, 8092 Zürich, Switzerland
| | - Martin J Loessner
- Department of Health Sciences and Technology (D-HEST), ETH Zürich, 8092 Zürich, Switzerland.,Institute of Food, Nutrition and Health (IFNH), ETH Zürich, 8092 Zürich, Switzerland
| | - Christian H Ahrens
- Agroscope, Molecular Diagnostics, Genomics & Bioinformatics, 8820 Wädenswil, Switzerland.,Swiss Institute of Bioinformatics (SIB), 1015 Lausanne, Switzerland
| | - Bernd Wollscheid
- Department of Health Sciences and Technology (D-HEST), ETH Zürich, 8092 Zürich, Switzerland.,Swiss Institute of Bioinformatics (SIB), 1015 Lausanne, Switzerland.,Institute of Translational Medicine (ITM), ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
60
|
Biswas R, Sonenshein AL, Belitsky BR. Genome-wide identification of Listeria monocytogenes CodY-binding sites. Mol Microbiol 2020; 113:841-858. [PMID: 31944451 DOI: 10.1111/mmi.14449] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 12/19/2022]
Abstract
CodY is a global transcriptional regulator that controls, directly or indirectly, the expression of dozens of genes and operons in Listeria monocytogenes. We used in vitro DNA affinity purification combined with massively parallel sequencing (IDAP-Seq) to identify genome-wide L. monocytogenes chromosomal DNA regions that CodY binds in vitro. The total number of CodY-binding regions exceeded 2,000, but they varied significantly in their strengths of binding at different CodY concentrations. The 388 strongest CodY-binding regions were chosen for further analysis. A strand-specific analysis of the data allowed pinpointing CodY-binding sites at close to single-nucleotide resolution. Gel shift and DNase I footprinting assays confirmed the presence and locations of several CodY-binding sites. Surprisingly, most of the sites were located within genes' coding regions. The binding site within the beginning of the coding sequence of the prfA gene, which encodes the master regulator of virulence genes, has been previously implicated in regulation of prfA, but this site was weaker in vitro than hundreds of other sites. The L. monocytogenes CodY protein was functionally similar to Bacillus subtilis CodY when expressed in B. subtilis cells. Based on the sequences of the CodY-binding sites, a model of CodY interaction with DNA is proposed.
Collapse
Affiliation(s)
- Rajesh Biswas
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| | - Abraham L Sonenshein
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| | - Boris R Belitsky
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
61
|
The Nonmevalonate Pathway of Isoprenoid Biosynthesis Supports Anaerobic Growth of Listeria monocytogenes. Infect Immun 2020; 88:IAI.00788-19. [PMID: 31792073 DOI: 10.1128/iai.00788-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 11/21/2019] [Indexed: 11/20/2022] Open
Abstract
Isoprenoids are an essential and diverse class of molecules, present in all forms of life, that are synthesized from an essential common precursor derived from either the mevalonate pathway or the nonmevalonate pathway. Most bacteria have one pathway or the other, but the Gram-positive, facultative intracellular pathogen Listeria monocytogenes is unusual because it carries all the genes for both pathways. While the mevalonate pathway has previously been reported to be essential, here we demonstrate that the nonmevalonate pathway can support growth of strains 10403S and EGD-e, but only anaerobically. L. monocytogenes lacking the gene hmgR, encoding the rate-limiting enzyme of the mevalonate pathway, had a doubling time of 4 h under anaerobic conditions, in contrast to the 45 min doubling time of the wild type. In contrast, deleting hmgR in two clinical isolates resulted in mutants that grew significantly faster, doubling in approximately 2 h anaerobically, although they still failed to grow under aerobic conditions without mevalonate. The difference in anaerobic growth rate was traced to three amino acid changes in the nonmevalonate pathway enzyme GcpE, and these changes were sufficient to increase the growth rate of 10403S to the rate observed in the clinical isolates. Despite an increased growth rate, virulence was still dependent on the mevalonate pathway in 10403S strains expressing the more active GcpE allele.
Collapse
|
62
|
Light SH, Méheust R, Ferrell JL, Cho J, Deng D, Agostoni M, Iavarone AT, Banfield JF, D’Orazio SEF, Portnoy DA. Extracellular electron transfer powers flavinylated extracellular reductases in Gram-positive bacteria. Proc Natl Acad Sci U S A 2019; 116:26892-26899. [PMID: 31818955 PMCID: PMC6936397 DOI: 10.1073/pnas.1915678116] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mineral-respiring bacteria use a process called extracellular electron transfer to route their respiratory electron transport chain to insoluble electron acceptors on the exterior of the cell. We recently characterized a flavin-based extracellular electron transfer system that is present in the foodborne pathogen Listeria monocytogenes, as well as many other Gram-positive bacteria, and which highlights a more generalized role for extracellular electron transfer in microbial metabolism. Here we identify a family of putative extracellular reductases that possess a conserved posttranslational flavinylation modification. Phylogenetic analyses suggest that divergent flavinylated extracellular reductase subfamilies possess distinct and often unidentified substrate specificities. We show that flavinylation of a member of the fumarate reductase subfamily allows this enzyme to receive electrons from the extracellular electron transfer system and support L. monocytogenes growth. We demonstrate that this represents a generalizable mechanism by finding that a L. monocytogenes strain engineered to express a flavinylated extracellular urocanate reductase uses urocanate by a related mechanism and to a similar effect. These studies thus identify an enzyme family that exploits a modular flavin-based electron transfer strategy to reduce distinct extracellular substrates and support a multifunctional view of the role of extracellular electron transfer activities in microbial physiology.
Collapse
Affiliation(s)
- Samuel H. Light
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| | - Raphaël Méheust
- Department of Earth and Planetary Science, University of California, Berkeley, CA 94720
- Innovative Genomics Institute, Berkeley, CA 94704
| | - Jessica L. Ferrell
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky, Lexington, KY 40536-0298
| | - Jooyoung Cho
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky, Lexington, KY 40536-0298
| | - David Deng
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| | - Marco Agostoni
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720
| | - Anthony T. Iavarone
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720
- QB3/Chemistry Mass Spectrometry Facility, University of California, Berkeley, CA 94720
| | - Jillian F. Banfield
- Department of Earth and Planetary Science, University of California, Berkeley, CA 94720
- Innovative Genomics Institute, Berkeley, CA 94704
| | - Sarah E. F. D’Orazio
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky, Lexington, KY 40536-0298
| | - Daniel A. Portnoy
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| |
Collapse
|
63
|
Ghosh P, Zhou Y, Richardson Q, Higgins DE. Characterization of the pathogenesis and immune response to Listeria monocytogenes strains isolated from a sustained national outbreak. Sci Rep 2019; 9:19587. [PMID: 31862952 PMCID: PMC6925182 DOI: 10.1038/s41598-019-56028-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 12/05/2019] [Indexed: 12/16/2022] Open
Abstract
Listeria monocytogenes is an intracellular pathogen responsible for listeriosis, a foodborne disease that can lead to life-threatening meningitis. The 2011 L. monocytogenes cantaloupe outbreak was among the deadliest foodborne outbreaks in the United States. We conducted in vitro and in vivo infection analyses to determine whether strains LS741 and LS743, two clinical isolates from the cantaloupe outbreak, differ significantly from the common laboratory strain 10403S. We showed that LS741 and LS743 exhibited increased virulence, characterized by higher colonization of the brain and other organs in mice. Assessment of cellular immune responses to known CD8+ T cell antigens was comparable between all strains. However, pre-existing immunity to 10403S did not confer protection in the brain against challenge with LS741. These studies provide insights into the pathogenesis of clinical isolates linked to the 2011 cantaloupe outbreak and also indicate that currently utilized laboratory strains are imperfect models for studying L. monocytogenes pathogenesis.
Collapse
Affiliation(s)
- Pallab Ghosh
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Yan Zhou
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Quentin Richardson
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Darren E Higgins
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
64
|
Louie A, Zhang T, Becattini S, Waldor MK, Portnoy DA. A Multiorgan Trafficking Circuit Provides Purifying Selection of Listeria monocytogenes Virulence Genes. mBio 2019; 10:e02948-19. [PMID: 31848289 PMCID: PMC6918090 DOI: 10.1128/mbio.02948-19] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 11/13/2019] [Indexed: 02/07/2023] Open
Abstract
Listeria monocytogenes can cause a life-threatening illness when the foodborne pathogen spreads beyond the intestinal tract to distant organs. Many aspects of the intestinal phase of L. monocytogenes pathogenesis remain unknown. Here, we present a foodborne infection model using C57BL/6 mice that have been pretreated with streptomycin. In this model, as few as 100 L. monocytogenes CFU were required to cause self-limiting enterocolitis, and systemic dissemination followed previously reported routes. Using this model, we report that listeriolysin O (LLO) and actin assembly-inducing protein (ActA), two critical virulence determinants, were necessary for intestinal pathology and systemic spread but were dispensable for intestinal growth. Sequence tag-based analysis of microbial populations (STAMP) was used to investigate the within-host population dynamics of wild-type and LLO-deficient strains. The wild-type bacterial population experienced severe bottlenecks over the course of infection, and by 5 days, the intestinal population was highly enriched for bacteria originating from the gallbladder. In contrast, LLO-deficient strains did not efficiently disseminate and gain access to the gallbladder, and the intestinal population remained diverse. These findings suggest that systemic spread and establishment of a bacterial reservoir in the gallbladder imparts an intraspecies advantage in intestinal occupancy. Since intestinal L. monocytogenes is ultimately released into the environment, within-host population bottlenecks may provide purifying selection of virulence genes.IMPORTANCEListeria monocytogenes maintains capabilities for free-living growth in the environment and for intracellular replication in a wide range of hosts, including livestock and humans. Here, we characterized an enterocolitis model of foodborne L. monocytogenes infection. This work highlights a multiorgan trafficking circuit and reveals a fitness advantage for bacteria that successfully complete this cycle. Because virulence factors play critical roles in systemic dissemination and multiple bottlenecks occur as the bacterial population colonizes different tissue sites, this multiorgan trafficking circuit likely provides purifying selection of virulence genes. This study also serves as a foundation for future work using the L. monocytogenes-induced enterocolitis model to investigate the biology of L. monocytogenes in the intestinal environment.
Collapse
Affiliation(s)
- Alexander Louie
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
| | - Ting Zhang
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Simone Becattini
- Immunology Program, Sloan Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Matthew K Waldor
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Boston, Massachusetts, USA
| | - Daniel A Portnoy
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
65
|
Yan J, Estanbouli H, Liao C, Kim W, Monk JM, Rahman R, Kamboj M, Palsson BO, Qiu W, Xavier JB. Systems-level analysis of NalD mutation, a recurrent driver of rapid drug resistance in acute Pseudomonas aeruginosa infection. PLoS Comput Biol 2019; 15:e1007562. [PMID: 31860667 PMCID: PMC6944390 DOI: 10.1371/journal.pcbi.1007562] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 01/06/2020] [Accepted: 11/23/2019] [Indexed: 02/02/2023] Open
Abstract
Pseudomonas aeruginosa, a main cause of human infection, can gain resistance to the antibiotic aztreonam through a mutation in NalD, a transcriptional repressor of cellular efflux. Here we combine computational analysis of clinical isolates, transcriptomics, metabolic modeling and experimental validation to find a strong association between NalD mutations and resistance to aztreonam-as well as resistance to other antibiotics-across P. aeruginosa isolated from different patients. A detailed analysis of one patient's timeline shows how this mutation can emerge in vivo and drive rapid evolution of resistance while the patient received cancer treatment, a bone marrow transplantation, and antibiotics up to the point of causing the patient's death. Transcriptomics analysis confirmed the primary mechanism of NalD action-a loss-of-function mutation that caused constitutive overexpression of the MexAB-OprM efflux system-which lead to aztreonam resistance but, surprisingly, had no fitness cost in the absence of the antibiotic. We constrained a genome-scale metabolic model using the transcriptomics data to investigate changes beyond the primary mechanism of resistance, including adaptations in major metabolic pathways and membrane transport concurrent with aztreonam resistance, which may explain the lack of a fitness cost. We propose that metabolic adaptations may allow resistance mutations to endure in the absence of antibiotics and could be targeted by future therapies against antibiotic resistant pathogens.
Collapse
Affiliation(s)
- Jinyuan Yan
- Program for Computational and Systems Biology, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Henri Estanbouli
- Program for Computational and Systems Biology, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Chen Liao
- Program for Computational and Systems Biology, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Wook Kim
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, United States of America
| | - Jonathan M. Monk
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
| | - Rayees Rahman
- Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Mini Kamboj
- Infection Control, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York, New York, United States of America
| | - Bernhard O. Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
| | - Weigang Qiu
- Department of Biological Sciences, Hunter College & Graduate Center, CUNY, New York, New York, United States of America
| | - Joao B. Xavier
- Program for Computational and Systems Biology, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| |
Collapse
|
66
|
Ferwerda B, Maury MM, Brouwer MC, Hafner L, van der Ende A, Bentley S, Lecuit M, van de Beek D. Residual Variation Intolerance Score Detects Loci Under Selection in Neuroinvasive Listeria monocytogenes. Front Microbiol 2019; 10:2702. [PMID: 31849867 PMCID: PMC6901971 DOI: 10.3389/fmicb.2019.02702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 11/07/2019] [Indexed: 12/31/2022] Open
Abstract
Listeria monocytogenes is a Gram-positive bacterium that can be found in a broad range of environments, including soil, food, animals, and humans. L. monocytogenes can cause a foodborne disease manifesting as sepsis and meningo-encephalitis. To evaluate signals of selection within the core genome of neuroinvasive L. monocytogenes strains, we sequenced 122 L. monocytogenes strains from cerebrospinal fluid (CSF) of Dutch meningitis patients and performed a genome-wide analysis using Tajima’s D and ω (dN/dS). We also evaluated the residual variation intolerance score (RVIS), a computationally less demanding methodology, to identify loci under selection. Results show that the large genetic distance between the listerial lineages influences the Tajima’s D and ω (dN/dS) outcome. Within genetic lineages we detected signals of selection in 6 of 2327 loci (<1%), which were replicated in an external cohort of 105 listerial CSF isolates from France. Functions of identified loci under selection were within metabolism pathways (lmo2476, encoding aldose 1-epimerase), putative antimicrobial resistance mechanisms (lmo1855, encoding PBPD3), and virulence factors (lmo0549, internalin-like protein; lmo1482, encoding comEC). RVIS over the two genetic lineages showed signals of selection in internalin-like proteins loci potentially involved in pathogen-host interaction (lmo0549, lmo0610, and lmo1290). Our results show that RVIS can be used to detect bacterial loci under selection.
Collapse
Affiliation(s)
- Bart Ferwerda
- Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Mylène M Maury
- Institut Pasteur, Biology of Infection Unit, Inserm U1117 and National Reference Centre - WHO Collaborating Centre for Listeria, Paris, France
| | - Mathijs C Brouwer
- Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Lukas Hafner
- Institut Pasteur, Biology of Infection Unit, Inserm U1117 and National Reference Centre - WHO Collaborating Centre for Listeria, Paris, France
| | - Arie van der Ende
- Department of Medical Microbiology, Amsterdam Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Netherlands Reference Laboratory for Bacterial Meningitis, Amsterdam UMC/RIVM, University of Amsterdam, Amsterdam, Netherlands
| | - Stephen Bentley
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Marc Lecuit
- Institut Pasteur, Biology of Infection Unit, Inserm U1117 and National Reference Centre - WHO Collaborating Centre for Listeria, Paris, France.,Paris Descartes University, Division of Infectious Diseases and Tropical Medicine, Necker-Enfants Malades University Hospital, Paris, France
| | - Diederik van de Beek
- Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
67
|
Abfalter CM, Bernegger S, Jarzab M, Posselt G, Ponnuraj K, Wessler S. The proteolytic activity of Listeria monocytogenes HtrA. BMC Microbiol 2019; 19:255. [PMID: 31726993 PMCID: PMC6857308 DOI: 10.1186/s12866-019-1633-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 11/04/2019] [Indexed: 12/26/2022] Open
Abstract
Background High temperature requirement A (HtrA) is a widely expressed chaperone and serine protease in bacteria. HtrA proteases assemble and hydrolyze misfolded proteins to enhance bacterial survival under stress conditions. Listeria monocytogenes (L. monocytogenes) is a foodborne pathogen that induces listeriosis in humans. In previous studies, it was shown that deletion of htrA in the genome of L. monocytogenes increased the susceptibility to cellular stress and attenuated virulence. However, expression and protease activity of listerial HtrA (LmHtrA) were never analyzed in detail. Results In this study, we cloned LmHtrA wildtype (LmHtrAwt) and generated a proteolytic inactive LmHtrASA mutant. Recombinant LmHtrAwt and LmHtrASA were purified and the proteolytic activity was analyzed in casein zymography and in vitro cleavage assays. LmHtrA activity could be efficiently blocked by a small molecule inhibitor targeting bacterial HtrA proteases. The expression of LmHtrA was enhanced in the stationary growth phase of L. monocytogenes and significantly contributed to bacterial survival at high temperatures. Conclusions Our data show that LmHtrA is a highly active caseinolytic protease and provide a deeper insight into the function and mechanism, which could lead to medical and biotechnological applications in the future.
Collapse
Affiliation(s)
- Carmen M Abfalter
- Department of Biosciences, University of Salzburg, Billroth Str. 11, A-5020, Salzburg, Austria
| | - Sabine Bernegger
- Department of Biosciences, University of Salzburg, Billroth Str. 11, A-5020, Salzburg, Austria
| | - Miroslaw Jarzab
- Department of Biosciences, University of Salzburg, Billroth Str. 11, A-5020, Salzburg, Austria
| | - Gernot Posselt
- Department of Biosciences, University of Salzburg, Billroth Str. 11, A-5020, Salzburg, Austria
| | - Karthe Ponnuraj
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai, India
| | - Silja Wessler
- Department of Biosciences, University of Salzburg, Billroth Str. 11, A-5020, Salzburg, Austria.
| |
Collapse
|
68
|
Tamburro M, Sammarco ML, Fanelli I, Ripabelli G. Characterization of Listeria monocytogenes serovar 1/2a, 1/2b, 1/2c and 4b by high resolution melting analysis for epidemiological investigations. Int J Food Microbiol 2019; 310:108289. [DOI: 10.1016/j.ijfoodmicro.2019.108289] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 05/24/2019] [Accepted: 08/04/2019] [Indexed: 02/07/2023]
|
69
|
Exploring Listeria monocytogenes Transcriptomes in Correlation with Divergence of Lineages and Virulence as Measured in Galleria mellonella. Appl Environ Microbiol 2019; 85:AEM.01370-19. [PMID: 31471303 DOI: 10.1128/aem.01370-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/25/2019] [Indexed: 12/24/2022] Open
Abstract
As for many opportunistic pathogens, the virulence potential of Listeria monocytogenes is highly heterogeneous between isolates and correlated, to some extent, with phylogeny and gene repertoires. In sharp contrast with copious data on intraspecies genome diversity, little is known about transcriptome diversity despite the role of complex genetic regulation in pathogenicity. The current study implemented RNA sequencing to characterize the transcriptome profiles of 33 isolates under optimal in vitro growth conditions. Transcript levels of conserved single-copy genes were comprehensively explored from several perspectives, including phylogeny, in silico-predicted virulence category based on epidemiological multilocus sequence typing (MLST) data, and in vivo virulence phenotype assessed in Galleria mellonella Comparing baseline transcriptomes between isolates was intrinsically more complex than standard genome comparison because of the inherent plasticity of gene expression in response to environmental conditions. We show that the relevance of correlation analyses and their statistical power can be enhanced by using principal-component analysis to remove the first level of irrelevant, highly coordinated changes linked to growth phase. Our results highlight the major contribution of transcription factors with key roles in virulence to the diversity of transcriptomes. Divergence in the basal transcript levels of a substantial fraction of the transcriptome was observed between lineages I and II, echoing previously reported epidemiological differences. Correlation analysis with in vivo virulence identified numerous sugar metabolism-related genes, suggesting that specific pathways might play roles in the onset of infection in G. mellonella IMPORTANCE Listeria monocytogenes is a multifaceted bacterium able to proliferate in a wide range of environments from soil to mammalian host cells. The accumulated genomic data underscore the contribution of intraspecies variations in gene repertoire to differential adaptation strategies between strains, including infection and stress resistance. It seems very likely that the fine-tuning of the transcriptional regulatory network is also a key component of the phenotypic diversity, albeit more difficult to investigate than genome content. Some studies reported incongruity in the basal transcriptome between isolates, suggesting a putative relationship with phenotypes, but small isolate numbers hampered proper correlation analyses with respect to their characteristics. The present study is the embodiment of the promising approach that consists of analyzing correlations between transcriptomes and various isolate characteristics. Statistically significant correlations were found with phylogenetic groups, epidemiological evidence of virulence potential, and virulence in Galleria mellonella larvae used as an in vivo model.
Collapse
|
70
|
Horlbog JA, Stevens MJA, Stephan R, Guldimann C. Global Transcriptional Response of Three Highly Acid-Tolerant Field Strains of Listeria monocytogenes to HCl Stress. Microorganisms 2019; 7:microorganisms7100455. [PMID: 31623206 PMCID: PMC6843411 DOI: 10.3390/microorganisms7100455] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 12/15/2022] Open
Abstract
Tolerance to acid is of dual importance for the food-borne pathogen Listeria monocytogenes: acids are used as a preservative, and gastric acid is one of the first defenses within the host. There are considerable differences in the acid tolerance of strains. Here we present the transcriptomic response of acid-tolerant field strains of L. monocytogenes to HCl at pH 3.0. RNAseq revealed significant differential expression of genes involved in phosphotransferase systems, oxidative phosphorylation, cell morphology, motility, and biofilm formation. Genes in the acetoin biosynthesis pathway were upregulated, suggesting that L. monocytogenes shifts to metabolizing pyruvate to acetoin under organic acid stress. We also identified the formation of cell aggregates in microcolonies as a potential relief strategy. A motif search within the first 150 bp upstream of differentially expressed genes identified a novel potential regulatory sequence that may have a function in the regulation of virulence gene expression. Our data support a model where an excess of intracellular H+ ions is counteracted by pumping H+ out of the cytosol via cytochrome C under reduced activity of the ATP synthase. The observed morphological changes suggest that acid stress may cause cells to aggregate in biofilm microcolonies to create a more favorable microenvironment. Additionally, HCl stress in the host stomach may serve as (i) a signal to downregulate highly immunogenic flagella, and (ii) as an indicator for the imminent contact with host cells which triggers early stage virulence genes.
Collapse
Affiliation(s)
- Jule Anna Horlbog
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, 8006 Zürich, Switzerland.
| | - Marc J A Stevens
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, 8006 Zürich, Switzerland.
| | - Roger Stephan
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, 8006 Zürich, Switzerland.
| | - Claudia Guldimann
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, 8006 Zürich, Switzerland.
| |
Collapse
|
71
|
Yin Y, Yao H, Doijad S, Kong S, Shen Y, Cai X, Tan W, Wang Y, Feng Y, Ling Z, Wang G, Hu Y, Lian K, Sun X, Liu Y, Wang C, Jiao K, Liu G, Song R, Chen X, Pan Z, Loessner MJ, Chakraborty T, Jiao X. A hybrid sub-lineage of Listeria monocytogenes comprising hypervirulent isolates. Nat Commun 2019; 10:4283. [PMID: 31570766 PMCID: PMC6768887 DOI: 10.1038/s41467-019-12072-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 08/19/2019] [Indexed: 11/20/2022] Open
Abstract
The foodborne pathogen Listeria monocytogenes (Lm) is a highly heterogeneous species and currently comprises of 4 evolutionarily distinct lineages. Here, we characterize isolates from severe ovine listeriosis outbreaks that represent a hybrid sub-lineage of the major lineage II (HSL-II) and serotype 4h. HSL-II isolates are highly virulent and exhibit higher organ colonization capacities than well-characterized hypervirulent strains of Lm in an orogastric mouse infection model. The isolates harbour both the Lm Pathogenicity Island (LIPI)-1 and a truncated LIPI-2 locus, encoding sphingomyelinase (SmcL), a virulence factor required for invasion and bacterial translocation from the gut, and other non-contiguous chromosomal segments from another pathogenic species, L. ivanovii. HSL-II isolates exhibit a unique wall teichoic acid (WTA) structure essential for resistance to antimicrobial peptides, bacterial invasion and virulence. The discovery of isolates harbouring pan-species virulence genes of the genus Listeria warrants global efforts to identify further hypervirulent lineages of Lm.
Collapse
Affiliation(s)
- Yuelan Yin
- Jiangsu Key Laboratory of Zoonosis, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China.
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China.
| | - Hao Yao
- Jiangsu Key Laboratory of Zoonosis, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China
| | - Swapnil Doijad
- Institute of Medical Microbiology, Justus-Liebig University, Giessen, 35394, Germany
- German Center for Infection Research (DZIF), Partner Site Gießen-Marburg-Langen, Campus Gießen, Justus-Liebig University, Gießen, 35394, Germany
| | - Suwei Kong
- Jiangsu Key Laboratory of Zoonosis, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China
| | - Yang Shen
- Laboratory of Food Microbiology, Institute of Food, Nutrition and Health, ETH Zurich, 8092, Zurich, Switzerland
| | - Xuexue Cai
- Jiangsu Key Laboratory of Zoonosis, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China
| | - Weijun Tan
- Jiangsu Key Laboratory of Zoonosis, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China
| | - Yuting Wang
- Jiangsu Key Laboratory of Zoonosis, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China
| | - Youwei Feng
- Jiangsu Key Laboratory of Zoonosis, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China
| | - Zhiting Ling
- Jiangsu Key Laboratory of Zoonosis, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China
| | - Guoliang Wang
- Jiangsu Key Laboratory of Zoonosis, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China
| | - Yachen Hu
- Jiangsu Key Laboratory of Zoonosis, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China
| | - Kai Lian
- Jiangsu Key Laboratory of Zoonosis, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China
| | - Xinyu Sun
- Jiangsu Key Laboratory of Zoonosis, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China
| | - Yuliang Liu
- China Animal Disease Control Center, No.17 Tiangui Street, Daxing District, 102618, Beijing, China
| | - Chuanbin Wang
- China Animal Disease Control Center, No.17 Tiangui Street, Daxing District, 102618, Beijing, China
| | - Kuhua Jiao
- Jiangsu Key Laboratory of Zoonosis, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China
| | - Guoping Liu
- Xuyi Center for Animal Disease Control and Prevention, Xuyi City, Jiangsu Province, China
| | - Ruilong Song
- Jiangsu Key Laboratory of Zoonosis, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China
| | - Xiang Chen
- Jiangsu Key Laboratory of Zoonosis, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China
| | - Zhiming Pan
- Jiangsu Key Laboratory of Zoonosis, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China
| | - Martin J Loessner
- Laboratory of Food Microbiology, Institute of Food, Nutrition and Health, ETH Zurich, 8092, Zurich, Switzerland
| | - Trinad Chakraborty
- Jiangsu Key Laboratory of Zoonosis, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China.
- Institute of Medical Microbiology, Justus-Liebig University, Giessen, 35394, Germany.
- German Center for Infection Research (DZIF), Partner Site Gießen-Marburg-Langen, Campus Gießen, Justus-Liebig University, Gießen, 35394, Germany.
| | - Xin'an Jiao
- Jiangsu Key Laboratory of Zoonosis, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China.
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China.
| |
Collapse
|
72
|
Cao TN, Joyet P, Aké FMD, Milohanic E, Deutscher J. Studies of the Listeria monocytogenes Cellobiose Transport Components and Their Impact on Virulence Gene Repression. J Mol Microbiol Biotechnol 2019; 29:10-26. [PMID: 31269503 DOI: 10.1159/000500090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 03/31/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Many bacteria transport cellobiose via a phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS). In Listeria monocytogenes, two pairs of soluble PTS components (EIIACel1/EIIBCel1 and EIIACel2/EIIBCel2) and the permease EIICCel1 were suggested to contribute to cellobiose uptake. Interestingly, utilization of several carbohydrates, including cellobiose, strongly represses virulence gene expression by inhibiting PrfA, the virulence gene activator. RESULTS The LevR-like transcription regulator CelR activates expression of the cellobiose-induced PTS operons celB1-celC1-celA1, celB2-celA2, and the EIIC-encoding monocistronic celC2. Phosphorylation by P∼His-HPr at His550 activates CelR, whereas phosphorylation by P∼EIIBCel1 or P∼EIIBCel2 at His823 inhibits it. Replacement of His823 with Ala or deletion of both celA or celB genes caused constitutive CelR regulon expression. Mutants lacking EIICCel1, CelR or both EIIACel exhibitedslow cellobiose consumption. Deletion of celC1 or celR prevented virulence gene repression by the disaccharide, but not by glucose and fructose. Surprisingly, deletion of both celA genes caused virulence gene repression even during growth on non-repressing carbohydrates. No cellobiose-related phenotype was found for the celC2 mutant. CONCLUSION The two EIIA/BCel pairs are similarly efficient as phosphoryl donors in EIICCel1-catalyzed cellobiose transport and CelR regulation. The permanent virulence gene repression in the celA double mutant further supports a role of PTSCel components in PrfA regulation.
Collapse
Affiliation(s)
- Thanh Nguyen Cao
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Philippe Joyet
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | | | - Eliane Milohanic
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Josef Deutscher
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France, .,Centre National de la Recherche Scientifique, UMR8261 Expression Génétique Microbienne, Institut de Biologie Physico-Chimique, Paris, France,
| |
Collapse
|
73
|
Santos T, Viala D, Chambon C, Esbelin J, Hébraud M. Listeria monocytogenes Biofilm Adaptation to Different Temperatures Seen Through Shotgun Proteomics. Front Nutr 2019; 6:89. [PMID: 31259174 PMCID: PMC6587611 DOI: 10.3389/fnut.2019.00089] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 05/24/2019] [Indexed: 12/16/2022] Open
Abstract
Listeria monocytogenes is a foodborne pathogen that can cause invasive severe human illness (listeriosis) in susceptible patients. Most human listeriosis cases appear to be caused by consumption of refrigerated ready-to-eat foods. Although initial contamination levels in foods are usually low, the ability of these bacteria to survive and multiply at low temperatures allows it to reach levels high enough to cause disease. This study explores the set of proteins that might have an association with L. monocytogenes adaptation to different temperatures. Cultures were grown in biofilm, the most widespread mode of growth in natural and industrial realms. Protein extractions were performed from three different growth temperatures (10, 25, and 37°C) and two growth phases (early stage and mature biofilm). L. monocytogenes subproteomes were targeted using three extraction methods: trypsin-enzymatic shaving, biotin-labeling and cell fractionation. The different subproteomes obtained were separated and analyzed by shotgun proteomics using high-performance liquid chromatography combined with tandem mass spectrometry (LC-OrbiTrap LTQVelos, ThermoFisher Scientific). A total of 141 (biotinylation), 98 (shaving) and 910 (fractionation) proteins were identified. Throughout the 920 unique proteins identified, many are connected to basic cell functions, but some are linked with thermoregulation. We observed some noteworthy protein abundance shifts associated with the major adaptation to cold mechanisms present in L. monocytogenes, namely: the role of ribosomes and the stressosome with a higher abundance of the general stress protein Ctc (Rl25) and the general stress transcription factor sigma B (σB), changes in cell fluidity and motility seen by higher levels of foldase protein PrsA2 and flagellin (FlaA), the uptake of osmolytes with a higher abundance of glycine betaine (GbuB) and carnitine transporters (OpucA), and the relevance of the overexpression of chaperone proteins such as cold shock proteins (CspLA and Dps). As for 37°C, we observed a significantly higher percentage of proteins associated with transcriptional or translational activity present in higher abundance upon comparison with the colder settings. These contrasts of protein expression throughout several conditions will enrich databases and help to model the regulatory circuitry that drives adaptation of L. monocytogenes to environments.
Collapse
Affiliation(s)
- Tiago Santos
- Université Clermont Auvergne, INRA, UMR Microbiologie Environnement Digestif Santé (MEDiS), Saint-Genès-Champanelle, France
| | - Didier Viala
- INRA, Plateforme d'Exploration du Métabolisme, Composante Protéomique (PFEMcp), Saint-Genès-Champanelle, France
| | - Christophe Chambon
- INRA, Plateforme d'Exploration du Métabolisme, Composante Protéomique (PFEMcp), Saint-Genès-Champanelle, France
| | - Julia Esbelin
- Université Clermont Auvergne, INRA, UMR Microbiologie Environnement Digestif Santé (MEDiS), Saint-Genès-Champanelle, France
| | - Michel Hébraud
- Université Clermont Auvergne, INRA, UMR Microbiologie Environnement Digestif Santé (MEDiS), Saint-Genès-Champanelle, France
- INRA, Plateforme d'Exploration du Métabolisme, Composante Protéomique (PFEMcp), Saint-Genès-Champanelle, France
| |
Collapse
|
74
|
Szendy M, Kalkhof S, Bittrich S, Kaiser F, Leberecht C, Labudde D, Noll M. Structural change in GadD2 of Listeria monocytogenes field isolates supports nisin resistance. Int J Food Microbiol 2019; 305:108240. [PMID: 31202151 DOI: 10.1016/j.ijfoodmicro.2019.108240] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 03/15/2019] [Accepted: 05/29/2019] [Indexed: 11/19/2022]
Abstract
The lantibiotic nisin is used as a food additive to effectively inactivate a broad spectrum of Gram-positive bacteria such as Listeria monocytogenes. In total, 282 L. monocytogenes field isolates from German ready-to-eat food products, food-processing environments and patient samples and 39 Listeria reference strains were evaluated for their susceptibility to nisin. The MIC90 value was <1500 IU ml-1. Whole genome sequences (WGS) of four nisin susceptible (NS; growth <200 IU ml-1) and two nisin resistant L. monocytogenes field isolates (NR; growth >1500 IU ml-1) of serotype IIa were analyzed for DNA sequence variants (DSVs) in genes putatively associated with NR and its regulation. WGS of NR differed from NS in the gadD2 gene encoding for the glutamate decarboxylase system (GAD). Moreover, homology modeling predicted a protein structure of GadD2 in NR that promoted a less pH dependent GAD activity and may therefore be beneficial for nisin resistance. Likewise NR had a significant faster growth rate compared to NS in presence of nisin at pH 7. In conclusion, results contributed to ongoing debate that a genetic shift in GAD supports NR state.
Collapse
Affiliation(s)
- Maik Szendy
- Coburg University of Applied Sciences and Arts, Institute for Bioanalysis, Friedrich-Streib-Str. 2, D-96450 Coburg, Germany
| | - Stefan Kalkhof
- Coburg University of Applied Sciences and Arts, Institute for Bioanalysis, Friedrich-Streib-Str. 2, D-96450 Coburg, Germany; Fraunhofer Institute for Cell Therapy and Immunology, Protein Biomarker Unit, Perlickstr. 1, D-04103 Leipzig, Germany
| | - Sebastian Bittrich
- University of Applied Sciences Mittweida, Department of Bioinformatics, Technikumplatz 17, D-09648 Mittweida, Germany; Biotechnology Center (BIOTEC), TU Dresden, Tatzberg 47-49, D-01307 Dresden, Germany
| | - Florian Kaiser
- University of Applied Sciences Mittweida, Department of Bioinformatics, Technikumplatz 17, D-09648 Mittweida, Germany; Biotechnology Center (BIOTEC), TU Dresden, Tatzberg 47-49, D-01307 Dresden, Germany
| | - Christoph Leberecht
- University of Applied Sciences Mittweida, Department of Bioinformatics, Technikumplatz 17, D-09648 Mittweida, Germany; Biotechnology Center (BIOTEC), TU Dresden, Tatzberg 47-49, D-01307 Dresden, Germany
| | - Dirk Labudde
- University of Applied Sciences Mittweida, Department of Bioinformatics, Technikumplatz 17, D-09648 Mittweida, Germany
| | - Matthias Noll
- Coburg University of Applied Sciences and Arts, Institute for Bioanalysis, Friedrich-Streib-Str. 2, D-96450 Coburg, Germany.
| |
Collapse
|
75
|
Liu Y, Orsi RH, Gaballa A, Wiedmann M, Boor KJ, Guariglia-Oropeza V. Systematic review of the Listeria monocytogenes σB regulon supports a role in stress response, virulence and metabolism. Future Microbiol 2019; 14:801-828. [DOI: 10.2217/fmb-2019-0072] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aim: Among the alternative sigma factors of Listeria monocytogenes, σB controls the largest regulon. The aim of this study was to perform a comprehensive review of σB-regulated genes, and the functions they confer. Materials & methods: A systematic search of PubMed and Web of Knowledge was carried out to identify members of the σB regulon based on experimental evidence of σB-dependent transcription and presence of a consensus σB-dependent promoter. Results: The literature review identified σB-dependent transcription units encompassing 304 genes encoding different functions including stress response and virulence. Conclusion: Our review supports the well-known roles of σB in virulence and stress response and provides new insight into novel roles for σB in metabolism and overall resilience of L. monocytogenes.
Collapse
Affiliation(s)
- Yichang Liu
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA
| | - Renato H Orsi
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA
| | - Ahmed Gaballa
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA
| | - Kathryn J Boor
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA
| | | |
Collapse
|
76
|
Gonzalez E, Pitre FE, Brereton NJB. ANCHOR: a 16S rRNA gene amplicon pipeline for microbial analysis of multiple environmental samples. Environ Microbiol 2019; 21:2440-2468. [PMID: 30990927 PMCID: PMC6851558 DOI: 10.1111/1462-2920.14632] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 04/07/2019] [Accepted: 04/15/2019] [Indexed: 01/04/2023]
Abstract
Analysis of 16S ribosomal RNA (rRNA) gene amplification data for microbial barcoding can be inaccurate across complex environmental samples. A method, ANCHOR, is presented and designed for improved species‐level microbial identification using paired‐end sequences directly, multiple high‐complexity samples and multiple reference databases. A standard operating procedure (SOP) is reported alongside benchmarking against artificial, single sample and replicated mock data sets. The method is then directly tested using a real‐world data set from surface swabs of the International Space Station (ISS). Simple mock community analysis identified 100% of the expected species and 99% of expected gene copy variants (100% identical). A replicated mock community revealed similar or better numbers of expected species than MetaAmp, DADA2, Mothur and QIIME1. Analysis of the ISS microbiome identified 714 putative unique species/strains and differential abundance analysis distinguished significant differences between the Destiny module (U.S. laboratory) and Harmony module (sleeping quarters). Harmony was remarkably dominated by human gastrointestinal tract bacteria, similar to enclosed environments on earth; however, Destiny module bacteria also derived from nonhuman microbiome carriers present on the ISS, the laboratory's research animals. ANCHOR can help substantially improve sequence resolution of 16S rRNA gene amplification data within biologically replicated environmental experiments and integrated multidatabase annotation enhances interpretation of complex, nonreference microbiomes.
Collapse
Affiliation(s)
- Emmanuel Gonzalez
- Canadian Centre for Computational Genomics, McGill University and Genome Quebec Innovation Centre, Montréal, QC, H3A 0G1, Canada.,Department of Human Genetics, McGill University, Montreal, H3A 1B1, Canada
| | - Frederic E Pitre
- Institut de Recherche en Biologie Végétale, University of Montreal, Montreal, QC, H1X 2B2, Canada.,Montreal Botanical Garden, Montreal, QC, H1X 2B2, Canada
| | - Nicholas J B Brereton
- Institut de Recherche en Biologie Végétale, University of Montreal, Montreal, QC, H1X 2B2, Canada
| |
Collapse
|
77
|
Atypical Hemolytic Listeria innocua Isolates Are Virulent, albeit Less than Listeria monocytogenes. Infect Immun 2019; 87:IAI.00758-18. [PMID: 30670551 DOI: 10.1128/iai.00758-18] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 01/12/2019] [Indexed: 01/26/2023] Open
Abstract
Listeria innocua is considered a nonpathogenic Listeria species. Natural atypical hemolytic L. innocua isolates have been reported but have not been characterized in detail. Here, we report the genomic and functional characterization of representative isolates from the two known natural hemolytic L. innocua clades. Whole-genome sequencing confirmed the presence of Listeria pathogenicity islands (LIPI) characteristic of Listeria monocytogenes species. Functional assays showed that LIPI-1 and inlA genes are transcribed, and the corresponding gene products are expressed and functional. Using in vitro and in vivo assays, we show that atypical hemolytic L. innocua is virulent, can actively cross the intestinal epithelium, and spreads systemically to the liver and spleen, albeit to a lesser degree than the reference L. monocytogenes EGDe strain. Although human exposure to hemolytic L. innocua is likely rare, these findings are important for food safety and public health. The presence of virulence traits in some L. innocua clades supports the existence of a common virulent ancestor of L. monocytogenes and L. innocua.
Collapse
|
78
|
Establishment of Listeria monocytogenes in the Gastrointestinal Tract. Microorganisms 2019; 7:microorganisms7030075. [PMID: 30857361 PMCID: PMC6463042 DOI: 10.3390/microorganisms7030075] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/05/2019] [Accepted: 03/05/2019] [Indexed: 12/15/2022] Open
Abstract
Listeria monocytogenes is a Gram positive foodborne pathogen that can colonize the gastrointestinal tract of a number of hosts, including humans. These environments contain numerous stressors such as bile, low oxygen and acidic pH, which may impact the level of colonization and persistence of this organism within the GI tract. The ability of L. monocytogenes to establish infections and colonize the gastrointestinal tract is directly related to its ability to overcome these stressors, which is mediated by the efficient expression of several stress response mechanisms during its passage. This review will focus upon how and when this occurs and how this impacts the outcome of foodborne disease.
Collapse
|
79
|
Crauwels P, Schäfer L, Weixler D, Bar NS, Diep DB, Riedel CU, Seibold GM. Intracellular pHluorin as Sensor for Easy Assessment of Bacteriocin-Induced Membrane-Damage in Listeria monocytogenes. Front Microbiol 2019; 9:3038. [PMID: 30619129 PMCID: PMC6297387 DOI: 10.3389/fmicb.2018.03038] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 11/26/2018] [Indexed: 11/13/2022] Open
Abstract
Bacteriocins are antimicrobial peptides naturally produced by many bacteria and were shown to be effective against various pathogens including Listeria monocytogenes. L. monocytogenes is a food-borne pathogen that frequently causes disease outbreaks around the world with fatal outcomes in at-risk individuals. Thus, bacteriocins are a promising solution to prevent contaminations with L. monocytogenes and other microorganisms during food production and preservation. In the present study, we constructed L. monocytogenes EGD-e/pNZ-Phelp-pHluorin, a strain that constitutively expresses the pH-sensitive fluorescent protein pHluorin, as a sensor strain to detect disruption of the pH gradient by the membrane-damaging activity of bacteriocins. The ratiometric fluorescence properties of pHluorin were validated both in crude extracts and permeabilized cells of this sensor strain. L. monocytogenes EGD-e/pNZ-Phelp-pHluorin was used to assess membrane damaging activity of the bacteriocins nisin A and pediocin PA-1 and to determine the minimal concentrations required for full disruption of the pH gradient across the membrane. Moreover, the sensor strain proved useful to analyze the presence of compounds affecting membrane integrity in supernatants of a nisin Z-producing Lactococcus lactis strain at different timepoints during growth. Supernatants of this strain that were active in disrupting the pH gradient across the membrane were also shown to inhibit growth of L. monocytogenes. In summary, the presented results suggest that the generated sensor strain is a convenient, fast and reliable tool to identify and characterize novel bacteriocins and other compounds that target membrane integrity.
Collapse
Affiliation(s)
- Peter Crauwels
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | - Leonie Schäfer
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | - Dominik Weixler
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | - Nadav S Bar
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Dzung B Diep
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Christian U Riedel
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | - Gerd M Seibold
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| |
Collapse
|
80
|
Systemic Listeria monocytogenes Infection as a Model to Study T Helper Cell Immune Responses. Methods Mol Biol 2019; 1960:149-160. [PMID: 30798529 DOI: 10.1007/978-1-4939-9167-9_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Listeria monocytogenes, a Gram-positive facultative intracellular pathogen, has been widely used as a model for studying the immune response. Here, we describe a protocol for the systemic infection of mice with L. monocytogenes, followed by isolation of lymphocytes from spleens and lymph nodes. We also include details on how to culture and store L. monocytogenes, as well as the specifics for fluorescence-activated cell sorting (FACS) for CD4+ cells in response to the systemic infection. This protocol can be adapted by changing the dosage of L. monocytogenes for a more or less aggressive infection and/or sorting for other immune cell subtypes of interest.
Collapse
|
81
|
The Host Scaffolding Protein Filamin A and the Exocyst Complex Control Exocytosis during InlB-Mediated Entry of Listeria monocytogenes. Infect Immun 2018; 87:IAI.00689-18. [PMID: 30348826 DOI: 10.1128/iai.00689-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 10/16/2018] [Indexed: 02/06/2023] Open
Abstract
Listeria monocytogenes is a foodborne bacterium that causes gastroenteritis, meningitis, or abortion. Listeria induces its internalization (entry) into some human cells through interaction of the bacterial surface protein InlB with its host receptor, the Met tyrosine kinase. InlB and Met promote entry, in part, through stimulation of localized exocytosis. How exocytosis is upregulated during entry is not understood. Here, we show that the human signaling proteins mTOR, protein kinase C-α (PKC-α), and RalA promote exocytosis during entry by controlling the scaffolding protein Filamin A (FlnA). InlB-mediated uptake was accompanied by PKC-α-dependent phosphorylation of serine 2152 in FlnA. Depletion of FlnA by RNA interference (RNAi) or expression of a mutated FlnA protein defective in phosphorylation impaired InlB-dependent internalization. These findings indicate that phosphorylation of FlnA by PKC-α contributes to entry. mTOR and RalA were found to mediate the recruitment of FlnA to sites of InlB-mediated entry. Depletion of PKC-α, mTOR, or FlnA each reduced exocytosis during InlB-mediated uptake. Because the exocyst complex is known to mediate polarized exocytosis, we examined if PKC-α, mTOR, RalA, or FlnA affects this complex. Depletion of PKC-α, mTOR, RalA, or FlnA impaired recruitment of the exocyst component Exo70 to sites of InlB-mediated entry. Experiments involving knockdown of Exo70 or other exocyst proteins demonstrated an important role for the exocyst complex in uptake of Listeria Collectively, our results indicate that PKC-α, mTOR, RalA, and FlnA comprise a signaling pathway that mobilizes the exocyst complex to promote infection by Listeria.
Collapse
|
82
|
Fang R, Jiang B, Xie J, Wang Z, Liang W, Yang Z, Lin LU, Peng Y, Nie K, Zeng Z, Huang B. An Optimized Multilocus Variable-Number Tandem Repeat Analysis Typing Scheme for Listeria monocytogenes from Three Western Provinces in China. J Food Prot 2018; 81:1956-1962. [PMID: 30457387 DOI: 10.4315/0362-028x.jfp-18-064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Listeria monocytogenes is a foodborne pathogen worldwide. Multilocus variable-number tandem repeat analysis (MLVA) has been used for listeriosis surveillance and outbreak investigations. MLVA typing schemes have been proposed, but their usefulness for typing isolates from the People's Republic of China has not been assessed. To this aim, all L. monocytogenes strains (79) isolated from 1,445 raw meat and abattoir environmental samples of three western provinces in China were characterized with PCR serogrouping, multilocus sequence typing, and MLVA. The isolates were typed into the four PCR serogroups IIb (38.0%), IIc (26.6%), IIa (24.0%), and IVb (11.4%), with a Simpson's index (SI) of 0.7235. With multilocus sequence typing, they were typed into 18 sequence types (STs), including two new STs, ST1029 and ST1011, with an SI of 0.8880. With the 14 MLVA loci from the previous five schemes, the isolates were typed into 39 MLVA genotypes, with an SI of 0.9656. The typing data indicated that MLVA had the highest typing capability among the three methods. A subsequent optimization analysis identified an optimal combination of eight loci (LMV2, LMV9, LMV1, Lm10, Lm11, Lm15, Lm23, and LMTR6) producing the same SI as that of the 14 loci. The present optimized combination shared only six loci with the optimal nine-loci combination proposed in Australia, verifying for the first time that the optimal combinations varied with the isolates' sets. The current optimal typing scheme was ideal for L. monocytogenes isolates from western China.
Collapse
Affiliation(s)
- Rendong Fang
- 1 College of Animal Science and Technology, Southwest University, Beibei, Chongqing 400715, People's Republic of China
| | - Bing Jiang
- 1 College of Animal Science and Technology, Southwest University, Beibei, Chongqing 400715, People's Republic of China
| | - Jianhua Xie
- 2 Chongqing Animal Disease Prevention and Control Center, Chongqing Research Center for Prevention and Control of Swine Infectious Diseases, and Laboratory of Quality & Safety Risk Assessment for Animal Products on Biohazards, Ministry of Agriculture, Chongqing 401120, People's Republic of China
| | - Zichun Wang
- 2 Chongqing Animal Disease Prevention and Control Center, Chongqing Research Center for Prevention and Control of Swine Infectious Diseases, and Laboratory of Quality & Safety Risk Assessment for Animal Products on Biohazards, Ministry of Agriculture, Chongqing 401120, People's Republic of China
| | - Wangwang Liang
- 2 Chongqing Animal Disease Prevention and Control Center, Chongqing Research Center for Prevention and Control of Swine Infectious Diseases, and Laboratory of Quality & Safety Risk Assessment for Animal Products on Biohazards, Ministry of Agriculture, Chongqing 401120, People's Republic of China
| | - Zelin Yang
- 2 Chongqing Animal Disease Prevention and Control Center, Chongqing Research Center for Prevention and Control of Swine Infectious Diseases, and Laboratory of Quality & Safety Risk Assessment for Animal Products on Biohazards, Ministry of Agriculture, Chongqing 401120, People's Republic of China
| | - L U Lin
- 2 Chongqing Animal Disease Prevention and Control Center, Chongqing Research Center for Prevention and Control of Swine Infectious Diseases, and Laboratory of Quality & Safety Risk Assessment for Animal Products on Biohazards, Ministry of Agriculture, Chongqing 401120, People's Republic of China
| | - Yuanyi Peng
- 1 College of Animal Science and Technology, Southwest University, Beibei, Chongqing 400715, People's Republic of China
| | - Kui Nie
- 1 College of Animal Science and Technology, Southwest University, Beibei, Chongqing 400715, People's Republic of China
| | - Zheng Zeng
- 2 Chongqing Animal Disease Prevention and Control Center, Chongqing Research Center for Prevention and Control of Swine Infectious Diseases, and Laboratory of Quality & Safety Risk Assessment for Animal Products on Biohazards, Ministry of Agriculture, Chongqing 401120, People's Republic of China
| | - Bixing Huang
- 3 Public Health Virology, Queensland Health Forensic and Scientific Services, Department of Health, 39 Kessels Road, Coopers Plains, Queensland 4108, Australia (ORCID: http://orcid/org/0000-0002-7025-2292 )
| |
Collapse
|
83
|
Zhang M, Gillaspy AF, Gipson JR, Cassidy BR, Nave JL, Brewer MF, Stoner JA, Chen J, Drevets DA. Neuroinvasive Listeria monocytogenes Infection Triggers IFN-Activation of Microglia and Upregulates Microglial miR-155. Front Immunol 2018; 9:2751. [PMID: 30538705 PMCID: PMC6277692 DOI: 10.3389/fimmu.2018.02751] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 11/08/2018] [Indexed: 11/17/2022] Open
Abstract
MicroRNA (miR) miR-155 modulates microglial activation and polarization, but its role in activation of microglia during bacterial brain infection is unclear. We studied miR-155 expression in brains of C57BL/6 (B6.WT) mice infected i.p. with the neuro-invasive bacterial pathogen Listeria monocytogenes (L. monocytogenes). Infected mice were treated with ampicillin starting 2 days (d) post-infection (p.i.) and analyzed 3d, 7d, and 14d p.i. Virulent L. monocytogenes strains EGD and 10403s upregulated miR-155 in whole brain 7 d p.i. whereas infection with avirulent, non-neurotropic Δhly or ΔactA L. monocytogenes mutants did not. Similarly, infection with virulent but not mutated bacteria upregulated IFN-γ mRNA in the brain at 7 d p.i. Upregulation of miR-155 in microglia was confirmed by qPCR of flow cytometry-sorted CD45intCD11bpos brain cells. Subsequently, brain leukocyte influxes and gene expression in sorted microglia were compared in L. monocytogenes-infected B6.WT and B6.Cg-Mir155tm1.1Rsky/J (B6.miR-155−/−) mice. Brain influxes of Ly-6Chigh monocytes and upregulation of IFN-related genes in microglia were similar to B6.WT mice at 3 d p.i. In contrast, by d 7 p.i. expressions of microglial IFN-related genes, including markers of M1 polarization, were significantly lower in B6.miR-155−/− mice and by 14 d p.i., influxes of activated T-lymphocytes were markedly reduced. Notably, CD45highCD11bpos brain cells from B6.miR-155−/− mice isolated at 7 d p.i. expressed 2-fold fewer IFN-γ transcripts than did cells from B6.WT mice suggesting reduced IFN-γ stimulation contributed to dampened gene expression in B6.miR-155−/− microglia. Lastly, in vitro stimulation of 7 d p.i. brain cells with heat-killed L. monocytogenes induced greater production of TNF in B6.miR-155−/− microglia than in B6.WT microglia. Thus, miR-155 affects brain inflammation by multiple mechanisms during neuroinvasive L. monocytogenes infection. Peripheral miR-155 promotes brain inflammation through its required role in optimal development of IFN-γ-secreting lymphocytes that enter the brain and activate microglia. Microglial miR-155 promotes M1 polarization, and also inhibits inflammatory responses to stimulation by heat-killed L. monocytogenes, perhaps by targeting Tab2.
Collapse
Affiliation(s)
- Miao Zhang
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Allison F Gillaspy
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Laboratory for Molecular Biology and Cytometry Research, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Jenny R Gipson
- Laboratory for Molecular Biology and Cytometry Research, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Benjamin R Cassidy
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Jessica L Nave
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Misty F Brewer
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Julie A Stoner
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Jie Chen
- Histology and Immunohistochemistry Core, Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Douglas A Drevets
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Department of Veterans Affairs Medical Center, Oklahoma City, OK, United States
| |
Collapse
|
84
|
In Vivo Virulence Characterization of Pregnancy-Associated Listeria monocytogenes Infections. Infect Immun 2018; 86:IAI.00397-18. [PMID: 30104213 PMCID: PMC6204711 DOI: 10.1128/iai.00397-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/06/2018] [Indexed: 12/19/2022] Open
Abstract
Listeria monocytogenes is a foodborne pathogen that infects the placenta and can cause pregnancy complications. Listeriosis usually occurs as a sporadic infection, but large outbreaks are also reported. Listeria monocytogenes is a foodborne pathogen that infects the placenta and can cause pregnancy complications. Listeriosis usually occurs as a sporadic infection, but large outbreaks are also reported. Virulence from clinical isolates is rarely analyzed due to the large number of animals required, but this knowledge could help guide the response to an outbreak. We implemented a DNA barcode system using signature tags that allowed us to efficiently assay variations in virulence across a large number of isolates. We tested 77 signature-tagged clones of clinical L. monocytogenes strains from 72 infected human placentas and 5 immunocompromised patients, all of which were isolated since 2000. These strains were tested for virulence in a modified competition assay in comparison to that of the laboratory strain 10403S. We used two in vivo models of listeriosis: the nonpregnant mouse and the pregnant guinea pig. Strains that were frequently found at a high abundance within infected organs were considered hypervirulent, while strains frequently found at a low abundance were considered hypovirulent. Virulence split relatively evenly among hypovirulent strains, hypervirulent strains, and strains as virulent as 10403S. The laboratory strain was found to have an intermediate virulence phenotype, supporting its suitability for use in pathogenesis studies. Further, we found that splenic virulence and placental virulence are closely linked in both the guinea pig and mouse models. This suggests that outbreak and sporadic pregnancy-associated L. monocytogenes strains are not generally more virulent than lab reference strains. However, some strains did show consistent and reproducible virulence differences, suggesting that their further study may reveal deeper insights into the biological underpinnings of listeriosis.
Collapse
|
85
|
Abstract
Listeria monocytogenes is an intracellular bacterial pathogen that is frequently associated with food-borne infection. The ability of L. monocytogenes to cross the blood-brain barrier (BBB) is concerning as it can lead to life-threatening meningitis and encephalitis. The BBB protects the brain microenvironment from various toxic metabolites and microbial pathogens found in the blood following infection, and therefore supports brain homeostasis. The mechanisms by which L. monocytogenes present in the bloodstream cross the BBB to cause brain infections are not fully understood and there is also a lack of a robust model system to study brain infections by L. monocytogenes. Here, we present a simple mouse infection model to determine whether bacteria have crossed the BBB and to quantitate the burden of bacteria that have colonized the brain in vivo. In this method, animals were infected intravenously with L. monocytogenes and were humanely euthanized by exposure to CO2 followed by cervical dislocation. Cardiac perfusion of the animals was performed prior to harvesting infected organs. Blood was collected before perfusion and the number of bacteria per organ or mL of blood was determined by plating dilutions of the blood or organ homogenates on agar plates and counting the number of colonies formed. This method can be used to study novel receptor-ligand interactions that enhance infection of the brain by L. monocytogenes and can be easily adapted for the study of multiple bacterial pathogens.
Collapse
Affiliation(s)
- Pallab Ghosh
- Department of Microbiology and Immunobiology, Harvard Medical School;
| | - Darrren E Higgins
- Department of Microbiology and Immunobiology, Harvard Medical School;
| |
Collapse
|
86
|
Pirone-Davies C, Chen Y, Pightling A, Ryan G, Wang Y, Yao K, Hoffmann M, Allard MW. Genes significantly associated with lineage II food isolates of Listeria monocytogenes. BMC Genomics 2018; 19:708. [PMID: 30253738 PMCID: PMC6157050 DOI: 10.1186/s12864-018-5074-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 09/12/2018] [Indexed: 01/02/2023] Open
Abstract
Background Listeria monocytogenes is a widespread foodborne pathogen that can cause listeriosis, a potentially fatal infection. L. monocytogenes is subdivided into four phylogenetic lineages, with the highest incidence of listeriosis occurring within lineage I followed by lineage II. Strains of L. monocytogenes differ in their phenotypic characteristics, including virulence. However, the genetic bases for these observed differences are not well understood, and current efforts to monitor L. monocytogenes in food consider all strains to be equally virulent. We use a comparative genomics approach to identify genes and single nucleotide polymorphisms (SNPs) in 174 clinical and food isolates of L. monocytogenes that potentially contribute to virulence or the capacity to adapt to food environments. Results No SNPs are significantly associated with food or clinical isolates. No genes are significantly associated with food or clinical isolates from lineage I, but eight genes consisting of multiple homologues are associated with lineage II food isolates. These include three genes which encode hypothetical proteins, the cadmium resistance genes cadA and cadC, the multi-drug resistance gene ebrB, a quaternary ammonium compound resistance gene qac, and a regulatory gene. All eight genes are plasmid-borne, and most closed L. monocytogenes plasmids carry at least five of the genes (24/27). In addition, plasmids are more frequently associated with lineage II food isolates than with lineage II clinical isolates. Conclusions We identify eight genes that are significantly associated with food isolates in lineage II. Interestingly, the eight genes are virtually absent in lineage II outbreak isolates, are composed of homologues which show a nonrandom distribution among lineage I serotypes, and the sequences are highly conserved across 27 closed Listeria plasmids. The functions of these genes should be explored further and will contribute to our understanding of how L. monocytogenes adapts to the host and food environments. Moreover, these genes may also be useful as markers for risk assessment models of either pathogenicity or the ability to proliferate in food and the food processing environment. Electronic supplementary material The online version of this article (10.1186/s12864-018-5074-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cary Pirone-Davies
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, USA.
| | - Yi Chen
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, USA
| | - Arthur Pightling
- Office of Analytics and Outreach, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, USA
| | - Gina Ryan
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, USA
| | - Yu Wang
- Office of Analytics and Outreach, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, USA
| | - Kuan Yao
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, USA
| | - Maria Hoffmann
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, USA
| | - Marc W Allard
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, USA
| |
Collapse
|
87
|
Relative Roles of Listeriolysin O, InlA, and InlB in Listeria monocytogenes Uptake by Host Cells. Infect Immun 2018; 86:IAI.00555-18. [PMID: 30061379 PMCID: PMC6204736 DOI: 10.1128/iai.00555-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 12/11/2022] Open
Abstract
Listeria monocytogenes is a facultative intracellular pathogen that infects a wide variety of cells, causing the life-threatening disease listeriosis. L. monocytogenes virulence factors include two surface invasins, InlA and InlB, known to promote bacterial uptake by host cells, and the secreted pore-forming toxin listeriolysin O (LLO), which disrupts the phagosome to allow bacterial proliferation in the cytosol. Listeria monocytogenes is a facultative intracellular pathogen that infects a wide variety of cells, causing the life-threatening disease listeriosis. L. monocytogenes virulence factors include two surface invasins, InlA and InlB, known to promote bacterial uptake by host cells, and the secreted pore-forming toxin listeriolysin O (LLO), which disrupts the phagosome to allow bacterial proliferation in the cytosol. In addition, plasma membrane perforation by LLO has been shown to facilitate L. monocytogenes internalization into epithelial cells. In this work, we tested the host cell range and importance of LLO-mediated L. monocytogenes internalization relative to the canonical invasins, InlA and InlB. We measured the efficiencies of L. monocytogenes association with and internalization into several human cell types (hepatocytes, cytotrophoblasts, and endothelial cells) using wild-type bacteria and isogenic single, double, and triple deletion mutants for the genes encoding InlA, InlB and LLO. No role for InlB was detected in any tested cells unless the InlB expression level was substantially enhanced, which was achieved by introducing a mutation (prfA*) in the gene encoding the transcription factor PrfA. In contrast, InlA and LLO were the most critical invasion factors, although they act in a different manner and in a cell-type-dependent fashion. As expected, InlA facilitates both bacterial attachment and internalization in cells that express its receptor, E-cadherin. LLO promotes L. monocytogenes internalization into hepatocytes, but not into cytotrophoblasts and endothelial cells. Finally, LLO and InlA cooperate to increase the efficiency of host cell invasion by L. monocytogenes.
Collapse
|
88
|
Koopmans MM, Engelen-Lee J, Brouwer MC, Jaspers V, Man WK, Vall Seron M, van de Beek D. Characterization of a Listeria monocytogenes meningitis mouse model. J Neuroinflammation 2018; 15:257. [PMID: 30193592 PMCID: PMC6128981 DOI: 10.1186/s12974-018-1293-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/28/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Listeria monocytogenes is a common cause of bacterial meningitis. We developed an animal model of listerial meningitis. METHODS In survival studies, C57BL/6 mice received intracisternal injections with different L. monocytogenes sequence type 1 (ST1) colony forming units per milliliter (CFU; n = 48, 105, 106, 107, 108, and 109 CFU/ml). Second, mice were inoculated with 108 CFU/ml ST1 and sacrificed at 6 h and 24 h (n = 12/group). Outcome parameters were clinical score, CFUs, cyto- and chemokine levels, and brain histopathology. Third, 84 mice were inoculated (109 CFU/ml ST1) to determine optimal antibiotic treatment with different doses of amoxicillin and gentamicin. Fourth, mice were inoculated with 109 CFU/ml ST1, treated with amoxicillin, and sacrificed at 16 h and 24 h (n = 12/group) for outcome assessment. Finally, time point experiments were repeated with ST6 (n = 24/group). RESULTS Median survival time for inoculation with 108 and 109 CFU/ml ST1 was 46 h and 40 h; lower doses of bacteria led to minimal clinical signs of disease. Brain levels of IL-6, IL-17A, and IFN-γ were elevated at 24 h, and IL-1β, IL-6, IL-10, IFN-γ, and TNF-α were elevated in blood at 6 h and 24 h. Histopathology showed increased meningeal infiltration, vascular inflammation of meningeal vessels, hemorrhages, and ventriculitis. In the treatment model, brain levels of IL-6 and IL-17A and blood levels of IL-6 and IFN-γ were elevated. Compared to ST6, infection with ST1 led initially to higher levels of IL-1β and TNF-α in blood and more profound neuropathological damage. At 16 h post inoculation, IL-1β, IL-10, and TNF-α in blood and IL-6, IL17A, TNF-α, and IFN-γ levels in brain were higher in ST1 compared to ST6 without differences in CFUs between STs. At 24 h, neuropathology score was higher in ST1 compared to ST6 (p = 0.002) infected mice. CONCLUSIONS We developed and validated a murine model of listerial meningitis. ST1-infected mice had a more severe inflammatory response and brain damage as compared to ST6-infected mice.
Collapse
Affiliation(s)
- Merel M. Koopmans
- From the Amsterdam UMC, Department of Neurology, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - JooYeon Engelen-Lee
- From the Amsterdam UMC, Department of Neurology, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Matthijs C. Brouwer
- From the Amsterdam UMC, Department of Neurology, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Valery Jaspers
- From the Amsterdam UMC, Department of Neurology, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Wing Kit Man
- From the Amsterdam UMC, Department of Neurology, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Mercedes Vall Seron
- From the Amsterdam UMC, Department of Neurology, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Diederik van de Beek
- From the Amsterdam UMC, Department of Neurology, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
89
|
Quereda JJ, Rodríguez-Gómez IM, Meza-Torres J, Gómez-Laguna J, Nahori MA, Dussurget O, Carrasco L, Cossart P, Pizarro-Cerdá J. Reassessing the role of internalin B in Listeria monocytogenes virulence using the epidemic strain F2365. Clin Microbiol Infect 2018; 25:252.e1-252.e4. [PMID: 30195066 PMCID: PMC6365677 DOI: 10.1016/j.cmi.2018.08.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 11/17/2022]
Abstract
OBJECTIVES To investigate the contribution to virulence of the surface protein internalin B (InlB) in the Listeria monocytogenes lineage I strain F2365, which caused a deadly listeriosis outbreak in California in 1985. METHODS The F2365 strain displays a point mutation that hampers expression of InlB. We rescued the expression of InlB in the L. monocytogenes lineage I strain F2365 by introducing a point mutation in the codon 34 (TAA to CAA). We investigated its importance for bacterial virulence using in vitro cell infection systems and a murine intravenous infection model. RESULTS In HeLa and JEG-3 cells, the F2365 InlB+ strain expressing InlB was ≈9-fold and ≈1.5-fold more invasive than F2365, respectively. In livers and spleens of infected mice at 72 hours after infection, bacterial counts for F2365 InlB+ were significantly higher compared to the F2365 strain (≈1 log more), and histopathologic assessment showed that the F2365 strain displayed a reduced number of necrotic foci compared to the F2365 InlB+ strain (Mann-Whitney test). CONCLUSIONS InlB plays a critical role during infection of nonpregnant animals by a L. monocytogenes strain from lineage I. A spontaneous mutation in InlB could have prevented more severe human morbidity and mortality during the 1985 California listeriosis outbreak.
Collapse
Affiliation(s)
- J J Quereda
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Paris, France; Institut National de la Santé et de la Recherche Médicale, U604, Paris, France; Institut National de la Recherche Agronomique, USC2020, Paris, France; Grupo fisiopatología de la Reproducción, Departamento Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain.
| | - I M Rodríguez-Gómez
- Anatomy and Comparative Pathology Department, University of Cordoba, International Excellence Agrifood Campus 'ceiA3,', Córdoba, Spain
| | - J Meza-Torres
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Paris, France; Institut National de la Santé et de la Recherche Médicale, U604, Paris, France; Institut National de la Recherche Agronomique, USC2020, Paris, France
| | - J Gómez-Laguna
- Anatomy and Comparative Pathology Department, University of Cordoba, International Excellence Agrifood Campus 'ceiA3,', Córdoba, Spain
| | - M A Nahori
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Paris, France; Institut National de la Santé et de la Recherche Médicale, U604, Paris, France; Institut National de la Recherche Agronomique, USC2020, Paris, France
| | - O Dussurget
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Paris, France; Institut National de la Santé et de la Recherche Médicale, U604, Paris, France; Institut National de la Recherche Agronomique, USC2020, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Paris, France; Institut Pasteur, Unité de Recherche Yersinia, Paris, France
| | - L Carrasco
- Anatomy and Comparative Pathology Department, University of Cordoba, International Excellence Agrifood Campus 'ceiA3,', Córdoba, Spain
| | - P Cossart
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Paris, France; Institut National de la Santé et de la Recherche Médicale, U604, Paris, France; Institut National de la Recherche Agronomique, USC2020, Paris, France
| | - J Pizarro-Cerdá
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Paris, France; Institut National de la Santé et de la Recherche Médicale, U604, Paris, France; Institut National de la Recherche Agronomique, USC2020, Paris, France; Institut Pasteur, Unité de Recherche Yersinia, Paris, France; Centre National de Référence 'Peste et autres Yersinioses', Paris, France; Centre Collaborateur OMS de Référence et Recherche 'Yersinioses,', Paris, France.
| |
Collapse
|
90
|
Cheng MI, Chen C, Engström P, Portnoy DA, Mitchell G. Actin-based motility allows Listeria monocytogenes to avoid autophagy in the macrophage cytosol. Cell Microbiol 2018; 20:e12854. [PMID: 29726107 DOI: 10.1111/cmi.12854] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 04/03/2018] [Accepted: 04/23/2018] [Indexed: 12/23/2022]
Abstract
Listeria monocytogenes grows in the host cytosol and uses the surface protein ActA to promote actin polymerisation and mediate actin-based motility. ActA, along with two secreted bacterial phospholipases C, also mediates avoidance from autophagy, a degradative process that targets intracellular microbes. Although it is known that ActA prevents autophagic recognition of L. monocytogenes in epithelial cells by masking the bacterial surface with host factors, the relative roles of actin polymerisation and actin-based motility in autophagy avoidance are unclear in macrophages. Using pharmacological inhibition of actin polymerisation and a collection of actA mutants, we found that actin polymerisation prevented the colocalisation of L. monocytogenes with polyubiquitin, the autophagy receptor p62, and the autophagy protein LC3 during macrophage infection. In addition, the ability of L. monocytogenes to stimulate actin polymerisation promoted autophagy avoidance and growth in macrophages in the absence of phospholipases C. Time-lapse microscopy using green fluorescent protein-LC3 macrophages and a probe for filamentous actin showed that bacteria undergoing actin-based motility moved away from LC3-positive membranes. Collectively, these results suggested that although actin polymerisation protects the bacterial surface from autophagic recognition, actin-based motility allows escape of L. monocytogenes from autophagic membranes in the macrophage cytosol.
Collapse
Affiliation(s)
- Mandy I Cheng
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Chen Chen
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Patrik Engström
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Daniel A Portnoy
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.,School of Public Health, University of California, Berkeley, CA, USA
| | - Gabriel Mitchell
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| |
Collapse
|
91
|
RECON-Dependent Inflammation in Hepatocytes Enhances Listeria monocytogenes Cell-to-Cell Spread. mBio 2018; 9:mBio.00526-18. [PMID: 29764944 PMCID: PMC5954220 DOI: 10.1128/mbio.00526-18] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The oxidoreductase RECON is a high-affinity cytosolic sensor of bacterium-derived cyclic dinucleotides (CDNs). CDN binding inhibits RECON's enzymatic activity and subsequently promotes inflammation. In this study, we sought to characterize the effects of RECON on the infection cycle of the intracellular bacterium Listeria monocytogenes, which secretes cyclic di-AMP (c-di-AMP) into the cytosol of infected host cells. Here, we report that during infection of RECON-deficient hepatocytes, which exhibit hyperinflammatory responses, L. monocytogenes exhibits significantly enhanced cell-to-cell spread. Enhanced bacterial spread could not be attributed to alterations in PrfA or ActA, two virulence factors critical for intracellular motility and intercellular spread. Detailed microscopic analyses revealed that in the absence of RECON, L. monocytogenes actin tail lengths were significantly longer and there was a larger number of faster-moving bacteria. Complementation experiments demonstrated that the effects of RECON on L. monocytogenes spread and actin tail lengths were linked to its enzymatic activity. RECON enzyme activity suppresses NF-κB activation and is inhibited by c-di-AMP. Consistent with these previous findings, we found that augmented NF-κB activation in the absence of RECON caused enhanced L. monocytogenes cell-to-cell spread and that L. monocytogenes spread correlated with c-di-AMP secretion. Finally, we discovered that, remarkably, increased NF-κB-dependent inducible nitric oxide synthase expression and nitric oxide production were responsible for promoting L. monocytogenes cell-to-cell spread. The work presented here supports a model whereby L. monocytogenes secretion of c-di-AMP inhibits RECON's enzymatic activity, drives augmented NF-κB activation and nitric oxide production, and ultimately enhances intercellular spread.IMPORTANCE To date, bacterial CDNs in eukaryotes are solely appreciated for their capacity to activate cytosolic sensing pathways in innate immunity. However, it remains unclear whether pathogens that actively secrete CDNs benefit from this process. Here, we provide evidence that secretion of CDNs leads to enhancement of L. monocytogenes cell-to-cell spread. This is a heretofore-unknown role of these molecules and suggests L. monocytogenes may benefit from their secretion in certain contexts. Molecular characterization revealed that, surprisingly, nitric oxide was responsible for the enhanced spread. Pathogens act to prevent nitric oxide production or, like L. monocytogenes, they have evolved to resist its direct antimicrobial effects. This study provides evidence that intracellular bacterial pathogens not only tolerate nitric oxide, which is inevitably encountered during infection, but can also capitalize on the changes this pleiotropic molecule enacts on the host cell.
Collapse
|
92
|
Wagner M, Skandamis P, Allerberger F, Schoder D, Lassnig C, Müller M, Rychli K. The impact of shelf life on exposure as revealed from quality control data associated with the quargel outbreak. Int J Food Microbiol 2018; 279:64-69. [PMID: 29738927 DOI: 10.1016/j.ijfoodmicro.2018.04.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 02/28/2018] [Accepted: 04/15/2018] [Indexed: 01/06/2023]
Abstract
A cluster of 34 human cases of listeriosis was traced to consumption of contaminated quargel cheese, a sour milk specialty sold in Austria, Germany and Czech Republic. Here, we try to assess how many portions were consumed by the Austrian population at a certain contamination level (CL). In total, 1623 cheese lots were produced during the outbreak period resulting in >3 million portions of cheese delivered to the market. From 650 sets of quality control data provided by the food business operator, we reconstructed the contamination scenario over time and identified 84 lots that were found to be positive. With regard to another sixteen lots, a CL was found ranging from one to 3,84 log10 CFU L. monocytogenes/g, measured in product stored between one to 23 days after production. However the number of storage days at home before consumption is unknown. To resolve this issue, we modelled the theoretical CL of the product if consumed either 20, 30, 40 or 50 days post production. We found that 10 lots (approx. 27,350 portions) would have been contaminated at CLs higher than 3 log10 CFU L. monocytogenes/g if all cheese had been consumed after 20 days of storage. This number shifts to 20 lots (approx. 54,700 portions) after 30 days of storage. If all cheese had been consumed at the end of shelf life (50 days of storage), theoretically 242,5 lots would have exceeded a CL of 6 log10 CFU L. monocytogenes/g. We concluded that the extended shelf life given to the product was a driver of the outbreak scenario. It is stunning to note that so few cases were reported in spite of consumers' massive exposure to L. monocytogenes. We hypothesized that a low pathogenicity of both quargel outbreak clones (QOC1 and QOC2) could have contributed to this discrepancy. Our hypothesis was falsified since both strains QOC1 and QOC2 are fully virulent in an oral infection mouse model, showing even higher pathogenicity than the reference strain EGDe.
Collapse
Affiliation(s)
- Martin Wagner
- Institute of Milk Hygiene, Milk Technology and Food Science, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Veterinärplatz 1, 1210 Vienna, Austria; Austrian Competence Center for Feed and Food Quality, Safety and Innovation, Technopark 1c, 3430 Tulln, Austria.
| | - Panos Skandamis
- Laboratory for Food Quality Control and Hygiene, Department of Food Science & Technology, Iera Odos 75, Agricultural University of Athens, Greece
| | - Franz Allerberger
- Austrian Agency for Health and Food Safety, Spargelfeldgasse 191, 1220 Vienna, Austria
| | - Dagmar Schoder
- Institute of Milk Hygiene, Milk Technology and Food Science, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Veterinärplatz 1, 1210 Vienna, Austria; Austrian Competence Center for Feed and Food Quality, Safety and Innovation, Technopark 1c, 3430 Tulln, Austria
| | - Caroline Lassnig
- Institute of Animal Breeding and Genetics and Biomodels Austria, Department for Biomedical Sciences, Department for Pathobiology, University of Veterinary Medicine, Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Mathias Müller
- Institute of Animal Breeding and Genetics and Biomodels Austria, Department for Biomedical Sciences, Department for Pathobiology, University of Veterinary Medicine, Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Kathrin Rychli
- Institute of Milk Hygiene, Milk Technology and Food Science, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Veterinärplatz 1, 1210 Vienna, Austria; Austrian Competence Center for Feed and Food Quality, Safety and Innovation, Technopark 1c, 3430 Tulln, Austria
| |
Collapse
|
93
|
David DJ, Pagliuso A, Radoshevich L, Nahori MA, Cossart P. Lmo1656 is a secreted virulence factor of Listeria monocytogenes that interacts with the sorting nexin 6-BAR complex. J Biol Chem 2018; 293:9265-9276. [PMID: 29666193 PMCID: PMC6005434 DOI: 10.1074/jbc.ra117.000365] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 04/09/2018] [Indexed: 12/14/2022] Open
Abstract
Listeria monocytogenes (Lm) is a facultative intracellular bacterial pathogen and the causative agent of listeriosis, a rare but fatal disease. During infection, Lm can traverse several physiological barriers; it can cross the intestine and placenta barrier and, in immunocompromised individuals, the blood–brain barrier. With the recent plethora of sequenced genomes available for Lm, it is clear that the complete repertoire of genes used by Lm to interact with its host remains to be fully explored. Recently, we focused on secreted Lm proteins because they are likely to interact with host cell components. Here, we investigated a putatively secreted protein of Lm, Lmo1656, that is present in most sequenced strains of Lm but absent in the nonpathogenic species Listeria innocua. lmo1656 gene is predicted to encode a small, positively charged protein. We show that Lmo1656 is secreted by Lm. Furthermore, deletion of the lmo1656 gene (Δlmo1656) attenuates virulence in mice infected orally but not intravenously, suggesting that Lmo1656 plays a role during oral listeriosis. We identified sorting nexin 6 (SNX6), an endosomal sorting component and BAR domain–containing protein, as a host cell interactor of Lmol656. SNX6 colocalizes with WT Lm during the early steps of infection. This colocalization depends on Lmo1656, and RNAi of SNX6 impairs infection in infected tissue culture cells, suggesting that SNX6 is utilized by Lm during infection. Our results reveal that Lmo1656 is a novel secreted virulence factor of Lm that facilitates recruitment of a specific member of the sorting nexin family in the mammalian host.
Collapse
Affiliation(s)
- Daryl Jason David
- From the Unité des Interactions Bactéries-Cellules, Department of Cell Biology and Infection, INSERM U604, Institut National de la Recherche Agronomique USC2020, Institut Pasteur, 25 rue du Dr. Roux, 75015 Paris, France
| | - Alessandro Pagliuso
- From the Unité des Interactions Bactéries-Cellules, Department of Cell Biology and Infection, INSERM U604, Institut National de la Recherche Agronomique USC2020, Institut Pasteur, 25 rue du Dr. Roux, 75015 Paris, France
| | - Lilliana Radoshevich
- From the Unité des Interactions Bactéries-Cellules, Department of Cell Biology and Infection, INSERM U604, Institut National de la Recherche Agronomique USC2020, Institut Pasteur, 25 rue du Dr. Roux, 75015 Paris, France
| | - Marie-Anne Nahori
- From the Unité des Interactions Bactéries-Cellules, Department of Cell Biology and Infection, INSERM U604, Institut National de la Recherche Agronomique USC2020, Institut Pasteur, 25 rue du Dr. Roux, 75015 Paris, France
| | - Pascale Cossart
- From the Unité des Interactions Bactéries-Cellules, Department of Cell Biology and Infection, INSERM U604, Institut National de la Recherche Agronomique USC2020, Institut Pasteur, 25 rue du Dr. Roux, 75015 Paris, France
| |
Collapse
|
94
|
The VirAB ABC Transporter Is Required for VirR Regulation of Listeria monocytogenes Virulence and Resistance to Nisin. Infect Immun 2018; 86:IAI.00901-17. [PMID: 29263107 DOI: 10.1128/iai.00901-17] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 12/17/2017] [Indexed: 11/20/2022] Open
Abstract
Listeria monocytogenes is a Gram-positive intracellular pathogen that causes a severe invasive disease. Upon infecting a host cell, L. monocytogenes upregulates the transcription of numerous factors necessary for productive infection. VirR is the response regulator component of a two-component regulatory system in L. monocytogenes In this report, we have identified the putative ABC transporter encoded by genes lmo1746-lmo1747 as necessary for VirR function. We have designated lmo1746-lmo1747 virAB We constructed an in-frame deletion of virAB and determined that the ΔvirAB mutant exhibited reduced transcription of VirR-regulated genes. The ΔvirAB mutant also showed defects in in vitro plaque formation and in vivo virulence that were similar to those of a ΔvirR deletion mutant. Since VirR is important for innate resistance to antimicrobial agents, we determined the MICs of nisin and bacitracin for ΔvirAB bacteria. We found that VirAB expression was necessary for nisin resistance but was dispensable for resistance to bacitracin. This result suggested a VirAB-independent mechanism of VirR regulation in response to bacitracin. Lastly, we found that the ΔvirR and ΔvirAB mutants had no deficiency in growth in broth culture, intracellular replication, or production of the ActA surface protein, which facilitates actin-based motility and cell-to-cell spread. However, the ΔvirR and ΔvirAB mutants produced shorter actin tails during intracellular infection, which suggested that these mutants have a reduced ability to move and spread via actin-based motility. These findings have demonstrated that L. monocytogenes VirAB functions in a pathway with VirR to regulate the expression of genes necessary for virulence and resistance to antimicrobial agents.
Collapse
|
95
|
Quereda JJ, Andersson C, Cossart P, Johansson J, Pizarro-Cerdá J. Role in virulence of phospholipases, listeriolysin O and listeriolysin S from epidemic Listeria monocytogenes using the chicken embryo infection model. Vet Res 2018; 49:13. [PMID: 29409521 PMCID: PMC5801685 DOI: 10.1186/s13567-017-0496-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 11/03/2017] [Indexed: 01/30/2023] Open
Abstract
Most human listeriosis outbreaks are caused by Listeria monocytogenes evolutionary lineage I strains which possess four exotoxins: a phosphatidylinositol-specific phospholipase C (PlcA), a broad-range phospholipase C (PlcB), listeriolysin O (LLO) and listeriolysin S (LLS). The simultaneous contribution of these molecules to virulence has never been explored. Here, the importance of these four exotoxins of an epidemic lineage I L. monocytogenes strain (F2365) in virulence was assessed in chicken embryos infected in the allantoic cavity. We show that LLS does not play a role in virulence while LLO is required to infect and kill chicken embryos both in wild type transcriptional regulator of virulence PrfA (PrfAWT) and constitutively active PrfA (PrfA*) backgrounds. We demonstrate that PlcA, a toxin previously considered as a minor virulence factor, played a major role in virulence in a PrfA* background. Interestingly, GFP transcriptional fusions show that the plcA promoter is less active than the hly promoter in vitro, explaining why the contribution of PlcA to virulence could be observed more importantly in a PrfA* background. Together, our results suggest that PlcA might play a more important role in the infectious lifecycle of L. monocytogenes than previously thought, explaining why all the strains of L. monocytogenes have conserved an intact copy of plcA in their genomes.
Collapse
Affiliation(s)
- Juan J Quereda
- Unité des Interactions Bactéries-Cellules, Département de Biologie Cellulaire et Infection, Institut Pasteur, 75015, Paris, France. .,Institut National de la Santé et de la Recherche Médicale, U604, 75015, Paris, France. .,Institut National de la Recherche Agronomique, USC2020, 75015, Paris, France. .,Grupo Fisiopatología de la Reproducción, Departamento Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain.
| | - Christopher Andersson
- Department of Molecular Biology, Umeå University, 90187, Umeå, Sweden.,Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187, Umeå, Sweden.,Umeå Center for Microbial Research (UCMR), Umeå University, 90187, Umeå, Sweden
| | - Pascale Cossart
- Unité des Interactions Bactéries-Cellules, Département de Biologie Cellulaire et Infection, Institut Pasteur, 75015, Paris, France.,Institut National de la Santé et de la Recherche Médicale, U604, 75015, Paris, France.,Institut National de la Recherche Agronomique, USC2020, 75015, Paris, France
| | - Jörgen Johansson
- Department of Molecular Biology, Umeå University, 90187, Umeå, Sweden.,Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187, Umeå, Sweden.,Umeå Center for Microbial Research (UCMR), Umeå University, 90187, Umeå, Sweden
| | - Javier Pizarro-Cerdá
- Unité des Interactions Bactéries-Cellules, Département de Biologie Cellulaire et Infection, Institut Pasteur, 75015, Paris, France. .,Institut National de la Santé et de la Recherche Médicale, U604, 75015, Paris, France. .,Institut National de la Recherche Agronomique, USC2020, 75015, Paris, France. .,Unité de Recherche Yersinia, Département de Microbiologie, Institut Pasteur, 75015, Paris, France. .,Centre National de Référence "Peste et autres Yersinioses, Institut Pasteur, 75015, Paris, France. .,Centre Collaborateur OMS de Référence et de Recherche "Yersinia", Institut Pasteur, 75015, Paris, France.
| |
Collapse
|
96
|
Pitts MG, D'Orazio SEF. A Comparison of Oral and Intravenous Mouse Models of Listeriosis. Pathogens 2018; 7:pathogens7010013. [PMID: 29361677 PMCID: PMC5874739 DOI: 10.3390/pathogens7010013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/11/2018] [Accepted: 01/19/2018] [Indexed: 12/18/2022] Open
Abstract
Listeria monocytogenes is one of several enteric microbes that is acquired orally, invades the gastric mucosa, and then disseminates to peripheral tissues to cause systemic disease in humans. Intravenous (i.v.) inoculation of mice with L. monocytogenes has been the most widely-used small animal model of listeriosis over the past few decades. The infection is highly reproducible and has been invaluable in deciphering mechanisms of adaptive immunity in vivo, particularly CD8+ T cell responses to intracellular pathogens. However, the i.v. model completely bypasses the gut phase of the infection. Recent advances in generating both humanized mice and murinized bacteria, as well as the development of a foodborne route of transmission has reignited interest in studying oral models of listeriosis. In this review, we analyze previously published reports to highlight both the similarities and differences in tissue colonization and host response to infection using either oral or i.v. inoculation.
Collapse
Affiliation(s)
- Michelle G Pitts
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky, 800 Rose Street-MS417, Lexington, KY 40536-0298, USA.
| | - Sarah E F D'Orazio
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky, 800 Rose Street-MS417, Lexington, KY 40536-0298, USA.
| |
Collapse
|
97
|
Radoshevich L, Cossart P. Listeria monocytogenes: towards a complete picture of its physiology and pathogenesis. Nat Rev Microbiol 2018; 16:32-46. [PMID: 29176582 DOI: 10.1038/nrmicro.2017.126] [Citation(s) in RCA: 520] [Impact Index Per Article: 74.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Listeria monocytogenes is a food-borne pathogen responsible for a disease called listeriosis, which is potentially lethal in immunocompromised individuals. This bacterium, first used as a model to study cell-mediated immunity, has emerged over the past 20 years as a paradigm in infection biology, cell biology and fundamental microbiology. In this Review, we highlight recent advances in the understanding of human listeriosis and L. monocytogenes biology. We describe unsuspected modes of hijacking host cell biology, ranging from changes in organelle morphology to direct effects on host transcription via a new class of bacterial effectors called nucleomodulins. We then discuss advances in understanding infection in vivo, including the discovery of tissue-specific virulence factors and the 'arms race' among bacteria competing for a niche in the microbiota. Finally, we describe the complexity of bacterial regulation and physiology, incorporating new insights into the mechanisms of action of a series of riboregulators that are critical for efficient metabolic regulation, antibiotic resistance and interspecies competition.
Collapse
Affiliation(s)
- Lilliana Radoshevich
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Département de Biologie Cellulaire et Infection, F-75015 Paris, France
- Inserm, U604, F-75015 Paris, France
- French National Institute for Agricultural Research (INRA), Unité sous-contrat 2020, F-75015 Paris, France
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA
| | - Pascale Cossart
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Département de Biologie Cellulaire et Infection, F-75015 Paris, France
- Inserm, U604, F-75015 Paris, France
- French National Institute for Agricultural Research (INRA), Unité sous-contrat 2020, F-75015 Paris, France
| |
Collapse
|
98
|
Route of Injection Affects the Impact of InlB Internalin Domain Variants on Severity of Listeria monocytogenes Infection in Mice. BIOMED RESEARCH INTERNATIONAL 2017; 2017:2101575. [PMID: 29445733 PMCID: PMC5763066 DOI: 10.1155/2017/2101575] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/29/2017] [Indexed: 11/21/2022]
Abstract
The facultative intracellular pathogen Listeria monocytogenes causes a severe food-borne infection in humans and animals. L. monocytogenes invasion factor InlB interacts with the tyrosine kinase c-Met via the N-terminal internalin domain. Previously, distinct variants of the InlB internalin domain (idInlB) have been described in L. monocytogenes field isolates. Three variants were used to restore full-length InlB expression in the L. monocytogenes strain EGDeΔinlB. Obtained isogenic L. monocytogenes strains were tested in the invasion assay and intravenous, intraperitoneal, and intragastric models of infection in mice. All idInlBs were functional, restored InlB activity as an invasion factor, and improved invasion of the parental strain EGDeΔinlB into human kidney HEK23 cells. Meanwhile, distinct idInlBs provided different mortality rates and bacterial loads in internal organs. When recombinant strains were compared, the variant designated idInlB14 decreased severity of disease caused by intravenous and intraperitoneal bacterial administration, whereas this variant improved intestine colonization and stimulated intragastric infection. Obtained results demonstrated that naturally occurring idInlBs differed in their impact on severity of L. monocytogenes infection in mice in dependence on the infection route.
Collapse
|
99
|
Listeria monocytogenes triggers noncanonical autophagy upon phagocytosis, but avoids subsequent growth-restricting xenophagy. Proc Natl Acad Sci U S A 2017; 115:E210-E217. [PMID: 29279409 DOI: 10.1073/pnas.1716055115] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Xenophagy is a selective macroautophagic process that protects the host cytosol by entrapping and delivering microbes to a degradative compartment. Both noncanonical autophagic pathways and xenophagy are activated by microbes during infection, but the relative importance and function of these distinct processes are not clear. In this study, we used bacterial and host mutants to dissect the contribution of autophagic processes responsible for bacterial growth restriction of Listeria monocytogenesL. monocytogenes is a facultative intracellular pathogen that escapes from phagosomes, grows in the host cytosol, and avoids autophagy by expressing three determinants of pathogenesis: two secreted phospholipases C (PLCs; PlcA and PlcB) and a surface protein (ActA). We found that shortly after phagocytosis, wild-type (WT) L. monocytogenes escaped from a noncanonical autophagic process that targets damaged vacuoles. During this process, the autophagy marker LC3 localized to single-membrane phagosomes independently of the ULK complex, which is required for initiation of macroautophagy. However, growth restriction of bacteria lacking PlcA, PlcB, and ActA required FIP200 and TBK1, both involved in the engulfment of microbes by xenophagy. Time-lapse video microscopy revealed that deposition of LC3 on L. monocytogenes-containing vacuoles via noncanonical autophagy had no apparent role in restricting bacterial growth and that, upon access to the host cytosol, WT L. monocytogenes utilized PLCs and ActA to avoid subsequent xenophagy. In conclusion, although noncanonical autophagy targets phagosomes, xenophagy was required to restrict the growth of L. monocytogenes, an intracellular pathogen that damages the entry vacuole.
Collapse
|
100
|
Genome Sequence of Listeria monocytogenes Strain F4244, a 4b Serotype. GENOME ANNOUNCEMENTS 2017; 5:5/49/e01324-17. [PMID: 29217792 PMCID: PMC5721137 DOI: 10.1128/genomea.01324-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Listeria monocytogenes is an opportunistic invasive foodborne pathogen. Here, we performed whole-genome sequencing of L. monocytogenes strain F4244 (serotype 4b) using Illumina sequencing. The sequence showed 94.5% identity with strain F2365, serotype 4b, and 90.6% with EGD-e, serotype 1/2a.
Collapse
|