51
|
Knight JDR, Pawson T, Gingras AC. Profiling the kinome: current capabilities and future challenges. J Proteomics 2012; 81:43-55. [PMID: 23099349 DOI: 10.1016/j.jprot.2012.10.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 10/09/2012] [Accepted: 10/14/2012] [Indexed: 01/08/2023]
Abstract
Protein kinases are the second largest human protein family, but in terms of research interest, both basic and applied, they are surely the most popular. Over the past decade, many techniques and approaches for studying the kinome have been described and the pace of development is ever increasing. Presently, a molecular biologist can approach the kinome from many different angles: what kinases are active during a specific cell state of interest or become activated in response to a specific stimulus? What are the effects of controlling the activation status of an individual kinase? What substrates are targeted by a particular kinase, either in general or under particular conditions? And what kinase is responsible for targeting a specific phosphorylation site of interest? These are some of the more commonly asked questions during any kinase-centric research project and different strategies have been devised for answering such queries. In this review, we outline the most promising of these approaches, particularly those with a capacity for high-throughput studies. This article is part of a Special Issue entitled: From protein structures to clinical applications.
Collapse
Affiliation(s)
- James D R Knight
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada M5G 1X5
| | | | | |
Collapse
|
52
|
Garai Á, Zeke A, Gógl G, Törő I, Fördős F, Blankenburg H, Bárkai T, Varga J, Alexa A, Emig D, Albrecht M, Reményi A. Specificity of linear motifs that bind to a common mitogen-activated protein kinase docking groove. Sci Signal 2012; 5:ra74. [PMID: 23047924 DOI: 10.1126/scisignal.2003004] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mitogen-activated protein kinases (MAPKs) have a docking groove that interacts with linear "docking" motifs in binding partners. To determine the structural basis of binding specificity between MAPKs and docking motifs, we quantitatively analyzed the ability of 15 docking motifs from diverse MAPK partners to bind to c-Jun amino-terminal kinase 1 (JNK1), p38α, and extracellular signal-regulated kinase 2 (ERK2). Classical docking motifs mediated highly specific binding only to JNK1, and only those motifs with a sequence pattern distinct from the classical MAPK binding docking motif consensus differentiated between the topographically similar docking grooves of ERK and p38α. Crystal structures of four complexes of MAPKs with docking peptides, representing JNK-specific, ERK-specific, or ERK- and p38-selective binding modes, revealed that the regions located between consensus positions in the docking motifs showed conformational diversity. Although the consensus positions in the docking motifs served as anchor points that bound to common MAPK surface features and mostly contributed to docking in a nondiscriminatory fashion, the conformation of the intervening region between the anchor points mostly determined specificity. We designed peptides with tailored MAPK binding profiles by rationally changing the length and amino acid composition of intervening regions located between anchor points. These results suggest a coherent structural model for MAPK docking specificity that reveals how short linear motifs binding to a common kinase docking groove can mediate diverse interaction patterns and contribute to correct MAPK partner selection in signaling networks.
Collapse
Affiliation(s)
- Ágnes Garai
- Department of Biochemistry, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Matesic DF, Sidorova TS, Burns TJ, Bell AM, Tran PL, Ruch RJ, May SW. p38 MAPK activation, JNK inhibition, neoplastic growth inhibition, and increased gap junction communication in human lung carcinoma and Ras-transformed cells by 4-phenyl-3-butenoic acid. J Cell Biochem 2012; 113:269-81. [PMID: 21898549 DOI: 10.1002/jcb.23353] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Human lung neoplasms frequently express mutations that down-regulate expression of various tumor suppressor molecules, including mitogen-activated protein kinases such as p38 MAPK. Conversely, activation of p38 MAPK in tumor cells results in cancer cell cycle inhibition or apoptosis initiated by chemotherapeutic agents such as retinoids or cisplatin, and is therefore an attractive approach for experimental anti-tumor therapies. We now report that 4-phenyl-3-butenoic acid (PBA), an experimental compound that reverses the transformed phenotype at non-cytotoxic concentrations, activates p38 MAPK in tumorigenic cells at concentrations and treatment times that correlate with decreased cell growth and increased cell-cell communication. H2009 human lung carcinoma cells and ras-transformed rat liver epithelial cells treated with PBA showed increased activation of p38 MAPK and its downstream effectors which occurred after 4 h and lasted beyond 48 h. Untransformed plasmid control cells showed low activation of p38 MAPK compared to ras-transformed and H2009 carcinoma cells, which correlates with the reduced effect of PBA on untransformed cell growth. The p38 MAPK inhibitor, SB203580, negated PBA's activation of p38 MAPK downstream effectors. PBA also increased cell-cell communication and connexin 43 phosphorylation in ras-transformed cells, which were prevented by SB203580. In addition, PBA decreased activation of JNK, which is upregulated in many cancers. Taken together, these results suggest that PBA exerts its growth regulatory effect in tumorigenic cells by concomitant up-regulation of p38 MAPK activity, altered connexin 43 expression, and down-regulation of JNK activity. PBA may therefore be an effective therapeutic agent in human cancers that exhibit down-regulated p38 MAPK activity and/or activated JNK and altered cell-cell communication.
Collapse
Affiliation(s)
- Diane F Matesic
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Mercer University, Atlanta, Georgia 30341, USA.
| | | | | | | | | | | | | |
Collapse
|
54
|
Yin Y, She H, Li W, Yang Q, Guo S, Mao Z. Modulation of Neuronal Survival Factor MEF2 by Kinases in Parkinson's Disease. Front Physiol 2012; 3:171. [PMID: 22661957 PMCID: PMC3362091 DOI: 10.3389/fphys.2012.00171] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 05/10/2012] [Indexed: 12/15/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disorder due to selective death of neurons in the substantia nigra pars compacta. The cause of cell death remains largely unknown. Myocyte enhancer factor 2 (MEF2) is a group of transcriptional factors required to regulate neuronal development, synaptic plasticity, as well as survival. Recent studies show that MEF2 functions are regulated in multiple subcellular organelles and suggest that dysregulation of MEF2 plays essential roles in the pathogenesis of PD. Many kinases associated with transcription, translation, protein misfolding, autophagy, and cellular energy homeostasis are involved in the neurodegenerative process. Following the first demonstration that mitogen-activated protein kinase p38 (p38 MAPK) directly phosphorylates and activates MEF2 to promote neuronal survival, several other kinase regulators of MEF2s have been identified. These include protein kinase A and extracellular signal regulated kinase 5 as positive MEF2 regulators, and cyclin-dependent kinase 5 (Cdk5) and glycogen synthase kinase 3β as negative regulators in response to diverse toxic signals relevant to PD. It is clear that MEF2 has emerged as a key point where survival and death signals converge to exert their regulatory effects, and dysregulation of MEF2 function in multiple subcellular organelles may underlie PD pathogenesis. Moreover, several other kinases such as leucine-rich repeat kinase 2 and PTEN-induced putative kinase 1 (PINK1) are of particular interest due to their potential interaction with MEF2.
Collapse
Affiliation(s)
- Yue Yin
- Institute of Plastic Surgery, Xijing Hospital, Fourth Military Medical University Xi'an, Shaanxi, China
| | | | | | | | | | | |
Collapse
|
55
|
Liu X, Niu T, Liu X, Hou W, Zhang J, Yao L. Microarray profiling of HepG2 cells ectopically expressing NDRG2. Gene 2012; 503:48-55. [PMID: 22565195 DOI: 10.1016/j.gene.2012.04.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 04/06/2012] [Accepted: 04/17/2012] [Indexed: 11/26/2022]
Abstract
Previous studies have demonstrated that N-Myc downstream-regulated gene 2 (NDRG2) is a tumor suppressor that is downregulated in many human cancers and when overexpressed, can inhibit tumor growth and metastasis. However, its molecular function, its modulatory targets, and signaling pathways associated with it remain unclear. Here, in an effort to identify the genes modulated by NDRG2 expression, a microarray study was conducted to detect the expression profile of HepG2 cells overexpressing NDRG2 or LacZ. Gene Ontology (GO) biological process analysis revealed that genes related to G protein signaling pathway were upregulated. Five of them were selected and verified by real-time PCR. Gene sets related to M phase of cell cycle were downregulated. This was in agreement with cell cycle analysis. Signaling pathway analysis demonstrated apparent augmented hematopoietic cell lineage pathway and cell adhesion, but reduced glycosylphosphatidylinositol (GPI)-anchor biosynthesis, protein degradation and SNARE interactions. Furthermore, through motif analysis and experimental validation, we found that the p38 phosphorylation can be increased by NDRG2. Our research provides the molecular basis for understanding the role of NDRG2 in tumor cells and raises interesting questions about its mechanisms and potential use in cancer therapy.
Collapse
Affiliation(s)
- Xuewu Liu
- Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, People's Republic of China
| | | | | | | | | | | |
Collapse
|
56
|
Tessier SN, Storey KB. Myocyte enhancer factor-2 and cardiac muscle gene expression during hibernation in thirteen-lined ground squirrels. Gene 2012; 501:8-16. [PMID: 22513076 DOI: 10.1016/j.gene.2012.04.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 03/19/2012] [Accepted: 04/04/2012] [Indexed: 12/01/2022]
Abstract
Many small mammals turn to hibernation to survive the winter, cycling through bouts of prolonged torpor where metabolic rate and body temperature fall to low levels. Remarkably, hypertrophy is promoted in cardiac muscle to support the stronger contractions needed in the cold. We proposed that altered expression of mRNA/protein levels of myocyte enhancer factor-2 (MEF2A, MEF2C) transcription factors and downstream targets (e.g., desmin, glucose transporter 4, and myomesin 1) would aid cardiac muscle of thirteen-lined ground squirrels (Ictidomys tridecemlineatus) in meeting challenges associated with hibernation. Gene and protein responses were compared over six conditions: control (euthermic animals in a 5 °C cold room), entrance into torpor, short and long torpors, arousal and interbout. Mef2a relative transcript levels were significantly elevated from controls contributing to increases in MEF2A protein levels throughout the torpor-arousal bout. In addition, levels of phosphorylated, activated MEF2A (Thr312) correlated with increases in MEF2A-DNA binding. MEF2C transcript/protein levels were significantly elevated over controls at selected sampling points whereas phosphorylated/activated MEF2C (Ser387) levels rose during torpor and DNA binding was most prominent during entrance into torpor. Some gene targets of MEF2 action were also upregulated. Desmin transcript levels remained constant whereas enhanced protein expression occurred during entrance into torpor. Glut4 transcript levels were enhanced in arousal and protein expression was elevated over all five sampling points during torpor/arousal. Myomesin 1 transcript levels increased between early torpor and early arousal and protein levels increased during entrance and deep torpor. These data provide insights into the changes in gene/protein in expression that help to prepare cardiac muscle for hibernation.
Collapse
Affiliation(s)
- Shannon N Tessier
- Institute of Biochemistry & Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6
| | | |
Collapse
|
57
|
Strehl C, Gaber T, Löwenberg M, Hommes DW, Verhaar AP, Schellmann S, Hahne M, Fangradt M, Wagegg M, Hoff P, Scheffold A, Spies CM, Burmester GR, Buttgereit F. Origin and functional activity of the membrane-bound glucocorticoid receptor. ACTA ACUST UNITED AC 2011; 63:3779-88. [PMID: 21898343 DOI: 10.1002/art.30637] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Cindy Strehl
- Charité University Hospital and German Rheumatism Research Centre, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Lyons MR, West AE. Mechanisms of specificity in neuronal activity-regulated gene transcription. Prog Neurobiol 2011; 94:259-95. [PMID: 21620929 PMCID: PMC3134613 DOI: 10.1016/j.pneurobio.2011.05.003] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 05/05/2011] [Accepted: 05/05/2011] [Indexed: 02/06/2023]
Abstract
The brain is a highly adaptable organ that is capable of converting sensory information into changes in neuronal function. This plasticity allows behavior to be accommodated to the environment, providing an important evolutionary advantage. Neurons convert environmental stimuli into long-lasting changes in their physiology in part through the synaptic activity-regulated transcription of new gene products. Since the neurotransmitter-dependent regulation of Fos transcription was first discovered nearly 25 years ago, a wealth of studies have enriched our understanding of the molecular pathways that mediate activity-regulated changes in gene transcription. These findings show that a broad range of signaling pathways and transcriptional regulators can be engaged by neuronal activity to sculpt complex programs of stimulus-regulated gene transcription. However, the shear scope of the transcriptional pathways engaged by neuronal activity raises the question of how specificity in the nature of the transcriptional response is achieved in order to encode physiologically relevant responses to divergent stimuli. Here we summarize the general paradigms by which neuronal activity regulates transcription while focusing on the molecular mechanisms that confer differential stimulus-, cell-type-, and developmental-specificity upon activity-regulated programs of neuronal gene transcription. In addition, we preview some of the new technologies that will advance our future understanding of the mechanisms and consequences of activity-regulated gene transcription in the brain.
Collapse
Affiliation(s)
- Michelle R Lyons
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
59
|
Karapetsas A, Giannakakis A, Pavlaki M, Panayiotidis M, Sandaltzopoulos R, Galanis A. Biochemical and molecular analysis of the interaction between ERK2 MAP kinase and hypoxia inducible factor-1α. Int J Biochem Cell Biol 2011; 43:1582-90. [PMID: 21807114 DOI: 10.1016/j.biocel.2011.07.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 07/13/2011] [Accepted: 07/16/2011] [Indexed: 01/04/2023]
Abstract
The mitogen activated protein kinase (MAPK) signaling pathways play significant roles in fundamental cellular processes, such as cell growth and differentiation. It has been shown that the specificity and efficacy of phosphorylation by MAP kinases rely upon distinct MAPK-docking domains (D-domains) found in a wide range of MAPK substrates including the ETS-transcription factor Elk-1. Importantly, the MAPK signaling cascade converges with the hypoxia-induced signaling pathway. The key regulator of hypoxia signaling is the heterodimeric transcription factor hypoxia inducible factor-1 (HIF-1). The α-subunit of HIF-1 (HIF-1α) is a substrate for the ERK2 MAP kinase. Unraveling the interplay of these main signaling systems is a prerequisite for understanding their role in tumor growth, a situation sustained by simultaneous mitogenic and hypoxic signals. In this work, we investigated the molecular cues that direct HIF-1α recognition and phosphorylation by ERK2. We showed that HIF-1α possesses a MAPK docking domain. Utilizing surface plasmon resonance (SPR) methodologies we demonstrated efficient binding between HIF-1α and ERK2, with a K(D) value in the low micromolar range. Although, the D-domain did not contribute to the above interaction significantly, it could act in trans by recruiting ERK2 and conferring responsiveness to poor ERK substrates. These results indicate that, via its conserved D-domain, HIF-1α could serve as a platform for ERK2 in the nucleus of the cell, thus potentially facilitating phosphorylation of other ERK2 substrates. The identification of an ERK2 recognition domain on HIF-1α opens new avenues for the analysis of HIF-1α-related ERK2 signaling and may allow designing of interfering compounds.
Collapse
Affiliation(s)
- Athanasios Karapetsas
- Cell Communication and Signaling Research Group, Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis 68100, Greece
| | | | | | | | | | | |
Collapse
|
60
|
Coskun M, Olsen J, Seidelin JB, Nielsen OH. MAP kinases in inflammatory bowel disease. Clin Chim Acta 2011; 412:513-20. [PMID: 21185271 DOI: 10.1016/j.cca.2010.12.020] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 12/16/2010] [Accepted: 12/17/2010] [Indexed: 12/16/2022]
|
61
|
Boston SR, Deshmukh R, Strome S, Priyakumar UD, MacKerell AD, Shapiro P. Characterization of ERK docking domain inhibitors that induce apoptosis by targeting Rsk-1 and caspase-9. BMC Cancer 2011; 11:7. [PMID: 21219631 PMCID: PMC3025971 DOI: 10.1186/1471-2407-11-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 01/10/2011] [Indexed: 12/25/2022] Open
Abstract
Background The extracellular signal-regulated kinase-1 and 2 (ERK1/2) proteins play an important role in cancer cell proliferation and survival. ERK1/2 proteins also are important for normal cell functions. Thus, anti-cancer therapies that block all ERK1/2 signaling may result in undesirable toxicity to normal cells. As an alternative, we have used computational and biological approaches to identify low-molecular weight compounds that have the potential to interact with unique ERK1/2 docking sites and selectively inhibit interactions with substrates involved in promoting cell proliferation. Methods Colony formation and water soluble tetrazolium salt (WST) assays were used to determine the effects of test compounds on cell proliferation. Changes in phosphorylation and protein expression in response to test compound treatment were examined by immunoblotting and in vitro kinase assays. Apoptosis was determined with immunoblotting and caspase activity assays. Results In silico modeling was used to identify compounds that were structurally similar to a previously identified parent compound, called 76. From this screen, several compounds, termed 76.2, 76.3, and 76.4 sharing a common thiazolidinedione core with an aminoethyl side group, inhibited proliferation and induced apoptosis of HeLa cells. However, the active compounds were less effective in inhibiting proliferation or inducing apoptosis in non-transformed epithelial cells. Induction of HeLa cell apoptosis appeared to be through intrinsic mechanisms involving caspase-9 activation and decreased phosphorylation of the pro-apoptotic Bad protein. Cell-based and in vitro kinase assays indicated that compounds 76.3 and 76.4 directly inhibited ERK-mediated phosphorylation of caspase-9 and the p90Rsk-1 kinase, which phosphorylates and inhibits Bad, more effectively than the parent compound 76. Further examination of the test compound's mechanism of action showed little effects on related MAP kinases or other cell survival proteins. Conclusion These findings support the identification of a class of ERK-targeted molecules that can induce apoptosis in transformed cells by inhibiting ERK-mediated phosphorylation and inactivation of pro-apoptotic proteins.
Collapse
Affiliation(s)
- Sarice R Boston
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland 20 N. Pine St, Baltimore, MD 21201 USA
| | | | | | | | | | | |
Collapse
|
62
|
Zhang Y, Zhang L, Chu W, Wang B, Zhang J, Zhao M, Li X, Li B, Lu Y, Yang B, Shan H. Tanshinone IIA inhibits miR-1 expression through p38 MAPK signal pathway in post-infarction rat cardiomyocytes. Cell Physiol Biochem 2011; 26:991-8. [PMID: 21220930 DOI: 10.1159/000324012] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2010] [Indexed: 12/22/2022] Open
Abstract
Tanshinone IIA is a fat-soluble pharmacologically active ingredient of Danshen, a well-known traditional Chinese medicine used for cardiovascular diseases such as coronary heart disease. Tanshinone IIA has been confirmed to suppress miR-1 and reduce the arrhythmogenesis after myocardial infarction (MI). However, the modulation mechanism is not clear. Tanshinone IIA was administrated daily for 7 days before ligation of the left anterior descending artery (LAD) and lasted for 3 months after LAD. Neonatal cardiomyocytes were exposed to 2% O(2)+95% N(2) condition for 24 h to simulate ischemia in vivo. Protein expression was examined with Western blot and miR-1 level was quantified by Real-time PCR. Our results showed that tanshinone IIA relieved ischemia-induced injury by improving the cardiac function. This beneficial effect may due to the depression of the elevated miR-1 level in ischemic and hypoxic cardiomyocytes, which subsequently restored its target Cx43 protein. Furthermore, tanshinone IIA could inhibit activated p38 MAPK and heart special transcription factors SRF and MEF2, in ischemic and hypoxic cardiomyocytes. Pretreatment with p38 MAPK inhibitor, SB203580 (10 uM), significantly relieved hypoxia-induced miR-1 increment and restored its downstream target Cx43 protein expression. These data suggest that tanshinone IIA play a role in protection cardiomyocytes from ischemic and hypoxic injury. The effect is based on inhibiting miR-1 expression through p38 MAPK signal pathway. This might provide us a new target to explore the novel strategy for ischemic cardioprotection.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Pharmacology, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, Harbin, Heilongjiang, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Petersen K, Qiu JL, Lütje J, Fiil BK, Hansen S, Mundy J, Petersen M. Arabidopsis MKS1 is involved in basal immunity and requires an intact N-terminal domain for proper function. PLoS One 2010; 5:e14364. [PMID: 21203436 PMCID: PMC3010986 DOI: 10.1371/journal.pone.0014364] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Accepted: 11/22/2010] [Indexed: 11/18/2022] Open
Abstract
Background Innate immune signaling pathways in animals and plants are regulated by mitogen-activated protein kinase (MAPK) cascades. MAP kinase 4 (MPK4) functions downstream of innate immune receptors via a nuclear substrate MKS1 to regulate the activity of the WRKY33 transcription factor, which in turn controls the production of anti-microbial phytoalexins. Methodology/Principal Findings We investigate the role of MKS1 in basal resistance and the importance of its N- and C-terminal domains for MKS1 function. We used the information that mks1 loss-of-function partially suppresses the mpk4 loss-of-function phenotype, and that transgenic expression of functional MKS1 in mpk4/mks1 double mutants reverted the mpk4 dwarf phenotype. Transformation of mks1/mpk4 with mutant versions of MKS1 constructs showed that a single amino acid substitution in a putative MAP kinase docking domain, MKS1-L32A, or a truncated MKS1 version unable to interact with WRKY33, were deficient in reverting the double mutant to the mpk4 phenotype. These results demonstrate functional requirement in MKS1 for the interaction with MPK4 and WRKY33. In addition, nuclear localization of MKS1 was shown to depend on an intact N-terminal domain. Furthermore, loss-of-function mks1 mutants exhibited increased susceptibility to strains of Pseudomonas syringae and Hyaloperonospora arabidopsidis, indicating that MKS1 plays a role in basal defense responses. Conclusions Taken together, our results indicate that MKS1 function and subcellular location requires an intact N-terminus important for both MPK4 and WRKY33 interactions.
Collapse
Affiliation(s)
- Klaus Petersen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | | | | | |
Collapse
|
64
|
Wu J, Kubota J, Hirayama J, Nagai Y, Nishina S, Yokoi T, Asaoka Y, Seo J, Shimizu N, Kajiho H, Watanabe T, Azuma N, Katada T, Nishina H. p38 Mitogen-Activated Protein Kinase Controls a Switch Between Cardiomyocyte and Neuronal Commitment of Murine Embryonic Stem Cells by Activating Myocyte Enhancer Factor 2C-Dependent Bone Morphogenetic Protein 2 Transcription. Stem Cells Dev 2010; 19:1723-34. [DOI: 10.1089/scd.2010.0066] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Jinzhan Wu
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Junko Kubota
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Jun Hirayama
- Medical Top Track Program, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoko Nagai
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Sachiko Nishina
- Department of Ophthalmology, National Center for Child Health and Development, Tokyo, Japan
| | - Tadashi Yokoi
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Ophthalmology, National Center for Child Health and Development, Tokyo, Japan
| | - Yoichi Asaoka
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Jungwon Seo
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Nao Shimizu
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Hiroaki Kajiho
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Takashi Watanabe
- Department of Laboratory Medicine, Kyorin University School of Medicine, Tokyo, Japan
| | - Noriyuki Azuma
- Department of Ophthalmology, National Center for Child Health and Development, Tokyo, Japan
| | - Toshiaki Katada
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Hiroshi Nishina
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
65
|
Lovett FA, Cosgrove RA, Gonzalez I, Pell JM. Essential role for p38alpha MAPK but not p38gamma MAPK in Igf2 expression and myoblast differentiation. Endocrinology 2010; 151:4368-80. [PMID: 20610565 DOI: 10.1210/en.2010-0209] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The muscle satellite cell is established as the major stem cell contributing to fiber growth and repair. p38 MAPK signaling is essential for myoblast differentiation and in particular for up-regulation of promyogenic Igf2 expression. p38 exists as four isoforms (alpha, beta, gamma, and delta), of which p38gamma is uniquely abundant in muscle. The aim of this study was to characterize p38 isoform expression and importance (using shRNA knockdown; demonstrated via both reduced protein and kinase activities) during myoblast differentiation. p38alpha and -gamma mRNA levels were most abundant in differentiating C2 cells with low/negligible contributions from p38beta and -delta, respectively. Increased phosphorylation of p38alpha and -gamma occurred during differentiation but via different mechanisms: p38alpha protein levels remained constant, whereas total p38gamma levels increased. Following shRNA knockdown of p38alpha, myoblast differentiation was dramatically inhibited [reduced myosin heavy chain (MHC), myogenin, pAkt protein levels]; significantly, Igf2 mRNA levels and promoter-reporter activities decreased. In contrast, knockdown of p38gamma induced a transient increase in both myogenin and MHC protein levels with no effect on Igf2 mRNA levels or promoter-reporter activity. Knockdown of p38alpha/beta markedly increased but that of p38gamma decreased caspase 3 activity, suggesting opposite actions on apoptosis. p38gamma was initially proposed to have a promyogenic function; however, p38gamma overexpression could not rescue reduced myoblast differentiation following p38alpha/beta inhibition. Therefore, p38alpha is essential for myoblast differentiation, and part of its action is to convert signals that indicate cell density into promyogenic gene expression in the form of the key peptide, IGF-II; p38gamma has a minor, yet opposing antimyogenic, function.
Collapse
Affiliation(s)
- Fiona A Lovett
- The Babraham Institute, Cambridge CB22 3AT, United Kingdom
| | | | | | | |
Collapse
|
66
|
Sobolev B, Filimonov D, Lagunin A, Zakharov A, Koborova O, Kel A, Poroikov V. Functional classification of proteins based on projection of amino acid sequences: application for prediction of protein kinase substrates. BMC Bioinformatics 2010; 11:313. [PMID: 20537135 PMCID: PMC3098073 DOI: 10.1186/1471-2105-11-313] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Accepted: 06/10/2010] [Indexed: 11/10/2022] Open
Abstract
Background The knowledge about proteins with specific interaction capacity to the protein partners is very important for the modeling of cell signaling networks. However, the experimentally-derived data are sufficiently not complete for the reconstruction of signaling pathways. This problem can be solved by the network enrichment with predicted protein interactions. The previously published in silico method PAAS was applied for prediction of interactions between protein kinases and their substrates. Results We used the method for recognition of the protein classes defined by the interaction with the same protein partners. 1021 protein kinase substrates classified by 45 kinases were extracted from the Phospho.ELM database and used as a training set. The reasonable accuracy of prediction calculated by leave-one-out cross validation procedure was observed in the majority of kinase-specificity classes. The random multiple splitting of the studied set onto the test and training set had also led to satisfactory results. The kinase substrate specificity for 186 proteins extracted from TRANSPATH® database was predicted by PAAS method. Several kinase-substrate interactions described in this database were correctly predicted. Using the previously developed ExPlain™ system for the reconstruction of signal transduction pathways, we showed that addition of the newly predicted interactions enabled us to find the possible path between signal trigger, TNF-alpha, and its target genes in the cell. Conclusions It was shown that the predictions of protein kinase substrates by PAAS were suitable for the enrichment of signaling pathway networks and identification of the novel signaling pathways. The on-line version of PAAS for prediction of protein kinase substrates is freely available at http://www.ibmc.msk.ru/PAAS/.
Collapse
Affiliation(s)
- Boris Sobolev
- Department of Bioinformatics, Institute of Biomedical Chemistry of the Russian Academy of Medical Sciences, 119121, Pogodinskaya str, 10, Moscow, Russia.
| | | | | | | | | | | | | |
Collapse
|
67
|
Remy G, Risco AM, Iñesta-Vaquera FA, González-Terán B, Sabio G, Davis RJ, Cuenda A. Differential activation of p38MAPK isoforms by MKK6 and MKK3. Cell Signal 2009; 22:660-7. [PMID: 20004242 DOI: 10.1016/j.cellsig.2009.11.020] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 11/25/2009] [Accepted: 11/28/2009] [Indexed: 12/13/2022]
Abstract
All four members of the mammalian p38 mitogen-activated protein kinase (MAPK) family (p38alpha, p38beta, p38gamma and p38delta) are activated by dual phosphorylation in the TGY motif in the activation loop. This phosphorylation is mediated by three kinases, MKK3, MKK6 and MKK4, at least in vitro. The role of these MKK in the activation of p38alpha has been demonstrated in studies using fibroblasts that lack MKK3 and/or MKK6. Nonetheless, the physiological upstream activators of the other p38MAPK isoforms have not yet been reported using MKK knockout cells. In this study, we examined p38beta, gamma and delta activation by MKK3 and MKK6, in cells lacking MKK3, MKK6 or both. We show that MKK3 and MKK6 are both essential for the activation of p38gamma and p38beta induced by environmental stress, whereas MKK6 is the major p38gamma activator in response to TNFalpha. In contrast, p38delta activation by ultraviolet radiation, hyperosmotic shock, anisomycin or by TNFalpha is mediated by MKK3. Moreover, in response to osmotic stress, MKK3 and MKK6 are crucial in regulating the phosphorylation of the p38gamma substrate hDlg and its activity as scaffold protein. These data indicate that activation of distinct p38MAPK isoforms is regulated by the selective and synchronized action of two kinases, MKK3 and MKK6, in response to cell stress.
Collapse
Affiliation(s)
- Gaëlle Remy
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología/CSIC, Darwin 3, UAM Campus de Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
68
|
Transcriptional induction of MMP-10 by TGF-beta, mediated by activation of MEF2A and downregulation of class IIa HDACs. Oncogene 2009; 29:909-19. [PMID: 19935709 DOI: 10.1038/onc.2009.387] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Transforming growth factor (TGF)-beta regulates the expression of matrix metalloproteinases (MMPs) and components of the extracellular matrix, thereby profoundly affecting the microenvironment of cells including cancerous ones. We studied MMP-10 induction by TGF-beta in mammary epithelial cells and found that the induction was dependent on the myocyte enhancer factor (MEF)-2 transcription factor. TGF-beta upregulated the gene promoter through the MEF2 site, and knockdown of the MEF2A transcription factor negatively affected MMP-10 induction, whereas its overexpression had a positive effect on the induction. In response to TGF-beta, acetylation and concomitant binding of MEF2A to the promoter region increased, thus suggesting a critical role of MEF2A in transactivation of MMP-10 by TGF-beta. Consistent with the fact that class IIa histone deacetylases (HDACs) interact with MEF2 and suppress transcription, knockdown of HDACs increased and their overexpression inhibited MMP-10 expression. Intriguingly, TGF-beta promoted proteasome-dependent degradation of HDACs. Consistent with this, acetylation of core histones was increased around the MEF2 site of the MMP-10 promoter by TGF-beta and alleviated by overexpression of HDACs. Collectively, it is possible that TGF-beta transcriptionally upregulated MMP-10 through activation of MEF2A, concomitant with acetylation of core histones increasing around the promoter, as a consequence of degradation of the class IIa HDACs.
Collapse
|
69
|
Yong HY, Koh MS, Moon A. The p38 MAPK inhibitors for the treatment of inflammatory diseases and cancer. Expert Opin Investig Drugs 2009; 18:1893-905. [DOI: 10.1517/13543780903321490] [Citation(s) in RCA: 306] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
70
|
Mody A, Weiner J, Ramanathan S. Modularity of MAP kinases allows deformation of their signalling pathways. Nat Cell Biol 2009; 11:484-91. [PMID: 19295513 PMCID: PMC3374951 DOI: 10.1038/ncb1856] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Accepted: 01/08/2009] [Indexed: 12/20/2022]
Abstract
Eukaryotic protein kinase pathways have both grown in number and changed their network architecture during evolution. We wondered if there are pivotal proteins in these pathways that have been repeatedly responsible for forming new connections through evolution, thus changing the topology of the network; and if so, whether the underlying properties of these proteins could be exploited to re-engineer and rewire these pathways. We addressed these questions in the context of the mitogen-activated protein kinase (MAPK) pathways. MAPK proteins were found to have repeatedly acquired new specificities and interaction partners during evolution, suggesting that these proteins are pivotal in the kinase network. Using the MAPKs Fus3 and Hog1 of the Saccharomyces cerevisiae mating and hyper-osmolar pathways, respectively, we show that these pivotal proteins can be re-designed to achieve a wide variety of changes in the input-output properties of the MAPK network. Through an analysis of our experimental results and of the sequence and structure of these proteins, we show that rewiring of the network is possible due to the underlying modular design of the MAPKs. We discuss the implications of our findings on the radiation of MAPKs through evolution and on how these proteins achieve their specificity.
Collapse
Affiliation(s)
- Areez Mody
- FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Joan Weiner
- FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA
| | - Sharad Ramanathan
- FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Harvard Stem Cell Institute, Havard University, Cambridge MA02138, USA
| |
Collapse
|
71
|
della Gaspera B, Armand AS, Sequeira I, Lecolle S, Gallien CL, Charbonnier F, Chanoine C. The Xenopus MEF2 gene family: evidence of a role for XMEF2C in larval tendon development. Dev Biol 2009; 328:392-402. [PMID: 19389348 DOI: 10.1016/j.ydbio.2009.01.039] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 01/12/2009] [Accepted: 01/28/2009] [Indexed: 01/22/2023]
Abstract
MEF2 transcription factors are well-established regulators of muscle development. In this report, we describe the cloning of multiple splicing isoforms of the XMEF2A and XMEF2C encoding genes, differentially expressed during Xenopus development. Using whole-mount in situ hybridization, we found that the accumulation of XMEF2C mRNA in the tadpole stages was restricted to intersomitic regions and to the peripheral edges of hypaxial and cranial muscle masses in contrast to XMEF2A and XMEF2D, characterized by a continuous muscle cell expression. The XMEF2C positive cells express the bHLH transcription factor, Xscleraxis, known as a specific marker for tendons. Gain of function experiments revealed that the use of a hormone-inducible XMEF2C construct is able to induce Xscleraxis expression. Furthermore, XMEF2C specifically cooperates with Xscleraxis to induce tenascin C and betaig-h3, two genes preferentially expressed in Xenopus larval tendons. These findings 1) highlight a previously unappreciated and specific role for XMEF2C in tendon development and 2) identify a novel gene transactivation pathway where MEF2C cooperates with the bHLH protein, Xscleraxis, to activate specific gene expression.
Collapse
Affiliation(s)
- Bruno della Gaspera
- UMR 7060 CNRS, Equipe Biologie du Développement et de la Différenciation Neuromusculaire, Centre Universitaire des Saints-Pères, 45, rue des Saints-Pères, Université Paris Descartes, F-75270 Paris Cedex 06, France
| | | | | | | | | | | | | |
Collapse
|
72
|
Saito A, Kawai K, Takayama H, Sudo T, Osada H. Improvement of photoaffinity SPR imaging platform and determination of the binding site of p62/SQSTM1 to p38 MAP kinase. Chem Asian J 2008; 3:1607-12. [PMID: 18637653 DOI: 10.1002/asia.200800099] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
p38 mitogen-activated protein kinase (MAPK) is a member of the serine/threonine kinases and is activated in response to stress stimuli, such as cytokines, ultraviolet irradiation, heat shock, and osmotic shock. We revealed in a previous report that p62/SQSTM1, known to participate in proteasomal or autophagosomal protein degradation and cytokine receptor signal transduction pathways, binds to p38 to regulate specifically. Herein, we describe the improvement of the photoaffinity-thiol linker of our SPR imaging platform, which enabled us to determine the binding site of p62 to p38. SPR imaging experiments using a new photoaffinity linker 2 to immobilize the peptides derived from p62 on gold substrate indicate that the domain comprising amino acids 164-190 of p62 binds to p38 directly. These SPR analysis data and empirical biologic data reveal that the binding site of p62 to p38 is the domain corresponding to 173-182.
Collapse
Affiliation(s)
- Akiko Saito
- Antibiotics Laboratory, Chemical Biology Department, Advanced Research Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | | | | | | | | |
Collapse
|
73
|
Nedachi T, Fujita H, Kanzaki M. Contractile C2C12 myotube model for studying exercise-inducible responses in skeletal muscle. Am J Physiol Endocrinol Metab 2008; 295:E1191-204. [PMID: 18780777 DOI: 10.1152/ajpendo.90280.2008] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Adequate exercise leads to a vast variety of physiological changes in skeletal muscle as well as other tissues/organs and is also responsible for maintaining healthy muscle displaying enhanced insulin-responsive glucose uptake via GLUT4 translocation. We generated highly developed contractile C(2)C(12) myotubes by manipulating intracellular Ca(2+) transients with electric pulse stimulation (EPS) that is endowed with properties similar to those of in vivo skeletal muscle in terms of 1) excitation-induced contractile activity as a result of de novo sarcomere formation, 2) activation of both the AMP kinase and stress-activated MAP kinase cascades, and 3) improved insulin responsiveness as assessed by GLUT4 recycling. Tbc1d1, a Rab-GAP implicated in exercise-induced GLUT4 translocation in skeletal muscle, also appeared to be phosphorylated on Ser(231) after EPS-induced contraction. In addition, a switch in myosin heavy-chain (MHC) expression from "fast type" to "slow type" was observed in the C(2)C(12) myotubes endowed with EPS-induced repetitive contractility. Taking advantage of these highly developed contractile C(2)C(12) myotubes, we identified myotube-derived factors responsive to EPS-evoked contraction, including the CXC chemokines CXCL1/KC and CXCL5/LIX, as well as IL-6, previously reported to be upregulated in contracting muscles in vivo. Importantly, animal treadmill experiments revealed that exercise significantly increased systemic levels of CXCL1/KC, perhaps derived from contracting muscle. Taken together, these results confirm that we have established a specialized muscle cell culture model allowing contraction-inducible cellular responses to be explored. Utilizing this model, we identified contraction-inducible myokines potentially linked to the metabolic alterations, immune responses, and angiogenesis induced by exercise.
Collapse
Affiliation(s)
- Taku Nedachi
- Center for Research Strategy and Support, Tohoku University Biomedical Engineering Research Organization, Sendai, Japan
| | | | | |
Collapse
|
74
|
Abstract
B lymphocytes are an integral part of the adaptive immune system. On antigen binding to the B-cell receptor (BCR), B cells rapidly proliferate and differentiate into antibody-secreting plasma cells. The p38 mitogen-activated protein kinase (MAPK) pathway functions downstream of the BCR to control cell proliferation, but the transcriptional effectors of this pathway in B cells have remained elusive. In the present study, we inactivated Mef2c exclusively in B cells by conditional gene targeting in mice. Loss of MEF2C function resulted in a reduced immune response to antigen, defective germinal center formation, and a severe defect in B-cell proliferation, and we show that MEF2C regulates proliferation in response to BCR stimulation via the p38 MAPK pathway. p38 directly phosphorylates MEF2C via three residues in the C-terminal transactivation domain, establishing MEF2C as a direct transcriptional effector of BCR signaling via p38 MAPK.
Collapse
|
75
|
Hagopian JC, Ma CT, Meade BR, Albuquerque CP, Ngo JC, Ghosh G, Jennings PA, Fu XD, Adams JA. Adaptable molecular interactions guide phosphorylation of the SR protein ASF/SF2 by SRPK1. J Mol Biol 2008; 382:894-909. [PMID: 18687337 PMCID: PMC2741138 DOI: 10.1016/j.jmb.2008.07.055] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Revised: 07/15/2008] [Accepted: 07/17/2008] [Indexed: 11/23/2022]
Abstract
The SR (arginine-serine rich) protein ASF/SF2 (also called human alternative splicing factor), an essential splicing factor, contains two functional modules consisting of tandem RNA recognition motifs (RRMs; RRM1-RRM2) and a C-terminal arginine-serine repeat region (RS domain, a domain rich in arginine-serine repeats). The SR-specific protein kinase (SRPK) 1 phosphorylates the RS domain at multiple serines using a directional (C-terminal-to-N-terminal) and processive mechanism--a process that directs the SR protein to the nucleus and influences protein-protein interactions associated with splicing function. To investigate how SRPK1 accomplishes this feat, the enzyme-substrate complex was analyzed using single-turnover and multiturnover kinetic methods. Deletion studies revealed that while recognition of the RS domain by a docking groove on SRPK1 is sufficient to initiate the processive and directional mechanism, continued processive phosphorylation in the presence of building repulsive charge relies on the fine-tuning of contacts with the RRM1-RRM2 module. An electropositive pocket in SRPK1 that stabilizes newly phosphorylated serines enhanced processive phosphorylation of later serines. These data indicate that SRPK1 uses stable, yet highly flexible protein-protein interactions to facilitate both early and late phases of the processive phosphorylation of SR proteins.
Collapse
Affiliation(s)
- Jonathan C. Hagopian
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093-0636
| | - Chen-Ting Ma
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093-0636
| | - Bryan R. Meade
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0636
| | - Claudio P. Albuquerque
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0636
| | - Jacky C. Ngo
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0636
| | - Gourisankar Ghosh
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0636
| | - Patricia A. Jennings
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0636
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0636
| | - Joseph A. Adams
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093-0636
| |
Collapse
|
76
|
Tagawa M, Ueyama T, Ogata T, Takehara N, Nakajima N, Isodono K, Asada S, Takahashi T, Matsubara H, Oh H. MURC, a muscle-restricted coiled-coil protein, is involved in the regulation of skeletal myogenesis. Am J Physiol Cell Physiol 2008; 295:C490-8. [DOI: 10.1152/ajpcell.00188.2008] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Skeletal myogenesis is a multistep process by which multinucleated mature muscle fibers are formed from undifferentiated, mononucleated myoblasts. However, the molecular mechanisms of skeletal myogenesis have not been fully elucidated. Here, we identified muscle-restricted coiled-coil (MURC) protein as a positive regulator of myogenesis. In skeletal muscle, MURC was localized to the cytoplasm with accumulation in the Z-disc of the sarcomere. In C2C12 myoblasts, MURC expression occurred coincidentally with myogenin expression and preceded sarcomeric myosin expression during differentiation into myotubes. RNA interference (RNAi)-mediated knockdown of MURC impaired differentiation in C2C12 myoblasts, which was accompanied by impaired myogenin expression and ERK activation. Overexpression of MURC in C2C12 myoblasts resulted in the promotion of differentiation with enhanced myogenin expression and ERK activation during differentiation. During injury-induced muscle regeneration, MURC expression increased, and a higher abundance of MURC was observed in immature myofibers compared with mature myofibers. In addition, ERK was activated in regenerating tissue, and ERK activation was detected in MURC-expressing immature myofibers. These findings suggest that MURC is involved in the skeletal myogenesis that results from modulation of myogenin expression and ERK activation. MURC may play pivotal roles in the molecular mechanisms of skeletal myogenic differentiation.
Collapse
|
77
|
Sheridan DL, Kong Y, Parker SA, Dalby KN, Turk BE. Substrate discrimination among mitogen-activated protein kinases through distinct docking sequence motifs. J Biol Chem 2008; 283:19511-20. [PMID: 18482985 DOI: 10.1074/jbc.m801074200] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitogen-activated protein kinases (MAPKs) mediate cellular responses to a wide variety of extracellular stimuli. MAPK signal transduction cascades are tightly regulated, and individual MAPKs display exquisite specificity in recognition of their target substrates. All MAPK family members share a common phosphorylation site motif, raising questions as to how substrate specificity is achieved. Here we describe a peptide library screen to identify sequence requirements of the DEF site (docking site for ERK FXF), a docking motif separate from the phosphorylation site. We show that MAPK isoforms recognize DEF sites with unique sequences and identify two key residues on the MAPK that largely dictate sequence specificity. Based on these observations and computational docking studies, we propose a revised model for MAPK interaction with substrates containing DEF sites. Variations in DEF site sequence requirements provide one possible mechanism for encoding complex target specificity among MAPK isoforms.
Collapse
Affiliation(s)
- Douglas L Sheridan
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | |
Collapse
|
78
|
Abstract
AbstractMef2c is a MADS (MCM1-agamous–deficient serum response factor) transcription factor best known for its role in muscle and cardiovascular development. A causal role of up-regulated MEF2C expression in myelomonocytic acute myeloid leukemia (AML) has recently been demonstrated. Due to the pronounced monocytic component observed in Mef2c-induced AML, this study was designed to assess the importance of Mef2c in normal myeloid differentiation. Analysis of bone marrow (BM) cells manipulated to constitutively express Mef2c demonstrated increased monopoiesis at the expense of granulopoiesis, whereas BM isolated from Mef2cΔ/− mice showed reduced levels of monocytic differentiation in response to cytokines. Mechanistic studies showed that loss of Mef2c expression correlated with reduced levels of transcripts encoding c-Jun, but not PU.1, C/EBPα, or JunB transcription factors. Inhibiting Jun expression by short-interfering RNA impaired Mef2c-mediated inhibition of granulocyte development. Moreover, retroviral expression of c-Jun in BM cells promoted monocytic differentiation. The ability of Mef2c to modulate cell-fate decisions between monocyte and granulocyte differentiation, coupled with its functional sensitivity to extracellular stimuli, demonstrate an important role in immunity—and, consistent with findings of other myeloid transcription factors, a target of oncogenic lesions in AML.
Collapse
|
79
|
Chiacchiera F, Simone C. Signal-dependent regulation of gene expression as a target for cancer treatment: inhibiting p38alpha in colorectal tumors. Cancer Lett 2008; 265:16-26. [PMID: 18395970 DOI: 10.1016/j.canlet.2008.02.061] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 02/15/2008] [Accepted: 02/19/2008] [Indexed: 12/27/2022]
Abstract
In the last year, several evidences indicated that pharmacological manipulation of relevant signaling pathways could selectively affect gene expression to influence cell fate. These findings render of extreme importance the elucidation of how external stimuli are transduced to mediate chromatin modifications, resulting in a permissive or repressive environment for gene expression. These signaling cascades activate or repress the function of chromatin binding proteins that represent attractive pharmacological targets for human diseases. Actually, the closer the target is to chromatin, the more the transcriptional effect will be selective. Recent studies suggest that pharmacological manipulation of signaling pathways to modulate cell fate is indeed possible and that chromatin-associated kinases could represent an optimal target. The p38 MAPK is the prototype of this class of enzymes and its central role in the transcription process is evolutionary conserved. In this review we will focus on the possibility to inhibit p38alpha in colorectal cancer to arrest tumor progression and induce autophagic cell death.
Collapse
Affiliation(s)
- Fulvio Chiacchiera
- Laboratory of Signal-dependent Transcription, Department of Translational Pharmacology (DTP), Consorzio Mario Negri Sud, Via Nazionale 8/A, 66030 Santa Maria Imbaro (Chieti), Italy
| | | |
Collapse
|
80
|
Kim Y, Phan D, van Rooij E, Wang DZ, McAnally J, Qi X, Richardson JA, Hill JA, Bassel-Duby R, Olson EN. The MEF2D transcription factor mediates stress-dependent cardiac remodeling in mice. J Clin Invest 2008; 118:124-32. [PMID: 18079970 DOI: 10.1172/jci33255] [Citation(s) in RCA: 200] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Accepted: 10/24/2007] [Indexed: 12/22/2022] Open
Abstract
The adult heart responds to excessive neurohumoral signaling and workload by a pathological growth response characterized by hypertrophy of cardiomyocytes and activation of a fetal program of cardiac gene expression. These responses culminate in diminished pump function, ventricular dilatation, wall thinning, and fibrosis, and can result in sudden death. Myocyte enhancer factor-2 (MEF2) transcription factors serve as targets of the signaling pathways that drive pathological cardiac remodeling, but the requirement for MEF2 factors in the progression of heart disease in vivo has not been determined. MEF2A and MEF2D are the primary MEF2 factors expressed in the adult heart. To specifically determine the role of MEF2D in pathological cardiac remodeling, we generated mice with a conditional MEF2D allele. MEF2D-null mice were viable, but were resistant to cardiac hypertrophy, fetal gene activation, and fibrosis in response to pressure overload and beta-chronic adrenergic stimulation. Furthermore, we show in a transgenic mouse model that forced overexpression of MEF2D was sufficient to drive the fetal gene program and pathological remodeling of the heart. These results reveal a unique and important function for MEF2D in stress-dependent cardiac growth and reprogramming of gene expression in the adult heart.
Collapse
Affiliation(s)
- Yuri Kim
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9148, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Garbati MR, Gilmore TD. Ser484 and Ser494 in REL are the major sites of IKK phosphorylation in vitro: evidence that IKK does not directly enhance GAL4-REL transactivation. Gene Expr 2008; 14:195-205. [PMID: 19110719 PMCID: PMC2822992 DOI: 10.3727/105221608786883807] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Human c-Rel (REL) is a member of the NF-kappa B family of transcription factors, and one of its primary physiological roles is in the regulation of B-cell proliferation and survival. Although REL is primarily regulated by cytoplasmic-nuclear translocation through interaction with I kappa B inhibitors, REL also undergoes several posttranslational modifications that have been proposed to modulate its transcriptional activation activity. For example, phosphorylation of C-terminal sequences of REL has been proposed to increase its transactivation activity. In this report, we have used immune complex kinase assays to identify Ser484 and Ser494 as the primary sites of IKK alpha- and IKK beta-mediated in vitro phosphorylation in the C-terminal transactivation domain of REL. However, in cotransfection studies in A293 cells we have failed to detect IKK beta-mediated phosphorylation of these sites on REL in vivo, nor does IKK beta appear to interact with REL in these cells. Ser-to-Ala mutation of Ser484 and Ser494 does not affect IKK's ability to enhance GAL4-REL transactivation in reporter gene assays in A293 cells. We also show that the previously reported effects of overexpressed IKK and tumor necrosis factor treatment on GAL4-REL transactivation are due to IKK-mediated activation of the endogenous NF-kappa B pathway, which increases transcription from kappa B sites in the promoter of a commonly used GAL4 expression vector. Taken together, these results do not support a role for IKK-mediated phosphorylation as means for regulating the activity of REL in vivo.
Collapse
|
82
|
Martin MC, Allan LA, Mancini EJ, Clarke PR. The docking interaction of caspase-9 with ERK2 provides a mechanism for the selective inhibitory phosphorylation of caspase-9 at threonine 125. J Biol Chem 2007; 283:3854-65. [PMID: 18083711 DOI: 10.1074/jbc.m705647200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Caspase-9 plays a critical role in the initiation of apoptosis by the mitochondrial pathway. Activation of caspase-9 is inhibited by phosphorylation at Thr(125) by ERK1/2 MAPKs in response to growth factors. Here, we show that phosphorylation of this site is specific for these classical MAPKs and is not strongly induced when JNK and p38alpha/beta MAPKs are activated by anisomycin. By deletion and mutagenic analysis, we identify domains in caspase-9 and ERK2 that mediate their interaction. Binding of ERK2 to caspase-9 and subsequent phosphorylation of caspase-9 requires a basic docking domain (D domain) in the N-terminal prodomain of the caspase. Mutational analysis of ERK2 reveals a (157)TTCD(160) motif required for recognition of caspase-9 that acts independently of the putative common docking domain. Molecular modeling supports the conclusion that Arg(10) in the D domain of caspase-9 interacts with Asp(160) in the TTCD motif of ERK2. Differences in the TTCD motif in other MAPK family members could account for the selective recognition of caspase-9 by ERK1/2. This selectivity may be important for the antiapoptotic role of classical MAPKs in contrast to the proapoptotic roles of stress-activated MAPKs.
Collapse
Affiliation(s)
- Morag C Martin
- Biomedical Research Centre, Ninewells Hospital and Medical School, Level 5, University of Dundee, Dundee DD1 9SY, United Kingdom
| | | | | | | |
Collapse
|
83
|
Spencer JPE. The interactions of flavonoids within neuronal signalling pathways. GENES & NUTRITION 2007; 2:257-73. [PMID: 18850181 PMCID: PMC2474943 DOI: 10.1007/s12263-007-0056-z] [Citation(s) in RCA: 189] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Accepted: 03/20/2007] [Indexed: 12/11/2022]
Abstract
Emerging evidence suggests that dietary phytochemicals, in particular flavonoids, may exert beneficial effects in the central nervous system by protecting neurons against stress-induced injury, by suppressing neuroinflammation and by promoting neurocognitive performance, through changes in synaptic plasticity. It is likely that flavonoids exert such effects in neurons, through selective actions on different components within a number of protein kinase and lipid kinase signalling cascades, such as phosphatidylinositol-3 kinase (PI3K)/Akt, protein kinase C and mitogen-activated protein kinase. This review details the potential inhibitory or stimulatory actions of flavonoids within these pathways, and describes how such interactions are likely to affect cellular function through changes in the activation state of target molecules and/or by modulating gene expression. Although, precise sites of action are presently unknown, their abilities to: (1) bind to ATP binding sites on enzymes and receptors; (2) modulate the activity of kinases directly; (3) affect the function of important phosphatases; (4) preserve neuronal Ca(2+) homeostasis; and (5) modulate signalling cascades lying downstream of kinases, are explored. Future research directions are outlined in relation to their precise site(s) of action within the signalling pathways and the sequence of events that allow them to regulate neuronal function in the central nervous system.
Collapse
Affiliation(s)
- Jeremy P E Spencer
- Molecular Nutrition Group, School of Chemistry, Food and Pharmacy, University of Reading, Reading, RG2 6AP, UK,
| |
Collapse
|
84
|
Kawai K, Saito A, Sudo T, Osada H. Specific Regulation of Cytokine-Dependent p38 MAP Kinase Activation by p62/SQSTM1. J Biochem 2007; 143:765-72. [DOI: 10.1093/jb/mvn027] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
85
|
Ubersax JA, Ferrell JE. Mechanisms of specificity in protein phosphorylation. Nat Rev Mol Cell Biol 2007; 8:530-41. [PMID: 17585314 DOI: 10.1038/nrm2203] [Citation(s) in RCA: 1050] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A typical protein kinase must recognize between one and a few hundred bona fide phosphorylation sites in a background of approximately 700,000 potentially phosphorylatable residues. Multiple mechanisms have evolved that contribute to this exquisite specificity, including the structure of the catalytic site, local and distal interactions between the kinase and substrate, the formation of complexes with scaffolding and adaptor proteins that spatially regulate the kinase, systems-level competition between substrates, and error-correction mechanisms. The responsibility for the recognition of substrates by protein kinases appears to be distributed among a large number of independent, imperfect specificity mechanisms.
Collapse
Affiliation(s)
- Jeffrey A Ubersax
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California 94305-5174, USA.
| | | |
Collapse
|
86
|
Callaway K, Abramczyk O, Martin L, Dalby KN. The Anti-Apoptotic Protein PEA-15 Is a Tight Binding Inhibitor of ERK1 and ERK2, Which Blocks Docking Interactions at the D-Recruitment Site. Biochemistry 2007; 46:9187-98. [PMID: 17658892 DOI: 10.1021/bi700206u] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PEA-15 is a small anti-apoptotic protein that is enriched in astrocytes, but expressed in a broad range of tissues. It sequesters the protein kinases ERK1 and 2 in the cytoplasm, thereby limiting their proximity to nuclear substrates. Using a fluorescence anisotropy approach, PEA-15 is shown to be a high-affinity ligand for both ERK1 and 2, exhibiting a dissociation constant in the range of Kd = 0.2-0.4 microM, regardless of their activation states. Neither the phosphorylation of PEA-15 (phospho Ser-104 and/or phospho Ser-116) nor the phosphorylation of ERK1/2 (by MKK1) significantly affects the stability of the ERK/PEA-15 interaction, and therefore it does not directly regulate the release of ERK2 to the nucleus. The extreme C-terminus of PEA-15 was previously shown by mutagenesis to be important for ERK2 binding; however, the site of binding was not established. Here it is demonstrated that the D-recruitment site (DRS) of ERK2 binds PEA-15, probably at the C-terminus, and renders PEA-15 an inhibitor of ERK2 docking interactions. Using fluorescence anisotropy competition assays it is shown that PEA-15 competes for binding to ERK1/2 with a peptide derived from the D-site of Elk-1, which binds the DRS of ERK1/2. Using modified ERK2 proteins containing single cysteine residues, PEA-15 was shown to protect single cysteines situated within the DRS from alkylation. The pattern and magnitude of protection were very similar to those induced by the binding of the peptide derived from the D-site of Elk-1. These and published data support the notion that PEA-15 binds two sites on ERK1/2 in a bidentate manner: the DRS and a site that includes the MAP kinase insert. Previous reports have suggested that PEA-15 is not an inhibitor of ERK2; however, it is shown here to potently inhibit the ability of ERK2 to phosphorylate two transcription factors, Elk-1 and Ets-1, which contain docking sites for the DRS of ERK2. Therefore, in addition to sequestering ERK1/2 in the cytoplasm, PEA-15 has the potential to modulate the activity of ERK2 in cells by competing directly with proteins that contain D-sites.
Collapse
Affiliation(s)
- Kari Callaway
- Graduate Program in Biochemistry, University of Texas at Austin, Texas 78712, USA
| | | | | | | |
Collapse
|
87
|
Abstract
Mitogen-activated protein kinases (MAPKs) and NF-κB are two major regulators of gene transcription and metabolism in response to oxidative, energetic, and mechanical stress in skeletal muscle. Chronic activation of these signaling pathways has been implicated in the development and perpetuation of various pathologies, such as diabetes and cachexia. However, both MAPK and NF-κB are also stimulated by exercise, which promotes improvements in fuel homeostasis and can prevent skeletal muscle atrophy. This review will first discuss the major MAPK signaling modules in skeletal muscle, their differential activation by exercise, and speculated functions on acute substrate metabolism and exercise-induced gene expression. Focus will then shift to examination of the NF-κB pathway, including its mechanism of activation by cellular stress and its putative mediation of exercise-stimulated adaptations in antioxidant status, tissue regeneration, and metabolism. Although limited, there is additional evidence to suggest cross talk between MAPK and NF-κB signals with exercise. The objectives herein are twofold: 1) to determine how and why exercise activates MAPK and NF-κB; and 2) to resolve their paradoxical activation during diseased and healthy conditions.
Collapse
Affiliation(s)
- Henning F Kramer
- Metabolism, Research Division, Joslin Diabetes Center, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
| | | |
Collapse
|
88
|
Abstract
The mitogen-activated protein kinases (MAPKs) are a family of serine/threonine kinases that play an essential role in signal transduction by modulating gene transcription in the nucleus in response to changes in the cellular environment. They include the extracellular signal-regulated protein kinases (ERK1 and ERK2); c-Jun N-terminal kinases (JNK1, JNK2, JNK3); p38s (p38alpha, p38beta, p38gamma, p38delta) and ERK5. The molecular events in which MAPKs function can be separated in discrete and yet interrelated steps: activation of the MAPK by their upstream kinases, changes in the subcellular localization of MAPKs, and recognition, binding and phosphorylation of MAPK downstream targets. The resulting pattern of gene expression will ultimately depend on the integration of the combinatorial signals provided by the temporal activation of each group of MAPKs. This review will focus on how the specificity of signal transmission by MAPKs is achieved by scaffolding molecules and by the presence of structural motifs in MAPKs that are dynamically regulated by phosphorylation and protein-protein interactions. We discuss also how MAPKs recognize and phosphorylate their target nuclear proteins, including transcription factors, co-activators and repressors and chromatin-remodeling molecules, thereby affecting an intricate balance of nuclear regulatory molecules that ultimately control gene expression in response to environmental cues.
Collapse
Affiliation(s)
- A G Turjanski
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | | | | |
Collapse
|
89
|
Thuraisingam T, Xu YZ, Moisan J, Lachance C, Garnon J, Di Marco S, Gaestel M, Radzioch D. Distinct role of MAPKAPK-2 in the regulation of TNF gene expression by Toll-like receptor 7 and 9 ligands. Mol Immunol 2007; 44:3482-91. [PMID: 17485113 DOI: 10.1016/j.molimm.2007.03.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Revised: 03/15/2007] [Accepted: 03/19/2007] [Indexed: 11/29/2022]
Abstract
Toll-like receptor ligands (TLRLs) produced by various pathogens activate mitogen-activated protein kinases (MAPKs). While the dependence on p38 MAPK activation for the induction of inflammatory genes by the TLR4L, lipopolysaccharide (LPS), has been well documented, the importance of the p38 pathway in gene regulation by other TLRLs is less well understood. We have focused our analysis on two TLRLs with therapeutic potential, imidazoquinoline S28463 (TLR7L) and CpG DNA (TLR9L), to explore in detail their effects on the regulation of gene expression in macrophages. Here we report that activation of the p38 MAPK/MK2 pathway is crucial for both S28463- and CpG-induced cytokine and chemokine production. We show that the stability of TNF mRNA induced by CpG DNA and S28463 is not dependent on the p38 MAPK/MK2 pathway, in contrast to LPS-induced TNF mRNA. Using a GFP reporter construct under the control of the 3' untranslated region of the TNF gene, we demonstrate that S28463 and CpG DNA-induced MK2 signalling regulates TNF mRNA primarily at the translational level, whereas LPS-induced MK2 signalling regulates both the stability and translational efficiency of TNF mRNA. Overall, these data provide insight into distinct molecular mechanisms of gene expression regulation by different Toll-like receptor ligands.
Collapse
Affiliation(s)
- Thusanth Thuraisingam
- McGill University, Department of Human Genetics, Montreal General Hospital Research Institute, Montreal, Que., Canada
| | | | | | | | | | | | | | | |
Collapse
|
90
|
Binétruy B, Heasley L, Bost F, Caron L, Aouadi M. Concise review: regulation of embryonic stem cell lineage commitment by mitogen-activated protein kinases. Stem Cells 2007; 25:1090-1095. [PMID: 17218395 DOI: 10.1634/stemcells.2006-0612] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Embryonic stem (ES) cells can give rise, in vivo, to the ectodermal, endodermal, and mesodermal germ layers and, in vitro, can differentiate into multiple cell lineages, offering broad perspectives in regenerative medicine. Understanding the molecular mechanisms governing ES cell commitment is an essential challenge in this field. The mitogen-activated protein kinase (MAPK) pathways extracellular signal-regulated kinase (ERK), c-Jun amino-terminal kinase (JNK), and p38MAPK are able to regulate ES commitment from early steps of the process to mature differentiated cells. Whereas the ERK pathway inhibits the self-renewal of ES cells, upon commitment this pathway is involved in the development of extraembryonic tissues, in early mesoderm differentiation, and in the formation of mature adipocytes; p38MAPK displays a large spectrum of action from neurons to adipocytes, and JNK is involved in both ectoderm and primitive endoderm differentiations. Furthermore, for a given pathway, several of these effects are isoform-dependent, revealing the complexity of the cellular response to activation of MAPK pathways. Regarding tissue regeneration, the potential outcome of systematic analysis of the function of different MAPKs in different ES cell differentiation programs is discussed. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Bernard Binétruy
- INSERM, U626, Faculté de Médecine, 27 Bd J Moulin, 13385 Marseille, France.
| | | | | | | | | |
Collapse
|
91
|
Meissner JD, Chang KC, Kubis HP, Nebreda AR, Gros G, Scheibe RJ. The p38α/β Mitogen-activated Protein Kinases Mediate Recruitment of CREB-binding Protein to Preserve Fast Myosin Heavy Chain IId/x Gene Activity in Myotubes. J Biol Chem 2007; 282:7265-75. [PMID: 17210568 DOI: 10.1074/jbc.m609076200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In skeletal muscle, the transformation of fast into slow fiber type is accompanied by shifts in fiber type-specific gene expression that includes down-regulation of the adult fast fiber myosin heavy chain IId/x (MyHCIId/x) gene. Here, we report that the mitogen-activated protein kinases (MAPKs) p38alpha/beta regulate MyHCIId/x gene expression. Electrical stimulation of rabbit skeletal muscle cells with a slow fiber type activity pattern and treatment of C2C12 myotubes with Ca(2+)-ionophore inhibited p38alpha/beta MAPKs and reduced fast fiber type MyHC protein expression and promoter activity. Pharmacological inhibition of p38alpha/beta also down-regulated MyHCII gene expression. In controls, binding of the myocyte enhancer factor-2 (MEF-2) isoforms C and D as a heterodimer to a proximal consensus site within the MyHCIId/x promoter and recruitment of a transcriptional coactivator, the CREB-binding protein CBP, were observed. Overexpression of wild type MEF-2C but not of a MEF-2C mutant that cannot be phosphorylated by p38 induced promoter activity. Mutation of the MEF-2-binding site decreased the inducing effect of overexpressed CBP. Inhibition of p38alpha/beta MAPKs abolished CBP binding, whereas enforced induction of p38 by activated MAPK kinase 6 (MKK6EE) enhanced binding of CBP and increased promoter activity. Furthermore, knockdown of endogenous CBP by RNA interference eliminated promoter activation by MEF-2C or MKK6EE. In electrical stimulated and Ca(2+)-ionophore-treated myotubes, CBP was absent in complex formation at that site. Taken together, the data indicate that p38alpha/beta MAPKs-mediated coactivator recruitment at a proximal MEF-2 site is important for MyHCIId/x gene regulation in skeletal muscle.
Collapse
Affiliation(s)
- Joachim D Meissner
- Department of Physiology, Hannover Medical School, D-30625 Hannover, Germany
| | | | | | | | | | | |
Collapse
|
92
|
Jin B, Li YP. Curcumin prevents lipopolysaccharide-induced atrogin-1/MAFbx upregulation and muscle mass loss. J Cell Biochem 2007; 100:960-9. [PMID: 17131360 PMCID: PMC3099528 DOI: 10.1002/jcb.21060] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Because elevated ubiquitin ligase atrogin-1/MAFbx and MuRF1 mediate skeletal muscle wasting associated with various catabolic conditions, the signaling pathways involved in the upregulation of these genes under pathological conditions are considered therapeutic targets. AKT and NF-kappaB have been previously shown to regulate the expression of atrogin-1/MAFbx or MuRF1, respectively. In addition, we recently found that p38 MAPK mediates TNF-alpha upregulation of atrogin-1/MAFbx expression, suggesting that multiple signaling pathways mediate muscle wasting in inflammatory diseases. To date, however, these advances have not resulted in a practical clinical intervention for disease-induced muscle wasting. In the present study, we tested the effect of curcumin--a non-toxic anti-inflammatory reagent that inhibits p38 and NF-kappaB--on lipopolysaccharide (LPS)-induced muscle wasting in mice. Daily intraperitoneal (i.p.) injection of curcumin (10-60 micro g/kg) for 4 days inhibited, in a dose-dependent manner, the LPS-stimulated (1 mg/kg, i.p.) increase of atrogin-1/MAFbx expression in gastrocnemius and extensor digitorum longus (EDL) muscles, resulting in the attenuation of muscle protein loss. It should also be noted that curcumin administration did not alter the basal expression of atrogin-1/MAFbx, nor did it affect LPS-stimulated MuRF1 and polyubiquitin expression. LPS activated p38 and NF-kappaB, while inhibiting AKT; whereas, curcumin administration inhibited LPS-stimulated p38 activation, without altering the effect of LPS on NF-kappaB and AKT. These results indicate that curcumin is effective in blocking LPS-induced loss of muscle mass through the inhibition of p38-mediated upregulation of atrogin-1/MAFbx.
Collapse
Affiliation(s)
- Bingwen Jin
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, Baylor College of Medicine, Houston, Texas 77030
| | - Yi-Ping Li
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
93
|
Singh S, Yin X, Pisano MM, Greene RM. Molecular profiles of mitogen activated protein kinase signaling pathways in orofacial development. BIRTH DEFECTS RESEARCH. PART A, CLINICAL AND MOLECULAR TERATOLOGY 2007; 79:35-44. [PMID: 17177285 PMCID: PMC3124958 DOI: 10.1002/bdra.20320] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Formation of the mammalian orofacial region involves multiple signaling pathways regulating sequential expression of and interaction between molecular signals during embryogenesis. The present study examined the expression patterns of members of the MAPK family in developing murine orofacial tissue. METHODS Total RNA was extracted from developing embryonic orofacial tissue during gestational days (GDs) 12-14 and used to prepare biotinylated cDNA probes, which were then denatured and hybridized to murine MAPK signaling pathways gene arrays. RESULTS Expression of a number of genes involved in the (ERK1/2) cascade transiently increased in the embryonic orofacial tissue over the developmental period examined. Numerous members of the SAPK/JNK cascade were constitutively expressed in the tissue. Genes known to play a role in p38 MAPK signaling exhibited constitutive expression during orofacial development. Western blot analysis demonstrated that ERK2/1, p38, and SAPK/JNK kinases are present in embryonic orofacial tissue on each of GD 12, 13, and 14. By using phospho-specific antibodies, active ERK was shown to be temporally regulated during orofacial development. Minimal amounts of active p38 and active SAPK/JNK were detected in orofacial tissue during GDs 12-14. CONCLUSIONS Our study documents specific expression patterns of genes coding for proteins belonging to the ERK1/2, p38, and SAPK/JNK MAPK families in embryonic orofacial tissue. We also demonstrate that active, phosphorylated forms of ERK1/2 only were detected in the embryonic tissue investigated, suggesting a more central role for members of this family in embryonic orofacial development.
Collapse
Affiliation(s)
- Saurabh Singh
- University of Louisville Birth Defects Center, Department of Molecular, Cellular and Craniofacial Biology, ULSD, Louisville, KY 40292
| | - Xiaolong Yin
- University of Louisville Birth Defects Center, Department of Molecular, Cellular and Craniofacial Biology, ULSD, Louisville, KY 40292
| | - M. Michele Pisano
- University of Louisville Birth Defects Center, Department of Molecular, Cellular and Craniofacial Biology, ULSD, Louisville, KY 40292
| | - Robert M. Greene
- University of Louisville Birth Defects Center, Department of Molecular, Cellular and Craniofacial Biology, ULSD, Louisville, KY 40292
| |
Collapse
|
94
|
González P, Alvarez V, Menéndez M, Lahoz CH, Martínez C, Corao AI, Calatayud MT, Peña J, García-Castro M, Coto E. Myocyte enhancing factor-2A in Alzheimer's disease: Genetic analysis and association with MEF2A-polymorphisms. Neurosci Lett 2007; 411:47-51. [PMID: 17112666 DOI: 10.1016/j.neulet.2006.09.055] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 09/13/2006] [Accepted: 09/14/2006] [Indexed: 12/22/2022]
Abstract
Polymorphisms at different genes have been proposed as determinants of the risk for developing late-onset Alzheimer's disease (LOAD). Among the several candidate genes are those that encode proteins involved in neuronal degeneration/survival. Studies of primary neuronal cultures supported that members of the myocyte enhancing factor-2 (MEF2) family of transcription factors have an anti-apoptotic effect, regulating the expression of proteins involved in neuronal survival and differentiation. We analysed the MEF2A gene in a total of 357 patients (mean age 72 years, range 60-97 years). Among others, a Pro279Leu in exon 8 and a polyglutamine (CAG) repeat polymorphisms in exon 12 were found. These variants were also genotyped in 495 healthy controls (>50 years old), and the frequencies were statistically compared. Eight patients were 279L (six P/L and two L/L), compared to only one control (2% vs. 0.2%; p=0.004, OR=11.32). There was a significantly higher frequency of 279L-carriers among APOE epsilon4+ (7/154=4.5%), compared to epsilon4- (1/203) (p=0.02). In conclusion, our work suggests that the variation at the MEF2A gene could be involved in the risk of developing LOAD. Because MEF2 has been related with neuronal survival, and the 279L allele has been related with a reduction in the transcriptional activation activity of MEF2A, the effect of this allele could be mediated through a down-regulation of antiapoptotic genes.
Collapse
Affiliation(s)
- Pelayo González
- Genética Molecular-Instituto de Estudios Nefrológicos, Hospital Universitario Central Asturias, Oviedo, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Fujimura N, Vacik T, Machon O, Vlcek C, Scalabrin S, Speth M, Diep D, Krauss S, Kozmik Z. Wnt-mediated down-regulation of Sp1 target genes by a transcriptional repressor Sp5. J Biol Chem 2006; 282:1225-37. [PMID: 17090534 DOI: 10.1074/jbc.m605851200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Wnt/beta-catenin signaling regulates many processes during vertebrate development. To study transcriptional targets of canonical Wnt signaling, we used the conditional Cre/loxP system in mouse to ectopically activate beta-catenin during central nervous system development. We show that the activation of Wnt/beta-catenin signaling in the embryonic mouse telencephalon results in the up-regulation of Sp5 gene, which encodes a member of the Sp1 transcription factor family. A proximal promoter of Sp5 gene is highly evolutionarily conserved and contains five TCF/LEF binding sites that mediate direct regulation of Sp5 expression by canonical Wnt signaling. We provide evidence that Sp5 works as a transcriptional repressor and has three independent repressor domains, called R1, R2, and R3, respectively. Furthermore, we show that the repression activity of R1 domain is mediated through direct interaction with a transcriptional corepressor mSin3a. Finally, our data strongly suggest that Sp5 has the same DNA binding specificity as Sp1 and represses Sp1 target genes such as p21. We conclude that Sp5 transcription factor mediates the downstream responses to Wnt/beta-catenin signaling by directly repressing Sp1 target genes.
Collapse
Affiliation(s)
- Naoko Fujimura
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Callaway KA, Rainey MA, Riggs AF, Abramczyk O, Dalby KN. Properties and Regulation of a Transiently Assembled ERK2·Ets-1 Signaling Complex†. Biochemistry 2006; 45:13719-33. [PMID: 17105191 DOI: 10.1021/bi0610451] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
ERK2 is a proline-directed protein kinase that displays a high specificity for a single threonine (Thr-38) on the substrate Ets-1, which lies within the consensus sequence 36phi-chi-Thr-Pro39 (where phi is typically a small hydrophobic residue and chi appears to be unrestricted). Thr-38 lies in a long flexible N-terminal tail (residues 1-52), which also contains a second potential phosphorylation site, Ser-26. How Ets-1 binds ERK2 to promote the phosphorylation of Thr-38 while simultaneously discriminating against the phosphorylation of Ser-26 is unclear. To delineate the details of the molecular recognition of Ets-1 by ERK2, the binding of various mutants and truncations of Ets-1 were analyzed by fluorescence anisotropy. The data that were obtained support the notion that the N-terminal tail contains a previously unrecognized docking site that promotes the phosphorylation of Thr-38. This new docking site helps assemble the complex of Ets-1 and ERK2 and makes a similar contribution to the stabilization of the complex as does the pointed domain of Ets-1. The in vitro activation of ERK2 by MKK1 induces a large conformational transition of the activation segment (DFG-APE), but neither induces self-association of ERK2 nor destabilizes the stability of the ERK2.Ets-1 complex. This latter observation suggests that interactions intrinsic to the active site are not important for complex assembly, a notion further supported by the observation that the substitution of a number of different amino acids for Pro-39 does not destabilize the complex. Mutagenesis of ERK2 within loop 13 suggests that Ets-1 binds the substrate-binding groove. These data suggest that ERK2 uses two weak docking interactions to specifically assemble the complex, perhaps in doing so denying Ser-26 access to the active site. Displacement of residues 1-138 of Ets-1 (EtsDelta138) from ERK2 by the peptide N-QKGKPRDLELPLSPSL-C, derived from Elk-1, suggests that Ets-1 engages the D-recruitment site (beta7-beta8 reverse turn and the alphaD-alphaE helix) of ERK2. Displacement of EtsDelta138 from ERK2 by the peptide N-AKLSFQFPS-C derived from Elk-1 shows that EtsDelta138 communicates with the F-recruitment site of ERK2 also.
Collapse
Affiliation(s)
- Kari A Callaway
- Graduate Program in Biochemistry, University of Texas, Austin, Texas 78712-0252, USA
| | | | | | | | | |
Collapse
|
97
|
Li J, Stouffs M, Serrander L, Banfi B, Bettiol E, Charnay Y, Steger K, Krause KH, Jaconi ME. The NADPH oxidase NOX4 drives cardiac differentiation: Role in regulating cardiac transcription factors and MAP kinase activation. Mol Biol Cell 2006; 17:3978-88. [PMID: 16775014 PMCID: PMC1556380 DOI: 10.1091/mbc.e05-06-0532] [Citation(s) in RCA: 225] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Reactive oxygen species (ROS) generated by the NOX family of NADPH oxidases have been described to act as second messengers regulating cell growth and differentiation. However, such a function has hitherto not been convincingly demonstrated. We investigated the role of NOX-derived ROS in cardiac differentiation using mouse embryonic stem cells. ROS scavengers prevented the appearance of spontaneously beating cardiac cells within embryoid bodies. Down-regulation of NOX4, the major NOX isoform present during early stages of differentiation, suppressed cardiogenesis. This was rescued by a pulse of low concentrations of hydrogen peroxide 4 d before spontaneous beating appears. Mechanisms of ROS-dependent signaling included p38 mitogen-activated protein kinase (MAPK) activation and nuclear translocation of the cardiac transcription factor myocyte enhancer factor 2C (MEF2C). Our results provide first molecular evidence that the NOX family of NADPH oxidases regulate vertebrate developmental processes.
Collapse
Affiliation(s)
- Jian Li
- *Laboratory of Biology of Aging, Department of Rehabilitation and Geriatrics, and
| | - Michael Stouffs
- *Laboratory of Biology of Aging, Department of Rehabilitation and Geriatrics, and
| | - Lena Serrander
- *Laboratory of Biology of Aging, Department of Rehabilitation and Geriatrics, and
| | - Botond Banfi
- *Laboratory of Biology of Aging, Department of Rehabilitation and Geriatrics, and
| | - Esther Bettiol
- *Laboratory of Biology of Aging, Department of Rehabilitation and Geriatrics, and
| | - Yves Charnay
- Division of Neuropsychiatry, Geneva University Hospitals, 1225 Chêne-Bourg, Switzerland; and
| | - Klaus Steger
- Justus-Liebig-University, Institute of Veterinary Anatomy, Histology, and Embryology, Giessen, Germany
| | - Karl-Heinz Krause
- *Laboratory of Biology of Aging, Department of Rehabilitation and Geriatrics, and
| | - Marisa E. Jaconi
- *Laboratory of Biology of Aging, Department of Rehabilitation and Geriatrics, and
| |
Collapse
|
98
|
Zhou H, Zheng M, Chen J, Xie C, Kolatkar AR, Zarubin T, Ye Z, Akella R, Lin S, Goldsmith EJ, Han J. Determinants that control the specific interactions between TAB1 and p38alpha. Mol Cell Biol 2006; 26:3824-34. [PMID: 16648477 PMCID: PMC1489000 DOI: 10.1128/mcb.26.10.3824-3834.2006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies have revealed that transforming growth factor-beta-activated protein kinase 1 (TAB1) interacts with p38alpha and induces p38alpha autophosphorylation. Here, we examine the sequence requirements in TAB1 and p38alpha that drive their interaction. Deletion and point mutations in TAB1 reveal that a proline residue in the C terminus of TAB1 (Pro412) is necessary for its interaction with p38alpha. Furthermore, a cryptic D-domain-like docking site was identified adjacent to the N terminus of Pro412, putting Pro412 in the phi(B)+3 position of the docking site. Through mutational analysis, we found that the previously identified hydrophobic docking groove in p38alpha is involved in this interaction, whereas the CD domain and ED domain are not. Furthermore, chimeric analysis with p38beta (which does not bind to TAB1) revealed a previously unidentified locus of p38alpha comprising Thr218 and Ile275 that is essential for specific binding of p38alpha to TAB1. Converting either of these residues to the corresponding amino acid of p38beta abolishes p38alpha interaction with TAB1. These p38alpha mutants still can be fully activated by p38alpha upstream activating kinase mitogen-activated protein kinase kinase 6, but their basal activity and activation in response to some extracellular stimuli are reduced. Adjacent to Thr218 and Ile275 is a site where large conformational changes occur in the presence of docking-site peptides derived from p38alpha substrates and activators. This suggests that TAB1-induced autophosphorylation of p38alpha results from conformational changes that are similar but unique to those seen in p38alpha interactions with its substrates and activating kinases.
Collapse
Affiliation(s)
- Huamin Zhou
- The Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Sciences, Xiamen University, Fujian, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Ambrose M, Ryan A, O'Sullivan GC, Dunne C, Barry OP. Induction of apoptosis in renal cell carcinoma by reactive oxygen species: involvement of extracellular signal-regulated kinase 1/2, p38delta/gamma, cyclooxygenase-2 down-regulation, and translocation of apoptosis-inducing factor. Mol Pharmacol 2006; 69:1879-90. [PMID: 16543392 DOI: 10.1124/mol.105.020875] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Renal cell carcinoma (RCC) is the most common malignancy of the kidney. Unfortunately, RCCs are highly refractory to conventional chemotherapy, radiation therapy, and even immunotherapy. Thus, novel therapeutic targets need to be sought for the successful treatment of RCCs. We now report that 6-anilino-5,8-quinolinequinone (LY83583), an inhibitor of cyclic GMP production, induced growth arrest and apoptosis of the RCC cell line 786-0. It did not prove deleterious to normal renal epithelial cells, an important aspect of chemotherapy. To address the cellular mechanism(s), we used both genetic and pharmacological approaches. LY83583 induced a time- and dose-dependent increase in RCC apoptosis through dephosphorylation of mitogen-activated protein kinase kinase 1/2 and its downstream extracellular signal-regulated kinases (ERK) 1 and -2. In addition, we observed a decrease in Elk-1 phosphorylation and cyclooxygenase-2 (COX-2) down-regulation. We were surprised that we failed to observe an increase in either c-Jun NH(2)-terminal kinase or p38alpha and -beta mitogen-activated protein kinase activation. In contradiction, reintroduction of p38delta by stable transfection or overexpression of p38gamma dominant negative abrogated the apoptotic effect. Cell death was associated with a decrease and increase in Bcl-x(L) and Bax expression, respectively, as well as release of cytochrome c and translocation of apoptosis-inducing factor. These events were associated with an increase in reactive oxygen species formation. The antioxidant N-acetyl l-cysteine, however, opposed LY83583-mediated mitochondrial dysfunction, ERK1/2 inactivation, COX-2 down-regulation, and apoptosis. In conclusion, our results suggest that LY83583 may represent a novel therapeutic agent for the treatment of RCC, which remains highly refractory to antineoplastic agents. Our data provide a molecular basis for the anticancer activity of LY83583.
Collapse
Affiliation(s)
- Monica Ambrose
- Department of Pharmacology and Therapeutics, Clinical Science Building, Cork University Hospital, Cork, Ireland
| | | | | | | | | |
Collapse
|
100
|
Aouadi M, Bost F, Caron L, Laurent K, Le Marchand Brustel Y, Binétruy B. p38 mitogen-activated protein kinase activity commits embryonic stem cells to either neurogenesis or cardiomyogenesis. Stem Cells 2006; 24:1399-1406. [PMID: 16424397 DOI: 10.1634/stemcells.2005-0398] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mouse embryonic stem (ES) cells can be differentiated, in vitro into a variety of cell types including cardiac cells and neurons. This process is strictly controlled by the potent morphogen retinoic acid (RA). At a concentration of 10(-7) M, RA induces ES cell differentiation into neurons and, conversely, inhibits cardiomyogenesis. We found that p38 mitogen-activated protein kinase (p38MAPK) activity peaked spontaneously, between day 3 and day 5, during ES cell differentiation and that RA completely inhibited this peak of activity. In contrast to wild-type cells, which required RA treatment, p38alpha(-/-) ES cells differentiated spontaneously into neurons and did not form cardiomyocytes. Moreover, inhibition of the peak of p38MAPK activity by a specific inhibitor, PD169316, committed ES cells into the neuronal lineage and blocked cardiomyogenesis. By genetic and biochemical approaches, we demonstrate that, in two different ES cell lines, the control of p38MAPK activity constitutes an early switch, committing ES cells into either neurogenesis (p38 off) or cardiomyogenesis (p38 on).
Collapse
Affiliation(s)
- Myriam Aouadi
- Institut National de la Santé et de la Recherche Médicale U568, Université de Nice Sophia Antipolis, Nice, France
| | | | | | | | | | | |
Collapse
|