51
|
Kay M, Hojati Z, Dehghanian F. The molecular study of IFNβ pleiotropic roles in MS treatment. IRANIAN JOURNAL OF NEUROLOGY 2013; 12:149-56. [PMID: 24250925 PMCID: PMC3829308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 06/08/2013] [Indexed: 11/23/2022]
Abstract
Multiple sclerosis (MS) is one of the most important autoimmune diseases recognized by demyelination and axonal lesion. It is the most common cause of disability in the young population. Various immunomodulatory and immunosuppressive therapies, including different formulations of interferon beta (IFNβ), glatiramer acetate (GA), mitoxantrone, and natalizumab are available for this disease. However, interferon has been the best prescribed. Although the precise mechanism of IFNβ is unclear, many studies indicate some potential mechanism including blocking T cells activation, controlling pro- and anti-inflammatory cytokine secretion, preventing activated immune cell migration through BBB, and inducing repair activity of damaged nerve cells by differentiating neural stem cells into oligodendrocytes. These molecular mechanisms have significant roles in IFNβ therapy. More researches are required in order for us to comprehend the mechanism of action of IFNβ, and improve and develop drugs for more efficient MS treatment.
Collapse
Affiliation(s)
- Maryam Kay
- MSc Student, Department of Biology, School of Sciences, University of Isfahan, Isfahan, Iran
| | - Zohreh Hojati
- Assistant Professor, Department of Biology, School of Sciences, University of Isfahan, Isfahan, Iran
| | - Fariba Dehghanian
- MSc Student, Department of Biology, School of Sciences, University of Isfahan, Isfahan, Iran
| |
Collapse
|
52
|
Bae JS, Pasaje CFA, Park BL, Cheong HS, Kim JH, Uh ST, Park CS, Shin HD. Genetic association analysis of CIITA variations with nasal polyp pathogenesis in asthmatic patients. Mol Med Rep 2012; 7:927-34. [PMID: 23292525 DOI: 10.3892/mmr.2012.1251] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 12/20/2012] [Indexed: 11/05/2022] Open
Abstract
Nasal polyps are abnormal lesions arising mainly from the nasal mucosa and paranasal sinuses. Since the human class II, major histocompatibility complex, transactivator (CIITA) is a positive regulator of class II, major histocompatibility complex gene transcription, the CIITA gene is thought to be involved in the presence of nasal polyps in asthma and aspirin hypersensitive patients. To investigate the association between CIITA and nasal polyposis, 18 single nucleotide polymorphisms (SNPs) were genotyped in 467 asthmatics who were classified into 158 aspirin-exacerbated respiratory disease (AERD) and 309 aspirin-tolerant asthma (ATA) subgroups. Differences in the frequency distribution of CIITA variations between polyp-positive cases and polyp-negative controls were determined using logistic analyses. Initially, a total of 9 CIITA variants were significantly associated with the presence of nasal polyps in the overall asthma, AERD and ATA groups [P=0.001-0.05, odds ratio (OR)=0.53-2.35 in the overall asthma group; P=0.01-0.02, OR=2.45-2.66 in the AERD group; P=0.001‑0.05, OR=0.45-2.61 in the ATA group using various modes of genetic inheritance]. One the variations (rs12932187) retained this association after multiple testing corrections (Pcorr=0.01) in the overall asthma group. In addition, two variations (rs12932187 and rs11074938) were associated with the presence of nasal polyps following multiple testing corrections (Pcorr=0.02 and 0.04, respectively) in the ATA group. These novel findings suggest that rs12932187 and rs11074938 may constitute susceptibility markers of inflammation of the nasal passages in asthma patients.
Collapse
Affiliation(s)
- Joon Seol Bae
- Department of Genetic Epidemiology, SNP Genetics, Inc., Seoul 153-803, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
53
|
Adequate antigen availability: a key issue for novel approaches to tumor vaccination and tumor immunotherapy. J Neuroimmune Pharmacol 2012; 8:28-36. [PMID: 23224729 DOI: 10.1007/s11481-012-9423-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Accepted: 11/20/2012] [Indexed: 01/24/2023]
Abstract
A crucial parameter for activation of the anti-tumor immune response is an adequate antigen availability (AAA) defined here as the optimal tumor antigen dose and related antigen processing and MHC-II-restricted presentation necessary to efficiently trigger tumor-specific TH cells. We will discuss two distinct experimental systems: a) a preventive anti-tumor vaccination system; b) a therapy-induced anti-tumor vaccination approach. In the first case tumor cells are rendered constitutively MHC-II+ by transfecting them with the MHC-II transcriptional activator CIITA. Here AAA is generated by the function of tumor's newly expressed MHC-II molecules to present tumor-associated antigens to tumor-specific TH cells. In the second case, AAA is generated by treating established tumors with neovasculature-targeted TNFα. In conjuction with Melphalan, targeted TNFα delivery produces extensive areas of tumor necrosis that generate AAA capable of optimally activate tumor-specific TH cells which in turn activate CTL immune effectors. In both experimental systems tumor rejection and persistent and long-lived TH cell anti-tumor memory, responsible of defending the animals from subsequent challenges with tumor cells, are achieved. Based on these and other investigators' results we propose that AAA is a key element for triggering adaptive immune functions resulting in subversion from a pro-tumor to an anti-tumor microenvironment, tumor rejection and acquisition of anti-tumor immune memory. Hypotheses of neuro-immune networks involved in these approaches are discussed. These considerations are important also for the comprehension of how chemotherapy and/or radiation therapies may help to block and/or to eradicate the tumor and for the construction of suitable anti-tumor vaccine strategies.
Collapse
|
54
|
Class II, major histocompatibility complex, transactivator (CIITA) in channel catfish: identification and expression patterns responding to different pathogens. Mol Biol Rep 2012; 39:11041-50. [DOI: 10.1007/s11033-012-2007-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 10/01/2012] [Indexed: 01/06/2023]
|
55
|
Accolla RS, Tosi G. Optimal MHC-II-restricted tumor antigen presentation to CD4+ T helper cells: the key issue for development of anti-tumor vaccines. J Transl Med 2012; 10:154. [PMID: 22849661 PMCID: PMC3478985 DOI: 10.1186/1479-5876-10-154] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 07/11/2012] [Indexed: 02/06/2023] Open
Abstract
Present immunoprevention and immunotherapeutic approaches against cancer suffer from the limitation of being not “sterilizing” procedures, as very poor protection against the tumor is obtained. Thus newly conceived anti-tumor vaccination strategies are urgently needed. In this review we will focus on ways to provide optimal MHC class II-restricted tumor antigen presentation to CD4+ T helper cells as a crucial parameter to get optimal and protective adaptive immune response against tumor. Through the description of successful preventive or therapeutic experimental approaches to vaccinate the host against the tumor we will show that optimal activation of MHC class II-restricted tumor specific CD4+ T helper cells can be achieved in various ways. Interestingly, the success in tumor eradication and/or growth arrest generated by classical therapies such as radiotherapy and chemotherapy in some instances can be re-interpreted on the basis of an adaptive immune response induced by providing suitable access of tumor-associated antigens to MHC class II molecules. Therefore, focussing on strategies to generate better and suitable MHC class II–restricted activation of tumor specific CD4+ T helper cells may have an important impact on fighting and defeating cancer.
Collapse
Affiliation(s)
- Roberto S Accolla
- Department of Surgical and Morphological Sciences, University of Insubria, Via Ottorino Rossi, n.9, 21100 Varese, Italy.
| | | |
Collapse
|
56
|
Øynebråten I, Løvås TO, Thompson K, Bogen B. Generation of antibody-producing hybridomas following one single immunization with a targeted DNA vaccine. Scand J Immunol 2012; 75:379-88. [PMID: 21955209 PMCID: PMC3417379 DOI: 10.1111/j.1365-3083.2011.02639.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The standard protocol for generating antibody (Ab)-producing hybridomas is based on fusion of plasmacytoma cells with Ab-producing B cells harvested from immunized mice. To increase the yield of hybridomas, it is important to use immunization protocols that induce a high frequency of B cells producing specific Abs. Our laboratory has developed a vaccine format, denoted vaccibody that promotes the immune responses towards the delivered antigen. The vaccine format targets antigens in a bivalent form to surface receptors on antigen-presenting cells (APCs). Here, we used the fluorescent protein (FP) mCherry as antigen and targeted it to APCs by use of either the natural ligand CCL3/MIP-1α or single-chain variable fragment specific for major histocompatibility complex class II. The vaccine format was delivered to mouse muscle as DNA combined with electroporation. By this procedure, we developed two monoclonal Abs that can be utilized to detect the FC mCherry in various applications. The data suggest that the targeted DNA vaccine format can be utilized to enhance the number of Ab-producing hybridomas and thereby be a tool to improve the B cell hybridoma technology.
Collapse
Affiliation(s)
- I Øynebråten
- Centre for Immune Regulation, Department of Immunology, University of Oslo, Oslo, Norway.
| | | | | | | |
Collapse
|
57
|
Wang K, Sun DX, Li KY, Wang XQ, Zhang F. Identification of four novel alleles of the BoLA-DRB3 upstream regulatory region in Chinese yellow cattle. ACTA ACUST UNITED AC 2012; 80:58-60. [PMID: 22486735 DOI: 10.1111/j.1399-0039.2012.01871.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The sequence of upstream regulatory region (URR) of BoLA-DRB3 gene was amplified with polymerase chain reaction followed by DNA sequencing from six animals of Chinese yellow cattle. A total of five alleles including four newly identified ones, named BoLA-DRB3*R-03-U2, BoLA-DRB3*R-06-U2, BoLA-DRB3*R-07-U and BoLA-DRB3*R-12-U for the BoLA-DRB3 URR were found. Result of sequence analysis showed that the regulatory elements W, X, Y, CCAAT and TATA-like boxes existed in such URRs and 16 polymorphic sites (11 transitions, 3 transversions, 1 deletion and 1 insertion) located in the spacers between the conserved consensus boxes and 1 insertion within X box, while no new polymorphic site within the consensus boxes.
Collapse
Affiliation(s)
- K Wang
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China.
| | | | | | | | | |
Collapse
|
58
|
Axtner J, Sommer S. Heligmosomoides polygyrus infection is associated with lower MHC class II gene expression in Apodemus flavicollis: indication for immune suppression? INFECTION GENETICS AND EVOLUTION 2011; 11:2063-71. [PMID: 21983561 DOI: 10.1016/j.meegid.2011.09.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 09/22/2011] [Accepted: 09/22/2011] [Indexed: 01/16/2023]
Abstract
Due to their key role in recognizing foreign antigens and triggering the subsequent immune response the genes of the major histocompatibility complex (MHC) provide a potential target for parasites to attack in order to evade detection and expulsion from the host. A diminished MHC gene expression results in less activated T cells and might serve as a gateway for pathogens and parasites. Some parasites are suspected to be immune suppressors and promote co-infections of other parasites even in other parts of the body. In our study we found indications that the gut dwelling nematode Heligmosomoides polygyrus might exert a systemic immunosuppressive effect in yellow-necked mice (Apodemus flavicollis). The amount of hepatic MHC class II DRB gene RNA transcripts in infected mice was negatively associated with infection intensity with H. polygyrus. The hepatic expression of immunosuppressive cytokines, such as transforming growth factor β and interleukin 10 was not associated with H. polygyrus infection. We did not find direct positive associations of H. polygyrus with other helminth species. But the prevalence and infection intensity of the nematodes Syphacia stroma and Trichuris muris were higher in multiple infected individuals. Furthermore, our data indicated antagonistic effects in the helminth community of A. flavicollis as cestode infection correlated negatively with H. polygyrus and helminth species richness. Our study shows that expression analyses of immune relevant genes can also be performed in wildlife, opening new aspects and possibilities for future ecological and evolutionary research.
Collapse
Affiliation(s)
- Jan Axtner
- Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str 15, 10315 Berlin, Germany
| | | |
Collapse
|
59
|
Porter GW, Yi W, Denzin LK. TLR agonists downregulate H2-O in CD8alpha- dendritic cells. THE JOURNAL OF IMMUNOLOGY 2011; 187:4151-60. [PMID: 21918198 DOI: 10.4049/jimmunol.1003137] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Peptide loading of MHC class II (MHCII) molecules is catalyzed by the nonclassical MHCII-related molecule H2-M. H2-O, another MHCII-like molecule, associates with H2-M and modulates H2-M function. The MHCII presentation pathway is tightly regulated in dendritic cells (DCs), yet how the key modulators of MHCII presentation, H2-M and H2-O, are affected in different DC subsets in response to maturation is unknown. In this study, we show that H2-O is markedly downregulated in vivo in mouse CD8α(-) DCs in response to a broad array of TLR agonists. In contrast, CD8α(+) DCs only modestly downregulated H2-O in response to TLR agonists. H2-M levels were slightly downmodulated in both CD8α(-) and CD8α(+) DCs. As a consequence, H2-M/H2-O ratios significantly increased for CD8α(-) but not for CD8α(+) DCs. The TLR-mediated downregulation was DC specific, as B cells did not show significant H2-O and H2-M downregulation. TLR4 signaling was required to mediate DC H2-O downregulation in response to LPS. Finally, our studies showed that the mechanism of H2-O downregulation was likely due to direct protein degradation of H2-O as well as downregulation of H2-O mRNA levels. The differential H2-O and H2-M modulation after DC maturation supports the proposed roles of CD8α(-) DCs in initiating CD4-restricted immune responses by optimal MHCII presentation and of CD8α(+) DCs in promoting immune tolerance via presentation of low levels of MHCII-peptide.
Collapse
Affiliation(s)
- Gavin W Porter
- Immunology Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | | | |
Collapse
|
60
|
Absent in Melanoma 2 (AIM2) is an important mediator of interferon-dependent and -independent HLA-DRA and HLA-DRB gene expression in colorectal cancers. Oncogene 2011; 31:1242-53. [PMID: 21804607 PMCID: PMC3307062 DOI: 10.1038/onc.2011.320] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Absent in Melanoma 2 (AIM2) is a member of the HIN-200 family of hematopoietic, IFN-inducible, nuclear proteins, associated with both, infection defense and tumor pathology. Recently, AIM2 was found to act as a DNA sensor in innate immunity. In addition, we and others have previously demonstrated a high frequency of AIM2-alterations in microsatellite unstable (MSI-H) tumors. To further elucidate AIM2 function in colorectal tumors, we here addressed AIM2-responsive target genes by microarray based gene expression profiling of 22 244 human genes. A total of 111 transcripts were significantly upregulated, whereas 80 transcripts turned out to be significantly downregulated in HCT116 cells, constitutively expressing AIM2, compared with AIM2-negative cells. Among the upregulated genes that were validated by quantitative PCR and western blotting we recognized several interferon-stimulated genes (ISGs: IFIT1, IFIT2, IFIT3, IFI6, IRF7, ISG15, HLA-DRA, HLA-DRB, TLR3 and CIITA), as well as genes involved in intercellular adhesion and matrix remodeling. Expression of ISGs correlated with expression of AIM2 in 10 different IFN-γ treated colorectal cancer cell lines. Moreover, small interfering RNA-mediated knock-down of AIM2 resulted in reduced expression of HLA-DRA, HLA-DRB and CIITA in IFN-γ-treated cells. IFN-γ independent induction of HLA-DR genes and their encoded proteins was also demonstrated upon doxycyclin-regulated transient induction of AIM2. Luciferase reporter assays revealed induction of the HLA-DR promoter upon AIM2 transfection in different cell lines. STAT-signaling was not involved in IFN-γ independent induction of ISGs, arguing against participation of cytokines released in an autostimulating manner. Our data indicate that AIM2 mediates both IFN-γ dependent and independent induction of several ISGs, including genes encoding the major histocompatibility complex (MHC) class II antigens HLA-DR-α and -β. This suggests a novel role of the IFN/AIM2/ISG cascade likewise in cancer cells.
Collapse
|
61
|
Astrocytes as potential targets to suppress inflammatory demyelinating lesions in multiple sclerosis. Neurochem Int 2010; 57:446-50. [DOI: 10.1016/j.neuint.2010.02.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 02/09/2010] [Accepted: 02/12/2010] [Indexed: 11/23/2022]
|
62
|
Devaiah BN, Lu H, Gegonne A, Sercan Z, Zhang H, Clifford RJ, Lee MP, Singer DS. Novel functions for TAF7, a regulator of TAF1-independent transcription. J Biol Chem 2010; 285:38772-80. [PMID: 20937824 DOI: 10.1074/jbc.m110.173864] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The transcription factor TFIID components TAF7 and TAF1 regulate eukaryotic transcription initiation. TAF7 regulates transcription initiation of TAF1-dependent genes by binding to the acetyltransferase (AT) domain of TAF1 and inhibiting the enzymatic activity that is essential for transcription. TAF7 is released from the TAF1-TFIID complex upon completion of preinitiation complex assembly, allowing transcription to initiate. However, not all transcription is TAF1-dependent, and the role of TAF7 in regulating TAF1-independent transcription has not been defined. The IFNγ-induced transcriptional co-activator CIITA activates MHC class I and II genes, which are vital for immune responses, in a TAF1-independent manner. Activation by CIITA depends on its intrinsic AT activity. We now show that TAF7 binds to CIITA and inhibits its AT activity, thereby repressing activated transcription. Consistent with this TAF7 function, siRNA-mediated depletion of TAF7 resulted in increased CIITA-dependent transcription. A more global role for TAF7 as a regulator of transcription was revealed by expression profiling analysis: expression of 30-40% of genes affected by TAF7 depletion was independent of either TAF1 or CIITA. Surprisingly, although TAF1-dependent transcripts were largely down-regulated by TAF7 depletion, TAF1-independent transcripts were predominantly up-regulated. We conclude that TAF7, until now considered only a TFIID component and regulator of TAF1-dependent transcription, also regulates TAF1-independent transcription.
Collapse
Affiliation(s)
- Ballachanda N Devaiah
- Experimental Immunology Branch, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
63
|
Falorni A, Brozzetti A, Torre DL, Tortoioli C, Gambelunghe G. Association of genetic polymorphisms and autoimmune Addison's disease. Expert Rev Clin Immunol 2010; 4:441-56. [PMID: 20477573 DOI: 10.1586/1744666x.4.4.441] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Autoimmune Addison's disease (AAD) is a complex genetic disease that results from the interaction of a predisposing genetic background with as yet unknown environmental factors. The disease is marked by the appearance of circulating autoantibodies against steroid 21-hydroxylase. Mutations of the autoimmune regulator gene are responsible for the so-called autoimmune polyendocrine syndrome type I (APS I), of which AAD is a major disease component. Among genetic factors for isolated AAD and APS II, a major role is played by HLA class II genes: HLA-DRB1 0301-DQA1 0501-DQB1 0201 and DRB1 04-DQA1 0301-DQB1 0302 are positively, and RB1 0403 is negatively, associated with a genetic risk for AAD. The MHC class I chain-related gene A allele 5.1 is strongly and positively associated with AAD. Other gene polymorphisms contributing to genetic risk for AAD are MHC2TA, the gene coding for class II transactivator, the master regulator of class II expression, cytotoxic T lymphocyte antigen-4, PTPN22 and the vitamin D receptor.
Collapse
Affiliation(s)
- Alberto Falorni
- Department of Internal Medicine, Section of Internal Medicine and Endocrine and Metabolic Sciences, Via E. Dal Pozzo, 06126 Perugia, Italy.
| | | | | | | | | |
Collapse
|
64
|
Regulation of antigen presentation by Mycobacterium tuberculosis: a role for Toll-like receptors. Nat Rev Microbiol 2010; 8:296-307. [PMID: 20234378 DOI: 10.1038/nrmicro2321] [Citation(s) in RCA: 312] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mycobacterium tuberculosis survives in antigen-presenting cells (APCs) such as macrophages and dendritic cells. APCs present antigens in association with major histocompatibility complex (MHC) class II molecules to stimulate CD4(+) T cells, and this process is essential to contain M. tuberculosis infection. Immune evasion allows M. tuberculosis to establish persistent or latent infection in macrophages and results in Toll-like receptor 2 (TLR2)-dependent inhibition of MHC class II transactivator expression, MHC class II molecule expression and antigen presentation. This reduction of antigen presentation might reflect a general mechanism of negative-feedback regulation that prevents excessive T cell-mediated inflammation and that M. tuberculosis has subverted to create a niche for survival in infected macrophages and evasion of recognition by CD4(+) T cells.
Collapse
|
65
|
Bhat KP, Truax AD, Brooks JK, Greer SF. Association of the 19S proteasomal ATPases with the ATPase-binding domain of CIITA is essential for CIITA stability and MHC class II expression. Immunol Cell Biol 2010; 88:807-16. [PMID: 20351748 DOI: 10.1038/icb.2010.45] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Major histocompatibility class II (MHC class II) molecules are glycoproteins that present extracellular antigens to CD4(+) T cells and are essential for initiation of adaptive immune responses. MHC class II expression requires recruitment of a master regulator, the class II transactivator (CIITA), to the MHC class II promoter. Others and we have earlier linked CIITA to the ubiquitin-proteasome system by showing that mono-ubiquitination of CIITA increases its transactivity, whereas poly-ubiquitination of CIITA leads to its degradation. We have further shown that the 26S proteasome also has non-proteolytic functions in MHC class II transcription, as 19S ATPase subunits of the 26S proteasome positively regulate MHC class II transcription and are necessary for stable promoter binding of CIITA. Although these basic requirements of the proteasome to initiate MHC class II transcription are known, how CIITA is recruited, stabilized, and degraded remains unclear. Here, we identify a novel N-terminal 19S ATPase-binding domain of CIITA. The ATPase-binding domain lies within the proline/serine/threonine-rich region of CIITA and encompasses a majority of the CIITA degron sequence. Absence of the ATPase-binding domain increases the half-life of CIITA, but blocks MHC class II surface expression, indicating that CIITA requires interaction with the 19S ATPases for both appropriate deployment and destruction.
Collapse
Affiliation(s)
- Kavita Purnanda Bhat
- Division of Cellular and Molecular Biology and Physiology, Department of Biology, Georgia State University, Atlanta, GA 30302, USA
| | | | | | | |
Collapse
|
66
|
Handunnetthi L, Ramagopalan SV, Ebers GC, Knight JC. Regulation of major histocompatibility complex class II gene expression, genetic variation and disease. Genes Immun 2010; 11:99-112. [PMID: 19890353 PMCID: PMC2987717 DOI: 10.1038/gene.2009.83] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Accepted: 09/15/2009] [Indexed: 12/29/2022]
Abstract
Major histocompatibility complex (MHC) class II molecules are central to adaptive immune responses and maintenance of self-tolerance. Since the early 1970s, the MHC class II region at chromosome 6p21 has been shown to be associated with a remarkable number of autoimmune, inflammatory and infectious diseases. Given that a full explanation for most MHC class II disease associations has not been reached through analysis of structural variation alone, in this review we examine the role of genetic variation in modulating gene expression. We describe the intricate architecture of the MHC class II regulatory system, indicating how its unique characteristics may relate to observed associations with disease. There is evidence that haplotype-specific variation involving proximal promoter sequences can alter the level of gene expression, potentially modifying the emergence and expression of key phenotypic traits. Although much emphasis has been placed on cis-regulatory elements, we also examine the role of more distant enhancer elements together with the evidence of dynamic inter- and intra-chromosomal interactions and epigenetic processes. The role of genetic variation in such mechanisms may hold profound implications for susceptibility to common disease.
Collapse
Affiliation(s)
- Lahiru Handunnetthi
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- Department of Clinical Neurology, University of Oxford, Oxford OX3 7BN, UK
| | - Sreeram V. Ramagopalan
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- Department of Clinical Neurology, University of Oxford, Oxford OX3 7BN, UK
| | - George C. Ebers
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- Department of Clinical Neurology, University of Oxford, Oxford OX3 7BN, UK
| | - Julian C. Knight
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| |
Collapse
|
67
|
Mahmoud ME, Nikami H, Shiina T, Takewaki T, Shimizu Y. Capsaicin inhibits IFN-γ-induced MHC class II expression by suppressing transcription of class II transactivator gene in murine peritoneal macrophages. Int Immunopharmacol 2010; 10:86-90. [DOI: 10.1016/j.intimp.2009.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 08/26/2009] [Accepted: 10/02/2009] [Indexed: 11/16/2022]
|
68
|
Coordinate loss of MHC class II expression in the diffuse large B cell lymphoma cell line OCI-Ly2 is due to a novel mutation in RFX-AP. Immunogenetics 2009; 62:109-16. [PMID: 20024540 DOI: 10.1007/s00251-009-0418-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Accepted: 11/26/2009] [Indexed: 10/20/2022]
Abstract
Loss of major histocompatibility complex class II (MHCII) antigen expression on diffuse large B cell lymphoma (DLBCL) corresponds closely with significant decreases in patient survival. However, the mechanisms accounting for MHCII loss in DLBCL have not been thoroughly characterized to date. In this report, we demonstrate that coordinate loss of MHCII expression in OCI-Ly2 DLBCL cells is associated with an 11-base deletion in the cDNA encoding RFX-AP, one of the subunits of the heterotrimeric regulatory factor X (RFX) that is required for activating MHCII transcription. This deletion results in a frameshift in the RFX-AP protein beginning at amino acid 234 and, therefore, in the loss of C-terminal amino acids that are required for function. Stable transfection of OCI-Ly2 DLBCL cells with an expression vector for wild-type RFX-AP restores MHCII expression, which strongly suggests that the defect in RFX-AP accounts for MHCII loss in these cells.
Collapse
|
69
|
Makrigiannakis A, Karamouti M, Drakakis P, Loutradis D, Antsaklis A. Fetomaternal immunotolerance. Am J Reprod Immunol 2009; 60:482-96. [PMID: 19032609 DOI: 10.1111/j.1600-0897.2008.00655.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Implantation of mammalian conceptus in uterine cavity is the result of evolutionary adaptation, through high level of physiological procedures to ensure its success. However the majority of pregnancy losses occur before or during implantation. It is expected that exploring and defining the molecular and physiological road map during the crucial time of implantation will enable us to decode and effectively treat fertility defects. Immunological, hormonal and molecular factors participate in the feto-maternal cross talk during implantation and designate the effectiveness of the process. The atypical expression of major histocompatibility complex and other protein-antigens, such as Fas/FasL and petformin in human trophoblast, the modified function of cellular constituents of the feto-maternal interface, as well as the specific role of some hormones and cytokines, represent substantive parameters of feto-maternal immunotolerance during implantation.
Collapse
Affiliation(s)
- Antonis Makrigiannakis
- Laboratory of Human Reproduction, Department of Obstetrics and Gynaecology, Medical School, University of Crete, Heraklion, Greece.
| | | | | | | | | |
Collapse
|
70
|
Landsverk OJB, Bakke O, Gregers TF. MHC II and the endocytic pathway: regulation by invariant chain. Scand J Immunol 2009; 70:184-93. [PMID: 19703008 DOI: 10.1111/j.1365-3083.2009.02301.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The major histocompatibility complex (MHC) class I and II molecules perform vital functions in innate and adaptive immune responses towards invading pathogens. MHC class I molecules load peptides in the endoplasmatic reticulum (ER) and display them to the T cell receptors (TcR) on CD8(+) T lymphocytes. MHC class II molecules (MHC II) acquire their peptides in endosomes and present these to the TcR on CD4+ T lymphocytes. They are vital for the generation of humoral immune responses. MHC II assembly in the ER and trafficking to endosomes is guided by a specialized MHC II chaperone termed the invariant chain (Ii). Ii self-associates into a trimer in the ER, this provides a scaffold for the assembly of three MHC II heterodimers and blocks their peptide binding grooves, thereby avoiding premature peptide binding. Ii then transports the nascent MHC II to more or less specialized compartment where they can load peptides derived from internalized pathogens.
Collapse
Affiliation(s)
- O J B Landsverk
- Centre for Immune Regulation, Department of Molecular Biosciences, University of Oslo, 0316 Oslo, Norway
| | | | | |
Collapse
|
71
|
Falorni A, Brozzetti A, Calcinaro F, Marzotti S, Santeusanio F. Recent advances in adrenal autoimmunity. Expert Rev Endocrinol Metab 2009; 4:333-348. [PMID: 30781285 DOI: 10.1586/eem.09.20] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Autoimmune Addison's disease (AAD) results from the immune-mediated destruction of adrenocortical cells. AAD is a major component of the autoimmune polyendocrine syndromes type 1 (APS 1) and type 2. The adrenal autoimmune process is made evident by the apperance of circulating autoantibodies against the steroidogenic enzyme 21-hydroxylase. Detection of 21-hydroxylase in patients with endocrine autoimmune diseases enables the identification of subjects with preclinical AAD. An impaired response to a corticotrophin stimulation test marks the irreversible stage of preclinical AAD and predicts progression towards clinical AAD in over 80% of cases. APS 1 is caused by mutations of the autoimmune regulator (AIRE) gene, which encodes an activator of transcription, Aire, that induces the expression of autoantigens in thymic medullary epithelial cells and promotes immunological tolerance. Isolated and APS 2-related AAD is an autoimmune disease with evidence for complex genetic susceptibility caused by T-cell-mediated destruction of adrenocortical cells, with a major contribution of HLA genes. The target cells in the adrenal cortex participate in the immune reaction by releasing chemokines, such as CXCL-10, that attract Th1 cells.
Collapse
Affiliation(s)
- Alberto Falorni
- a Department of Internal Medicine, Section of Internal Medicine and Endocrine and Metabolic Sciences, University of Perugia, Via E. Dal Pozzo, 06126 Perugia, Italy.
| | - Annalisa Brozzetti
- b Department of Internal Medicine, Via E. Dal Pozzo, 06126 Perugia, Italy.
| | - Filippo Calcinaro
- c Department of Internal Medicine, Via E. Dal Pozzo, 06126 Perugia, Italy.
| | - Stefania Marzotti
- d Department of Internal Medicine, Via E. Dal Pozzo, 06126 Perugia, Italy.
| | - Fausto Santeusanio
- e Department of Internal Medicine, Via E. Dal Pozzo, 06126 Perugia, Italy.
| |
Collapse
|
72
|
Apps R, Murphy SP, Fernando R, Gardner L, Ahad T, Moffett A. Human leucocyte antigen (HLA) expression of primary trophoblast cells and placental cell lines, determined using single antigen beads to characterize allotype specificities of anti-HLA antibodies. Immunology 2009; 127:26-39. [PMID: 19368562 DOI: 10.1111/j.1365-2567.2008.03019.x] [Citation(s) in RCA: 271] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Human trophoblast cells express an unusual repertoire of human leucocyte antigen (HLA) molecules which has been difficult to define. Close homology between and extreme polymorphism at the classical HLA class-I (HLA-I) loci has made it difficult to generate locus-specific monoclonal antibodies (mAbs). The problem of defining an antibody's reactivity against the thousands of existing HLA-I allotypes has often made it impossible to determine the HLA bound by a mAb in biological samples from a normal outbred population. Here we have used commercially available beads coated with individual HLA-I to characterize experimentally the reactivity of nine mAb against 96 common HLA-I allotypes. In conjunction with donor HLA-I genotyping, we could then define the specific HLA molecules bound by these antibodies in normal individuals. We used this approach to analyse the HLA expression of primary trophoblast cells from normal pregnancies; the choriocarcinoma cells JEG-3 and JAR; and the placental cell lines HTR-8/SVneo, Swan-71 and TEV-1. We confirm that primary villous trophoblast cells are HLA null whereas extravillous trophoblast cells express HLA-C, HLA-G and HLA-E, but not HLA-A, HLA-B or HLA-DR molecules in normal pregnancy. Tumour-derived JEG-3 and JAR cells reflect extravillous and villous trophoblast HLA phenotypes, respectively, but the HLA repertoire of the in vitro derived placental cell lines is not representative of either in vivo trophoblast phenotype. This study raises questions regarding the validity of using the placental cell lines that are currently available as model systems for immunological interactions between fetal trophoblast and maternal leucocytes bearing receptors for HLA molecules.
Collapse
Affiliation(s)
- Richard Apps
- Department of Pathology, University of Cambridge, Cambridge, UK
| | | | | | | | | | | |
Collapse
|
73
|
Martin J, Worthington J, Harris S, Martin S. The influence of class II transactivator and interleukin-6 polymorphisms on the production of antibodies to donor human leucocyte antigen mismatches in renal allograft recipients. Int J Immunogenet 2009; 36:235-9. [PMID: 19523152 DOI: 10.1111/j.1744-313x.2009.00854.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The influence of polymorphisms in the CIITA and IL-6 genes on donor-specific human leucocyte antigen antibody production was investigated in a cohort of renal transplant recipients and their donors. CIITA and IL-6 single nucleotide polymorphisms were found to be associated with donor-specific human leucocyte antigen antibody production post-transplantation.
Collapse
Affiliation(s)
- J Martin
- Transplantation Laboratory, Manchester Royal Infirmary, Manchester, UK.
| | | | | | | |
Collapse
|
74
|
Choi JC, Holtz R, Murphy SP. Histone deacetylases inhibit IFN-gamma-inducible gene expression in mouse trophoblast cells. THE JOURNAL OF IMMUNOLOGY 2009; 182:6307-15. [PMID: 19414784 DOI: 10.4049/jimmunol.0802454] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Trophoblast cells are the first cells to differentiate from the developing mammalian embryo, and they subsequently form the blastocyst-derived component of the placenta. IFN-gamma plays critical roles in activating innate and adaptive immunity, as well as apoptosis. In mice, IFN-gamma is produced in the pregnant uterus, and is essential for formation of the decidual layer of the placenta and remodeling of the uterine vasculature. Responses of mouse trophoblast cells to IFN-gamma appear to be selective, for IFN-gamma activates MHC class I expression and enhances phagocytosis, but fails to activate either MHC class II expression or apoptosis in these cells. To investigate the molecular basis for the selective IFN-gamma responsiveness of mouse trophoblast cells, IFN-gamma-inducible gene expression was examined in the trophoblast cell lines SM9 and M-11, trophoblast stem cells, and trophoblast stem cell-derived giant cells. IFN-gamma-inducible expression of multiple genes, including IFN regulatory factor-1 (IRF-1), was significantly reduced in trophoblast cells compared with fibroblast cells. Decreased IRF-1 mRNA expression in trophoblast cells was due to a reduced rate of IRF-1 transcription relative to fibroblast cells. However, no impairment of STAT-1 tyrosine phosphorylation or DNA-binding capacity was observed in IFN-gamma-treated mouse trophoblast cells. Importantly, histone deacetylase (HDAC) inhibitors significantly enhanced IFN-gamma-inducible gene expression in trophoblast cells, but not fibroblasts. Our collective studies demonstrate that IFN-gamma-inducible gene expression is repressed in mouse trophoblast cells by HDACs. We propose that HDAC-mediated inhibition of IFN-gamma-inducible gene expression in mouse trophoblast cells may contribute to successful pregnancy by preventing activation of IFN-gamma responses that might otherwise facilitate the destruction of the placenta.
Collapse
|
75
|
Rosenbaum JT, Pasadhika S, Crouser ED, Choi D, Harrington CA, Lewis JA, Austin CR, Diebel TN, Vance EE, Braziel RM, Smith JR, Planck SR. Hypothesis: sarcoidosis is a STAT1-mediated disease. Clin Immunol 2009; 132:174-83. [PMID: 19464956 DOI: 10.1016/j.clim.2009.04.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 04/20/2009] [Accepted: 04/25/2009] [Indexed: 11/26/2022]
Abstract
Immunologic pathways involved in sarcoidosis pathogenesis are largely unknown. We hypothesized that patients with sarcoidosis have characteristic mRNA profiles. Microarray analysis of gene expression was done on peripheral blood (12 patients, 12 controls), lung (6 patients, 6 controls) and lymph node (8 patients, 5 controls). Comparing peripheral blood from patients with sarcoidosis to controls, 872 transcripts were upregulated and 1039 were downregulated at >1.5-fold change and a significant q value. Several transcripts associated with interferon and STAT1 were upregulated. Lung and lymph node analyses also showed dramatic increases in STAT1 and STAT1-regulated chemokines. Granulomas in lymph nodes of patients with sarcoidosis expressed abundant STAT1 and phosphorylated STAT1. STAT1 might play an important role in sarcoidosis. This novel hypothesis unites seemingly disparate observations with regard to sarcoidosis including implication of a casual role for interferons, a suspected infectious trigger, T(H)1 predominating lymphocytes in bronchoalveolar lavage, and the association with hypercalcemia.
Collapse
Affiliation(s)
- James T Rosenbaum
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Niesen MI, Osborne AR, Lagor WR, Zhang H, Kazemfar K, Ness GC, Blanck G. Technological advances in the study of HLA-DRA promoter regulation: extending the functions of CIITA, Oct-1, Rb, and RFX. Acta Biochim Biophys Sin (Shanghai) 2009; 41:198-205. [PMID: 19280058 DOI: 10.1093/abbs/gmp002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Several advances were established in examining the interaction of transcriptional factors with the HLA-DRA promoter. First, hydrodynamic injection was used to demonstrate the activation of the promoter by class II transactivator in a live mouse. Second, the Oct-1 DNA-binding site in the HLA-DRA promoter is a negative element in many cells, but here we show that Oct-1 activates the promoter independently of the Oct-1-binding site. Third, the retinoblastoma (Rb) protein is required for the induction of the endogenous HLA-DRA gene, due to a poorly understood, pleiotropic effect on the Oct-1 and YY1 repressive functions at the HLA-DRA promoter. There has never been an indication that direct promoter activation, by Rb, is possible. Here, we report that the first HLA-DRA intron has an Rb-responsive element, as indicated by a transient transfection/promoter reporter assay. Finally, RFX activates a methylated version of an HLA-DRA promoter reporter construct, consistent with the role of RFX in rescuing the expression of the methylated, endogenous HLA-DRA gene. Here, we report that this RFX function is not limited to a specific RFX-binding sequence or to the HLA-DRA promoter. These advances provide bases for novel investigations into the function of the major histocompatibility class II promoter.
Collapse
Affiliation(s)
- Melissa I Niesen
- Department of Molecular Medicine, College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | | | | | | | | | | | | |
Collapse
|
77
|
Murphy SP, Tayade C, Ashkar AA, Hatta K, Zhang J, Croy BA. Interferon gamma in successful pregnancies. Biol Reprod 2009; 80:848-59. [PMID: 19164174 PMCID: PMC2849832 DOI: 10.1095/biolreprod.108.073353] [Citation(s) in RCA: 213] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Revised: 10/01/2008] [Accepted: 01/07/2009] [Indexed: 11/01/2022] Open
Abstract
Interferon gamma (IFNG) is a proinflammatory cytokine secreted in the uterus during early pregnancy. It is abundantly produced by uterine natural killer cells in maternal endometrium but also by trophoblasts in some species. In normal pregnancies of mice, IFNG plays critical roles that include initiation of endometrial vasculature remodeling, angiogenesis at implantation sites, and maintenance of the decidual (maternal) component of the placenta. In livestock and in humans, deviations in these processes are thought to contribute to serious gestational complications, such as fetal loss or preeclampsia. Interferon gamma has broader roles in activation of innate and adaptive immune responses to viruses and tumors, in part through upregulating transcription of genes involved in cell cycle regulation, apoptosis, and antigen processing/presentation. Despite this, rodent and human trophoblast cells show dampened responses to IFNG that reflect the resistance of these cells to IFNG-mediated activation of major histocompatibility complex (MHC) class II transplantation antigen expression. Lack of MHC class II antigens on trophoblasts is thought to facilitate survival of the semiallogeneic conceptus in the presence of maternal lymphocytes. This review describes the dynamic roles of IFNG in successful pregnancy and briefly summarizes data on IFNG in gestational pathologies.
Collapse
Affiliation(s)
- Shawn P. Murphy
- Department of Obstetrics and Gynecology, University of Rochester, Rochester, New York
| | - Chandrakant Tayade
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Ali A. Ashkar
- Department of Pathology and Molecular Medicine, McMaster University Health Sciences Centre, Hamilton, Ontario, Canada
| | - Kota Hatta
- Departments of Microbiology and Immunology and Anatomy and Cell Biology, Queen's University, Kingston, Ontario, Canada
| | - Jianhong Zhang
- Departments of Microbiology and Immunology and Anatomy and Cell Biology, Queen's University, Kingston, Ontario, Canada
| | - B. Anne Croy
- Departments of Microbiology and Immunology and Anatomy and Cell Biology, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
78
|
Arakaki R, Nagaoka A, Ishimaru N, Yamada A, Yoshida S, Hayashi Y. Role of plasmacytoid dendritic cells for aberrant class II expression in exocrine glands from estrogen-deficient mice of healthy background. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:1715-24. [PMID: 19359524 DOI: 10.2353/ajpath.2009.080695] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Although it has been well documented that aberrant major histocompatibility complex class II molecules may contribute to the development of autoimmune disorders, the precise mechanisms responsible for their tissue-specific expression remain unknown. Here we show that estrogen deficiency induces aberrant class II major histocompatibility complex expression in exocrine glands via interactions between epithelial cells and plasmacytoid dendritic cells. Relatively modest but functionally significant expression levels of major histocompatibility complex class II and class II transactivator molecules were observed in the exocrine glands of ovariectomized (Ovx) C57BL/6 (B6) mice, but were not seen in the exocrine glands of control B6 mice. We observed that the salivary dendritic cells adjacent to the apoptotic epithelial cells positive for terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling, were activated in Ovx mice, but were not activated in control mice. We obtained evidence that the salivary gland cells express both interferon regulatory factor-1 and class II transactivator type IV molecules in Ovx mice. Salivary gland cells from Ovx mice were also capable of inducing the activation of antigen-specific T cells from OT-II transgenic mice. These findings indicate that estrogen deficiency initiates class II transactivator type IV mRNA expression in exocrine glands via interactions between epithelial cells and plasmacytoid dendritic cells, suggesting that plasmacytoid dendritic cells play a pivotal role in gender-based autoimmune disorders in postmenopausal women.
Collapse
Affiliation(s)
- Rieko Arakaki
- Department of Oral Molecular Pathology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | | | | | | | | | | |
Collapse
|
79
|
Rimsza LM, Chan WC, Gascoyne RD, Campo E, Jaffe ES, Staudt LM, Delabie J, Rosenwald A, Murphy SP. CIITA or RFX coding region loss of function mutations occur rarely in diffuse large B-cell lymphoma cases and cell lines with low levels of major histocompatibility complex class II expression. Haematologica 2009; 94:596-8. [PMID: 19229048 DOI: 10.3324/haematol.2008.000752] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
80
|
Cycon KA, Rimsza LM, Murphy SP. Alterations in CIITA constitute a common mechanism accounting for downregulation of MHC class II expression in diffuse large B-cell lymphoma (DLBCL). Exp Hematol 2009; 37:184-194. [PMID: 19081173 DOI: 10.1016/j.exphem.2008.10.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Revised: 09/20/2008] [Accepted: 10/01/2008] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Significant decreases in patient survival are associated with downregulation of major histocompatibility complex class II (MHC-II) antigen expression in diffuse large B-cell lymphoma (DLBCL). However, the molecular mechanisms responsible for decreased MHC-II expression in DLBCL are poorly defined. We therefore examined these mechanisms in established DLBCL cell lines. MATERIALS AND METHODS Human leukocyte antigen (HLA)-DR surface expression was examined by flow cytometry. Expression of the MHC-II genes and the MHC-II transcriptional activators class II transactivator (CIITA) and RFX was investigated by reverse transcriptase polymerase chain reaction. The integrity of the MHC-II genes was examined by polymerase chain reaction. Stable transfection assays were utilized to reconstitute CIITA expression. RESULTS Dramatic variations in the levels of cell surface HLA-DR expression were observed on the DLBCL cell lines. OCI-Ly10 cells lack HLA-DR and HLA-DQ expression due to homozygous deletions within the MHC-II locus on chromosome 6. Dyscoordinate downregulation of MHC-II beta-chain expression in OCI-Ly3 cells mediates dramatic reductions of MHC-II surface expression. In SUDHL-4 and SUDHL-6 cells, expression of the MHC-II genes is coordinately reduced and quantitatively correlated with expression of the CIITA, the master regulator of MHC-II transcription. DB cells lack expression of CIITA and all of the MHC-II genes. Stable transfection of DB cells with CIITA expression vectors resulted in coordinate upregulation of MHC-II gene expression, which demonstrates the causal relationship between the lack of CIITA and MHC-II loss. CONCLUSIONS These data demonstrate that downregulation of MHC-II expression occurs by multiple distinct mechanisms in DLBCL. However, decreases in CIITA expression appear to be the most prevalent mechanism.
Collapse
MESH Headings
- Cell Line, Tumor
- Chromosomes, Human, Pair 6/genetics
- Chromosomes, Human, Pair 6/metabolism
- Gene Expression Regulation, Leukemic/genetics
- HLA-DQ Antigens/biosynthesis
- HLA-DQ Antigens/genetics
- HLA-DR Antigens/biosynthesis
- HLA-DR Antigens/genetics
- Humans
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Nuclear Proteins/biosynthesis
- Nuclear Proteins/genetics
- Quantitative Trait Loci/genetics
- Trans-Activators/biosynthesis
- Trans-Activators/genetics
Collapse
Affiliation(s)
- Kelly A Cycon
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | | | |
Collapse
|
81
|
Tanaka S, Honda Y, Honda M. MX2 gene expression tends to be downregulated in subjects with HLA-DQB1*0602. Sleep 2008; 31:749-51. [PMID: 18517045 DOI: 10.1093/sleep/31.5.749] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVE There is a close association between narcolepsy and the human leukocyte antigen (HLA)-DQB1*0602. The detailed influence and function of this specific HLA allele with regard to narcolepsy have not yet been elucidated. Our previous report identified the myxovirus resistance 2 (MX2) gene as a narcolepsy-specific dysregulated gene; however, the report had a limitation-the control groups were not HLA matched. In this study, we examined the possibility of an association between MX2 expression and HLA haplotypes. DESIGNS The expression levels of the MX2 gene in 3 groups (24 narcolepsy with cataplexy patients; 24 age-, sex-, and HLA-DQB1 genotype-matched controls; and 24 age- and sex-matched controls without the HLA-DQB1*0602 allele) were measured by quantitative real-time RT-PCR. RESULTS The expression level of the MX2 gene tended to be downregulated in subjects carrying HLA-DQB1*0602, compared with that of the control subjects without this allele. There was no difference in the MX2 expression level between the narcolepsy subjects and the HLA-DQB1 genotype-matched control subjects. CONCLUSION Our previous finding-the narcolepsy-specific reduction of MX2 gene expression-was not replicated in this follow-up study. The expression level of the MX2 gene in white blood cells was found to be lower in subjects with the HLA-DQB1*0602 than in subjects without this allele, suggesting that there exists a relationship between the HLA-DQB1*0602 allele and MX2 gene expression. This might be a possible explanation for the strong HLA association observed in narcolepsy.
Collapse
Affiliation(s)
- Susumu Tanaka
- Sleep Disorders Project, Department of Sleep Disorders Research, Tokyo Institute of Psychiatry, Setagaya-ku, Tokyo, Japan
| | | | | |
Collapse
|
82
|
Voong LN, Slater AR, Kratovac S, Cressman DE. Mitogen-activated protein kinase ERK1/2 regulates the class II transactivator. J Biol Chem 2008; 283:9031-9. [PMID: 18245089 PMCID: PMC2431044 DOI: 10.1074/jbc.m706487200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Revised: 01/31/2008] [Indexed: 01/12/2023] Open
Abstract
The expression of major histocompatibility class II genes is necessary for proper antigen presentation and induction of an immune response. This expression is initiated by the class II transactivator, CIITA. The establishment of the active form of CIITA is controlled by a series of post-translational events, including GTP binding, ubiquitination, and dimerization. However, the role of phosphorylation is less clearly defined as are the consequences of phosphorylation on CIITA activity and the identity of the kinases involved. In this study we show that the extracellular signal-regulated kinases 1 and 2 (ERK1/2) interact directly with CIITA, targeting serine residues in the amino terminus of the protein, including serine 288. Inhibition of this phosphorylation by dominant-negative forms of ERK or by treatment of cells with the ERK inhibitor PD98059 resulted in the increase in CIITA-mediated gene expression from a class II promoter, enhanced the nuclear concentration of CIITA, and impaired its ability to bind to the nuclear export factor, CRM1. In contrast, inhibition of ERK1/2 activity had little effect on serine-to-alanine mutant forms of CIITA. These data suggest a model whereby ERK1/2-mediated phosphorylation of CIITA down-regulates CIITA activity by priming it for nuclear export, thus providing a means for cells to tightly regulate the extent of antigen presentation.
Collapse
Affiliation(s)
- Lilien N Voong
- Department of Biology, Sarah Lawrence College, 1 Mead Way, Bronxville, NY 10708, USA
| | | | | | | |
Collapse
|
83
|
Menges PR, Jenks SA, Bikoff EK, Friedmann DR, Knowlden ZAG, Sant AJ. An MHC class II restriction bias in CD4 T cell responses toward I-A is altered to I-E in DM-deficient mice. THE JOURNAL OF IMMUNOLOGY 2008; 180:1619-33. [PMID: 18209058 DOI: 10.4049/jimmunol.180.3.1619] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The MHC-encoded cofactor DM catalyzes endosomal loading of peptides onto MHC class II molecules. Despite evidence from in vitro experiments that DM acts to selectively edit the repertoire of class II:peptide complexes, the consequence of DM expression in vivo, or a predictive pattern of DM activity in the specificity of CD4 T cell responses has remained unresolved. Therefore, to characterize DM function in vivo we used wild-type (WT) or DM-deficient (DM(-/-)) mice of the H-2(d) MHC haplotype and tested the hypothesis that DM promotes narrowing of the repertoire of class II:peptide complexes displayed by APC, leading to a correspondingly selective CD4 T cell response. Surprisingly, our results indicated that DM(-/-) mice do not exhibit a broadened CD4 T cell response relative to WT mice, but rather shift their immunodominance pattern to new peptides, a pattern associated with a change in class II isotype-restriction. Specifically, we found that CD4 T cell responses in WT mice were primarily restricted to the I-A class II molecule, whereas DM(-/-) mice recognize peptides in the context of I-E. The observed shift in isotype-restriction appeared to be due in part to a modification in the peripheral CD4 T cell repertoire available for peptide recognition.
Collapse
Affiliation(s)
- Paula R Menges
- David H. Smith Center for Vaccine Biology and Immunology, AaB Institute of Biomedical Sciences, Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA
| | | | | | | | | | | |
Collapse
|
84
|
Lich JD, Ting JPY. CATERPILLER (NLR) family members as positive and negative regulators of inflammatory responses. Ann Am Thorac Soc 2007; 4:263-6. [PMID: 17607010 PMCID: PMC2647628 DOI: 10.1513/pats.200701-022aw] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
One of the most important advances in human immunology in the last decade has been the characterization of evolutionarily conserved molecular mediators important in controlling innate immunity. A prime example of this is the discovery of the mammalian Toll-like receptor family. Toll molecules were first discovered in Drosophila and were found to protect the organism from fungal infection. In mammals, Toll-like receptors respond to a wide variety of microbial products and serve as a bridge between innate and adaptive immunity. In the last 4 years, another important family of molecules has been discovered, and it is evolutionarily conserved from plants to humans. This family was first christened CATERPILLER by our laboratory, and is also known as NBD-LRR or NLR. CATERPILLER family members have rapidly gained prominence as important regulators of inflammatory responses to pathogens and their products. This article discusses some of the members of this family and their role in human disease.
Collapse
Affiliation(s)
- John D Lich
- Department of Microbiology-Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | | |
Collapse
|
85
|
Chou SD, Tomasi TB. Spatial distribution of histone methylation during MHC class II expression. Mol Immunol 2007; 45:971-80. [PMID: 17850872 PMCID: PMC2185543 DOI: 10.1016/j.molimm.2007.07.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 07/30/2007] [Accepted: 07/31/2007] [Indexed: 11/21/2022]
Abstract
We have previously reported that Major Histocompatibility Complex (MHC) class II can be induced by histone deacetylase inhibitors (HDACi) in the absence of class II transactivator (CIITA). Here we characterized the histone modifications associated with the CIITA-dependent (IFN-gamma induced) and -independent (HDACi induced) MHC class II expression. We demonstrate that both IFN-gamma and HDACi induced MHC class II expression exhibited enhanced histone H3, H4 acetylation and H3K4me3 at the MHC class II promoter while H3K9me3 was decreased. In contrast, high levels of H3K36me3 were detected at exons 3 and 5 but not at the promoter or the locus control region (LCR). Interestingly, high levels of H3K79me2 were only detected at the promoter and exon 3 of the B cell lines while the level remained low and unchanged despite active MHC class II expression induced by either IFN-gamma or HDACi treatment. Constitutive expression of the CIITA protein by stable transfection of a CIITA deficient B cell line restored the H3K79me2 to a level comparable to its cell of origin. This data demonstrates that, although regulated by different pathways, both IFN-gamma and HDACi treatments resulted in similar patterns of histone modifications and that HDACi induce both histone methylation and acetylation. In addition, the different spatial distribution of the lysine methylation markers along the gene suggests that these modifications play a distinctive role during different phases of the transcription process.
Collapse
Affiliation(s)
- Shiuh-Dih Chou
- Laboratory of Molecular Medicine, Department of Immunology, Roswell Park Cancer Institute, Elm and Carlton Sts. Buffalo, NY 14263
| | - Thomas B Tomasi
- Laboratory of Molecular Medicine, Department of Immunology, Roswell Park Cancer Institute, Elm and Carlton Sts. Buffalo, NY 14263
- Departments of Medicine and Microbiology and Immunology, State University of New York, School of Medicine and Biomedical Sciences, Buffalo, New York 14214
- * Corresponding author. Telephone: 716-845-3384, Fax: 716-845-8695, E-mail:
| |
Collapse
|
86
|
Wang J, Roderiquez G, Jones T, McPhie P, Norcross MA. Control of in vitro immune responses by regulatory oligodeoxynucleotides through inhibition of pIII promoter directed expression of MHC class II transactivator in human primary monocytes. THE JOURNAL OF IMMUNOLOGY 2007; 179:45-52. [PMID: 17579020 DOI: 10.4049/jimmunol.179.1.45] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Ag presentation is a key step in the initiation of adaptive immune responses that depends on the expression of MHC Ags and costimulatory molecules. Immune-enhancing CpG and non-CPG oligodeoxynucleotides (ODNs) stimulate Ag presentation by stimulating the expression of these molecules and by promoting dendritic cell maturation. In this report, we identify immunoregulatory orthophosphorothioate non-CpG molecules, referred to as regulatory ODNs (rODNs), by their ability to inhibit allogeneic monocyte-stimulated T cell responses and down-regulate HLA-DR in human primary monocytes. The rODNs promoted the survival of macrophages and were able to activate IL-8 secretion through a chloroquine-resistant pathway. Messenger RNAs for HLA-DR alpha and beta and the MHC CIITA were reduced by rODNs but not by stimulatory CpG ODN2006 and non-CpG ODN2006a. CIITA transcription in monocytes was controlled primarily by promoter III and not by promoter I or IV. rODNs blocked promoter III-directed transcription of CIITA in these cells. Under conditions that induced dendritic cell differentiation, rODNs also reduced HLA-DR expression. The activity of rODNs is phosphorothioate chemistry and G stretch dependent but TLR9 independent. G tetrads were detected by circular dichroism in active rODNs and associated with high m.w. multimers on nondenaturing gels. Heat treatment of rODNs disrupted G tetrads, the high m.w. aggregates, and the HLA-DR inhibitory activity of the ODNs. The inhibition of immune responses by regulatory oligodeoxynucleotides may be useful for the treatment of immune-mediated disorders including autoimmune diseases and graft rejection.
Collapse
Affiliation(s)
- Jinhai Wang
- Division of Therapeutic Proteins, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, 8800 Rockville Pike, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
87
|
Nikodemova M, Watters JJ, Jackson SJ, Yang SK, Duncan ID. Minocycline Down-regulates MHC II Expression in Microglia and Macrophages through Inhibition of IRF-1 and Protein Kinase C (PKC)α/βII. J Biol Chem 2007; 282:15208-16. [PMID: 17395590 DOI: 10.1074/jbc.m611907200] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Experimental allergic encephalomyelitis, an autoimmune disorder mediated by T cells, results in demyelination, inflammation, and axonal loss in the central nervous system (CNS). Microglia play a critical role in major histocompatibility complex class II (MHC II)-dependent antigen presentation and in reactivation of CNS-infiltrated encephalitogenic T cells. Minocycline, a tetracycline anti-biotic, has profound anti-inflammatory properties and is experimentally used for treatment of many CNS disorders; however, the mechanisms involved in minocycline effects remain unknown. We show that administration of minocycline for 2 weeks ameliorated clinical severity of experimental allergic encephalomyelitis, an effect that partially involves the down-regulation of MHC II proteins in the spinal cord. Therefore, we sought to elucidate the molecular mechanisms of minocycline inhibitory effects on MHC II expression in microglia. Although complex, the co-activator class II transactivator (CIITA) is a key regulator of MHC II expression. Here we show that minocycline inhibited interferongamma (IFNgamma)-induced CIITA and MHC II mRNA. Interestingly, however, it was without effect on STAT1 phosphorylation or IRF-1 expression, transcription factors that are activated by IFNgamma and necessary for CIITA expression. Further experiments revealed that MHC II expression is down-regulated in the presence of the PKC(alpha) inhibitor Gö6976. Minocycline inhibited IFNgamma-induced PKC(alpha/betaII) phosphorylation and the nuclear translocation of both PKC(alpha/betaII) and IRF-1 that subsequently inhibits CIITA expression. Our present data delineate a molecular pathway of minocycline action that includes inhibitory effects on PKC(alpha/betaII) and transcription factors that regulate the expression of critical inflammatory genes such as MHC II. Such a fundamental mechanism may underlie the pleiotropic effects of minocycline in CNS inflammatory disorders.
Collapse
Affiliation(s)
- Maria Nikodemova
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin 53706, USA.
| | | | | | | | | |
Collapse
|
88
|
Zhao M, Flynt FL, Hong M, Chen H, Gilbert CA, Briley NT, Bolick SC, Wright KL, Piskurich JF. MHC class II transactivator (CIITA) expression is upregulated in multiple myeloma cells by IFN-gamma. Mol Immunol 2007; 44:2923-32. [PMID: 17300840 PMCID: PMC1892219 DOI: 10.1016/j.molimm.2007.01.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Revised: 01/05/2007] [Accepted: 01/09/2007] [Indexed: 10/23/2022]
Abstract
The MHC class II transactivator (CIITA) acts in the cell nucleus as the master regulator of MHC class II (MHC II) gene expression. It is important to study CIITA regulation in multiple myeloma since MHC expression is central to ability of myeloma cells to present antigen and to the ability of the immune system to recognize and destroy this malignancy. Regulation of CIITA by IFN-gamma in B lymphocytes occurs through the CIITA type IV promoter (pIV), one of the four potential promoters (pI-pIV) of this gene. To investigate regulation of CIITA by IFN-gamma in multiple myeloma cells, first the ability of these cells to respond to IFN-gamma was examined. RT-PCR analyses show that IFN-gammaR1, the IFN-gamma-binding chain of the IFN-gamma receptor, is expressed in myeloma cells and IRF-1 expression increases in response to IFN-gamma treatment. Western blotting demonstrates that STAT1 is activated by phosphorylation in response to IFN-gamma. RT-PCR and functional promoter analyses show that IFN-gamma upregulates the activity of CIITA pIV, as does ectopic expression of IRF-1 or IRF-2. In vivo protein/DNA binding studies demonstrate protein binding at the GAS, E box and IRF-E sites. In vitro studies confirm the binding of IRF-1 and IRF-2 to CIITA pIV. Although multiple myeloma cells express PRDI-BF1/Blimp-1, a factor that represses both the CIITA type III and IV promoters, they retain the capability to upregulate CIITA pIV and MHC II expression in response to IFN-gamma treatment. These findings are the first to demonstrate that although PRDI-BF1/Blimp-1 diminishes the constitutive ability of these cells to present antigen by limiting CIITA and MHC II expression, it is possible to enhance this expression through the use of cytokines, like IFN-gamma.
Collapse
Affiliation(s)
- Mojun Zhao
- Division of Basic Medical Sciences, Mercer University School of Medicine, 1550 College Street, Macon, GA 31207, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Lich JD, Ting JPY. Monarch-1/PYPAF7 and other CATERPILLER (CLR, NOD, NLR) proteins with negative regulatory functions. Microbes Infect 2007; 9:672-6. [PMID: 17418609 PMCID: PMC2238720 DOI: 10.1016/j.micinf.2007.01.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
CATERPILLER is a mammalian gene family with signature NBD and LRR domains. Several members of this family are positive regulators of inflammatory responses. Others, however, exert negative effects on proinflammatory responses. These data are particularly convincing when shRNA/siRNA are used. This review focuses on the Monarch-1/PYPAF7 gene with brief discussions of CLR16.2/NOD3, PYPAF2/PAN1/NALP2, and PYPAF3.
Collapse
Affiliation(s)
- John D. Lich
- Lineberger Comprehensive Cancer Center, Department of Microbiology-Immunology, University of North Carolina, Chapel Hill, North Carolina 27599-7295
| | - Jenny Pan-Yun Ting
- Lineberger Comprehensive Cancer Center, Department of Microbiology-Immunology, University of North Carolina, Chapel Hill, North Carolina 27599-7295
| |
Collapse
|
90
|
Choi JC, Holtz R, Petroff MG, Alfaidy N, Murphy SP. Dampening of IFN-gamma-inducible gene expression in human choriocarcinoma cells is due to phosphatase-mediated inhibition of the JAK/STAT-1 pathway. THE JOURNAL OF IMMUNOLOGY 2007; 178:1598-607. [PMID: 17237409 DOI: 10.4049/jimmunol.178.3.1598] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Trophoblast cells (TBCs) form the blastocyst-derived component of the placenta and play essential roles in fetal maintenance. The proinflammatory cytokine IFN-gamma plays a central role in activating cellular immunity, controlling cell proliferation, and inducing apoptosis. IFN-gamma is secreted by uterine NK cells in the placenta during pregnancy and in mice is required for proper formation of the decidual layer and remodeling of the uterine vasculature. Despite the presence of IFN-gamma in the placenta, TBCs do not express either MHC class Ia or class II Ags, and are resistant to IFN-gamma-mediated apoptosis. In this study, we demonstrate that IFN-gamma-induced expression of multiple genes is significantly reduced in human trophoblast-derived choriocarcinoma cells relative to HeLa epithelial or fibroblast cells. These results prompted us to investigate the integrity of the JAK/STAT-1 pathway in these cells. Choriocarcinoma cells and HeLa cells express comparable levels of the IFN-gamma receptor. However, tyrosine phosphorylation of JAK-2 is compromised in IFN-gamma-treated choriocarcinoma cells. Moreover, phosphorylation of STAT-1 at tyrosine 701 is substantially reduced in both IFN-gamma-treated human choriocarcinoma and primary TBCs compared with HeLa cells or primary foreskin fibroblasts. A corresponding reduction of both IFN regulatory factor 1 mRNA and protein expression was observed in IFN-gamma-treated TBCs. Treatment of choriocarcinoma cells with the tyrosine phosphatase inhibitor pervanadate significantly enhanced IFN-gamma-inducible JAK and STAT-1 tyrosine phosphorylation and select IFN-gamma-inducible gene expression. We propose that phosphatase-mediated suppression of IFN-gamma signaling in TBCs contributes to fetal maintenance by inhibiting expression of genes that could be detrimental to successful pregnancy.
Collapse
Affiliation(s)
- Jason C Choi
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | | | | | | |
Collapse
|
91
|
Singh P. Role of Annexin-II in GI cancers: interaction with gastrins/progastrins. Cancer Lett 2006; 252:19-35. [PMID: 17188424 PMCID: PMC1941619 DOI: 10.1016/j.canlet.2006.11.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Accepted: 11/06/2006] [Indexed: 12/27/2022]
Abstract
The role of the gastrin peptide hormones (G17, G34) and their precursors (progastrins, PG; gly-extended gastrin, G-gly), in gastrointestinal (GI) cancers has been extensively reviewed in recent years [W. Rengifo-Cam, P. Singh, Role of progastrins and gastrins and their receptors in GI and pancreatic cancers: targets for treatment, Curr. Pharm. Des. 10 (19) (2004) 2345-2358; M. Dufresne, C. Seva, D. Fourmy, Cholecystokinin and gastrin receptors, Physiol. Rev. 86 (3) (2006) 805-847; A. Ferrand, T.C. Wang, Gastrin and cancer: a review, Cancer Lett. 238 (1) (2006) 15-29]. A possible important role of progastrin peptides in colon carcinogenesis has become evident from experiments with transgenic mouse models [W. Rengifo-Cam, P. Singh, (2004); A. Ferrand, T.C. Wang, (2006)]. It is now known that growth stimulatory and co-carcinogenic effects of gastrin/PG peptides are mediated by both proliferative and anti-apoptotic effects of the peptides on target cells [H. Wu, G.N. Rao, B. Dai, P. Singh, Autocrine gastrins in colon cancer cells Up-regulate cytochrome c oxidase Vb and down-regulate efflux of cytochrome c and activation of caspase-3, J. Biol. Chem. 275 (42) (2000) 32491-32498; H. Wu, A. Owlia, P. Singh, Precursor peptide progastrin(1-80) reduces apoptosis of intestinal epithelial cells and upregulates cytochrome c oxidase Vb levels and synthesis of ATP, Am. J. Physiol. Gastrointest. Liver Physiol. 285 (6) (2003) G1097-G1110]. Several receptor subtypes have been described that mediate growth effects of gastrin peptides [W. Rengifo-Cam, P. Singh (2004); M. Dufresne, C. Seva, D. Fourmy, (2006)]. Recently, we identified Annexin II as a high affinity binding protein for gastrin/PG peptides [P. Singh, H. Wu, C. Clark, A. Owlia, Annexin II binds progastrin and gastrin-like peptides, and mediates growth factor effects of autocrine and exogenous gastrins on colon cancer and intestinal epithelial cells, Oncogene (2006), doi:10.1038/sj.onc.1209798]. Importantly, the expression of Annexin II was required for mediating growth stimulatory effects of gastrin and PG peptides on intestinal epithelial and colon cancer cells [P. Singh, H. Wu, C. Clark, A. Owlia, Annexin II binds progastrin and gastrin-like peptides, and mediates growth factor effects of autocrine and exogenous gastrins on colon cancer and intestinal epithelial cells, Oncogene (2006), doi:10.1038/sj.onc.1209798], suggesting that Annexin-II may represent the elusive novel receptor for gastrin/PG peptides. The importance of this finding in relation to the structure and function of Annexin-II, especially in GI cancers, is described below. Since this surprising finding represents a new front in our understanding of the mechanisms involved in mediating growth effects of gastrin/PG peptides in GI cancers, our current understanding of the role of Annexin-II in proliferation and metastasis of cancer cells is additionally reviewed.
Collapse
Affiliation(s)
- Pomila Singh
- Department of Neuroscience and Cell Biology, 10.104 Medical Research Building, Route 1043, University of Texas Medical Branch, 301University Blvd., Mail Route 1043, Galveston, TX 77555-1043, USA.
| |
Collapse
|
92
|
Rodríguez T, Méndez R, Del Campo A, Aptsiauri N, Martín J, Orozco G, Pawelec G, Schadendorf D, Ruiz-Cabello F, Garrido F. Patterns of constitutive and IFN-gamma inducible expression of HLA class II molecules in human melanoma cell lines. Immunogenetics 2006; 59:123-33. [PMID: 17180681 DOI: 10.1007/s00251-006-0171-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Accepted: 10/19/2006] [Indexed: 10/23/2022]
Abstract
Major histocompatibility complex (MHC) class II proteins (HLA-DR, HLA-DP and HLA-DQ) play a fundamental role in the regulation of the immune response. The level of expression of human leukocyte antigen (HLA) class II antigens is regulated by interferon-gamma (IFN-gamma) and depends on the status of class II trans-activator protein (CIITA), a co-activator of the MHC class II gene promoter. In this study, we measured levels of constitutive and IFN-gamma-induced expression of MHC class II molecules, analysed the expression of CIITA and investigated the association between MHC class II transactivator polymorphism and expression of different MHC class II molecules in a large panel of melanoma cell lines obtained from the European Searchable Tumour Cell Line Database. Many cell lines showed no constitutive expression of HLA-DP, HLA-DQ and HLA-DR and no IFN-gamma-induced increase in HLA class II surface expression. However, in some cases, IFN-gamma treatment led to enhanced surface expression of HLA-DP and HLA-DR. HLA-DQ was less frequently expressed under basal conditions and was less frequently induced by IFN-gamma. In these melanoma cell lines, constitutive surface expression of HLA-DR and HLA-DP was higher than that of HLA-DQ. In addition, high constitutive level of cell surface expression of HLA-DR was correlated with lower inducibility of this expression by IFN-gamma. Finally, substitution A-->G in the 5' flanking region of CIITA promoter type III was associated with higher expression of constitutive HLA-DR (p<0.005). This study yielded a panel of melanoma cell lines with different patterns of constitutive and IFN-gamma-induced expression of HLA class II that can be used in future studies of the mechanisms of regulation of HLA class II expression.
Collapse
Affiliation(s)
- T Rodríguez
- Departamento de Análisis Clínicos, Hospital Universitario Virgen de las Nieves, Universidad de Granada, Avda. Fuerzas Armadas 2, 18014, Granada, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
He Y, Zhao Y, Zhang S, Chen W, Lin S, Yang Q, Liu J, Yang Y, Jin Y, Liu M. Not polymorphism but methylation of class II transactivator gene promoter IV associated with persistent HBV infection. J Clin Virol 2006; 37:282-6. [PMID: 16996793 DOI: 10.1016/j.jcv.2006.08.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Revised: 08/15/2006] [Accepted: 08/17/2006] [Indexed: 01/01/2023]
Abstract
BACKGROUND Class II transactivator (CIITA) is the major rate-limiting regulator for expression of class II major histocompability complex (MHC-II). Human CIITA gene expression is controlled by four distinct promoters (pIto pIV). OBJECTIVE To evaluate the relationship among polymorphism and methylation status of CIITA gene promoters and persistent hepatitis B virus (HBV) infection. METHODS We recruited 21 patients with hepatocellular carcinoma (HCC), 45 liver cirrhosis (LC), 65 chronic hepatitis B (CHB), 26 acute hepatitis B (AHB) and 95 healthy blood donors. Polymorphism of CIITA gene promoters was assayed by PCR-SSCP-sequencing. Bioinformatics analysis was employed to predict the existence of CpG islands. Methylation-specific PCR (MSP) was used to detect the methylation status of CIITA gene pIV. RESULTS No sequence differences were observed at CIITA genes pI, III and IV among HCC, LC, CHB, AHB patients and healthy controls. No CpG islands were found in the pI, pII and pIII sequences, but there was a CpG island in pIV. The frequency of methylated POV was not significantly different within persistent HBV infection groups (patients with HCC, LC or CHB). Significance was found between the persistent infection group and acute HBV infection or healthy controls. CONCLUSIONS CIITA gene promoter sequences are conserved. PIV is highly methylated and associated with host susceptibility to HBV persistent infection.
Collapse
Affiliation(s)
- Yingli He
- Department of Infectious Diseases, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Maubach G, Lim MCC, Kumar S, Zhuo L. Expression and upregulation of cathepsin S and other early molecules required for antigen presentation in activated hepatic stellate cells upon IFN-gamma treatment. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1773:219-31. [PMID: 17178165 DOI: 10.1016/j.bbamcr.2006.11.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Revised: 10/20/2006] [Accepted: 11/07/2006] [Indexed: 11/23/2022]
Abstract
Hepatic stellate cells (HSCs) have been shown to be able to activate T-cells and upregulate expression of surface molecules essential for this process, when treated with IFN-gamma. But little is known about the early molecules expressed by activated hepatic stellate cells under the same treatment. In this study, we investigate the effect of IFN-gamma on the transcription and expression of these early molecules in hepatic stellate cells. We show on the molecular level that activated rat hepatic stellate cells express the class II transactivator, the invariant chain (CD74), the MHC class II molecules, as well as cathepsin S, all of which are known to be responsible for the initial steps of successful antigen presentation. The mRNA and the protein expression level of these molecules is upregulated by IFN-gamma. Importantly, IFN-gamma increases cathepsin S activity, suggesting a possible involvement of this protease in CD74 processing. Our data also show that not only can the HSCs take up antigenic proteins, they can also process them. Our comparative study indicates that the rat HSC-T6 cell line displays sufficient similarity to the activated rat HSCs in order to serve as a model for in vitro studies on the molecular mechanisms of inflammatory response.
Collapse
Affiliation(s)
- Gunter Maubach
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, #04-01, 138669, Singapore.
| | | | | | | |
Collapse
|
95
|
Kohoutek J, Blazek D, Peterlin BM. Hexim1 sequesters positive transcription elongation factor b from the class II transactivator on MHC class II promoters. Proc Natl Acad Sci U S A 2006; 103:17349-54. [PMID: 17088550 PMCID: PMC1859933 DOI: 10.1073/pnas.0603079103] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The class II transactivator (CIITA) is the master integrator of expression of MHC class II genes. It interacts with variety of basal transcription factors to initiate and elongate transcription of these genes. Among others, it recruits positive transcription elongation factor b (P-TEFb) to MHC class II promoters. In cells, P-TEFb is found in small active or large inactive complexes. The large complex is composed of P-TEFb, 7SK small nuclear RNA, and hexamethylene bisacetamide-inducible protein 1 (Hexim1). The present study identifies Hexim1 as a potent inhibitor of CIITA-mediated transcription. Not only the exogenously expressed but also IFN-gamma-induced CIITA was inhibited by Hexim1. This inhibition did not result from an association between Hexim1 and CIITA but depended on the intact Cyclin T1-binding domain in Hexim1. Importantly, Hexim1 sequestered P-TEFb from CIITA, as documented by binding competition and ChIP assays. Conversely, the depletion of Hexim1 from cells by siRNA increased CIITA-mediated transcription. Thus, modulating ratios between active and inactive P-TEFb complexes is an additional mechanism of regulating transcriptional activators such as CIITA.
Collapse
Affiliation(s)
- Jiri Kohoutek
- Departments of Medicine, Microbiology, and Immunology, Rosalind Russell Medical Research Center, University of California, San Francisco, CA 94143-0703
| | - Dalibor Blazek
- Departments of Medicine, Microbiology, and Immunology, Rosalind Russell Medical Research Center, University of California, San Francisco, CA 94143-0703
| | - B. Matija Peterlin
- Departments of Medicine, Microbiology, and Immunology, Rosalind Russell Medical Research Center, University of California, San Francisco, CA 94143-0703
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
96
|
Kwon MJ, Soh JW, Chang CH. Protein kinase C delta is essential to maintain CIITA gene expression in B cells. THE JOURNAL OF IMMUNOLOGY 2006; 177:950-6. [PMID: 16818750 DOI: 10.4049/jimmunol.177.2.950] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Expression of MHC class II genes requires CIITA. Although the transactivation function of CIITA is well characterized, the signaling events that regulate CIITA expression are less understood. In this study, we report that CIITA expression in B cells depends on protein kinase Cdelta (PKCdelta). PKCdelta controls CIITA gene transcription mainly via modulating CREB recruitment to the CIITA promoter without affecting CIITA mRNA stability. Inhibition of PKCdelta by a pharmacological inhibitor or knocking down of endogenous PKCdelta expression by small interfering RNA reduced CREB binding to the CIITA promoter. The decrease of CIITA gene expression in the presence of the PKCdelta inhibitor was prevented by ectopically expressing a constitutively active form of CREB. In addition, histone acetylation of the CIITA promoter is regulated by PKCdelta since the PKCdelta inhibitor treatment or PKCdelta small interfering RNA resulted in decreased histone acetylation. Taken together, our study reveals that PKCdelta is an important signaling molecule necessary to maintain CIITA and MHC class II expression in B cells.
Collapse
Affiliation(s)
- Myung-Ja Kwon
- Department of Microbiology and Immunology, and Walther Oncology Center, Indiana University School of Medicine, 950 West Walnut Street, Indianapolis, IN 46202, USA
| | | | | |
Collapse
|
97
|
Lee KW, Lee Y, Kim DS, Kwon HJ. Direct role of NF-kappaB activation in Toll-like receptor-triggered HLA-DRA expression. Eur J Immunol 2006; 36:1254-66. [PMID: 16619292 DOI: 10.1002/eji.200535577] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Microbial components, such as DNA containing immunostimulatory CpG motifs (CpG-DNA) and lipopolysaccharides (LPS), elicit the cell surface expression of MHC class II (MHC-II) through Toll-like receptor (TLR)/IL-1R. Here, we show that CpG-DNA and LPS induce expression of the HLA-DRA in the human B cell line, RPMI 8226. Ectopic expression of the dominant negative mutant of CIITA and RNA interference targeting the CIITA gene indicate that CIITA activation is not enough for the maximal MHC-II expression induced by CpG-DNA and LPS. Additionally, nuclear factor (NF)-kappaB activation is required for the CpG-DNA-activated and LPS-activated HLA-DRA expression, whereas IFN-gamma-induced MHC-II expression depends on CIITA rather than on NF-kappaB. Comprehensive mutant analyses, electrophoretic mobility shift assays and chromatin immunoprecipitation assays, reveal that the functional interaction of NF-kappaB with the promoter element is necessary for the TLR-mediated HLA-DRA induction by CpG-DNA and LPS. This novel mechanism provides the regulation of MHC-II gene expression with complexity and functional diversity.
Collapse
Affiliation(s)
- Keun-Wook Lee
- Center for Medical Science Research, College of Medicine, Hallym University, Chuncheon Gangwon-do, Korea
| | | | | | | |
Collapse
|
98
|
Chen H, Gilbert CA, Hudson JA, Bolick SC, Wright KL, Piskurich JF. Positive regulatory domain I-binding factor 1 mediates repression of the MHC class II transactivator (CIITA) type IV promoter. Mol Immunol 2006; 44:1461-70. [PMID: 16765445 PMCID: PMC1987354 DOI: 10.1016/j.molimm.2006.04.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Revised: 04/24/2006] [Accepted: 04/25/2006] [Indexed: 02/06/2023]
Abstract
MHC class II transactivator (CIITA), a co-activator that controls MHC class II (MHC II) transcription, functions as the master regulator of MHC II expression. Persistent activity of the CIITA type III promoter (pIII), one of the four potential promoters of this gene, is responsible for constitutive expression of MHC II by B lymphocytes. In addition, IFN-gamma induces expression of CIITA in these cells through the type IV promoter (pIV). Positive regulatory domain 1-binding factor 1 (PRDI-BF1), called B lymphocyte-induced maturation protein 1 (Blimp-1) in mice, represses the expression of CIITA pIII in plasma and multiple myeloma cells. To investigate regulation of CIITA pIV expression by PRDI-BF1 in the B lymphocyte lineage, protein/DNA-binding studies, and functional promoter analyses were performed. PRDI-BF1 bound to the IFN regulatory factor-element (IRF-E) site in CIITA pIV. Ectopic expression of either PRDI-BF1 or Blimp-1 repressed this promoter in B lymphocytes. In vitro binding and functional analyses of CIITA pIV demonstrated that the IRF-E is the target of this repression. In vivo genomic footprint analysis demonstrated protein binding at the IRF-E site of CIITA pIV in U266 myeloma cells, which express PRDI-BF1. PRDI-BF1beta, a truncated form of PRDI-BF1 that is co-expressed in myeloma cells, also bound to the IRF-E site and repressed CIITA pIV. These findings demonstrate for the first time that, in addition to silencing expression of CIITA pIII in B lymphocytes, PRDI-BF1 is capable of binding and suppressing CIITA pIV.
Collapse
Affiliation(s)
- Han Chen
- Division of Basic Medical Sciences, Mercer University School of Medicine, 1550 College St., Macon, GA 31207, USA
| | - Carolyn A. Gilbert
- Division of Basic Medical Sciences, Mercer University School of Medicine, 1550 College St., Macon, GA 31207, USA
| | - John A. Hudson
- Department of Internal Medicine, Mercer University School of Medicine, 1550 College St., Macon, GA 31207, USA
| | - Sophia C. Bolick
- H. Lee Moffitt Cancer Center, Departments of Interdisciplinary Oncology and Molecular Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Kenneth L. Wright
- H. Lee Moffitt Cancer Center, Departments of Interdisciplinary Oncology and Molecular Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Janet F. Piskurich
- Division of Basic Medical Sciences, Mercer University School of Medicine, 1550 College St., Macon, GA 31207, USA
- * Corresponding author. Tel.: +1 478 301 4035; fax: +1 478 301 5489. E-mail address: (J.F. Piskurich)
| |
Collapse
|
99
|
Ting JPY, Kastner DL, Hoffman HM. CATERPILLERs, pyrin and hereditary immunological disorders. Nat Rev Immunol 2006; 6:183-95. [PMID: 16498449 DOI: 10.1038/nri1788] [Citation(s) in RCA: 237] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The newly described CATERPILLER family (also known as NOD-LRR or NACHT-LRR) is comprised of proteins with a nucleotide-binding domain and a leucine-rich region. This family has gained rapid prominence because of its demonstrated and anticipated roles in immunity, cell death and growth, and diseases. CATERPILLER proteins are structurally similar to a subgroup of plant-disease-resistance (R) proteins and to the apoptotic protease activating factor 1 (APAF1). They provide positive and negative signals for the control of immune and inflammatory responses, and might represent intracellular sensors of pathogen products. Most importantly, they are genetically linked to several human immunological disorders.
Collapse
Affiliation(s)
- Jenny P-Y Ting
- Department of Microbiology-Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, North Carolina 27599, USA.
| | | | | |
Collapse
|
100
|
Dhiman N, Ovsyannikova IG, Oberg AL, Grill DE, Jacobson RM, Poland GA. Immune activation at effector and gene expression levels after measles vaccination in healthy individuals: a pilot study. Hum Immunol 2006; 66:1125-36. [PMID: 16571413 DOI: 10.1016/j.humimm.2005.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2005] [Accepted: 09/29/2005] [Indexed: 11/29/2022]
Abstract
Cellular immunity to measles vaccination is not fully understood at the effector response and gene expression levels. We enrolled 15 healthy individuals (15-25 years old) previously vaccinated with two doses of measles-mumps-rubella-II vaccine to characterize their cellular immunity. We detected a spectrum of lymphoproliferative response (median stimulation indices of 3.4), low precursor frequencies of interferon-gamma (median 0.11%) and interleukin-4 (median 0.05%) by Elispot, and cosecretion of Th1 and Th2 cytokines after measles virus stimulation. Further, global gene expression was examined in five subjects from this cohort after vaccination with an additional dose of measles vaccine (Attenuax, Merck) to identify the genes involved in measles immunity. Linear mixed effect models were used to identify genes significantly up or downregulated in vivo between baseline and Days 7 and 14 after measles vaccination. Measles vaccination induced upregulation of a set of 80 genes, which play a role in measles immunity, signal transduction, apoptosis, cell proliferation, and metabolic pathways. Among the 34 genes that were downregulated, only interferon-alpha is known to have a direct role in measles immunity. This study suggests that measles vaccination leads to activation of multiple cellular mechanisms that can override the immunosuppressant effects of the measles virus and induce immunity.
Collapse
Affiliation(s)
- Neelam Dhiman
- Mayo Vaccine Research Group, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | | | | | | | | |
Collapse
|