51
|
Alvarez-Castelao B, Martín-Guerrero I, García-Orad Á, Castaño JG. Cytomegalovirus promoter up-regulation is the major cause of increased protein levels of unstable reporter proteins after treatment of living cells with proteasome inhibitors. J Biol Chem 2009; 284:28253-28262. [PMID: 19679666 DOI: 10.1074/jbc.m109.004101] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Fluorescent unstable proteins obtained by the fusion of a fluorescent protein coding sequence with specific amino acid sequences that promote its fast degradation have become popular to gauge the activity of the ubiquitin/proteasome system in living cells. The steady-state levels of expression of these unstable proteins is low in agreement with their short half-lives, and they accumulate in the cell upon treatment with proteasome inhibitors. We show here that this accumulation is mainly due to transcriptional up-regulation of the cytomegalovirus promoter by proteasome inhibitors and mediated, at least in part, by AP1 transactivation. These simple facts put under quarantine conclusions reached about the activity of the ubiquitin/proteasome pathway in animal cells in culture or in transgenic mice, where popular cytomegalovirus-driven constructs are used, as transcriptional regulation of the expression of the reporter protein construct and not degradation of the unstable protein by the ubiquitin/proteasome system may contribute significantly to the interpretation of the results observed.
Collapse
Affiliation(s)
- Beatriz Alvarez-Castelao
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas "Alberto Sols," Universidad Autónoma de Madrid y Consejo Superior de Investigaciones Científicas (UAM-CSIC) y Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Facultad de Medicina UAM, 28029 Madrid, Spain
| | - Idoia Martín-Guerrero
- Departamento de Genética, Antropología Física y Fisiología Animal, Facultad de Medicina, Universidad del País Vasco (UPV/EHU), 48940 Leioa, Spain
| | - África García-Orad
- Departamento de Genética, Antropología Física y Fisiología Animal, Facultad de Medicina, Universidad del País Vasco (UPV/EHU), 48940 Leioa, Spain
| | - José G Castaño
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas "Alberto Sols," Universidad Autónoma de Madrid y Consejo Superior de Investigaciones Científicas (UAM-CSIC) y Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Facultad de Medicina UAM, 28029 Madrid, Spain.
| |
Collapse
|
52
|
Abstract
Long regarded as proinflammatory molecules, prostaglandins (PGs) also have anti-inflammatory effects. Both prostaglandin D2 (PGD2) and its dehydration end product 15-deoxy-Delta-prostaglandin J2 (15d-PGJ2) seem to play important roles in regulating inflammation, via both receptor-dependent (DP1 and DP2 receptors) and receptor-independent mechanisms. Intracellular effects of PGD2 and 15d-PGJ2 that may suppress inflammation include inhibition of nuclear factor-kappaB (NF-kappaB) by multiple mechanisms (IkappaB kinase inhibition and blockade of NF-kappaB nuclear binding) and activation of peroxisome proliferator-activated receptor-gamma (PPAR-gamma). Prostaglandin F2alpha (PGF2alpha) may also have important anti-inflammatory effects, although current data are limited. In animal models, expression of both PGD and PGF synthases declines during acute inflammation, only to rise again during the resolution phase, suggesting their possible role in resolving inflammation. Prostaglandin E2 (PGE2), the classic model of a proinflammatory lipid mediator, also has anti-inflammatory effects that are both potent and context dependent. Thus, accumulating data suggest that PGs not only participate in initiation, but may also actively contribute to the resolution of inflammation. Indeed, classic inhibitors of PG synthesis such as nonselective and cyclooxygenase-2 (COX-2) selective inhibitors (nonsteroidal anti-inflammatory drugs) may actually prolong inflammation when administered during the resolution phase. These effects may regulate not only tissue inflammation but also vascular disease, possibly shedding light on the controversy surrounding nonsteroidal anti-inflammatory drug use and its relation to myocardial infarction. In this review, we summarize the current understanding of PGs as dichotomous molecules in the inflammatory process.
Collapse
Affiliation(s)
- Jose U Scher
- Division of Rheumatology, Department of Medicine, NYU School of Medicine/NYU Hospital for Joint Diseases; and Department of Medicine, VA NY Harbor Healthcare System, NY Campus, New York, NY, USA
| | | |
Collapse
|
53
|
Remels AHV, Langen RCJ, Gosker HR, Russell AP, Spaapen F, Voncken JW, Schrauwen P, Schols AMWJ. PPARgamma inhibits NF-kappaB-dependent transcriptional activation in skeletal muscle. Am J Physiol Endocrinol Metab 2009; 297:E174-83. [PMID: 19417127 DOI: 10.1152/ajpendo.90632.2008] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Skeletal muscle pathology associated with a chronic inflammatory disease state (e.g., skeletal muscle atrophy and insulin resistance) is a potential consequence of chronic activation of NF-kappaB. It has been demonstrated that peroxisome proliferator-activated receptors (PPARs) can exert anti-inflammatory effects by interfering with transcriptional regulation of inflammatory responses. The goal of the present study, therefore, was to evaluate whether PPAR activation affects cytokine-induced NF-kappaB activity in skeletal muscle. Using C(2)C(12) myotubes as an in vitro model of myofibers, we demonstrate that PPAR, and specifically PPARgamma, activation potently inhibits inflammatory mediator-induced NF-kappaB transcriptional activity in a time- and dose-dependent manner. Furthermore, PPARgamma activation by rosiglitazone strongly suppresses cytokine-induced transcript levels of the NF-kappaB-dependent genes intracellular adhesion molecule 1 (ICAM-1) and CXCL1 (KC), the murine homolog of IL-8, in myotubes. To verify whether muscular NF-kappaB activity in human subjects is suppressed by PPARgamma activation, we examined the effect of 8 wk of rosiglitazone treatment on muscular gene expression of ICAM-1 and IL-8 in type 2 diabetes mellitus patients. In these subjects, we observed a trend toward decreased basal expression of ICAM-1 mRNA levels. Subsequent analyses in cultured myotubes revealed that the anti-inflammatory effect of PPARgamma activation is not due to decreased RelA translocation to the nucleus or reduced RelA DNA binding. These findings demonstrate that muscle-specific inhibition of NF-kappaB activation may be an interesting therapeutic avenue for treatment of several inflammation-associated skeletal muscle abnormalities.
Collapse
Affiliation(s)
- A H V Remels
- Department of Respiratory Medicine, Maastricht University, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Abstract
Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear hormone-receptor superfamily. Originally cloned in 1990, PPARs were found to be mediators of pharmacologic agents that induce hepatocyte peroxisome proliferation. PPARs also are expressed in cells of the cardiovascular system. PPAR gamma appears to be highly expressed during atherosclerotic lesion formation, suggesting that increased PPAR gamma expression may be a vascular compensatory response. Also, ligand-activated PPAR gamma decreases the inflammatory response in cardiovascular cells, particularly in endothelial cells. PPAR alpha, similar to PPAR gamma, also has pleiotropic effects in the cardiovascular system, including antiinflammatory and antiatherosclerotic properties. PPAR alpha activation inhibits vascular smooth muscle proinflammatory responses, attenuating the development of atherosclerosis. However, PPAR delta overexpression may lead to elevated macrophage inflammation and atherosclerosis. Conversely, PPAR delta ligands are shown to attenuate the pathogenesis of atherosclerosis by improving endothelial cell proliferation and survival while decreasing endothelial cell inflammation and vascular smooth muscle cell proliferation. Furthermore, the administration of PPAR ligands in the form of TZDs and fibrates has been disappointing in terms of markedly reducing cardiovascular events in the clinical setting. Therefore, a better understanding of PPAR-dependent and -independent signaling will provide the foundation for future research on the role of PPARs in human cardiovascular biology.
Collapse
Affiliation(s)
- Milton Hamblin
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA
| | | | | | | | | |
Collapse
|
55
|
Naureckiene S, Kodangattil SR, Kaftan EJ, Jones PG, Kennedy JD, Rogers KE, Chanda PK. Identification of critical amino acid residues for human iNOS functional activity. Protein J 2009; 27:309-18. [PMID: 18459037 DOI: 10.1007/s10930-008-9139-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Nitric oxide (NO) is a short-lived signaling molecule that mediates a variety of biological functions, including vascular homeostasis, neurotransmission, antimicrobial defense and antitumor activities. Three known NOS isoforms (eNOS, nNOS and iNOS) have been cloned and sequenced. Here, we show that upon expression in Escherichia coli using a novel expression vector, an iNOS sequence containing three mutations (A805D, F831S and L832P) within the iNOS reductase domain produced very little functionally active iNOS protein compared to the wild type (wt) iNOS. Each of these point mutations also was individually constructed into the wt iNOS sequence. The activity of the iNOS protein containing the A805D mutation was comparable to wt, while a drastic reduction in iNOS activity was observed for the F831S and L832P mutants. A comparison of the molecular models of the reductase domain of the wt and mutant iNOS revealed a reduced core packing density for the F831S and L832P mutations compared to wt. In addition, the modeling also suggests altered hydrogen bonding, van der Waals and hydrophobic interactions of these mutants.
Collapse
Affiliation(s)
- Saule Naureckiene
- Neuroscience Discovery Research, Wyeth Research, CN8000, Princeton, NJ 08543, USA
| | | | | | | | | | | | | |
Collapse
|
56
|
Scazzocchio B, Varì R, D'Archivio M, Santangelo C, Filesi C, Giovannini C, Masella R. Oxidized LDL impair adipocyte response to insulin by activating serine/threonine kinases. J Lipid Res 2009; 50:832-45. [PMID: 19136667 DOI: 10.1194/jlr.m800402-jlr200] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Oxidized LDL (oxLDL) increase in patients affected by type-2 diabetes, obesity, and metabolic syndrome. Likewise, insulin resistance, an impaired responsiveness of target tissues to insulin, is associated with those pathological conditions. To investigate a possible causal relationship between oxLDL and the onset of insulin resistance, we evaluated the response to insulin of 3T3-L1 adipocytes treated with oxLDL. We observed that oxLDL inhibited glucose uptake (-40%) through reduced glucose transporter 4 (GLUT4) recruitment to the plasma membrane (-70%), without affecting GLUT4 gene expression. These findings were associated to the impairment of insulin signaling. Specifically, in oxLDL-treated cells insulin receptor (IR) substrate-1 (IRS-1) was highly degraded likely because of the enhanced Ser(307)phosphorylation. This process was largely mediated by the activation of the inhibitor of kappaB-kinase beta (IKKbeta) and the c-Jun NH(2)-terminal kinase (JNK). Moreover, the activation of IKKbeta positively regulated the nuclear content of nuclear factor kappaB (NF-kappaB), by inactivating the inhibitor of NF-kappaB (IkappaBalpha). The activated NF-kappaB further impaired per se GLUT4 functionality. Specific inhibitors of IKKbeta, JNK, and NF-kappaB restored insulin sensitivity in adipocytes treated with oxLDL. These data provide the first evidence that oxLDL, by activating serine/threonine kinases, impaired adipocyte response to insulin affecting pathways involved in the recruitment of GLUT4 to plasma membranes (PM). This suggests that oxLDL might participate in the development of insulin resistance.
Collapse
Affiliation(s)
- Beatrice Scazzocchio
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
57
|
Chang JY, Tsai PF. Prevention of methylmercury-induced mitochondrial depolarization, glutathione depletion and cell death by 15-deoxy-delta-12,14-prostaglandin J(2). Neurotoxicology 2008; 29:1054-61. [PMID: 18778734 PMCID: PMC2683755 DOI: 10.1016/j.neuro.2008.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2008] [Revised: 08/05/2008] [Accepted: 08/08/2008] [Indexed: 12/31/2022]
Abstract
Methylmercury (MeHg) is an environmental toxin that causes severe neurological complications in humans and experimental animals. In addition to neurons, glia in the central nervous system are very susceptible to MeHg toxicity. Pretreatment of glia with the prostaglandin derivative, 15-deoxy-delta-12,14-prostaglandin J(2) (15d-PGJ(2)), caused a significant protection against MeHg cytotoxicity. Results with the C6 glioma cells demonstrated that the protection was dependent on the duration of pretreatment, suggesting that time was required for the up-regulation of cellular defenses. Subsequent experiments indicated that 15d-PGJ(2) prevented MeHg induced mitochondrial depolarization. Similar protection against MeHg cytotoxicity was observed in primary cultures of mouse glia. Analysis of cellular glutathione (GSH) levels indicated that 15d-PGJ(2) caused an up-regulation of GSH and prevented MeHg-induced GSH depletion. Buthionine sulfoximine (BSO), a GSH synthesis inhibitor, completely inhibited the GSH induction by 15d-PGJ(2). However, BSO did not prevent the stabilization of mitochondrial potential and only partially prevented the protection caused by 15d-PGJ(2). While induction of heme oxygenase-1 was implicated in the cytoprotection by 15d-PGJ(2) under some experimental conditions, additional experiments indicated that this enzyme was not involved in the cytoprotection observed in this system. Together, these results suggested that while up-regulation of GSH by 15d-PGJ(2) might help cells to defend against MeHg toxicity, there may be other yet unidentified mechanism(s) initiated by 15d-PGJ(2) treatment that contributed to its protection against MeHg cytotoxicity.
Collapse
Affiliation(s)
- Jason Y Chang
- Department of Neurobiology & Developmental Sciences, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | | |
Collapse
|
58
|
Skugor S, Glover KA, Nilsen F, Krasnov A. Local and systemic gene expression responses of Atlantic salmon (Salmo salar L.) to infection with the salmon louse (Lepeophtheirus salmonis). BMC Genomics 2008; 9:498. [PMID: 18945374 PMCID: PMC2582245 DOI: 10.1186/1471-2164-9-498] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Accepted: 10/23/2008] [Indexed: 12/20/2022] Open
Abstract
Background The salmon louse (SL) is an ectoparasitic caligid crustacean infecting salmonid fishes in the marine environment. SL represents one of the major challenges for farming of salmonids, and veterinary intervention is necessary to combat infection. This study addressed gene expression responses of Atlantic salmon infected with SL, which may account for its high susceptibility. Results The effects of SL infection on gene expression in Atlantic salmon were studied throughout the infection period from copepodids at 3 days post infection (dpi) to adult lice (33 dpi). Gene expression was analyzed at three developmental stages in damaged and intact skin, spleen, head kidney and liver, using real-time qPCR and a salmonid cDNA microarray (SFA2). Rapid detection of parasites was indicated by the up-regulation of immunoglobulins in the spleen and head kidney and IL-1 receptor type 1, CD4, beta-2-microglobulin, IL-12β, CD8α and arginase 1 in the intact skin of infected fish. Most immune responses decreased at 22 dpi, however, a second activation was observed at 33 dpi. The observed pattern of gene expression in damaged skin suggested the development of inflammation with signs of Th2-like responses. Involvement of T cells in responses to SL was witnessed with up-regulation of CD4, CD8α and programmed death ligand 1. Signs of hyporesponsive immune cells were seen. Cellular stress was prevalent in damaged skin as seen by highly significant up-regulation of heat shock proteins, other chaperones and mitochondrial proteins. Induction of the major components of extracellular matrix, TGF-β and IL-10 was observed only at the adult stage of SL. Taken together with up-regulation of matrix metalloproteinases (MMP), this classifies the wounds afflicted by SL as chronic. Overall, the gene expression changes suggest a combination of chronic stress, impaired healing and immunomodulation. Steady increase of MMP expression in all tissues except liver was a remarkable feature of SL infected fish. Conclusion SL infection in Atlantic salmon is associated with a rapid induction of mixed inflammatory responses, followed by a period of hyporesponsiveness and delayed healing of injuries. Persistent infection may lead to compromised host immunity and tissue self-destruction.
Collapse
Affiliation(s)
- Stanko Skugor
- Nofima Akvaforsk Fiskeriforskning, POBox 5010, As 1430, Norway.
| | | | | | | |
Collapse
|
59
|
Doublier S, Riganti C, Voena C, Costamagna C, Aldieri E, Pescarmona G, Ghigo D, Bosia A. RhoA Silencing Reverts the Resistance to Doxorubicin in Human Colon Cancer Cells. Mol Cancer Res 2008; 6:1607-20. [DOI: 10.1158/1541-7786.mcr-08-0251] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
60
|
Effect of cyclopentanone prostaglandin 15-deoxy-delta12,14PGJ2 on early functional recovery from experimental spinal cord injury. Shock 2008; 30:142-52. [PMID: 18628687 DOI: 10.1097/shk.0b013e31815dd381] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Peroxisome proliferator-activated receptor (PPAR) gamma is a member of the nuclear-receptor superfamily that binds to DNA with retinoid X receptors as PPAR-retinoid X receptor heterodimers. Recent evidence also suggests that the cyclopentenone prostaglandin 15-deoxy-DeltaPGJ2 (15d-PGJ2), which is a metabolite of the prostaglandin D2, functions as an endogenous ligand for PPAR-gamma We postulated that 15d-PGJ2 would attenuate inflammation, investigating the effects on the degree of experimental spinal cord trauma induced by the application of vascular clips (force of 24 g) to the dura via a four-level T5-T8 laminectomy. Spinal cord injury in mice resulted in severe trauma characterized by edema, neutrophil infiltration, production of a range of inflammatory mediators, tissue damage, and apoptosis. Furthermore, 15d-PGJ2 reduced (1) spinal cord inflammation and tissue injury (histological score), (2) neutrophil infiltration (myeloperoxidase activity), (3) nuclear factor-kappaB activation, (4) expression of iNOS, nitrotyrosine and TNF-alpha, and (5) apoptosis (terminal deoxynucleotidyltransferase-mediated uridine triphosphate end labeling staining, Bax, Bcl-2, and FAS-L expression). In a separate set of experiments, 15d-PGJ2 significantly ameliorated the recovery of limb function (evaluated by motor recovery score). To elucidate whether the protective effects of 15d-PGJ2 are related to activation of the PPAR-gamma receptor, we also investigated the effect of a PPAR-gamma antagonist, GW 9662, on the protective effects of 15d-PGJ2. GW9662 (1 mg/kg administered i.p. 30 min before treatment with 15d-PGJ2) significantly antagonized the effect of the PPAR-gamma agonist and, thus, abolished the protective effect. Taken together, our results clearly demonstrate that treatment with 15d-PGJ2 reduces the development of inflammation and tissue injury associated with spinal cord trauma.
Collapse
|
61
|
Szanto A, Nagy L. The many faces of PPARgamma: anti-inflammatory by any means? Immunobiology 2008; 213:789-803. [PMID: 18926294 DOI: 10.1016/j.imbio.2008.07.015] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Accepted: 07/29/2008] [Indexed: 01/08/2023]
Abstract
The peroxisome proliferator-activated receptor gamma (PPARgamma) is a member of the nuclear receptor superfamily, a group of transcription factors that regulate expression of their target genes upon ligand binding. As endogenous ligands, oxidized fatty acids and prostanoids can bind to and activate the receptor. Natural and synthetic PPARgamma activators have been studied extensively in many inflammatory settings and in most instances they have been shown to be anti-inflammatory. In this review we give an overview of the different molecular mechanisms how PPARgamma and its agonists exert their anti-inflammatory effects both at the cellular level and the level of the organism. The action of PPARgamma in acute and chronic inflammatory diseases and disease models will be presented.
Collapse
Affiliation(s)
- Attila Szanto
- Department of Biochemistry and Molecular Biology, University of Debrecen, Medical and Health Science Center, Research Center for Molecular Medicine, Life Science Building, Egyetem ter 1, H-4032 Debrecen, Hungary.
| | | |
Collapse
|
62
|
García-Bueno B, Caso JR, Leza JC. Stress as a neuroinflammatory condition in brain: Damaging and protective mechanisms. Neurosci Biobehav Rev 2008; 32:1136-51. [DOI: 10.1016/j.neubiorev.2008.04.001] [Citation(s) in RCA: 210] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Revised: 04/02/2008] [Accepted: 04/02/2008] [Indexed: 01/07/2023]
|
63
|
Jahoor A, Patel R, Bryan A, Do C, Krier J, Watters C, Wahli W, Li G, Williams SC, Rumbaugh KP. Peroxisome proliferator-activated receptors mediate host cell proinflammatory responses to Pseudomonas aeruginosa autoinducer. J Bacteriol 2008; 190:4408-15. [PMID: 18178738 PMCID: PMC2446782 DOI: 10.1128/jb.01444-07] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Accepted: 12/23/2007] [Indexed: 12/23/2022] Open
Abstract
The pathogenic bacterium Pseudomonas aeruginosa utilizes the 3-oxododecanoyl homoserine lactone (3OC(12)-HSL) autoinducer as a signaling molecule to coordinate the expression of virulence genes through quorum sensing. 3OC(12)-HSL also affects responses in host cells, including the upregulation of genes encoding inflammatory cytokines. This proinflammatory response may exacerbate underlying disease during P. aeruginosa infections. The specific mechanism(s) through which 3OC(12)-HSL influences host responses is unclear, and no mammalian receptors for 3OC(12)-HSL have been identified to date. Here, we report that 3OC(12)-HSL increases mRNA levels for a common panel of proinflammatory genes in murine fibroblasts and human lung epithelial cells. To identify putative 3OC(12)-HSL receptors, we examined the expression patterns of a panel of nuclear hormone receptors in these two cell lines and determined that both peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) and PPARgamma were expressed. 3OC(12)-HSL functioned as an agonist of PPARbeta/delta transcriptional activity and an antagonist of PPARgamma transcriptional activity and inhibited the DNA binding ability of PPARgamma. The proinflammatory effect of 3OC(12)-HSL in lung epithelial cells was blocked by the PPARgamma agonist rosiglitazone, suggesting that 3OC(12)-HSL and rosiglitazone are mutually antagonistic negative and positive regulators of PPARgamma activity, respectively. These data identify PPARbeta/delta and PPARgamma as putative mammalian 3OC(12)-HSL receptors and suggest that PPARgamma agonists may be employed as anti-inflammatory therapeutics for P. aeruginosa infections.
Collapse
Affiliation(s)
- Aruna Jahoor
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, 3601 4th St., Lubbock, TX 79430, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Molecular mechanism of PPAR in the regulation of age-related inflammation. Ageing Res Rev 2008; 7:126-36. [PMID: 18313368 DOI: 10.1016/j.arr.2008.01.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Revised: 01/15/2008] [Accepted: 01/15/2008] [Indexed: 11/22/2022]
Abstract
Evidence from many recent studies has linked uncontrolled inflammatory processes to aging and aging-related diseases. Decreased a nuclear receptor subfamily of transcription factors, peroxisome proliferator-activated receptors (PPARs) activity is closely associated with increased levels of inflammatory mediators during the aging process. The anti-inflammatory action of PPARs is substantiated by both in vitro and in vivo studies that signify the importance of PPARs as major players in the pathogenesis of many inflammatory diseases. In this review, we highlight the molecular mechanisms and roles of PPARalpha, gamma in regulation of age-related inflammation. By understanding these current findings of PPARs, we open up the possibility of developing new therapeutic agents that modulate these nuclear receptors to control various inflammatory diseases such as atherosclerosis, vascular diseases, Alzheimer's disease, and cancer.
Collapse
|
65
|
Hounoki H, Sugiyama E, Mohamed SGK, Shinoda K, Taki H, Abdel-Aziz HO, Maruyama M, Kobayashi M, Miyahara T. Activation of peroxisome proliferator-activated receptor gamma inhibits TNF-alpha-mediated osteoclast differentiation in human peripheral monocytes in part via suppression of monocyte chemoattractant protein-1 expression. Bone 2008; 42:765-74. [PMID: 18242157 DOI: 10.1016/j.bone.2007.11.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2006] [Revised: 09/24/2007] [Accepted: 11/20/2007] [Indexed: 10/22/2022]
Abstract
Tumor necrosis factor-alpha (TNF-alpha) plays critical roles in bone resorption at the site of inflammatory joints. The aim of this study is to evaluate the effect of peroxisome proliferator-activated receptor gamma (PPAR-gamma) agonists, a new class of anti-inflammatory compounds, on TNF-alpha-mediated osteoclastogenesis in human monocytes. Human monocytes were differentiated into osteoclasts in the presence of TNF-alpha and macrophage colony-stimulating factor. Tartrate-resistant acid phosphatase (TRAP) staining and a pit formation assay using dentin were used for the identification of activated osteoclasts. The protein and gene expressions of transcription factors were determined by immunofluorescence and real-time RT-PCR analysis, respectively. TNF-alpha-induced osteoclast generation from human peripheral monocytes in a dose-dependent manner, and the induction was not inhibited by osteoprotegerin, a decoy receptor for receptor activator of NF-kappaB ligand. The addition of PPAR-gamma agonists, 15-deoxy-Delta12,14-prostaglandin J2 (15d-PGJ2) or ciglitazone, to the culture resulted in a remarkably reduced number of generated osteoclasts. In addition, both agonists inhibited the protein and gene expressions of nuclear factor of activated T-cell isoform c1 (NFATc1), c-Fos, c-Jun and NF-kappaB p65, which are known to be associated with osteoclastogenesis. GW9662, an antagonist of PPAR-gamma, fully rescued ciglitazone-induced inhibition, but did not affect 15d-PGJ2-induced inhibition. Monocyte chemoattractant protein-1 (MCP-1), a CC chemokine related to osteoclastogenesis, was induced during TNF-alpha-mediated osteoclast differentiation, and the neutralizing antibody to MCP-1 reduced osteoclast formation by about 40%. 15d-PGJ2 and ciglitazone blocked the induction of MCP-1 by TNF-alpha. Moreover, the addition of MCP-1 rescued the inhibition of TRAP-positive multinucleated cell (TRAP-MNCs) formation by 15d-PGJ2 and ciglitazone, although generated TRAP-MNCs had no capacity to resorb dentin slices. Our data demonstrate that 15d-PGJ2 and ciglitazone down-regulate TNF-alpha-mediated osteoclast differentiation in human cells, in part via suppression of the action of MCP-1. These PPAR-gamma agonists may be a promising therapeutic application for rheumatoid arthritis and inflammatory bone-resorbing diseases.
Collapse
Affiliation(s)
- Hiroyuki Hounoki
- Department of Internal Medicine 1, Faculty of Medicine, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Linard C, Grémy O, Benderitter M. Reduction of peroxisome proliferation-activated receptor gamma expression by gamma-irradiation as a mechanism contributing to inflammatory response in rat colon: modulation by the 5-aminosalicylic acid agonist. J Pharmacol Exp Ther 2008; 324:911-920. [PMID: 18077625 DOI: 10.1124/jpet.107.129122] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Radiation-induced intestinal injuries, including inflammation and immune response, remain a limiting factor in the effectiveness of pelvic radiotherapy and in the patient's quality of life during and after treatment. Peroxisome proliferation-activated receptor (PPAR) agonists are now emerging as therapeutic drugs for various inflammatory diseases that are characterized by impaired PPAR expression. The purpose of this study was to investigate the profile of PPAR expression in rat colonic mucosa 3 and 7 days after abdominal gamma-irradiation (10 Gy). We tested whether irradiation-induced acute inflammatory response could be modulated pharmacologically with the antiinflammatory properties of 5-aminosalicylic acid (5-ASA) (250 mg/kg/day), which is a PPAR activator. Irradiation drastically reduced mRNA and protein levels of PPARalpha and -gamma and of the heterodimer retinoid X receptor (RXR)alpha at 3 days postirradiation. 5-ASA treatment normalized both PPARgamma and RXRalpha expression at 3 days postirradiation and PPARalpha at 7 days. By promoting PPAR expression and its nuclear translocation, 5-ASA interfered with the nuclear factor (NF)-kappaB pathway, both by reducing irradiation-induced NF-kappaB p65 translocation/activation and increasing the expression of nuclear factor-kappaB inhibitor (IkappaB) mRNA and protein. Therefore, 5-ASA prevents irradiation-induced inflammatory processes as well as expression of tumor necrosis factor alpha, monocyte chemotactic protein-1, inducible nitric-oxide synthase, and macrophage infiltration. In addition, 5-ASA restores the interferon gamma/signal transducer and activator of transcription (STAT)-1 and STAT-3 concentrations that were impaired at 3 and 7 days postirradiation and are correlated with suppressor of cytokine signaling-3 repression. Collectively, these results indicate that PPAR agonists may be effective in the prevention of inflammatory processes and immune responses during and after pelvic radiotherapy.
Collapse
Affiliation(s)
- Christine Linard
- Institut de Radioprotection et de Sûreté Nucléaire, Direction de la Radioprotection de l'Homme, Laboratoire de Radiopathology, B.P. no. 17, F-92262 Fontenay-aux-Roses Cedex, France.
| | | | | |
Collapse
|
67
|
Drew PD, Xu J, Racke MK. PPAR-gamma: Therapeutic Potential for Multiple Sclerosis. PPAR Res 2008; 2008:627463. [PMID: 18604287 PMCID: PMC2441778 DOI: 10.1155/2008/627463] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Accepted: 06/02/2008] [Indexed: 01/04/2023] Open
Abstract
The role of peroxisome proliferator-activated receptors (PPARs) in altering lipid and glucose metabolism is well established. More recent studies indicate that PPARs also play critical roles in controlling immune responses. We and others have previously demonstrated that PPAR-gamma agonists modulate the development of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). This review will discuss the cellular and molecular mechanisms by which these agonists are believed to modulate disease. The therapeutic potential of PPAR-gamma agonists in the treatment of multiple sclerosis will also be considered.
Collapse
Affiliation(s)
- Paul D. Drew
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Biomedical Research Building II, Room 563-2, 4301 W. Markham Street, Little Rock, AR 72205, USA
| | - Jihong Xu
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Biomedical Research Building II, Room 563-2, 4301 W. Markham Street, Little Rock, AR 72205, USA
| | - Michael K. Racke
- Department of Neurology, The Ohio State University Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
68
|
Authier H, Cassaing S, Coste A, Balard P, Gales A, Berry A, Bans V, Bessières MH, Pipy B. Interleukin-13 primes iNO synthase expression induced by LPS in mouse peritoneal macrophages. Mol Immunol 2008; 45:235-43. [PMID: 17568676 DOI: 10.1016/j.molimm.2007.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Revised: 04/02/2007] [Accepted: 04/06/2007] [Indexed: 01/22/2023]
Abstract
Th2 cytokines such as interleukin-13 (IL-13) have both, stimulatory and inhibitory effects on effector functions of macrophages. Reactive nitrogen species are classically induced in Th1 cytokines and/or lipopolysaccharides (LPS) activated macrophages and this response is inhibited by IL-13. In contrast, IL-13 primes macrophages to produce NO in response to LPS when IL-13 treatment happens prior to LPS exposure. This mechanism occurs through a complex signalling pathway, which involves the scavenger receptor CD36, the LPS receptor CD14 and the nuclear receptor PPARgamma. The enhancement of NO production is the consequence of iNOS induction at mRNA and protein levels. The increase of the NO production induced by LPS in IL-13 pre-treated macrophages is found to potentiate the inhibition of Toxoplasma gondii intracellular replication. These results reveal a novel IL-13 signalling pathway that primes the antimicrobial activity of macrophages induced by LPS caused by overexpression of the iNOS-NO axis.
Collapse
Affiliation(s)
- Hélène Authier
- Laboratoire des macrophages, Médiateurs de l'Inflammation et Interactions Cellulaires, Université Paul Sabatier Toulouse III, EA2405, INSERM IFR31 BP84225, 31432 Toulouse, Cedex 4, France
| | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Wang LH, Yang XY, Zhang X, Farrar WL. Inhibition of adhesive interaction between multiple myeloma and bone marrow stromal cells by PPARgamma cross talk with NF-kappaB and C/EBP. Blood 2007; 110:4373-84. [PMID: 17785586 PMCID: PMC2234797 DOI: 10.1182/blood-2006-07-038026] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Accepted: 07/17/2007] [Indexed: 12/25/2022] Open
Abstract
Binding of multiple myeloma (MM) cells to bone marrow stromal cells (BMSCs) triggers expression of adhesive molecules and secretion of interleukin-6 (IL-6), promoting MM cell growth, survival, drug resistance, and migration, which highlights the possibility of developing and validating novel anti-MM therapeutic strategies targeting MM cells-host BMSC interactions and their sequelae. Recently, we have found that expression of the peroxisome proliferator-activated receptor gamma (PPARgamma) and its ligands can potently inhibit IL-6-regulated MM cell growth. Here we demonstrate that PPARgamma agonists 15-d-PGJ2 and troglitazone significantly suppress cell-cell adhesive events, including expression of adhesion molecules and IL-6 secretion from BMSCs triggered by adhesion of MM cells, as well as overcome drug resistance by a PPARgamma-dependent mechanism. The synthetic and natural PPARgamma agonists have diverging and overlapping mechanisms blocking transactivation of transcription factors NF-kappaB and 5'-CCAAT/enhancer-binding protein beta (C/EBPbeta). Both 15-d-PGJ2 and troglitazone blocked C/EBPbeta transcriptional activity by forming PPARgamma complexes with C/EBPbeta. 15-d-PGJ2 and troglitazone also blocked NF-kappaB activation by recruiting the coactivator PGC-1 from p65/p50 complexes. In addition, 15-d-PGJ2 had a non-PPARgamma-dependent effect by inactivation of phosphorylation of IKK and IkappaB. These studies provide the framework for PPARgamma-based pharmacological strategies targeting adhesive interactions of MM cells with the bone marrow microenvironment.
Collapse
Affiliation(s)
- Li Hua Wang
- Basic Research Program, SAIC-Frederick, Frederick, MD, USA.
| | | | | | | |
Collapse
|
70
|
Porter DW, Wolfarth M, Young SH, Rao MK, Meighan T, Barger M, Andrew ME, Huffman LJ. PGJ2 inhibition of LPS-induced inflammatory mediator expression from rat alveolar macrophages. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2007; 70:1967-1976. [PMID: 17966068 DOI: 10.1080/15287390701549260] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Studies suggested that 15-deoxy-delta-(12,14)-prostaglandin J2 (PGJ2) may exert anti-inflammatory effects, including in the lung. Thus, in vitro studies were conducted to (1) investigate whether PGJ2 inhibited the production of inflammatory mediators from lipopolysaccharide (LPS)-exposed primary rat alveolar macrophages (AM), and (2) investigate possible mechanisms underlying PGJ2-mediated inhibition of inflammatory mediator production. These studies determined that PGJ2 inhibited LPS-induced nitric oxide (NO) production in a concentration- and time-dependent manner. PGJ2-mediated inhibition of NO, as well as of tumor necrosis factor-alpha (TNF-alpha) and macrophage inflammatory protein-2 (MIP-2), was also determined to be dependent on the time of addition of PGJ2 relative to LPS, and suggested the PGJ2 inhibitory mechanism is an early event. PGJ2 was shown not to interfere with binding or internalization of LPS by AM, indicating this was not responsible for PGJ2 inhibitory effects. Another possible mechanism underlying PGJ2-mediated inhibition was via peroxisome proliferator-activated receptor-gamma (PPAR-gamma). However, biochemical studies suggested that PGJ2-mediated inhibition was not occurring through PPAR-gamma dependent mechanism, and molecular studies further established that both LPS and PGJ2 decrease PPAR-gamma mRNA expression. A third possible mechanism underlying PGJ2-mediated inhibition was by alteration of nuclear factor (NF)-kappaB. Molecular studies confirmed that LPS stimulated NF-kappaB mRNA expression, and PGJ2 reduced this stimulation, which is consistent with PGJ2 effect on LPS-induced production of NO, TNF-alpha and MIP-2. Thus, data in this study established that PGJ2 inhibited LPS-induced inflammatory mediator production in rat AM, and this inhibition is mediated, at least in part, by reducing the expression of NF-kappaB mRNA.
Collapse
Affiliation(s)
- Dale W Porter
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, USA.
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Qin ZH, Tao LY, Chen X. Dual roles of NF-kappaB in cell survival and implications of NF-kappaB inhibitors in neuroprotective therapy. Acta Pharmacol Sin 2007; 28:1859-72. [PMID: 18031598 DOI: 10.1111/j.1745-7254.2007.00741.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
NF-kappaB is a well-characterized transcription factor with multiple physiological and pathological functions. NF-kappaB plays important roles in the development and maturation of lymphoids, regulation of immune and inflammatory response, and cell death and survival. The influence of NF-kappaB on cell survival could be protective or destructive, depending on types, developmental stages of cells, and pathological conditions. The complexity of NF-kappaB in cell death and survival derives from its multiple roles in regulating the expression of a broad array of genes involved in promoting cell death and survival. The activation of NF-kappaB has been found in many neurological disorders, but its actual roles in pathogenesis are still being debated. Many compounds with neuroprotective actions are strongly associated with the inhibition of NF-kappaB, leading to speculation that blocking the pathological activation of NF-kappaB could offer neuroprotective effects in certain neurodegenerative conditions. This paper reviews the recent developments in understanding the dual roles of NF-kappaB in cell death and survival and explores its possible usefulness in treating neurological diseases. This paper will summarize the genes regulated by NF-kappaB that are involved in cell death and survival to elucidate why NF-kappaB promotes cell survival in some conditions while facilitating cell death in other conditions. This paper will also focus on the effects of various NF-kappaB inhibitors on neuroprotection in certain pathological conditions to speculate if NF-kappaB is a potential target for neuroprotective therapy.
Collapse
Affiliation(s)
- Zheng-hong Qin
- Department of Pharmacology, Soochow University School of Medicine, Suzhou 215123, China.
| | | | | |
Collapse
|
72
|
Quinn CE, Hamilton PK, Lockhart CJ, McVeigh GE. Thiazolidinediones: effects on insulin resistance and the cardiovascular system. Br J Pharmacol 2007; 153:636-45. [PMID: 17906687 PMCID: PMC2259217 DOI: 10.1038/sj.bjp.0707452] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Thiazolidinediones (TZDs) have been used for the treatment of hyperglycaemia in type 2 diabetes for the past 10 years. They may delay the development of type 2 diabetes in individuals at high risk of developing the condition, and have been shown to have potentially beneficial effects on cardiovascular risk factors. TZDs act as agonists of peroxisome proliferator-activated receptor-gamma (PPAR-gamma) primarily in adipose tissue. PPAR-gamma receptor activation by TZDs improves insulin sensitivity by promoting fatty acid uptake into adipose tissue, increasing production of adiponectin and reducing levels of inflammatory mediators such as tumour necrosis factor-alpha (TNF-alpha), plasminogen activator inhibitor-1(PAI-1) and interleukin-6 (IL-6). Clinically, TZDs have been shown to reduce measures of atherosclerosis such as carotid intima-media thickness (CIMT). However, in spite of beneficial effects on markers of cardiovascular risk, TZDs have not been definitively shown to reduce cardiovascular events in patients, and the safety of rosiglitazone in this respect has recently been called into question. Dual PPAR-alpha/gamma agonists may offer superior treatment of insulin resistance and cardioprotection, but their safety has not yet been assured.
Collapse
Affiliation(s)
- C E Quinn
- Department of Therapeutics and Pharmacology, Queen's University Belfast, Belfast, UK.
| | | | | | | |
Collapse
|
73
|
Paukkeri EL, Leppänen T, Sareila O, Vuolteenaho K, Kankaanranta H, Moilanen E. PPARalpha agonists inhibit nitric oxide production by enhancing iNOS degradation in LPS-treated macrophages. Br J Pharmacol 2007; 152:1081-91. [PMID: 17891158 PMCID: PMC2095111 DOI: 10.1038/sj.bjp.0707477] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND AND PURPOSE Nitric oxide (NO) production through the inducible nitric oxide synthase (iNOS) pathway is increased in response to pro-inflammatory cytokines and bacterial products. In inflammation, NO has pro-inflammatory and regulatory effects. Peroxisome proliferator-activated receptors (PPARs), members of the nuclear steroid receptor superfamily, regulate not only metabolic but also inflammatory processes. The aim of the present study was to investigate the role of PPARalpha in the regulation of NO production and iNOS expression in activated macrophages. EXPERIMENTAL APPROACH The effects of PPARalpha agonists were investigated on iNOS mRNA and protein expression, on NO production and on the activation of transcription factors NF-kappaB and STAT1 in J774 murine macrophages exposed to bacterial lipopolysaccharide (LPS). KEY RESULTS PPARalpha agonists GW7647 and WY14643 reduced LPS-induced NO production in a dose-dependent manner as measured by the accumulation of nitrite into the culture medium. However, PPARalpha agonists did not alter LPS-induced iNOS mRNA expression or activation of NF-kappaB or STAT1 which are important transcription factors for iNOS. Nevertheless, iNOS protein levels were reduced by PPARalpha agonists in a time-dependent manner. The reduction was markedly greater after 24 h incubation than after 8 h incubation. Treatment with the proteasome inhibitors, lactacystin or MG132, reversed the decrease in iNOS protein levels caused by PPARalpha agonists. CONCLUSIONS AND IMPLICATIONS The results suggest that PPARalpha agonists reduce LPS-induced iNOS expression and NO production in macrophages by enhancing iNOS protein degradation through the proteasome pathway. The results offer an additional mechanism underlying the anti-inflammatory effects of PPARalpha agonists.
Collapse
Affiliation(s)
- E-L Paukkeri
- The Immunopharmacology Research Group, Medical School, University of Tampere and Research Unit, Tampere University Hospital Tampere, Finland
| | - T Leppänen
- The Immunopharmacology Research Group, Medical School, University of Tampere and Research Unit, Tampere University Hospital Tampere, Finland
| | - O Sareila
- The Immunopharmacology Research Group, Medical School, University of Tampere and Research Unit, Tampere University Hospital Tampere, Finland
| | - K Vuolteenaho
- The Immunopharmacology Research Group, Medical School, University of Tampere and Research Unit, Tampere University Hospital Tampere, Finland
| | - H Kankaanranta
- The Immunopharmacology Research Group, Medical School, University of Tampere and Research Unit, Tampere University Hospital Tampere, Finland
| | - E Moilanen
- The Immunopharmacology Research Group, Medical School, University of Tampere and Research Unit, Tampere University Hospital Tampere, Finland
- Author for correspondence:
| |
Collapse
|
74
|
Ricote M, Glass CK. PPARs and molecular mechanisms of transrepression. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1771:926-35. [PMID: 17433773 PMCID: PMC1986735 DOI: 10.1016/j.bbalip.2007.02.013] [Citation(s) in RCA: 416] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/08/2006] [Revised: 02/26/2007] [Accepted: 02/27/2007] [Indexed: 12/21/2022]
Abstract
In the last few years, PPARs have emerged as key regulators of inflammatory and immune responses. However, the mechanistic basis of the anti-inflammatory effects of peroxisome proliferator-activated receptors (PPARs) remains poorly understood. Accumulating evidence suggests that these effects result from inhibition of signal-dependent transcription factors that mediate inflammatory programs of gene activation. Several mechanisms underlying negative regulation of gene expression by PPARs have been described. Recent studies, using siRNA, microarray analysis and macrophage-specific knockout mice, have highlighted PPARs molecular transrepression mechanism in macrophages. Identification of their mechanism of action should help promote the understanding of the physiologic roles that PPARs play in immunity and contribute to the development of new therapeutic agents.
Collapse
Affiliation(s)
- Mercedes Ricote
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain.
| | | |
Collapse
|
75
|
Engdahl R, Monroy MA, Daly JM. 15-Deoxy-Delta12,14-prostaglandin J2 (15d-PGJ2) mediates repression of TNF-alpha by decreasing levels of acetylated histone H3 and H4 at its promoter. Biochem Biophys Res Commun 2007; 359:88-93. [PMID: 17532302 PMCID: PMC2584358 DOI: 10.1016/j.bbrc.2007.05.057] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2007] [Accepted: 05/09/2007] [Indexed: 10/23/2022]
Abstract
Prostaglandin metabolite 15-Deoxy-Delta(12,14)-prostaglandin J2 (15d-PGJ2) is known to inhibit a number of pro-inflammatory cytokines as well as being a ligand for nuclear receptor PPARgamma. We investigated the ability of 15d-PGJ2 to inhibit TNF-alpha gene expression through mechanisms that involve histone modification. Pretreatment with 15d-PGJ2 (10 microM) inhibited LPS-stimulated TNF-alpha mRNA in THP-1 monocytes or PMA-differentiated cells to nearly basal levels. A specific PPARgamma ligand, GW1929, failed to inhibit LPS-induced TNF-alpha mRNA expression nor did a PPARgamma antagonist, GW9662, alter the repression of TNF-alpha mRNA in LPS-stimulated cells pretreated with 15d-PGJ2 suggesting a PPARgamma-independent inhibition of TNF-alpha mRNA in THP-1 cells. Transfection studies with a reporter construct and subsequent treatment with 15d-PGJ2 demonstrated a dose-dependent inhibition of the TNF-alpha promoter. Additional studies demonstrated that inhibition of histone deacetylases with trichostatin A (TSA) or overexpression of histone acetyltransferase CBP could overcome 15d-PGJ2-mediated repression of the TNF-alpha promoter, suggesting that an important mechanism whereby 15d-PGJ2 suppresses a cytokine is through factors that regulate histone modifications. To examine the endogenous TNF-alpha promoter, chromatin immunoprecipitations (ChIP) were performed. ChIP assays demonstrated that LPS stimulation induced an increase in histone H3 and H4 acetylation at the TNF-alpha promoter, which was reduced in cells pretreated with 15d-PGJ2. These results highlight the ability of acetylation and deacetylation factors to affect the TNF-alpha promoter and demonstrate that an additional important mechanism whereby 15d-PGJ2 mediates TNF-alpha transcriptional repression by altering levels of acetylated histone H3 and H4 at its promoter.
Collapse
Affiliation(s)
- Ryan Engdahl
- Temple University School of Medicine, Department of Surgery, 3400 North Broad Street, Philadelphia, PA 19140, USA.
| | | | | |
Collapse
|
76
|
Pérez-Nievas BG, García-Bueno B, Caso JR, Menchén L, Leza JC. Corticosterone as a marker of susceptibility to oxidative/nitrosative cerebral damage after stress exposure in rats. Psychoneuroendocrinology 2007; 32:703-11. [PMID: 17561353 DOI: 10.1016/j.psyneuen.2007.04.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Revised: 04/16/2007] [Accepted: 04/25/2007] [Indexed: 11/18/2022]
Abstract
There are important individual differences in susceptibility to stress-induced diseases, most of them associated to the hypothalamic-pituitary and sympatho-medullo-adrenal axis functioning. Characterization of individual differences in animals may help to find the origin of this susceptibility. In order to study differences in oxidative and neuroinflammatory consequences in brain after stress exposure, we used an adult, male, outbred (Wistar:Hannover) population of 60 rats. Animals were subjected to 6h of immobilisation stress. Basal (1 week before stress) and post-stress (immediately after stress) plasma corticosterone (CC) was measured for each animal from the tail vein (basal: 239.74+/-19.44 ng/ml at 1500 h). Group H was assigned to animals with 33% higher levels of CC (>279.53 ng/ml) and group L to animals with 33% lower levels of CC (<199.09 ng/ml). After stress, animals with higher plasma CC levels in basal conditions showed higher adrenal response (higher post-stress CC levels) than rats with lower levels of basal CC. Furthermore, rats from H group are more vulnerable to accumulation of oxidative/nitrosative mediators in brain (higher calcium-independent nitric oxide activity and higher lipid peroxidation, by malondialdehyde determination, MDA) and also to the accumulation of proinflammatory mediators (higher PGE(2) levels) whereas showing less antiinflammatory protection (less 15-deoxy-PGJ(2) levels). Statistical analysis, by using ROC curves revealed cut-off values of basal plasma CC predicting animals with higher post-stress MDA and PGE(2) and lower PGJ(2) levels in brain. These data indicate that plasma basal levels of CC are an easily detectable and reproducible parameter for predicting the response of the individuals after an acute stress, providing further support for studies on individual differences.
Collapse
Affiliation(s)
- B G Pérez-Nievas
- Department of Pharmacology, Faculty of Medicine, University Complutense, Madrid 28040, Spain
| | | | | | | | | |
Collapse
|
77
|
Woster AP, Combs CK. Differential ability of a thiazolidinedione PPARgamma agonist to attenuate cytokine secretion in primary microglia and macrophage-like cells. J Neurochem 2007; 103:67-76. [PMID: 17573821 DOI: 10.1111/j.1471-4159.2007.04706.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Peroxisome proliferator-activated receptor gamma (PPARgamma) agonists are known to inhibit select pro-inflammatory changes in models of CNS and systemic inflammation. Recent reports suggest that these anti-inflammatory effects are due to mechanisms other than canonical nuclear receptor-mediated transcriptional alteration. Using primary microglia and the monocytic cell line, THP-1, we demonstrate that rosiglitazone, a PPARgamma-activating thiazolidinedione, decreases pro-inflammatory cytokine secretion as measured by ELISA. Cells were pre-treated with various thiazolidinediones, including rosiglitazone, prior to stimulation with lipopolysaccharide or phorbol 12-myristate 13-acetate (PMA) to stimulate cytokine production. Tumor necrosis factor alpha (TNFalpha) secretion was significantly inhibited in both primary microglia and THP-1 cells differentiated for 72 h in the presence of PMA to induce a macrophage-like phenotype. No reduction in TNFalpha secretion was observed in undifferentiated THP-1 cells with rosiglitazone pre-treatment. Electrophoretic mobility shift assay revealed no significant difference in PPARgamma activation between PMA-differentiated and undifferentiated THP-1 cells. When PMA-differentiated and undifferentiated THP-1 cells were treated with the irreversible PPARgamma antagonist, GW 9662, a significant, dose-dependent decrease in TNFalpha secretion was observed. These results suggest that the anti-inflammatory benefit of PPARgamma ligands occur independently of classical PPARgamma activation.
Collapse
Affiliation(s)
- Andrew P Woster
- Department of Pharmacology, Physiology & Therapeutics, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, North Dakota, USA
| | | |
Collapse
|
78
|
Traves PG, Hortelano S, Zeini M, Chao TH, Lam T, Neuteboom ST, Theodorakis EA, Palladino MA, Castrillo A, Bosca L. Selective activation of liver X receptors by acanthoic acid-related diterpenes. Mol Pharmacol 2007; 71:1545-1553. [PMID: 17329499 DOI: 10.1124/mol.106.031906] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Terpenoids constitute a large family of natural steroids that are widely distributed in plants and insects. We investigated the effects of a series of diterpenes structurally related to acanthoic acid in macrophage functions. We found that diterpenes with different substitutions at the C4 position in ring A are potent activators of liver X receptors (LXRalpha and LXRbeta) in both macrophage cell lines from human and mouse origin and primary murine macrophages. Activation of LXR by these diterpenes was evaluated in transient transfection assays and gene expression analysis of known LXR-target genes, including the cholesterol transporters ABCA1 and ABCG1, the sterol regulatory element-binding protein 1c, and the apoptosis inhibitor of macrophages (Spalpha). Moreover, active diterpenes greatly stimulated cholesterol efflux from macrophages. It is interesting that these diterpenes antagonize inflammatory gene expression mainly through LXR-dependent mechanisms, indicating that these compounds can activate both LXR activation and repression functions. Stimulation of macrophages with acanthoic acid diterpenes induced LXR-target gene expression and cholesterol efflux to similar levels observed with synthetic agonists 3-[3-[N-(2-chloro-3-trifluoromethylbenzyl)-(2,2-diphenylethyl)-amino]propyloxy]phenylacetic acid hydrochloride (GW3965) and N-(2,2,2-trifluoroethyl)-N-[4-[2,2,2-trifluoro-1-hydroxy-1-(trifluoromethyl)-ethyl]phenyl]-benzenesulfonamide [T1317 (T0901317)]. These effects observed in gene expression were deficient in macrophages lacking both LXR isoforms (LXRalpha,beta(-/-)). These results show the ability of certain acanthoic acid diterpenes to activate efficiently both LXRs and suggest that these compounds can exert beneficial effects from a cardiovascular standpoint through LXR-dependent mechanisms.
Collapse
Affiliation(s)
- Paqui G Traves
- Centro Nacional de Investigaciones Cardiovasculares and Instituto de Investigaciones Biomédicas Alberto Sols, Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Riganti C, Orecchia S, Silvagno F, Pescarmona G, Betta PG, Gazzano E, Aldieri E, Ghigo D, Bosia A. Asbestos Induces Nitric Oxide Synthesis in Mesothelioma Cells via Rho Signaling Inhibition. Am J Respir Cell Mol Biol 2007; 36:746-56. [PMID: 17322126 DOI: 10.1165/rcmb.2006-0011oc] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We have observed that in three human malignant mesothelioma cell lines, crocidolite asbestos induced the activation of the transcription factor NF-kappaB and the synthesis of nitric oxide (NO) by inhibiting the RhoA signaling pathway. The incubation with crocidolite decreased the level of GTP-bound RhoA and the activity of Rho-dependent kinase, and induced the activation of Akt/PKB and IkBalpha kinase, leading to the nuclear translocation of NF-kappaB. The effects of crocidolite fibers on NF-kappaB activation and NO synthesis were mimicked by Y27632 (an inhibitor of the Rho-dependent kinases) and toxin B (an inhibitor of RhoA GTPase activity), while they were reverted by mevalonic acid, the product of 3-hydroxy-3-methylglutaryl coenzyme A (HMGCoA) reductase. Furthermore, crocidolite, similarly to mevastatin, inhibited the synthesis of cholesterol and ubiquinone and the prenylation of RhoA: these effects were prevented in the presence of mevalonic acid. This suggests that crocidolite fibers might inhibit the synthesis of isoprenoid molecules at the level of the HMGCoA reductase reaction or of an upstream step, thus impairing the prenylation and subsequent activation of RhoA. Akt can stimulate NO synthesis via a double mechanism: it can activate the inducible NO synthase via the NF-kappaB pathway and the endothelial NO synthase via a direct phosphorylation. Our results suggest that crocidolite increases the NO levels in mesothelioma cells by modulating both NO synthase isoforms.
Collapse
Affiliation(s)
- Chiara Riganti
- Department of Genetics, Biology and Biochemistry, and Interdepartmental Center G. Scansetti for Studies on Asbestos and Other Toxic Particulates, Università di Torino, Torino, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Naureckiene S, Edris W, Ajit SK, Katz AH, Sreekumar K, Rogers KE, Kennedy JD, Jones PG. Use of a murine cell line for identification of human nitric oxide synthase inhibitors. J Pharmacol Toxicol Methods 2007; 55:303-13. [PMID: 16990017 DOI: 10.1016/j.vascn.2006.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Accepted: 08/13/2006] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Nitric oxide (NO) has been implicated in a wide range of physiological and pathological processes. Low concentrations of this mediator play homeostatic roles, whereas many acute and chronic responses are associated with excessive production of NO. This upregulation is due in part to the induction of inducible nitric oxide synthase (iNOS) by proinflammatory cytokines in several different cell types, including macrophages and their CNS derivative, microglia. METHODS The crystal structures of the oxygenase domains of mouse and human iNOS were superimposed using the "align by homology" feature in Sybyl (SYBYL 7.0, Tripos Inc.). NOS isoform expression was assessed by TaqMan, Western blotting, and activity assays. RESULTS We demonstrate that there is a high degree of three-dimensional overlap between the mouse and human iNOS active centers and propose that the murine isoform can serve as a suitable substitute for the human in assays. We also demonstrate that LPS stimulation of the mouse macrophage cell line RAW 264.7 induces the expression of iNOS, but not nNOS or eNOS, at the levels of mRNA transcription and protein expression. Furthermore, the pharmacology and calcium dependency of the NO formation support the finding that it is due to iNOS alone. Also reported is the demonstration of LPS-induced RAW 264.7 macrophages in simple cell-based and cell-free screening assays for iNOS inhibitors. Both assays were reproducible, as demonstrated by Z' factors of 0.69 and 0.71, and had high signal to noise ratios of 11- and 6-fold for the cell-based and cell-free assay, respectively. DISCUSSION Our computational analyses indicate that there is a high degree of three-dimensional overlap between the oxygenase domains of human and murine iNOS. This observation together with the selective induction of murine iNOS in RAW 264.7 macrophages demonstrates the potential utility of the mouse iNOS assay to identify inhibitors of the human enzyme.
Collapse
Affiliation(s)
- Saule Naureckiene
- Neuroscience Discovery Research, Wyeth Research, CN8000, Princeton, NJ 08543, USA.
| | | | | | | | | | | | | | | |
Collapse
|
81
|
Stamatakis K, Pérez-Sala D. Prostanoids with cyclopentenone structure as tools for the characterization of electrophilic lipid-protein interactomes. Ann N Y Acad Sci 2007; 1091:548-70. [PMID: 17341644 DOI: 10.1196/annals.1378.096] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Electrophilic eicosanoids arise from the free radical-induced peroxidation of arachidonic acid or its metabolites. These reactive species may play an important role in pathophysiological processes associated with inflammation and oxidative stress. Cyclopentenone prostaglandins (cyPG) and isoprostanes are reactive eicosanoids that can form covalent adducts with cysteine residues in proteins through Michael addition. In pharmacological studies, cyPG have shown potent protective effects in experimental models of inflammation and tissue injury, and they have been proposed to contribute to inflammatory resolution. An important mechanism for the anti-inflammatory effects of cyPG is the covalent modification of critical cysteine residues in proteins involved in the modulation of inflammation, such as transcription factors NF-kappaB and AP-1. In recent years, analogs of electrophilic prostanoids have been used in various approaches to identify biologically relevant protein targets for this modification. Prostanoids with cyclopentenone structure have been shown to target a defined subproteome that is beginning to be characterized. Structural studies suggest that diverse cyPG may modify distinct proteins selectively. Functional studies put forward a dual role for these compounds in the cellular response to inflammation or stress. Therefore, a detailed knowledge of targets of electrophilic eicosanoids and the functional consequences of their modification will contribute to the understanding of their mechanism of action and help assess whether these endogenous mediators can be exploited as the basis for the development of novel therapeutic strategies. In this article we discuss the recent advances in this rapidly growing field.
Collapse
Affiliation(s)
- Konstantinos Stamatakis
- Department of Protein Structure and Function, Centro de Investigaciones Biológicas (C.S.I.C.), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | | |
Collapse
|
82
|
Kim EK, Kwon KB, Koo BS, Han MJ, Song MY, Song EK, Han MK, Park JW, Ryu DG, Park BH. Activation of peroxisome proliferator-activated receptor-γ protects pancreatic β-cells from cytokine-induced cytotoxicity via NFκB pathway. Int J Biochem Cell Biol 2007; 39:1260-75. [PMID: 17521952 DOI: 10.1016/j.biocel.2007.04.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Revised: 03/22/2007] [Accepted: 04/10/2007] [Indexed: 11/18/2022]
Abstract
Diabetes mellitus is characterized by cytokine-induced insulitis and a deficit in beta-cell mass. Ligands for peroxisome proliferator-activated receptor-gamma (PPAR-gamma) have been shown to have anti-inflammatory effects in various experimental models. We questioned whether activation of endogenous PPAR-gamma by either PPAR-gamma ligands or adenoviral-directed overexpression of PPAR-gamma (Ad-PPAR-gamma) could inhibit cytokine-induced beta-cell death in RINm5F (RIN) cells, a rat insulinoma cell line. Treatment of RIN cells with interleukin-1 beta (IL-1 beta) and interferon-gamma (IFN-gamma) induced beta-cell damage through NF kappaB-dependent signaling pathways. Activation of PPAR-gamma by PPAR-gamma ligands or Ad-PPAR-gamma inhibited IL-1 beta and IFN-gamma-stimulated nuclear translocation of the p65 subunit and DNA binding activity. NF kappaB target gene expression and their product formation, namely inducible nitric oxide synthase and cyclooxygenase-2 were decreased by PPAR-gamma activation, as established by real-time PCR, Western blots and measurements of NO and PGE(2). The mechanism by which PPAR-gamma activation inhibited NF kappaB-dependent cell death signals appeared to involve the inhibition of I kappa B alpha degradation, evidenced by inhibition of cytokine-induced NF kappaB-dependent signaling events by Ad-I kappaB alpha (S32A, S36A), non-degradable I kappaB alpha mutant. I kappaB beta mutant, Ad-I kappaB beta (S19A, S23A) was not effective in preventing cytokine toxicity. Furthermore, a protective effect of PPAR-gamma ligands was proved by assaying for normal insulin secreting capacity in response to glucose in isolated rat pancreatic islets. The beta-cell protective function of PPAR-gamma ligands might serve to counteract cytokine-induced beta-cell destruction.
Collapse
Affiliation(s)
- Eun-Kyung Kim
- Department of Biochemistry, Medical School and Institute for Medical Sciences, Chonbuk National University, Jeonju 561-756, Jeonbuk, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Ríos-Vázquez R, Marzoa-Rivas R, Gil-Ortega I, Kaski JC. Peroxisome proliferator-activated receptor-gamma agonists for management and prevention of vascular disease in patients with and without diabetes mellitus. Am J Cardiovasc Drugs 2006; 6:231-42. [PMID: 16913824 DOI: 10.2165/00129784-200606040-00003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inflammation is known to have a pathogenic role in atherosclerosis and the genesis of acute coronary syndromes. The peroxisome proliferator-activated receptor (PPAR)-gamma, which is expressed in many constituent cells of atheromatous plaques, inhibits the activation of several proinflammatory genes responsible for atheromatous plaque development and maturation. Agonists of this receptor, such as rosiglitazone and pioglitazone, are currently available for the treatment of type 2 diabetes mellitus, and several lines of evidence have shown that these drugs have antiatherogenic effects. Insulin resistance is associated with inflammation and has a key role in atherogenesis. The antiatherogenic and insulin sensitizing effects of the thiazolidinediones in patients with type 2 diabetes mellitus may be associated with this action. However, in recent years there has been growing evidence that the antiatherogenic effects of PPAR-gamma agonists are not confined to patients with diabetes mellitus. PPAR-gamma agonists have been shown to downregulate the expression of endothelial activation markers, reduce circulating platelet activity, improve flow-mediated dilatation and attenuate atheromatous plaque progression in patients without diabetes mellitus. These effects of PPAR-gamma agonists appear to result from both insulin sensitization and a direct modulation of transcriptional activity in the vessel wall. This review summarizes the current understanding of the role of PPAR-gamma agonists in atherogenesis and discusses their potential role in the treatment of coronary artery disease in patients with type 2 diabetes mellitus and in nondiabetic patients.
Collapse
Affiliation(s)
- Ramón Ríos-Vázquez
- Cardiovascular Biology Research Centre, Division of Cardiac and Vascular Sciences, University of London, London, UK
| | | | | | | |
Collapse
|
84
|
Kim EH, Surh YJ. 15-Deoxy-Δ12,14-prostaglandin J2 as a potential endogenous regulator of redox-sensitive transcription factors. Biochem Pharmacol 2006; 72:1516-28. [PMID: 16987499 DOI: 10.1016/j.bcp.2006.07.030] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Revised: 07/27/2006] [Accepted: 07/28/2006] [Indexed: 12/18/2022]
Abstract
15-deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)) has been known to display multifaceted cellular functions, including anti-inflammatory and cytoprotective effects. However, depending on the concentrations and intracellular microenvironment, this cyclopentenone prostaglandin can exert opposite effects. Because of the alpha,beta-unsaturated carbonyl moiety present in its cyclopentenone ring structure, 15d-PGJ(2) can act as a Michael reaction acceptor and readily interacts with critical cellular nucleophiles, such as cysteine thiol groups in proteins. Many of the biological effects induced by 15d-PGJ(2) involve redox-transcription factors as the potential targets. Thus, 15d-PGJ(2) can modulate the transcriptional activities of nuclear factor-kappaB (NF-kappaB), activator protein-1 (AP-1), nuclear factor-erythroid 2p45 (NF-E2)-related factors (Nrf2), hypoxia inducible factor (HIF), etc. 15d-PGJ(2) is also well known as an endogenous ligand of peroxisome proliferator-activated receptor gamma (PPARgamma). However, the regulation of the aforementioned redox-sensitive transcription factors by 15d-PGJ(2) is not necessarily mediated via PPARgamma activation, but rather involves covalent modification or oxidation of their critical cysteine residues acting as a redox-sensor. This commentary describes the biological and physiological functions of 15d-PGJ(2) and underlying biochemical and molecular mechanisms with emphasis on the modulation of redox-sensitive transcription factors and their regulators.
Collapse
Affiliation(s)
- Eun-Hee Kim
- National Research Laboratory of Molecular Carcinogenesis and Chemoprevention, College of Pharmacy, Seoul National University, Shinlim-dong, Kwanak-ku, Seoul 151-742, South Korea
| | | |
Collapse
|
85
|
Pei L, Waki H, Vaitheesvaran B, Wilpitz DC, Kurland IJ, Tontonoz P. NR4A orphan nuclear receptors are transcriptional regulators of hepatic glucose metabolism. Nat Med 2006; 12:1048-55. [PMID: 16906154 DOI: 10.1038/nm1471] [Citation(s) in RCA: 257] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2006] [Accepted: 07/23/2006] [Indexed: 01/27/2023]
Abstract
Hepatic glucose production is crucial for glucose homeostasis, and its dysregulation contributes to the pathogenesis of diabetes. Here, we show that members of the NR4A family of ligand-independent orphan nuclear receptors are downstream mediators of cAMP action in the hormonal control of gluconeogenesis. Hepatic expression of Nur77, Nurr1 and NOR1 is induced by the cAMP axis in response to glucagon and fasting in vivo and is increased in diabetic mice that exhibit elevated gluconeogenesis. Adenoviral expression of Nur77 induces genes involved in gluconeogenesis, stimulates glucose production both in vitro and in vivo, and raises blood glucose levels. Conversely, expression of an inhibitory mutant Nur77 receptor antagonizes gluconeogenic gene expression and lowers blood glucose levels in db/db mice. These results outline a previously unrecognized role for orphan nuclear receptors in the transcriptional control of glucose homeostasis.
Collapse
MESH Headings
- 8-Bromo Cyclic Adenosine Monophosphate/pharmacology
- Animals
- Cells, Cultured
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- DNA-Binding Proteins/physiology
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Type 1/physiopathology
- Diabetes Mellitus, Type 2/physiopathology
- Glucagon/pharmacology
- Gluconeogenesis/drug effects
- Glucose/metabolism
- Humans
- Hyperglycemia/etiology
- Liver/metabolism
- Male
- Mice
- Nuclear Receptor Subfamily 4, Group A, Member 1
- Nuclear Receptor Subfamily 4, Group A, Member 2
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/physiology
- Receptors, Steroid/genetics
- Receptors, Steroid/physiology
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription Factors/physiology
Collapse
Affiliation(s)
- Liming Pei
- Howard Hughes Medical Institute and Department of Pathology and Laboratory Medicine, University of California, 675 Charles E. Young Drive South, Los Angeles, California 90095, USA
| | | | | | | | | | | |
Collapse
|
86
|
Selim E, Frkanec JT, Cunard R. Fibrates upregulate TRB3 in lymphocytes independent of PPAR alpha by augmenting CCAAT/enhancer-binding protein beta (C/EBP beta) expression. Mol Immunol 2006; 44:1218-29. [PMID: 16949670 DOI: 10.1016/j.molimm.2006.06.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Accepted: 06/15/2006] [Indexed: 10/24/2022]
Abstract
Fibrates, which function by binding and activating peroxisome proliferator-activated receptor alpha (PPARalpha), have been used successfully to treat hyperlipidemia and atherosclerosis. Increasing evidence suggests that in addition to their lipid lowering activities these medications also function as immunosuppressive agents. Tribbles is a Drosophila protein that slows cell cycle progression, and its mammalian homolog, TRB3 interferes with insulin-induced activation of AKT. In these studies we demonstrate that fibrates upregulate TRB3 expression in mitogen-activated lymphocytes. Interestingly, in lymphocytes fibrates augment TRB3 expression in both PPARalpha wildtype and knockout mice, suggesting that upregulation of this protein occurs in a PPARalpha-independent manner. Fibrates activate a proximal TRB3 promoter construct and mutation or partial deletion of a potential PPAR response element does not alter the ability of fibrates to drive TRB3 expression. Subsequent studies reveal that fibrates upregulate C/EBPbeta and CHOP in lymphocytes and mutation of potential C/EBPbeta and CHOP consensus sequences abrogates the ability of fibrates to upregulate TRB3 promoter activity. Accordingly, fibrates enhance the recruitment of C/EBPbeta and CHOP to the proximal TRB3 promoter. Finally, TRB3 expression in lymphocytes induces G2 cell cycle delay and cellular depletion. These studies outline a novel PPARalpha-independent mechanism of action of fibrates and document for the first time the expression of TRB3 in activated lymphocytes.
Collapse
Affiliation(s)
- Erin Selim
- Research Service and Division of Nephrology-Hypertension, Veterans Affairs San Diego Healthcare System, Veterans Medical Research Foundation, San Diego, CA 92161, USA
| | | | | |
Collapse
|
87
|
Marathe C, Bradley MN, Hong C, Lopez F, Ruiz de Galarreta CM, Tontonoz P, Castrillo A. The arginase II gene is an anti-inflammatory target of liver X receptor in macrophages. J Biol Chem 2006; 281:32197-206. [PMID: 16943198 DOI: 10.1074/jbc.m605237200] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The liver X receptors (LXRs) are ligand-dependent transcription factors that have been implicated in lipid metabolism and inflammation. LXRs also inhibit the expression of inflammatory genes in macrophages, including inducible nitric oxide synthase (iNOS). Some of these actions are mediated through LXR antagonism of NF-kappaB activity. The potential for LXRs to positively regulate the expression of anti-inflammatory molecules, however, has not been explored. Here we show that the arginase II (ArgII) gene is a direct target for LXR regulation. ArgII catalyzes the conversion of L-arginine into L-ornithine and urea, leading to the synthesis of polyamines. Expression of ArgII is induced by LXR agonists in macrophage cell lines and primary murine macrophages in a receptor-dependent manner. The ArgII promoter contains a functional LXR response elements that mediates promoter induction by LXR/RXR (retinoid X receptor) in transfection assays. Since ArgII and iNOS utilize a common substrate, induction of ArgII expression has the potential to exert anti-inflammatory effects by shifting arginine metabolism toward polyamine synthesis at the expense of NO production. In support of this hypothesis, we demonstrate that forced expression of ArgII mimics the inhibitory effect of LXR activation on macrophage NO production. Furthermore, inhibition of arginase activity partially reverses the inhibitory effect of LXR agonists on NO production. These studies suggest that regulation of ArgII may contribute to the immunomodulatory effects of LXRs.
Collapse
Affiliation(s)
- Chaitra Marathe
- Howard Hughes Medical Institute, Molecular Biology Institute and Department of Pathology and Laboratory Medicine, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | |
Collapse
|
88
|
Kobayashi M, Ono H, Mihara K, Tauchi H, Komatsu K, Shibata T, Shimizu H, Uchida K, Yamamoto KI. ATM activation by a sulfhydryl-reactive inflammatory cyclopentenone prostaglandin. Genes Cells 2006; 11:779-89. [PMID: 16824197 DOI: 10.1111/j.1365-2443.2006.00976.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
ATM (ataxia-telangiectasia mutated) is activated by a variety of noxious agent, including oxidative stress, and ATM deficiency results in an anomalous cellular response to oxidative stress. However, the mechanisms for ATM activation by oxidative stress remain to be established. Furthermore, it is not clear whether ATM responds to oxidative DNA damage or to a change in the intracellular redox state, independent of DNA damage. We found that ATM is activated by N-methyl-N'-nitro-nitrosoguanidine (MNNG) and 15-deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)), in NBS1- or MSH6-deficient cells. We further found that ATM is activated by treating chromatin-free immunoprecipitated ATM with MNNG or 15d-PGJ(2), which modifies free sulfhydryl (SH) groups, and that 15d-PGJ(2) binds covalently to ATM. Interestingly, 15d-PGJ(2)-induced ATM activation leads to p53 activation and apoptosis, but not to Chk2 or H2AX phosphorylation. These results indicate that ATM is activated through the direct modification of its SH groups, independent of DNA damage, and this activation leads, downstream, to apoptosis.
Collapse
Affiliation(s)
- Masahiko Kobayashi
- Department of Molecular Pathology, Cancer Research Institute, Kanazawa University, Kanazawa, 13-1 Takaramachi, Ishikawa 920-0934, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Zhang YJ, Yang X, Kong QY, Zhang YF, Chen WY, Dong XQ, Li XY, Yu XQ. Effect of 15d-PGJ2 on the expression of CD40 and RANTES induced by IFN-gamma and TNF-alpha on renal tubular epithelial cells (HK-2). Am J Nephrol 2006; 26:356-62. [PMID: 16864989 DOI: 10.1159/000094735] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Accepted: 06/21/2006] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS Recent evidence shows that peroxisome proliferator-activated receptor-gamma (PPAR-gamma) ameliorates a variety of inflammatory conditions. CD40 is a co-stimulatory molecule and its ligation induces production of different proinflammatory cytokines including RANTES (regulated upon activation, normal T cell expressed), which are considered as important factors in the initiation and maintenance of inflammatory response. The aim of this study was to investigate the effect of PPAR-gamma on CD40 and RANTES production on cultured human renal proximal tubular epithelial (HK-2) cells. METHODS HK-2 cells were maintained under defined in vitro conditions and treated with either PPAR-gamma agonist 15-deoxy-12,14-prostaglandin J2 (15d-PGJ2) or 15d-PGJ2 + PPAR-gamma antagonist GW9662, and then stimulated with a combination of tumor necrosis factor-alpha (TNF-alpha) and interferon-gamma (IFN-gamma). The CD40 and RANTES levels were investigated. RESULTS HK-2 cells expressed low levels of CD40 and RANTES. Activation of HK-2 cells by combined treatment of TNF-alpha and IFN-gamma results in strong synergistic effects on the expression of CD40 and the secretion of RANTES. 15d-PGJ2 significantly decreased CD40 and RANTES expression and GW9662 partly abrogated the inhibition of 15d-PGJ2 on CD40 and RANTES. CONCLUSION 15d-PGJ2 significantly decreased CD40 and RANTES expression in HK-2 cells, which were partially mediated by PPAR-gamma-dependent pathways. These results point to PPAR-gamma as a remarkable new target in the prevention of tubular inflammatory injury associated with renal disease.
Collapse
Affiliation(s)
- Ya Jie Zhang
- Department of Nephrology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | | | | | | | | | | | | | | |
Collapse
|
90
|
Xu J, Chavis JA, Racke MK, Drew PD. Peroxisome proliferator-activated receptor-alpha and retinoid X receptor agonists inhibit inflammatory responses of astrocytes. J Neuroimmunol 2006; 176:95-105. [PMID: 16764943 DOI: 10.1016/j.jneuroim.2006.04.019] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Revised: 03/24/2006] [Accepted: 04/14/2006] [Indexed: 10/24/2022]
Abstract
The peroxisome proliferator-activated receptor-alpha (PPAR-alpha) plays a key role in lipid metabolism and inflammation. Recently, we demonstrated that administration of the PPAR-alpha agonists gemfibrozil and fenofibrate, inhibit the clinical signs of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). In the present study, we investigated the effects of PPAR-alpha agonists on primary mouse astrocytes, a cell type implicated in the pathology of MS and EAE. Our studies demonstrated that the PPAR-alpha agonists fenofibrate, and WY 14643 inhibited NO production by LPS-stimulated astrocytes in a dose-dependent manner. Additionally, PPAR-alpha agonists inhibited the secretion of the pro-inflammatory cytokines TNF-alpha, IL-1beta, and IL-6 by LPS-stimulated astrocytes. Fenofibrate inhibited NF-kappaB DNA binding activity, suggesting a mechanism by which PPAR-alpha agonists may regulate the expression of genes encoding these pro-inflammatory molecules. Retinoid X receptors (RXRs) physically interact with PPAR-alpha receptors, and the resulting heterodimers regulate the expression of PPAR-responsive genes. Interestingly, a combination of 9-cis RA and the PPAR-alpha agonists fenofibrate or gemfibrozil cooperatively inhibited NO, TNF-alpha, IL-1beta, IL-6, and MCP-1 production by these cells. Collectively, these results raise the possibility that PPAR-alpha and RXR agonists might be effective in the treatment of MS, where activated astrocytes are believed to contribute to disease pathology.
Collapse
Affiliation(s)
- Jihong Xu
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | | | | | |
Collapse
|
91
|
Quinkler M, Bujalska IJ, Tomlinson JW, Smith DM, Stewart PM. Depot-specific prostaglandin synthesis in human adipose tissue: a novel possible mechanism of adipogenesis. Gene 2006; 380:137-43. [PMID: 16842938 DOI: 10.1016/j.gene.2006.05.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Revised: 05/22/2006] [Accepted: 05/23/2006] [Indexed: 01/22/2023]
Abstract
Despite the magnitude of the obesity epidemic, the mechanisms that contribute to increases in fat mass and to differences in fat depots are still poorly understood. Prostanoids have been proposed as potent adipogenic hormones, e.g. metabolites of prostaglandin J2 (PGJ2) bind and activate PPARgamma. We hypothesize that an altered expression of enzymes in PGJ2 synthesis may represent a novel pathogenic mechanism in human obesity. We characterized adipose depot-specific expression of enzymes in PGJ2 synthesis, prostaglandin transporter and PPARgamma isoforms. Paired omental and subcutaneous adipose tissue samples were obtained from 26 women undergoing elective abdominal surgery and gene expression examined in whole tissue and cultured preadipocytes using an Affymetrix cDNA microarray technique and validated with quantitative real-time PCR. All enzymes involved in prostaglandin synthesis were expressed in both adipose tissues. Expression of prostaglandin synthase-1 (PGHS1), prostaglandin D synthase (PTGDS), human prostaglandin transporter (hPGT) and PPARgamma2 was higher in OM adipose tissue compared to SC, whereas 17beta-hydroxysteroid dehydrogenase 5 (AKR1C3) showed predominance in SC adipose tissue. In SC adipose tissue, PGHS1 mRNA expression increased with BMI. The differential, depot-specific expression of key enzymes involved in transport, synthesis and metabolism of prostaglandins may have an important impact upon fat cell biology and may help to explain some of the observed depot-specific differences. In addition, the positive correlation between PGHS1 and BMI offers the novel hypothesis that the regulation of PG synthesis may have a role in determining fat distribution in human obesity.
Collapse
Affiliation(s)
- Marcus Quinkler
- Division of Medical Sciences, Institute of Biomedical Research, University of Birmingham, Queen Elizabeth Hospital, Birmingham, B15 2TH, UK
| | | | | | | | | |
Collapse
|
92
|
Monsalve E, Pérez MA, Rubio A, Ruiz-Hidalgo MJ, Baladrón V, García-Ramírez JJ, Gómez JC, Laborda J, Díaz-Guerra MJM. Notch-1 up-regulation and signaling following macrophage activation modulates gene expression patterns known to affect antigen-presenting capacity and cytotoxic activity. THE JOURNAL OF IMMUNOLOGY 2006; 176:5362-73. [PMID: 16622004 DOI: 10.4049/jimmunol.176.9.5362] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Notch signaling has been extensively implicated in cell-fate determination along the development of the immune system. However, a role for Notch signaling in fully differentiated immune cells has not been clearly defined. We have analyzed the expression of Notch protein family members during macrophage activation. Resting macrophages express Notch-1, -2, and -4, as well as the Notch ligands Jagged-1 and -2. After treatment with LPS and/or IFN-gamma, we observed a p38 MAPK-dependent increase in Notch-1 and Jagged-1 mRNA and protein levels. To study the role of Notch signaling in macrophage activation, we forced the transient expression of truncated, active intracellular Notch-1 (Notch-IC) proteins in Raw 264.7 cells and analyzed their effects on the activity of transcription factors involved in macrophage activation. Notch-IC increased STAT-1-dependent transcription. Furthermore, Raw 264.7 Notch-IC stable transfectants increased STAT1-dependent transcription in response to IFN-gamma, leading to higher expression of IFN regulatory factor-1, suppressor of cytokine signaling-1, ICAM-1, and MHC class II proteins. This effect was independent from an increase of STAT1 Tyr or Ser phosphorylation. However, inducible NO synthase expression and NO production decreased under the same conditions. Our results show that Notch up-regulation and subsequent signaling following macrophage activation modulate gene expression patterns known to affect the function of mature macrophages.
Collapse
Affiliation(s)
- Eva Monsalve
- Facultad de Medicina, Centro Regional de Investigaciones Biomédicas (CRIB), Avenida de Almansa No. 14, 02006 Albacete, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Riganti C, Orecchia S, Pescarmona G, Betta PG, Ghigo D, Bosia A. Statins revert doxorubicin resistance via nitric oxide in malignant mesothelioma. Int J Cancer 2006; 119:17-27. [PMID: 16450390 DOI: 10.1002/ijc.21832] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Human malignant mesothelioma (HMM) is resistant to many anticancer drugs, including doxorubicin. Mevastatin and simvastatin, 2 inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMGCoA) reductase, potentiated the intracellular accumulation and the cytotoxicity of doxorubicin in HMM cells constitutively expressing P-glycoprotein and multidrug resistance-associated protein 3. This effect of statins was nitric oxide (NO)-dependent, since it was reverted by either an NO synthase inhibitor or an NO scavenging system. The NO synthase up-regulation in HMM and other cells is known to be associated with the activation of the transcription factor NF-kappaB: in HMM cells statins increased the NF-kappaB translocation into the nucleus, decreased the level of the NF-kappaB inhibitor IkBalpha and increased the phosphorylation/activation of IkB kinase alpha (IKKalpha). IKKalpha is under the negative control exerted by RhoA in its prenylated (active) form: incubation of HMM cells with statins lowered the amount of active RhoA and the level of Rho-associated kinase activity. All statins' effects were reverted by mevalonic acid, thus suggesting that they were mediated by the inhibition of HMGCoA reductase and were likely to be subsequent to the reduced availability of precursor molecules for RhoA prenylation. Both the Rho kinase inhibitor Y27632 and the RhoA inhibitor toxin B (from Clostridium difficile) mimicked the statins' effects, enhancing doxorubicin accumulation, NO synthesis and IKKalpha phosphorylation and decreasing the amount of IkBalpha in HMM cells. Simvastatin, Y27632 and toxin B elicited tyrosine nitration in the P-glycoprotein, thus providing a likely mechanism by which NO reverts the doxorubicin resistance in HMM cells.
Collapse
Affiliation(s)
- Chiara Riganti
- Department of Genetics, Biology and Biochemistry, University of Torino, Torino, Italy
| | | | | | | | | | | |
Collapse
|
94
|
Ou Z, Zhao X, Labiche LA, Strong R, Grotta JC, Herrmann O, Aronowski J. Neuronal expression of peroxisome proliferator-activated receptor-gamma (PPARγ) and 15d-prostaglandin J2—Mediated protection of brain after experimental cerebral ischemia in rat. Brain Res 2006; 1096:196-203. [PMID: 16725118 DOI: 10.1016/j.brainres.2006.04.062] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2006] [Revised: 04/04/2006] [Accepted: 04/10/2006] [Indexed: 12/29/2022]
Abstract
Existing experimental evidence suggests that PPARgamma may play a beneficial role in neuroprotection from various brain pathologies. Here we found that focal cerebral ischemia induced by middle cerebral/common carotid arteries occlusion (MCA/CCAo) induced up-regulation of PPARgamma messenger RNA in the ischemic hemisphere as early as 6 h after the ischemic event. The increased PPARgamma mRNA expression was primarily associated with neurons in the ischemic penumbra, suggesting an important role for PPARgamma in neurons after ischemia. Intraventricular injection of 15d-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)), a proposed endogenous PPARgamma agonist, into the ischemic rat brains significantly increased the PPARgamma-DNA-binding activity and reduced infarction volume at 24 h after reperfusion. We propose that PPARgamma up-regulation in response to ischemia may contribute to PPARgamma activation in the presence of PPARgamma agonists. Activation of PPARgamma in neurons at an early stage after ischemia may represent a pro-survival mechanism against ischemic injury.
Collapse
Affiliation(s)
- Zhishuo Ou
- University of Texas Health Science Center-Houston, Medical School, Department of Neurology, Stroke Program, Houston, 77030, USA
| | | | | | | | | | | | | |
Collapse
|
95
|
Hummasti S, Tontonoz P. The Peroxisome Proliferator-Activated Receptor N-Terminal Domain Controls Isotype-Selective Gene Expression and Adipogenesis. Mol Endocrinol 2006; 20:1261-75. [PMID: 16556736 DOI: 10.1210/me.2006-0025] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Abstract
Peroxisome proliferator-activated receptors (PPARγ, PPARα, and PPARδ) are important regulators of lipid metabolism. Although they share significant structural similarity, the biological effects associated with each PPAR isotype are distinct. For example, PPARα and PPARδ regulate fatty acid catabolism, whereas PPARγ controls lipid storage and adipogenesis. The different functions of PPARs in vivo can be explained at least in part by the different tissue distributions of the three receptors. The question of whether the receptors have different intrinsic activities and regulate distinct target genes, however, has not been adequately explored. We have engineered cell lines that express comparable amounts of each receptor. Transcriptional profiling of these cells in the presence of selective agonists reveals partially overlapping but distinct patterns of gene regulation by the three PPARs. Moreover, analysis of chimeric receptors points to the N terminus of each receptor as the key determinant of isotype-selective gene expression. For example, the N terminus of PPARγ confers the ability to promote adipocyte differentiation when fused to the PPARδ DNA binding domain and ligand binding domain, whereas the N terminus of PPARδ leads to the inappropriate expression of fatty acid oxidation genes in differentiated adipocytes when fused to PPARγ. Finally, we demonstrate that the N terminus of each receptor functions in part to limit receptor activity because deletion of the N terminus leads to nonselective activation of target genes. A more detailed understanding of the mechanisms by which the individual PPARs differentially regulate gene expression should aid in the design of more effective drugs, including tissue- and target gene-selective PPAR modulators.
Collapse
Affiliation(s)
- Sarah Hummasti
- Howard Hughes Medical Institute, Department of Pathology and Laboratory Medicine, University of California, Los Angeles, California 90095-1662, USA
| | | |
Collapse
|
96
|
Tanaka Y, Ota K, Kameoka M, Itaya A, Yoshihara K. Up-regulation of NFκB-responsive gene expression by ΔNp73α in p53 null cells. Exp Cell Res 2006; 312:1254-64. [PMID: 16430884 DOI: 10.1016/j.yexcr.2005.12.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Revised: 11/24/2005] [Accepted: 12/14/2005] [Indexed: 10/25/2022]
Abstract
Transactivation domain (TAD)-truncated p73, DeltaNp73, associates with p53, resulting in suppression of p53's functions. Using p53 null cell lines, we examined whether or not DeltaNp73 can regulate gene expression in a p53-independent manner. When DeltaNp73alpha was co-transfected with a luciferase reporter plasmid with various enhancer elements, NFkappaB-responsive luciferase gene expression was selectively up-regulated by DeltaNp73alpha, but not by other p73-isoforms with TAD and DeltaNp73beta. Deletion of the TAD endowed p73alpha with the ability to enhance the responsive gene's expression, but deletion of the N-terminal proline-rich domain (PRD) rendered the TAD-deleted p73alpha inactive. Considering the inability of DeltaNp73beta, which is the C-terminus-truncated form of DeltaNp73alpha, to function, these results indicate that both the PRD and C-terminus are necessary for DeltaNp73alpha to can activate NFkappaB-responsive luciferase expression. Over-expression of p53 suppressed the TAD-truncated p73alpha-mediated luciferase expression, suggesting that p53 interferes with the TAD-truncated p73alpha-mediated activation of NFkappaB. Inhibitors for NFkappaB activation reduced the TAD-truncated p73alpha-dependent NFkappaB-responsive gene expression, indicating that TAD-truncated p73alpha activates NFkappaB as does TNFalpha. In addition to the results obtained in the reporter gene assay, TAD-truncated p73alpha stimulated the translocation of NFkappaB to the nucleus and the expression of an endogenous NFkappaB-responsive gene, Bcl-XL. Taken together, these results demonstrate that TAD-truncated p73alpha can activate NFkappaB.
Collapse
Affiliation(s)
- Yasuharu Tanaka
- Department of Biochemistry, Nara Medical University, Shijo-Cho 840, Kashihara, Nara 634-8521, Japan.
| | | | | | | | | |
Collapse
|
97
|
Wung BS, Wu CC, Hsu MC, Hsieh CW. 15-Deoxy-Δ12,14-prostaglandin J2 suppresses IL-6-induced STAT3 phosphorylation via electrophilic reactivity in endothelial cells. Life Sci 2006; 78:3035-42. [PMID: 16413037 DOI: 10.1016/j.lfs.2005.12.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2005] [Revised: 11/21/2005] [Accepted: 12/02/2005] [Indexed: 11/23/2022]
Abstract
In this study, the effects of 15d-PGJ(2) were investigated in IL-6-activated endothelial cells (ECs). 15d-PGJ(2) was found to abrogate phosphorylation on tyr705 of STAT3 in IL-6-treated ECs, in a dose- and time-dependent manner, but did not inhibit serine phosphorylation of STAT3 and the upperstream JAK2 phosphorylation. Other PPAR activators, such as WY1643 or ciglitazone, had no effect upon IL-6-induced STAT3 phosphorylation. Additionally, neither orthovanadate nor l-NAME treatment reverses the inhibition of STAT3 phosphorylation by 15d-PGJ(2). Otherwise, the effect of 15d-PGJ(2) requires the alpha,beta-unsaturated carbonyl group in the cyclopentane ring. A 15d-PGJ(2) analog, 9,10-Dihydro-15d-PGJ(2), which lack alpha,beta-unsaturated carbonyl group showed no increase in ROS production and no effect in inhibition of IL-6-induced STAT3 phosphorylation. The electrophilic compound, acrolein, mimics the inhibition effect of 15d-PGJ(2). Among the antioxidants, only NAC and glutathione reversed the effects of 15d-PGJ(2). NAC, glutathione and DTT all reversed the inhibition of STAT3 phosphorylation when preincubated with 15d-PGJ(2). The inhibition of ICAM-1 gene expression by 15d-PGJ(2) was abrogated by NAC and glutathione in IL-6-treated ECs. Taken together, these results suggest that 15d-PGJ(2) inhibits IL-6-stimulated phosphorylation on tyr705 of STAT3 dependent on its own electrophilic reactivity in ECs.
Collapse
Affiliation(s)
- B S Wung
- Department of Applied Microbiology, National Chiayi University, Chiayi, Taiwan.
| | | | | | | |
Collapse
|
98
|
Xu J, Drew PD. 9-Cis-retinoic acid suppresses inflammatory responses of microglia and astrocytes. J Neuroimmunol 2006; 171:135-44. [PMID: 16303184 PMCID: PMC2825699 DOI: 10.1016/j.jneuroim.2005.10.004] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2005] [Accepted: 10/07/2005] [Indexed: 11/15/2022]
Abstract
Retinoic acid (RA) regulates a wide range of biologic process, including inflammation. Previously, RA was shown to inhibit the clinical signs of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). The current study investigated the effects of 9-cis-RA on primary mouse microglia and astrocytes, two cell types implicated in the pathology of MS and EAE. The studies demonstrated that 9-cis-RA inhibited the production of nitric oxide (NO) as well as the pro-inflammatory cytokines TNF-alpha, IL-1beta and IL-12 p40 by LPS-stimulated microglia. However, this retinoid had no effect on IL-6 secretion and increased MCP-1 production by LPS-stimulated microglia. In LPS-stimulated astrocytes, 9-cis-RA inhibited NO and TNF-alpha production but had not effect on IL-1beta, IL-6 and MCP-1 secretion. These results suggest that RA modulates EAE, at least in part, by suppressing the production of NO and specific inflammatory cytokines from activated glia and suggests that RA might be effective in the treatment of MS.
Collapse
Affiliation(s)
- Jihong Xu
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Little Rock, AR 72205, USA
| | - Paul D. Drew
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Little Rock, AR 72205, USA
| |
Collapse
|
99
|
Pereira MP, Hurtado O, Cárdenas A, Boscá L, Castillo J, Dávalos A, Vivancos J, Serena J, Lorenzo P, Lizasoain I, Moro MA. Rosiglitazone and 15-deoxy-Delta12,14-prostaglandin J2 cause potent neuroprotection after experimental stroke through noncompletely overlapping mechanisms. J Cereb Blood Flow Metab 2006; 26:218-229. [PMID: 16034372 DOI: 10.1038/sj.jcbfm.9600182] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Stroke triggers an inflammatory cascade which contributes to a delayed cerebral damage, thus implying that antiinflammatory strategies might be useful in the treatment of acute ischaemic stroke. Since two unrelated peroxisome proliferator-activated receptor-gamma (PPARgamma) agonists, the thiazolidinedione rosiglitazone (RSG) and the cyclopentenone prostaglandin 15-deoxy-Delta(12,14)-prostaglandin J2 (15d-PGJ2), have been shown to possess antiinflammatory properties, we have tested their neuroprotective effects in experimental stroke. Rosiglitazone or 15d-PGJ2 were administered to rats 10 mins or 2 h after permanent middle cerebral artery occlusion (MCAO). Stroke outcome was evaluated by determination of infarct volume and assessment of neurological scores. Brains were collected for protein expression, gene array analyses and gene shift assays. Our results show that both compounds decrease MCAO-induced infarct size and improve neurological scores. At late times, the two compounds converge in the inhibition of MCAO-induced brain expression of inducible NO synthase and the matrix metalloproteinase 9. Interestingly, at early times, complementary DNA microarrays and gene shift assays show that different mechanisms are recruited. Analysis of early nuclear p65 and late cytosolic IkappaBalpha protein levels shows that both compounds inhibit nuclear factor-kappaB signalling, although at different levels. All these results suggest both PPARgamma-dependent and independent pathways, and might be useful to design both therapeutic strategies and prognostic markers for stroke.
Collapse
Affiliation(s)
- Marta P Pereira
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Zhao X, Ou Z, Grotta JC, Waxham N, Aronowski J. Peroxisome-proliferator-activated receptor-gamma (PPARgamma) activation protects neurons from NMDA excitotoxicity. Brain Res 2006; 1073-1074:460-9. [PMID: 16442504 DOI: 10.1016/j.brainres.2005.12.061] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2005] [Revised: 12/01/2005] [Accepted: 12/05/2005] [Indexed: 10/25/2022]
Abstract
A growing body of evidence indicates that the transcription factor PPARgamma plays a beneficial role in various neurological diseases. The postulated principal mechanism underlying the beneficial effects of PPARgamma is due to its anti-inflammatory properties. However, PPARgamma exists in neurons where it may provide additional effects that regulate neuronal vulnerability. In the present study, we employed in vitro and in vivo models of excitotoxic neuronal injury to test hypothesis on the neuroprotective role of PPARgamma. The endogenous PPARgamma ligand, 15d-Delta(12,14)-Prostaglandin J2 (15d-PGJ2), and a selective thiazolidinedione PPARgamma agonist, ciglitazone, significantly reduced neuronal death in response to glutamate and NMDA-mediated, but not kainate-mediated toxicity. This neuroprotective effect of 15d-PGJ2 and ciglitazone was linked to increased PPARgamma DNA binding activity as it was fully reversed by the pretreatment of neurons with selective PPARgamma antagonists and anti-PPARgamma antibody. It was not due to the blockade of NMDA-receptor-mediated Ca++ entry. Our data demonstrate that PPARgamma activation may represent a potential target for treatment of numerous acute and chronic neurological diseases with pathologies that involve excitotoxic damage.
Collapse
Affiliation(s)
- Xiurong Zhao
- Stroke Program, Department of Neurology, University of Texas-Houston Medical School, 6431 Fannin, Rm. 7.044, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|