51
|
Gluenz E, Shaw MK, Gull K. Structural asymmetry and discrete nucleic acid subdomains in the Trypanosoma brucei kinetoplast. Mol Microbiol 2007; 64:1529-39. [PMID: 17511811 PMCID: PMC1974780 DOI: 10.1111/j.1365-2958.2007.05749.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mitochondrial genome of Trypanosoma brucei is contained in a specialized structure termed the kinetoplast. Kinetoplast DNA (kDNA) is organized into a concatenated network of mini and maxicircles, positioned at the base of the flagellum, to which it is physically attached. Here we have used electron microscope cytochemistry to determine structural and functional domains involved in replication and segregation of the kinetoplast. We identified two distinct subdomains within the kinetoflagellar zone (KFZ) and show that the unilateral filaments are composed of distinct inner and outer filaments. Ethanolic phosphotungstic acid (E-PTA) and EDTA regressive staining indicate that basic proteins and DNA are major constituents of the inner unilateral filaments adjoining the kDNA disc. This evidence for an intimate connection of the unilateral filaments in the KFZ with DNA provides support for models of minicircle replication involving vectorial export of free minicircles into the KFZ. Unexpectedly however, detection of DNA in the KFZ throughout the cell cycle suggests that other processes involving kDNA occur in this domain. We also describe a hitherto unrecognized, intramitochondrial, filamentous structure rich in basic proteins that links the kDNA discs during their segregation and is maintained between them for an extended period of the cell cycle.
Collapse
Affiliation(s)
- Eva Gluenz
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| | | | | |
Collapse
|
52
|
Babbarwal VK, Fleck M, Ernst NL, Schnaufer A, Stuart K. An essential role of KREPB4 in RNA editing and structural integrity of the editosome in Trypanosoma brucei. RNA (NEW YORK, N.Y.) 2007; 13:737-44. [PMID: 17369311 PMCID: PMC1852822 DOI: 10.1261/rna.327707] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
RNA editing in the sleeping sickness parasite Trypanosoma brucei remodels mitochondrial transcripts by the addition and deletion of uridylates as specified by guide RNAs. Editing is catalyzed by at least three distinct approximately 20S multiprotein editosomes, all of which contain KREPB4, a protein with RNase III and Pumilio motifs. RNAi repression of KREPB4 expression in procyclic forms (PFs) strongly inhibited growth and in vivo RNA editing, greatly diminished the abundance of 20S editosomes, reduced cellular levels of editosome proteins, and generated approximately 5-10S editosome subcomplexes. Editing TUTase, exoUase, and RNA ligase activities were largely shifted from approximately 20S to approximately 5-10S fractions of cellular lysates. Insertion and deletion endonuclease activities in approximately 20S fractions were strongly reduced upon KREPB4 repression but were not detected in the 5-10S subcomplex fraction. Abundance of MRP1 and RBP16 proteins, which appear to be involved in RNA processing but are not components of the 20S editosome, was unaltered upon KREPB4 repression. These data suggest that KREPB4 is important for the structural integrity of approximately 20S editosomes, editing endonuclease activity, and the viability of PF T. brucei cells.
Collapse
|
53
|
Cifuentes-Rojas C, Pavia P, Hernandez A, Osterwisch D, Puerta C, Cruz-Reyes J. Substrate determinants for RNA editing and editing complex interactions at a site for full-round U insertion. J Biol Chem 2007; 282:4265-4276. [PMID: 17158098 DOI: 10.1074/jbc.m605554200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Multisubunit RNA editing complexes catalyze uridylate insertion/deletion RNA editing directed by complementary guide RNAs (gRNAs). Editing in trypanosome mitochondria is transcript-specific and developmentally controlled, but the molecular mechanisms of substrate specificity remain unknown. Here we used a minimal A6 pre-mRNA/gRNA substrate to define functional determinants for full-round insertion and editing complex interactions at the editing site 2 (ES2). Editing begins with pre-mRNA cleavage within an internal loop flanked by upstream and downstream duplexes with gRNA. We found that substrate recognition around the internal loop is sequence-independent and that completely artificial duplexes spanning a single helical turn are functional. Furthermore, after our report of cross-linking interactions at the deletion ES1 (35), we show for the first time editing complex contacts at an insertion ES. Our studies using site-specific ribose 2' substitutions defined 2'-hydroxyls within the (a) gRNA loop region and (b) flanking helixes that markedly stimulate both pre-mRNA cleavage and editing complex interactions at ES2. Modification of the downstream helix affected scissile bond specificity. Notably, a single 2'-hydroxyl at ES2 is essential for cleavage but dispensable for editing complex cross-linking. This study provides new insights on substrate recognition during full-round editing, including the relevance of secondary structure and the first functional association of specific (pre-mRNA and gRNA) riboses with both endonuclease cleavage and cross-linking activities of editing complexes at an ES. Importantly, most observed cross-linking interactions are both conserved and relatively stable at ES2 and ES1 in hybrid substrates. However, they were also detected as transient low-stability contacts in a non-edited transcript.
Collapse
Affiliation(s)
| | - Paula Pavia
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843 and
| | - Alfredo Hernandez
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843 and
| | - Daniel Osterwisch
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843 and
| | - Concepcion Puerta
- Laboratorio of Parasitologia Molecular, Pontificia Universidad Javeriana, Carrera 7a No. 43-82, Ed. 50, Lab 113, Bogota´, Colombia
| | - Jorge Cruz-Reyes
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843 and.
| |
Collapse
|
54
|
Panigrahi AK, Schnaufer A, Stuart KD. Isolation and compositional analysis of trypanosomatid editosomes. Methods Enzymol 2007; 424:3-24. [PMID: 17662834 DOI: 10.1016/s0076-6879(07)24001-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Most mitochondrial (mt) mRNAs in trypanosomes undergo posttranscriptional RNA editing, which inserts and deletes uridines (Us) to produce the mature and functional mRNA. The editing process is catalyzed by multiple enzymatic steps and is carried out by an approximately 20S macromolecular complex, the editosome. Editosomes have been purified from Trypanosoma brucei using various techniques including combinations of column chromatography, gradient sedimentation, monoclonal antibody affinity, and TAP-tag affinity approaches. This article describes in detail the methods for editosome purification and identification of protein components by mass spectrometry analyses. It also describes the methods for isolation and analysis of TAP-tagged mutagenized complexes.
Collapse
|
55
|
Law JA, O'Hearn S, Sollner-Webb B. In Trypanosoma brucei RNA editing, TbMP18 (band VII) is critical for editosome integrity and for both insertional and deletional cleavages. Mol Cell Biol 2006; 27:777-87. [PMID: 17101787 PMCID: PMC1800803 DOI: 10.1128/mcb.01460-06] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In trypanosome RNA editing, uridylate (U) residues are inserted and deleted at numerous sites within mitochondrial pre-mRNAs by an approximately 20S protein complex that catalyzes cycles of cleavage, U addition/U removal, and ligation. We used RNA interference to deplete TbMP18 (band VII), the last unexamined major protein of our purified editing complex, showing it is essential. TbMP18 is critical for the U-deletional and U-insertional cleavages and for integrity of the approximately 20S editing complex, whose other major components, TbMP99, TbMP81, TbMP63, TbMP52, TbMP48, TbMP42 (bands I through VI), and TbMP57, instead sediment as approximately 10S associations. Additionally, TbMP18 augments editing substrate recognition by the TbMP57 terminal U transferase, possibly aiding the recognition component, TbMP81. The other editing activities and their coordination in precleaved editing remain active in the absence of TbMP18. These data are reminiscent of the data on editing subcomplexes reported by A. Schnaufer et al. (Mol. Cell 12:307-319, 2003) and suggest that these subcomplexes are held together in the approximately 20S complex by TbMP18, as was proposed previously. Our data additionally imply that the proteins are less long-lived in these subcomplexes than they are when held in the complete editing complex. The editing endonucleolytic cleavages being lost when the editing complex becomes fragmented, as upon TbMP18 depletion, should be advantageous to the trypanosome, minimizing broken mRNAs.
Collapse
Affiliation(s)
- Julie A Law
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
56
|
Halbig K, Sacharidou A, De Nova-Ocampo M, Cruz-Reyes J. Preferential interaction of a 25kDa protein with an A6 pre-mRNA substrate for RNA editing in Trypanosoma brucei. Int J Parasitol 2006; 36:1295-304. [PMID: 16860325 DOI: 10.1016/j.ijpara.2006.05.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Revised: 05/14/2006] [Accepted: 05/15/2006] [Indexed: 11/23/2022]
Abstract
Mitochondrial gene expression in kinetoplastids is controlled after transcription, potentially at the levels of RNA maturation, stability and translation. Among these processes, RNA editing by U-insertion/deletion catalysed by multi-subunit editing complexes is best characterised at the molecular level. Nevertheless, mitochondrial RNA metabolism overall remains poorly understood, including the potential regulatory factors that may interact with the relevant catalytic molecular machines and/or RNA substrates. Here we report on a approximately 25kDa polypeptide in mitochondrial extracts that exhibits a preferential "zero-distance" photo-crosslinking interaction with an A6 pre-mRNA model substrate for RNA editing containing a single [(32)P] at the first editing site. The approximately 25kDa polypeptide purified away from editosomes upon ion-exchange chromatography and glycerol gradient sedimentation. Competition assays with homologous and heterologous transcripts suggest that the preferential recognition of the A6 substrate is based on relatively low-specificity RNA-protein contacts. Our mapping and substrate truncation analyses suggest that the crosslinking activity primarily targeted a predicted stem-loop region containing the first editing sites. Consistent with the notion that pre-mRNA folding may be required, pre-annealing with guide RNA abolished crosslinking. Interestingly, this preferential protein interaction with the A6 substrate seemed to require adenosine 5'-triphosphate but not hydrolysis. As in other biological systems, fine regulation in vivo may be brought about by transient networks of relatively low-specificity interactions in which multiple auxiliary factors bind to mRNAs and/or editing complexes in unique higher-order assemblies.
Collapse
Affiliation(s)
- Kari Halbig
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843, USA
| | | | | | | |
Collapse
|
57
|
Sacharidou A, Cifuentes-Rojas C, Halbig K, Hernandez A, Dangott LJ, De Nova-Ocampo M, Cruz-Reyes J. RNA editing complex interactions with a site for full-round U deletion in Trypanosoma brucei. RNA (NEW YORK, N.Y.) 2006; 12:1219-28. [PMID: 16690999 PMCID: PMC1484423 DOI: 10.1261/rna.2295706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Trypanosome U insertion and U deletion RNA editing of mitochondrial pre-mRNAs is catalyzed by multisubunit editing complexes as directed by partially complementary guide RNAs. The basic enzymatic activities and protein composition of these high-molecular mass complexes have been under intense study, but their specific protein interactions with functional pre-mRNA/gRNA substrates remains unknown. We show that editing complexes purified through extensive ion-exchange chromatography and immunoprecipitation make specific cross-linking interactions with A6 pre-mRNA containing a single 32P and photoreactive 4-thioU at the scissile bond of a functional site for full-round U deletion. At least four direct protein-RNA contacts are detected at this site by cross-linking. All four interactions are stimulated by unpaired residues just 5' of the pre-mRNA/gRNA anchor duplex, but strongly inhibited by pairing of the editing site region. Furthermore, competition analysis with homologous and heterologous transcripts suggests preferential contacts of the editing complex with the mRNA/gRNA duplex substrate. This apparent structural selectivity suggests that the RNA-protein interactions we observe may be involved in recognition of editing sites and/or catalysis in assembled complexes.
Collapse
Affiliation(s)
- Anastasia Sacharidou
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | | | | | |
Collapse
|
58
|
Panigrahi AK, Ernst NL, Domingo GJ, Fleck M, Salavati R, Stuart KD. Compositionally and functionally distinct editosomes in Trypanosoma brucei. RNA (NEW YORK, N.Y.) 2006; 12:1038-49. [PMID: 16611942 PMCID: PMC1464856 DOI: 10.1261/rna.45506] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Uridylate insertion/deletion RNA editing in Trypanosoma brucei mitochondria is catalyzed by a multiprotein complex, the approximately 20S editosome. Editosomes purified via three related tagged RNase III proteins, KREN1 (KREPB1/TbMP90), KREPB2 (TbMP67), and KREN2 (KREPB3/TbMP61), had very similar but nonidentical protein compositions, and only the tagged member of these three RNase III proteins was identified in each respective complex. Three new editosome proteins were also identified in these complexes. Each tagged complex catalyzed both precleaved insertion and deletion editing in vitro. However, KREN1 complexes cleaved deletion but not insertion editing sites in vitro, and, conversely, KREN2 complexes cleaved insertion but not deletion editing sites. These specific nuclease activities were abolished by mutations in the putative RNase III catalytic domain of the respective proteins. Thus editosomes appear to be heterogeneous in composition with KREN1 complexes catalyzing cleavage of deletion sites and KREN2 complexes cleaving insertion sites while both can catalyze the U addition, U removal, and ligation steps of editing.
Collapse
|
59
|
Yu LE, Koslowsky DJ. Interactions of mRNAs and gRNAs involved in trypanosome mitochondrial RNA editing: structure probing of a gRNA bound to its cognate mRNA. RNA (NEW YORK, N.Y.) 2006; 12:1050-60. [PMID: 16618968 PMCID: PMC1464861 DOI: 10.1261/rna.3406] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2006] [Accepted: 03/08/2006] [Indexed: 05/08/2023]
Abstract
Expression of mitochondrial genes in Trypanosoma brucei requires RNA editing of its mRNA transcripts. During editing, uridylates are precisely inserted and deleted as directed by the gRNA template to create the protein open reading frame. This process involves the bimolecular interaction of the gRNA with its cognate pre-edited mRNA and the assembly of a protein complex with the enzymatic machinery required. While a considerable amount of work has been done identifying the protein components of the editing complex, very little is known about how a functional editosome is assembled. In addition, the importance of RNA structure in establishing a functional editing complex is poorly understood. Work in our lab suggests that different mRNA/gRNA pairs can form similar secondary structures suggesting that a common core architecture may be important for editosome recognition and function. Using solution structure probing, we have investigated the structure of the initiating gRNA, gCYb-558, in the mRNA/gRNA complex with pre-edited apocytochrome b mRNA. Our data indicate that the stem-loop formed by the guiding region of the gRNA alone is maintained in its interaction with the pre-edited message. In addition, our data suggest that a gRNA stem-loop structure is maintained through the first few editing events by the use of alternative base-pairing with the U-tail.
Collapse
Affiliation(s)
- Laura E Yu
- Cell and Molecular Biology Program, Michigan State University, East Lansing, 48824, USA
| | | |
Collapse
|
60
|
Salavati R, Ernst NL, O'Rear J, Gilliam T, Tarun S, Stuart K. KREPA4, an RNA binding protein essential for editosome integrity and survival of Trypanosoma brucei. RNA (NEW YORK, N.Y.) 2006; 12:819-31. [PMID: 16601201 PMCID: PMC1440894 DOI: 10.1261/rna.2244106] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2005] [Accepted: 02/08/2006] [Indexed: 05/08/2023]
Abstract
The 20S editosome, a multiprotein complex, catalyzes the editing of most mitochondrial mRNAs in trypanosomatids by uridylate insertion and deletion. RNAi mediated inactivation of expression of KREPA4 (previously TbMP24), a component of the 20S editosome, in procyclic form Trypanosoma brucei resulted in inhibition of cell growth, loss of RNA editing, and disappearance of 20S editosomes. Levels of MRP1 and REAP-1 proteins, which may have roles in editing but are not editosome components, were unaffected. Tagged KREPA4 protein is incorporated into 20S editosomes in vivo with no preference for either insertion or deletion subcomplexes. Consistent with its S1-like motif, recombinant KREPA4 protein binds synthetic gRNA with a preference for the 3' oligo (U) tail. These data suggest that KREPA4 is an RNA binding protein that may be specific for the gRNA Utail and also is important for 20S editosome stability.
Collapse
Affiliation(s)
- Reza Salavati
- Seattle Biomedical Research Institute, Washington 98109-5219, USA
| | | | | | | | | | | |
Collapse
|
61
|
Zhelonkina AG, O'Hearn SF, Law JA, Cruz-Reyes J, Huang CE, Alatortsev VS, Sollner-Webb B. T. brucei RNA editing: action of the U-insertional TUTase within a U-deletion cycle. RNA (NEW YORK, N.Y.) 2006; 12:476-87. [PMID: 16495238 PMCID: PMC1383585 DOI: 10.1261/rna.2243206] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2005] [Accepted: 11/29/2005] [Indexed: 05/06/2023]
Abstract
Trypanosome RNA editing is massive post-transcriptional U-insertion and U-deletion, which generates mature mRNA coding regions through cycles of endonuclease, terminal U transferase (TUTase) or 3'-U-exo, and ligase action. Both types of editing are thought to be catalyzed by distinct sets of proteins of a multiprotein complex, and no enzymatic activity of wild-type editing complex had been shown to function in both forms of editing. By examining the individual steps of the U-deletion cycle using purified editing complex, traditional mitochondrial extract, and rapidly prepared cell lysate, we here demonstrate that TbMP57 TUTase of U-insertion can act efficiently within a U-deletion cycle. When physiological UTP levels are provided, it adds U's to the upstream cleavage fragment after U-deletional endonuclease and 3'-U-exo action, but before rejoining by the U-deletional ligase, generating partial U-deletion products. TUTase activity in U-deletion was not previously appreciated since its detection requires UTP, which is not normally added to in vitro U-deletion reactions. Fractionation and RNAi analyses show this U-addition in U-deletion requires TbMP57 TUTase be present and competent for U-insertion; such U-addition does not occur with another mitochondrial TUTase that is separate from the basic editing complex. Efficient TbMP57 action in both U-insertion and U-deletion suggests these two editing forms may be less separate than generally envisioned. Should such promiscuous TUTase action also occur in vivo, it could explain why editing utilizes substantially fewer U-deletional than U-insertional events and why partial editing appears preferential in U-deletion.
Collapse
Affiliation(s)
- Alevtina G Zhelonkina
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| | | | | | | | | | | | | |
Collapse
|
62
|
Deng J, Ernst NL, Turley S, Stuart KD, Hol WGJ. Structural basis for UTP specificity of RNA editing TUTases from Trypanosoma brucei. EMBO J 2005; 24:4007-17. [PMID: 16281058 PMCID: PMC1356302 DOI: 10.1038/sj.emboj.7600861] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Accepted: 10/10/2005] [Indexed: 01/07/2023] Open
Abstract
Trypanosomatids are pathogenic protozoa that undergo a unique form of post-transcriptional RNA editing that inserts or deletes uridine nucleotides in many mitochondrial pre-mRNAs. Editing is catalyzed by a large multiprotein complex, the editosome. A key editosome enzyme, RNA editing terminal uridylyl transferase 2 (TUTase 2; RET2) catalyzes the uridylate addition reaction. Here, we report the 1.8 A crystal structure of the Trypanosoma brucei RET2 apoenzyme and its complexes with uridine nucleotides. This structure reveals that the specificity of the TUTase for UTP is determined by a crucial water molecule that is exquisitely positioned by the conserved carboxylates D421 and E424 to sense a hydrogen atom on the N3 position of the uridine base. The three-domain structure also unveils a unique domain arrangement not seen before in the nucleotidyltansferase superfamily, with a large domain insertion between the catalytic aspartates. This insertion is present in all trypanosomatid TUTases. We also show that TbRET2 is essential for survival of the bloodstream form of the parasite and therefore is a potential target for drug therapy.
Collapse
Affiliation(s)
- Junpeng Deng
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
- Department of Biochemistry, Biomolecular Structure Center, University of Washington, Seattle, WA, USA
- Department of Biological Structure, Biomolecular Structure Center, University of Washington, Seattle, WA, USA
| | | | - Stewart Turley
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
- Department of Biochemistry, Biomolecular Structure Center, University of Washington, Seattle, WA, USA
- Department of Biological Structure, Biomolecular Structure Center, University of Washington, Seattle, WA, USA
| | - Kenneth D Stuart
- Seattle Biomedical Research Institute, Seattle, WA, USA
- Department of Pathobiology, University of Washington, Seattle, WA, USA
| | - Wim GJ Hol
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
- Department of Biochemistry, Biomolecular Structure Center, University of Washington, Seattle, WA, USA
- Department of Biological Structure, Biomolecular Structure Center, University of Washington, Seattle, WA, USA
- Department of Biochemistry, Biomolecular Structure Center, University of Washington, Seattle, WA 98195, USA. Tel.: +1 206 685 7044; Fax: +1 206 685 7002; E-mail:
| |
Collapse
|
63
|
Carnes J, Trotter JR, Ernst NL, Steinberg A, Stuart K. An essential RNase III insertion editing endonuclease in Trypanosoma brucei. Proc Natl Acad Sci U S A 2005; 102:16614-9. [PMID: 16269544 PMCID: PMC1283813 DOI: 10.1073/pnas.0506133102] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Indexed: 11/18/2022] Open
Abstract
RNA editing adds and deletes uridine nucleotides in many preedited mRNAs to create translatable mRNAs in the mitochondria of the parasite Trypanosoma brucei. Kinetoplastid RNA editing protein B3 (KREPB3, formerly TbMP61) is part of the multiprotein complex that catalyzes editing in T. brucei and contains an RNase III motif that suggests nuclease function. Repression of KREPB3 expression, either by RNA interference in procyclic forms (PFs) or by conditional inactivation of an ectopic KREPB3 allele in bloodstream forms (BFs) that lack both endogenous alleles, strongly inhibited growth and in vivo editing in PFs and completely blocked them in BFs. KREPB3 repression inhibited cleavage of insertion editing substrates but not deletion editing substrates in vitro, whereas the terminal uridylyl transferase, U-specific exoribonuclease, and ligase activities of editing were unaffected, and approximately 20S editosomes were retained. Expression of KREPB3 alleles with single amino acid mutations in the RNase III motif had similar consequences. These data indicate that KREPB3 is an RNA editing endonuclease that is specific for insertion sites and is accordingly renamed KREN2 (kinetoplastid RNA editing endonuclease 2).
Collapse
Affiliation(s)
- Jason Carnes
- Seattle Biomedical Research Institute, Seattle, WA 98109, USA
| | | | | | | | | |
Collapse
|
64
|
Lukes J, Hashimi H, Zíková A. Unexplained complexity of the mitochondrial genome and transcriptome in kinetoplastid flagellates. Curr Genet 2005; 48:277-99. [PMID: 16215758 DOI: 10.1007/s00294-005-0027-0] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Revised: 09/03/2005] [Accepted: 09/07/2005] [Indexed: 10/25/2022]
Abstract
Kinetoplastids are flagellated protozoans, whose members include the pathogens Trypanosoma brucei, T. cruzi and Leishmania species, that are considered among the earliest diverging eukaryotes with a mitochondrion. This organelle has become famous because of its many unusual properties, which are unique to the order Kinetoplastida, including an extensive kinetoplast DNA network and U-insertion/deletion type RNA editing of its mitochondrial transcripts. In the last decade, considerable progress has been made in elucidating the complex machinery of RNA editing. Moreover, our understanding of the structure and replication of kinetoplast DNA has also dramatically improved. Much less however, is known, about the developmental regulation of RNA editing, its integration with other RNA maturation processes, stability of mitochondrial mRNAs, or evolution of the editing process itself. Yet the profusion of genomic data recently made available by sequencing consortia, in combination with methods of reverse genetics, hold promise in understanding the complexity of this exciting organelle, knowledge of which may enable us to fight these often medically important protozoans.
Collapse
Affiliation(s)
- Julius Lukes
- Institute of Parasitology, Czech Academy of Sciences, Faculty of Biology, University of South Bohemia, Branisovská 31, 37005, Ceské Budejovice, Czech Republic.
| | | | | |
Collapse
|
65
|
Oberholzer M, Morand S, Kunz S, Seebeck T. A vector series for rapid PCR-mediated C-terminal in situ tagging of Trypanosoma brucei genes. Mol Biochem Parasitol 2005; 145:117-20. [PMID: 16269191 DOI: 10.1016/j.molbiopara.2005.09.002] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Revised: 09/01/2005] [Accepted: 09/07/2005] [Indexed: 12/01/2022]
Affiliation(s)
- Michael Oberholzer
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, CH-3012 Bern, Switzerland
| | | | | | | |
Collapse
|
66
|
Law JA, Huang CE, O'Hearn SF, Sollner-Webb B. In Trypanosoma brucei RNA editing, band II enables recognition specifically at each step of the U insertion cycle. Mol Cell Biol 2005; 25:2785-94. [PMID: 15767682 PMCID: PMC1061641 DOI: 10.1128/mcb.25.7.2785-2794.2005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Trypanosome RNA editing is the posttranscriptional insertion and deletion of uridylate (U) residues, often to a massive extent, through cycles of cleavage, U addition or U removal, and ligation. These editing cycles are catalyzed by a complex that we purified to seven major proteins (bands I through VII). Here we analyze the role of band II using extracts of clonal band II RNA interference (RNAi) cell lines prepared by a rapid protocol that enables retention of activities that are lost during traditional extract preparation. By individually scoring each step of editing, we show that band II is critical for all steps of U insertion but is not important for any of the steps of U deletion or for their coordination into the U deletion cycle. This specificity supports the long- standing model that U-insertional and U-deletional activities are separated within the editing complex. Furthermore, by assaying the basic activities of the enzymes that catalyze the steps of U insertion, independent of their action in editing, we show that band II is not any of those enzymes. Rather, band II enables endonuclease action at authentic U insertion sites, terminal-uridylyl-transferase (TUTase) action at cleaved U insertion sites, and U-insertion-specific ligase (band V/IREL) action in the editing complex. Thus, band II facilitates each step of U insertion by providing proper RNA and/or protein recognition. We propose that band II (TbMP81) be called IRER, indicating its essential nature in U-insertional RNA editing recognition.
Collapse
Affiliation(s)
- Julie A Law
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
67
|
Gao G, Simpson AM, Kang X, Rogers K, Nebohacova M, Li F, Simpson L. Functional complementation of Trypanosoma brucei RNA in vitro editing with recombinant RNA ligase. Proc Natl Acad Sci U S A 2005; 102:4712-7. [PMID: 15781861 PMCID: PMC555718 DOI: 10.1073/pnas.0500553102] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The approximately 20S RNA ligase-containing complex (L-complex) in trypanosomatid mitochondria interacts by means of RNA linkers with at least two other multiprotein complexes to mediate the editing of mitochondrial cryptogene transcripts. The L-complex contains approximately 16 proteins, including the two RNA-editing ligases (RELs), REL1 and REL2. Leishmania tarentolae REL1 and REL2 and Trypanosoma brucei REL1 were expressed as enzymatically active tandem affinity purification-tagged proteins in a Baculovirus system. When these proteins were added to mitochondrial lysates from T. brucei procyclic cells that were depleted of the cognate endogenous ligase by RNA interference down-regulation of expression, the added proteins were integrated into the L-complex, and, in the case of REL1, there was a complementation of in vitro-precleaved U-insertion and U-deletion editing activities of the 20S L-complex. Integration of the recombinant proteins did not occur or occurred at a very low level with noncognate ligase-depleted L-complex or with wild-type L-complex. A C-terminal region of the T. brucei recombinant REL1 downstream of the catalytic domain was identified as being involved in integration into the L-complex. The ability to perform functional complementation in vitro provides a powerful tool for molecular dissection of the editing reaction.
Collapse
Affiliation(s)
- Guanghan Gao
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | |
Collapse
|
68
|
Penschow JL, Sleve DA, Ryan CM, Read LK. TbDSS-1, an essential Trypanosoma brucei exoribonuclease homolog that has pleiotropic effects on mitochondrial RNA metabolism. EUKARYOTIC CELL 2005; 3:1206-16. [PMID: 15470249 PMCID: PMC522597 DOI: 10.1128/ec.3.5.1206-1216.2004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mitochondrial gene expression in trypanosomes is controlled primarily at the levels of RNA processing and RNA stability. This regulation undoubtedly involves numerous ribonucleases. Here we characterize the Trypanosoma brucei homolog of the yeast DSS-1 mitochondrial exoribonuclease, which we term TbDSS-1. Biochemical fractionation indicates that TbDSS-1 is mitochondrially localized, as predicted by its N-terminal sequence. In contrast to its yeast homolog, TbDSS-1 does not appear to be associated with mitochondrial ribosomes. Targeted downregulation of TbDSS-1 by RNA interference in procyclic-form T. brucei results in a severe growth defect. In addition, TbDSS-1 depletion leads to a decrease in the levels of never edited cytochrome oxidase subunit I (COI) mRNA and both unedited and edited COIII mRNAs, indicating this enzyme functions in the control of mitochondrial RNA abundance. We also observe a considerable reduction in the level of edited apocytochrome b (CYb) mRNA and a corresponding increase in unedited CYb mRNA, suggesting that TbDSS-1 functions, either directly or indirectly, in the control of RNA editing. The abundance of both gCYb[560] and gA6[149] guide RNAs is reduced upon TbDSS-1 depletion, although the reduction in gCYb[560] is much more dramatic. The significant reduction in gCYb levels could potentially account for the observed decrease in CYb RNA editing. Western blot analyses of mitochondrial RNA editing and stability factors indicate that the perturbations of RNA levels observed in TbDSS-1 knock-downs do not result from secondary effects on other mitochondrial proteins. In all, these data demonstrate that TbDSS-1 is an essential protein that plays a role in mitochondrial RNA stability and RNA editing.
Collapse
Affiliation(s)
- Jonelle L Penschow
- Department of Microbiology and Immunology, 138 Farber Hall, SUNY Buffalo School of Medicine, Buffalo, NY 14214, USA
| | | | | | | |
Collapse
|
69
|
Abstract
Most mitochondrial mRNAs in kinetoplastids require editing, that is, the posttranscriptional insertion and deletion of uridine nucleotides that are specified by guide RNAs and catalyzed by multiprotein complexes. Recent studies have identified many of the proteins in these complexes, in addition to some of their functions and interactions. Although much remains unknown, a picture of highly organized complexes is emerging that shows that the complex that catalyzes the central steps of editing is partitioned into distinct insertion and deletion editing subcomplexes. These subcomplexes coordinate hundreds of ordered catalytic steps that function to produce a single mature mRNA. The dynamic processes, which might entail interactions among multiprotein complexes and changes in their composition and conformation, remain to be elucidated.
Collapse
Affiliation(s)
- Kenneth D Stuart
- Seattle Biomedical Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, WA 98109, USA.
| | | | | | | |
Collapse
|
70
|
Golden DE, Hajduk SL. The 3'-untranslated region of cytochrome oxidase II mRNA functions in RNA editing of African trypanosomes exclusively as a cis guide RNA. RNA (NEW YORK, N.Y.) 2005; 11:29-37. [PMID: 15574518 PMCID: PMC1370688 DOI: 10.1261/rna.7170705] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2004] [Accepted: 10/08/2004] [Indexed: 05/24/2023]
Abstract
RNA editing in trypanosomes is a post-transcriptional process responsible for correcting the coding sequences of many mitochondrial mRNAs. Uridines are specifically added or deleted from mRNA by an enzymatic cascade in which a pre-edited mRNA is specifically cleaved, uridines are added or removed, and the corrected mRNA is ligated. The process is directed by RNA molecules, termed guide RNAs (gRNA). The ability of this class of small, noncoding RNA to function in RNA editing is essential for these organisms. Typically, gRNAs are transcribed independent of the their cognate mRNA and anneal to form a binary RNA complex . An exception for this process may be cytochrome oxidase subunit II (COII) mRNA since a gene encoding a trans acting gRNA has not been identified. Using an in vitro editing assay we find that the 3' UTR of COII, indeed, functions as a guide for both the site and number of uridines added to the coding region of the COII mRNA. We further show that the guiding sequence within the COII 3' UTR can only function in COII editing when contiguous with the editing substrate, indicating that the 3' UTR of COII lacks sequence or structure information necessary to function as a trans-acting gRNA. While other RNAs have been shown to "guide" RNA processing reactions, our discovery that the COII 3' UTR directs editing of its cognate mRNA in cis, is a unique function for a 3' UTR. The findings described here have led us to propose a new model for the evolution of gRNAs in kinetoplastids.
Collapse
Affiliation(s)
- Daniel E Golden
- Program in Global Infectious Diseases, Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | | |
Collapse
|
71
|
Deng J, Schnaufer A, Salavati R, Stuart KD, Hol WGJ. High resolution crystal structure of a key editosome enzyme from Trypanosoma brucei: RNA editing ligase 1. J Mol Biol 2004; 343:601-13. [PMID: 15465048 DOI: 10.1016/j.jmb.2004.08.041] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2004] [Revised: 08/11/2004] [Accepted: 08/12/2004] [Indexed: 11/23/2022]
Abstract
Trypanosomatids are causative agents of several devastating tropical diseases such as African sleeping sickness, Chagas' disease and leishmaniasis. There are no effective vaccines available to date for treatment of these protozoan diseases, while current drugs have limited efficacy, significant toxicity and suffer from increasing resistance. Trypanosomatids have several remarkable and unique metabolic and structural features that are of great interest for developing new anti-protozoan therapeutics. One such feature is "RNA editing", an essential process in these pathogenic protozoa. Transcripts for key trypanosomatid mitochondrial proteins undergo extensive post-transcriptional RNA editing by specifically inserting or deleting uridylates from pre-mature mRNA in order to create mature mRNAs that encode functional proteins. The RNA editing process is carried out in a approximately 1.6 MDa multi-protein complex, the editosome. In Trypanosoma brucei, one of the editosome's core enzymes, the RNA editing ligase 1 (TbREL1), has been shown to be essential for survival of both insect and bloodstream forms of the parasite. We report here the crystal structure of the catalytic domain of TbREL1 at 1.2 A resolution, in complex with ATP and magnesium. The magnesium ion interacts with the beta and gamma-phosphate groups and is almost perfectly octahedrally coordinated by six phosphate and water oxygen atoms. ATP makes extensive direct and indirect interactions with the ligase via essentially all its atoms while extending its base into a deep pocket. In addition, the ATP makes numerous interactions with residues that are conserved in the editing ligases only. Further away from the active site, TbREL1 contains a unique loop containing several hydrophobic residues that are highly conserved among trypanosomatid RNA editing ligases which may play a role in protein-protein interactions in the editosome. The distinct characteristics of the adenine-binding pocket, and the absence of any close homolog in the human genome, bode well for the design of selective inhibitors that will block the essential RNA ligase function in a number of major protozoan pathogens.
Collapse
Affiliation(s)
- Junpeng Deng
- Howard Hughes Medical Institute, University of Washington, Seattle WA 98195, USA
| | | | | | | | | |
Collapse
|
72
|
Vondrusková E, van den Burg J, Zíková A, Ernst NL, Stuart K, Benne R, Lukes J. RNA interference analyses suggest a transcript-specific regulatory role for mitochondrial RNA-binding proteins MRP1 and MRP2 in RNA editing and other RNA processing in Trypanosoma brucei. J Biol Chem 2004; 280:2429-38. [PMID: 15504736 DOI: 10.1074/jbc.m405933200] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial RNA-binding proteins MRP1 and MRP2 occur in a heteromeric complex that appears to play a role in U-insertion/deletion editing in trypanosomes. Reduction in the levels of MRP1 (gBP21) and/or MRP2 (gBP25) mRNA by RNA interference in procyclic Trypanosoma brucei resulted in severe growth inhibition. It also resulted in the loss of both proteins, even when only one of the MRP mRNAs was reduced, indicating a mutual dependence for stability. Elimination of the MRPs gave rise to substantially reduced levels of edited CyB and RPS12 mRNAs but little or no reduction of the level of edited Cox2, Cox3, and A6 mRNAs as measured by poisoned primer extension analyses. In contrast, edited NADH-dehydrogenase (ND) subunit 7 mRNA was increased 5-fold in MRP1+2 double knock-down cells. Furthermore, MRP elimination resulted in reduced levels of Cox1, ND4, and ND5 mRNAs, which are never edited, whereas mitoribosomal 12 S rRNA levels were not affected. These data indicate that MRP1 and MRP2 are not essential for RNA editing per se but, rather, play a regulatory role in the editing of specific transcripts and other RNA processing activities.
Collapse
Affiliation(s)
- Eva Vondrusková
- Institute of Parasitology, Czech Academy of Sciences, and Faculty of Biology, University of South Bohemia, 37005 Ceské Budejovice, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
73
|
Abstract
Gene-specific silencing by RNA interference is a valuable tool for analysis of gene function in the protozoan parasite Trypanosoma brucei. The development of tetracycline-regulated vectors for production of double-stranded RNA has facilitated its widespread use. RNA interference provides a fast and efficient method for determining whether a gene is essential for growth and viability, reveals mechanistic information on gene function, and has greatly enhanced our understanding of complex biological processes. Finally, the creation of an RNA interference-based library has allowed, for the first time, an approach for conducting forward genetic experiments in this organism.
Collapse
Affiliation(s)
- Shawn A Motyka
- Department of Biological Chemistry, Johns Hopkins School of Medicine, 725 N. Wolfe St., Baltimore, Maryland 21205, USA
| | | |
Collapse
|
74
|
Simpson L, Aphasizhev R, Gao G, Kang X. Mitochondrial proteins and complexes in Leishmania and Trypanosoma involved in U-insertion/deletion RNA editing. RNA (NEW YORK, N.Y.) 2004; 10:159-70. [PMID: 14730014 PMCID: PMC1370527 DOI: 10.1261/rna.5170704] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
A number of mitochondrial proteins have been identified in Leishmania sp. and Trypanosoma brucei that may be involved in U-insertion/deletion RNA editing. Only a few of these have yet been characterized sufficiently to be able to assign functional names for the proteins in both species, and most have been denoted by a variety of species-specific and laboratory-specific operational names, leading to a terminology confusion both within and outside of this field. In this review, we summarize the present status of our knowledge of the orthologous and unique putative editing proteins in both species and the functional motifs identified by sequence analysis and by experimentation. An online Supplemental sequence database (http://164.67.60.200/proteins/protsmini1.asp) is also provided as a research resource.
Collapse
Affiliation(s)
- Larry Simpson
- Department of Microbiology, Immunology and Molecular Genetics and Howard Hughes Medical Institute, University of California, Los Angeles, California 90095, USA.
| | | | | | | |
Collapse
|
75
|
O'Hearn SF, Huang CE, Hemann M, Zhelonkina A, Sollner-Webb B. Trypanosoma brucei RNA editing complex: band II is structurally critical and maintains band V ligase, which is nonessential. Mol Cell Biol 2003; 23:7909-19. [PMID: 14560033 PMCID: PMC207603 DOI: 10.1128/mcb.23.21.7909-7919.2003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Maturation of Trypanosoma brucei mitochondrial mRNA involves massive posttranscriptional insertion and deletion of uridine residues. This RNA editing utilizes an enzymatic complex with seven major proteins, band I through band VII. We here use RNA interference (RNAi) to examine the band II and band V proteins. Band II is found essential for viability; it is needed to maintain the normal structure of the editing complex and to retain the band V ligase protein. Previously, band III was found essential for certain activities, including maintenance of the editing complex and retention of the band IV ligase protein. Thus, band II and band V form a protein pair with features analogous to the band III/band IV ligase pair. Since band V is specific for U insertion and since band IV is needed for U deletion, their parallel organization suggests that the editing complex has a pseudosymmetry. However, unlike the essential band IV ligase, RNAi to band V has only a morphological but no growth rate effect, suggesting that it is stimulatory but nonessential. Indeed, in vitro analysis of band V RNAi cell extract demonstrates that band IV can seal U insertion when band V is lacking. Thus, band IV ligase is the first activity of the basic editing complex shown able to serve in both forms of editing. Our studies also indicate that the U insertional portion may be less central in the editing complex than the corresponding U deletional portion.
Collapse
Affiliation(s)
- Sean F O'Hearn
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | |
Collapse
|
76
|
Schnaufer A, Ernst NL, Palazzo SS, O'Rear J, Salavati R, Stuart K. Separate insertion and deletion subcomplexes of the Trypanosoma brucei RNA editing complex. Mol Cell 2003; 12:307-19. [PMID: 14536071 DOI: 10.1016/s1097-2765(03)00286-7] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The Trypanosoma brucei editosome catalyzes the maturation of mitochondrial mRNAs through the insertion and deletion of uridylates and contains at least 16 stably associated proteins. We examined physical and functional associations among these proteins using three different approaches: purification of complexes via tagged editing ligases TbREL1 and TbREL2, comprehensive yeast two-hybrid analysis, and coimmunoprecipitation of recombinant proteins. A purified TbREL1 subcomplex catalyzed precleaved deletion editing in vitro, while a purified TbREL2 subcomplex catalyzed precleaved insertion editing in vitro. The TbREL1 subcomplex contained three to four proteins, including a putative exonuclease, and appeared to be coordinated by the zinc finger protein TbMP63. The TbREL2 subcomplex had a different composition, contained the TbMP57 terminal uridylyl transferase, and appeared to be coordinated by the TbMP81 zinc finger protein. This study provides insight into the molecular architecture of the editosome and supports the existence of separate subcomplexes for deletion and insertion editing.
Collapse
Affiliation(s)
- Achim Schnaufer
- Seattle Biomedical Research Institute, 4 Nickerson Street, Suite 200, Seattle, WA 98109, USA
| | | | | | | | | | | |
Collapse
|
77
|
Kang X, Falick AM, Nelson RE, Gao G, Rogers K, Aphasizhev R, Simpson L. Disruption of the zinc finger motifs in the Leishmania tarentolae LC-4 (=TbMP63) L-complex editing protein affects the stability of the L-complex. J Biol Chem 2003; 279:3893-9. [PMID: 14604987 DOI: 10.1074/jbc.m310185200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The uridine insertion/deletion editing complex, which we have termed the L-complex, is composed of at least 16 polypeptides stabilized entirely by protein-protein interactions. Three L-complex proteins contain zinc finger motifs that could be involved in these interactions. In Leishmania these proteins are labeled LC-1, LC-4, and LC-7b, and the orthologs in Trypanosoma brucei are labeled MP81, MP63, and MP42. Overexpression of TAP-tagged LC-4 in Leishmania tarentolae led to a partial localization of the protein in the L-complex together with the endogenous LC-4 protein, suggesting at least a dimeric organization. Disruption of zinc fingers 1 or 2 (ZnF-1 and ZnF-2) in the tagged LC-4 protein was performed by mutation of the two zinc-binding cysteines to glycines. Disruption of ZnF-1 led to a partial growth defect and a substantive breakdown of the L-complex, whereas disruption of ZnF-2 had no effect on cell growth and caused a partial breakdown of the L-complex. A close interaction of LC-4 with 2-4 proteins, including REL1 (RNA ligase) and LC-3, was suggested by chemical crosslinking and co-immunoprecipitation experiments. Our results suggest that both ZnF-1 and ZnF-2 in LC-4 play a role in protein-protein interactions and indicate that the LC-4 subcomplex may be required for formation or stability of the entire L-complex.
Collapse
Affiliation(s)
- Xuedong Kang
- Howard Hughes Medical Institute, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | |
Collapse
|
78
|
Gott JM. Two distinct roles for terminal uridylyl transferases in RNA editing. Proc Natl Acad Sci U S A 2003; 100:10583-4. [PMID: 12963809 PMCID: PMC196844 DOI: 10.1073/pnas.2035062100] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Jonatha M Gott
- Center for RNA Molecular Biology, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| |
Collapse
|
79
|
Gao G, Simpson L. Is the Trypanosoma brucei REL1 RNA ligase specific for U-deletion RNA editing, and is the REL2 RNA ligase specific for U-insertion editing? J Biol Chem 2003; 278:27570-4. [PMID: 12748175 DOI: 10.1074/jbc.m303317200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It was shown previously that the REL1 mitochondrial RNA ligase in Trypanosoma brucei was a vital gene and disruption affected RNA editing in vivo, whereas the REL2 RNA ligase gene could be down-regulated with no effect on cell growth or on RNA editing. We performed down-regulation of REL1 in procyclic T. brucei (midgut insect forms) by RNA interference and found a 40-50% inhibition of Cyb editing, which has only U-insertions, as well as a similar inhibition of ND7 editing, which has both U-insertions and U-deletions. In addition, both U-insertion and U-deletion in vitro pre-cleaved editing were inhibited to similar extents. We also found little if any effect of REL1 down-regulation on the sedimentation coefficient or abundance of the RNA ligase-containing L-complex (Aphasizhev, R., Aphasizheva, I., Nelson, R. E., Gao, G., Simpson, A. M., Kang, X., Falick, A. M., Sbicego, S., and Simpson, L. (2003) EMBO J. 22, 913-924), suggesting that the inhibition of both insertion and deletion editing was not due to a disruption of the L-complex. Together with the evidence that down-regulation of REL2 has no effect on cell growth or on RNA editing in vivo or in vitro, these data suggest that the REL1 RNA ligase may be active in vivo in both U-insertion and U-deletion editing. The in vivo biological role of REL2 remains obscure.
Collapse
Affiliation(s)
- Guanghan Gao
- Howard Hughes Medical Institute, University of California, 6780 MacDonald Research Laboratories, Los Angeles, California 90095, USA
| | | |
Collapse
|
80
|
Panigrahi AK, Allen TE, Stuart K, Haynes PA, Gygi SP. Mass spectrometric analysis of the editosome and other multiprotein complexes in Trypanosoma brucei. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2003; 14:728-735. [PMID: 12837594 DOI: 10.1016/s1044-0305(03)00126-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The composition of the editosome, a multi-protein complex that catalyzes uridine insertion and deletion RNA editing to produce mature mitochondrial mRNAs in trypanosomes, was analyzed by mass spectrometry. The editosomes were isolated by column chromatography, glycerol gradient sedimentation, and monoclonal antibody affinity purifications. At least 16 proteins form the catalytic core of the editosome, and additional associated proteins were identified. Analyses of mitochondrial fractions identified several non-editosome proteins and multi-protein complexes. These studies contribute to the functional annotation of T. brucei genome.
Collapse
Affiliation(s)
- Aswini K Panigrahi
- Department of Pathobiology, University of Washington, and Seattle Biomedical Research Institute, Seattle, Washington 98109, USA
| | | | | | | | | |
Collapse
|
81
|
Domingo GJ, Palazzo SS, Wang B, Pannicucci B, Salavati R, Stuart KD. Dyskinetoplastic Trypanosoma brucei contains functional editing complexes. EUKARYOTIC CELL 2003; 2:569-77. [PMID: 12796302 PMCID: PMC161453 DOI: 10.1128/ec.2.3.569-577.2003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2002] [Accepted: 01/15/2003] [Indexed: 11/20/2022]
Abstract
Mitochondrial pre-mRNAs undergo posttranscriptional RNA editing as directed by small guide RNAs (gRNAs) to produce functional mRNAs in kinetoplastid protozoa. The pre-mRNAs and gRNAs are encoded in the maxicircle and minicircle components, respectively, of the kinetoplastid mitochondrial DNA (kDNA), and editing is catalyzed by a multienzyme protein complex. Trypanosoma evansi AnTat3/3, which lacks maxicircles but retains a single class of minicircles, and a dyskinetoplastic mutant of Trypanosoma brucei EATRO164, which is devoid of kDNA, were both shown to retain genes and proteins for the editing complex. The proteins are present in complexes that immunoprecipitate and sediment indistinguishably from wild-type complexes. The complexes catalyze precleaved insertion and deletion editing as well as full-round deletion editing in vitro. Thus, mutants which lack the natural substrates for RNA editing and all or most gRNAs retain editing complexes that contain the four primary catalytic activities of editing and function in editing, at least in vitro. Therefore neither pre-mRNA nor gRNA is required to form functional RNA-editing complexes.
Collapse
Affiliation(s)
- Gonzalo J Domingo
- Seattle Biomedical Research Institute, Seattle, Washington 98109, USA
| | | | | | | | | | | |
Collapse
|
82
|
Ernst NL, Panicucci B, Igo RP, Panigrahi AK, Salavati R, Stuart K. TbMP57 is a 3' terminal uridylyl transferase (TUTase) of the Trypanosoma brucei editosome. Mol Cell 2003; 11:1525-36. [PMID: 12820966 DOI: 10.1016/s1097-2765(03)00185-0] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
RNA editing produces mature trypanosome mitochondrial mRNAs by uridylate (U) insertion and deletion. In insertion editing, Us are added to the pre-mRNA by a 3' terminal uridylyl transferase (TUTase) activity. We report the identification of a TUTase activity that copurifies with in vitro editing and is catalyzed by the integral editosome protein TbMP57. TbMP57 catalyzes the addition of primarily a single U to single-stranded (ss) RNA and adds the number of Us specified by a guide RNA to insertion editing-like substrates. TbMP57 is distinct from a previously identified TUTase that adds many Us to ssRNA and which we find is neither a stable editosome component nor does it add Us to editing-like substrates. Recombinant TbMP57 specifically interacts with the editosome protein TbMP81, and this interaction enhances the TUTase activity. These results suggest that TbMP57 catalyzes U addition to pre-mRNA during editing.
Collapse
MESH Headings
- Animals
- Catalysis
- Chromatography, Agarose
- Chromatography, Gel
- Chromatography, Ion Exchange
- Mitochondria/chemistry
- Mitochondria/enzymology
- Molecular Sequence Data
- Molecular Weight
- Protein Structure, Tertiary
- Protozoan Proteins
- RNA/genetics
- RNA/metabolism
- RNA Editing
- RNA Precursors/genetics
- RNA Precursors/metabolism
- RNA, Guide, Kinetoplastida/chemistry
- RNA, Guide, Kinetoplastida/genetics
- RNA, Guide, Kinetoplastida/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Recombinant Proteins/metabolism
- Ribonucleoproteins/metabolism
- Substrate Specificity
- Trypanosoma brucei brucei/cytology
- Trypanosoma brucei brucei/enzymology
- Trypanosoma brucei brucei/genetics
- UDPglucose-Hexose-1-Phosphate Uridylyltransferase/genetics
- UDPglucose-Hexose-1-Phosphate Uridylyltransferase/isolation & purification
- UDPglucose-Hexose-1-Phosphate Uridylyltransferase/metabolism
Collapse
|
83
|
Wang B, Ernst NL, Palazzo SS, Panigrahi AK, Salavati R, Stuart K. TbMP44 is essential for RNA editing and structural integrity of the editosome in Trypanosoma brucei. EUKARYOTIC CELL 2003; 2:578-87. [PMID: 12796303 PMCID: PMC161458 DOI: 10.1128/ec.2.3.578-587.2003] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
RNA editing produces mature mitochondrial mRNAs in trypanosomatids by the insertion and deletion of uridylates. It is catalyzed by a multiprotein complex, the editosome. We identified TbMP44 among the components of enriched editosomes by a combination of mass spectrometry and DNA sequence database analysis. Inactivation of an ectopic TbMP44 allele in cells in which the endogenous alleles were disrupted abolished RNA editing, inhibited cell growth, and was eventually lethal to bloodstream form trypanosomes. Loss of TbMP44 mRNA was followed initially by a reduction in the editosome sedimentation coefficient and then by the absence of other editosome proteins despite the presence of the mRNA. Reactivation of TbMP44 gene expression resulted in the resumption of cell growth and the reappearance of editosomes. These data indicate that TbMP44 is a component of the editosome that is essential for editing and critical for the structural integrity of the editosome.
Collapse
Affiliation(s)
- Bingbing Wang
- Seattle Biomedical Research Institute, Seattle, Washington 98109, USA
| | | | | | | | | | | |
Collapse
|
84
|
Rajagopal L, Clancy A, Rubens CE. A eukaryotic type serine/threonine kinase and phosphatase in Streptococcus agalactiae reversibly phosphorylate an inorganic pyrophosphatase and affect growth, cell segregation, and virulence. J Biol Chem 2003; 278:14429-41. [PMID: 12562757 DOI: 10.1074/jbc.m212747200] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein phosphorylation is essential for the regulation of cell growth, division, and differentiation in both prokaryotes and eukaryotes. Signal transduction in prokaryotes was previously thought to occur primarily by histidine kinases, involved in two-component signaling pathways. Lately, bacterial homologues of eukaryotic-type serine/threonine kinases and phosphatases have been found to be necessary for cellular functions such as growth, differentiation, pathogenicity, and secondary metabolism. The Gram-positive bacteria Streptococcus agalactiae (group B streptococci, GBS) is an important human pathogen. We have identified and characterized a eukaryotic-type serine/threonine protein kinase (Stk1) and its cognate phosphatase (Stp1) in GBS. Biochemical assays revealed that Stk1 has kinase activity and localizes to the membrane and that Stp1 is a soluble protein with manganese-dependent phosphatase activity on Stk1. Mutations in these genes exhibited pleiotropic effects on growth, virulence, and cell segregation of GBS. Complementation of these mutations restored the wild type phenotype linking these genes to the regulation of various cellular processes in GBS. In vitro phosphorylation of cell extracts from wild type and mutant strains revealed that Stk1 is essential for phosphorylation of six GBS proteins. We have identified the predominant endogenous substrate of both Stk1 and Stp1 as a manganese-dependent inorganic pyrophosphatase (PpaC) by liquid chromatography/tandem mass spectrometry. These results suggest that these eukaryotic-type enzymes regulate pyrophosphatase activity and other cellular functions of S. agalactiae.
Collapse
Affiliation(s)
- Lakshmi Rajagopal
- Division of Infectious Disease, Childrens Hospital and Regional Medical Center, Seattle, Washington 98105, USA
| | | | | |
Collapse
|
85
|
Palazzo SS, Panigrahi AK, Igo RP, Salavati R, Stuart K. Kinetoplastid RNA editing ligases: complex association, characterization, and substrate requirements. Mol Biochem Parasitol 2003; 127:161-7. [PMID: 12672525 DOI: 10.1016/s0166-6851(02)00333-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
RNA editing processes kinetoplastid mitochondrial transcripts post-transcriptionally by inserting and deleting uridylates (Us) to produce functional mRNAs. The activities of the RNA ligases in the multienzyme complex (the editosome) that catalyzes editing and of the recombinant proteins were characterized and found to be similar. Ligation of two RNA fragments was enhanced when bridged by a complementary RNA or DNA, which left no gaps or overhangs. An acceptor nucleotide preference of G>U>C>A was observed in the absence of exogenous ATP but U was preferred upon addition of ATP and ligase activity was increased. The substrate specificity and catalytic characteristics indicate that RNA ligase activity contributes to the accuracy of RNA editing.
Collapse
Affiliation(s)
- Setareh S Palazzo
- Seattle Biomedical Research Institute, 4 Nickerson St., Seattle, WA 98109, USA
| | | | | | | | | |
Collapse
|
86
|
Pai RD, Oppegard LM, Connell GJ. Sequence and structural requirements for optimal guide RNA-directed insertional editing within Leishmania tarentolae. RNA (NEW YORK, N.Y.) 2003; 9:469-83. [PMID: 12649498 PMCID: PMC1370413 DOI: 10.1261/rna.2175703] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2002] [Accepted: 01/08/2003] [Indexed: 05/24/2023]
Abstract
The coding sequence of several mitochondrial mRNAs of the trypanosomatid family of protozoa is created by the guide RNA-directed insertion and deletion of uridylates (Us). Selection-amplification was used to explore the sequence and structure of the guide RNA and mRNA required for efficient insertional editing within a mitochondrial extract prepared from Leishmania tarentolae. This study identifies several novel features of the editing reaction in addition to several that are consistent with the previous mutagenesis and phylogenetic analysis of the reaction in Trypanosoma brucei, a distantly related trypanosomatid. Specifically, there is a strong bias against cytidines 5' of the editing sites and guanosines immediately 3' of guiding nucleotides. U insertions are directed both 5' and 3' of a genomically encoded U, which was previously assumed not to occur. Base pairing immediately flanking an editing site can significantly stimulate the editing reaction and affect the reaction fidelity but is not essential. Likewise, single-stranded RNA in the region upstream of the editing site, not necessarily immediately adjacent, can facilitate editing but is also not essential. The editing of an RNA containing many of the optimal features is linear with increasing quantities of extract permitting specific activity measurements to be made that are not possible with previously described T. brucei and L. tarentolae assays. The reaction catalyzed by the L. tarentolae extract can be highly accurate, which does not support a proposed model for editing that was based largely on the inaccuracy of an earlier in vitro reaction.
Collapse
Affiliation(s)
- Raj D Pai
- Department of Pharmacology, Medical School, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
87
|
Panigrahi AK, Schnaufer A, Ernst NL, Wang B, Carmean N, Salavati R, Stuart K. Identification of novel components of Trypanosoma brucei editosomes. RNA (NEW YORK, N.Y.) 2003; 9:484-92. [PMID: 12649499 PMCID: PMC1370414 DOI: 10.1261/rna.2194603] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2002] [Accepted: 01/09/2003] [Indexed: 05/19/2023]
Abstract
The editosome is a multiprotein complex that catalyzes the insertion and deletion of uridylates that occurs during RNA editing in trypanosomatids. We report the identification of nine novel editosome proteins in Trypanosoma brucei. They were identified by mass spectrometric analysis of functional editosomes that were purified by serial ion exchange/gel permeation chromatography, immunoaffinity chromatography specific to the TbMP63 editosome protein, or tandem affinity purification based on a tagged RNA editing ligase. The newly identified proteins have ribonuclease and/or RNA binding motifs suggesting nuclease function for at least some of these. Five of the proteins are interrelated, as are two others, and one is related to four previously identified editosome proteins. The implications of these findings are discussed.
Collapse
|
88
|
Pelletier M, Read LK. RBP16 is a multifunctional gene regulatory protein involved in editing and stabilization of specific mitochondrial mRNAs in Trypanosoma brucei. RNA (NEW YORK, N.Y.) 2003; 9:457-68. [PMID: 12649497 PMCID: PMC1370412 DOI: 10.1261/rna.2160803] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2002] [Accepted: 12/27/2002] [Indexed: 05/20/2023]
Abstract
RBP16 is a Trypanosoma brucei mitochondrial RNA-binding protein that associates with guide RNAs (gRNAs), mRNAs, and ribosomal RNAs. Based on its inclusion in the multifunctional Y-box protein family and its ability to bind multiple RNA classes, we hypothesized that RBP16 plays a role in diverse aspects of mitochondrial gene regulation. To gain insight into RBP16 function, we generated cells expressing less than 10% of wild-type RBP16 levels by tetracycline-regulated RNA interference (RNAi). Poisoned primer extension analyses revealed that edited, but not unedited, CYb mRNA is reduced by approximately 98% in tetracycline-induced RBP16 RNAi cells, suggesting that RBP16 is critical for CYb RNA editing. The down-regulation of CYb editing in RBP16 RNAi transfectants apparently entails a defect in gRNA utilization, as gCYb[560] abundance is similar in uninduced and induced cells. We observed a surprising degree of specificity regarding the ability of RBP16 to modulate editing, as editing of mRNAs other than CYb is not significantly affected upon RBP16 disruption. However, the abundance of the never edited mitochondrial RNAs COI and ND4 is reduced by 70%-80% in RBP16 RNAi transfectants, indicating an additional role for RBP16 in the stabilization of these mRNAs. Analysis of RNAs bound to RBP16 immunoprecipitated from wild-type cells reveals that RBP16 is associated with multiple gRNA sequence classes in vivo, including those whose abundance and usage appear unaffected by RBP16 disruption. Overall, our results indicate that RBP16 is an accessory factor that regulates the editing and stability of specific populations of mitochondrial mRNAs.
Collapse
Affiliation(s)
- Michel Pelletier
- Department of Microbiology and Witebsky Center for Microbial Pathogenesis and Immunology, State University of New York-Buffalo School of Medicine, Buffalo, New York 14214, USA
| | | |
Collapse
|
89
|
Simpson L, Sbicego S, Aphasizhev R. Uridine insertion/deletion RNA editing in trypanosome mitochondria: a complex business. RNA (NEW YORK, N.Y.) 2003; 9:265-76. [PMID: 12591999 PMCID: PMC1370392 DOI: 10.1261/rna.2178403] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The basic mechanism of uridine insertion/deletion RNA editing in mitochondria of kinetoplastid protists has been established for some time but the molecular details remained largely unknown. Recently, there has been significant progress in defining the molecular components of the editing reaction. A number of factors have been isolated from trypanosome mitochondria, some of which have been definitely implicated in the uridine insertion/deletion RNA editing reaction and others of which have been circumstantially implicated. Several protein complexes have been isolated which exhibit some editing activities, and the macromolecular organization of these complexes is being analyzed. In addition, there have been several important technical advances in the in vitro analysis of editing. In this review we critically examine the various factors and complexes proposed to be involved in RNA editing.
Collapse
Affiliation(s)
- Larry Simpson
- Howard Hughes Medical Institute and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095, USA.
| | | | | |
Collapse
|
90
|
Aphasizhev R, Aphasizheva I, Nelson RE, Gao G, Simpson AM, Kang X, Falick AM, Sbicego S, Simpson L. Isolation of a U-insertion/deletion editing complex from Leishmania tarentolae mitochondria. EMBO J 2003; 22:913-24. [PMID: 12574127 PMCID: PMC145443 DOI: 10.1093/emboj/cdg083] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A multiprotein, high molecular weight complex active in both U-insertion and U-deletion as judged by a pre-cleaved RNA editing assay was isolated from mitochondrial extracts of Leishmania tarentolae by the tandem affinity purification (TAP) procedure, using three different TAP-tagged proteins of the complex. This editing- or E-complex consists of at least three protein-containing components interacting via RNA: the RNA ligase-containing L-complex, a 3' TUTase (terminal uridylyltransferase) and two RNA-binding proteins, Ltp26 and Ltp28. Thirteen approximately stoichiometric components were identified by mass spectrometric analysis of the core L-complex: two RNA ligases; homologs of the four Trypanosoma brucei editing proteins; and seven novel polypeptides, among which were two with RNase III, one with an AP endo/exonuclease and one with nucleotidyltransferase motifs. Three proteins have no similarities beyond kinetoplastids.
Collapse
Affiliation(s)
- Ruslan Aphasizhev
- Department of Microbiology, Immunology and Molecular Genetics, 6780 MacDonald Research Laboratories and Howard Hughes Medical Institute, University of California at Los Angeles, Los Angeles, CA 90095 and Howard Hughes Medical Institute Mass Spectrometry Laboratory, Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA Corresponding author e-mail:
| | - Inna Aphasizheva
- Department of Microbiology, Immunology and Molecular Genetics, 6780 MacDonald Research Laboratories and Howard Hughes Medical Institute, University of California at Los Angeles, Los Angeles, CA 90095 and Howard Hughes Medical Institute Mass Spectrometry Laboratory, Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA Corresponding author e-mail:
| | - Robert E. Nelson
- Department of Microbiology, Immunology and Molecular Genetics, 6780 MacDonald Research Laboratories and Howard Hughes Medical Institute, University of California at Los Angeles, Los Angeles, CA 90095 and Howard Hughes Medical Institute Mass Spectrometry Laboratory, Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA Corresponding author e-mail:
| | - Guanghan Gao
- Department of Microbiology, Immunology and Molecular Genetics, 6780 MacDonald Research Laboratories and Howard Hughes Medical Institute, University of California at Los Angeles, Los Angeles, CA 90095 and Howard Hughes Medical Institute Mass Spectrometry Laboratory, Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA Corresponding author e-mail:
| | - Agda M. Simpson
- Department of Microbiology, Immunology and Molecular Genetics, 6780 MacDonald Research Laboratories and Howard Hughes Medical Institute, University of California at Los Angeles, Los Angeles, CA 90095 and Howard Hughes Medical Institute Mass Spectrometry Laboratory, Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA Corresponding author e-mail:
| | - Xuedong Kang
- Department of Microbiology, Immunology and Molecular Genetics, 6780 MacDonald Research Laboratories and Howard Hughes Medical Institute, University of California at Los Angeles, Los Angeles, CA 90095 and Howard Hughes Medical Institute Mass Spectrometry Laboratory, Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA Corresponding author e-mail:
| | - Arnold M. Falick
- Department of Microbiology, Immunology and Molecular Genetics, 6780 MacDonald Research Laboratories and Howard Hughes Medical Institute, University of California at Los Angeles, Los Angeles, CA 90095 and Howard Hughes Medical Institute Mass Spectrometry Laboratory, Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA Corresponding author e-mail:
| | - Sandro Sbicego
- Department of Microbiology, Immunology and Molecular Genetics, 6780 MacDonald Research Laboratories and Howard Hughes Medical Institute, University of California at Los Angeles, Los Angeles, CA 90095 and Howard Hughes Medical Institute Mass Spectrometry Laboratory, Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA Corresponding author e-mail:
| | - Larry Simpson
- Department of Microbiology, Immunology and Molecular Genetics, 6780 MacDonald Research Laboratories and Howard Hughes Medical Institute, University of California at Los Angeles, Los Angeles, CA 90095 and Howard Hughes Medical Institute Mass Spectrometry Laboratory, Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA Corresponding author e-mail:
| |
Collapse
|
91
|
Aphasizhev R, Aphasizheva I, Nelson RE, Simpson L. A 100-kD complex of two RNA-binding proteins from mitochondria of Leishmania tarentolae catalyzes RNA annealing and interacts with several RNA editing components. RNA (NEW YORK, N.Y.) 2003; 9:62-76. [PMID: 12554877 PMCID: PMC1370371 DOI: 10.1261/rna.2134303] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2002] [Accepted: 10/07/2002] [Indexed: 05/22/2023]
Abstract
A stable 100-kD complex from mitochondria of Leishmania tarentolae containing two RNA-binding proteins, Ltp26 and Ltp28, was identified by cross-linking to unpaired 4-thiouridine nucleotides in a partially duplex RNA substrate. The genes were cloned and expressed and the complex was reconstituted from recombinant proteins in the absence of RNA or additional factors. The Ltp26 and Ltp28 proteins are homologs of gBP27 and gBP29 from Crithidia fasciculata and gBP25 and gBP21 from Trypanosoma brucei, respectively. The purified Ltp26/Ltp28 complex, the individual recombinant proteins, and the reconstituted complex are each capable of catalyzing the annealing of complementary RNAs, as was previously shown for gBP21 from T. brucei. A high-molecular-weight RNP complex consisting of the Ltp26/Ltp28 complex and several 55-60-kD proteins together with guide RNA could be purified from mitochondrial extract of L. tarentolae transfected with Ltp28-TAP. This complex also interacted in a less stable manner with the RNA ligase-containing L-complex and with the 3' TUTase. The Ltp26/Ltp28 RNP complex is a candidate for catalyzing the annealing of guide RNA and pre-edited mRNA in the initial step of RNA editing.
Collapse
Affiliation(s)
- Ruslan Aphasizhev
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles 90095, USA
| | | | | | | |
Collapse
|
92
|
Horton TL, Landweber LF. Rewriting the information in DNA: RNA editing in kinetoplastids and myxomycetes. Curr Opin Microbiol 2002; 5:620-6. [PMID: 12457708 DOI: 10.1016/s1369-5274(02)00379-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
RNA editing has a major impact on the genes and genomes that it modifies. Editing by insertion, deletion and base conversion exists in nuclear, mitochondrial and viral genomes throughout the eukaryotic lineage. Editing was first discovered in kinetoplastids, and recent work has resulted in the characterization of some components of the editing machinery. Two proteins with ligase activity have been identified in Trypanosoma brucei, and other proteins in the editosome complex are yielding to the probe of research. A second group of protists, myxomycetes, are unique in their use of four different types of editing within a single transcript. Phylogenetic analysis of editing in representative myxomycetes revealed a different history of the four types of editing in this lineage. Development of a soluble in vitro editing system has provided further support for the co-transcriptional nature of editing in Physarum polycephalum, and will certainly provide future opportunities for understanding this mysterious process.
Collapse
Affiliation(s)
- Tamara L Horton
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | |
Collapse
|
93
|
Maslov DA, Zíková A, Kyselová I, Lukes J. A putative novel nuclear-encoded subunit of the cytochrome c oxidase complex in trypanosomatids. Mol Biochem Parasitol 2002; 125:113-25. [PMID: 12467979 DOI: 10.1016/s0166-6851(02)00235-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A relatively large nuclear-encoded polypeptide, designated trCOIV, is found in the cytochrome c oxidase (CO) complex of trypanosomatids. In order to determine if this polypeptide represents a bona fide subunit of the complex, we have characterized the cDNA and the gene for this polypeptide in Leishmania tarentolae. Its nuclear gene has no sequence similarity to mammalian COIV. The trCOIV preprotein has a long mitochondrial targeting sequence of 31 residues. The mature polypeptide cofractionates with kinetoplast-mitochondria and its preferential mitochondrial localization was confirmed by immunofluorescence and immunoelectron microscopy. Based on the hydropathy plot analysis, the protein lacks pronounced transmembrane domains and likely occupies a peripheral position within the CO complex. The corresponding genes are also present in the sequenced portions of the Trypanosoma cruzi, Trypanosoma brucei and Leishmania major genomes, and the same polypeptide is found in cytochrome oxidase isolated from procyclic T. brucei and promastigote Leishmania mexicana amazonensis. However, the trCOIV gene, the mRNA and the polypeptide could not be detected in a respiration-deficient trypanosomatid Phytomonas serpens.
Collapse
Affiliation(s)
- Dmitri A Maslov
- Department of Biology, University of California, Riverside, CA 92521, USA.
| | | | | | | |
Collapse
|
94
|
Abstract
RNA editing in Trypanosomatids creates functional mitochondrial mRNAs by extensive uridylate (U) insertion and deletion as specified by small guide RNAs (gRNAs). Editing is catalysed by the multiprotein editosome. Over 20 of its protein components have been identified and additional proteins are likely to function in editing and its regulation. The functions of only a few editosome proteins have been determined. Surprisingly, there are related pairs or sets of editosome proteins, and insertion and deletion editing appear to be functionally and perhaps spatially separate. A model for the editosome is proposed, which has a catalysis domain with separate sectors for insertion and deletion editing. It also contains domains for anchor duplex and upstream RNA binding, which position the sequence to be edited in the catalysis domain.
Collapse
|
95
|
Cruz-Reyes J, Zhelonkina AG, Huang CE, Sollner-Webb B. Distinct functions of two RNA ligases in active Trypanosoma brucei RNA editing complexes. Mol Cell Biol 2002; 22:4652-60. [PMID: 12052873 PMCID: PMC133896 DOI: 10.1128/mcb.22.13.4652-4660.2002] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Trypanosome RNA editing is a unique U insertion and U deletion process that involves cycles of pre-mRNA cleavage, terminal U addition or U removal, and religation. This editing can occur at massive levels and is directed by base pairing of trans-acting guide RNAs. Both U insertion and U deletion cycles are catalyzed by a single protein complex that contains only seven major proteins, band I through band VII. However, little is known about their catalytic functions, except that band IV and band V are RNA ligases and genetic analysis indicates that the former is important in U deletion. Here we establish biochemical approaches to distinguish the individual roles of these ligases, based on their distinctive ATP and pyrophosphate utilization. These in vitro analyses revealed that both ligases serve in RNA editing. Band V is the RNA editing ligase that functions very selectively to seal in U insertion (IREL), while band IV is the RNA editing ligase needed to seal in U deletion (DREL). In combination with our earlier findings about the cleavage and the U-addition/U-removal steps of U deletion and U insertion, these results show that all three steps of these editing pathways exhibit major differences and suggest that the editing complex could have physically separate regions for U deletion and U insertion.
Collapse
Affiliation(s)
- Jorge Cruz-Reyes
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
96
|
Oppegard LM, Connell GJ. Direct visualisation of RNA editing within a Leishmania tarentolae mitochondrial extract. Int J Parasitol 2002; 32:859-66. [PMID: 12062557 DOI: 10.1016/s0020-7519(02)00015-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The coding sequence within several mitochondrial mRNAs of the trypanosomatid protozoa is created through editing by the precise insertion and deletion of U nucleotides. The biochemical characterisation of the editing reaction in the Leishmania genus of the trypanosomatids has been hindered by the lack of a direct in vitro assay. We describe here the first direct assay for the detection of guide RNA-directed editing mediated by a mitochondrial extract prepared from two independent isolates of Leishmania tarentolae. The assay enabled the editing activity within a L. tarentolae mitochondrial extract to be significantly enriched and will facilitate the characterisation of the editing reaction. The results suggest that the difficulty in establishing an assay for the L. tarentolae reaction was not simply a result of the catalytic machinery being limiting but rather reflected the presence of constraints on both the guide RNA and mRNA sequences.
Collapse
MESH Headings
- Animals
- Base Sequence
- Cytochrome b Group/chemistry
- Cytochrome b Group/genetics
- Electrophoresis, Polyacrylamide Gel
- Leishmania/chemistry
- Leishmania/genetics
- Molecular Sequence Data
- Nucleic Acid Conformation
- RNA/chemistry
- RNA/genetics
- RNA Editing/genetics
- RNA, Guide, Kinetoplastida/chemistry
- RNA, Guide, Kinetoplastida/genetics
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Mitochondrial
- RNA, Protozoan/chemistry
- RNA, Protozoan/genetics
Collapse
Affiliation(s)
- Lisa M Oppegard
- Department of Pharmacology, University of Minnesota, 6-120 Jackson Hall, 321 Church Street S.E., Minneapolis 55455-0347, USA
| | | |
Collapse
|
97
|
Huang CE, O'Hearn SF, Sollner-Webb B. Assembly and function of the RNA editing complex in Trypanosoma brucei requires band III protein. Mol Cell Biol 2002; 22:3194-203. [PMID: 11940676 PMCID: PMC133760 DOI: 10.1128/mcb.22.9.3194-3203.2002] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2001] [Revised: 11/20/2001] [Accepted: 01/07/2002] [Indexed: 11/20/2022] Open
Abstract
Trypanosome RNA editing, the posttranscriptional insertion and deletion of U residues in mitochondrial transcripts, is catalyzed by a protein complex containing seven distinct proteins. In this study, we cloned the gene for band III, a 555-amino-acid protein with two separate zinc finger motifs. We prepared antibodies that showed band III protein cofractionates with the previously characterized band IV protein throughout the purification of the editing complex and is not found free or in other protein associations; therefore, it is a true constituent of the editing complex. Double-stranded RNA interference efficiently depleted band III protein and demonstrated that band III expression is essential for growth of procyclic trypanosomes and for RNA editing. These depleted cell extracts were deficient specifically in guide RNA-directed endonuclease cleavage at both U deletion and U insertion sites and in the activity of the band IV ligase, but they retained the 3'-U-exonuclease and terminal-U-transferase activities as well as band V ligase of the editing complex. Loss of band III protein also resulted in almost complete loss of the band IV ligase protein and altered sedimentation of the band V ligase. These data indicate that band III is either the RNA editing endonuclease or a factor critical for cleavage activity in the editing complex. They also demonstrate that band III is required for proper assembly of the editing complex.
Collapse
Affiliation(s)
- Catherine E Huang
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
98
|
Drozdz M, Palazzo SS, Salavati R, O’Rear J, Clayton C, Stuart K. TbMP81 is required for RNA editing in Trypanosoma brucei. EMBO J 2002; 21:1791-9. [PMID: 11927563 PMCID: PMC125959 DOI: 10.1093/emboj/21.7.1791] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Most mitochondrial mRNAs are edited in Trypano soma brucei by a series of steps that are catalyzed by a multienzyme complex that is in its initial stages of characterization. RNA interference (RNAi)-mediated repression of the expression of TbMP81, a zinc finger protein component of the complex, inhibited growth of bloodstream and insect forms, and blocked in vivo RNA editing. This repression preferentially inhibited insertion editing compared with deletion editing in vitro. It resulted in reduced specific endoribonucleolytic cleavage and a greater reduction of U addition and associated RNA ligation activities than U removal and associated RNA ligation activities. The repressed cells retained 20S editing complexes with several demonstrable proteins and adenylatable TbMP52 RNA ligase, but adenlyatable TbMP48 was not detected. Elimination of TbMP48 by RNAi repression did not inhibit cell growth or in vivo editing in either bloodstream or procyclic forms. These results indicate that TbMP81 is required for RNA editing and suggest that the editing complex is functionally partitioned.
Collapse
Affiliation(s)
| | - Setareh S. Palazzo
- Zentrum für Molekulare Biologie, Heidelberg, Germany and
Seattle Biomedical Research Institute and Department of Pathobiology, University of Washington, Seattle, WA, USA Corresponding author e-mail:
| | - Reza Salavati
- Zentrum für Molekulare Biologie, Heidelberg, Germany and
Seattle Biomedical Research Institute and Department of Pathobiology, University of Washington, Seattle, WA, USA Corresponding author e-mail:
| | - Jeff O’Rear
- Zentrum für Molekulare Biologie, Heidelberg, Germany and
Seattle Biomedical Research Institute and Department of Pathobiology, University of Washington, Seattle, WA, USA Corresponding author e-mail:
| | | | - Kenneth Stuart
- Zentrum für Molekulare Biologie, Heidelberg, Germany and
Seattle Biomedical Research Institute and Department of Pathobiology, University of Washington, Seattle, WA, USA Corresponding author e-mail:
| |
Collapse
|
99
|
Wang B, Salavati R, Heidmann S, Stuart K. A hammerhead ribozyme substrate and reporter for in vitro kinetoplastid RNA editing. RNA (NEW YORK, N.Y.) 2002; 8:548-554. [PMID: 11991648 PMCID: PMC1370276 DOI: 10.1017/s135583820202962x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Current in vitro assays for RNA editing in kinetoplastids directly examine the products generated by incubation of pre-mRNA substrate with guide RNA (gRNA) and mitochondrial (mt) extract. RNA editing substrates that are modeled on hammerhead ribozymes were designed with catalytic cores that contained or lacked additional uridylates (Us). They proved to be sensitive reporters of editing activity when used for in vitro assays. A deletion editing substrate that is based on A6 pre-mRNA had no ribozyme activity, but its incubation with gRNA and mt extract resulted in its deletion editing and production of a catalytically active ribozyme. Hammerhead ribozymes are thus sensitive tools to assay in vitro RNA editing.
Collapse
Affiliation(s)
- Bingbing Wang
- Department of Pathobiology, University of Washington, Seattle, 98195, USA
| | | | | | | |
Collapse
|
100
|
Aphasizhev R, Sbicego S, Peris M, Jang SH, Aphasizheva I, Simpson AM, Rivlin A, Simpson L. Trypanosome mitochondrial 3' terminal uridylyl transferase (TUTase): the key enzyme in U-insertion/deletion RNA editing. Cell 2002; 108:637-48. [PMID: 11893335 DOI: 10.1016/s0092-8674(02)00647-5] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A 3' terminal RNA uridylyltransferase was purified from mitochondria of Leishmania tarentolae and the gene cloned and expressed from this species and from Trypanosoma brucei. The enzyme is specific for 3' U-addition in the presence of Mg(2+). TUTase is present in vivo in at least two stable configurations: one contains a approximately 500 kDa TUTase oligomer and the other a approximately 700 kDa TUTase complex. Anti-TUTase antiserum specifically coprecipitates a small portion of the p45 and p50 RNA ligases and approximately 40% of the guide RNAs. Inhibition of TUTase expression in procyclic T. brucei by RNAi downregulates RNA editing and appears to affect parasite viability.
Collapse
Affiliation(s)
- Ruslan Aphasizhev
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|