51
|
The E3 ubiquitin ligase ITCH negatively regulates canonical Wnt signaling by targeting dishevelled protein. Mol Cell Biol 2012; 32:3903-12. [PMID: 22826439 DOI: 10.1128/mcb.00251-12] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Dishevelled (Dvl) is a key component in the canonical Wnt signaling pathway and becomes hyperphosphorylated upon Wnt stimulation. Dvl is required for LRP6 phosphorylation, which is essential for subsequent steps of signal transduction, such as Axin recruitment and cytosolic β-catenin stabilization. Here, we identify the HECT-containing Nedd4-like ubiquitin E3 ligase ITCH as a new Dvl-binding protein. ITCH ubiquitinates the phosphorylated form of Dvl and promotes its degradation via the proteasome pathway, thereby inhibiting canonical Wnt signaling. Knockdown of ITCH by RNA interference increased the stability of phosphorylated Dvl and upregulated Wnt reporter gene activity as well as endogenous Wnt target gene expression induced by Wnt stimulation. In addition, we found that both the PPXY motif and the DEP domain of Dvl are critical for its interaction with ITCH, as mutation in the PPXY motif (Dvl2-Y568F) or deletion of the DEP domain led to reduced affinity for ITCH. Consistently, overexpression of ITCH inhibited wild-type Dvl2-induced, but not Dvl2-Y568F mutant-induced, Wnt reporter activity. Moreover, the Y568F mutant, but not wild-type Dvl2, can reverse the ITCH-mediated inhibition of Wnt-induced reporter activity. Collectively, these results indicate that ITCH plays a negative regulatory role in modulating canonical Wnt signaling by targeting the phosphorylated form of Dvl.
Collapse
|
52
|
Yokoyama N, Markova NG, Wang HY, Malbon CC. Assembly of Dishevelled 3-based supermolecular complexes via phosphorylation and Axin. J Mol Signal 2012; 7:8. [PMID: 22748080 PMCID: PMC3542119 DOI: 10.1186/1750-2187-7-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 06/02/2012] [Indexed: 11/17/2022] Open
Abstract
Background Dishevelled-3 (Dvl3) is a multivalent scaffold essential to cell signaling in development. Dsh/Dvls enable a myriad of protein-protein interactions in Wnt signaling. In the canonical Wnt/β-catenin pathway specifically, Dvl3 polymerizes to form dynamic protein aggregates, so-called “signalsomes”, which propagate signals from the Wnt receptor Frizzled to downstream elements. Results Very large Dvl3-based supermolecular complexes form in response to Wnt3a. These complexes are identified by steric-exclusion chromatography, affinity pull-downs, proteomics, and fluorescence correlation microscopy (fcs). In the current work, the roles of Dvl3 phosphorylation and of Axin in the assembly of Dvl3-based supermolecular complexes in response to Wnt3a are probed in totipotent mouse F9 teratocarcinoma cells. Point mutations of phosphorylation sites of Dvl3 which interfere with Lef/Tcf-sensitive transcriptional activation by Wnt3a are shown to interfere more proximally with the assembly of Dvl3-based supermolecular complexes. Axin, a Dvl-interacting protein, plays a central role in organizing the beta-catenin destruction complex. The assembly of Dvl3-based supermolecular complexes is blocked either by depletion of Axin or by mutation of Axin sites necessary for polymerization in response to Wnt3a. Conclusion These data demonstrate that Wnt3a activation of the canonical pathway requires specific phosphorylation events as well as Axin to assemble very large, Dvl3-based supermolecular complexes; these complexes are a prerequisite to activation of Lef/Tcf-sensitive transcription.
Collapse
Affiliation(s)
- Noriko Yokoyama
- Departments of Pharmacology, School of Medicine, State University of New York at Stony Brook, Stony Brook, NY, 11794-8651, USA.
| | | | | | | |
Collapse
|
53
|
Kilander MBC, Halleskog C, Schulte G. Recombinant WNTs differentially activate β-catenin-dependent and -independent signalling in mouse microglia-like cells. Acta Physiol (Oxf) 2011; 203:363-72. [PMID: 21557822 DOI: 10.1111/j.1748-1716.2011.02324.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AIM The objective of this study was to compare the efficacy of different recombinant, commercially available Wingless/Int-1 (WNTs) with regard to WNT/β-catenin signalling, dishevelled (DVL) and G protein activation and the induction of cell proliferation in a microglia-like cell line called N13. METHODS For detection of activated signalling molecules, cell lysates are analysed by immunoblotting. Furthermore, we used a [γ(35)S] GTP binding assay to monitor the exchange of GDP for GTP in heterotrimeric G proteins in N13 membrane preparations. Cell proliferation was assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay measuring mitochondrial function, which is proportional to the amount of viable cells. RESULTS Of the WNTs tested (WNT-3A, -4, -5A, -5B, -7A,-9B), only WNT-3A activated WNT/β-catenin signalling in N13 cells. All WNTs induced the formation of phosphorylated and shifted DVL (PS-DVL) and the activation of heterotrimeric G proteins with variable efficacies. WNT-5A and WNT-9B, which had the highest efficacy in the G protein assay, also induced N13 cell proliferation. CONCLUSION WNTs show significant differences in their efficacy to activate β-catenin-dependent and -independent signalling. The WNTs tested are present during maturation of the central nervous system and/or in the adult brain and are thus potential regulators of microglia-mediated neuroinflammation.
Collapse
Affiliation(s)
- M B C Kilander
- Section Receptor Biology & Signalling, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
54
|
Yanfeng WA, Berhane H, Mola M, Singh J, Jenny A, Mlodzik M. Functional dissection of phosphorylation of Disheveled in Drosophila. Dev Biol 2011; 360:132-42. [PMID: 21963539 DOI: 10.1016/j.ydbio.2011.09.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 08/23/2011] [Accepted: 09/14/2011] [Indexed: 01/25/2023]
Abstract
Disheveled/Dsh proteins (Dvl in mammals) are core components of both Wnt/Wg-signaling pathways: canonical β-catenin signaling and Frizzled (Fz)-planar cell polarity (PCP) signaling. Although Dsh is a key cytoplasmic component of both Wnt/Fz-pathways, regulation of its signaling specificity is not well understood. Dsh is phosphorylated, but the functional significance of its phosphorylation remains unclear. We have systematically investigated the phosphorylation of Dsh by combining mass-spectrometry analyses, biochemical studies, and in vivo genetic methods in Drosophila. Our approaches identified multiple phospho-residues of Dsh in vivo. Our data define three novel and unexpected conclusions: (1) strikingly and in contrast to common assumptions, all conserved serines/threonines are non-essential for Dsh function in either pathway; (2) phosphorylation of conserved Tyrosine473 in the DEP domain is critical for PCP-signaling - Dsh(Y473F) behaves like a PCP-specific allele; and (3) defects associated with the PCP specific dsh(1) allele, Dsh(K417M), located within a putative Protein Kinase C consensus site, are likely due to a post-translational modification requirement of Lys417, rather than phosphorylation nearby. In summary, our combined data indicate that while many Ser/Thr and Tyr residues are indeed phosphorylated in vivo, strikingly most of these phosphorylation events are not critical for Dsh function with the exception of DshY473.
Collapse
Affiliation(s)
- Wang A Yanfeng
- Dept. of Developmental & Regenerative Biology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA
| | | | | | | | | | | |
Collapse
|
55
|
Greer YE, Rubin JS. Casein kinase 1 delta functions at the centrosome to mediate Wnt-3a-dependent neurite outgrowth. ACTA ACUST UNITED AC 2011; 192:993-1004. [PMID: 21422228 PMCID: PMC3063129 DOI: 10.1083/jcb.201011111] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Previously we determined that Dishevelled-2/3 (Dvl) mediate Wnt-3a-dependent neurite outgrowth in Ewing sarcoma family tumor cells. Here we report that neurite extension was associated with Dvl phosphorylation and that both were inhibited by the casein kinase 1 (CK1) δ/ε inhibitor IC261. Small interfering RNAs targeting either CK1δ or CK1ε decreased Dvl phosphorylation, but only knockdown of CK1δ blocked neurite outgrowth. CK1δ but not CK1ε was detected at the centrosome, an organelle associated with neurite formation. Deletion analysis mapped the centrosomal localization signal (CLS) of CK1δ to its C-terminal domain. A fusion protein containing the CLS and EGFP displaced full-length CK1δ from the centrosome and inhibited Wnt-3a-dependent neurite outgrowth. In contrast to wild-type CK1ε, a chimera comprised of the kinase domain of CK1ε and the CLS of CK1δ localized to the centrosome and rescued Wnt-3a-dependent neurite outgrowth suppressed by CK1δ knockdown. These results provide strong evidence that the centrosomal localization of CK1δ is required for Wnt-3a-dependent neuritogenesis.
Collapse
Affiliation(s)
- Yoshimi Endo Greer
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
56
|
Liu YT, Dan QJ, Wang J, Feng Y, Chen L, Liang J, Li Q, Lin SC, Wang ZX, Wu JW. Molecular basis of Wnt activation via the DIX domain protein Ccd1. J Biol Chem 2011; 286:8597-8608. [PMID: 21189423 PMCID: PMC3048742 DOI: 10.1074/jbc.m110.186742] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 12/06/2010] [Indexed: 01/22/2023] Open
Abstract
The Wnt signaling plays pivotal roles in embryogenesis and cancer, and the three DIX domain-containing proteins, Dvl, Axin, and Ccd1, play distinct roles in the initiation and regulation of canonical Wnt signaling. Overexpressed Dvl has a tendency to form large polymers in a cytoplasmic punctate pattern, whereas the biologically active Dvl in fact forms low molecular weight oligomers. The molecular basis for how the polymeric sizes of Dvl proteins are controlled upon Wnt signaling remains unclear. Here we show that Ccd1 up-regulates canonical Wnt signaling via acting synergistically with Dvl. We determined the crystal structures of wild type Ccd1-DIX and mutant Dvl1-DIX(Y17D), which pack into "head-to-tail" helical filaments. Structural analyses reveal two sites crucial for intra-filament homo- and hetero-interaction and a third site for inter-filament homo-assembly. Systematic mutagenesis studies identified critical residues from all three sites required for Dvl homo-oligomerization, puncta formation, and stimulation of Wnt signaling. Remarkably, Ccd1 forms a hetero-complex with Dvl through the "head" of Dvl-DIX and the "tail" of Ccd1-DIX, depolymerizes Dvl homo-assembly, and thereby controls the size of Dvl polymer. These data together suggest a molecular mechanism for Ccd1-mediated Wnt activation in that Ccd1 converts latent polymeric Dvl to a biologically active oligomer(s).
Collapse
Affiliation(s)
- Yi-Tong Liu
- From the MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qiong-Jie Dan
- the Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China, and
| | - Jiawei Wang
- From the MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yingang Feng
- the Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China, and
| | - Lei Chen
- From the MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Juan Liang
- From the MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qinxi Li
- the MOE Key Laboratory of Cell Biology and Tumor Cell Engineering, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Sheng-Cai Lin
- the MOE Key Laboratory of Cell Biology and Tumor Cell Engineering, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Zhi-Xin Wang
- From the MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China,; the Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China, and
| | - Jia-Wei Wu
- From the MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China,.
| |
Collapse
|
57
|
Bernatik O, Ganji RS, Dijksterhuis JP, Konik P, Cervenka I, Polonio T, Krejci P, Schulte G, Bryja V. Sequential activation and inactivation of Dishevelled in the Wnt/beta-catenin pathway by casein kinases. J Biol Chem 2011; 286:10396-410. [PMID: 21285348 DOI: 10.1074/jbc.m110.169870] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Dishevelled (Dvl) is a key component in the Wnt/β-catenin signaling pathway. Dvl can multimerize to form dynamic protein aggregates, which are required for the activation of downstream signaling. Upon pathway activation by Wnts, Dvl becomes phosphorylated to yield phosphorylated and shifted (PS) Dvl. Both activation of Dvl in Wnt/β-catenin signaling and Wnt-induced PS-Dvl formation are dependent on casein kinase 1 (CK1) δ/ε activity. However, the overexpression of CK1 was shown to dissolve Dvl aggregates, and endogenous PS-Dvl forms irrespective of whether or not the activating Wnt triggers the Wnt/β-catenin pathway. Using a combination of gain-of-function, loss-of-function, and domain mapping approaches, we attempted to solve this discrepancy regarding the role of CK1ε in Dvl biology. We analyzed mutual interaction of CK1δ/ε and two other Dvl kinases, CK2 and PAR1, in the Wnt/β-catenin pathway. We show that CK2 acts as a constitutive kinase whose activity is required for the further action of CK1ε. Furthermore, we demonstrate that the two consequences of CK1ε phosphorylation are separated both spatially and functionally; first, CK1ε-mediated induction of TCF/LEF-driven transcription (associated with dynamic recruitment of Axin1) is mediated via a PDZ-proline-rich region of Dvl. Second, CK1ε-mediated formation of PS-Dvl is mediated by the Dvl3 C terminus. Furthermore, we demonstrate with several methods that PS-Dvl has decreased ability to polymerize with other Dvls and could, thus, act as the inactive signaling intermediate. We propose a multistep and multikinase model for Dvl activation in the Wnt/β-catenin pathway that uncovers a built-in de-activation mechanism that is triggered by activating phosphorylation of Dvl by CK1δ/ε.
Collapse
Affiliation(s)
- Ondrej Bernatik
- Institute of Experimental Biology, Masaryk University, 61137 Brno, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Schulte G. International Union of Basic and Clinical Pharmacology. LXXX. The class Frizzled receptors. Pharmacol Rev 2010; 62:632-67. [PMID: 21079039 DOI: 10.1124/pr.110.002931] [Citation(s) in RCA: 175] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The receptor class Frizzled, which has recently been categorized as a separate group of G protein-coupled receptors by the International Union of Basic and Clinical Pharmacology, consists of 10 Frizzleds (FZD(1-10)) and Smoothened (SMO). The FZDs are activated by secreted lipoglycoproteins of the Wingless/Int-1 (WNT) family, whereas SMO is indirectly activated by the Hedgehog (HH) family of proteins acting on the transmembrane protein Patched (PTCH). Recent years have seen major advances in our knowledge about these seven-transmembrane-spanning proteins, including: receptor function, molecular mechanisms of signal transduction, and the receptor's role in embryonic patterning, physiology, cancer, and other diseases. Despite intense efforts, many question marks and challenges remain in mapping receptor-ligand interaction, signaling routes, mechanisms of specificity and how these molecular details underlie disease and also the receptor's important role in physiology. This review therefore focuses on the molecular aspects of WNT/FZD and HH/SMO signaling discussing receptor structure, mechanisms of signal transduction, accessory proteins, receptor dynamics, and the possibility of targeting these signaling pathways pharmacologically.
Collapse
Affiliation(s)
- Gunnar Schulte
- Section of Receptor Biology & Signaling, Dept. of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
59
|
Singh J, Yanfeng WA, Grumolato L, Aaronson SA, Mlodzik M. Abelson family kinases regulate Frizzled planar cell polarity signaling via Dsh phosphorylation. Genes Dev 2010; 24:2157-68. [PMID: 20837657 PMCID: PMC2947768 DOI: 10.1101/gad.1961010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 08/16/2010] [Indexed: 12/29/2022]
Abstract
Abelson (Abl) family tyrosine kinases have been implicated in cell morphogenesis, adhesion, motility, and oncogenesis. Using a candidate approach for genes involved in planar cell polarity (PCP) signaling, we identified Drosophila Abl (dAbl) as a modulator of Frizzled(Fz)/PCP signaling. We demonstrate that dAbl positively regulates the Fz/Dishevelled (Dsh) PCP pathway without affecting canonical Wnt/Wg-Fz signaling. Genetic dissection suggests that Abl functions via Fz/Dsh signaling in photoreceptor R3 specification, a well-established Fz-PCP signaling readout. Molecular analysis shows that dAbl binds and phosphorylates Dsh on Tyr473 within the DEP domain. This phosphorylation event on Dsh is functionally critical, as the equivalent DshY473F mutant is nonfunctional in PCP signaling and stable membrane association, although it rescues canonical Wnt signaling. Strikingly, mouse embryonic fibroblasts (MEFs) deficient for Abl1 and Abl2/Arg genes also show reduced Dvl2 phosphorylation as compared with control MEFs, and this correlates with a change in subcellular localization of endogenous Dvl2. As in Drosophila, such Abl-deficient MEFs show no change in canonical Wnt signaling. Taken together, our results argue for a conserved role of Abl family members in the positive regulation of Dsh activity toward Fz-Dsh/PCP signaling by Dsh phosphorylation.
Collapse
Affiliation(s)
- Jaskirat Singh
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | - Wang A. Yanfeng
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | - Luca Grumolato
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, New York 10029, USA
| | - Stuart A. Aaronson
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, New York 10029, USA
| | - Marek Mlodzik
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, New York 10029, USA
| |
Collapse
|
60
|
Abstract
The fur on a cat's back, the scales on a fish, or the bristles on a fly are all beautifully organized, with a high degree of polarization in their surface organization. Great progress has been made in understanding how individual cell polarity is established, but our understanding of how cells coordinate their polarity in forming coherent tissues is still fragmentary. The organization of cells in the plane of the epithelium is known as planar cell polarity (PCP), and studies in the past decade have delineated a genetic pathway for the control of PCP. This review will first briefly review data from the Drosophila field, where PCP was first identified and genetically characterized, and then explore how vertebrate tissues become polarized during development.
Collapse
|
61
|
Foldynová-Trantírková S, Sekyrová P, Tmejová K, Brumovská E, Bernatík O, Blankenfeldt W, Krejcí P, Kozubík A, Dolezal T, Trantírek L, Bryja V. Breast cancer-specific mutations in CK1epsilon inhibit Wnt/beta-catenin and activate the Wnt/Rac1/JNK and NFAT pathways to decrease cell adhesion and promote cell migration. Breast Cancer Res 2010; 12:R30. [PMID: 20507565 PMCID: PMC2917022 DOI: 10.1186/bcr2581] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 04/04/2010] [Accepted: 05/27/2010] [Indexed: 12/20/2022] Open
Abstract
Introduction Breast cancer is one of the most common types of cancer in women. One of the genes that were found mutated in breast cancer is casein kinase 1 epsilon (CK1ε). Because CK1ε is a crucial regulator of the Wnt signaling cascades, we determined how these CK1ε mutations interfere with the Wnt pathway and affect the behavior of epithelial breast cancer cell lines. Methods We performed in silico modeling of various mutations and analyzed the kinase activity of the CK1ε mutants both in vitro and in vivo. Furthermore, we used reporter and small GTPase assays to identify how mutation of CK1ε affects different branches of the Wnt signaling pathway. Based on these results, we employed cell adhesion and cell migration assays in MCF7 cells to demonstrate a crucial role for CK1ε in these processes. Results In silico modeling and in vivo data showed that autophosphorylation at Thr 44, a site adjacent to the breast cancer point mutations in the N-terminal lobe of human CK1ε, is involved in positive regulation of the CK1ε activity. Our data further demonstrate that, in mammalian cells, mutated forms of CK1ε failed to affect the intracellular localization and phosphorylation of Dvl2; we were able to demonstrate that CK1ε mutants were unable to enhance Dvl-induced TCF/LEF-mediated transcription, that CK1ε mutants acted as loss-of-function in the Wnt/β-catenin pathway, and that CK1ε mutants activated the noncanonical Wnt/Rac-1 and NFAT pathways, similar to pharmacological inhibitors of CK1. In line with these findings, inhibition of CK1 promoted cell migration as well as decreased cell adhesion and E-cadherin expression in the breast cancer-derived cell line MCF7. Conclusions In summary, these data suggest that the mutations of CK1ε found in breast cancer can suppress Wnt/β-catenin as well as promote the Wnt/Rac-1/JNK and Wnt/NFAT pathways, thus contributing to breast cancer development via effects on cell adhesion and migration. In terms of molecular mechanism, our data indicate that the breast cancer point mutations in the N-terminal lobe of CK1ε, which are correlated with decreased phosphorylation activities of mutated forms of CK1ε both in vitro and in vivo, interfere with positive autophosphorylation at Thr 44.
Collapse
|
62
|
SIRT1 regulates Dishevelled proteins and promotes transient and constitutive Wnt signaling. Proc Natl Acad Sci U S A 2010; 107:9216-21. [PMID: 20439735 DOI: 10.1073/pnas.0911325107] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Sirtuin 1 (SIRT1) is a class III histone deacetylase that deacetylates histone and nonhistone proteins to regulate gene transcription and protein function. Because SIRT1 regulates very diverse responses such as apoptosis, insulin sensitivity, autophagy, differentiation, and stem cell pluripotency, it has been a challenge to reconcile how it orchestrates such pleiotropic effects. Here we show that SIRT1 serves as an important regulator of Wnt signaling. We demonstrate that SIRT1 loss of function leads to a significant decrease in the levels of all three Dishevelled (Dvl) proteins. Furthermore, we demonstrate that SIRT1 and Dvl proteins complex in vivo and that inhibition of SIRT1 leads to changes in gene expression of Wnt target genes. Finally, we demonstrate that Wnt-stimulated cell migration is inhibited by a SIRT1 inhibitor. Because the three mammalian Dvl proteins serve as key messengers for as many as 19 Wnt ligands, SIRT1-mediated regulation of Dvl proteins may explain the diverse physiological responses observed in different cellular contexts. Previously, SIRT1 had only been shown to mediate the epigenetic silencing of Wnt antagonists. In contrast, here we report that SIRT1 regulates Dvl protein levels and Wnt signaling in several cellular contexts. These findings demonstrate that SIRT1 is a regulator of transient and constitutive Wnt signaling.
Collapse
|
63
|
Hu T, Li C, Cao Z, Van Raay TJ, Smith JG, Willert K, Solnica-Krezel L, Coffey RJ. Myristoylated Naked2 antagonizes Wnt-beta-catenin activity by degrading Dishevelled-1 at the plasma membrane. J Biol Chem 2010; 285:13561-8. [PMID: 20177058 PMCID: PMC2859517 DOI: 10.1074/jbc.m109.075945] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 02/19/2010] [Indexed: 12/23/2022] Open
Abstract
In Drosophila, naked cuticle is an inducible antagonist of the Wnt-beta-catenin pathway, likely acting at the level of Dishevelled (Dsh/Dvl), an essential component of this pathway. The mechanism by which naked cuticle and its two vertebrate orthologs, Naked1 (NKD1) and Naked2 (NKD2), inhibit Dvl function is unknown. NKD2 is myristoylated, a co-translational modification that leads to its plasma membrane localization. In contrast, myristoylation-deficient G2A NKD2 is cytoplasmic. Herein we show that the ability of Nkd2/NKD2 to antagonize Wnt-beta-catenin activity during zebrafish embryonic development and in mammalian HEK293 cells is myristoylation-dependent. NKD2 and Dvl-1 interact and co-localize at the lateral membrane of polarized epithelial cells. In reciprocal overexpression and siRNA knockdown experiments, NKD2 and Dvl-1 destabilize each other via enhanced polyubiquitylation; this effect is also dependent upon Naked2 myristoylation. Cell fractionation and ubiquitylation assays indicate that endogenous NKD2 interacts with a slower migrating, ubiquitylated form of Dvl-1 in plasma membrane fractions. These results provide a mechanism by which NKD2 antagonizes Wnt signaling: myristoylated NKD2 interacts with Dvl-1 at the plasma membrane, and this interaction leads to their mutual ubiquitin-mediated proteasomal degradation.
Collapse
Affiliation(s)
- Tianhui Hu
- From the Cancer Research Center, Xiamen University Medical College, and
- Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, Xiamen University, Xiamen, 361005 Fujian, China
- the Departments of Medicine and Cell and Developmental Biology and
| | - Cunxi Li
- the Departments of Medicine and Cell and Developmental Biology and
| | - Zheng Cao
- the Departments of Medicine and Cell and Developmental Biology and
| | - Terence J. Van Raay
- the Departments of Medicine and Cell and Developmental Biology and
- Biological Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Jason G. Smith
- the Departments of Medicine and Cell and Developmental Biology and
| | - Karl Willert
- the Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093, and
| | - Lila Solnica-Krezel
- Biological Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Robert J. Coffey
- the Departments of Medicine and Cell and Developmental Biology and
- the Department of Veterans Affairs Medical Center, Nashville, Tennessee 37232
| |
Collapse
|
64
|
Minami Y, Oishi I, Endo M, Nishita M. Ror-family receptor tyrosine kinases in noncanonical Wnt signaling: their implications in developmental morphogenesis and human diseases. Dev Dyn 2010; 239:1-15. [PMID: 19530173 DOI: 10.1002/dvdy.21991] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The Ror-family receptor tyrosine kinases (RTKs) play crucial roles in the development of various organs and tissues. In mammals, Ror2, a member of the Ror-family RTKs, has been shown to act as a receptor or coreceptor for Wnt5a to mediate noncanonical Wnt signaling. Ror2- and Wnt5a-deficient mice exhibit similar abnormalities during developmental morphogenesis, reflecting their defects in convergent extension movements and planar cell polarity, characteristic features mediated by noncanonical Wnt signaling. Furthermore, mutations within the human Ror2 gene are responsible for the genetic skeletal disorders dominant brachydactyly type B and recessive Robinow syndrome. Accumulating evidence demonstrate that Ror2 mediates noncanonical Wnt5a signaling by inhibiting the beta-catenin-TCF pathway and activating the Wnt/JNK pathway that results in polarized cell migration. In this article, we review recent progress in understanding the roles of noncanonical Wnt5a/Ror2 signaling in developmental morphogenesis and in human diseases, including heritable skeletal disorders and tumor invasion.
Collapse
Affiliation(s)
- Yasuhiro Minami
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan.
| | | | | | | |
Collapse
|
65
|
Witte F, Bernatik O, Kirchner K, Masek J, Mahl A, Krejci P, Mundlos S, Schambony A, Bryja V, Stricker S. Negative regulation of Wnt signaling mediated by CK1-phosphorylated Dishevelled via Ror2. FASEB J 2010; 24:2417-26. [PMID: 20215527 DOI: 10.1096/fj.09-150615] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Dishevelled (Dvl) is a multifunctional effector of different Wnt cascades. Both canonical Wnt3a and noncanonical Wnt5a stimulate casein-kinase-1 (CK1) -mediated phosphorylation of Dvl, visualized as electrophoretic mobility shift [phosphorylated and shifted Dvl (ps-Dvl)]. However, the role of this phosphorylation remains obscure. Here we report the functional interaction of ps-Dvl with the receptor tyrosine kinase Ror2, which is an alternative Wnt receptor and is able to inhibit canonical Wnt signaling. We demonstrate interaction between Ror2 and ps-Dvl at the cell membrane after Wnt3a or Wnt5a stimulus dependent on CK1. Ps-Dvl interacts with the C-terminal proline-serine-threonine-rich domain of Ror2, which is required for efficient inhibition of canonical Wnt signaling. We further show that the Dvl C terminus, which seems to be exposed in ps-Dvl and efficiently binds Ror2, is an intrinsic negative regulator of the canonical Wnt pathway downstream of beta-catenin. The Dvl C terminus is necessary and sufficient to inhibit canonical Wnt/beta-catenin signaling, which is dependent on the presence of Ror2. Furthermore, both the Dvl C terminus and CK1epsilon can inhibit the Wnt5a/Ror2/ATF2 pathway in mammalian cells and Xenopus explant cultures. This suggests that phosphorylation of Dvl triggers negative feedback regulation for different branches of Wnt signaling in a Ror2-dependent manner.
Collapse
Affiliation(s)
- Florian Witte
- Development and Disease Group, Max Planck Institute for Molecular Genetics, Ihnestr. 73, 14195 Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Abstract
The Wnt/beta-catenin signaling pathway plays essential roles during development and adult tissue homeostasis. Inappropriate activation of the pathway can result in a variety of malignancies. Protein kinases have emerged as key regulators at multiple steps of the Wnt pathway. In this review, we present a synthesis covering the latest information on how Wnt signaling is regulated by diverse protein kinases.
Collapse
Affiliation(s)
- Esther M Verheyen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada.
| | | |
Collapse
|
67
|
Schulte G, Schambony A, Bryja V. beta-Arrestins - scaffolds and signalling elements essential for WNT/Frizzled signalling pathways? Br J Pharmacol 2009; 159:1051-8. [PMID: 19888962 DOI: 10.1111/j.1476-5381.2009.00466.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
beta-arrestins were originally identified as negative regulators of G protein-coupled receptor signalling. Recent studies have revealed that beta-arrestins serve as intracellular scaffolds and signalling intermediates. Their diverse functions in intracellular signalling pathways provide mechanisms for achieving signal specificity that might be attacked for pharmacological intervention. Here, we summarize the importance of beta-arrestin function for WNT [wingless (from Drosophila) and the oncogene int-1]/Frizzled (FZD) signalling. WNTs are secreted lipoglycoproteins that act through the seven transmembrane-spanning receptors of the FZD family. It recently became evident that beta-arrestins are required for cellular communication by means of WNTs and FZDs both in cellular systems and in vivo. Although the overall importance of arrestin for WNT/FZD signalling remains obscure, interaction with the central phosphoprotein Dishevelled and the endocytic machinery implicates beta-arrestin as a determinant of WNT signalling specificity, a mediator of WNT/FZD desensitization and a regulator of signalling compartmentation.
Collapse
Affiliation(s)
- Gunnar Schulte
- Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| | | | | |
Collapse
|
68
|
Wu D, Pan W. GSK3: a multifaceted kinase in Wnt signaling. Trends Biochem Sci 2009; 35:161-8. [PMID: 19884009 DOI: 10.1016/j.tibs.2009.10.002] [Citation(s) in RCA: 671] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 10/02/2009] [Accepted: 10/12/2009] [Indexed: 12/25/2022]
Abstract
GSK3 is one of the few signaling mediators that play central roles in a diverse range of signaling pathways, including those activated by Wnts, hedgehog, growth factors, cytokines, and G protein-coupled ligands. Although the inhibition of GSK3-mediated beta-catenin phosphorylation is known to be the key event in Wnt-beta-catenin signaling, the mechanisms that underlie this event remain incompletely understood. The recent demonstration of GSK3 involvement in Wnt receptor phosphorylation illustrates the multifaceted roles that GSK3 plays in Wnt-beta-catenin signaling. In this review, we will summarize these recent results and offer explanations, hypotheses, and models to reconcile some of these observations.
Collapse
Affiliation(s)
- Dianqing Wu
- Vascular Biology and Therapeutics Program and Department of Pharmacology, Yale University School of Medicine, New Haven, CT 065202, USA.
| | | |
Collapse
|
69
|
Modak C, Chai J. Potential of casein kinase I in digestive cancer screening. World J Gastrointest Oncol 2009; 1:26-33. [PMID: 21160770 PMCID: PMC2999098 DOI: 10.4251/wjgo.v1.i1.26] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2009] [Revised: 07/04/2009] [Accepted: 07/11/2009] [Indexed: 02/05/2023] Open
Abstract
Casein kinase I is a group of ubiquitous Serine/Threonine kinases that have been implicated in both normal cellular functions and several pathological conditions including Alzheimer’s disease and cancer. Recent findings in colon and pancreatic cancer have brought tremendous attention to these molecules as potential therapeutic targets in treatment of digestive cancers. In this review, we summarize up to date what is known about this family of kinases and their involvement in carcinogenesis and other pathological conditions. Our emphasis is on their implications in digestive cancers and their potential for cancer screening and therapy.
Collapse
Affiliation(s)
- Cristina Modak
- Cristina Modak, Jianyuan Chai, Department Research (09-151), VA Long Beach Healthcare System, Long Beach, 90822 and the University of California, Irvine, CA 92697, United States
| | | |
Collapse
|
70
|
van Amerongen R, Nawijn MC, Lambooij JP, Proost N, Jonkers J, Berns A. Frat oncoproteins act at the crossroad of canonical and noncanonical Wnt-signaling pathways. Oncogene 2009; 29:93-104. [PMID: 19802005 DOI: 10.1038/onc.2009.310] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Wnt-signal transduction is critical for development and tissue homeostasis in a wide range of animal species and is frequently deregulated in human cancers. Members of the Frat/GBP family of glycogen synthase kinase 3beta (Gsk3b)-binding oncoproteins are recognized as potent activators of the Wnt/beta-catenin pathway in vertebrates. Here, we reveal a novel, Gsk3b-independent function of Frat converging on the activation of JNK and AP-1. Both these have been used as readouts for the noncanonical Frizzled/PCP pathway, which controls polarized cell movements and the establishment of tissue polarity. We find that Frat synergizes with Diversin, the mammalian homolog of the Drosophila PCP protein diego, in the activation of JNK/AP-1 signaling. Importantly, Frat mutants deficient for binding to Gsk3b retain oncogenic activity in vivo, suggesting that Wnt/beta-catenin-independent events contribute to Frat-induced malignant transformation. The observed activities of Frat are reminiscent of the dual function of Dishevelled in the Wnt/beta-catenin and Frizzled/PCP pathways and suggest that Frat may also function to bridge canonical and noncanonical Wnt pathways.
Collapse
Affiliation(s)
- R van Amerongen
- Division of Molecular Genetics, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
71
|
|
72
|
O’Keefe DD, Gonzalez-Niño E, Burnett M, Dylla L, Lambeth SM, Licon E, Amesoli C, Edgar BA, Curtiss J. Rap1 maintains adhesion between cells to affect Egfr signaling and planar cell polarity in Drosophila. Dev Biol 2009; 333:143-60. [PMID: 19576205 PMCID: PMC2730837 DOI: 10.1016/j.ydbio.2009.06.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 06/06/2009] [Accepted: 06/23/2009] [Indexed: 11/19/2022]
Abstract
The small GTPase Rap1 affects cell adhesion and cell motility in numerous developmental contexts. Loss of Rap1 in the Drosophila wing epithelium disrupts adherens junction localization, causing mutant cells to disperse, and dramatically alters epithelial cell shape. While the adhesive consequences of Rap1 inactivation have been well described in this system, the effects on cell signaling, cell fate specification, and tissue differentiation are not known. Here we demonstrate that Egfr-dependent cell types are lost from Rap1 mutant tissue as an indirect consequence of DE-cadherin mislocalization. Cells lacking Rap1 in the developing wing and eye are capable of responding to an Egfr signal, indicating that Rap1 is not required for Egfr/Ras/MAPK signal transduction. Instead, Rap1 regulates adhesive contacts necessary for maintenance of Egfr signaling between cells, and differentiation of wing veins and photoreceptors. Rap1 is also necessary for planar cell polarity in these tissues. Wing hair alignment and ommatidial rotation, functional readouts of planar cell polarity in the wing and eye respectively, are both affected in Rap1 mutant tissue. Finally, we show that Rap1 acts through the effector Canoe to regulate these developmental processes.
Collapse
Affiliation(s)
- David D. O’Keefe
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| | | | - Micheal Burnett
- Biology Department, New Mexico State University, Las Cruces, NM 88003
| | - Layne Dylla
- Biology Department, New Mexico State University, Las Cruces, NM 88003
| | - Stacey M. Lambeth
- Biology Department, New Mexico State University, Las Cruces, NM 88003
| | - Elizabeth Licon
- Biology Department, New Mexico State University, Las Cruces, NM 88003
| | - Cassandra Amesoli
- Biology Department, New Mexico State University, Las Cruces, NM 88003
| | - Bruce A. Edgar
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| | - Jennifer Curtiss
- Biology Department, New Mexico State University, Las Cruces, NM 88003
| |
Collapse
|
73
|
Abstract
During development, epithelial cells in some tissues acquire a polarity orthogonal to their apical-basal axis. This polarity, referred to as planar cell polarity (PCP), or tissue polarity, is essential for the normal physiological function of many epithelia. Early studies of PCP focused on insect epithelia (Lawrence, 1966 [1]), and the earliest genetic analyses were carried out in Drosophila (Held et al., 1986; Gubb and Garcia-Bellido, 1982 [2,3]). Indeed, most of our mechanistic understanding of PCP derives from the ongoing use of Drosophila as a model system. However, a range of medically important developmental defects and physiological processes are under the control of PCP mechanisms that appear to be at least partially conserved, driving considerable interest in studying PCP both in Drosophila and in vertebrate model systems. Here, I present a model of the PCP signaling mechanism based on studies in Drosophila. I highlight two areas in which our understanding is deficient, and which lead to current confusion in the literature. Future studies that shed light on these areas will substantially enhance our understanding of the fascinating yet challenging problem of understanding the mechanisms that generate PCP.
Collapse
Affiliation(s)
- Jeffrey D Axelrod
- Department of Pathology, Stanford University School of Medicine, Room R226a, 300 Pasteur Drive, Stanford, CA 94305, USA.
| |
Collapse
|
74
|
Bouteille N, Driouch K, Hage PE, Sin S, Formstecher E, Camonis J, Lidereau R, Lallemand F. Inhibition of the Wnt/beta-catenin pathway by the WWOX tumor suppressor protein. Oncogene 2009; 28:2569-80. [PMID: 19465938 DOI: 10.1038/onc.2009.120] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The WWOX gene encodes a candidate tumor suppressor protein (WWOX) implicated in a variety of human diseases such as cancer. To better understand the molecular mechanisms of WWOX action, we investigated novel partners of this protein. Using the two-hybrid system and a coimmunoprecipitation assay, we observed a physical association between WWOX and the Dishevelled protein (Dvl) family signaling elements involved in the Wnt/beta-catenin pathway. We found that enforced WWOX expression inhibited, and inhibition of endogenous WWOX expression stimulated the transcriptional activity of the Wnt/beta-catenin pathway. Inhibition of endogenous WWOX expression also enhanced the effect of Wnt-3a on beta-catenin stability. Moreover, we observed the sequestration of Dvl-2 wild type and Dvl-2NESm, a mutated form of Dvl-2 predominantly localized in the nucleus, in the cytoplasm compartment by WWOX. Our results indicate that WWOX is a novel inhibitor of the Wnt/beta-catenin pathway. WWOX would act, at least in part, by preventing the nuclear import of the Dvl proteins.
Collapse
Affiliation(s)
- N Bouteille
- Centre René Huguenin, FNCLCC, St-Cloud, France
| | | | | | | | | | | | | | | |
Collapse
|
75
|
Dpr Acts as a molecular switch, inhibiting Wnt signaling when unphosphorylated, but promoting Wnt signaling when phosphorylated by casein kinase Idelta/epsilon. PLoS One 2009; 4:e5522. [PMID: 19440376 PMCID: PMC2679210 DOI: 10.1371/journal.pone.0005522] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Accepted: 04/20/2009] [Indexed: 11/25/2022] Open
Abstract
The Wnt pathway is a key regulator of development and tumorigenesis. Dpr (Dact/Frodo) influences Wnt signaling in part through the interaction of its PDZ-B domain with Dsh's PDZ domain. Studies have shown that XDpr1a and its close relative, Frodo, are involved in multiple steps of the Wnt pathway in either inhibitory or activating roles. We found that XDpr1a is phosphorylated by casein kinase Iδ/ε (CKIδ/ε), an activator of Wnt signaling, in the presence of XDsh. Abrogating XDpr1a's ability to bind XDsh through mutation of XDpr1a's PDZ-B domain blocks CK1δ/ε's phosphorylation of XDpr1a. Conversely, XDsh possessing a mutation in its PDZ domain that is unable to bind XDpr1a does not promote XDpr1a phosphorylation. Phosphorylation of XDpr1a and XDsh by CKIδ/ε decreases their interaction. Moreover, the phosphorylation of XDpr1a by CKIδ/ε not only abrogates XDpr1a's promotion of β-catenin degradation but blocks β-catenin degradation. Our data suggest that XDpr1a phosphorylation by CKIδ/ε is dependent on the interaction of XDpr1a's PDZ-B domain with XDsh's PDZ domain, and that the phosphorylation state of XDpr1a determines whether it inhibits or activates Wnt signaling.
Collapse
|
76
|
Abstract
Renal cystic diseases are a major clinical concern as they are the most common genetic cause of end-stage renal disease. While many of the genes causing cystic disease have been identified in recent years, knowing the molecular nature of the mutations has not clarified the mechanisms underlying cyst formation. Recent research in model organisms has suggested that cyst formation may be because of defective planar cell polarity (PCP) and/or ciliary defects. In this review, we first outline the clinical features of renal cystic diseases and then discuss current research linking our understanding of cystic kidney disease to PCP and cilia.
Collapse
Affiliation(s)
- R L Bacallao
- Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | |
Collapse
|
77
|
Identification of domains responsible for ubiquitin-dependent degradation of dMyc by glycogen synthase kinase 3beta and casein kinase 1 kinases. Mol Cell Biol 2009; 29:3424-34. [PMID: 19364825 DOI: 10.1128/mcb.01535-08] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the present study, we report that ubiquitin-mediated degradation of dMyc, the Drosophila homologue of the human c-myc proto-oncogene, is regulated in vitro and in vivo by members of the casein kinase 1 (CK1) family and by glycogen synthase kinase 3beta (GSK3beta). Using Drosophila S2 cells, we demonstrate that CK1alpha promotes dMyc ubiquitination and degradation with a mechanism similar to the one mediated by GSK3beta in vertebrates. Mutation of ck1alpha or -epsilon or sgg/gsk3beta in Drosophila wing imaginal discs results in the accumulation of dMyc protein, suggesting a physiological role for these kinases in vivo. Analysis of the dMyc amino acid sequence reveals the presence of conserved domains containing potential phosphorylation sites for mitogen kinases, GSK3beta, and members of the CK1 family. We demonstrate that mutations of specific residues within these phosphorylation domains regulate dMyc protein stability and confer resistance to degradation by CK1alpha and GSK3beta kinases. Expression of the dMyc mutants in the compound eye of the adult fly results in a visible defect that is attributed to the effect of dMyc on growth, cell death, and inhibition of ommatidial differentiation.
Collapse
|
78
|
Dahlberg CL, Nguyen EZ, Goodlett D, Kimelman D. Interactions between Casein kinase Iepsilon (CKIepsilon) and two substrates from disparate signaling pathways reveal mechanisms for substrate-kinase specificity. PLoS One 2009; 4:e4766. [PMID: 19274088 PMCID: PMC2651596 DOI: 10.1371/journal.pone.0004766] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Accepted: 02/10/2009] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Members of the Casein Kinase I (CKI) family of serine/threonine kinases regulate diverse biological pathways. The seven mammalian CKI isoforms contain a highly conserved kinase domain and divergent amino- and carboxy-termini. Although they share a preferred target recognition sequence and have overlapping expression patterns, individual isoforms often have specific substrates. In an effort to determine how substrates recognize differences between CKI isoforms, we have examined the interaction between CKIepsilon and two substrates from different signaling pathways. METHODOLOGY/PRINCIPAL FINDINGS CKIepsilon, but not CKIalpha, binds to and phosphorylates two proteins: Period, a transcriptional regulator of the circadian rhythms pathway, and Disheveled, an activator of the planar cell polarity pathway. We use GST-pull-down assays data to show that two key residues in CKIalpha's kinase domain prevent Disheveled and Period from binding. We also show that the unique C-terminus of CKIepsilon does not determine Dishevelled's and Period's preference for CKIepsilon nor is it essential for binding, but instead plays an auxillary role in stabilizing the interactions of CKIepsilon with its substrates. We demonstrate that autophosphorylation of CKIepsilon's C-terminal tail prevents substrate binding, and use mass spectrometry and chemical crosslinking to reveal how a phosphorylation-dependent interaction between the C-terminal tail and the kinase domain prevents substrate phosphorylation and binding. CONCLUSIONS/SIGNIFICANCE The biochemical interactions between CKIepsilon and Disheveled, Period, and its own C-terminus lead to models that explain CKIepsilon's specificity and regulation.
Collapse
Affiliation(s)
- Caroline Lund Dahlberg
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Elizabeth Z. Nguyen
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington, United States of America
| | - David Goodlett
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington, United States of America
| | - David Kimelman
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
79
|
Sellin JH, Wang Y, Singh P, Umar S. beta-Catenin stabilization imparts crypt progenitor phenotype to hyperproliferating colonic epithelia. Exp Cell Res 2009; 315:97-109. [PMID: 18996369 PMCID: PMC2868370 DOI: 10.1016/j.yexcr.2008.10.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 10/10/2008] [Accepted: 10/13/2008] [Indexed: 02/01/2023]
Abstract
Utilizing the Citrobacter rodentium (CR)-induced transmissible murine colonic hyperplasia (TMCH) model, we provide mechanistic basis of changes in beta-catenin/APC/CKIepsilon leading to progression and/or regression of hyperplasia in vivo. In response to CR-induced TMCH, crypt lengths increased significantly between days 6-27 post-infection, followed by a steep decline by day 34. beta-Cat(45)/total beta-catenin were elevated on day 1 post-infection, preceding changes in crypt length, and persisted for 27 days before declining by day 34. Importantly, cellular CKIepsilon and beta-catenin co-immunoprecipitated and exhibited remarkable parallel changes in kinetics during hyperplasia/regression phases. beta-catenin, phosphorylated at Ser33,37 and Thr41 (beta-cat(33,37/41)), was low till day 12, followed by gradual increase until day 27 before declining by day 34. GSK-3beta exhibited significant Ser(9)-phosphorylation/inactivation at days 6-12 with partial recovery at days 27-34. Wild type (wt) APC (p312) levels increased at day 6 with transient proteolysis/truncation to p130 form between days 12 and 15; p312 reappeared by day 19 and returned to baseline by day 34. The kinetics of beta-Cat(45)/beta-catenin nuclear accumulation and acetylation (Ac-beta-Cat(Lys49)) from days 6 to 27, followed by loss of phosphorylation/acetylation by day 34 was almost identical; Tcf-4 co-immunoprecipitated with beta-Cat(45)/beta-catenin and localized immunohistochemically to beta-Cat(41/45)-positive regions leading to elevated cyclin D1 expression, during the hyperproliferative, but not regression phases of TMCH. CKIepsilon mediated phosphorylation of beta-Cat(45), resulting in stabilization/nuclear translocation of beta-Cat(45) may be critical for maintaining proliferation at days 6-27. Reversal of GSK-3beta phosphorylation and APC changes may be equally critical during the regression phase from days 27 to 34.
Collapse
Affiliation(s)
- Joseph H. Sellin
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Texas Medical Branch, Galveston TX
| | - Yu Wang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Texas Medical Branch, Galveston TX
| | - Pomila Singh
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston TX
| | - Shahid Umar
- Division of Digestive Diseases and Nutrition, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
80
|
Somorjai IML, Martinez-Arias A. Wingless signalling alters the levels, subcellular distribution and dynamics of Armadillo and E-cadherin in third instar larval wing imaginal discs. PLoS One 2008; 3:e2893. [PMID: 18682750 PMCID: PMC2483348 DOI: 10.1371/journal.pone.0002893] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Accepted: 07/09/2008] [Indexed: 11/18/2022] Open
Abstract
Background Armadillo, the Drosophila orthologue of vertebrate ß-catenin, plays a dual role as the key effector of Wingless/Wnt1 signalling, and as a bridge between E-Cadherin and the actin cytoskeleton. In the absence of ligand, Armadillo is phosphorylated and targeted to the proteasome. Upon binding of Wg to its receptors, the “degradation complex” is inhibited; Armadillo is stabilised and enters the nucleus to transcribe targets. Methodology/Principal Findings Although the relationship between signalling and adhesion has been extensively studied, few in vivo data exist concerning how the “transcriptional” and “adhesive” pools of Armadillo are regulated to orchestrate development. We have therefore addressed how the subcellular distribution of Armadillo and its association with E-Cadherin change in larval wing imaginal discs, under wild type conditions and upon signalling. Using confocal microscopy, we show that Armadillo and E-Cadherin are spatio-temporally regulated during development, and that a punctate species becomes concentrated in a subapical compartment in response to Wingless. In order to further dissect this phenomenon, we overexpressed Armadillo mutants exhibiting different levels of activity and stability, but retaining E-Cadherin binding. ArmS10 displaces endogenous Armadillo from the AJ and the basolateral membrane, while leaving E-Cadherin relatively undisturbed. Surprisingly, ΔNArm1–155 caused displacement of both Armadillo and E-Cadherin, results supported by our novel method of quantification. However, only membrane-targeted Myr-ΔNArm1–155 produced comparable nuclear accumulation of Armadillo and signalling to ArmS10. These experiments also highlighted a row of cells at the A/P boundary depleted of E-Cadherin at the AJ, but containing actin. Conclusions/Significance Taken together, our results provide in vivo evidence for a complex non-linear relationship between Armadillo levels, subcellular distribution and Wingless signalling. Moreover, this study highlights the importance of Armadillo in regulating the subcellular distribution of E-Cadherin
Collapse
|
81
|
Funato Y, Michiue T, Terabayashi T, Yukita A, Danno H, Asashima M, Miki H. Nucleoredoxin regulates the Wnt/planar cell polarity pathway in Xenopus. Genes Cells 2008; 13:965-75. [PMID: 18691226 DOI: 10.1111/j.1365-2443.2008.01220.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Wnt signaling pathway is conserved across species, and is essential for early development. We previously identified nucleoredoxin (NRX) as a protein that interacts with dishevelled (Dvl) in vivo to negatively regulate the Wnt/beta-catenin pathway. However, whether NRX affects another branch of the Wnt pathway, the Wnt/planar cell polarity (PCP) pathway, remains unclear. Here we show that NRX regulates the Wnt/PCP pathway. In Xenopus laevis, over-expression or depletion of NRX by injection of NRX mRNA or antisense morpholino oligonucleotide, respectively, yields the bent-axis phenotype that is typically observed in embryos with abnormal PCP pathway activity. In co-injection experiments of Dvl and NRX mRNA, NRX suppresses the Dvl-induced bent-axis phenotype. Over-expression or depletion of NRX also suppresses the convergent extension movements that are believed to underlie normal gastrulation. We also found that NRX can inhibit Dvl-induced up-regulation of c-Jun phosphorylation. These results indicate that NRX plays crucial roles in the Wnt/PCP pathway through Dvl and regulates Xenopus gastrulation movements.
Collapse
Affiliation(s)
- Yosuke Funato
- Laboratory of Intracellular Signaling, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
82
|
Kestler HA, Kühl M. From individual Wnt pathways towards a Wnt signalling network. Philos Trans R Soc Lond B Biol Sci 2008; 363:1333-47. [PMID: 18192173 DOI: 10.1098/rstb.2007.2251] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Wnt proteins play important roles during vertebrate and invertebrate development. They obviously have the ability to activate different intracellular signalling pathways. Based on the characteristic intracellular mediators used, these are commonly described as the Wnt/beta-catenin, the Wnt/calcium and the Wnt/Jun N-terminal kinase pathways (also called planar cell polarity pathway). In the past, these different signalling events were mainly described as individual and independent signalling branches. Here, we discuss the possibility that Wnt proteins activate a complex intracellular signalling network rather than individual pathways and suggest a graph representation of this network. Furthermore, we discuss different ways of how to predict the specific outcome of an activation of this network in a particular cell type, which will require the use of mathematical models. We point out that the use of deterministic approaches via the application of differential equations is suitable to model only small aspects of the whole network and that more qualitative approaches are possibly a suitable starting point for the prediction of the global behaviour of such large protein interaction networks.
Collapse
Affiliation(s)
- Hans A Kestler
- Clinic for Internal Medicine I, Medical Centre Ulm University, Robert-Koch-Strasse 8, 89081 Ulm, Germany
| | | |
Collapse
|
83
|
Schlange T, Matsuda Y, Lienhard S, Huber A, Hynes NE. Autocrine WNT signaling contributes to breast cancer cell proliferation via the canonical WNT pathway and EGFR transactivation. Breast Cancer Res 2008; 9:R63. [PMID: 17897439 PMCID: PMC2242658 DOI: 10.1186/bcr1769] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Revised: 09/19/2007] [Accepted: 09/26/2007] [Indexed: 12/02/2022] Open
Abstract
Background De-regulation of the wingless and integration site growth factor (WNT) signaling pathway via mutations in APC and Axin, proteins that target β-catenin for destruction, have been linked to various types of human cancer. These genetic alterations rarely, if ever, are observed in breast tumors. However, various lines of evidence suggest that WNT signaling may also be de-regulated in breast cancer. Most breast tumors show hypermethylation of the promoter region of secreted Frizzled-related protein 1 (sFRP1), a negative WNT pathway regulator, leading to downregulation of its expression. As a consequence, WNT signaling is enhanced and may contribute to proliferation of human breast tumor cells. We previously demonstrated that, in addition to the canonical WNT/β-catenin pathway, WNT signaling activates the extracellular signal-regulated kinase 1/2 (ERK1/2) pathway in mouse mammary epithelial cells via epidermal growth factor receptor (EGFR) transactivation. Methods Using the WNT modulator sFRP1 and short interfering RNA-mediated Dishevelled (DVL) knockdown, we interfered with autocrine WNT signaling at the ligand-receptor level. The impact on proliferation was measured by cell counting, YOPRO, and the MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide) assay; β-catenin, EGFR, ERK1/2 activation, and PARP (poly [ADP-ribose]polymerase) cleavages were assessed by Western blotting after treatment of human breast cancer cell lines with conditioned media, purified proteins, small-molecule inhibitors, or blocking antibodies. Results Phospho-DVL and stabilized β-catenin are present in many breast tumor cell lines, indicating autocrine WNT signaling activity. Interfering with this loop decreases active β-catenin levels, lowers ERK1/2 activity, blocks proliferation, and induces apoptosis in MDA-MB-231, BT474, SkBr3, JIMT-1, and MCF-7 cells. The effects of WNT signaling are mediated partly by EGFR transactivation in human breast cancer cells in a metalloprotease- and Src-dependent manner. Furthermore, Wnt1 rescues estrogen receptor-positive (ER+) breast cancer cells from the anti-proliferative effects of 4-hydroxytamoxifen (4-HT) and this activity can be blocked by an EGFR tyrosine kinase inhibitor. Conclusion Our data show that interference with autocrine WNT signaling in human breast cancer reduces proliferation and survival of human breast cancer cells and rescues ER+ tumor cells from 4-HT by activation of the canonical WNT pathway and EGFR transactivation. These findings suggest that interference with WNT signaling at the ligand-receptor level in combination with other targeted therapies may improve the efficiency of breast cancer treatments.
Collapse
Affiliation(s)
- Thomas Schlange
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | - Yutaka Matsuda
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | - Susanne Lienhard
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | - Alexandre Huber
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
- Université de Genève, Département de biologie moléculaire, Sciences II, 30 quai Ernest-Ansermet, CH-1211 Genève 4, Switzerland
| | - Nancy E Hynes
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| |
Collapse
|
84
|
Abstract
Most, if not all, cell types and tissues display several aspects of polarization. In addition to the ubiquitous epithelial cell polarity along the apical-basolateral axis, many epithelial tissues and organs are also polarized within the plane of the epithelium. This is generally referred to as planar cell polarity (PCP; or historically, tissue polarity). Genetic screens in Drosophila pioneered the discovery of core PCP factors, and subsequent work in vertebrates has established that the respective pathways are evolutionarily conserved. PCP is not restricted only to epithelial tissues but is also found in mesenchymal cells, where it can regulate cell migration and cell intercalation. Moreover, particularly in vertebrates, the conserved core PCP signaling factors have recently been found to be associated with the orientation or formation of cilia. This review discusses new developments in the molecular understanding of PCP establishment in Drosophila and vertebrates; these developments are integrated with new evidence that links PCP signaling to human disease.
Collapse
Affiliation(s)
- Matias Simons
- Mount Sinai School of Medicine, Department of Developmental & Regenerative Biology, New York, NY 10029;
| | - Marek Mlodzik
- Mount Sinai School of Medicine, Department of Developmental & Regenerative Biology, New York, NY 10029;
| |
Collapse
|
85
|
James RG, Conrad WH, Moon RT. Beta-catenin-independent Wnt pathways: signals, core proteins, and effectors. Methods Mol Biol 2008; 468:131-44. [PMID: 19099251 DOI: 10.1007/978-1-59745-249-6_10] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Wnt signaling activates several distinct intracellular pathways, which are important for cell proliferation, differentiation, and polarity. Wnt proteins are secreted molecules that typically signal across the membrane via interaction with the transmembrane receptor Frizzled. Following interaction with Frizzled, the downstream effect of the most widely studied Wnt pathway is stabilization and nuclear translocation of the cytosolic protein, beta-catenin. In this chapter, we discuss two beta-catenin-independent branches of Wnt signaling: 1) Wnt/planar cell polarity (PCP), a Wnt pathway that signals through the small GTPases, Rho and Rac, to promote changes in the actin cytoskeleton, and 2) Wnt/Ca2+, a Wnt pathway that promotes intracellular calcium transients and negatively regulates the Wnt/beta-catenin pathway. Finally, during the course of our discussion, we highlight areas that require future research.
Collapse
Affiliation(s)
- Richard G James
- Howard Hughes Medical Institute and Department of Pharmacology, University of Washington School of Medicine, Seattle, WA, USA
| | | | | |
Collapse
|
86
|
Wu J, Jenny A, Mirkovic I, Mlodzik M. Frizzled-Dishevelled signaling specificity outcome can be modulated by Diego in Drosophila. Mech Dev 2008; 125:30-42. [PMID: 18065209 PMCID: PMC2800357 DOI: 10.1016/j.mod.2007.10.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 10/09/2007] [Accepted: 10/11/2007] [Indexed: 11/19/2022]
Abstract
Members of the Frizzled (Fz) family of seven-pass transmembrane receptors are required for the transduction of both Wnt-Fz/beta-catenin and Fz/planar cell polarity (PCP) signals. Although both pathways transduce signals via interactions between Fz and the cytoplasmic protein Dishevelled (Dsh), each pathway has specific and distinct effectors. One explanation for the pathway specificity is that signal-induced conformational changes result in unique Fz-Dsh interactions. Our mutational analyses of Fz-Dsh activities in vivo do however not support this model, since both pathways are affected by all mutations tested. Alternatively, the interaction of Fz or Dsh with other proteins could modulate the signaling outcome. We examined the role of a Dsh-binding PCP molecule, Diego (Dgo), in both Wnt-Fz/beta-catenin and Fz/PCP signaling. Both loss-of-function and gain-of-function results suggest that Dgo promotes Fz-Dsh/PCP signaling at the expense of Wnt-Fz/beta-catenin signaling. Our data suggest that Dgo sequesters Dsh to a functionally distinct Fz/PCP signaling compartment within the cell.
Collapse
Affiliation(s)
- Jun Wu
- Dept. of Molecular, Cell & Developmental Biology, Mt. Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029
| | - Andreas Jenny
- Dept. of Molecular, Cell & Developmental Biology, Mt. Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029
| | - Ivana Mirkovic
- Dept. of Molecular, Cell & Developmental Biology, Mt. Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029
| | - Marek Mlodzik
- Dept. of Molecular, Cell & Developmental Biology, Mt. Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029
| |
Collapse
|
87
|
Wang SM, Ooi LLPJ, Hui KM. Identification and Validation of a Novel Gene Signature Associated with the Recurrence of Human Hepatocellular Carcinoma. Clin Cancer Res 2007; 13:6275-83. [PMID: 17975138 DOI: 10.1158/1078-0432.ccr-06-2236] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Suk Mei Wang
- Bek Chai Heah Laboratory of Cancer Genomics, Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, Singapore
| | | | | |
Collapse
|
88
|
Garzia L, D'Angelo A, Amoresano A, Knauer SK, Cirulli C, Campanella C, Stauber RH, Steegborn C, Iolascon A, Zollo M. Phosphorylation of nm23-H1 by CKI induces its complex formation with h-prune and promotes cell motility. Oncogene 2007; 27:1853-64. [PMID: 17906697 DOI: 10.1038/sj.onc.1210822] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The combination of an increase in the cAMP-phosphodiesterase activity of h-prune and its interaction with nm23-H1 have been shown to be key steps in the induction of cellular motility in breast cancer cells. Here we present the molecular mechanisms of this interaction. The region of the nm23-h-prune interaction lies between S120 and S125 of nm23, where missense mutants show impaired binding; this region has been highly conserved throughout evolution, and can undergo serine phosphorylation by casein kinase I. Thus, the casein kinase I delta-epsilon specific inhibitor IC261 impairs the formation of the nm23-h-prune complex, which translates 'in vitro' into inhibition of cellular motility in a breast cancer cellular model. A competitive permeable peptide containing the region for phosphorylation by casein kinase I impairs cellular motility to the same extent as IC261. The identification of these two modes of inhibition of formation of the nm23-H1-h-prune protein complex pave the way toward new challenges, including translational studies using IC261 or this competitive peptide 'in vivo' to inhibit cellular motility induced by nm23-H1-h-prune complex formation during progression of breast cancer.
Collapse
Affiliation(s)
- L Garzia
- CEINGE, Centro di Ingegneria Genetica e Biotecnologie Avanzate, Naples, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Force T, Woulfe K, Koch WJ, Kerkelä R. Molecular Scaffolds Regulate Bidirectional Crosstalk Between Wnt and Classical Seven-Transmembrane Domain Receptor Signaling Pathways. ACTA ACUST UNITED AC 2007; 2007:pe41. [PMID: 17666710 DOI: 10.1126/stke.3972007pe41] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Signaling downstream of classical seven-transmembrane domain receptors (7TMRs) had generally been thought to recruit factors that are in large part separate from those recruited by atypical 7TMRs, such as Frizzleds (Fzs), receptors for the Wnt family of glycoproteins. Classical 7TMRs are also known as G protein-coupled receptors (GPCRs) and are mediated by signaling factors such as heterotrimeric guanine nucleotide-binding proteins (G proteins), GPCR kinases (GRKs), and beta-arrestins. Over the past few years, it has become increasingly apparent that classical and atypical 7TMRs share these factors, which are often associated with mediating classical 7TMR signaling, as well as the scaffolding proteins that were initially thought to be involved in transmitting atypical 7TMR signals. This sharing of signaling components by agonists that bind classical 7TMRs and those binding to atypical 7TMRs establishes the possibility of extensive crosstalk between these receptor classes. We discuss the evidence for, and against, crosstalk, and examine mechanisms by which this can occur.
Collapse
Affiliation(s)
- Thomas Force
- The Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | | | | | |
Collapse
|
90
|
Schwarz-Romond T, Metcalfe C, Bienz M. Dynamic recruitment of axin by Dishevelled protein assemblies. J Cell Sci 2007; 120:2402-12. [PMID: 17606995 DOI: 10.1242/jcs.002956] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Dishevelled (Dvl) proteins are cytoplasmic components of the Wnt signalling pathway, which controls numerous cell fate decisions during animal development. During Wnt signalling, Dvl binds to the intracellular domain of the frizzled transmembrane receptors, and also to axin to block its activity, which results in the activation of beta-catenin and, consequently, in a transcriptional switch. We have previously reported that the DIX domain of mammalian Dvl2 allows it to form dynamic protein assemblies. Here, we show that these Dvl2 assemblies recruit axin, and also casein kinase Iepsilon. Using photobleaching experiments of GFP-tagged Dvl2 and axin to study the dynamics of their interaction, we found that the recruitment of axin-GFP by Dvl2 assemblies is accompanied by a striking acceleration of the dynamic properties of axin-GFP. We also show that the interaction between Dvl2 and axin remains highly dynamic even after Wnt-induced relocation to the plasma membrane. We discuss how the recruitment of casein kinase Iepsilon by Dvl2 assemblies might impact on the recruitment of axin to the plasma membrane during Wnt signalling.
Collapse
|
91
|
Abstract
Non-canonical, beta-catenin-independent Wnt signaling regulates cell polarization and movements. A recent study reveals that casein kinase Iepsilon mediates an additional novel non-canonical Wnt pathway via the activation of the Rap1 GTPase during vertebrate gastrulation.
Collapse
Affiliation(s)
- Raymond Habas
- Research Tower, Room 629, Department of Biochemistry, UMDNJ-Robert Wood Johnson School of Medicine, 675 Hoes Lane, Piscataway, New Jersey 08854, USA.
| | | |
Collapse
|
92
|
Leonard JD, Ettensohn CA. Analysis of dishevelled localization and function in the early sea urchin embryo. Dev Biol 2007; 306:50-65. [PMID: 17433285 PMCID: PMC2697034 DOI: 10.1016/j.ydbio.2007.02.041] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2006] [Revised: 02/17/2007] [Accepted: 02/26/2007] [Indexed: 11/29/2022]
Abstract
Dishevelled (Dsh) is a key signaling molecule in the canonical Wnt pathway. Although the mechanism by which Dsh transduces a Wnt signal remains elusive, the subcellular localization of Dsh may be critical for its function. In the early sea urchin embryo, Dsh is concentrated in punctate structures within the cytoplasm of vegetal blastomeres. In these cells, Dsh stabilizes beta-catenin and causes it to accumulate in nuclei, resulting in the activation of transcriptional gene regulatory networks that drive mesoderm and endoderm formation. Here, we present a systematic mutational analysis of Lytechinus variegatus Dsh (LvDsh) that identifies motifs required for its vegetal cortical localization (VCL). In addition to a previously identified lipid-binding motif near the N-terminus of Dsh (Weitzel, H.E., Illies, M.R., Byrum, C.A., Xu, R., Wikramanayake, A.H., Ettensohn, C.A., 2004. Differential stability of beta-catenin along the animal-vegetal axis of the sea urchin embryo mediated by dishevelled. Development 131, 2947-56), we identify a short (21 amino acid) motif between the PDZ and DEP domains that is required for VCL. Phosphorylation of threonine residues in this region regulates both the targeting and stability of LvDsh. We also identify functional nuclear import and export signals within LvDsh. We provide additional evidence that LvDsh is active locally in the vegetal region of the embryo but is inactive in animal blastomeres and show that the inability of LvDsh to function in animal cells is not a consequence of impaired nuclear import. The DIX domain of LvDsh functions as a potent dominant negative when overexpressed (Weitzel, H.E., Illies, M.R., Byrum, C.A., Xu, R., Wikramanayake, A.H., Ettensohn, C.A., 2004. Differential stability of beta-catenin along the animal-vegetal axis of the sea urchin embryo mediated by dishevelled. Development 131, 2947-56). Here, we show that the dominant negative effect of DIX is dependent on a highly conserved, lipid-binding motif that includes residues K57 and E58. The dominant negative effect of DIX is not a consequence of blocking VCL or the nuclear import of LvDsh. We provide evidence that isolated DIX domains interact with full-length LvDsh in vivo. In addition, we show that the K57/E58 lipid-binding motif of DIX is essential for this interaction. We propose that binding of the isolated DIX domain to full-length Dsh may be facilitated by interactions with lipids, and that this interaction may inhibit signaling by a) preventing endogenous Dsh from interacting with Axin, or b) blocking the ability of Dsh to recruit other proteins, such as GBP/Frat1, to the beta-catenin degradation complex.
Collapse
Affiliation(s)
- Jennifer D. Leonard
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213
| | - Charles A. Ettensohn
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213
| |
Collapse
|
93
|
Farías GG, Vallés AS, Colombres M, Godoy JA, Toledo EM, Lukas RJ, Barrantes FJ, Inestrosa NC. Wnt-7a induces presynaptic colocalization of alpha 7-nicotinic acetylcholine receptors and adenomatous polyposis coli in hippocampal neurons. J Neurosci 2007; 27:5313-25. [PMID: 17507554 PMCID: PMC6672358 DOI: 10.1523/jneurosci.3934-06.2007] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Revised: 03/19/2007] [Accepted: 03/24/2007] [Indexed: 12/21/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) contribute significantly to hippocampal function. Alpha7-nAChRs are present in presynaptic sites in hippocampal neurons and may influence transmitter release, but the factors that determine their presynaptic localization are unknown. We report here that Wnt-7a, a ligand active in the canonical Wnt signaling pathway, induces dissociation of the adenomatous polyposis coli (APC) protein from the beta-catenin cytoplasmic complex and the interaction of APC with alpha7-nAChRs in hippocampal neurons. Interestingly, Wnt-7a induces the relocalization of APC to membranes, clustering of APC in neurites, and coclustering of APC with different, presynaptic protein markers. Wnt-7a also increases the number and size of coclusters of alpha7-nAChRs and APC in presynaptic terminals. These short-term changes in alpha7-nAChRs occur in the few minutes after ligand exposure and involve translocation to the plasma membrane without affecting total receptor levels. Longer-term exposure to Wnt-7a increases nAChR alpha7 subunit levels in an APC-independent manner and increases clusters of alpha7-nAChRs in neurites via an APC-dependent process. Together, these results demonstrate that stimulation through the canonical Wnt pathway regulates the presynaptic localization of APC and alpha7-nAChRs with APC serving as an intermediary in the alpha7-nAChR relocalization process. Modulation by Wnt signaling may be essential for alpha7-nAChR expression and function in synapses.
Collapse
Affiliation(s)
- Ginny G. Farías
- Centro de Regulación Celular y Patología “Joaquin V. Luco,” Millennium Institute for Fundamental and Applied Biology, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331010 Santiago, Chile
| | - Ana S. Vallés
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, 8000 Bahía Blanca, Argentina, and
| | - Marcela Colombres
- Centro de Regulación Celular y Patología “Joaquin V. Luco,” Millennium Institute for Fundamental and Applied Biology, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331010 Santiago, Chile
| | - Juan A. Godoy
- Centro de Regulación Celular y Patología “Joaquin V. Luco,” Millennium Institute for Fundamental and Applied Biology, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331010 Santiago, Chile
| | - Enrique M. Toledo
- Centro de Regulación Celular y Patología “Joaquin V. Luco,” Millennium Institute for Fundamental and Applied Biology, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331010 Santiago, Chile
| | - Ronald J. Lukas
- Division of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona 85013
| | - Francisco J. Barrantes
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, 8000 Bahía Blanca, Argentina, and
| | - Nibaldo C. Inestrosa
- Centro de Regulación Celular y Patología “Joaquin V. Luco,” Millennium Institute for Fundamental and Applied Biology, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331010 Santiago, Chile
| |
Collapse
|
94
|
Tsai IC, Woolf M, Neklason DW, Branford WW, Yost HJ, Burt RW, Virshup DM. Disease-associated casein kinase I delta mutation may promote adenomatous polyps formation via a Wnt/beta-catenin independent mechanism. Int J Cancer 2007; 120:1005-12. [PMID: 17131344 DOI: 10.1002/ijc.22368] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The Wnt signaling pathway is critical for embryonic development and is dysregulated in multiple cancers. Two closely related isoforms of casein kinase I (CKIdelta and epsilon) are positive regulators of this pathway. We speculated that mutations in the autoinhibitory domain of CKIdelta/epsilon might upregulate CKIdelta/epsilon activity and hence Wnt signaling and increase the risk of adenomatous polyps and colon cancer. Exons encoding the CKIepsilon and CKIdelta regulatory domains were sequenced from DNA obtained from individuals with adenomatous polyps and a family history of colon cancer unaffected by familial adenomatous polyposis or hereditary nonpolyposis colorectal cancer (HNPCC). A CKIdelta missense mutation, changing a highly conserved residue, Arg324, to His (R324H), was found in an individual with large and multiple polyps diagnosed at a relatively young age. Two findings indicate that this mutation is biologically active. First, ectopic ventral expression of CKIdelta(R324H) in Xenopus embryos results in secondary axis formation with an additional distinctive phenotype (altered morphological movements) similar to that seen with unregulated CKIepsilon. Second, CKIdelta(R324H) is more potent than wildtype CKIdelta in transformation of RKO colon cancer cells. Although the R324H mutation does not significantly change CKIdelta kinase activity in an in vitro kinase assay or Wnt/beta-catenin signal transduction as assessed by a beta-catenin reporter assay, it alters morphogenetic movements via a beta-catenin-independent mechanism in early Xenopus development. This novel human CKIdelta mutation may alter the physiological role and enhance the transforming ability of CKIdelta through a Wnt/beta-catenin independent mechanism and thereby influence colonic adenoma development.
Collapse
Affiliation(s)
- I-Chun Tsai
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | | | | | | | |
Collapse
|
95
|
Guan J, Li H, Rogulja A, Axelrod JD, Cadigan KM. The Drosophila casein kinase Iepsilon/delta Discs overgrown promotes cell survival via activation of DIAP1 expression. Dev Biol 2007; 303:16-28. [PMID: 17134692 PMCID: PMC2892850 DOI: 10.1016/j.ydbio.2006.10.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Revised: 10/17/2006] [Accepted: 10/18/2006] [Indexed: 01/07/2023]
Abstract
The proper number of cells in developing tissues is achieved by coordinating cell division with apoptosis. In Drosophila, the adult wing is derived from wing imaginal discs, which undergo a period of growth and proliferation during larval stages without much programmed cell death. In this report, we demonstrate that the Drosophila casein kinase Iepsilon/delta, known as Discs overgrown (Dco), is required for maintaining this low level of apoptosis. Expression of dco can suppress the apoptotic activity of Head involution defective (Hid) in the developing eye. Loss of dco in the wing disc results in a dramatic reduction in expression of the caspase inhibitor DIAP1 and a concomitant activation of caspases. The regulation of DIAP1 by Dco occurs by a post-transcriptional mechanism that is independent of hid. Mutant clones of dco are considerably smaller than controls even when apoptosis is inhibited, suggesting that Dco promotes cell division/growth in addition to its role in cell survival. The dco phenotype cannot be explained by defects Wingless (Wg) signaling. We propose that Dco coordinates tissue size by stimulating cell division/growth and blocking apoptosis via activation of DIAP1 expression.
Collapse
Affiliation(s)
- Ju Guan
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Natural Science Building, Ann Arbor MI 48109-1048, USA
| | - Hui Li
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Natural Science Building, Ann Arbor MI 48109-1048, USA
| | - Ana Rogulja
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Natural Science Building, Ann Arbor MI 48109-1048, USA
| | - Jeff D. Axelrod
- Department of Pathology, Stanford University School of Medicine, Stanford CA 94305
| | - Ken M. Cadigan
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Natural Science Building, Ann Arbor MI 48109-1048, USA
| |
Collapse
|
96
|
Flajolet M, He G, Heiman M, Lin A, Nairn AC, Greengard P. Regulation of Alzheimer's disease amyloid-beta formation by casein kinase I. Proc Natl Acad Sci U S A 2007; 104:4159-64. [PMID: 17360493 PMCID: PMC1820725 DOI: 10.1073/pnas.0611236104] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Alzheimer's disease (AD) is associated with accumulation of the neurotoxic peptide amyloid-beta (Abeta), which is produced by sequential cleavage of amyloid precursor protein (APP) by the aspartyl protease beta-secretase and the presenilin-dependent protease gamma-secretase. An increase of casein kinase 1 (CK1) expression has been described in the human AD brain. We show, by using in silico analysis, that APP, beta-secretase, and gamma-secretase subunits contain, in their intracellular regions, multiple CK1 consensus phosphorylation sites, many of which are conserved among human, rat, and mouse species. Overexpression of constitutively active CK1epsilon, one of the CK1 isoforms expressed in brain, leads to an increase in Abeta peptide production. Conversely, three structurally dissimilar CK1-specific inhibitors significantly reduced endogenous Abeta peptide production. By using mammalian cells expressing the beta C-terminal fragment of APP, it was possible to demonstrate that CK1 inhibitors act at the level of gamma-secretase cleavage. Importantly, Notch cleavage was not affected. Our results indicate that CK1 represents a therapeutic target for prevention of Abeta formation in AD.
Collapse
Affiliation(s)
- Marc Flajolet
- *Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10021; and
| | - Gen He
- *Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10021; and
| | - Myriam Heiman
- *Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10021; and
| | - Angie Lin
- *Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10021; and
| | - Angus C. Nairn
- *Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10021; and
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06508
| | - Paul Greengard
- *Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10021; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
97
|
Bryja V, Schulte G, Rawal N, Grahn A, Arenas E. Wnt-5a induces Dishevelled phosphorylation and dopaminergic differentiation via a CK1-dependent mechanism. J Cell Sci 2007; 120:586-95. [PMID: 17244647 DOI: 10.1242/jcs.03368] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Previously, we have shown that Wnt-5a strongly regulates dopaminergic neuron differentiation by inducing phosphorylation of Dishevelled (Dvl). Here, we identify additional components of the Wnt-5a-Dvl pathway in dopaminergic cells. Using in vitro gain-of-function and loss-of-function approaches, we reveal that casein kinase 1 (CK1) delta and CK1epsilon are crucial for Dvl phosphorylation by non-canonical Wnts. We show that in response to Wnt-5a, CK1epsilon binds Dvl and is subsequently phosphorylated. Moreover, in response to Wnt-5a or CK1epsilon, the distribution of Dvl changed from punctate to an even appearance within the cytoplasm. The opposite effect was induced by a CK1epsilon kinase-dead mutant or by CK1 inhibitors. As expected, Wnt-5a blocked the Wnt-3a-induced activation of beta-catenin. However, both Wnt-3a and Wnt-5a activated Dvl2 by a CK1-dependent mechanism in a cooperative manner. Finally, we show that CK1 kinase activity is necessary for Wnt-5a-induced differentiation of primary dopaminergic precursors. Thus, our data identify CK1 as a component of Wnt-5a-induced signalling machinery that regulates dopaminergic differentiation, and suggest that CK1delta/epsilon-mediated phosphorylation of Dvl is a common step in both canonical and non-canonical Wnt signalling.
Collapse
Affiliation(s)
- Vítezslav Bryja
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
98
|
Kimelman D, Xu W. beta-catenin destruction complex: insights and questions from a structural perspective. Oncogene 2007; 25:7482-91. [PMID: 17143292 DOI: 10.1038/sj.onc.1210055] [Citation(s) in RCA: 501] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
At the heart of the canonical Wnt signaling pathway is the beta-catenin destruction complex, which functions in the absence of Wnt signaling to keep the cytosolic and nuclear levels of beta-catenin very low by promoting the phosphorylation and ubiquitination of beta-catenin. Structural studies, combined with other experimental approaches, have begun to provide important insights into the mechanism of the destruction complex. We suggest a working model for the destruction complex based on the existing structural and experimental data, and focus on the questions that this model and other studies have raised about the function of the complex in both the normal and Wnt-inhibited states.
Collapse
Affiliation(s)
- D Kimelman
- Department of Biochemistry, University of Washington, Seattle, WA 98195-7350, USA.
| | | |
Collapse
|
99
|
Shi CS, Huang NN, Harrison K, Han SB, Kehrl JH. The mitogen-activated protein kinase kinase kinase kinase GCKR positively regulates canonical and noncanonical Wnt signaling in B lymphocytes. Mol Cell Biol 2006; 26:6511-21. [PMID: 16914735 PMCID: PMC1592820 DOI: 10.1128/mcb.00209-06] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Wnt ligands bind receptors of the Frizzled (Fz) family to control cell fate, proliferation, and polarity. Canonical Wnt/Fz signaling stabilizes beta-catenin by inactivating GSK3beta, leading to the translocation of beta-catenin to the nucleus and the activation of Wnt target genes. Noncanonical Wnt/Fz signaling activates RhoA and Rac, and the latter triggers the activation of c-Jun N-terminal kinase (JNK). Here, we show that exposure of B-lymphocytes to Wnt3a-conditioned media activates JNK and raises cytosolic beta-catenin levels. Both the Rac guanine nucleotide exchange factor Asef and the mitogen-activated protein kinase kinase kinase kinase germinal center kinase-related enzyme (GCKR) are required for Wnt-mediated JNK activation in B cells. In addition, we show that GCKR positively affects the beta-catenin pathway in B cells. Reduction of GCKR expression inhibits Wnt3a-induced phosphorylation of GSK3beta at serine 9 and decreases the accumulation of cytosolic beta-catenin. Furthermore, Wnt signaling induces an interaction between GCKR and GSK3beta. Our findings demonstrate that GCKR facilitates both canonical and noncanonical Wnt signaling in B lymphocytes.
Collapse
Affiliation(s)
- Chong-Shan Shi
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bldg. 10, Room 11B08, 10 Center Dr. MSC 1876, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
100
|
Strutt H, Price MA, Strutt D. Planar polarity is positively regulated by casein kinase Iepsilon in Drosophila. Curr Biol 2006; 16:1329-36. [PMID: 16824921 DOI: 10.1016/j.cub.2006.04.041] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Revised: 04/07/2006] [Accepted: 04/10/2006] [Indexed: 10/24/2022]
Abstract
Members of the casein kinase I (CKI) family have been implicated in regulating canonical Wnt/Wingless (Wg) signaling by phosphorylating multiple pathway components. Overexpression of CKI in vertebrate embryos activates Wg signaling, and one target is thought to be the cytoplasmic effector Dishevelled (Dsh), which is an in vitro target of CKI phosphorylation. Phosphorylation of Dsh by CKI has also been suggested to switch its activity from noncanonical to canonical Wingless signaling. However, in vivo loss-of-function experiments have failed to identify a clear role for CKI in positive regulation of Wg signaling. By examining hypomorphic mutations of the Drosophila CKIepsilon homolog discs overgrown (dco)/double-time, we now show that it is an essential component of the noncanonical/planar cell polarity pathway. Genetic interactions indicate that dco acts positively in planar polarity signaling, demonstrating that it does not act as a switch between canonical and noncanonical pathways. Mutations in dco result in a reduced level of Dishevelled phosphorylation in vivo. Furthermore, in these mutants, Dishevelled fails to adopt its characteristic asymmetric subcellular localisation at the distal end of pupal wing cells, and the site of hair outgrowth is disrupted. Finally, we also find that dco function in polarity is partially redundant with CKIalpha.
Collapse
Affiliation(s)
- Helen Strutt
- Centre for Developmental and Biomedical Genetics, Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom
| | | | | |
Collapse
|