51
|
Xiao H, Tan L, Tan Z, Zhang Y, Chen W, Li X, Song J, Cheng L, Liu H. Structure of the siphophage neck-Tail complex suggests that conserved tail tip proteins facilitate receptor binding and tail assembly. PLoS Biol 2023; 21:e3002441. [PMID: 38096144 PMCID: PMC10721106 DOI: 10.1371/journal.pbio.3002441] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 11/20/2023] [Indexed: 12/17/2023] Open
Abstract
Siphophages have a long, flexible, and noncontractile tail that connects to the capsid through a neck. The phage tail is essential for host cell recognition and virus-host cell interactions; moreover, it serves as a channel for genome delivery during infection. However, the in situ high-resolution structure of the neck-tail complex of siphophages remains unknown. Here, we present the structure of the siphophage lambda "wild type," the most widely used, laboratory-adapted fiberless mutant. The neck-tail complex comprises a channel formed by stacked 12-fold and hexameric rings and a 3-fold symmetrical tip. The interactions among DNA and a total of 246 tail protein molecules forming the tail and neck have been characterized. Structural comparisons of the tail tips, the most diversified region across the lambda and other long-tailed phages or tail-like machines, suggest that their tail tip contains conserved domains, which facilitate tail assembly, receptor binding, cell adsorption, and DNA retaining/releasing. These domains are distributed in different tail tip proteins in different phages or tail-like machines. The side tail fibers are not required for the phage particle to orient itself vertically to the surface of the host cell during attachment.
Collapse
Affiliation(s)
- Hao Xiao
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Le Tan
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha, China
| | - Zhixue Tan
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha, China
| | - Yewei Zhang
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha, China
| | - Wenyuan Chen
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha, China
| | - Xiaowu Li
- School of Electronics and Information Engineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Jingdong Song
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lingpeng Cheng
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha, China
| | - Hongrong Liu
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha, China
| |
Collapse
|
52
|
Zhou X, Gao J, Xiao R, Qiao Y, Zhu Y, Zhang D, Zhang X, Li H, Xu J. Characterization and genomic analysis of a novel Pseudoalteromonas phage PS_L5. Mar Genomics 2023; 72:101069. [PMID: 38008529 DOI: 10.1016/j.margen.2023.101069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/08/2023] [Accepted: 09/09/2023] [Indexed: 11/28/2023]
Abstract
Pseudoalteromonas is a widely distributed bacterial genus that is associated with marine algae. However, there is still limited knowledge about their bacteriophage. In this study, we reported the isolation of a novel lytic bacteriophage that infects Pseudoalteromonas marina. Transmission electron microscopy revealed that PS_L5 had an icosahedral head of 52.6 ± 2 nm and a non-contractile tail with length of 96.5 ± 2 nm. The genome sequence of this phage was 34, 257 bp and had a GC content of 40.75%. Furthermore, this genome contained 61 predicted open reading frames (ORFs), which involved in various functions such as phage structure, packaging, DNA metabolism, host lysis and other additional functions. Additionally, the phylogenetic analysis based on major capsid protein showed that the phage PS_L5 was closely related to five other Pseudoalteromonas phages, namely PHS3, PHS21, AL, SL25 and Pq0 which also possessed the non-contractile long tail. This study provided the fundamental insights into the evolutionary dynamics of Pseudoalteromonas phages and the interaction between phage and host.
Collapse
Affiliation(s)
- Xing Zhou
- Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang 222005, PR China
| | - Jie Gao
- Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang 222005, PR China
| | - Rongda Xiao
- Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang 222005, PR China
| | - Yifan Qiao
- Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang 222005, PR China
| | - Yuang Zhu
- Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang 222005, PR China
| | - Di Zhang
- Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang 222005, PR China
| | - Xinyu Zhang
- Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang 222005, PR China
| | - Huifang Li
- Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang 222005, PR China; College of Marine Life Sciences, Ocean University of China, Qingdao, PR China; MNR Key Laboratory of Coastal Salt Marsh Ecosystems and Resources, Jiangsu Ocean University, Lianyungang 222005, PR China.
| | - Juntian Xu
- Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang 222005, PR China.
| |
Collapse
|
53
|
Hetta HF, Rashed ZI, Ramadan YN, Al-Kadmy IMS, Kassem SM, Ata HS, Nageeb WM. Phage Therapy, a Salvage Treatment for Multidrug-Resistant Bacteria Causing Infective Endocarditis. Biomedicines 2023; 11:2860. [PMID: 37893232 PMCID: PMC10604041 DOI: 10.3390/biomedicines11102860] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
Infective endocarditis (IE) is defined as an infection of the endocardium, or inner surface of the heart, most frequently affecting the heart valves or implanted cardiac devices. Despite its rarity, it has a high rate of morbidity and mortality. IE generally occurs when bacteria, fungi, or other germs from another part of the body, such as the mouth, spread through the bloodstream and attach to damaged areas in the heart. The epidemiology of IE has changed as a consequence of aging and the usage of implantable cardiac devices and heart valves. The right therapeutic routes must be assessed to lower complication and fatality rates, so this requires early clinical suspicion and a fast diagnosis. It is urgently necessary to create new and efficient medicines to combat multidrug-resistant bacterial (MDR) infections because of the increasing threat of antibiotic resistance on a worldwide scale. MDR bacteria that cause IE can be treated using phages rather than antibiotics to combat MDR bacterial strains. This review will illustrate how phage therapy began and how it is considered a powerful potential candidate for the treatment of MDR bacteria that cause IE. Furthermore, it gives a brief about all reported clinical trials that demonstrated the promising effect of phage therapy in combating resistant bacterial strains that cause IE and how it will become a hope in future medicine.
Collapse
Affiliation(s)
- Helal F. Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt;
| | - Zainab I. Rashed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt; (Z.I.R.); (Y.N.R.)
| | - Yasmin N. Ramadan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt; (Z.I.R.); (Y.N.R.)
| | - Israa M. S. Al-Kadmy
- Branch of Biotechnology, Department of Biology, College of Science, Mustansiriyah University, Baghdad P.O. Box 10244, Iraq
| | - Soheir M. Kassem
- Department of Internal Medicine and Critical Care, Faculty of Medicine, Assuit University, Assiut 71515, Egypt;
| | - Hesham S. Ata
- Department of Pathology, College of Medicine, Qassim University, Buraydah 51452, Qassim, Saudi Arabia;
| | - Wedad M. Nageeb
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt;
| |
Collapse
|
54
|
Lücking D, Mercier C, Alarcón-Schumacher T, Erdmann S. Extracellular vesicles are the main contributor to the non-viral protected extracellular sequence space. ISME COMMUNICATIONS 2023; 3:112. [PMID: 37848554 PMCID: PMC10582014 DOI: 10.1038/s43705-023-00317-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/28/2023] [Accepted: 10/05/2023] [Indexed: 10/19/2023]
Abstract
Environmental virus metagenomes, commonly referred to as "viromes", are typically generated by physically separating virus-like particles (VLPs) from the microbial fraction based on their size and mass. However, most methods used to purify VLPs, enrich extracellular vesicles (EVs) and gene transfer agents (GTAs) simultaneously. Consequently, the sequence space traditionally referred to as a "virome" contains host-associated sequences, transported via EVs or GTAs. We therefore propose to call the genetic material isolated from size-fractionated (0.22 µm) and DNase-treated samples protected environmental DNA (peDNA). This sequence space contains viral genomes, DNA transduced by viruses and DNA transported in EVs and GTAs. Since there is no genetic signature for peDNA transported in EVs, GTAs and virus particles, we rely on the successful removal of contaminating remaining cellular and free DNA when analyzing peDNA. Using marine samples collected from the North Sea, we generated a thoroughly purified peDNA dataset and developed a bioinformatic pipeline to determine the potential origin of the purified DNA. This pipeline was applied to our dataset as well as existing global marine "viromes". Through this pipeline, we identified known GTA and EV producers, as well as organisms with actively transducing proviruses as the source of the peDNA, thus confirming the reliability of our approach. Additionally, we identified novel and widespread EV producers, and found quantitative evidence suggesting that EV-mediated gene transfer plays a significant role in driving horizontal gene transfer (HGT) in the world's oceans.
Collapse
Affiliation(s)
- Dominik Lücking
- Max-Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359, Bremen, Germany
| | - Coraline Mercier
- Max-Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359, Bremen, Germany
| | | | - Susanne Erdmann
- Max-Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359, Bremen, Germany.
| |
Collapse
|
55
|
Chen T, Deng C, Wu Z, Liu T, Zhang Y, Xu X, Zhao X, Li J, Li S, Xu N, Yu K. Metagenomic analysis unveils the underexplored roles of prokaryotic viruses in a full-scale landfill leachate treatment plant. WATER RESEARCH 2023; 245:120611. [PMID: 37722141 DOI: 10.1016/j.watres.2023.120611] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/06/2023] [Accepted: 09/09/2023] [Indexed: 09/20/2023]
Abstract
Enormous viral populations have been identified in activated sludge systems, but their ecological and biochemical roles in landfill leachate treatment plants remain poorly understood. To address this knowledge gap, we conducted an in-depth analysis using 36 metagenomic datasets that we collected and sequenced during a half-year time-series sampling campaign at six sites in a full-scale landfill leachate treatment plant (LLTP), elucidating viral distribution, virus‒host dynamics, virus-encoded auxiliary metabolic genes (AMGs), and viral contributions to the spread of virulence and antibiotic resistance genes. Our findings demonstrated that viral and prokaryotic communities differed widely among different treatment units, with stability over time. LLTP viruses were linked to various prokaryotic hosts, spanning 35 bacterial phyla and one archaeal phylum, which included the core microbes involved in biological treatments, as well as some of the less well-characterized microbial dark matter phyla. By encoding 2364 auxiliary metabolic genes (AMGs), viruses harbored the potential to regulate microbial nucleotide metabolism, facilitate the biodegradation of complex organic matter, and enhance flocculation and settling in biological treatment plants. The abundance distribution of AMGs varied considerably across treatment units and showed a lifestyle-dependent pattern with temperate virus-associated AMGs exhibiting a higher average abundance in downstream biological treatment units and effluent water. Meanwhile, temperate viruses tended to carry a higher load of virulence factor genes (VFGs), antibiotic resistance genes (ARGs), and biotic and metal resistance genes (BMRGs), and engaged in more frequent gene exchanges with prokaryotes than lytic viruses, thus acting as a pivotal contributor to the dissemination of pathogenicity and resistance genes in downstream LLTP units. This study provided a comprehensive profile of viral and prokaryotic communities in the LLTP and unveiled the varying roles of different-lifestyle viruses in biochemical processes and water quality safety.
Collapse
Affiliation(s)
- Tianyi Chen
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China; Environmental Microbiome and Innovative Genomics Laboratory, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Chunfang Deng
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China; Environmental Microbiome and Innovative Genomics Laboratory, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| | - Zongzhi Wu
- Environmental Microbiome and Innovative Genomics Laboratory, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Tang Liu
- Environmental Microbiome Engineering and Innovative Genomics Laboratory, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yuanyan Zhang
- Jiangxi Academy of Eco-Environmental Sciences & Planning, Nanchang 330029, China
| | - Xuming Xu
- Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Xiaohui Zhao
- Environmental Microbiome and Innovative Genomics Laboratory, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Jiarui Li
- Environmental Microbiome and Innovative Genomics Laboratory, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Shaoyang Li
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Nan Xu
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Ke Yu
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| |
Collapse
|
56
|
Ge F, Guo R, Liang Y, Chen Y, Shao H, Sung YY, Mok WJ, Wong LL, McMinn A, Wang M. Characterization and genomic analysis of Stutzerimonas stutzeri phage vB_PstS_ZQG1, representing a novel viral genus. Virus Res 2023; 336:199226. [PMID: 37739268 PMCID: PMC10520572 DOI: 10.1016/j.virusres.2023.199226] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/11/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
Stutzerimonas stutzeri is an opportunistic pathogenic bacterium belonging to the Gammaproteobacteria, exhibiting wide distribution in the environment and playing significant ecological roles such as nitrogen fixation or pollutant degradation. Despite its ecological importance, only two S. stutzeri phages have been isolated to date. Here, a novel S. stutzeri phage, vB_PstS_ZQG1, was isolated from the surface seawater of Qingdao, China. Transmission electron microscopy analysis indicates that vB_PstS_ZQG1 has a morphology characterized by a long non-contractile tail. The genomic sequence of vB_PstS_ZQG1 contains a linear, double-strand 61,790-bp with the G+C content of 53.24% and encodes 90 putative open reading frames. Two auxiliary metabolic genes encoding TolA protein and nucleotide pyrophosphohydrolase were identified, which are likely involved in host adaptation and phage reproduction. Phylogenetic and comparative genomic analyses demonstrated that vB_PstS_ZQG1 exhibits low similarity with previously isolated phages or uncultured viruses (average nucleotide identity values range from 21.7 to 29.4), suggesting that it represents a novel viral genus by itself, here named as Fuevirus. Biogeographic analysis showed that vB_PstS_ZQG1 was only detected in epipelagic and mesopelagic zone with low abundance. In summary, our findings of the phage vB_PstS_ZQG1 will provide helpful insights for further research on the interactions between S. stutzeri phages and their hosts, and contribute to discovering unknown viral sequences in the metagenomic database.
Collapse
Affiliation(s)
- Fuyue Ge
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MoE Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Ruizhe Guo
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MoE Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Yantao Liang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MoE Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China; UMT-OUC Joint Centre for Marine Studies, Qingdao, China.
| | - Ying Chen
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MoE Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Hongbing Shao
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MoE Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China; UMT-OUC Joint Centre for Marine Studies, Qingdao, China
| | - Yeong Yik Sung
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China; Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Wen Jye Mok
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China; Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Li Lian Wong
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China; Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Andrew McMinn
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MoE Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China; Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
| | - Min Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MoE Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China; UMT-OUC Joint Centre for Marine Studies, Qingdao, China; Haide College, Ocean University of China, Qingdao, China; The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
57
|
Larsen F, Offersen SM, Li VR, Deng L, Nielsen DS, Rasmussen TS. Choice of Ultrafilter Affects Recovery Rate of Bacteriophages. Viruses 2023; 15:2051. [PMID: 37896828 PMCID: PMC10612031 DOI: 10.3390/v15102051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 09/28/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
Studies into the viral fraction of complex microbial communities, like in the mammalian gut, have recently garnered much interest. Yet there is still no standardized protocol for extracting viruses from such samples, and the protocols that exist employ procedures that skew the viral community of the sample one way or another. The first step of the extraction pipeline often consists of the basic filtering of macromolecules and bacteria, yet even this affects the viruses in a strain-specific manner. In this study, we investigate a protocol for viral extraction based on ultrafiltration and how the choice of ultrafilter might influence the extracted viral community. Clinical samples (feces, vaginal swabs, and tracheal suction samples) were spiked with a mock community of known phages (T4, c2, Φ6, Φ29, Φx174, and Φ2972), filtered, and quantified using spot and plaque assays to estimate the loss in recovery. The enveloped Φ6 phage is especially severely affected by the choice of filter, but also tailed phages such as T4 and c2 have a reduced infectivity after ultrafiltration. We conclude that the pore size of ultrafilters may affect the recovery of phages in a strain- and sample-dependent manner, suggesting the need for greater thought when selecting filters for virus extraction.
Collapse
Affiliation(s)
- Frej Larsen
- Department of Food Science, University of Copenhagen, 1958 Frederiksberg C, Denmark; (L.D.); (D.S.N.)
| | - Simone Margaard Offersen
- Section for Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark; (S.M.O.)
| | - Viktoria Rose Li
- Section for Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark; (S.M.O.)
| | - Ling Deng
- Department of Food Science, University of Copenhagen, 1958 Frederiksberg C, Denmark; (L.D.); (D.S.N.)
| | - Dennis Sandris Nielsen
- Department of Food Science, University of Copenhagen, 1958 Frederiksberg C, Denmark; (L.D.); (D.S.N.)
| | - Torben Sølbeck Rasmussen
- Department of Food Science, University of Copenhagen, 1958 Frederiksberg C, Denmark; (L.D.); (D.S.N.)
| |
Collapse
|
58
|
Wu LY, Piedade GJ, Moore RM, Harrison AO, Martins AM, Bidle KD, Polson SW, Sakowski EG, Nissimov JI, Dums JT, Ferrell BD, Wommack KE. Ubiquitous, B 12-dependent virioplankton utilizing ribonucleotide-triphosphate reductase demonstrate interseasonal dynamics and associate with a diverse range of bacterial hosts in the pelagic ocean. ISME COMMUNICATIONS 2023; 3:108. [PMID: 37789093 PMCID: PMC10547690 DOI: 10.1038/s43705-023-00306-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 10/05/2023]
Abstract
Through infection and lysis of their coexisting bacterial hosts, viruses impact the biogeochemical cycles sustaining globally significant pelagic oceanic ecosystems. Currently, little is known of the ecological interactions between lytic viruses and their bacterial hosts underlying these biogeochemical impacts at ecosystem scales. This study focused on populations of lytic viruses carrying the B12-dependent Class II monomeric ribonucleotide reductase (RNR) gene, ribonucleotide-triphosphate reductase (Class II RTPR), documenting seasonal changes in pelagic virioplankton and bacterioplankton using amplicon sequences of Class II RTPR and the 16S rRNA gene, respectively. Amplicon sequence libraries were analyzed using compositional data analysis tools that account for the compositional nature of these data. Both virio- and bacterioplankton communities responded to environmental changes typically seen across seasonal cycles as well as shorter term upwelling-downwelling events. Defining Class II RTPR-carrying viral populations according to major phylogenetic clades proved a more robust means of exploring virioplankton ecology than operational taxonomic units defined by percent sequence homology. Virioplankton Class II RTPR populations showed positive associations with a broad phylogenetic diversity of bacterioplankton including dominant taxa within pelagic oceanic ecosystems such as Prochlorococcus and SAR11. Temporal changes in Class II RTPR virioplankton, occurring as both free viruses and within infected cells, indicated possible viral-host pairs undergoing sustained infection and lysis cycles throughout the seasonal study. Phylogenetic relationships inferred from Class II RTPR sequences mirrored ecological patterns in virio- and bacterioplankton populations demonstrating possible genome to phenome associations for an essential viral replication gene.
Collapse
Affiliation(s)
- Ling-Yi Wu
- Theoretical Biology and Bioinformatics, Science4Life, Utrecht University, Padualaan 8, Utrecht, 3584 CH, the Netherlands
| | - Gonçalo J Piedade
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, 1797 SZ, t'Horntje, The Netherlands
- Department of Oceanography and Fisheries and Ocean Sciences Institute-OKEANOS, University of the Azores, 9901-862 Horta, Faial, Azores, Portugal
| | - Ryan M Moore
- Delaware Biotechnology Institute, University of Delaware, 590 Avenue 1743, Newark, DE, 19713, USA
| | - Amelia O Harrison
- Delaware Biotechnology Institute, University of Delaware, 590 Avenue 1743, Newark, DE, 19713, USA
| | - Ana M Martins
- Department of Oceanography and Fisheries and Ocean Sciences Institute-OKEANOS, University of the Azores, 9901-862 Horta, Faial, Azores, Portugal
| | - Kay D Bidle
- Department of Marine and Coastal Sciences, Rutgers University, 71 Dudley Rd., New Brunswick, NJ, 08901, USA
| | - Shawn W Polson
- Delaware Biotechnology Institute, University of Delaware, 590 Avenue 1743, Newark, DE, 19713, USA
| | - Eric G Sakowski
- Department of Earth Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Jozef I Nissimov
- Department of Biology, University of Waterloo, 200 University Ave. West, Waterloo, ON, N2L 3G1, Canada
| | - Jacob T Dums
- Delaware Biotechnology Institute, University of Delaware, 590 Avenue 1743, Newark, DE, 19713, USA
- Biotechnology Program, North Carolina State University, 2800 Faucette Dr, Raleigh, NC, 27695, USA
| | - Barbra D Ferrell
- Delaware Biotechnology Institute, University of Delaware, 590 Avenue 1743, Newark, DE, 19713, USA
| | - K Eric Wommack
- Delaware Biotechnology Institute, University of Delaware, 590 Avenue 1743, Newark, DE, 19713, USA.
| |
Collapse
|
59
|
Bulannga RB, Schmidt S. Two Predators, One Prey - the Interaction Between Bacteriophage, Bacterivorous Ciliates, and Escherichia coli. MICROBIAL ECOLOGY 2023; 86:1620-1631. [PMID: 36723682 DOI: 10.1007/s00248-022-02163-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
Bacterivorous ciliates and lytic bacteriophages are two major predators in aquatic environments, competing for the same type of prey. This study investigated the possible interaction of these different microorganisms and their influence on the activity of each other. Therefore, two bacterivorous ciliates, Paramecium sp. RB1 and Tetrahymena sp. RB2, were used as representative ciliates; a T4-like Escherichia coli targeting lytic bacteriophage as a model virus; and E. coli ATCC 25922 as a susceptible bacterial host and prey. The growth of the two ciliates with E. coli ATCC 25922 as prey was affected by the presence of phage particles. The grazing activity of the two ciliates resulted in more than a 99% reduction of the phage titer and bacterial cell numbers. However, viable phage particles were recovered from individual washed cells of the two ciliates after membrane filtration. Therefore, ciliates such as Paramecium sp. RB1 and Tetrahymena sp. RB2 can remove bacteriophages present in natural and artificial waters by ingesting the viral particles and eliminating bacterial host cells required for viral replication. The ingestion of phage particles may marginally contribute to the nutrient supply of the ciliates. However, the interaction of phage particles with ciliate cells may contribute to the transmission of bacteriophages in aquatic environments.
Collapse
Affiliation(s)
- Rendani Bridghette Bulannga
- Discipline of Microbiology, School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Pietermaritzburg, 3209, South Africa
| | - Stefan Schmidt
- Discipline of Microbiology, School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Pietermaritzburg, 3209, South Africa.
| |
Collapse
|
60
|
Kelly A, Went SC, Mariano G, Shaw LP, Picton DM, Duffner SJ, Coates I, Herdman-Grant R, Gordeeva J, Drobiazko A, Isaev A, Lee YJ, Luyten Y, Morgan RD, Weigele P, Severinov K, Wenner N, Hinton JCD, Blower TR. Diverse Durham collection phages demonstrate complex BREX defense responses. Appl Environ Microbiol 2023; 89:e0062323. [PMID: 37668405 PMCID: PMC10537673 DOI: 10.1128/aem.00623-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/10/2023] [Indexed: 09/06/2023] Open
Abstract
Bacteriophages (phages) outnumber bacteria ten-to-one and cause infections at a rate of 1025 per second. The ability of phages to reduce bacterial populations makes them attractive alternative antibacterials for use in combating the rise in antimicrobial resistance. This effort may be hindered due to bacterial defenses such as Bacteriophage Exclusion (BREX) that have arisen from the constant evolutionary battle between bacteria and phages. For phages to be widely accepted as therapeutics in Western medicine, more must be understood about bacteria-phage interactions and the outcomes of bacterial phage defense. Here, we present the annotated genomes of 12 novel bacteriophage species isolated from water sources in Durham, UK, during undergraduate practical classes. The collection includes diverse species from across known phylogenetic groups. Comparative analyses of two novel phages from the collection suggest they may be founding members of a new genus. Using this Durham phage collection, we determined that particular BREX defense systems were likely to confer a varied degree of resistance against an invading phage. We concluded that the number of BREX target motifs encoded in the phage genome was not proportional to the degree of susceptibility. IMPORTANCE Bacteriophages have long been the source of tools for biotechnology that are in everyday use in molecular biology research laboratories worldwide. Phages make attractive new targets for the development of novel antimicrobials. While the number of phage genome depositions has increased in recent years, the expected bacteriophage diversity remains underrepresented. Here we demonstrate how undergraduates can contribute to the identification of novel phages and that a single City in England can provide ample phage diversity and the opportunity to find novel technologies. Moreover, we demonstrate that the interactions and intricacies of the interplay between bacterial phage defense systems such as Bacteriophage Exclusion (BREX) and phages are more complex than originally thought. Further work will be required in the field before the dynamic interactions between phages and bacterial defense systems are fully understood and integrated with novel phage therapies.
Collapse
Affiliation(s)
- Abigail Kelly
- Department of Biosciences, Durham University, Durham, UK
| | - Sam C. Went
- Department of Biosciences, Durham University, Durham, UK
| | - Giuseppina Mariano
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Liam P. Shaw
- Department of Biosciences, Durham University, Durham, UK
- Department of Biology, University of Oxford, Oxford, UK
| | | | | | - Isabel Coates
- Department of Biosciences, Durham University, Durham, UK
| | | | - Julia Gordeeva
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Alena Drobiazko
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Artem Isaev
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Yan-Jiun Lee
- New England Biolabs, Ipswich, Massachusetts, USA
| | | | | | | | | | - Nicolas Wenner
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Jay C. D. Hinton
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Tim R. Blower
- Department of Biosciences, Durham University, Durham, UK
| |
Collapse
|
61
|
Sabatino R, Sbaffi T, Sivalingam P, Corno G, Fontaneto D, Di Cesare A. Bacteriophages limitedly contribute to the antimicrobial resistome of microbial communities in wastewater treatment plants. Microbiol Spectr 2023; 11:e0110123. [PMID: 37724865 PMCID: PMC10580818 DOI: 10.1128/spectrum.01101-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/26/2023] [Indexed: 09/21/2023] Open
Abstract
Bacteriophages are known as players in the transmission of antimicrobial resistance genes (ARGs) by horizontal gene transfer. In this study, we characterized the bacteriophage community and the associated ARGs to estimate the potential for phages to spread ARGs in aquatic ecosystems analyzing the intra- and extracellular DNA isolated from two wastewater treatment plants (WWTPs) by shotgun metagenomics. We compared the phage antimicrobial resistome with the bacterial resistome and investigated the effect of the final disinfection treatment on the phage community and its resistome. Phage community was mainly composed by Siphoviridae and other members of the order Caudovirales. The final disinfection only marginally affected the composition of the phage community, and it was not possible to measure its effect on the antimicrobial resistome. Indeed, only three phage metagenome-assembled genomes (pMAGs) annotated as Siphoviridae, Padoviridae, and Myoviridae were positive for putative ARGs. Among the detected ARGs, i.e., dfrB6, rpoB mutants, and EF-Tu mutants, the first one was not annotated in the bacterial MAGs. Overall, these results demonstrate that bacteriophages limitedly contribute to the whole antimicrobial resistome. However, in order to obtain a comprehensive understanding of the antimicrobial resistome within a microbial community, the role of bacteriophages needs to be investigated. IMPORTANCE WWTPs are considered hotspots for the spread of ARGs by horizontal gene transfer. In this study, we evaluated the phage composition and the associated antimicrobial resistome by shotgun metagenomics of samples collected before and after the final disinfection treatment. Only a few bacteriophages carried ARGs. However, since one of the detected genes was not found in the bacterial metagenome-assembled genomes, it is necessary to investigate the phage community in order to gain a comprehensive overview of the antimicrobial resistome. This investigation could help assess the potential threats to human health.
Collapse
Affiliation(s)
- Raffaella Sabatino
- Molecular Ecology Group (MEG), National Research Council of Italy – Water Research Institute (CNR-IRSA), Verbania, Italy
| | - Tomasa Sbaffi
- Molecular Ecology Group (MEG), National Research Council of Italy – Water Research Institute (CNR-IRSA), Verbania, Italy
| | - Periyasamy Sivalingam
- Molecular Ecology Group (MEG), National Research Council of Italy – Water Research Institute (CNR-IRSA), Verbania, Italy
| | - Gianluca Corno
- Molecular Ecology Group (MEG), National Research Council of Italy – Water Research Institute (CNR-IRSA), Verbania, Italy
| | - Diego Fontaneto
- Molecular Ecology Group (MEG), National Research Council of Italy – Water Research Institute (CNR-IRSA), Verbania, Italy
| | - Andrea Di Cesare
- Molecular Ecology Group (MEG), National Research Council of Italy – Water Research Institute (CNR-IRSA), Verbania, Italy
| |
Collapse
|
62
|
Chen Y, Zhang T, Lai Q, Zhang M, Yu M, Zeng R, Jin M. Characterization and Comparative Genomic Analysis of a Deep-Sea Bacillus Phage Reveal a Novel Genus. Viruses 2023; 15:1919. [PMID: 37766325 PMCID: PMC10535572 DOI: 10.3390/v15091919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
As the most abundant biological entities, viruses are the major players in marine ecosystems. However, our knowledge on virus diversity and virus-host interactions in the deep sea remains very limited. In this study, vB_BteM-A9Y, a novel bacteriophage infecting Bacillus tequilensis, was isolated from deep-sea sediments in the South China Sea. vB_BteM-A9Y has a hexametric head and a long, complex contractile tail, which are typical features of myophages. vB_BteM-A9Y initiated host lysis at 60 min post infection with a burst size of 75 PFU/cell. The phage genome comprises 38,634 base pairs and encodes 54 predicted open reading frames (ORFs), of which 27 ORFs can be functionally annotated by homology analysis. Interestingly, abundant ORFs involved in DNA damage repair were identified in the phage genome, suggesting that vB_BteM-A9Y encodes multiple pathways for DNA damage repair, which may help to maintain the stability of the host/phage genome. A BLASTn search of the whole genome sequence of vB_BteM-A9Y against the GenBank revealed no existing homolog. Consistently, a phylogenomic tree and proteome-based phylogenetic tree analysis showed that vB_BteM-A9Y formed a unique branch. Further comparative analysis of genomic nucleotide similarity and ORF homology of vB_BteM-A9Y with its mostly related phages showed that the intergenomic similarity between vB_BteM-A9Y and these phages was 0-33.2%. Collectively, based on the comprehensive morphological, phylogenetic, and comparative genomic analysis, we propose that vB_BteM-A9Y belongs to a novel genus under Caudoviricetes. Therefore, our study will increase our knowledge on deep-sea virus diversity and virus-host interactions, as well as expanding our knowledge on phage taxonomy.
Collapse
Affiliation(s)
- Yuan Chen
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China; (Y.C.); (Q.L.); (M.Z.); (M.Y.)
| | - Tianyou Zhang
- Fujian Provincial Center for Disease Control and Prevention, Fuzhou 350000, China;
| | - Qiliang Lai
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China; (Y.C.); (Q.L.); (M.Z.); (M.Y.)
| | - Menghui Zhang
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China; (Y.C.); (Q.L.); (M.Z.); (M.Y.)
| | - Meishun Yu
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China; (Y.C.); (Q.L.); (M.Z.); (M.Y.)
| | - Runying Zeng
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China; (Y.C.); (Q.L.); (M.Z.); (M.Y.)
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519000, China
| | - Min Jin
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China; (Y.C.); (Q.L.); (M.Z.); (M.Y.)
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519000, China
| |
Collapse
|
63
|
Lin Y, Liu Y, Zhang Y, Yuan W, Wang D, Zhu W. Biological and genomic characterization of a polyvalent bacteriophage (S19cd) strongly inhibiting Salmonella enterica serovar Choleraesuis. Vet Microbiol 2023; 284:109822. [PMID: 37437367 DOI: 10.1016/j.vetmic.2023.109822] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/08/2023] [Accepted: 06/26/2023] [Indexed: 07/14/2023]
Abstract
Bacteriophages are a promising alternative for the control of pathogenic bacteria. In this study, we isolated a virulent bacteriophage, S19cd, from pig gut that could infect both a non-pathogenic bacteria Escherichia coli 44 (EC44) and two pathogenic bacterial strains (ATCC 13312 (SC13312) and CICC 21493 (SC21493)) of Salmonella enterica serovar Choleraesuis (SC). S19cd exhibited strong lytic ability in both SC13312 and SC21493 with an optimal multiplicity of infection (MOI) of 10-6 and 10-5, respectively, and inhibited their growth at an MOI of 10-7 within 24 h. Mice pre-treated with S19cd exhibited protection against the SC13312 challenge. Moreover, S19cd has good heat resistance (80 ℃) and pH tolerance (pH 3-12). Genome analysis revealed that S19cd belongs to the Felixounavirus genus and does not contain any virulence or drug-resistance-related genes. Additionally, S19cd encodes an adenine-specific methyltransferase that has no similarity to methyltransferases from other Felixounavirus phages and shares limited similarity with other methyltransferases in the NCBI protein database. Metagenomic analysis of S19cd genomes from 500 pigs revealed that S19cd-like phages may be widespread in Chinese pig gut. In conclusion, S19cd can be a potential phage therapy targeting SC infections.
Collapse
Affiliation(s)
- Yan Lin
- National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yankun Liu
- National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuyu Zhang
- National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenyuan Yuan
- National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Dongyang Wang
- National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Weiyun Zhu
- National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
64
|
Yang M, Du S, Zhang Z, Xia Q, Liu H, Qin F, Wu Z, Ying H, Wu Y, Shao J, Zhao Y. Genomic diversity and biogeographic distributions of a novel lineage of bacteriophages that infect marine OM43 bacteria. Microbiol Spectr 2023; 11:e0494222. [PMID: 37607063 PMCID: PMC10580990 DOI: 10.1128/spectrum.04942-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 07/07/2023] [Indexed: 08/24/2023] Open
Abstract
The marine methylotrophic OM43 clade is considered an important bacterial group in coastal microbial communities. OM43 bacteria, which are closely related to phytoplankton blooms, have small cell sizes and streamlined genomes. Bacteriophages profoundly shape the evolutionary trajectories, population dynamics, and physiology of microbes. The prevalence and diversity of several phages that infect OM43 bacteria have been reported. In this study, we isolated and sequenced two novel OM43 phages, MEP401 and MEP402. These phages share 90% of their open reading frames (ORFs) and are distinct from other known phage isolates. Furthermore, a total of 99 metagenomic viral genomes (MVGs) closely related to MEP401 and MEP402 were identified. Phylogenomic analyses suggest that MEP401, MEP402, and these identified MVGs belong to a novel subfamily in the family Zobellviridae and that they can be separated into two groups. Group I MVGs show conserved whole-genome synteny with MEP401, while group II MVGs possess the MEP401-type DNA replication module and a distinct type of morphogenesis and packaging module, suggesting that genomic recombination occurred between phages. Most members in these two groups were predicted to infect OM43 bacteria. Metagenomic read-mapping analysis revealed that the phages in these two groups are globally ubiquitous and display distinct biogeographic distributions, with some phages being predominant in cold regions, some exclusively detected in estuarine stations, and others displaying wider distributions. This study expands our knowledge of the diversity and ecology of a novel phage lineage that infects OM43 bacteria by describing their genomic diversity and global distribution patterns. IMPORTANCE OM43 phages that infect marine OM43 bacteria are important for host mortality, community structure, and physiological functions. In this study, two OM43 phages were isolated and characterized. Metagenomic viral genome (MVG) retrieval using these two OM43 phages as baits led to the identification of two phage groups of a new subfamily in the family Zobellviridae. We found that group I MVGs share similar genomic content and arrangement with MEP401 and MEP402, whereas group II MVGs only possess the MEP401-type DNA replication module. Metagenomic mapping analysis suggests that members in these two groups are globally ubiquitous with distinct distribution patterns. This study provides important insights into the genomic diversity and biogeography of the OM43 phages in the global ocean.
Collapse
Affiliation(s)
- Mingyu Yang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sen Du
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zefeng Zhang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qian Xia
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - He Liu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Fang Qin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zuqing Wu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hanqi Ying
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yin Wu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiabing Shao
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yanlin Zhao
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
65
|
Wang Y, Ferrinho S, Connaris H, Goss RJM. The Impact of Viral Infection on the Chemistries of the Earth's Most Abundant Photosynthesizes: Metabolically Talented Aquatic Cyanobacteria. Biomolecules 2023; 13:1218. [PMID: 37627283 PMCID: PMC10452541 DOI: 10.3390/biom13081218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Cyanobacteria are the most abundant photosynthesizers on earth, and as such, they play a central role in marine metabolite generation, ocean nutrient cycling, and the control of planetary oxygen generation. Cyanobacteriophage infection exerts control on all of these critical processes of the planet, with the phage-ported homologs of genes linked to photosynthesis, catabolism, and secondary metabolism (marine metabolite generation). Here, we analyze the 153 fully sequenced cyanophages from the National Center for Biotechnology Information (NCBI) database and the 45 auxiliary metabolic genes (AMGs) that they deliver into their hosts. Most of these AMGs are homologs of those found within cyanobacteria and play a key role in cyanobacterial metabolism-encoding proteins involved in photosynthesis, central carbon metabolism, phosphate metabolism, methylation, and cellular regulation. A greater understanding of cyanobacteriophage infection will pave the way to a better understanding of carbon fixation and nutrient cycling, as well as provide new tools for synthetic biology and alternative approaches for the use of cyanobacteria in biotechnology and sustainable manufacturing.
Collapse
Affiliation(s)
- Yunpeng Wang
- School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9AJ, UK; (S.F.); (H.C.)
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews KY16 9SX, UK
| | - Scarlet Ferrinho
- School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9AJ, UK; (S.F.); (H.C.)
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews KY16 9SX, UK
| | - Helen Connaris
- School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9AJ, UK; (S.F.); (H.C.)
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews KY16 9SX, UK
| | - Rebecca J. M. Goss
- School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9AJ, UK; (S.F.); (H.C.)
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews KY16 9SX, UK
| |
Collapse
|
66
|
Du X, Li X, Cheng K, Zhao W, Cai Z, Chen G, Zhou J. Virome reveals effect of Ulva prolifera green tide on the structural and functional profiles of virus communities in coastal environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163609. [PMID: 37100126 DOI: 10.1016/j.scitotenv.2023.163609] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/15/2023] [Accepted: 04/16/2023] [Indexed: 06/03/2023]
Abstract
Viruses are widely distributed in marine environments, where they influence the transformation of matter and energy by modulating host metabolism. Driven by eutrophication, green tides are a rising concern in Chinese coastal areas, and are a serious ecological disaster that negatively affects coastal ecosystems and disrupts biogeochemical cycles. Although the composition of bacterial communities in green algae has been investigated, the diversity and roles of viruses in green algal blooms are largely unexplored. Therefore, the diversity, abundance, lifestyle, and metabolic potential of viruses in a natural bloom in Qingdao coastal area were investigated at three different stages (pre-bloom, during-bloom, and post-bloom) by metagenomics analysis. The dsDNA viruses, Siphoviridae, Myoviridae, Podoviridae, and Phycodnaviridae, were found to dominate the viral community. The viral dynamics exhibited distinct temporal patterns across different stages. The composition of the viral community varied during the bloom, especially in populations with low abundance. The lytic cycle was most predominant, and the abundance of lytic viruses increased slightly in the post-bloom stage. The diversity and richness of the viral communities varied distinctly during the green tide, and the post-bloom stage favored viral diversity and richness. The total organic carbon, dissolved oxygen, NO3-, NO2-, PO43-, chlorophyll-a contents, and temperature variably co-influenced the viral communities. The primary hosts included bacteria, algae, and other microplankton. Network analysis revealed the closer links between the viral communities as the bloom progressed. Functional prediction revealed that the viruses possibly influenced the biodegradation of microbial hydrocarbons and carbon by metabolic augmentation via auxiliary metabolic genes. The composition, structure, metabolic potential, and interaction taxonomy of the viromes differed significantly across the different stages of the green tide. The study demonstrated that the ecological event shaped the viral communities during algal bloom, and the viral communities played a significant role in phycospheric microecology.
Collapse
Affiliation(s)
- Xiaopeng Du
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xinyang Li
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Keke Cheng
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Wei Zhao
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Zhonghua Cai
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Guofu Chen
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, Shandong Province, PR China
| | - Jin Zhou
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China.
| |
Collapse
|
67
|
DiPietro AG, Bryant SA, Zanger MM, Williamson KE. Understanding Viral Impacts in Soil Microbial Ecology Through the Persistence and Decay of Infectious Bacteriophages. Curr Microbiol 2023; 80:276. [PMID: 37432469 DOI: 10.1007/s00284-023-03386-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/25/2023] [Indexed: 07/12/2023]
Abstract
Marine bacteriophages have been well characterized in terms of decay rates, population dynamics in relation to their hosts, and their impacts on biogeochemical cycles in the global ocean. Knowledge in soil bacteriophage ecology lags considerably behind, with few studies documenting population dynamics with hosts and even fewer reporting phage decay rates. By using sterile soil or aquatic microcosms inoculated with single bacteriophage isolates, phage decay rates (loss of infectivity over time) were determined, independent of host interactions, for 5 model phage isolates. Decay rates varied by phage from 0.11-2.07% h-1 in soils to 0.07-0.28% h-1 in aquatic microcosms. For phages incubated in both soil and aquatic microcosms, the observed decay rate was consistently higher in soil microcosms than in aquatic microcosms by at least a factor of two. However, when decay rates for soil phage isolates in the present study were compared to those reported for marine and freshwater phage isolates from previous studies, the decay constants for soil phages were, on average, 4 times lower than those for aquatic phages. Slower rates of phage decay in soils indicate a lower turnover rate, which may have subsequent and potentially far-reaching impacts on virus-mediated mortality and bacterial activity. The wide range of decay rates observed in the present study and the lack of information on this critical aspect of virus-host dynamics in soil emphasizes the need for continued research in this field.
Collapse
Affiliation(s)
- Alessandra G DiPietro
- Biology Department, The College of William and Mary, 3037 Integrated Science Center, Williamsburg, VA, 23185, USA
| | - Shawn A Bryant
- Biology Department, The College of William and Mary, 3037 Integrated Science Center, Williamsburg, VA, 23185, USA
| | - Matthew M Zanger
- Biology Department, The College of William and Mary, 3037 Integrated Science Center, Williamsburg, VA, 23185, USA
| | - Kurt E Williamson
- Biology Department, The College of William and Mary, 3037 Integrated Science Center, Williamsburg, VA, 23185, USA.
| |
Collapse
|
68
|
Stante M, Weiland-Bräuer N, Repnik U, Werner A, Bramkamp M, Chibani CM, Schmitz RA. Four Novel Caudoviricetes Bacteriophages Isolated from Baltic Sea Water Infect Colonizers of Aurelia aurita. Viruses 2023; 15:1525. [PMID: 37515211 PMCID: PMC10383413 DOI: 10.3390/v15071525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
The moon jellyfish Aurelia aurita is associated with a highly diverse microbiota changing with provenance, tissue, and life stage. While the crucial relevance of bacteria to host fitness is well known, bacteriophages have often been neglected. Here, we aimed to isolate virulent phages targeting bacteria that are part of the A. aurita-associated microbiota. Four phages (Staphylococcus phage BSwM KMM1, Citrobacter phages BSwM KMM2-BSwM KMM4) were isolated from the Baltic Sea water column and characterized. Phages KMM2/3/4 infected representatives of Citrobacter, Shigella, and Escherichia (Enterobacteriaceae), whereas KMM1 infected Gram-positive Staphylococcus spp. All phages showed an up to 99% adsorption to host cells within 5 min, short latent periods (around 30 min), large burst sizes (mean of 128 pfu/cell), and high efficiency of plating (EOP > 0.5), demonstrating decent virulence, efficiency, and infectivity. Transmission electron microscopy and viral genome analysis revealed that all phages are novel species and belong to the class of Caudoviricetes harboring a tail and linear double-stranded DNA (formerly known as Siphovirus-like (KMM3) and Myovirus-like (KMM1/2/4) bacteriophages) with genome sizes between 50 and 138 kbp. In the future, these isolates will allow manipulation of the A. aurita-associated microbiota and provide new insights into phage impact on the multicellular host.
Collapse
Affiliation(s)
- Melissa Stante
- Institute for General Microbiology, Christian Albrechts University, Am Botanischen Garten 1-9, D-24118 Kiel, Germany; (M.S.); (N.W.-B.); (A.W.); (M.B.); (C.M.C.)
| | - Nancy Weiland-Bräuer
- Institute for General Microbiology, Christian Albrechts University, Am Botanischen Garten 1-9, D-24118 Kiel, Germany; (M.S.); (N.W.-B.); (A.W.); (M.B.); (C.M.C.)
| | - Urska Repnik
- Central Microscopy Facility, Christian Albrechts University, Am Botanischen Garten 1-9, D-24118 Kiel, Germany;
| | - Almut Werner
- Institute for General Microbiology, Christian Albrechts University, Am Botanischen Garten 1-9, D-24118 Kiel, Germany; (M.S.); (N.W.-B.); (A.W.); (M.B.); (C.M.C.)
| | - Marc Bramkamp
- Institute for General Microbiology, Christian Albrechts University, Am Botanischen Garten 1-9, D-24118 Kiel, Germany; (M.S.); (N.W.-B.); (A.W.); (M.B.); (C.M.C.)
- Central Microscopy Facility, Christian Albrechts University, Am Botanischen Garten 1-9, D-24118 Kiel, Germany;
| | - Cynthia M. Chibani
- Institute for General Microbiology, Christian Albrechts University, Am Botanischen Garten 1-9, D-24118 Kiel, Germany; (M.S.); (N.W.-B.); (A.W.); (M.B.); (C.M.C.)
| | - Ruth A. Schmitz
- Institute for General Microbiology, Christian Albrechts University, Am Botanischen Garten 1-9, D-24118 Kiel, Germany; (M.S.); (N.W.-B.); (A.W.); (M.B.); (C.M.C.)
| |
Collapse
|
69
|
Cisneros-Martínez AM, Eguiarte LE, Souza V. Metagenomic comparisons reveal a highly diverse and unique viral community in a seasonally fluctuating hypersaline microbial mat. Microb Genom 2023; 9:mgen001063. [PMID: 37459167 PMCID: PMC10438804 DOI: 10.1099/mgen.0.001063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 06/15/2023] [Indexed: 07/20/2023] Open
Abstract
In spring 2016, a shallow hypersaline pond (50×25 m) was found in the Cuatro Cienegas Basin (CCB). This pond, known as Archaean Domes (AD) because of its elastic microbial mats that form dome-shaped structures due to the production of reducing gases reminiscent of the Archaean eon, such as methane and hydrogen sulfide, harbour a highly diverse microbial community, rich in halophilic and methanogenic archaea. AD is a seasonally fluctuating hypersaline site, with salinity ranging from low hypersaline (5.3%) during the wet season to high hypersaline (saturation) during the dry season. To characterize the viral community and to test whether it resembles those of other hypersaline sites (whose diversity is conditioned by salinity), or if it is similar to other CCB sites (with which it shares a common geological history), we generated 12 metagenomes from different seasons and depths over a 4 year period and compared them to 35 metagenomes from varied environments. Haloarchaeaviruses were detected, but were never dominant (average of 15.37 % of the total viral species), and the viral community structure and diversity were not affected by environmental fluctuations. In fact, unlike other viral communities at hypersaline sites, AD remained more diverse than other environments regardless of season. β-Diversity analyses show that AD is closely related to other CCB sites, although it has a unique viral community that forms a cluster of its own. The similarity of two surface samples to the 30 and 50 cm depth samples, as well as the observed increase in diversity at greater depths, supports the hypothesis that the diversity of CCB has evolved as a result of a long time environmental stability of a deep aquifer that functions as a 'seed bank' of great microbial diversity that is transported to the surface by sporadic groundwater upwelling events.
Collapse
Affiliation(s)
- Alejandro Miguel Cisneros-Martínez
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
- Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Luis E. Eguiarte
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Valeria Souza
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
- Centro de Estudios del Cuaternario de Fuego-Patagonia y Antártica (CEQUA), Punta Arenas, Chile
| |
Collapse
|
70
|
Cheng Z, Li X, Palomo A, Yang Q, Han L, Wu Z, Li Z, Zhang M, Chen L, Zhao B, Yu K, Zhang C, Hou S, Zheng Y, Xia Y. Virus impacted community adaptation in oligotrophic groundwater environment revealed by Hi-C coupled metagenomic and viromic study. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131944. [PMID: 37390685 DOI: 10.1016/j.jhazmat.2023.131944] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 07/02/2023]
Abstract
Viruses play a crucial role in microbial mortality, diversity and biogeochemical cycles. Groundwater is the largest global freshwater and one of the most oligotrophic aquatic systems on Earth, but how microbial and viral communities are shaped in this special habitat is largely unexplored. In this study, we collected groundwater samples from 23 to 60 m aquifers at Yinchuan Plain, China. In total, 1920 non-reductant viral contigs were retrieved from metagenomes and viromes constructed by Illumina and Nanopore hybrid sequencing. Only 3% of them could be clustered with known viruses, most of which were Caudoviricetes. Coupling 1.2 Tb Hi-C sequencing with CRISPR matching and homology search, we connected 469 viruses with their hosts while some viral clusters presented a broad-host-range trait. Meanwhile, a large proportion of biosynthesis related auxiliary metabolism genes were identified. Those characteristics might benefit viruses for a better survival in this special oligotrophic environment. Additionally, the groundwater virome showed genomic features distinct from those of the open ocean and wastewater treatment facilities in GC distribution and unannotated gene compositions. This paper expands the current knowledge of the global viromic records and serves as a foundation for a more thorough understanding of viruses in groundwater.
Collapse
Affiliation(s)
- Zhanwen Cheng
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiang Li
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Alejandro Palomo
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qing Yang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Long Han
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ziqi Wu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zengyi Li
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Miao Zhang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Liming Chen
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bixi Zhao
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Kaiqiang Yu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chuanlun Zhang
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Department of Ocean Science & Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 510000, China
| | - Shengwei Hou
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Department of Ocean Science & Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 510000, China
| | - Yan Zheng
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Department of Ocean Science & Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yu Xia
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
71
|
Huang Y, Sun H, Wei S, Cai L, Liu L, Jiang Y, Xin J, Chen Z, Que Y, Kong Z, Li T, Yu H, Zhang J, Gu Y, Zheng Q, Li S, Zhang R, Xia N. Structure and proposed DNA delivery mechanism of a marine roseophage. Nat Commun 2023; 14:3609. [PMID: 37330604 PMCID: PMC10276861 DOI: 10.1038/s41467-023-39220-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 06/02/2023] [Indexed: 06/19/2023] Open
Abstract
Tailed bacteriophages (order, Caudovirales) account for the majority of all phages. However, the long flexible tail of siphophages hinders comprehensive investigation of the mechanism of viral gene delivery. Here, we report the atomic capsid and in-situ structures of the tail machine of the marine siphophage, vB_DshS-R4C (R4C), which infects Roseobacter. The R4C virion, comprising 12 distinct structural protein components, has a unique five-fold vertex of the icosahedral capsid that allows genome delivery. The specific position and interaction pattern of the tail tube proteins determine the atypical long rigid tail of R4C, and further provide negative charge distribution within the tail tube. A ratchet mechanism assists in DNA transmission, which is initiated by an absorption device that structurally resembles the phage-like particle, RcGTA. Overall, these results provide in-depth knowledge into the intact structure and underlining DNA delivery mechanism for the ecologically important siphophages.
Collapse
Affiliation(s)
- Yang Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Hui Sun
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Shuzhen Wei
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Lanlan Cai
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Liqin Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Yanan Jiang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Jiabao Xin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Zhenqin Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Yuqiong Que
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Zhibo Kong
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Tingting Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Hai Yu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Ying Gu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Qingbing Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China.
| | - Shaowei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China.
| | - Rui Zhang
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China.
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China.
- Research Unit of Frontier Technology of Structural Vaccinology, Chinese Academy of Medical Sciences, Xiamen, 361102, China.
| |
Collapse
|
72
|
Kronheim S, Solomon E, Ho L, Glossop M, Davidson AR, Maxwell KL. Complete genomes and comparative analyses of Streptomyces phages that influence secondary metabolism and sporulation. Sci Rep 2023; 13:9820. [PMID: 37330527 PMCID: PMC10276819 DOI: 10.1038/s41598-023-36938-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/13/2023] [Indexed: 06/19/2023] Open
Abstract
Bacteria in the genus Streptomyces are found ubiquitously in nature and are known for the number and diversity of specialized metabolites they produce, as well as their complex developmental lifecycle. Studies of the viruses that prey on Streptomyces, known as phages, have aided the development of tools for genetic manipulation of these bacteria, as well as contributing to a deeper understanding of Streptomyces and their behaviours in the environment. Here, we present the genomic and biological characterization of twelve Streptomyces phages. Genome analyses reveal that these phages are closely related genetically, while experimental approaches show that they have broad overlapping host ranges, infect early in the Streptomyces lifecycle, and induce secondary metabolite production and sporulation in some Streptomyces species. This work expands the group of characterized Streptomyces phages and improves our understanding of Streptomyces phage-host dynamics.
Collapse
Affiliation(s)
- Sarah Kronheim
- Department of Biochemistry, University of Toronto, 661 University Avenue, Suite 1600, Toronto, ON, M5G 1M1, Canada
| | - Ethan Solomon
- Department of Biochemistry, University of Toronto, 661 University Avenue, Suite 1600, Toronto, ON, M5G 1M1, Canada
| | - Louis Ho
- Department of Biochemistry, University of Toronto, 661 University Avenue, Suite 1600, Toronto, ON, M5G 1M1, Canada
| | - Michelle Glossop
- Department of Biochemistry, University of Toronto, 661 University Avenue, Suite 1600, Toronto, ON, M5G 1M1, Canada
| | - Alan R Davidson
- Department of Biochemistry, University of Toronto, 661 University Avenue, Suite 1600, Toronto, ON, M5G 1M1, Canada
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Suite 1600, Toronto, ON, M5G 1M1, Canada
| | - Karen L Maxwell
- Department of Biochemistry, University of Toronto, 661 University Avenue, Suite 1600, Toronto, ON, M5G 1M1, Canada.
| |
Collapse
|
73
|
DeLong JP, Van Etten JL, Dunigan DD. Lessons from Chloroviruses: the Complex and Diverse Roles of Viruses in Food Webs. J Virol 2023; 97:e0027523. [PMID: 37133447 PMCID: PMC10231191 DOI: 10.1128/jvi.00275-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023] Open
Abstract
Viruses can have large effects on the ecological communities in which they occur. Much of this impact comes from the mortality of host cells, which simultaneously alters microbial community composition and causes the release of matter that can be used by other organisms. However, recent studies indicate that viruses may be even more deeply integrated into the functioning of ecological communities than their effect on nutrient cycling suggests. In particular, chloroviruses, which infect chlorella-like green algae that typically occur as endosymbionts, participate in three types of interactions with other species. Chlororviruses (i) can lure ciliates from a distance, using them as a vector; (ii) depend on predators for access to their hosts; and (iii) get consumed as a food source by, at least, a variety of protists. Therefore, chloroviruses both depend on and influence the spatial structures of communities as well as the flows of energy through those communities, driven by predator-prey interactions. The emergence of these interactions are an eco-evolutionary puzzle, given the interdependence of these species and the many costs and benefits that these interactions generate.
Collapse
Affiliation(s)
- John P. DeLong
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - James L. Van Etten
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln Nebraska, USA
| | - David D. Dunigan
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln Nebraska, USA
| |
Collapse
|
74
|
Jung SW, Kim KE, Kim HJ, Lee TK. Metavirome Profiling and Dynamics of the DNA Viral Community in Seawater in Chuuk State, Federated States of Micronesia. Viruses 2023; 15:1293. [PMID: 37376592 DOI: 10.3390/v15061293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Despite their abundance and ecological importance, little is known about the diversity of marine viruses, in part because most cannot be cultured in the laboratory. Here, we used high-throughput viral metagenomics of uncultivated viruses to investigate the dynamics of DNA viruses in tropical seawater sampled from Chuuk State, Federated States of Micronesia, in March, June, and December 2014. Among the identified viruses, 71-79% were bacteriophages belonging to the families Myoviridae, Siphoviridae, and Podoviridae (Caudoviriales), listed in order of abundance at all sampling times. Although the measured environmental factors (temperature, salinity, and pH) remained unchanged in the seawater over time, viral dynamics changed. The proportion of cyanophages (34.7%) was highest in June, whereas the proportion of mimiviruses, phycodnaviruses, and other nucleo-cytoplasmic large DNA viruses (NCLDVs) was higher in March and December. Although host species were not analysed, the dramatic viral community change observed in June was likely due to changes in the abundance of cyanophage-infected cyanobacteria, whereas that in NCLDVs was likely due to the abundance of potential eukaryote-infected hosts. These results serve as a basis for comparative analyses of other marine viral communities, and guide policy-making when considering marine life care in Chuuk State.
Collapse
Affiliation(s)
- Seung Won Jung
- Library of Marine Samples, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea
- Department of Ocean Science, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Kang Eun Kim
- Library of Marine Samples, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea
- Department of Ocean Science, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Hyun-Jung Kim
- Library of Marine Samples, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea
| | - Taek-Kyun Lee
- Department of Ocean Science, University of Science and Technology, Daejeon 34113, Republic of Korea
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea
| |
Collapse
|
75
|
Kopylov AI, Zabotkina EA, Sazhin AF, Romanova N, Belyaev N, Drozdova A. Virioplankton and virus-induced mortality of prokaryotes in the Kara Sea (Arctic) in summer. PeerJ 2023; 11:e15457. [PMID: 37250716 PMCID: PMC10215763 DOI: 10.7717/peerj.15457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 05/03/2023] [Indexed: 05/31/2023] Open
Abstract
Among the Arctic seas, the largest volume of river runoff (~45% of the total river-water inflow into the Arctic Ocean) enters the Siberian Kara Sea. The viral communities of the Kara Sea are important for the functioning of the marine ecosystem. Studies of virus-prokaryote interactions on the Kara Sea shelf have been conducted only in spring and autumn. Here, we investigated the abundance of free viruses, viruses attached to prokaryotes, and pico-sized detrital particles; the morphology (shape and size) of the viruses, viral infection and virus-mediated mortality of prokaryotes in early summer, i.e., during a seasonal ice melting period and maximum inflow of river-water volumes with high concentrations of dissolved and suspended organic carbon. Seawater samples for microbial analyses were collected across the Kara Sea shelf zone on board the Norilskiy Nickel as a research platform from June 29 to July 15, 2018. Abundances of prokaryotes (range (0.6-25.3) × 105 cells mL-1) and free viruses (range (10-117) × 105 viruses mL-1) were correlated (r = 0.63, p = 0.005) with an average virus: prokaryote ratio of 23.9 ± 5.3. The abundance of free viruses and viral-mediated mortality of prokaryotes were significantly higher in early summer than in early spring and autumn. Free viruses with a capsid diameter of 16-304 nm were recorded in the examined water samples. Waters in the Kara Sea shelf contained high concentrations of suspended organic particles 0.25-4.0 µm in size (range (0.6-25.3) × 105 particles mL-1). The proportions of free viruses, viruses attached to prokaryotes, and viruses attached to pico-sized detrital particles were 89.8 ± 6.0%, 2.2 ± 0.6% and 8.0 ± 1.3%, respectively, of the total virioplankton abundance (on average (61.5 ± 6.2) × 105 viruses mL-1). Viruses smaller than 60 nm clearly dominated at all studied sites. The majority of free viruses were not tailed. We estimated that an average of 1.4% (range 0.4-3.5%) of the prokaryote community was visibly infected by viruses, suggesting that a significant proportion of prokaryotic secondary production, 11.4% on average (range 4.0-34.0%), was lost due to viral lysis. There was a negative correlation between the abundance of pico-sized detrital particles and the frequency of visibly infected prokaryotic cells: r = -0.67, p = 0.0008.
Collapse
Affiliation(s)
| | | | | | - Nadezda Romanova
- Shirshov Institute of Oceanology of Russian Academy of Sciences, Moscow, Russia
| | - Nikolay Belyaev
- Shirshov Institute of Oceanology of Russian Academy of Sciences, Moscow, Russia
| | - Anastasia Drozdova
- Shirshov Institute of Oceanology of Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
76
|
Deng X, Yuan J, Chen L, Chen H, Wei C, Nielsen PH, Wuertz S, Qiu G. CRISPR-Cas phage defense systems and prophages in Candidatus Accumulibacter. WATER RESEARCH 2023; 235:119906. [PMID: 37004306 DOI: 10.1016/j.watres.2023.119906] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/27/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
Candidatus Accumulibacter plays a major role in enhanced biological phosphorus removal (EBPR) from wastewater. Although bacteriophages have been shown to represent fatal threats to Ca. Accumulibacter organisms and thus interfere with the stability of the EBPR process, little is known about the ability of different Ca. Accumulibacter strains to resist phage infections. We conducted a systematic analysis of the occurrence and characteristics of clustered regularly interspaced short palindromic repeats and associated proteins (CRISPR-Cas) systems and prophages in Ca. Accumulibacter lineage members (43 in total, including 10 newly recovered genomes). Results indicate that 28 Ca. Accumulibacter genomes encode CRISPR-Cas systems. They were likely acquired via horizontal gene transfer, conveying a distinct adaptivity to phage predation to different Ca. Accumulibacter members. Major differences in the number of spacers show the unique phage resistance of these members. A comparison of the spacers in closely related Ca. Accumulibacter members from distinct geographical locations indicates that habitat isolation may have resulted in the acquisition of resistance to different phages by different Ca. Accumulibacter. Long-term operation of three laboratory-scale EBPR bioreactors revealed high relative abundances of Ca. Accumulibacter with CRISPSR-Cas systems. Their specific resistance to phages in these reactors was indicated by spacer analysis. Metatranscriptomic analyses showed the activation of the CRISPR-Cas system under both anaerobic and aerobic conditions. Additionally, 133 prophage regions were identified in 43 Ca. Accumulibacter genomes. Twenty-seven of them (in 19 genomes) were potentially active. Major differences in the occurrence of CRISPR-Cas systems and prophages in Ca. Accumulibacter will lead to distinct responses to phage predation. This study represents the first systematic analysis of CRISPR-Cas systems and prophages in the Ca. Accumulibacter lineage, providing new perspectives on the potential impacts of phages on Ca. Accumulibacter and EBPR systems.
Collapse
Affiliation(s)
- Xuhan Deng
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jing Yuan
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Liping Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Hang Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China
| | - Per H Nielsen
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; Centre for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg DK-9220, Denmark
| | - Stefan Wuertz
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| | - Guanglei Qiu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, China.
| |
Collapse
|
77
|
Tang X, Zhong L, Tang L, Fan C, Zhang B, Wang M, Dong H, Zhou C, Rensing C, Zhou S, Zeng G. Lysogenic bacteriophages encoding arsenic resistance determinants promote bacterial community adaptation to arsenic toxicity. THE ISME JOURNAL 2023:10.1038/s41396-023-01425-w. [PMID: 37161002 DOI: 10.1038/s41396-023-01425-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/11/2023]
Abstract
Emerging evidence from genomics gives us a glimpse into the potential contribution of lysogenic bacteriophages (phages) to the environmental adaptability of their hosts. However, it is challenging to quantify this kind of contribution due to the lack of appropriate genetic markers and the associated controllable environmental factors. Here, based on the unique transformable nature of arsenic (the controllable environmental factor), a series of flooding microcosms was established to investigate the contribution of arsM-bearing lysogenic phages to their hosts' adaptation to trivalent arsenic [As(III)] toxicity, where arsM is the marker gene associated with microbial As(III) detoxification. In the 15-day flooding period, the concentration of As(III) was significantly increased, and this elevated As(III) toxicity visibly inhibited the bacterial population, but the latter quickly adapted to As(III) toxicity. During the flooding period, some lysogenic phages re-infected new hosts after an early burst, while others persistently followed the productive cycle (i.e., lytic cycle). The unique phage-host interplay contributed to the rapid spread of arsM among soil microbiota, enabling the quick recovery of the bacterial community. Moreover, the higher abundance of arsM imparted a greater arsenic methylation capability to soil microbiota. Collectively, this study provides experimental evidence for lysogenic phages assisting their hosts in adapting to an extreme environment, which highlights the ecological perspectives on lysogenic phage-host mutualism.
Collapse
Affiliation(s)
- Xiang Tang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, P. R. China
| | - Linrui Zhong
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Lin Tang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Changzheng Fan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China.
| | - Baowei Zhang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Mier Wang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Haoran Dong
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Chengyun Zhou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Christopher Rensing
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, P. R. China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, P. R. China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China.
| |
Collapse
|
78
|
Annenkov VV, Pal'shin VA, Annenkova NV, Zelinskiy SN, Danilovtseva EN. Uptake and Effects of Nanoplastics on the Dinoflagellate Gymnodinium corollarium. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:1124-1133. [PMID: 36920033 DOI: 10.1002/etc.5604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/03/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Plastic nanoparticles (NPs) are the final state of plastic degradation in the environment before they disintegrate into low-molecular-weight organic compounds. Unicellular organisms are highly sensitive to the toxic effects of nanoplastics, because they are often capable of phagotrophy but are unable to consume a foreign material such as synthetic plastic. We studied the effect of polystyrene, poly(vinyl chloride), poly(methyl acrylate), and poly(methyl methacrylate) NPs on the photosynthetic dinoflagellate Gymnodinium corollarium Sundström, Kremp et Daugbjerg. Fluorescent tagged particles were used to visualize plastic capture by dinoflagellate cells. We found that these dinoflagellates are capable of phagotrophic nutrition and thus should be regarded as mixotrophic species. This causes their susceptibility to the toxic effects of plastic NPs. Living cells ingest plastic NPs and accumulate in the cytoplasm as micrometer-level aggregates, probably in food vacuoles. The action of nanoplastics leads to a dose-dependent increase in the level of reactive oxygen species in dinoflagellate cells, indicating plastic degradation in the cells. The introduction of a methyl group into the main chain in the α-position in the case of poly(methyl methacrylate) causes a drastic reduction in toxicity. We expect that such NPs can be a tool for testing unicellular organisms in terms of heterotrophic feeding ability. We suggest a dual role of dinoflagellates in the ecological fate of plastic waste: the involvement of nanoplastics in the food chain and its biochemical destruction. Environ Toxicol Chem 2023;42:1124-1133. © 2023 SETAC.
Collapse
Affiliation(s)
- Vadim V Annenkov
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| | - Viktor A Pal'shin
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| | - Nataliia V Annenkova
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| | - Stanislav N Zelinskiy
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| | - Elena N Danilovtseva
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| |
Collapse
|
79
|
Abstract
Soil viruses are highly abundant and have important roles in the regulation of host dynamics and soil ecology. Climate change is resulting in unprecedented changes to soil ecosystems and the life forms that reside there, including viruses. In this Review, we explore our current understanding of soil viral diversity and ecology, and we discuss how climate change (such as extended and extreme drought events or more flooding and altered precipitation patterns) is influencing soil viruses. Finally, we provide our perspective on future research needs to better understand how climate change will impact soil viral ecology.
Collapse
Affiliation(s)
- Janet K Jansson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Ruonan Wu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| |
Collapse
|
80
|
Gilbert NE, LeCleir GR, Pound HL, Strzepek RF, Ellwood MJ, Twining BS, Roux S, Boyd PW, Wilhelm SW. Giant Virus Infection Signatures Are Modulated by Euphotic Zone Depth Strata and Iron Regimes of the Subantarctic Southern Ocean. mSystems 2023; 8:e0126022. [PMID: 36794943 PMCID: PMC10134803 DOI: 10.1128/msystems.01260-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/24/2023] [Indexed: 02/17/2023] Open
Abstract
Viruses can alter the abundance, evolution, and metabolism of microorganisms in the ocean, playing a key role in water column biogeochemistry and global carbon cycles. Large efforts to measure the contribution of eukaryotic microorganisms (e.g., protists) to the marine food web have been made, yet the in situ activities of the ecologically relevant viruses that infect these organisms are not well characterized. Viruses within the phylum Nucleocytoviricota ("giant viruses") are known to infect a diverse range of ecologically relevant marine protists, yet how these viruses are influenced by environmental conditions remains under-characterized. By employing metatranscriptomic analyses of in situ microbial communities along a temporal and depth-resolved gradient, we describe the diversity of giant viruses at the Southern Ocean Time Series (SOTS), a site within the subpolar Southern Ocean. Using a phylogeny-guided taxonomic assessment of detected giant virus genomes and metagenome-assembled genomes, we observed depth-dependent structuring of divergent giant virus families mirroring dynamic physicochemical gradients in the stratified euphotic zone. Analyses of transcribed metabolic genes from giant viruses suggest viral metabolic reprogramming of hosts from the surface to a 200-m depth. Lastly, using on-deck incubations reflecting a gradient of iron availability, we show that modulating iron regimes influences the activity of giant viruses in the field. Specifically, we show enhanced infection signatures of giant viruses under both iron-replete and iron-limited conditions. Collectively, these results expand our understanding of how the water column's vertical biogeography and chemical surroundings affect an important group of viruses within the Southern Ocean. IMPORTANCE The biology and ecology of marine microbial eukaryotes is known to be constrained by oceanic conditions. In contrast, how viruses that infect this important group of organisms respond to environmental change is less well known, despite viruses being recognized as key microbial community members. Here, we address this gap in our understanding by characterizing the diversity and activity of "giant" viruses within an important region in the sub-Antarctic Southern Ocean. Giant viruses are double-stranded DNA (dsDNA) viruses of the phylum Nucleocytoviricota and are known to infect a wide range of eukaryotic hosts. By employing a metatranscriptomics approach using both in situ samples and microcosm manipulations, we illuminated both the vertical biogeography and how changing iron availability affects this primarily uncultivated group of protist-infecting viruses. These results serve as a foundation for our understanding of how the open ocean water column structures the viral community, which can be used to guide models of the viral impact on marine and global biogeochemical cycling.
Collapse
Affiliation(s)
- Naomi E. Gilbert
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Gary R. LeCleir
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Helena L. Pound
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Robert F. Strzepek
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Michael J. Ellwood
- Research School of Earth Sciences, Australian National University, Canberra, Australian Capital Territory, Australia
| | | | - Simon Roux
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Philip W. Boyd
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Steven W. Wilhelm
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
81
|
Gutnik D, Evseev P, Miroshnikov K, Shneider M. Using AlphaFold Predictions in Viral Research. Curr Issues Mol Biol 2023; 45:3705-3732. [PMID: 37185764 PMCID: PMC10136805 DOI: 10.3390/cimb45040240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/17/2023] Open
Abstract
Elucidation of the tertiary structure of proteins is an important task for biological and medical studies. AlphaFold, a modern deep-learning algorithm, enables the prediction of protein structure to a high level of accuracy. It has been applied in numerous studies in various areas of biology and medicine. Viruses are biological entities infecting eukaryotic and procaryotic organisms. They can pose a danger for humans and economically significant animals and plants, but they can also be useful for biological control, suppressing populations of pests and pathogens. AlphaFold can be used for studies of molecular mechanisms of viral infection to facilitate several activities, including drug design. Computational prediction and analysis of the structure of bacteriophage receptor-binding proteins can contribute to more efficient phage therapy. In addition, AlphaFold predictions can be used for the discovery of enzymes of bacteriophage origin that are able to degrade the cell wall of bacterial pathogens. The use of AlphaFold can assist fundamental viral research, including evolutionary studies. The ongoing development and improvement of AlphaFold can ensure that its contribution to the study of viral proteins will be significant in the future.
Collapse
Affiliation(s)
- Daria Gutnik
- Limnological Institute of the Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya Str., 664033 Irkutsk, Russia
| | - Peter Evseev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10 Miklukho-Maklaya Str., GSP-7, 117997 Moscow, Russia
| | - Konstantin Miroshnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10 Miklukho-Maklaya Str., GSP-7, 117997 Moscow, Russia
| | - Mikhail Shneider
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10 Miklukho-Maklaya Str., GSP-7, 117997 Moscow, Russia
| |
Collapse
|
82
|
Luo L, Ma X, Guo R, Jiang T, Wang T, Shao H, He H, Wang H, Liang Y, McMinn A, Guo C, Wang M. Characterization and genomic analysis of a novel Synechococcus phage S-H9-2 belonging to Bristolvirus genus isolated from the Yellow Sea. Virus Res 2023; 328:199072. [PMID: 36781075 DOI: 10.1016/j.virusres.2023.199072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023]
Abstract
Cyanophages are known to influence the population dynamics and community structure of cyanobacteria and thus play an important role in biogeochemical cycles in aquatic ecosystems. In this study, a novel Synechococcus phage S-H9-2 infecting Synechococcus sp. WH 8102 was isolated from the coastal water of the Yellow Sea. Synechococcus phage S-H9-2 contains a 187,320 bp genome of double-stranded DNA with a G + C content of 40.3%, 202 potential open reading frames (ORFs), and 15 tRNAs. Phylogenetic analysis and nucleotide-based intergenomic similarity suggest that Synechococcus phage S-H9-2 belongs to the Bristolvirus genus under the family Kyanoviridae. Homologs of the S-H9-2 open reading frame can be found in a variety of marine environments, as shown by the results of mapping the genome sequence of S-H9-2 to the Global Ocean Viromes 2.0 dataset. The presence of auxiliary metabolic genes (AMGs) related to photosynthesis, carbon metabolism, and phosphorus assimilation, as well as phylogenetic relationships based on complete genome sequences, reflect the mechanism of phage-host interaction and host-specific strategies for adaptation to environmental conditions. This study enriches the current genomic database of cyanophage and contributed to our understanding of the virus-host interactions and their adaption to the environment.
Collapse
Affiliation(s)
- Lin Luo
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Xiaohong Ma
- Department of Pediatrics, Qingdao Municipal Hospital, Qingdao266011, China
| | - Ruizhe Guo
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Tong Jiang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Tiancong Wang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Hongbing Shao
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China; UMT-OUC Joint Centre for Marine Studies, Qingdao 266003, China
| | - Hui He
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China; UMT-OUC Joint Centre for Marine Studies, Qingdao 266003, China
| | - Hualong Wang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China; UMT-OUC Joint Centre for Marine Studies, Qingdao 266003, China
| | - Yantao Liang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China; UMT-OUC Joint Centre for Marine Studies, Qingdao 266003, China
| | - Andrew McMinn
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS 7001, SA
| | - Cui Guo
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China; UMT-OUC Joint Centre for Marine Studies, Qingdao 266003, China.
| | - Min Wang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China; UMT-OUC Joint Centre for Marine Studies, Qingdao 266003, China; The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
| |
Collapse
|
83
|
Sharma A, Gupta AK, Devi B. Current trends in management of bacterial pathogens infecting plants. Antonie Van Leeuwenhoek 2023; 116:303-326. [PMID: 36683073 DOI: 10.1007/s10482-023-01809-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/08/2023] [Indexed: 01/24/2023]
Abstract
Plants are continuously challenged by different pathogenic microbes that reduce the quality and quantity of produce and therefore pose a serious threat to food security. Among them bacterial pathogens are known to cause disease outbreaks with devastating economic losses in temperate, tropical and subtropical regions throughout the world. Bacteria are structurally simple prokaryotic microorganisms and are diverse from a metabolic standpoint. Bacterial infection process mainly involves successful attachment or penetration by using extracellular enzymes, type secretion systems, toxins, growth regulators and by exploiting different molecules that modulate plant defence resulting in successful colonization. Theses bacterial pathogens are extremely difficult to control as they develop resistance to antibiotics. Therefore, attempts are made to search for innovative methods of disease management by the targeting bacterial virulence and manipulating the genes in host plants by exploiting genome editing methods. Here, we review the recent developments in bacterial disease management including the bioactive antimicrobial compounds, bacteriophage therapy, quorum-quenching mediated control, nanoparticles and CRISPR/Cas based genome editing techniques for bacterial disease management. Future research should focus on implementation of smart delivery systems and consumer acceptance of these innovative methods for sustainable disease management.
Collapse
Affiliation(s)
- Aditi Sharma
- College of Horticulture and Forestry, Thunag- Mandi, Dr. Y. S. Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, 173 230, India.
| | - A K Gupta
- Department of Plant Pathology, Dr. Y.S. Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, 173 230, India
| | - Banita Devi
- Department of Plant Pathology, Dr. Y.S. Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, 173 230, India
| |
Collapse
|
84
|
Zhou Q, Li D, Lin W, Pan L, Qian M, Wang F, Cai R, Qu C, Tong Y. Genomic Analysis of a New Freshwater Cyanophage Lbo240-yong1 Suggests a New Taxonomic Family of Bacteriophages. Viruses 2023; 15:v15040831. [PMID: 37112811 PMCID: PMC10140849 DOI: 10.3390/v15040831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 04/29/2023] Open
Abstract
A worldwide ecological issue, cyanobacterial blooms in marine and freshwater have caused enormous losses in both the economy and the environment. Virulent cyanophages-specifically, infecting and lysing cyanobacteria-are key ecological factors involved in limiting the overall extent of the population development of cyanobacteria. Over the past three decades, reports have mainly focused on marine Prochlorococcus and Synechococcus cyanophages, while information on freshwater cyanophages remained largely unknown. In this study, a novel freshwater cyanophage, named Lbo240-yong1, was isolated via the double-layer agar plate method using Leptolyngbya boryana FACHB-240 as a host. Transmission electron microscopy observation illustrated the icosahedral head (50 ± 5 nm in diameter) and short tail (20 ± 5 nm in length) of Lbo240-yong1. Experimental infection against 37 cyanobacterial strains revealed that host-strain-specific Lbo240-yong1 could only lyse FACHB-240. The complete genome of Lbo240-yong1 is a double-stranded DNA of 39,740 bp with a G+C content of 51.99%, and it harbors 44 predicted open reading frames (ORFs). A Lbo240-yong1 ORF shared the highest identity with a gene of a filamentous cyanobacterium, hinting at a gene exchange between the cyanophage and cyanobacteria. A BLASTn search illustrated that Lbo240-yong1 had the highest sequence similarity with the Phormidium cyanophage Pf-WMP4 (89.67% identity, 84% query coverage). In the proteomic tree based on genome-wide sequence similarities, Lbo240-yong1, three Phormidium cyanophages (Pf-WMP4, Pf-WMP3, and PP), one Anabaena phage (A-4L), and one unclassified Arthronema cyanophage (Aa-TR020) formed a monophyletic group that was more deeply diverging than several other families. Pf-WMP4 is the only member of the independent genus Wumpquatrovirus that belongs to the Caudovircetes class. Pf-WMP3 and PP formed the independent genus Wumptrevirus. Anabaena phage A-4L is the only member of the independent Kozyakovvirus genus. The six cyanopodoviruses share similar gene arrangements. Eight core genes were found in them. We propose, here, to set up a new taxonomic family comprising the six freshwater cyanopodoviruses infecting filamentous cyanobacteria. This study enriched the field's knowledge of freshwater cyanophages.
Collapse
Affiliation(s)
- Qin Zhou
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Dengfeng Li
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Wei Lin
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Linting Pan
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Minhua Qian
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Fei Wang
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Ruqian Cai
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Chenxin Qu
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
85
|
Zhao Y, Zhao Y, Zheng S, Zhao L, Zhang W, Xiao T, Grégori G. Enhanced resolution of marine viruses with violet side scatter. Cytometry A 2023; 103:260-268. [PMID: 35929601 DOI: 10.1002/cyto.a.24674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 04/06/2022] [Accepted: 07/13/2022] [Indexed: 11/10/2022]
Abstract
Marine viruses make up an essential compartment of the marine ecosystem. They are the most abundant organisms and represent one of the biggest sources of unknown biodiversity. Viruses also have an important impact on bacterial and algal mortality in the ocean, and as such have a major influence on microbial diversity and biogeochemical cycling. However, little is known about the abundance and distribution patterns of viruses across the oceans and seas. Over the last 20 years, flow cytometry has been the technique of choice to detect and count the viral particles in natural samples. Nevertheless, due to their small size, the detection of marine viruses is still extremely challenging. In this article we describe how a new generation of flow cytometer which uses the side scatter (SSC) of violet photons from a 405 nm laser beam helps to improve the resolution for detecting marine viruses. To the best of our knowledge, this is the first report where virioplankton has been detected in aquatic samples using flow cytometry with a 405 nm violet SSC instead of a 488 nm blue SSC.
Collapse
Affiliation(s)
- Yuan Zhao
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, People's Republic of China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, People's Republic of China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, People's Republic of China
| | - Yanchu Zhao
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, People's Republic of China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Shan Zheng
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, People's Republic of China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, People's Republic of China
- Jiaozhou Bay Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, People's Republic of China
| | - Li Zhao
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, People's Republic of China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, People's Republic of China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, People's Republic of China
| | - Wuchang Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, People's Republic of China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, People's Republic of China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, People's Republic of China
| | - Tian Xiao
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, People's Republic of China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, People's Republic of China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, People's Republic of China
| | - Gérald Grégori
- Aix-Marseille University, Toulon University, CNRS, IRD, Mediterranean Institute of Oceanography UM110, Marseille, France
| |
Collapse
|
86
|
Dvoretsky VG, Venger MP, Vashchenko AV, Vodopianova VV, Pastukhov IA, Maksimovskaya TM. Marine Plankton during the Polar Night: Environmental Predictors of Spatial Variability. BIOLOGY 2023; 12:368. [PMID: 36979060 PMCID: PMC10044718 DOI: 10.3390/biology12030368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023]
Abstract
We studied the spatial patterns of the planktonic ecosystems at two Arctic sites strongly affected by Atlantic Inflow (FS, the Fram Strait; and BS, the Barents Sea). A high degree of similarity in the bacterial abundance (mean: 3.1 × 105 cells mL-1 in FS vs. 3.5 × 105 cells mL-1 in BS) was found, while other plankton characteristics were different. Bacterial biomass reached a maximum in BS (3.2-7.9 mg C m-3), while viral abundances tended to be higher in FS (2.0-5.7 × 106 particles mL-1). Larger bacterial cells were found in BS, suggesting the presence of different bacterial populations at both locations. The virus-to-bacteria ratio was significantly higher in FS than in BS (13.5 vs. 4.7). Chlorophyll a concentration was extremely low (<0.25 mg m-3). The highest zooplankton abundance was in the surface layer (919 individuals m-3 in FS vs. 602 ind. m-3 in BS). Zooplankton biomass strongly varied (1-39 mg C m-3), with the maximum in BS. High proportions of boreal taxa in the total zooplankton abundance indicate the Atlantification of pelagic ecosystems in the Arctic. Plankton indicators are correlated with temperature, salinity, and sampling depth. Strong intercorrelations were found between major plankton groups, suggesting tight links in the studied plankton ecosystems.
Collapse
Affiliation(s)
- Vladimir G. Dvoretsky
- Murmansk Marine Biological Institute of the Russian Academy of Sciences (MMBI RAS), 183010 Murmansk, Russia
| | | | | | | | | | | |
Collapse
|
87
|
Wang C, Bai J, Chen X, Song J, Zhang Y, Wang H, Suo H. Gut microbiome-based strategies for host health and disease. Crit Rev Food Sci Nutr 2023; 64:6834-6849. [PMID: 36803092 DOI: 10.1080/10408398.2023.2176464] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Host health and disease are influenced by changes in the abundance and structure of intestinal flora. Current strategies are focused on regulating the structure of intestinal flora to ensure host health by alleviating disease. However, these strategies are limited by multiple factors, such as host genotype, physiology (microbiome, immunity, and gender), intervention, and diet. Accordingly, we reviewed the prospects and limitations of all strategies regulating the structure and abundance of microflora, including probiotics, prebiotics, diet, fecal microbiota transplantation, antibiotics, and phages. Some new technologies that can improve these strategies are also introduced. Compared with other strategies, diets and prebiotics are associated with reduced risk and high security. Besides, phages have the potential for application in the targeted regulation of intestinal microbiota due to their high specificity. Notably, the variability in individual microflora and their metabolic response to different interventions should be considered. Future studies should use artificial intelligence combined with multi-omics to investigate the host genome and physiology based on factors, such as blood type, dietary habits, and exercise, in order to develop individualized intervention strategies to improve host health.
Collapse
Affiliation(s)
- Chen Wang
- College of Food Science, Southwest University, Chongqing, China
| | - Junying Bai
- Citrus Research Institute, National Citrus Engineering Research Center, Southwest University, Chongqing, China
| | - Xiaoyong Chen
- College of Food Science, Southwest University, Chongqing, China
| | - Jiajia Song
- College of Food Science, Southwest University, Chongqing, China
| | - Yu Zhang
- College of Food Science, Southwest University, Chongqing, China
| | - Hongwei Wang
- College of Food Science, Southwest University, Chongqing, China
| | - Huayi Suo
- College of Food Science, Southwest University, Chongqing, China
| |
Collapse
|
88
|
Langlois V, Girard C, Vincent WF, Culley AI. A Tale of Two Seasons: Distinct Seasonal Viral Communities in a Thermokarst Lake. Microorganisms 2023; 11:microorganisms11020428. [PMID: 36838393 PMCID: PMC9964402 DOI: 10.3390/microorganisms11020428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/03/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Thermokarst lakes are important features of subarctic landscapes and are a substantial source of greenhouse gases, although the extent of gas produced varies seasonally. Microbial communities are responsible for the production of methane and CO2 but the "top down" forces that influence microbial dynamics (i.e., grazers and viruses) and how they vary temporally within these lakes are still poorly understood. The aim of this study was to examine viral diversity over time to elucidate the seasonal structure of the viral communities in thermokarst lakes. We produced virus-enriched metagenomes from a subarctic peatland thermokarst lake in the summer and winter over three years. The vast majority of vOTUs assigned to viral families belonged to Caudovirales (Caudoviricetes), notably the morphological groups myovirus, siphovirus and podovirus. We identified two distinct communities: a dynamic, seasonal community in the oxygenated surface layer during the summer and a stable community found in the anoxic water layer at the bottom of the lake in summer and throughout much of the water column in winter. Comparison with other permafrost and northern lake metagenomes highlighted the distinct composition of viral communities in this permafrost thaw lake ecosystem.
Collapse
Affiliation(s)
- Valérie Langlois
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, Québec, QC G1V 0A6, Canada
- Centre D’études Nordiques (CEN), Université Laval, Québec, QC G1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6, Canada
- Takuvik International Research Laboratory, Université Laval, Québec, QC G1V 0A6, Canada
| | - Catherine Girard
- Centre D’études Nordiques (CEN), Université Laval, Québec, QC G1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6, Canada
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC G7H 2B1, Canada
| | - Warwick F. Vincent
- Centre D’études Nordiques (CEN), Université Laval, Québec, QC G1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6, Canada
- Takuvik International Research Laboratory, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Biologie, Université Laval, Québec, QC G1V 0A6, Canada
| | - Alexander I. Culley
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, Québec, QC G1V 0A6, Canada
- Centre D’études Nordiques (CEN), Université Laval, Québec, QC G1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6, Canada
- Takuvik International Research Laboratory, Université Laval, Québec, QC G1V 0A6, Canada
- Correspondence:
| |
Collapse
|
89
|
Joo H, Wu SM, Soni I, Wang-Crocker C, Matern T, Beck JP, Loc-Carrillo C. Phage and Antibiotic Combinations Reduce Staphylococcus aureus in Static and Dynamic Biofilms Grown on an Implant Material. Viruses 2023; 15:v15020460. [PMID: 36851674 PMCID: PMC9963128 DOI: 10.3390/v15020460] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023] Open
Abstract
Staphylococcus aureus causes the majority of implant-related infections. These infections present as biofilms, in which bacteria adhere to the surface of foreign materials and form robust communities that are resilient to the human immune system and antibiotic drugs. The heavy use of broad-spectrum antibiotics against these pathogens disturbs the host's microbiome and contributes to the growing problem of antibiotic-resistant infections. The use of bacteriophages as antibacterial agents is a potential alternative therapy. In this study, bioluminescent strains of S. aureus were grown to form 48-h biofilms on polyether ether ketone (PEEK), a material used to manufacture orthopaedic implants, in either static or dynamic growth conditions. Biofilms were treated with vancomycin, staphylococcal phage, or a combination of the two. We showed that vancomycin and staph phages were able to independently reduce the total bacterial load. Most phage-antibiotic combinations produced greater log reductions in surviving bacteria compared to single-agent treatments, suggesting antimicrobial synergism. In addition to demonstrating the efficacy of combining vancomycin and staph phage, our results demonstrate the importance of growth conditions in phage-antibiotic combination studies. Dynamic biofilms were found to have a substantial impact on apparent treatment efficacy, as they were more resilient to combination treatments than static biofilms.
Collapse
Affiliation(s)
- Hyonoo Joo
- Micro-Phage Laboratory, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84132, USA
- Department of Veterans Affairs, Salt Lake City Health Care System, Salt Lake City, UT 84148, USA
| | - Sijia M. Wu
- Department of Veterans Affairs, Salt Lake City Health Care System, Salt Lake City, UT 84148, USA
- Department of Orthopaedics, University of Utah, Salt Lake City, UT 84108, USA
| | - Isha Soni
- Micro-Phage Laboratory, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84132, USA
- Department of Orthopaedics, University of Utah, Salt Lake City, UT 84108, USA
| | - Caroline Wang-Crocker
- Micro-Phage Laboratory, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84132, USA
- Department of Orthopaedics, University of Utah, Salt Lake City, UT 84108, USA
| | - Tyson Matern
- Micro-Phage Laboratory, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84132, USA
- Department of Orthopaedics, University of Utah, Salt Lake City, UT 84108, USA
| | - James Peter Beck
- Department of Veterans Affairs, Salt Lake City Health Care System, Salt Lake City, UT 84148, USA
- Department of Orthopaedics, University of Utah, Salt Lake City, UT 84108, USA
| | - Catherine Loc-Carrillo
- Micro-Phage Laboratory, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84132, USA
- Department of Veterans Affairs, Salt Lake City Health Care System, Salt Lake City, UT 84148, USA
- Correspondence:
| |
Collapse
|
90
|
Michaelis C, Grohmann E. Horizontal Gene Transfer of Antibiotic Resistance Genes in Biofilms. Antibiotics (Basel) 2023; 12:antibiotics12020328. [PMID: 36830238 PMCID: PMC9952180 DOI: 10.3390/antibiotics12020328] [Citation(s) in RCA: 160] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Most bacteria attach to biotic or abiotic surfaces and are embedded in a complex matrix which is known as biofilm. Biofilm formation is especially worrisome in clinical settings as it hinders the treatment of infections with antibiotics due to the facilitated acquisition of antibiotic resistance genes (ARGs). Environmental settings are now considered as pivotal for driving biofilm formation, biofilm-mediated antibiotic resistance development and dissemination. Several studies have demonstrated that environmental biofilms can be hotspots for the dissemination of ARGs. These genes can be encoded on mobile genetic elements (MGEs) such as conjugative and mobilizable plasmids or integrative and conjugative elements (ICEs). ARGs can be rapidly transferred through horizontal gene transfer (HGT) which has been shown to occur more frequently in biofilms than in planktonic cultures. Biofilm models are promising tools to mimic natural biofilms to study the dissemination of ARGs via HGT. This review summarizes the state-of-the-art of biofilm studies and the techniques that visualize the three main HGT mechanisms in biofilms: transformation, transduction, and conjugation.
Collapse
|
91
|
Laanto E, Oksanen HM. Three Phages from a Boreal Lake during Ice Cover Infecting Xylophilus, Caulobacter, and Polaromonas Species. Viruses 2023; 15:v15020307. [PMID: 36851521 PMCID: PMC9959647 DOI: 10.3390/v15020307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Although the important role of microbes in freshwater is well understood, studies on phage-host systems in such environments during ice cover are completely lacking. Here, we describe the isolation and characterization of three new bacteriophages infecting Xylophilus sp., Caudobacter sp., and Polaromonas sp. from freshwater samples taken under the ice cover of Lake Konnevesi, Finland. Lumi, Kuura, and Tiera bacteriophages have tailed icosahedral virions and double-stranded DNA. Lumi is a siphophage with a genome of 80,496 bp, and Kuura and Tiera are podophages, and their genomes are 43,205 and 45,327 bp in length, resembling viruses in the class Caudoviricetes. Their host ranges were very limited among the winter-isolated bacterial strains from Konnevesi, each infecting only their own hosts. They can infect efficiently at 4 °C, showing that they are adapted to living in lake water under ice cover. Analysis of the viral genome sequences showed that a significant number of the gene products of each virus are unique, indicating that there is unexplored viral diversity in freshwaters. To our knowledge, Lumi and Tiera are the first phages isolated on the Xylophilus sp. and Polaromonas sp. strains, allowing their exploitation in further studies of freshwater bacterial-phage interactions.
Collapse
Affiliation(s)
- Elina Laanto
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, 40014 Jyväskylä, Finland
| | - Hanna M. Oksanen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
- Correspondence: ; Tel.: +358-2941-59104
| |
Collapse
|
92
|
Evidence of a Set of Core-Function Genes in 16 Bacillus Podoviral Genomes with Considerable Genomic Diversity. Viruses 2023; 15:v15020276. [PMID: 36851489 PMCID: PMC9965433 DOI: 10.3390/v15020276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/06/2023] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
Bacteriophage genomes represent an enormous level of genetic diversity and provide considerable potential to acquire new insights about viral genome evolution. In this study, the genome sequences of sixteen Bacillus-infecting bacteriophages were explored through comparative genomics approaches to reveal shared and unique characteristics. These bacteriophages are in the Salasmaviridae family with small (18,548-27,206 bp) double-stranded DNA genomes encoding 25-46 predicted open reading frames. We observe extensive nucleotide and amino acid sequence divergence among a set of core-function genes that present clear synteny. We identify two examples of sequence directed recombination within essential genes, as well as explore the expansion of gene content in these genomes through the introduction of novel open reading frames. Together, these findings highlight the complex evolutionary relationships of phage genomes that include old, common origins as well as new components introduced through mosaicism.
Collapse
|
93
|
Jiang JZ, Fang YF, Wei HY, Zhu P, Liu M, Yuan WG, Yang LL, Guo YX, Jin T, Shi M, Yao T, Lu J, Ye LT, Shi SK, Wang M, Duan M, Zhang DC. A remarkably diverse and well-organized virus community in a filter-feeding oyster. MICROBIOME 2023; 11:2. [PMID: 36611217 PMCID: PMC9825006 DOI: 10.1186/s40168-022-01431-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Viruses play critical roles in the marine environment because of their interactions with an extremely broad range of potential hosts. Many studies of viruses in seawater have been published, but viruses that inhabit marine animals have been largely neglected. Oysters are keystone species in coastal ecosystems, yet as filter-feeding bivalves with very large roosting numbers and species co-habitation, it is not clear what role they play in marine virus transmission and coastal microbiome regulation. RESULTS Here, we report a Dataset of Oyster Virome (DOV) that contains 728,784 nonredundant viral operational taxonomic unit contigs (≥ 800 bp) and 3473 high-quality viral genomes, enabling the first comprehensive overview of both DNA and RNA viral communities in the oyster Crassostrea hongkongensis. We discovered tremendous diversity among novel viruses that inhabit this oyster using multiple approaches, including reads recruitment, viral operational taxonomic units, and high-quality virus genomes. Our results show that these viruses are very different from viruses in the oceans or other habitats. In particular, the high diversity of novel circoviruses that we found in the oysters indicates that oysters may be potential hotspots for circoviruses. Notably, the viruses that were enriched in oysters are not random but are well-organized communities that can respond to changes in the health state of the host and the external environment at both compositional and functional levels. CONCLUSIONS In this study, we generated a first "knowledge landscape" of the oyster virome, which has increased the number of known oyster-related viruses by tens of thousands. Our results suggest that oysters provide a unique habitat that is different from that of seawater, and highlight the importance of filter-feeding bivalves for marine virus exploration as well as their essential but still invisible roles in regulating marine ecosystems. Video Abstract.
Collapse
Affiliation(s)
- Jing-Zhe Jiang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, Guangdong, China.
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China.
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China.
- Tianjin Agricultural University, Tianjin, 300384, China.
| | - Yi-Fei Fang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
- Shanghai Majorbio Bio-Pharm Technology Co Ltd, Shanghai, 201203, China
| | - Hong-Ying Wei
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
- Guangdong Magigene Biotechnology Co Ltd, Guangzhou, 510000, Guangdong, China
| | - Peng Zhu
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Min Liu
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Wen-Guang Yuan
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
| | - Li-Ling Yang
- Tianjin Agricultural University, Tianjin, 300384, China
| | | | - Tao Jin
- Guangdong Magigene Biotechnology Co Ltd, Guangzhou, 510000, Guangdong, China
| | - Mang Shi
- School of Medicine, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Tuo Yao
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, Guangdong, China
| | - Jie Lu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, Guangdong, China
| | - Ling-Tong Ye
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, Guangdong, China
| | - Shao-Kun Shi
- Shenzhen Fisheries Development Research Center, Shenzhen, 518067, Guangdong, China
| | - Meng Wang
- Bureau of Agriculture and Rural Affairs of Conghua District, Guangzhou, 510925, Guangdong, China
| | - Ming Duan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China, Hubei.
| | - Dian-Chang Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, Guangdong, China.
| |
Collapse
|
94
|
Tu Y, Kuang X, Zhang L, Xu X. The associations of gut microbiota, endocrine system and bone metabolism. Front Microbiol 2023; 14:1124945. [PMID: 37089533 PMCID: PMC10116073 DOI: 10.3389/fmicb.2023.1124945] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/16/2023] [Indexed: 04/25/2023] Open
Abstract
Gut microbiota is of great importance in human health, and its roles in the maintenance of skeletal homeostasis have long been recognized as the "gut-bone axis." Recent evidence has indicated intercorrelations between gut microbiota, endocrine system and bone metabolism. This review article discussed the complex interactions between gut microbiota and bone metabolism-related hormones, including sex steroids, insulin-like growth factors, 5-hydroxytryptamine, parathyroid hormone, glucagon-like peptides, peptide YY, etc. Although the underlying mechanisms still need further investigation, the regulatory effect of gut microbiota on bone health via interplaying with endocrine system may provide a new paradigm for the better management of musculoskeletal disorders.
Collapse
Affiliation(s)
- Ye Tu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xinyi Kuang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ling Zhang
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Ling Zhang,
| | - Xin Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Xin Xu,
| |
Collapse
|
95
|
Gao R, Duceppe MO, Chattaway MA, Goodridge L, Ogunremi D. Application of prophage sequence analysis to investigate a disease outbreak involving Salmonella Adjame, a rare serovar and implications for the population structure. Front Microbiol 2023; 14:1086198. [PMID: 36937281 PMCID: PMC10020630 DOI: 10.3389/fmicb.2023.1086198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/19/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction Outbreak investigation of foodborne salmonellosis is hindered when the food source is contaminated by multiple strains of Salmonella, creating difficulties matching an incriminated organism recovered from patients with the specific strain in the suspect food. An outbreak of the rare Salmonella Adjame was caused by multiple strains of the organism as revealed by single-nucleotide polymorphism (SNP) variation. The use of highly discriminatory prophage analysis to characterize strains of Salmonella should enable a more precise strain characterization and aid the investigation of foodborne salmonellosis. Methods We have carried out genomic analysis of S. Adjame strains recovered during the course of a recent outbreak and compared them with other strains of the organism (n = 38 strains), using SNPs to evaluate strain differences present in the core genome, and prophage sequence typing (PST) to evaluate the accessory genome. Phylogenetic analyses were performed using both total prophage content and conserved prophages. Results The PST analysis of the S. Adjame isolates showed a high degree of strain heterogeneity. We observed small clusters made up of 2-6 isolates (n = 27) and singletons (n = 11) in stark contrast with the three clusters observed by SNP analysis. In total, we detected 24 prophages of which only four were highly prevalent, namely: Entero_p88 (36/38 strains), Salmon_SEN34 (35/38 strains), Burkho_phiE255 (33/38 strains) and Edward_GF (28/38 strains). Despite the marked strain diversity seen with prophage analysis, the distribution of the four most common prophages matched the clustering observed using core genome. Discussion Mutations in the core and accessory genomes of S. Adjame have shed light on the evolutionary relationships among the Adjame strains and demonstrated a convergence of the variations observed in both fractions of the genome. We conclude that core and accessory genomes analyses should be adopted in foodborne bacteria outbreak investigations to provide a more accurate strain description and facilitate reliable matching of isolates from patients and incriminated food sources. The outcomes should translate to a better understanding of the microbial population structure and an 46 improved source attribution in foodborne illnesses.
Collapse
Affiliation(s)
- Ruimin Gao
- Ottawa Laboratory Fallowfield, Canadian Food Inspection Agency, Ottawa, ON, Canada
- Department of Food Science and Agricultural Chemistry, McGill University, Ste Anne de Bellevue, QC, Canada
| | - Marc-Olivier Duceppe
- Ottawa Laboratory Fallowfield, Canadian Food Inspection Agency, Ottawa, ON, Canada
| | - Marie Anne Chattaway
- Gastrointestinal Bacteria Reference Unit, United Kingdom Health Security Agency, London, United Kingdom
| | - Lawrence Goodridge
- Department of Food Science, Canadian Research Institute for Food Safety, University of Guelph, Guelph, ON, Canada
| | - Dele Ogunremi
- Ottawa Laboratory Fallowfield, Canadian Food Inspection Agency, Ottawa, ON, Canada
- *Correspondence: Dele Ogunremi,
| |
Collapse
|
96
|
Identification of Novel Viruses and Their Microbial Hosts from Soils with Long-Term Nitrogen Fertilization and Cover Cropping Management. mSystems 2022; 7:e0057122. [PMID: 36445691 PMCID: PMC9765229 DOI: 10.1128/msystems.00571-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Soils are the largest organic carbon reservoir and are key to global biogeochemical cycling, and microbes are the major drivers of carbon and nitrogen transformations in the soil systems. Thus, virus infection-induced microbial mortality could impact soil microbial structure and functions. In this study, we recovered 260 viral operational taxonomic units (vOTUs) in samples collected from soil taken from four nitrogen fertilization (N-fertilization) and cover-cropping practices at an experimental site under continuous cotton production evaluating conservation agricultural management systems for more than 40 years. Only ~6% of the vOTUs identified were clustered with known viruses in the RefSeq database using a gene-sharing network. We found that 14% of 260 vOTUs could be linked to microbial hosts that cover key carbon and nitrogen cycling taxa, including Acidobacteriota, Proteobacteria, Verrucomicrobiota, Firmicutes, and ammonia-oxidizing archaea, i.e., Nitrososphaeria (phylum Thermoproteota). Viral diversity, community structure, and the positive correlation between abundance of a virus and its host indicate that viruses and microbes are more sensitive to N-fertilization than cover-cropping treatment. Viruses may influence key carbon and nitrogen cycling through control of microbial function and host populations (e.g., Chthoniobacterales and Nitrososphaerales). These findings provide an initial view of soil viral ecology and how it is influenced by long-term conservation agricultural management. IMPORTANCE Bacterial viruses are extremely small and abundant particles that can control the microbial abundance and community composition through infection, which gradually showed their vital roles in the ecological process to influence the nutrient flow. Compared to the substrate control, less is known about the influence of soil viruses on microbial community function, and even less is known about microbial and viral diversity in the soil system. To obtain a more complete knowledge of microbial function dynamics, the interaction between microbes and viruses cannot be ignored. To fully understand this process, it is fundamental to get insight into the correlation between the diversity of viral communities and bacteria which could induce these changes.
Collapse
|
97
|
Lin X, Yang S, Gong Z, Ni R, Shi X, Song L. Viral community in landfill leachate: Occurrence, bacterial hosts, mediation antibiotic resistance gene dissemination, and function in municipal solid waste decomposition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158561. [PMID: 36087678 DOI: 10.1016/j.scitotenv.2022.158561] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
A municipal solid waste (MSW) landfill is a significant source of antibiotic resistance, pathogens and viruses and also a habitat for microbial consortia that perform MSW decomposition. Viruses are of great significance in ecological interactions such as MSW decomposition and antibiotic resistance gene (ARG) transmission. In this study, the viral community structure and the associated driver, the linkage of viruses and their bacterial hosts, the virus-associated ARG dissemination and virtual community function on MSW decomposition were investigated in landfill leachate from seven cities, China. The seven cities include four megacities, two large-scale cities and one small-scale city, representing the leachate characters of China. The results showed that the leachates were dominated by the phage families Siphoviridae, Myoviridae and Podoviridae (91.7 ± 3.6) %. Their putative hosts were the important MSW decomposers Lactobacillus, Pseudomonas, Clostridium, Proteiniphilum, and Bacteroides. The structure of the viral community was significantly affected by pH (P = 0.007, analyzed by RDA) and the bacterial community (R = 0.83, P < 0.001, analyzed by Mantel test). The relative abundance of ARGs showed a strong correlation (R > 0.8, P < 0.01) with viral family, suggesting that viruses play an important role in ARGs dissemination. Phage regulate bacterial population abundance through top-down effects, thus participating in MSW decomposition. These results demonstrate that viral community are involve in ARGs transmission and dissemination and mediate MSW decomposition in landfill.
Collapse
Affiliation(s)
- Xiaoxing Lin
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; Anhui Shengjin Lake Wetland Ecology National Long-term Scientific Research Base, Dongzhi 247230, China
| | - Shu Yang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| | - Zhourui Gong
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; Anhui Shengjin Lake Wetland Ecology National Long-term Scientific Research Base, Dongzhi 247230, China
| | - Renjie Ni
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; Anhui Shengjin Lake Wetland Ecology National Long-term Scientific Research Base, Dongzhi 247230, China
| | - Xianyang Shi
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; Anhui Shengjin Lake Wetland Ecology National Long-term Scientific Research Base, Dongzhi 247230, China
| | - Liyan Song
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; Anhui Shengjin Lake Wetland Ecology National Long-term Scientific Research Base, Dongzhi 247230, China.
| |
Collapse
|
98
|
Yi H, Fu C, Diao K, Li Z, Cui X, Xiao W. Characterization and genomic analysis of a novel halovirus infecting Chromohalobacter beijerinckii. Front Microbiol 2022; 13:1041471. [PMID: 36569053 PMCID: PMC9769972 DOI: 10.3389/fmicb.2022.1041471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/15/2022] [Indexed: 12/13/2022] Open
Abstract
Bacteriophages function as a regulator of host communities and metabolism. Many phages have been isolated and sequenced in environments such as the ocean, but very little is known about hypersaline environments. Phages infecting members of the genus Chromohalobacter remain poorly understood, and no Chromohalobacter phage genome has been reported. In this study, a halovirus infecting Chromohalobacter sp. F3, YPCBV-1, was isolated from Yipinglang salt mine. YPCBV-1 could only infect host strain F3 with burst size of 6.3 PFU/cell. It could produce progeny in 5%-20% (w/v) NaCl with an optimal concentration of 10% (w/v), but the optimal adsorption NaCl concentration was 5%-8% (w/v). YPCBV-1 is sensitive to pure water and depends on NaCl or KCl solutions to survive. YPCBV-1 stability increased with increasing salinity but decreased in NaCl saturated solutions, and it has a broader salinity adaptation than the host. YPCBV-1 has a double-stranded DNA of 36,002 bp with a G + C content of 67.09% and contains a total of 55 predicted ORFs and no tRNA genes. Phylogenetic analysis and genomic network analysis suggested that YPCBV-1 is a novel Mu-like phage under the class Caudoviricetes. Auxiliary metabolic gene, SUMF1/EgtB/PvdO family non-heme iron enzyme, with possible roles in antioxidant was found in YPCBV-1. Moreover, DGR-associated genes were predicted in YPCBV-1 genome, which potentially produce hypervariable phage tail fiber. These findings shed light on the halovirus-host interaction in hypersaline environments.
Collapse
|
99
|
Murray TS, Stanley G, Koff JL. Novel Approaches to Multidrug-Resistant Infections in Cystic Fibrosis. Clin Chest Med 2022; 43:667-676. [PMID: 36344073 DOI: 10.1016/j.ccm.2022.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Patients with cystic fibrosis (CF) often develop respiratory tract infections with pathogenic multidrug-resistant organisms (MDROs) such as methicillin-resistant Staphylococcus aureus, and a variety of gram-negative organisms that include Pseudomonas aeruginosa, Burkholderia sp., Stenotrophomonas maltophilia, Achromobacter xylosoxidans, and nontuberculous mycobacteria (NTM). Despite the introduction of new therapies to address underlying cystic fibrosis transmembrane conductance regulator (CFTR) dysfunction, MDRO infections remain a problem and novel antimicrobial interventions are still needed. Therapeutic approaches include improving the efficacy of existing drugs by adjusting the dose based on differences in CF patient pharmacokinetics/pharmacodynamics, the development of inhaled formulations to reduce systemic adverse events, and the use of newer beta-lactam/beta-lactamase combinations. Alternative innovative therapeutic approaches include the use of gallium and bacteriophages to treat MDRO pulmonary infections including those with extreme antibiotic resistance. However, additional clinical trials are required to determine the optimal dosing and efficacy of these different strategies and to identify patients with CF most likely to benefit from these new treatment options.
Collapse
Affiliation(s)
- Thomas S Murray
- Department of Pediatrics, Section Infectious Diseases and Global Health, Yale University School of Medicine, PO Box 208064, 333 Cedar Street, New Haven, CT 06520-8064, USA.
| | - Gail Stanley
- Department of Internal Medicine, Section Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, PO Box 208057, 300 Cedar Street TAC-441 South, New Haven, CT 06520-8057, USA; Adult Cystic Fibrosis Program; Yale University Center for Phage Biology & Therapy.
| | - Jonathan L Koff
- Adult Cystic Fibrosis Program; Yale University Center for Phage Biology & Therapy; Department of Internal Medicine, Section Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, PO Box 208057, 300 Cedar Street TAC-455A South, New Haven, CT 06520-8057, USA.
| |
Collapse
|
100
|
Giant Viruses as a Source of Novel Enzymes for Biotechnological Application. Pathogens 2022; 11:pathogens11121453. [PMID: 36558786 PMCID: PMC9787589 DOI: 10.3390/pathogens11121453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
The global demand for industrial enzymes has been increasing in recent years, and the search for new sources of these biological products is intense, especially in microorganisms. Most known viruses have limited genetic machinery and, thus, have been overlooked by the enzyme industry for years. However, a peculiar group of viruses breaks this paradigm. Giant viruses of the phylum Nucleocytoviricota infect protists (i.e., algae and amoebae) and have complex genomes, reaching up to 2.7 Mb in length and encoding hundreds of genes. Different giant viruses have robust metabolic machinery, especially those in the Phycodnaviridae and Mimiviridae families. In this review, we present some peculiarities of giant viruses that infect protists and discuss why they should be seen as an outstanding source of new enzymes. We revisited the genomes of representatives of different groups of giant viruses and put together information about their enzymatic machinery, highlighting several genes to be explored in biotechnology involved in carbohydrate metabolism, DNA replication, and RNA processing, among others. Finally, we present additional evidence based on structural biology using chitinase as a model to reinforce the role of giant viruses as a source of novel enzymes for biotechnological application.
Collapse
|