51
|
Kandeil A, Mostafa A, Kutkat O, Moatasim Y, Al-Karmalawy AA, Rashad AA, Kayed AE, Kayed AE, El-Shesheny R, Kayali G, Ali MA. Bioactive Polyphenolic Compounds Showing Strong Antiviral Activities against Severe Acute Respiratory Syndrome Coronavirus 2. Pathogens 2021; 10:758. [PMID: 34203977 PMCID: PMC8232731 DOI: 10.3390/pathogens10060758] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 02/05/2023] Open
Abstract
Until now, there has been no direct evidence of the effectiveness of repurposed FDA-approved drugs against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infections. Although curcumin, hesperidin, and quercetin have broad spectra of pharmacological properties, their antiviral activities against SARS-CoV-2 remain unclear. Our study aimed to assess the in vitro antiviral activities of curcumin, hesperidin, and quercetin against SARS-CoV-2 compared to hydroxychloroquine and determine their mode of action. In Vero E6 cells, these compounds significantly inhibited virus replication, mainly as virucidal agents primarily indicating their potential activity at the early stage of viral infection. To investigate the mechanism of action of the tested compounds, molecular docking studies were carried out against both SARS-CoV-2 spike (S) and main protease (Mpro) receptors. Collectively, the obtained in silico and in vitro findings suggest that the compounds could be promising SARS-CoV-2 Mpro inhibitors. We recommend further preclinical and clinical studies on the studied compounds to find a potential therapeutic targeting COVID-19 in the near future.
Collapse
Affiliation(s)
- Ahmed Kandeil
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt; (A.K.); (A.M.); (O.K.); (Y.M.); (A.E.K.); (R.E.-S.)
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt; (A.K.); (A.M.); (O.K.); (Y.M.); (A.E.K.); (R.E.-S.)
| | - Omnia Kutkat
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt; (A.K.); (A.M.); (O.K.); (Y.M.); (A.E.K.); (R.E.-S.)
| | - Yassmin Moatasim
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt; (A.K.); (A.M.); (O.K.); (Y.M.); (A.E.K.); (R.E.-S.)
| | - Ahmed A. Al-Karmalawy
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt;
| | - Adel A. Rashad
- Department of Biochemistry & Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA;
| | - Ahmed E. Kayed
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt; (A.K.); (A.M.); (O.K.); (Y.M.); (A.E.K.); (R.E.-S.)
| | - Azza E. Kayed
- Radiation Biology Department, Atomic Energy Authority, Cairo 13759, Egypt;
| | - Rabeh El-Shesheny
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt; (A.K.); (A.M.); (O.K.); (Y.M.); (A.E.K.); (R.E.-S.)
| | - Ghazi Kayali
- Department of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas, Houston, TX 77030, USA
- Human Link, Jewellery & Gemplex, Dubai 48800, United Arab Emirates
| | - Mohamed A. Ali
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt; (A.K.); (A.M.); (O.K.); (Y.M.); (A.E.K.); (R.E.-S.)
| |
Collapse
|
52
|
Active Components from Cassia abbreviata Prevent HIV-1 Entry by Distinct Mechanisms of Action. Int J Mol Sci 2021; 22:ijms22095052. [PMID: 34068829 PMCID: PMC8126241 DOI: 10.3390/ijms22095052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 01/21/2023] Open
Abstract
Cassia abbreviata is widely used in Sub-Saharan Africa for treating many diseases, including HIV-1 infection. We have recently described the chemical structures of 28 compounds isolated from an alcoholic crude extract of barks and roots of C. abbreviata, and showed that six bioactive compounds inhibit HIV-1 infection. In the present study, we demonstrate that the six compounds block HIV-1 entry into cells: oleanolic acid, palmitic acid, taxifolin, piceatannol, guibourtinidol-(4α→8)-epiafzelechin, and a novel compound named as cassiabrevone. We report, for the first time, that guibourtinidol-(4α→8)-epiafzelechin and cassiabrevone inhibit HIV-1 entry (IC50 of 42.47 µM and 30.96 µM, respectively), as well as that piceatannol interacts with cellular membranes. Piceatannol inhibits HIV-1 infection in a dual-chamber assay mimicking the female genital tract, as well as HSV infection, emphasizing its potential as a microbicide. Structure-activity relationships (SAR) showed that pharmacophoric groups of piceatannol are strictly required to inhibit HIV-1 entry. By a ligand-based in silico study, we speculated that piceatannol and norartocarpetin may have a very similar mechanism of action and efficacy because of the highly comparable pharmacophoric and 3D space, while guibourtinidol-(4α→8)-epiafzelechin and cassiabrevone may display a different mechanism. We finally show that cassiabrevone plays a major role of the crude extract of CA by blocking the binding activity of HIV-1 gp120 and CD4.
Collapse
|
53
|
Rattis BAC, Ramos SG, Celes MRN. Curcumin as a Potential Treatment for COVID-19. Front Pharmacol 2021; 12:675287. [PMID: 34025433 PMCID: PMC8138567 DOI: 10.3389/fphar.2021.675287] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/21/2021] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is an infectious disease that rapidly spread throughout the world leading to high mortality rates. Despite the knowledge of previous diseases caused by viruses of the same family, such as MERS and SARS-CoV, management and treatment of patients with COVID-19 is a challenge. One of the best strategies around the world to help combat the COVID-19 has been directed to drug repositioning; however, these drugs are not specific to this new virus. Additionally, the pathophysiology of COVID-19 is highly heterogeneous, and the way of SARS-CoV-2 modulates the different systems in the host remains unidentified, despite recent discoveries. This complex and multifactorial response requires a comprehensive therapeutic approach, enabling the integration and refinement of therapeutic responses of a given single compound that has several action potentials. In this context, natural compounds, such as Curcumin, have shown beneficial effects on the progression of inflammatory diseases due to its numerous action mechanisms: antiviral, anti-inflammatory, anticoagulant, antiplatelet, and cytoprotective. These and many other effects of curcumin make it a promising target in the adjuvant treatment of COVID-19. Hence, the purpose of this review is to specifically point out how curcumin could interfere at different times/points during the infection caused by SARS-CoV-2, providing a substantial contribution of curcumin as a new adjuvant therapy for the treatment of COVID-19.
Collapse
Affiliation(s)
- Bruna A. C. Rattis
- Department of Pathology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiania, Brazil
| | - Simone G. Ramos
- Department of Pathology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Mara R. N. Celes
- Department of Pathology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiania, Brazil
| |
Collapse
|
54
|
Singh NA, Kumar P, Jyoti, Kumar N. Spices and herbs: Potential antiviral preventives and immunity boosters during COVID-19. Phytother Res 2021; 35:2745-2757. [PMID: 33511704 PMCID: PMC8013177 DOI: 10.1002/ptr.7019] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/03/2020] [Accepted: 01/03/2021] [Indexed: 01/08/2023]
Abstract
A severe acute respiratory syndrome is an unusual type of contagious pneumonia that is caused by SARS coronavirus. At present, the whole world is trying to combat this coronavirus disease and scientific communities are putting rigorous efforts to develop vaccines. However, there are only a few specific medical treatments for SARS-CoV-2. Apart from other public health measures taken to prevent this virus, we can boost our immunity with natural products. In this article, we have highlighted the potential of common spices and herbs as antiviral agents and immunity boosters. A questionnaire-based online survey has been conducted on home remedies during COVID-19 among a wide range of peoples (n-531) of different age groups (13-68 years) from various countries. According to the survey, 71.8% of people are taking kadha for combating infection and boosting immunity. Most people (86.1%) think that there is no side effect of kadha while 13.9% think vice versa. A total of 93.6% of people think that spices are helpful in curing coronavirus or other viral infection as well as boosting immunity. Most people are using tulsi drops, vitamin C, and chyawanprash for boosting their immunity. Therefore, we conclude from the survey and available literature that spices and herbs play a significant role against viral infections.
Collapse
Affiliation(s)
| | - Pradeep Kumar
- Department of ForestryNorth Eastern Regional Institute of Science and TechnologyNirjuliIndia
| | - Jyoti
- Department of MicrobiologyMohanlal Sukhadia UniversityUdaipurIndia
| | - Naresh Kumar
- Dairy Microbiology DivisionNational Dairy Research Institute, ICARKarnalIndia
| |
Collapse
|
55
|
|
56
|
Ali SI, Sheikh WM, Rather MA, Venkatesalu V, Muzamil Bashir S, Nabi SU. Medicinal plants: Treasure for antiviral drug discovery. Phytother Res 2021; 35:3447-3483. [PMID: 33590931 PMCID: PMC8013762 DOI: 10.1002/ptr.7039] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 01/04/2021] [Accepted: 01/12/2021] [Indexed: 12/11/2022]
Abstract
The pandemic of viral diseases like novel coronavirus (2019-nCoV) prompted the scientific world to examine antiviral bioactive compounds rather than nucleic acid analogous, protease inhibitors, or other toxic synthetic molecules. The emerging viral infections significantly associated with 2019-nCoV have challenged humanity's survival. Further, there is a constant emergence of new resistant viral strains that demand novel antiviral agents with fewer side effects and cell toxicity. Despite significant progress made in immunization and regenerative medicine, numerous viruses still lack prophylactic vaccines and specific antiviral treatments that are so often influenced by the generation of viral escape mutants. Of importance, medicinal herbs offer a wide variety of therapeutic antiviral chemotypes that can inhibit viral replication by preventing viral adsorption, adhering to cell receptors, inhibiting virus penetration in the host cell, and competing for pathways of activation of intracellular signals. The present review will comprehensively summarize the promising antiviral activities of medicinal plants and their bioactive molecules. Furthermore, it will elucidate their mechanism of action and possible implications in the treatment/prevention of viral diseases even when their mechanism of action is not fully understood, which could serve as the base for the future development of novel or complementary antiviral treatments.
Collapse
Affiliation(s)
- Sofi Imtiyaz Ali
- Biochemistry & Molecular Biology Lab, Division of veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Srinagar, India
| | - Wajid Mohammad Sheikh
- Biochemistry & Molecular Biology Lab, Division of veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Srinagar, India
| | - Muzafar Ahmad Rather
- Biochemistry & Molecular Biology Lab, Division of veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Srinagar, India
| | | | - Showkeen Muzamil Bashir
- Biochemistry & Molecular Biology Lab, Division of veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Srinagar, India
| | - Showkat Ul Nabi
- Large Animal Diagnostic Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Srinagar, India
| |
Collapse
|
57
|
Thimmulappa RK, Mudnakudu-Nagaraju KK, Shivamallu C, Subramaniam K, Radhakrishnan A, Bhojraj S, Kuppusamy G. Antiviral and immunomodulatory activity of curcumin: A case for prophylactic therapy for COVID-19. Heliyon 2021; 7:e06350. [PMID: 33655086 PMCID: PMC7899028 DOI: 10.1016/j.heliyon.2021.e06350] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/02/2020] [Accepted: 02/19/2021] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease-19 (COVID-19), a devastating respiratory illness caused by SARS-associated coronavirus-2 (SARS-CoV-2), has already affected over 64 million people and caused 1.48 million deaths, just 12 months from the first diagnosis. COVID-19 patients develop serious complications, including severe pneumonia, acute respiratory distress syndrome (ARDS), and or multiorgan failure due to exaggerated host immune response following infection. Currently, drugs that were effective against SARS-CoV are being repurposed for SARS-CoV-2. During this public health emergency, food nutraceuticals could be promising prophylactic therapeutics for COVID-19. Curcumin, a bioactive compound in turmeric, exerts diverse pharmacological activities and is widely used in foods and traditional medicines. This review presents several lines of evidence, which suggest curcumin as a promising prophylactic, therapeutic candidate for COVID-19. First, curcumin exerts antiviral activity against many types of enveloped viruses, including SARS-CoV-2, by multiple mechanisms: direct interaction with viral membrane proteins; disruption of the viral envelope; inhibition of viral proteases; induce host antiviral responses. Second, curcumin protects from lethal pneumonia and ARDS via targeting NF-κB, inflammasome, IL-6 trans signal, and HMGB1 pathways. Third, curcumin is safe and well-tolerated in both healthy and diseased human subjects. In conclusion, accumulated evidence indicates that curcumin may be a potential prophylactic therapeutic for COVID-19 in the clinic and public health settings.
Collapse
Affiliation(s)
- Rajesh K. Thimmulappa
- Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research, Mysore, India
| | - Kiran Kumar Mudnakudu-Nagaraju
- Department of Biotechnology and Bioinformatics, Faculty of Life Sciences, JSS Academy of Higher Education & Research, Mysore, India
| | - Chandan Shivamallu
- Department of Biotechnology and Bioinformatics, Faculty of Life Sciences, JSS Academy of Higher Education & Research, Mysore, India
| | - K.J.Thirumalai Subramaniam
- Centre of Excellence in Nanoscience & Technology, Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Arun Radhakrishnan
- Centre of Excellence in Nanoscience & Technology, Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | | | - Gowthamarajan Kuppusamy
- Centre of Excellence in Nanoscience & Technology, Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| |
Collapse
|
58
|
Celik C, Gencay A, Ocsoy I. Can food and food supplements be deployed in the fight against the COVID 19 pandemic? Biochim Biophys Acta Gen Subj 2021; 1865:129801. [PMID: 33238195 PMCID: PMC7680693 DOI: 10.1016/j.bbagen.2020.129801] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 11/20/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Due to lack of approved drugs and vaccines, the medical world has resorted to older drugs, produced for viral infections and other diseases, as a remedy to combat COVID-19. The accumulating evidence from in vitro and in vivo studies for SARS-CoV and MERS-CoV have demonstrated that several polyphenols found in plants and zinc- polyphenol clusters have been in use as herbal medicines have antiviral activities against viruses with various mechanisms. SCOPE OF REVIEW Curcumin, zinc and zinc-ionophores have been considered as nutraceuticals and nutrients showing great antiviral activities with their medicinal like activities. MAJOR CONCLUSIONS In this work, we discussed the potential prophylactic and/or therapeutic effects of curcumin, zinc and zinc-ionophores in treatment of viral infections including COVID-19. GENERAL SIGNIFICANCE Curcuminoids and Zinc classified as nutraceuticals under GRAS (Generally Recognized As Safe) by FDA can provide complementary treatment for COVID 19 patients with their immunity-boosting and antiviral properties.
Collapse
Affiliation(s)
- Cagla Celik
- Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, 38039 Kayseri, Turkey
| | - Ayse Gencay
- Department of Virology, Faculty of Veterinary, Erciyes University, 38039 Kayseri, Turkey
| | - Ismail Ocsoy
- Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, 38039 Kayseri, Turkey.
| |
Collapse
|
59
|
Noor H, Ikram A, Rathinavel T, Kumarasamy S, Nasir Iqbal M, Bashir Z. Immunomodulatory and anti-cytokine therapeutic potential of curcumin and its derivatives for treating COVID-19 - a computational modeling. J Biomol Struct Dyn 2021; 40:5769-5784. [PMID: 33491580 DOI: 10.1080/07391102.2021.1873190] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The unavailability of vaccine and medicines raised serious issues during COVID-19 pandemic and peoples from different parts of world relied on traditional medicine for their immediate recovery from COVID-19 and it found effective also. The current research aims to target COVID-19 immunological human host receptors i.e. angiotensin-converting enzyme (ACE)-2, interleukin (IL)-1β, IL-6, tumor necrosis factor-alpha (TNF-α) and protease-activated receptor (PAR)-1 using curcumin derivatives to prevent viral infection and control overproduction of early clinical responses of COVID-19. Targeting these host proteins will mitigate the infection and will filter out many complications caused by these proteins in COVID-19 patients. It is proven through computer-aided computational modeling approaches, total 30 compounds of curcumin and its derivatives were chosen. Drug-likeness parameters were calculated for curcumin and its derivatives and 20 curcumin analogs were selected for docking analysis. From docking analysis of 20 curcumin analogs against five chosen human host receptor targets reveals 11 curcumin analogs possess least binding affinity and best interaction at active sites subjected to absorption, distribution, metabolism, excretion (ADME) analysis. Density functional theory (DFT) analysis of five final shortlisted curcumin derivatives was done to show least binding affinity toward chosen host target protein. Molecular dynamics simulation (MDS) was performed to observe behavior and interaction of potential drug hydrazinocurcumin against target proteins ACE-2 and PAR-1. It was performed at 100 nanoseconds and showed satisfactory results. Finally, our investigation reveals that hydrazinocurcumin possesses immunomodulatory and anti-cytokine therapeutic potential against COVID-19 and it can act as COVID-19 warrior drug molecule and promising choice of drug for COVID-19 treatment, however, it needs further in vivo clinical evaluation to commercialize as COVID-19 drug.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hasnat Noor
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Ayesha Ikram
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | | | | | - Muhammad Nasir Iqbal
- Department of Biosciences, COMSATS University, Islamabad Campus, Islamabad, Pakistan
| | - Zohaib Bashir
- Department of Bioinformatics, Hazara University, Mansehra, Pakistan
| |
Collapse
|
60
|
C. T. S, M. D, P. R. R, K. M, E. M. A, Balachandran I. Chemical profiling of selected Ayurveda formulations recommended for COVID-19. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2021; 10:2. [PMID: 33457430 PMCID: PMC7799399 DOI: 10.1186/s43088-020-00089-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/26/2020] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND The novel coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), is the global health concern since December 2019. It has become a big challenge for the researchers to find a solution for this newly evolved pandemic. In Ayurveda point of view, COVID-19 is a Janapadodhwamsa vikara (epidemic disease), a situation where the environment-air, water, land, and seasons-is vitiated, causing a simultaneous manifestation of a disease among large populations. The aim of this study is to identify the active compounds of selected Ayurveda medicines recommended for COVID-19. RESULTS The selected preparations are traditionally recommended for the management of various kinds of fever including the infectious ones and to enhance the immunity. HPTLC analysis of the same showed presence of many active molecules like umbelliferone, scopoletin, caffeic acid, ferulic acid, gallic acid, piperine, curcumin, berberine, and palmatine. CONCLUSION The study provided valuable scientific data regarding the active ingredients of the selected medicines with proven therapeutic potentials like anti-viral, immunomodulatory, and anti-inflammatory activities.
Collapse
Affiliation(s)
- Sulaiman C. T.
- Phytochemistry Division, Centre for Medicinal Plants Research, Arya Vaidya Sala, Kottakkal, Malappuram, Kerala 676503 India
| | - Deepak M.
- Phytochemistry Division, Centre for Medicinal Plants Research, Arya Vaidya Sala, Kottakkal, Malappuram, Kerala 676503 India
| | - Ramesh P. R.
- Clinical Research Department, Arya Vaidya Sala, Kottakkal, Kerala India
| | - Mahesh K.
- Clinical Research Department, Arya Vaidya Sala, Kottakkal, Kerala India
| | - Anandan E. M.
- Product Development Department, Arya Vaidya Sala, Kottakkal, Kerala India
| | - Indira Balachandran
- Phytochemistry Division, Centre for Medicinal Plants Research, Arya Vaidya Sala, Kottakkal, Malappuram, Kerala 676503 India
| |
Collapse
|
61
|
Loaiza-Cano V, Monsalve-Escudero LM, Filho CDSMB, Martinez-Gutierrez M, de Sousa DP. Antiviral Role of Phenolic Compounds against Dengue Virus: A Review. Biomolecules 2020; 11:biom11010011. [PMID: 33374457 PMCID: PMC7823413 DOI: 10.3390/biom11010011] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
Phenolic compounds have been related to multiple biological activities, and the antiviral effect of these compounds has been demonstrated in several viral models of public health concern. In this review, we show the antiviral role of phenolic compounds against dengue virus (DENV), the most widespread arbovirus globally that, after its re-emergence, has caused multiple epidemic outbreaks, especially in the last two years. Twenty phenolic compounds with anti-DENV activity are discussed, including the multiple mechanisms of action, such as those directed against viral particles or viral proteins, host proteins or pathways related to the productive replication viral cycle and the spread of the infection.
Collapse
Affiliation(s)
- Vanessa Loaiza-Cano
- Grupo de Investigacion en Ciencias Animales-GRICA, Universidad Cooperativa de Colombia, 680003 Bucaramanga, Colombia; (V.L.-C.); (L.M.M.-E.)
| | - Laura Milena Monsalve-Escudero
- Grupo de Investigacion en Ciencias Animales-GRICA, Universidad Cooperativa de Colombia, 680003 Bucaramanga, Colombia; (V.L.-C.); (L.M.M.-E.)
| | | | - Marlen Martinez-Gutierrez
- Grupo de Investigacion en Ciencias Animales-GRICA, Universidad Cooperativa de Colombia, 680003 Bucaramanga, Colombia; (V.L.-C.); (L.M.M.-E.)
- Correspondence: (M.M.-G.); (D.P.d.S.); Tel.: +57-310-543-8583 (M.M.-G.); +55-833-216-7347 (D.P.d.S.)
| | - Damião Pergentino de Sousa
- Department of Pharmaceutical Sciences, Federal University of Paraíba, CEP 58051-970 João Pessoa, PB, Brazil;
- Correspondence: (M.M.-G.); (D.P.d.S.); Tel.: +57-310-543-8583 (M.M.-G.); +55-833-216-7347 (D.P.d.S.)
| |
Collapse
|
62
|
Rahban M, Habibi-Rezaei M, Mazaheri M, Saso L, Moosavi-Movahedi AA. Anti-Viral Potential and Modulation of Nrf2 by Curcumin: Pharmacological Implications. Antioxidants (Basel) 2020; 9:E1228. [PMID: 33291560 PMCID: PMC7761780 DOI: 10.3390/antiox9121228] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/29/2020] [Accepted: 12/01/2020] [Indexed: 12/13/2022] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is an essential transcription factor that maintains the cell's redox balance state and reduces inflammation in different adverse stresses. Under the oxidative stress, Nrf2 is separated from Kelch-like ECH-associated protein 1 (Keap1), which is a key sensor of oxidative stress, translocated to the nucleus, interacts with the antioxidant response element (ARE) in the target gene, and then activates the transcriptional pathway to ameliorate the cellular redox condition. Curcumin is a yellow polyphenolic curcuminoid from Curcuma longa (turmeric) that has revealed a broad spectrum of bioactivities, including antioxidant, anti-inflammatory, anti-tumor, and anti-viral activities. Curcumin significantly increases the nuclear expression levels and promotes the biological effects of Nrf2 via the interaction with Cys151 in Keap1, which makes it a marvelous therapeutic candidate against a broad range of oxidative stress-related diseases, including type 2 diabetes (T2D), neurodegenerative diseases (NDs), cardiovascular diseases (CVDs), cancers, viral infections, and more recently SARS-CoV-2. Currently, the multifactorial property of the diseases and lack of adequate medical treatment, especially in viral diseases, result in developing new strategies to finding potential drugs. Curcumin potentially opens up new views as possible Nrf2 activator. However, its low bioavailability that is due to low solubility and low stability in the physiological conditions is a significant challenge in the field of its efficient and effective utilization in medicinal purposes. In this review, we summarized recent studies on the potential effect of curcumin to activate Nrf2 as the design of potential drugs for a viral infection like SARS-Cov2 and acute and chronic inflammation diseases in order to improve the cells' protection.
Collapse
Affiliation(s)
- Mahdie Rahban
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran;
| | - Mehran Habibi-Rezaei
- School of Biology, College of Science, University of Tehran, Tehran 1417614335, Iran
- Center of Excellence in NanoBiomedicine, University of Tehran, Tehran 1417614335, Iran
| | - Mansoureh Mazaheri
- Research Center of Food Technology and Agricultural Products, Department of Food Toxicology, Standard Research Institute, Karaj 3158777871, Iran;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy;
| | - Ali A. Moosavi-Movahedi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran;
- UNESCO Chair on Interdisciplinary Research in Diabetes, University of Tehran, Tehran 1417614335, Iran
| |
Collapse
|
63
|
Badria FA, Abdelaziz AE, Hassan AH, Elgazar AA, Mazyed EA. Development of Provesicular Nanodelivery System of Curcumin as a Safe and Effective Antiviral Agent: Statistical Optimization, In Vitro Characterization, and Antiviral Effectiveness. Molecules 2020; 25:E5668. [PMID: 33271831 PMCID: PMC7731007 DOI: 10.3390/molecules25235668] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/24/2020] [Accepted: 11/28/2020] [Indexed: 01/23/2023] Open
Abstract
Curcumin is a natural compound that has many medical applications. However, its low solubility and poor stability could impede its clinical applications. The present study aimed to formulate dry proniosomes to overcome these pitfalls and improve the therapeutic efficacy of Curcumin. Curcumin-loaded proniosomes were fabricated by the slurry method according to 32 factorial design using Design-Expert software to demonstrate the impact of different independent variables on entrapment efficiency (EE%) and % drug released after 12 h (Q12h). The optimized formula (F5) was selected according to the desirability criteria. F5 exhibited good flowability and appeared, after reconstitution, as spherical nanovesicles with EE% of 89.94 ± 2.31% and Q12h of 70.89 ± 1.62%. F5 demonstrated higher stability and a significant enhancement of Q12h than the corresponding niosomes. The docking study investigated the ability of Curcumin to bind effectively with the active site of DNA polymerase of Herpes simplex virus (HSV). The antiviral activity and the safety of F5 were significantly higher than Curcumin. F5 improved the safety of Acyclovir (ACV) and reduced its effective dose that produced a 100% reduction of viral plaques. Proniosomes could be promising stable carriers of Curcumin to be used as a safe and efficient antiviral agent.
Collapse
Affiliation(s)
- Farid A. Badria
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt;
| | - Abdelaziz E. Abdelaziz
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Amira H. Hassan
- Department of Pharmaceutics, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt;
| | - Abdullah A. Elgazar
- Department of Pharmacognosy, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Eman A. Mazyed
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| |
Collapse
|
64
|
Jennings MR, Parks RJ. Curcumin as an Antiviral Agent. Viruses 2020; 12:v12111242. [PMID: 33142686 PMCID: PMC7693600 DOI: 10.3390/v12111242] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/22/2020] [Accepted: 10/29/2020] [Indexed: 12/23/2022] Open
Abstract
Curcumin, the primary curcuminoid compound found in turmeric spice, has shown broad activity as an antimicrobial agent, limiting the replication of many different fungi, bacteria and viruses. In this review, we summarize recent studies supporting the development of curcumin and its derivatives as broad-spectrum antiviral agents.
Collapse
Affiliation(s)
- Morgan R. Jennings
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada;
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Robin J. Parks
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada;
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Medicine, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada
- Correspondence: ; Tel.: +1-613-737-8123
| |
Collapse
|
65
|
Li Y, Wang J, Liu Y, Luo X, Lei W, Xie L. Antiviral and virucidal effects of curcumin on transmissible gastroenteritis virus in vitro. J Gen Virol 2020; 101:1079-1084. [PMID: 32677610 DOI: 10.1099/jgv.0.001466] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Emerging coronaviruses represent serious threats to human and animal health worldwide, and no approved therapeutics are currently available. Here, we used Transmissible gastroenteritis virus (TGEV) as the alpha-coronavirus model, and investigated the antiviral properties of curcumin against TGEV. Our results demonstrated that curcumin strongly inhibited TGEV proliferation and viral protein expression in a dose-dependent manner. We also observed that curcumin exhibited direct virucidal abilities in a dose-, temperature- and time-dependent manner. Furthermore, time-of-addition assays showed that curcumin mainly acted in the early phase of TGEV replication. Notably, in an adsorption assay, curcumin at 40 µM resulted in a reduction in viral titres of 3.55 log TCID50 ml-1, indicating that curcumin possesses excellent inhibitory effects on the adsorption of TGEV. Collectively, we demonstrate for the first time that curcumin has virucidal activity and virtual inhibition against TGEV, suggesting that curcumin might be a candidate drug for effective control of TGEV infection.
Collapse
Affiliation(s)
- Yaoming Li
- Hubei Engineering Research Center of Viral Vector, Applied Biotechnology Research Center, Wuhan University of Bioengineering, Wuhan 30415, PR China
| | - Jing Wang
- Hubei Engineering Research Center of Viral Vector, Applied Biotechnology Research Center, Wuhan University of Bioengineering, Wuhan 30415, PR China
| | - Yinchuan Liu
- Hubei Engineering Research Center of Viral Vector, Applied Biotechnology Research Center, Wuhan University of Bioengineering, Wuhan 30415, PR China
| | - Xiang Luo
- Hubei Engineering Research Center of Viral Vector, Applied Biotechnology Research Center, Wuhan University of Bioengineering, Wuhan 30415, PR China
| | - Weiqiang Lei
- Hubei Engineering Research Center of Viral Vector, Applied Biotechnology Research Center, Wuhan University of Bioengineering, Wuhan 30415, PR China
| | - Lilan Xie
- Hubei Engineering Research Center of Viral Vector, Applied Biotechnology Research Center, Wuhan University of Bioengineering, Wuhan 30415, PR China
| |
Collapse
|
66
|
Goh VSL, Mok CK, Chu JJH. Antiviral Natural Products for Arbovirus Infections. Molecules 2020; 25:molecules25122796. [PMID: 32560438 PMCID: PMC7356825 DOI: 10.3390/molecules25122796] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 12/14/2022] Open
Abstract
Over the course of the last 50 years, the emergence of several arboviruses have resulted in countless outbreaks globally. With a high proportion of infections occurring in tropical and subtropical regions where arthropods tend to be abundant, Asia in particular is a region that is heavily affected by arboviral diseases caused by dengue, Japanese encephalitis, West Nile, Zika, and chikungunya viruses. Major gaps in protection against the most significant emerging arboviruses remains as there are currently no antivirals available, and vaccines are only available for some. A potential source of antiviral compounds could be discovered in natural products—such as vegetables, fruits, flowers, herbal plants, marine organisms and microorganisms—from which various compounds have been documented to exhibit antiviral activities and are expected to have good tolerability and minimal side effects. Polyphenols and plant extracts have been extensively studied for their antiviral properties against arboviruses and have demonstrated promising results. With an abundance of natural products to screen for new antiviral compounds, it is highly optimistic that natural products will continue to play an important role in contributing to antiviral drug development and in reducing the global infection burden of arboviruses.
Collapse
Affiliation(s)
- Vanessa Shi Li Goh
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore;
- Infectious Disease Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Chee-Keng Mok
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore;
- Infectious Disease Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Correspondence: (C.-K.M.); (J.J.H.C.)
| | - Justin Jang Hann Chu
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore;
- Infectious Disease Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Collaborative and Translation Unit for HFMD, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
- Correspondence: (C.-K.M.); (J.J.H.C.)
| |
Collapse
|
67
|
Roumy V, Ruiz L, Ruiz Macedo JC, Gutierrez-Choquevilca AL, Samaillie J, Encinas LA, Mesia WR, Ricopa Cotrina HE, Rivière C, Sahpaz S, Bordage S, Garçon G, Dubuisson J, Anthérieu S, Seron K, Hennebelle T. Viral hepatitis in the Peruvian Amazon: Ethnomedical context and phytomedical resource. JOURNAL OF ETHNOPHARMACOLOGY 2020; 255:112735. [PMID: 32147478 DOI: 10.1016/j.jep.2020.112735] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/25/2020] [Accepted: 03/01/2020] [Indexed: 05/25/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE An extensive ethnopharmacological survey was carried out in the Peruvian Amazonian district of Loreto with informants of various cultural origins from the surroundings of Iquitos (capital city of Loreto) and from 15 isolated riverine Quechua communities of the Pastaza River. A close attention was paid to the medical context and plant therapy, leading to the selection of 35 plant species (45 extracts). The extracts were tested for antiviral activity against HCV with counting of Huh-7 cellular death in case of toxicity, and cytotoxicity was evaluated in HepG2 cells. AIM OF THE STUDY The aim of the study was to inventory the plants used against hepatitis in Loreto, then to evaluate their antiviral activity and to suggest a way to improve local therapeutic strategy against viral hepatitis, which is a fatal disease that is still increasing in this area. MATERIALS AND METHODS An ethnographic survey was carried out using "participant-observation" methodology and focusing on plant therapy against hepatitis including associated remedies. 45 parts of plant were extracted with methanol and tested in vitro for anti-HCV activity in 96-well plate, using HCV cell culture system with immunofluorescent detection assisted by automated confocal microscopy. Toxicity of plant extracts was also evaluated in microplates on hepatic cells by immunofluorescent detection, for the Huh-7 nuclei viability, and by UV-absorbance measurement of MTT formazan for cytotoxicity in HepG2 cells. RESULTS In vitro assay revealed interesting activity of 18 extracts (50% infection inhibition at 25 μg/mL) with low cytotoxicity for 15 of them. Result analysis showed that at least 30% of HCV virus were inhibited at 25 μg/mL for 60% of the plant extracts. Moreover, the ethnomedical survey showed that remedies used with low and accurate dosing as targeted therapy against hepatitis are usually more active than species indicated with more flexible dosing to alleviate symptoms of hepatic diseases. CONCLUSION Together with bibliographic data analysis, this study supported the traditional medicinal uses of many plants and contributed to a better understanding of the local medical system. It also permitted to refine the therapeutic plant indications regarding patients' liver injuries and vulnerability. Only 2 of the 15 most active plant species have already been studied for antiviral activity against hepatitis suggesting new avenues to be followed for the 13 other species.
Collapse
Affiliation(s)
- Vincent Roumy
- Univ. Lille, INRA, YNCREA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394-ICV-Institut Charles Viollette, F-59000, Lille, France.
| | - Lastenia Ruiz
- Laboratorio de Investigación de Productos Naturales Antiparasitarios de la Amazonia (LIPNAA), Universidad Nacional de la Amazonía Peruana (UNAP), Centro de Investigaciones de Recursos Naturales de la Amazonía (CIRNA), Nuevo San Lorenzo, Iquitos, Perú
| | - Juan Celidonio Ruiz Macedo
- Herbarium de la Amazonía Peruana Amazonense de la Universidad Nacional de la Amazonía Peruana (UNAP), Nanay con Pevas, Iquitos, Perú
| | - Andrea-Luz Gutierrez-Choquevilca
- Ecole Pratique des Hautes Etudes, EPHE PSL, Laboratoire d'anthropologie sociale (UMR 7130, Collège de France, 75005, Paris France)
| | - Jennifer Samaillie
- Univ. Lille, INRA, YNCREA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394-ICV-Institut Charles Viollette, F-59000, Lille, France
| | - Leonor Arévalo Encinas
- Laboratorio de Investigación de Productos Naturales Antiparasitarios de la Amazonia (LIPNAA), Universidad Nacional de la Amazonía Peruana (UNAP), Centro de Investigaciones de Recursos Naturales de la Amazonía (CIRNA), Nuevo San Lorenzo, Iquitos, Perú
| | - Wilfredo Ruiz Mesia
- Laboratorio de Investigación de Productos Naturales Antiparasitarios de la Amazonia (LIPNAA), Universidad Nacional de la Amazonía Peruana (UNAP), Centro de Investigaciones de Recursos Naturales de la Amazonía (CIRNA), Nuevo San Lorenzo, Iquitos, Perú
| | - Hivelli Ericka Ricopa Cotrina
- Laboratorio de Investigación de Productos Naturales Antiparasitarios de la Amazonia (LIPNAA), Universidad Nacional de la Amazonía Peruana (UNAP), Centro de Investigaciones de Recursos Naturales de la Amazonía (CIRNA), Nuevo San Lorenzo, Iquitos, Perú
| | - Céline Rivière
- Univ. Lille, INRA, YNCREA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394-ICV-Institut Charles Viollette, F-59000, Lille, France
| | - Sevser Sahpaz
- Univ. Lille, INRA, YNCREA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394-ICV-Institut Charles Viollette, F-59000, Lille, France
| | - Simon Bordage
- Univ. Lille, INRA, YNCREA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394-ICV-Institut Charles Viollette, F-59000, Lille, France
| | - Guillaume Garçon
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, EA 4483-IMPECS-IMPact de l'Environnement Chimique sur la Santé humaine, F-59000, Lille France
| | - Jean Dubuisson
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL, Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Sebastien Anthérieu
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, EA 4483-IMPECS-IMPact de l'Environnement Chimique sur la Santé humaine, F-59000, Lille France
| | - Karin Seron
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL, Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Thierry Hennebelle
- Univ. Lille, INRA, YNCREA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394-ICV-Institut Charles Viollette, F-59000, Lille, France
| |
Collapse
|
68
|
Animal Models Used in Hepatitis C Virus Research. Int J Mol Sci 2020; 21:ijms21113869. [PMID: 32485887 PMCID: PMC7312079 DOI: 10.3390/ijms21113869] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 02/06/2023] Open
Abstract
The narrow range of species permissive to infection by hepatitis C virus (HCV) presents a unique challenge to the development of useful animal models for studying HCV, as well as host immune responses and development of chronic infection and disease. Following earlier studies in chimpanzees, several unique approaches have been pursued to develop useful animal models for research while avoiding the important ethical concerns and costs inherent in research with chimpanzees. Genetically related hepatotropic viruses that infect animals are being used as surrogates for HCV in research studies; chimeras of these surrogate viruses harboring specific regions of the HCV genome are being developed to improve their utility for vaccine testing. Concurrently, genetically humanized mice are being developed and continually advanced using human factors known to be involved in virus entry and replication. Further, xenotransplantation of human hepatocytes into mice allows for the direct study of HCV infection in human liver tissue in a small animal model. The current advances in each of these approaches are discussed in the present review.
Collapse
|
69
|
Loutfy SA, Elberry MH, Farroh KY, Mohamed HT, Mohamed AA, Mohamed EB, Faraag AHI, Mousa SA. Antiviral Activity of Chitosan Nanoparticles Encapsulating Curcumin Against Hepatitis C Virus Genotype 4a in Human Hepatoma Cell Lines. Int J Nanomedicine 2020; 15:2699-2715. [PMID: 32368050 PMCID: PMC7184126 DOI: 10.2147/ijn.s241702] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/23/2020] [Indexed: 12/17/2022] Open
Abstract
Purpose Current direct-acting antiviral agents for treatment of hepatitis C virus genotype 4a (HCV-4a) have been reported to cause adverse effects, and therefore less toxic antivirals are needed. This study investigated the role of curcumin chitosan (CuCs) nanocomposite as a potential anti-HCV-4a agent in human hepatoma cells Huh7. Methods Docking of curcumin and CuCs nanocomposite and binding energy calculations were carried out. Chitosan nanoparticles (CsNPs) and CuCs nanocomposite were prepared with an ionic gelation method and characterized with TEM, zeta size and potential, and HPLC to calculate encapsulation efficiency. Cytotoxicity studies were performed on Huh7 cells using MTT assay and confirmed with cellular and molecular assays. Anti-HCV-4a activity was determined using real-time PCR and Western blot. Results The strength of binding interactions between protein ligand complexes gave scores with NS3 protease, NS5A polymerase, and NS5B polymerase of -124.91, -159.02, and -129.16, for curcumin respectively, and -68.51, -54.52, and -157.63 for CuCs nanocomposite, respectively. CuCs nanocomposite was prepared at sizes 29-39.5 nm and charges of 33 mV. HPLC detected 4% of curcumin encapsulated into CsNPs. IC50 was 8 µg/mL for curcumin and 25 µg/mL for the nanocomposite on Huh7 but was 25.8 µg/mL and 34 µg/mL on WISH cells. CsNPs had no cytotoxic effect on tested cell lines. Apoptotic genes' expression revealed the caspase-dependent pathway mechanism. CsNPs and CuCs nanocomposite demonstrated 100% inhibition of viral entry and replication, which was confirmed with HCV core protein expression. Conclusion CuCs nanocomposite inhibited HCV-4a entry and replication compared to curcumin alone, suggesting its potential role as an effective therapeutic agent.
Collapse
Affiliation(s)
- Samah A Loutfy
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt.,Nanotechnology Research Center, British University, Cairo, Egypt
| | - Mostafa H Elberry
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Khaled Yehia Farroh
- Nanotechnology and Advanced Materials Central Lab, Agricultural Research Center, Giza, Egypt
| | - Hossam Taha Mohamed
- Faculty of Biotechnology, October University for Modern Sciences and Arts, 6th October, Giza, Egypt.,Department of Zoology, Faculty of Science,Cairo University, Giza, Egypt
| | - Aya A Mohamed
- Faculty of Biotechnology, October University for Modern Sciences and Arts, 6th October, Giza, Egypt
| | - ElChaimaa B Mohamed
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Ahmed Hassan Ibrahim Faraag
- Botany and Microbiology Department, Bioinformatics Center, Faculty of Science, Helwan University, Cairo, Egypt
| | - Shaker A Mousa
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA
| |
Collapse
|
70
|
Patwardhan M, Morgan MT, Dia V, D'Souza DH. Heat sensitization of hepatitis A virus and Tulane virus using grape seed extract, gingerol and curcumin. Food Microbiol 2020; 90:103461. [PMID: 32336357 DOI: 10.1016/j.fm.2020.103461] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 09/23/2019] [Accepted: 02/10/2020] [Indexed: 11/30/2022]
Abstract
Human noroviruses (HNoV) and hepatitis A virus (HAV) are predominantly linked to foodborne outbreaks worldwide. As cell-culture systems to propagate HNoV in laboratories are not easily available, Tulane virus (TV) is used as a cultivable HNoV surrogate to determine inactivation. Heat-sensitization of HAV and TV by "generally recognized as safe'' (GRAS) substances can potentially reduce their time-temperature inactivation parameters during processing to ensure food safety. Curcumin, gingerol (from ginger), and grape seed extract (GSE) reportedly have anti-inflammatory, immune-modulating and antiviral properties. The objective of this study was to determine and compare the D-values and z-values of HAV and TV at 52-68 °C with or without curcumin (0.015 mg/ml), gingerol (0.1 mg/ml), or GSE (1 mg/ml) in 2-ml glass vials. HAV at ~7 log PFU/ml and TV at ~6 log PFU/ml were diluted in phosphate buffered saline (PBS) and added to two sets of six 2-mL sterile glass vials. One set served as the control and the second set had the three extracts individually added for thermal treatments in a circulating water bath for 0-10 min. The D-values for TV in PBS ranged from 4.55 ± 0.28 to 1.08 ± 0.16 min, and for HAV in PBS ranged from to 9.21 ± 0.24 to 0.67 ± 0.19 min at 52-68 °C. Decreased D-values (52-58 °C) for TV with curcumin ranging from 4.32 ± 0.25 to 0.62 ± 0.17 min, gingerol from 4.09 ± 0.18 to 0.72 ± 0.09 min and GSE from 3.82 ± 0.18 to 0.80 ± 0.07 min, with similar trends for HAV were observed. The linear model showed significant differences (p < 0.05) between the D-values of HAV and TV with and without plant extracts for most tested temperatures. This suggests that GRAS substances can potentially lower temperature and time regimens needed to inactivate HAV and TV.
Collapse
Affiliation(s)
- Mayuri Patwardhan
- Department of Food Science, 2600 River Drive, University of Tennessee, Knoxville, TN, 37996, USA
| | - Mark T Morgan
- Department of Food Science, 2600 River Drive, University of Tennessee, Knoxville, TN, 37996, USA
| | - Vermont Dia
- Department of Food Science, 2600 River Drive, University of Tennessee, Knoxville, TN, 37996, USA
| | - Doris H D'Souza
- Department of Food Science, 2600 River Drive, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
71
|
Shanmugarajan D, P. P, Kumar BRP, Suresh B. Curcumin to inhibit binding of spike glycoprotein to ACE2 receptors: computational modelling, simulations, and ADMET studies to explore curcuminoids against novel SARS-CoV-2 targets. RSC Adv 2020; 10:31385-31399. [PMID: 35520671 PMCID: PMC9056388 DOI: 10.1039/d0ra03167d] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/08/2020] [Indexed: 11/21/2022] Open
Abstract
The significant role of curcumin against SARS-CoV-2 drug targets to thwart virus replication and binding into the host system using the computational biology paradigm approach.
Collapse
Affiliation(s)
- Dhivya Shanmugarajan
- Department of Pharmaceutical Chemistry
- JSS College of Pharmacy
- JSS Academy of Higher Education & Research
- Mysuru 570 015
- India
| | - Prabitha P.
- Department of Pharmaceutical Chemistry
- JSS College of Pharmacy
- JSS Academy of Higher Education & Research
- Mysuru 570 015
- India
| | - B. R. Prashantha Kumar
- Department of Pharmaceutical Chemistry
- JSS College of Pharmacy
- JSS Academy of Higher Education & Research
- Mysuru 570 015
- India
| | - B. Suresh
- JSS Academy of Higher Education & Research
- Mysuru 570 015
- India
| |
Collapse
|
72
|
Chen D, Wu C, Qiu YB, Chu Q, Sun XQ, Wang X, Chen JL, Lu MD, Chen DZ, Pang QF. Curcumin ameliorates hepatic chronic inflammation induced by bile duct obstruction in mice through the activation of heme oxygenase-1. Int Immunopharmacol 2019; 78:106054. [PMID: 31812069 DOI: 10.1016/j.intimp.2019.106054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/24/2019] [Accepted: 11/13/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Dan Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China
| | - Chen Wu
- Department of Physiopathology, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China
| | - Yu-Bao Qiu
- Department of Physiopathology, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China
| | - Qing Chu
- 1623 Beijing Road(W), Joint Management Office Shanghai Medical Association, Shanghai 200040, People's Republic of China
| | - Xue-Qian Sun
- Department of Physiopathology, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China
| | - Xue Wang
- Department of Physiopathology, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China
| | - Jun-Liang Chen
- Department of Physiopathology, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China
| | - Mu-Dan Lu
- The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi 214002, Jiangsu Province, People's Republic of China
| | - Dao-Zhen Chen
- The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi 214002, Jiangsu Province, People's Republic of China.
| | - Qing-Feng Pang
- Department of Physiopathology, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China.
| |
Collapse
|
73
|
Lobo de Sá FD, Butkevych E, Nattramilarasu PK, Fromm A, Mousavi S, Moos V, Golz JC, Stingl K, Kittler S, Seinige D, Kehrenberg C, Heimesaat MM, Bereswill S, Schulzke JD, Bücker R. Curcumin Mitigates Immune-Induced Epithelial Barrier Dysfunction by Campylobacter jejuni. Int J Mol Sci 2019; 20:ijms20194830. [PMID: 31569415 PMCID: PMC6802366 DOI: 10.3390/ijms20194830] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/19/2019] [Accepted: 09/26/2019] [Indexed: 12/26/2022] Open
Abstract
Campylobacter jejuni (C. jejuni) is the most common cause of foodborne gastroenteritis worldwide. The bacteria induce diarrhea and inflammation by invading the intestinal epithelium. Curcumin is a natural polyphenol from turmeric rhizome of Curcuma longa, a medical plant, and is commonly used in curry powder. The aim of this study was the investigation of the protective effects of curcumin against immune-induced epithelial barrier dysfunction in C. jejuni infection. The indirect C. jejuni-induced barrier defects and its protection by curcumin were analyzed in co-cultures with HT-29/B6-GR/MR epithelial cells together with differentiated THP-1 immune cells. Electrophysiological measurements revealed a reduction in transepithelial electrical resistance (TER) in infected co-cultures. An increase in fluorescein (332 Da) permeability in co-cultures as well as in the germ-free IL-10−/− mouse model after C. jejuni infection was shown. Curcumin treatment attenuated the C. jejuni-induced increase in fluorescein permeability in both models. Moreover, apoptosis induction, tight junction redistribution, and an increased inflammatory response—represented by TNF-α, IL-1β, and IL-6 secretion—was observed in co-cultures after infection and reversed by curcumin. In conclusion, curcumin protects against indirect C. jejuni-triggered immune-induced barrier defects and might be a therapeutic and protective agent in patients.
Collapse
Affiliation(s)
- Fábia Daniela Lobo de Sá
- Institute of Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité-Universitätsmedizin Berlin, 12203 Berlin, Germany.
| | - Eduard Butkevych
- Institute of Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité-Universitätsmedizin Berlin, 12203 Berlin, Germany.
| | - Praveen Kumar Nattramilarasu
- Institute of Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité-Universitätsmedizin Berlin, 12203 Berlin, Germany.
| | - Anja Fromm
- Institute of Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité-Universitätsmedizin Berlin, 12203 Berlin, Germany.
| | - Soraya Mousavi
- Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, 14195 Berlin, Germany.
| | - Verena Moos
- Medical Department, Division of Gastroenterology, Infectiology and Rheumatology, Charité-Universitätsmedizin Berlin, 12203 Berlin, Germany.
| | - Julia C Golz
- German Federal Institute for Risk Assessment (BfR), Department of Biological Safety, National Reference Laboratory for Campylobacter, 12277 Berlin, Germany.
| | - Kerstin Stingl
- German Federal Institute for Risk Assessment (BfR), Department of Biological Safety, National Reference Laboratory for Campylobacter, 12277 Berlin, Germany.
| | - Sophie Kittler
- University of Veterinary Medicine Hannover, Research Center for Emerging Infections and Zoonoses, 30559 Hannover, Germany.
| | - Diana Seinige
- University of Veterinary Medicine Hannover, Research Center for Emerging Infections and Zoonoses, 30559 Hannover, Germany.
| | - Corinna Kehrenberg
- Institute for Veterinary Food Science, Justus-Liebig-University, 35392 Giessen, Germany.
| | - Markus M Heimesaat
- Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, 14195 Berlin, Germany.
| | - Stefan Bereswill
- Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, 14195 Berlin, Germany.
| | - Jörg-Dieter Schulzke
- Institute of Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité-Universitätsmedizin Berlin, 12203 Berlin, Germany.
| | - Roland Bücker
- Institute of Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité-Universitätsmedizin Berlin, 12203 Berlin, Germany.
| |
Collapse
|
74
|
Banda DH, Perin PM, Brown RJP, Todt D, Solodenko W, Hoffmeyer P, Kumar Sahu K, Houghton M, Meuleman P, Müller R, Kirschning A, Pietschmann T. A central hydrophobic E1 region controls the pH range of hepatitis C virus membrane fusion and susceptibility to fusion inhibitors. J Hepatol 2019; 70:1082-1092. [PMID: 30769006 DOI: 10.1016/j.jhep.2019.01.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/14/2019] [Accepted: 01/29/2019] [Indexed: 02/09/2023]
Abstract
BACKGROUND & AIMS Hepatitis C virus (HCV) infection causes chronic liver disease. Antivirals have been developed and cure infection. However, resistance can emerge and salvage therapies with alternative modes of action could be useful. Several licensed drugs have emerged as HCV entry inhibitors and are thus candidates for drug repurposing. We aimed to dissect their mode of action, identify improved derivatives and determine their viral targets. METHODS HCV entry inhibition was tested for a panel of structurally related compounds, using chimeric viruses representing diverse genotypes, in addition to viruses containing previously determined resistance mutations. Chemical modeling and synthesis identified improved derivatives, while generation of susceptible and non-susceptible chimeric viruses pinpointed E1 determinants of compound sensitivity. RESULTS Molecules of the diphenylpiperazine, diphenylpiperidine, phenothiazine, thioxanthene, and cycloheptenepiperidine chemotypes inhibit HCV infection by interfering with membrane fusion. These molecules and a novel p-methoxy-flunarizine derivative with improved efficacy preferentially inhibit genotype 2 viral strains. Viral residues within a central hydrophobic region of E1 (residues 290-312) control susceptibility. At the same time, viral features in this region also govern pH-dependence of viral membrane fusion. CONCLUSIONS Small molecules from different chemotypes related to flunarizine preferentially inhibit HCV genotype 2 membrane fusion. A hydrophobic region proximal to the putative fusion loop controls sensitivity to these drugs and the pH range of membrane fusion. An algorithm considering viral features in this region predicts viral sensitivity to membrane fusion inhibitors. Resistance to flunarizine correlates with more relaxed pH requirements for fusion. LAY SUMMARY This study describes diverse compounds that act as HCV membrane fusion inhibitors. It defines viral properties that determine sensitivity to these molecules and thus provides information to identify patients that may benefit from treatment with membrane fusion inhibitors.
Collapse
Affiliation(s)
- Dominic H Banda
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Feodor-Lynen-Str. 7, 30625 Hannover, Germany
| | - Paula M Perin
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Feodor-Lynen-Str. 7, 30625 Hannover, Germany
| | - Richard J P Brown
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Feodor-Lynen-Str. 7, 30625 Hannover, Germany
| | - Daniel Todt
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Feodor-Lynen-Str. 7, 30625 Hannover, Germany; Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Wladimir Solodenko
- Institute of Organic Chemistry and Center of Biomolecular Drug Research (BMWZ), Leibniz Universität, Hannover, Germany
| | - Patrick Hoffmeyer
- Institute of Organic Chemistry and Center of Biomolecular Drug Research (BMWZ), Leibniz Universität, Hannover, Germany
| | - Kamlesh Kumar Sahu
- Li Ka Shing Institute of Virology, Department of Medical Microbiology & Immunology, University of Alberta, Edmonton, Canada
| | - Michael Houghton
- Li Ka Shing Institute of Virology, Department of Medical Microbiology & Immunology, University of Alberta, Edmonton, Canada
| | - Philip Meuleman
- Laboratory of Liver Infectious Diseases, Ghent University, Ghent, Belgium
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland, Saarbrücken, Germany
| | - Andreas Kirschning
- Institute of Organic Chemistry and Center of Biomolecular Drug Research (BMWZ), Leibniz Universität, Hannover, Germany
| | - Thomas Pietschmann
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Feodor-Lynen-Str. 7, 30625 Hannover, Germany; German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 30625 Hannover, Germany.
| |
Collapse
|
75
|
Praditya D, Kirchhoff L, Brüning J, Rachmawati H, Steinmann J, Steinmann E. Anti-infective Properties of the Golden Spice Curcumin. Front Microbiol 2019; 10:912. [PMID: 31130924 PMCID: PMC6509173 DOI: 10.3389/fmicb.2019.00912] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/10/2019] [Indexed: 01/02/2023] Open
Abstract
The search for novel anti-infectives is one of the most important challenges in natural product research, as diseases caused by bacteria, viruses, and fungi are influencing the human society all over the world. Natural compounds are a continuing source of novel anti-infectives. Accordingly, curcumin, has been used for centuries in Asian traditional medicine to treat various disorders. Numerous studies have shown that curcumin possesses a wide spectrum of biological and pharmacological properties, acting, for example, as anti-inflammatory, anti-angiogenic and anti-neoplastic, while no toxicity is associated with the compound. Recently, curcumin’s antiviral and antibacterial activity was investigated, and it was shown to act against various important human pathogens like the influenza virus, hepatitis C virus, HIV and strains of Staphylococcus, Streptococcus, and Pseudomonas. Despite the potency, curcumin has not yet been approved as a therapeutic antiviral agent. This review summarizes the current knowledge and future perspectives of the antiviral, antibacterial, and antifungal effects of curcumin.
Collapse
Affiliation(s)
- Dimas Praditya
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany.,Institute of Experimental Virology, Twincore - Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover and The Helmholtz Centre for Infection Research, Hanover, Germany.,Research Center for Biotechnology, Indonesian Institute of Science, Cibinong, Indonesia
| | - Lisa Kirchhoff
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Janina Brüning
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
| | - Heni Rachmawati
- School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia.,Research Center for Nanosciences and Nanotechnology, Bandung Institute of Technology, Bandung, Indonesia
| | - Joerg Steinmann
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Institute of Clinical Hygiene, Medical Microbiology and Infectiology, Klinikum Nürnberg, Paracelsus Medical University, Nuremberg, Germany
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
76
|
Shakeri A, Panahi Y, Johnston TP, Sahebkar A. Biological properties of metal complexes of curcumin. Biofactors 2019; 45:304-317. [PMID: 31018024 DOI: 10.1002/biof.1504] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 02/28/2019] [Accepted: 03/02/2019] [Indexed: 12/12/2022]
Abstract
Curcumin, a naturally occurring phenolic compound isolated from Curcuma longa, has different pharmacological effects, including antiinflammatory, antimicrobial, antioxidant, and anticancer properties. However, curcumin has been found to have a limited bioavailability because of its hydrophobic nature, low-intestinal absorption, and rapid metabolism. Therefore, there is a need for enhancing the bioavailability and its solubility in water in order to increase the pharmacological effects of this bioactive compound. One strategy is curcumin complexation with transition metals to circumvent the abovementioned problems. Curcumin can undergo chelation with various metal ions to form metallo-complexes of curcumin, which may show greater effects as compared with curcumin alone. Promising results with metal curcumin complexes have been observed with regard to antioxidant, anticancer, and antimicrobial activity, as well as in treatment of Alzheimer's disease. The present review provides a concise summary of the characterization and biological properties of curcumin-metal complexes. © 2019 BioFactors, 45(3):304-317, 2019.
Collapse
Affiliation(s)
- Abolfazl Shakeri
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Yunes Panahi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
77
|
Patel SS, Acharya A, Ray RS, Agrawal R, Raghuwanshi R, Jain P. Cellular and molecular mechanisms of curcumin in prevention and treatment of disease. Crit Rev Food Sci Nutr 2019; 60:887-939. [PMID: 30632782 DOI: 10.1080/10408398.2018.1552244] [Citation(s) in RCA: 262] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Curcumin is a naturally occurring polyphenolic compound present in rhizome of Curcuma longa belonging to the family zingiberaceae. Growing experimental evidence revealed that curcumin exhibit multitarget biological implications signifying its crucial role in health and disease. The current review highlights the recent progress and mechanisms underlying the wide range of pharmacological effects of curcumin against numerous diseases like neuronal, cardiovascular, metabolic, kidney, endocrine, skin, respiratory, infectious, gastrointestinal diseases and cancer. The ability of curcumin to modulate the functions of multiple signal transductions are linked with attenuation of acute and chronic diseases. Numerous preclinical and clinical studies have revealed that curcumin modulates several molecules in cell signal transduction pathway including PI3K, Akt, mTOR, ERK5, AP-1, TGF-β, Wnt, β-catenin, Shh, PAK1, Rac1, STAT3, PPARγ, EBPα, NLRP3 inflammasome, p38MAPK, Nrf2, Notch-1, AMPK, TLR-4 and MyD-88. Curcumin has a potential to prevent and/or manage various diseases due to its anti-inflammatory, anti-oxidant and anti-apoptotic properties with an excellent safety profile. In contrast, the anti-cancer effects of curcumin are reflected due to induction of growth arrest and apoptosis in various premalignant and malignant cells. This review also carefully emphasized the pharmacokinetics of curcumin and its interaction with other drugs. Clinical studies have shown that curcumin is safe at the doses of 12 g/day but exhibits poor systemic bioavailability. The use of adjuvant like piperine, liposomal curcumin, curcumin nanoparticles and curcumin phospholipid complex has shown enhanced bioavailability and therapeutic potential. Further studies are warranted to prove the potential of curcumin against various ailments.
Collapse
Affiliation(s)
- Sita Sharan Patel
- Department of Pharmacy, Sagar Institute of Research and Technology, Bhopal, India
| | - Ashish Acharya
- Department of Pharmacy, Sagar Institute of Research and Technology, Bhopal, India
| | - R S Ray
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Ritesh Agrawal
- Department of Pharmacy, Sagar Institute of Research and Technology, Bhopal, India
| | - Ramsaneh Raghuwanshi
- Department of Pharmacy, Sagar Institute of Research and Technology, Bhopal, India
| | - Priyal Jain
- Department of Pharmacy, Sagar Institute of Research and Technology, Bhopal, India
| |
Collapse
|
78
|
Park SB, Boyer A, Hu Z, Le D, Liang TJ. Discovery and characterization of a novel HCV inhibitor targeting the late stage of HCV life cycle. Antivir Ther 2019; 24:371-381. [PMID: 30880685 PMCID: PMC11542171 DOI: 10.3851/imp3303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND Currently approved anti-HCV drugs, the direct-acting antivirals (DAAs), are highly effective and target the viral RNA replication stage of the HCV life cycle. Due to high mutation rate of HCV, drug resistant variants can arise during DAA monotherapy. Thus, a combination of DAAs is necessary to achieve a high response rate. Novel HCV inhibitors targeting the HCV late stage such as assembly and release may further improve combination therapy with the DAAs. Here we characterize one late stage-targeting candidate compound, 6-(4-chloro-3-methylphenoxy)-pyridin-3-amine (MLS000833705). METHODS We treated HCV-infected cells with MLS000833705 and other HCV inhibitors and examined HCV RNA and infectious titres. We evaluated the colocalization of HCV core and lipid droplets by confocal microscopy. We performed HCV core-proteinase K digestion assay and several lipid assays to study the mechanism of MLS000833705. RESULTS We showed that MLS000833705 decreased extracellular HCV RNA levels more than intracellular HCV RNA levels in HCV infectious cell culture. Similarly, MLS000833705 reduced infectious HCV titres substantially more in the culture supernatant than intracellularly. Confocal microscopy showed that MLS000833705 did not affect the colocalization of HCV core protein with cellular lipid droplets where HCV assembles. HCV core-proteinase K digestion assay showed that MLS000833705 inhibited the envelopment of HCV capsid. CONCLUSIONS Our study demonstrates that MLS000833705 is a late-stage HCV inhibitor targeting HCV morphogenesis and maturation. Therefore, MLS000833705 can be used as a molecular probe to study HCV maturation and secretion and possibly guide development of a new class of HCV antivirals.
Collapse
Affiliation(s)
- Seung Bum Park
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Audrey Boyer
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Zongyi Hu
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Derek Le
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - T Jake Liang
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
79
|
Li H, Huang MH, Jiang JD, Peng ZG. Hepatitis C: From inflammatory pathogenesis to anti-inflammatory/hepatoprotective therapy. World J Gastroenterol 2018; 24:5297-5311. [PMID: 30598575 PMCID: PMC6305530 DOI: 10.3748/wjg.v24.i47.5297] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/27/2018] [Accepted: 12/01/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) infection commonly causes progressive liver diseases that deteriorate from chronic inflammation to fibrosis, cirrhosis and even to hepatocellular carcinoma. A long-term, persistent and uncontrolled inflammatory response is a hallmark of these diseases and further leads to hepatic injury and more severe disease progression. The levels of inflammatory cytokines and chemokines change with the states of infection and treatment, and therefore, they may serve as candidate biomarkers for disease progression and therapeutic effects. The mechanisms of HCV-induced inflammation involve classic pathogen pattern recognition, inflammasome activation, intrahepatic inflammatory cascade response, and oxidative and endoplasmic reticulum stress. Direct-acting antivirals (DAAs) are the first-choice therapy for effectively eliminating HCV, but DAAs alone are not sufficient to block the uncontrolled inflammation and severe liver injury in HCV-infected individuals. Some patients who achieve a sustained virologic response after DAA therapy are still at a long-term risk for progression to liver cirrhosis and hepatocellular carcinoma. Therefore, coupling with anti-inflammatory/hepatoprotective agents with anti-HCV effects is a promising therapeutic regimen for these patients during or after treatment with DAAs. In this review, we discuss the relationship between inflammatory mediators and HCV infection, summarize the mechanisms of HCV-induced inflammation, and describe the potential roles of anti-inflammatory/hepatoprotective drugs with anti-HCV activity in the treatment of advanced HCV infection.
Collapse
Affiliation(s)
- Hu Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Meng-Hao Huang
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Jian-Dong Jiang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zong-Gen Peng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
80
|
Wahyuni TS, permatasari AA, Widiandani T, Fuad A, Widyawaruyanti A, Aoki-Utsubo C, Hotta H. Antiviral Activities of Curcuma Genus against Hepatitis C Virus. Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801301204] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Hepatitis C virus (HCV) infection is one of the major public health problems in the world. Even though the new agents are shown to increase the sustained virology response, however, there are still many people who cannot access the therapy due to the high cost. Moreover, the emergence of resistance and side effects presented the necessity to develop alternative treatment agents for HCV infection. Plants of the genus of curcuma are popular among traditional medicines in the world, including Indonesia. They have been used for many herb remedies and reported to possess many biological activities. Several plants from the curcuma genus were known as treatment agents in liver disease and jaundice. Our current study determines antiviral activities of Curcuma domestica, Curcuma xanthorrhiza, and Curcuma heyneana against HCV and further examines the mechanism of actions. Antiviral activity was performed by in vitro culture cells using Huh 7.5it cells and treated with the mixture of extract and virus JFH1. The effects of extracts in HCV life cycle were determined by mode of action analysis to examine the action of substances in the entry or post entry steps. The results revealed that ethanol extract of C. domestica, C. xanthorrhiza, and C. heyneana showed strong anti-HCV activities with IC50 values of 1.68 ± 0.05, 4.93 ± 0.42 and 5.49 ± 0.59 μg/mL, respectively without any cytotoxicity effect. Mode of action analysis demonstrated that of C. domestica and C. heyneana exhibit HCV in the entry step, while C. xanthorrhiza inhibit in the entry and post entry steps of HCV life cycle. Docking analysis to predict the interaction of curcumin, the main compound of curcuma genus, revealed a strong interaction between curcumin and 4GAG receptor, a protein involved in the entry step of HCV infection. Moreover, it was also reported to possess good interaction with 4EAW, an HCV NS5B, which plays an important role in HCV replication. These results suggested that C. domestica, C. xanthorrhiza, and C. Heyneana possessed strong inhibition against hepatitis C virus, therefore they may be good candidates for anti-HCV agents.
Collapse
Affiliation(s)
- Tutik Sri Wahyuni
- Department of Pharmacognocy and Phytochemistry, Faculty of Pharmacy, Airlangga University, Surabaya 60115
- Institute of Tropical Disease, Airlangga University, Surabaya 60115, Indonesia
| | | | - Tri Widiandani
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Airlangga University, Surabaya 60115, Indonesia
| | - Achmad Fuad
- Department of Pharmacognocy and Phytochemistry, Faculty of Pharmacy, Airlangga University, Surabaya 60115
- Institute of Tropical Disease, Airlangga University, Surabaya 60115, Indonesia
| | - Aty Widyawaruyanti
- Department of Pharmacognocy and Phytochemistry, Faculty of Pharmacy, Airlangga University, Surabaya 60115
- Institute of Tropical Disease, Airlangga University, Surabaya 60115, Indonesia
| | - Chie Aoki-Utsubo
- Department of International Health, Kobe University Graduate School of Health Sciences, 7-10-2, Tomogaoka, Suma-ku, Kobe 654-0142, Japan
| | - Hak Hotta
- Faculty of Clinical Nutrition and Dietetics, Konan Women's University, 6-2-23 Morikita-machi, Higashinada-ku, Kobe 658-0001, Japan
| |
Collapse
|
81
|
|
82
|
Inhibition of EV71 by curcumin in intestinal epithelial cells. PLoS One 2018; 13:e0191617. [PMID: 29370243 PMCID: PMC5784943 DOI: 10.1371/journal.pone.0191617] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/08/2018] [Indexed: 01/26/2023] Open
Abstract
EV71 is a positive-sense single-stranded RNA virus that belongs to the Picornaviridae family. EV71 infection may cause various symptoms ranging from hand-foot-and-mouth disease to neurological pathological conditions such as aseptic meningitis, ataxia, and acute transverse myelitis. There is currently no effective treatment or vaccine available. Various compounds have been examined for their ability to restrict EV71 replication. However, most experiments have been performed in rhabdomyosarcoma or Vero cells. Since the gastrointestinal tract is the entry site for this pathogen, we anticipated that orally ingested agents may exert beneficial effects by decreasing virus replication in intestinal epithelial cells. In this study, curcumin (diferuloylmethane, C21H20O6), an active ingredient of turmeric (Curcuma longa Linn) with anti-cancer properties, was investigated for its anti-enterovirus activity. We demonstrate that curcumin treatment inhibits viral translation and increases host cell viability. Curcumin does not exert its anti-EV71 effects by modulating virus attachment or virus internal ribosome entry site (IRES) activity. Furthermore, curcumin-mediated regulation of mitogen-activated protein kinase (MAPK) signaling pathways is not involved. We found that protein kinase C delta (PKCδ) plays a role in virus translation in EV71-infected intestinal epithelial cells and that curcumin treatment decreases the phosphorylation of this enzyme. In addition, we show evidence that curcumin also limits viral translation in differentiated human intestinal epithelial cells. In summary, our data demonstrate the anti-EV71 properties of curcumin, suggesting that ingestion of this phytochemical may protect against enteroviral infections.
Collapse
|
83
|
Martin-Benlloch X, Novodomska A, Jacquemin D, Davioud-Charvet E, Elhabiri M. Iron( iii) coordination properties of ladanein, a flavone lead with a broad-spectrum antiviral activity. NEW J CHEM 2018. [DOI: 10.1039/c7nj04867j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The Fe(iii) complexation properties of ladanein, a potent antiviral flavone, and related analogues (negletein and salvigenin), have been studied in solution under quasi-physiological conditions using physico-chemical tools and provided important insights into their stability/reactivity in solution.
Collapse
Affiliation(s)
| | - A. Novodomska
- Université de Strasbourg
- Université de Haute-Alsace
- CNRS
- LIMA
- UMR 7042
| | - D. Jacquemin
- Ceisam Laboratory
- UMR CNRS 6230
- University of Nantes
- 44322 Nantes Cedex3
- France
| | | | - M. Elhabiri
- Université de Strasbourg
- Université de Haute-Alsace
- CNRS
- LIMA
- UMR 7042
| |
Collapse
|
84
|
|
85
|
Hu RW, Carey EJ, Lindor KD, Tabibian JH. Curcumin in Hepatobiliary Disease: Pharmacotherapeutic Properties and Emerging Potential Clinical Applications. Ann Hepatol 2017; 16:835-841. [PMID: 29055920 DOI: 10.5604/01.3001.0010.5273] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Curcumin, an aromatic phytoextract from the turmeric (Curcuma longa) rhizome, has been used for centuries for a variety of purposes, not the least of which is medicinal. A growing body of evidence suggests that curcumin has a broad range of potentially therapeutic pharmacological properties, including anti-inflammatory, anti-fibrotic, and anti-neoplastic effects, among others. Clinical applications of curcumin have been hampered by quality control concerns and limited oral bioavailability, although novel formulations appear to have largely overcome these issues. Recent in vitro and in vivo studies have found that curcumin's cytoprotective and other biological activities may play a role in an array of benign and malignant hepatobiliary conditions, including but not limited to non-alcoholic fatty liver disease, cholestatic liver disease (e.g. primary sclerosing cholangitis), and cholangiocarcinoma. Here we provide an overview of fundamental principles, recent discoveries, and potential clinical hepatobiliary applications of this pleiotropic phytocompound.
Collapse
Affiliation(s)
- Robert W Hu
- Department of Biology, College of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth J Carey
- Division of Gastroenterology and Hepatology, Mayo Clinic, Scottsdale, AZ, USA
| | - Keith D Lindor
- Division of Gastroenterology and Hepatology, Mayo Clinic, Scottsdale, AZ, USA Executive Vice Provost and Dean, College of Health Solutions, Arizona State University, Phoenix, AZ, USA
| | - James H Tabibian
- Division of Gastroenterology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA Division of Gastroenterology, Department of Medicine, Olive View-UCLA Medical Center, Sylmar, CA, USA
| |
Collapse
|
86
|
Du T, Shi Y, Xiao S, Li N, Zhao Q, Zhang A, Nan Y, Mu Y, Sun Y, Wu C, Zhang H, Zhou EM. Curcumin is a promising inhibitor of genotype 2 porcine reproductive and respiratory syndrome virus infection. BMC Vet Res 2017; 13:298. [PMID: 29017487 PMCID: PMC5633875 DOI: 10.1186/s12917-017-1218-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 10/03/2017] [Indexed: 12/12/2022] Open
Abstract
Background Porcine reproductive and respiratory syndrome virus (PRRSV) could lead to pandemic diseases and huge financial losses to the swine industry worldwide. Curcumin, a natural compound, has been reported to serve as an entry inhibitor of hepatitis C virus, chikungunya virus and vesicular stomatitis virus. In this study, we investigated the potential effect of curcumin on early stages of PRRSV infection. Results Curcumin inhibited infection of Marc-145 cells and porcine alveolar macrophages (PAMs) by four different genotype 2 PRRSV strains, but had no effect on the levels of major PRRSV receptor proteins on Marc-145 cells and PAMs or on PRRSV binding to Marc-145 cells. However, curcumin did block two steps of the PRRSV infection process: virus internalization and virus-mediated cell fusion. Conclusions Our results suggested that an inhibition of genotype 2 PRRSV infection by curcumin is virus strain-independent, and mainly inhibited by virus internalization and cell fusion mediated by virus. Collectively, these results demonstrate that curcumin holds promise as a new anti-PRRSV drug.
Collapse
Affiliation(s)
- Taofeng Du
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China.,Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Yunpeng Shi
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China.,Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Shuqi Xiao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China.,Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Na Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China.,Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Qin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China.,Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Angke Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China.,Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Yuchen Nan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China.,Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Yang Mu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China.,Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Yani Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China.,Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Chunyan Wu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China.,Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Hongtao Zhang
- Department of Pathology and Lab Medicine, University of Pennsylvania Perelman School of Medicine, 3620 Hamilton Walk, Philadelphia, PA, 19104, USA
| | - En-Min Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China. .,Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
87
|
Pentagalloylglucose, a highly bioavailable polyphenolic compound present in Cortex moutan, efficiently blocks hepatitis C virus entry. Antiviral Res 2017; 147:19-28. [PMID: 28923507 DOI: 10.1016/j.antiviral.2017.09.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 08/07/2017] [Accepted: 09/13/2017] [Indexed: 01/19/2023]
Abstract
Approximately 142 million people worldwide are infected with hepatitis C virus (HCV). Although potent direct acting antivirals are available, high costs limit access to treatment. Chronic hepatitis C virus infection remains a major cause of orthotopic liver transplantation. Moreover, re-infection of the graft occurs regularly. Antivirals derived from natural sources might be an alternative and cost-effective option to complement therapy regimens for global control of hepatitis C virus infection. We tested the antiviral properties of a mixture of different Chinese herbs/roots named Zhi Bai Di Huang Wan (ZBDHW) and its individual components on HCV. One of the ZBDHW components, Penta-O-Galloyl-Glucose (PGG), was further analyzed for its mode of action in vitro, its antiviral activity in primary human hepatocytes as well as for its bioavailability and hepatotoxicity in mice. ZBDHW, its component Cortex Moutan and the compound PGG efficiently block entry of HCV of all major genotypes and also of the related flavivirus Zika virus. PGG does not disrupt HCV virion integrity and acts primarily during virus attachment. PGG shows an additive effect when combined with the well characterized HCV inhibitor Daclatasvir. Analysis of bioavailability in mice revealed plasma levels above tissue culture IC50 after a single intraperitoneal injection. In conclusion, PGG is a pangenotypic HCV entry inhibitor with high bioavailability. The low cost and wide availability of this compound make it a promising candidate for HCV combination therapies, and also emerging human pathogenic flaviviruses like ZIKV.
Collapse
|
88
|
Wei ZQ, Zhang YH, Ke CZ, Chen HX, Ren P, He YL, Hu P, Ma DQ, Luo J, Meng ZJ. Curcumin inhibits hepatitis B virus infection by down-regulating cccDNA-bound histone acetylation. World J Gastroenterol 2017; 23:6252-6260. [PMID: 28974891 PMCID: PMC5603491 DOI: 10.3748/wjg.v23.i34.6252] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/29/2017] [Accepted: 08/15/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the potential effect of curcumin on hepatitis B virus (HBV) covalently closed circular DNA (cccDNA) and the underlying mechanism. METHODS A HepG2.2.15 cell line stably transfected with HBV was treated with curcumin, and HBV surface antigen (HBsAg) and e antigen (HBeAg) expression levels were assessed by ELISA. Intracellular HBV DNA replication intermediates and cccDNA were detected by Southern blot and real-time PCR, respectively. The acetylation levels of histones H3 and H4 were measured by Western blot. H3/H4-bound cccDNA was detected by chromatin immunoprecipitation (ChIP) assays. The deacetylase inhibitors trichostatin A and sodium butyrate were used to study the mechanism of action for curcumin. Additionally, short interfering RNAs (siRNAs) targeting HBV were tested along with curcumin. RESULTS Curcumin treatment led to time- and dose-dependent reductions in HBsAg and HBeAg expression and significant reductions in intracellular HBV DNA replication intermediates and HBV cccDNA. After treatment with 20 μmol/L curcumin for 2 d, HBsAg and cccDNA levels in HepG2.2.15 cells were reduced by up to 57.7% (P < 0.01) and 75.5% (P < 0.01), respectively, compared with levels in non-treated cells. Meanwhile, time- and dose-dependent reductions in the histone H3 acetylation levels were also detected upon treatment with curcumin, accompanied by reductions in H3- and H4-bound cccDNA. Furthermore, the deacetylase inhibitors trichostatin A and sodium butyrate could block the effects of curcumin. Additionally, transfection of siRNAs targeting HBV enhanced the inhibitory effects of curcumin. CONCLUSION Curcumin inhibits HBV gene replication via down-regulation of cccDNA-bound histone acetylation and has the potential to be developed as a cccDNA-targeting antiviral agent for hepatitis B.
Collapse
Affiliation(s)
- Zhi-Qiang Wei
- Institute of Biomedical Research, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
- Department of Infectious Diseases, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
| | - Yong-Hong Zhang
- Institute of Wudang Chinese Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
| | - Chang-Zheng Ke
- Department of Infectious Diseases, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
| | - Hong-Xia Chen
- Institute of Biomedical Research, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
| | - Pan Ren
- Hubei University of Chinese Medicine, Wuhan 430000, Hubei Province, China
| | - Yu-Lin He
- Institute of Biomedical Research, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
| | - Pei Hu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan 430000, Hubei Province, China
| | - De-Qiang Ma
- Department of Infectious Diseases, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
| | - Jie Luo
- Center for Evidence-Based Medicine and Clinical Research, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
| | - Zhong-Ji Meng
- Institute of Biomedical Research, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
- Department of Infectious Diseases, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
| |
Collapse
|
89
|
Calonghi N, Parolin C, Sartor G, Verardi L, Giordani B, Frisco G, Marangoni A, Vitali B. Interaction of vaginal Lactobacillus strains with HeLa cells plasma membrane. Benef Microbes 2017; 8:625-633. [PMID: 28618863 DOI: 10.3920/bm2016.0212] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Vaginal lactobacilli offer protection against recurrent urinary and vaginal infections. The precise mechanisms underlying the interaction between lactobacilli and the host epithelium remain poorly understood at the molecular level. Deciphering such events can provide valuable information on the mode of action of commensal and probiotic bacteria in the vaginal environment. We investigated the effects exerted by five Lactobacillus strains of vaginal origin (Lactobacillus crispatus BC1 and BC2, Lactobacillus gasseri BC9 and BC11 and Lactobacillus vaginalis BC15) on the physical properties of the plasma membrane in a cervical cell line (HeLa). The interaction of the vaginal lactobacilli with the cervical cells determined two kinds of effects on plasma membrane: (1) modification of the membrane polar lipid organisation and the physical properties (L. crispatus BC1 and L. gasseri BC9); (2) modification of α5β1 integrin organisation (L. crispatus BC2, L. gasseri BC11 and L. vaginalis BC15). These two mechanisms can be at the basis of the protective role of lactobacilli against Candida albicans adhesion. Upon stimulation with all Lactobacillus strains, we observed a reduction of the basal oxidative stress in HeLa cells that could be related to modifications in physical properties and organisation of the plasma membrane. These results confirm the strictly strain-specific peculiarities of Lactobacillus and deepen the understanding of the mechanisms underlying the health-promoting role of this genus within the vaginal ecosystem.
Collapse
Affiliation(s)
- N Calonghi
- 1 Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 15, 40127 Bologna, Italy
| | - C Parolin
- 1 Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 15, 40127 Bologna, Italy
| | - G Sartor
- 1 Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 15, 40127 Bologna, Italy
| | - L Verardi
- 1 Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 15, 40127 Bologna, Italy
| | - B Giordani
- 1 Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 15, 40127 Bologna, Italy
| | - G Frisco
- 1 Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 15, 40127 Bologna, Italy
| | - A Marangoni
- 2 Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - B Vitali
- 1 Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 15, 40127 Bologna, Italy
| |
Collapse
|
90
|
Mounce BC, Cesaro T, Carrau L, Vallet T, Vignuzzi M. Curcumin inhibits Zika and chikungunya virus infection by inhibiting cell binding. Antiviral Res 2017; 142:148-157. [DOI: 10.1016/j.antiviral.2017.03.014] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 03/18/2017] [Indexed: 01/24/2023]
|
91
|
Bose M, Kamra M, Mullick R, Bhattacharya S, Das S, Karande AA. A plant-derived dehydrorotenoid: a new inhibitor of hepatitis C virus entry. FEBS Lett 2017; 591:1305-1317. [DOI: 10.1002/1873-3468.12629] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/13/2017] [Accepted: 03/18/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Mihika Bose
- Department of Biochemistry; Indian Institute of Science; Bangalore India
| | - Mohini Kamra
- Department of Organic Chemistry; Indian Institute of Science; Bangalore India
| | - Ranajoy Mullick
- Department of Microbiology and Cell Biology; Indian Institute of Science; Bangalore India
| | - Santanu Bhattacharya
- Department of Organic Chemistry; Indian Institute of Science; Bangalore India
- Director's Research Unit; Indian Association for the Cultivation of Science; Kolkata India
| | - Saumitra Das
- Department of Microbiology and Cell Biology; Indian Institute of Science; Bangalore India
| | - Anjali A. Karande
- Department of Biochemistry; Indian Institute of Science; Bangalore India
| |
Collapse
|
92
|
A Novel Inhibitor IDPP Interferes with Entry and Egress of HCV by Targeting Glycoprotein E1 in a Genotype-Specific Manner. Sci Rep 2017; 7:44676. [PMID: 28333153 PMCID: PMC5363083 DOI: 10.1038/srep44676] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 02/13/2017] [Indexed: 02/08/2023] Open
Abstract
Despite recent advances in curing chronic hepatitis C (CHC), the high economic burden to therapy, viral drug resistance, difficult to treat hepatitis C virus (HCV) genotypes and patient groups are still of concern. To address this unmet medical needs, we devised strategies to identify novel viral interventions through target-free high-throughput screening of small molecules utilizing a phenotypic-based HCV infection assay. Thereby, a very potent (EC50 46 ± 26 pM) iminodipyridinopyrimidine (IDPP) drug candidate was selected, and confirmed in primary human hepatocytes (EC50 0.5 nM). IDPP mainly targets a post-attachment step of HCV without affecting endosomal acidification, prevents the secretion of infectious particles and viral cell-to-cell spread. The putative molecular target of IDPP is glycoprotein E1, as revealed by selection for viral drug resistance (Gly-257-Arg). IDPP was synergistic in combination with FDA-approved HCV drugs and inhibited pre-existing resistant HCV strains induced by today's therapies. Interestingly, IDPP exclusively inhibited HCV genotype 2. However, we identified the genotype-specificity determining region in E1 and generated HCV genotype 1 susceptible to IDPP by changing one amino acid in E1 (Gln-257-Gly). Together, our results indicate an opportunity to provide an alternative treatment option for CHC and will shed light on the poorly understood function of HCV glycoprotein E1.
Collapse
|
93
|
Gao L, Han J, Si J, Wang J, Wang H, Sun Y, Bi Y, Liu J, Cao L. Cryptoporic acid E from Cryptoporus volvatus inhibits influenza virus replication in vitro. Antiviral Res 2017; 143:106-112. [PMID: 28232246 DOI: 10.1016/j.antiviral.2017.02.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 02/15/2017] [Indexed: 01/07/2023]
Abstract
Influenza virus infection is a global public health issue. The efficacy of antiviral agents for influenza virus has been limited by the emergence of drug-resistant virus strains. Thus, there is an urgent need to identify novel antiviral therapies. Our previous studies have found that Cryptoporus volvatus extract can potently inhibit influenza virus replication in vitro and in vivo. However, the effective component of Cryptoporus volvatus, which mediates the antiviral activity, hasn't been identified. Here, we identified a novel anti-influenza virus molecule, Cryptoporic acid E (CAE), from Cryptoporus volvatus. Our results showed that CAE had broad-spectrum anti-influenza activity against 2009 pandemic strain A/Beijing/07/2009 (H1N1/09pdm), seasonal strain A/Beijing/CAS0001/2007(H3N2), mouse adapted strains A/WSN/33 (H1N1), and A/PR8/34 (H1N1). We further investigated the mode of CAE action. Time-course-analysis indicated that CAE exerted its inhibition mainly at the middle stages of the replication cycle of influenza virus. Subsequently, we confirmed that CAE inhibited influenza virus RNA polymerase activity and blocked virus RNA replication and transcription in MDCK cells. In addition, we found that CAE also impaired influenza virus infectivity by directly targeting virus particles. Our data suggest that CAE is a major effective component of Cryptoporus volvatus.
Collapse
Affiliation(s)
- Li Gao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiayuan Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianyong Si
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junchi Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hexiang Wang
- State Key Laboratory of Agrobiotechnology, Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yipeng Sun
- State Key Laboratory of Agrobiotechnology, Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yuhai Bi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jinhua Liu
- State Key Laboratory of Agrobiotechnology, Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Li Cao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
94
|
Huang R, Zhu G, Zhang J, Lai Y, Xu Y, He J, Xie J. Betanodavirus-like particles enter host cells via clathrin-mediated endocytosis in a cholesterol-, pH- and cytoskeleton-dependent manner. Vet Res 2017; 48:8. [PMID: 28179028 PMCID: PMC5299686 DOI: 10.1186/s13567-017-0412-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 12/15/2016] [Indexed: 11/10/2022] Open
Abstract
Betanodavirus, also referred to nervous necrosis virus (NNV), is the causative agent of the fatal disease, viral nervous necrosis and has brought significant economic losses in marine and freshwater cultured fish, especially larvae and juveniles. Here, we used an established invasion model with virus-like particle (VLP)-cells, mimicking orange-spotted grouper nervous necrosis virus (OGNNV), to investigate the crucial events of virus entry. VLP were observed in the perinuclear regions of Asian sea bass (SB) cells within 1.5 h after attachment. VLP uptake was strongly inhibited when cells were pretreated with biochemical inhibitors (chlorpromazine and dynasore) blocking clathrin-mediated endocytosis (CME) or transfected with siRNA against clathrin heavy and light chains. Inhibitors against key regulators of caveolae/raft-dependent endocytosis and macropinocytosis had no effect on VLP uptake. In contrast, disruption of cellular cholesterol by methyl-β-cyclodextrin or reduction of cholesterol fluidity by Cholera toxin B subunit significantly decreased VLP entry. Furthermore, VLP entry is dependent on low pH and cytoskeleton, demonstrated by inhibitor (chloroquine, ammonia chloride, cytochalasin D, wiskostatin, and nocodazole) perturbation. Therefore, OGNNV VLP enter SB cells via CME depending on dynamin-2, cholesterol and its fluidity, low pH, and cytoskeleton. In addition, ten more cell lines were screened for VLP entry and VLP can only enter NNV-sensitive cells, GB and SSN-1, via CME, indicating that CME is the common endocytosis pathway for VLP. These results may provide the data for NNV entry without the influence of the viral genome, an ideal model for exploring the behaviour of betanodavirus in cells, and valuable references to vaccine development.
Collapse
Affiliation(s)
- Runqing Huang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Guohua Zhu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jing Zhang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yuxiong Lai
- Department of Nephrology, Guangdong Academy of Medical Sciences, Guangdong General Hospital, Guangzhou, China
| | - Yu Xu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Jianguo He
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China.,School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Junfeng Xie
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
95
|
Mice Expressing Minimally Humanized CD81 and Occludin Genes Support Hepatitis C Virus Uptake In Vivo. J Virol 2017; 91:JVI.01799-16. [PMID: 27928007 DOI: 10.1128/jvi.01799-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/23/2016] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV) causes chronic infections in at least 150 million individuals worldwide. HCV has a narrow host range and robustly infects only humans and chimpanzees. The underlying mechanisms for this narrow host range are incompletely understood. At the level of entry, differences in the amino acid sequences between the human and mouse orthologues of two essential host factors, the tetraspanin CD81 and the tight junction protein occludin (OCLN), explain, at least in part, HCV's limited ability to enter mouse hepatocytes. We have previously shown that adenoviral or transgenic overexpression of human CD81 and OCLN facilitates HCV uptake into mouse hepatocytes in vitro and in vivo In efforts to refine these models, we constructed knock-in mice in which the second extracellular loops of CD81 and OCLN were replaced with the respective human sequences, which contain the determinants that are critical for HCV uptake. We demonstrate that the humanized CD81 and OCLN were expressed at physiological levels in a tissue-appropriate fashion. Mice bearing the humanized alleles formed normal tight junctions and did not exhibit any immunologic abnormalities, indicating that interactions with their physiological ligands were intact. HCV entry factor knock-in mice take up HCV with an efficiency similar to that in mice expressing HCV entry factors transgenically or adenovirally, demonstrating the utility of this model for studying HCV infection in vivo IMPORTANCE: At least 150 million individuals are chronically infected with hepatitis C virus (HCV). Chronic hepatitis C can result in progressive liver disease and liver cancer. New antiviral treatments can cure HCV in the majority of patients, but a vaccine remains elusive. To gain a better understanding of the processes culminating in liver failure and cancer and to prioritize vaccine candidates more efficiently, small-animal models are needed. Here, we describe the characterization of a new mouse model in which the parts of two host factors that are essential for HCV uptake, CD81 and occludin (OCLN), which differ between mice and humans, were humanized. We demonstrate that such minimally humanized mice develop normally, express the modified genes at physiological levels, and support HCV uptake. This model is of considerable utility for studying viral entry in the three-dimensional context of the liver and to test approaches aimed at preventing HCV entry.
Collapse
|
96
|
Tietcheu Galani BR, Njouom R, Moundipa PF. Hepatitis C in Cameroon: What is the progress from 2001 to 2016? J Transl Int Med 2016; 4:162-169. [PMID: 28191540 DOI: 10.1515/jtim-2016-0037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Chronic hepatitis C is a major public health problem in sub-Saharan countries and particularly in Cameroon where the prevalence rate is around 7.6% in the age group of 55-59 years. Recent investigations into this infection allowed defining a national seroprevalence, characterizing virological and biological profiles of infected patients and identifying medicinal plants of potential interest in hepatitis C therapy. However, in Cameroon, no existing report currently presents a good overview of hepatitis C research in relation to these parameters. This review seeks to discuss major findings published since 2001 that have significantly advanced our understanding of the epidemiology and treatment of hepatitis C in Cameroonian patients and highlight the major challenges that remain to overcome. We performed a systematic search in Pubmed and Google Scholar. Studies evaluating prevalence, treatment, coinfection, and genetic diversity of HCV infection in Cameroon were included. Studies suggest that HCV prevalence in Cameroon would be low (around 1.1%) with a lot of disparities according to regions and age of participants. Elders, pregnant women, blood donors, health care workers, patients on hemodialysis, and homozygous sickle cell patients have been identified as risk groups. Moreover, HCV/HBV coinfection was found more prevalent than HCV/HIV coinfection. Phylogenic studies reported circulation of three main genotypes such genotypes 1, 2, and 4 but little is known about antiviral candidates from the Cameroonian pharmacopeia. In conclusion, some epidemiological data prove that hepatitis C in Cameroon is well known but efforts are still necessary to prevent or control this infection.
Collapse
Affiliation(s)
- Borris Rosnay Tietcheu Galani
- Laboratory of Applied Biochemistry, Department of Biological Sciences, Faculty of Science, University of Ngaoundere, PO Box 454 Ngaoundere, Ngaoundere, Cameroon, Cameroon; Laboratory of Pharmacology and Toxicology, Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Richard Njouom
- Virology Unit, Centre Pasteur du Cameroun, Yaoundé, Cameroun
| | - Paul Fewou Moundipa
- Laboratory of Pharmacology and Toxicology, Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| |
Collapse
|
97
|
Siddharta A, Pfaender S, Malassa A, Doerrbecker J, Anggakusuma, Engelmann M, Nugraha B, Steinmann J, Todt D, Vondran FWR, Mateu-Gelabert P, Goffinet C, Steinmann E. Inactivation of HCV and HIV by microwave: a novel approach for prevention of virus transmission among people who inject drugs. Sci Rep 2016; 6:36619. [PMID: 27857152 PMCID: PMC5114683 DOI: 10.1038/srep36619] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 10/17/2016] [Indexed: 01/06/2023] Open
Abstract
Hepatitis C virus (HCV) and human immunodeficiency virus (HIV-1) transmissions among people who inject drugs (PWID) continue to pose a challenging global health problem. Here, we aimed to analyse a universally applicable inactivation procedure, namely microwave irradiation, as a safe and effective method to reduce the risk of viral transmission. The exposure of HCV from different genotypes to microwave irradiation resulted in a significant reduction of viral infectivity. Furthermore, microwave irradiation reduced viral infectivity of HIV-1 and of HCV/HIV-1 suspensions indicating that this inactivation may be effective at preventing co-infections. To translate microwave irradiation as prevention method to used drug preparation equipment, we could further show that HCV as well as HIV-1 infectivity could be abrogated in syringes and filters. This study demonstrates the power of microwave irradiation for the reduction of viral transmission and establishment of this safety strategy could help reduce the transmission of blood-borne viruses.
Collapse
Affiliation(s)
- Anindya Siddharta
- Institute of Experimental Virology, Twincore, Centre for Experimental and Clinical Infection Research; a joint venture between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI) , Hannover, Germany
| | - Stephanie Pfaender
- Institute of Experimental Virology, Twincore, Centre for Experimental and Clinical Infection Research; a joint venture between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI) , Hannover, Germany
| | - Angelina Malassa
- Institute of Experimental Virology, Twincore, Centre for Experimental and Clinical Infection Research; a joint venture between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI) , Hannover, Germany
| | - Juliane Doerrbecker
- Institute of Experimental Virology, Twincore, Centre for Experimental and Clinical Infection Research; a joint venture between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI) , Hannover, Germany
| | - Anggakusuma
- Institute of Experimental Virology, Twincore, Centre for Experimental and Clinical Infection Research; a joint venture between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI) , Hannover, Germany
| | - Michael Engelmann
- Institute of Experimental Virology, Twincore, Centre for Experimental and Clinical Infection Research; a joint venture between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI) , Hannover, Germany
| | - Boya Nugraha
- Department of Rehabilitation Medicine, Hannover Medical School, Hannover, Germany
| | - Joerg Steinmann
- Institute of Medical Microbiology, University Hospital Essen, Essen, Germany
| | - Daniel Todt
- Institute of Experimental Virology, Twincore, Centre for Experimental and Clinical Infection Research; a joint venture between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI) , Hannover, Germany
| | - Florian W R Vondran
- ReMediES, Department of General, Visceral and Transplantation Surgery, Hannover Medical School, and German Centre for Infection Research, Hannover-Braunschweig, Germany
| | | | - Christine Goffinet
- Institute of Experimental Virology, Twincore, Centre for Experimental and Clinical Infection Research; a joint venture between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI) , Hannover, Germany
| | - Eike Steinmann
- Institute of Experimental Virology, Twincore, Centre for Experimental and Clinical Infection Research; a joint venture between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI) , Hannover, Germany
| |
Collapse
|
98
|
Tzankova V, Gorinova C, Kondeva-Burdina M, Simeonova R, Philipov S, Konstantinov S, Petrov P, Galabov D, Yoncheva K. Antioxidant response and biocompatibility of curcumin-loaded triblock copolymeric micelles. Toxicol Mech Methods 2016; 27:72-80. [DOI: 10.1080/15376516.2016.1253811] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Virginia Tzankova
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Cvetelina Gorinova
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Magdalena Kondeva-Burdina
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Rumiana Simeonova
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Stanislav Philipov
- Department of Anatomy, Histology, Pathology and Forensic Medicine, Medical Faculty of the University of Sofia, Sofia, Bulgaria
| | - Spiro Konstantinov
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Petar Petrov
- Institute of Polymers, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Dimitar Galabov
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Krassimira Yoncheva
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
99
|
Curcumin Shows Antiviral Properties against Norovirus. Molecules 2016; 21:molecules21101401. [PMID: 27775614 PMCID: PMC6274093 DOI: 10.3390/molecules21101401] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 10/07/2016] [Accepted: 10/15/2016] [Indexed: 11/17/2022] Open
Abstract
Phytochemicals provide environmentally friendly and relatively inexpensive natural products, which could potentially benefit public health by controlling human norovirus (HuNoV) infection. In this study, 18 different phytochemicals were evaluated for antiviral effects against norovirus using murine norovirus (MNV) as a model for norovirus biology. Among these phytochemicals, curcumin (CCM) was the most potent anti-noroviral phytochemical, followed by resveratrol (RVT). In a cell culture infection model, exposure to CCM or RVT for 3 days reduced infectivity of norovirus by 91% and 80%, respectively. To confirm the antiviral capability of CCM, we further evaluated its antiviral efficacy at various doses (0.25, 0.5, 0.75, 1, and 2 mg/mL) and durations (short-term: 10, 30, 60, and 120 min; long-term: 1, 3, 7, and 14 days). The anti-noroviral effect of CCM was verified to occur in a dose-dependent manner. Additionally, we evaluated the inhibitory effect of each phytochemical on the replication of HuNoV using a HuNoV replicon-bearing cell line (HG23). Neither CCM nor RVT had a strong inhibitory effect on HuNoV replication, which suggests that their antiviral mechanism may involve viral entry or other life cycle stages rather than the replication of viral RNA. Our results demonstrated that CCM may be a promising candidate for development as an anti-noroviral agent to prevent outbreaks of foodborne illness.
Collapse
|
100
|
Shome S, Talukdar AD, Choudhury MD, Bhattacharya MK, Upadhyaya H. Curcumin as potential therapeutic natural product: a nanobiotechnological perspective. ACTA ACUST UNITED AC 2016; 68:1481-1500. [PMID: 27747859 DOI: 10.1111/jphp.12611] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 07/05/2016] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Nanotechnology-based drug delivery systems can resolve the poor bioavailability issue allied with curcumin. The therapeutic potential of curcumin can be enhanced by making nanocomposite preparation of curcumin with metal oxide nanoparticles, poly lactic-co-glycolic acid (PLGA) nanoparticles and solid lipid nanoparticles that increases its bioavailability in the tissue. KEY FINDINGS Curcumin has manifold therapeutic effects which include antidiabetic, antihypertensive, anticancer, anti-inflammatory and antimicrobial properties. Curcumin can inhibit diabetes, heavy metal and stress-induced hypertension with its antioxidant, chelating and inhibitory effects on the pathways that lead to hypertension. Curcumin is an anticancer agent that can prevent abnormal cell proliferation. Nanocurcumin is an improved form of curcumin with enhanced therapeutic properties due to improved delivery to the diseased tissue, better internalization and reduced systemic elimination. SUMMARY Curcumin has multiple pharmacologic effects, but its poor bioavailability reduces its therapeutic effects. By conjugating curcumin to metal oxide nanoparticles or encapsulation in lipid nanoparticles, dendrimers, nanogels and polymeric nanoparticles, the water solubility and bioavailability of curcumin can be improved and thus increase its pharmacological effectiveness.
Collapse
Affiliation(s)
- Soumitra Shome
- Departments of Botany and Biotechnology, Karimganj College, Karimganj, Assam, India.,Department of Life Science and Bioinformatics, Assam University, Assam, India
| | - Anupam Das Talukdar
- Department of Life Science and Bioinformatics, Assam University, Assam, India
| | | | | | | |
Collapse
|