51
|
Akbar M, Toppo P, Nazir A. Ageing, proteostasis, and the gut: Insights into neurological health and disease. Ageing Res Rev 2024; 101:102504. [PMID: 39284418 DOI: 10.1016/j.arr.2024.102504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/28/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
Recent research has illuminated the profound bidirectional communication between the gastrointestinal tract and the brain, furthering our understanding of neurological ailments facilitating possible therapeutic strategies. Technological advancements in high-throughput sequencing and multi-omics have unveiled significant alterations in gut microbiota and their metabolites in various neurological disorders. This review provides a thorough analysis of the role of microbiome-gut-brain axis in neurodegenerative disease pathology, linking it to reduced age-associated proteostasis. We discuss evidences that substantiate the existence of a gut-brain cross talk ranging from early clinical accounts of James Parkinson to Braak's hypothesis. In addition to understanding of microbes, the review particularly entails specific metabolites which are altered in neurodegenerative diseases. The regulatory effects of microbial metabolites on protein clearance mechanisms, proposing their potential therapeutic implications, are also discussed. By integrating this information, we advocate for a combinatory therapeutic strategy that targets early intervention, aiming to restore proteostasis and ameliorate disease progression. This approach not only provides a new perspective on the pathogenesis of neurodegenerative diseases but also highlights innovative strategies to combat the increasing burden of these age-related disorders.
Collapse
Affiliation(s)
- Mahmood Akbar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Pranoy Toppo
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Aamir Nazir
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, India.
| |
Collapse
|
52
|
Ahmed HS. The Impact of Prevotella on Neurobiology in Aging: Deciphering Dendritic Cell Activity and Inflammatory Dynamics. Mol Neurobiol 2024; 61:9240-9251. [PMID: 38613648 DOI: 10.1007/s12035-024-04156-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/29/2024] [Indexed: 04/15/2024]
Abstract
Prevotella species, notably Prevotella copri, significantly populate the human gut. In particular, P. copri is prevalent among non-Western populations with diets high in fiber. These species show complex relationships with diverse health aspects, associating with beneficial outcomes, including reduced visceral fat and improved glucose tolerance. Studies implicate various Prevotella species in specific diseases. Prevotella nigrescens and Porphyromonas gingivalis were linked to periodontal disease, promoting immune responses and influencing T helper type 17 (Th17) cells. Prevotella bivia was associated with bacterial vaginosis and a specific increase in activated cells in the vaginal mucosa. In contrast, they have shown substantial potential for inducing connective tissue degradation and alveolar bone resorption. Prevotella's role in neuroinflammatory disorders and autoinflammatory conditions such as Alzheimer's disease and Parkinson's disease has also been noted. The complex relationship between Prevotella and age-related conditions further extends to neurobiological changes in aging, with varying associations with Alzheimer's, Parkinson's, and other inflammatory conditions. Studies have also identified Prevotella to be implicated in cognitive decline in middle aged and the elderly. Future directions in this research area are anticipated to explore Prevotella-associated inflammatory mechanisms and therapeutic interventions. Investigating specific drug targets and immunomodulatory measures could lead to novel therapeutic strategies. Understanding how Prevotella-induced inflammation interacts with aging diseases would offer promising insights for treatments and interventions. This review urges ongoing research to discover therapeutic targets and mechanisms for moderating Prevotella-associated inflammation to further enhance our understanding and improve health outcomes.
Collapse
Affiliation(s)
- H Shafeeq Ahmed
- Bangalore Medical College and Research Institute, K.R Road, Bangalore, 560002, Karnataka, India.
| |
Collapse
|
53
|
Wang Q, Tang X, Qiao W, Sun L, Shi H, Chen D, Xu B, Liu Y, Zhao J, Huang C, Jin R. Machine learning-based characterization of the gut microbiome associated with the progression of primary biliary cholangitis to cirrhosis. Microbes Infect 2024; 26:105368. [PMID: 38797428 DOI: 10.1016/j.micinf.2024.105368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 04/20/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Primary biliary cholangitis (PBC) is associated closely with the gut microbiota. This study aimed to explore the characteristics of the gut microbiota after the progress of PBC to cirrhosis. METHOD This study focuses on utilizing the 16S rRNA gene sequencing method to screen for differences in gut microbiota in PBC patients who progress to cirrhosis. Then, we divided the data into training and verification sets and used seven different machine learning (ML) models to validate them respectively, calculating and comparing the accuracy, F1 score, precision, and recall, and screening the dominant intestinal flora affecting PBC cirrhosis. RESULT PBC cirrhosis patients showed decreased diversity and richness of gut microbiota. Additionally, there are alterations in the composition of gut microbiota in PBC cirrhosis patients. The abundance of Faecalibacterium and Gemmiger bacteria significantly decreases, while the abundance of Veillonella and Streptococcus significantly increases. Furthermore, machine learning methods identify Streptococcus and Gemmiger as the predominant gut microbiota in PBC patients with cirrhosis, serving as non-invasive biomarkers (AUC = 0.902). CONCLUSION Our study revealed that PBC cirrhosis patients gut microbiota composition and function have significantly changed. Streptococcus and Gemmiger may become a non-invasive biomarker for predicting the progression of PBC progress to cirrhosis.
Collapse
Affiliation(s)
- Qi Wang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, PR China; Beijing Institute of Infectious Diseases, Beijing, PR China; National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, PR China
| | - Xiaomeng Tang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, PR China; Beijing Institute of Infectious Diseases, Beijing, PR China; National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, PR China
| | - Wenying Qiao
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, PR China; Beijing Institute of Infectious Diseases, Beijing, PR China; National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, PR China; Changping Laboratory, Beijing, PR China
| | - Lina Sun
- Beijing Institute of Hepatology, Beijing You 'an Hospital, Capital Medical University, Beijing 100069, PR China
| | - Han Shi
- Beijing Institute of Hepatology, Beijing You 'an Hospital, Capital Medical University, Beijing 100069, PR China
| | - Dexi Chen
- Beijing Institute of Hepatology, Beijing You 'an Hospital, Capital Medical University, Beijing 100069, PR China
| | - Bin Xu
- Second Department of Liver Disease Center, Beijing You 'an Hospital, Capital Medical University, Beijing 100069, PR China
| | - Yanmin Liu
- Second Department of Liver Disease Center, Beijing You 'an Hospital, Capital Medical University, Beijing 100069, PR China
| | - Juan Zhao
- Second Department of Liver Disease Center, Beijing You 'an Hospital, Capital Medical University, Beijing 100069, PR China
| | - Chunyang Huang
- Second Department of Liver Disease Center, Beijing You 'an Hospital, Capital Medical University, Beijing 100069, PR China.
| | - Ronghua Jin
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, PR China; Beijing Institute of Infectious Diseases, Beijing, PR China; National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, PR China; Changping Laboratory, Beijing, PR China.
| |
Collapse
|
54
|
Lee B, Jo D, Park J, Kim OY, Song J. Gut microbiota and their relationship with circulating adipokines in an acute hepatic encephalopathy mouse model induced by surgical bile duct ligation. Heliyon 2024; 10:e38534. [PMID: 39391493 PMCID: PMC11466606 DOI: 10.1016/j.heliyon.2024.e38534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/11/2024] [Accepted: 09/25/2024] [Indexed: 10/12/2024] Open
Abstract
Background and aims Various studies have shown the importance of the gut microbiota in human health. However, little is known about gut microbiome patterns and their effect on circulating adipo-myokine levels in hepatic encephalopathy (HE). We investigated the relationship between the gut microbiota and adipo-myokine levels using a mouse model of HE induced by surgical bile duct ligation (BDL). Methods and results Wild-type C57BL/6J mice were subjected to sham surgery or BDL. Severe body weight loss, suppressed feed intake, and liver failure were observed in BDL mice compared with sham control mice. Additionally, changes in gut microbial communities and serum adipo-myokine levels were noted in BDL mice. In the BDL mouse gut, we identified 15 differentially abundant taxa including the phylum Verrucomicrobiota, the classes Actinomycetes and Verrucomicrobiae, the order Verrucomicrobiales, the families Akkermansiaceae, Bacteroidaceae, Rikenellaceae, and Oscillospiraceae, the genera Alistipes, Akkermansia, Muribaculum, and Phocaeicola, and the species Akkermansia muciniphila, Alistipes okayasuensis, and Muribaculum gordoncarteri by LEfSe analysis (LDA score≥4.0). Higher levels of certain adipo-myokines such as BDNF were detected in the serum of BDL mice. Spearman correlation analysis revealed that certain adipo-myokines (e.g., FSTL1) were positively correlated with the class Actinomycetes, the family Rikenellaceae, the genus Alistipes, and the species Alistipes okayasuensis. Interestingly, A. okayasuensis and M. gordoncarteri, recently isolated microbes, showed richness in the gut of BDL mice and demonstrated positive correlations with adipo-myokines such as FGF21. Conclusions Overall, our results suggest that alteration of the gut microbiota in patients with HE may be closely correlated to the levels of adipo-myokines in the blood.
Collapse
Affiliation(s)
- Bokyung Lee
- Department of Food Science and Nutrition, Dong A University, Sahagu, Nakdongdaero 550 beon-gil, 49315, Busan, Republic of Korea
| | - Danbi Jo
- Department of Anatomy, Chonnam National University Medical School, Hwasun, 58128, Jeollanam-do, Republic of Korea
| | - Jihyun Park
- Department of Health Sciences, Graduate School of Dong-A University, Sahagu, Nakdongdaero 550 beon-gil, 49315, Busan, Republic of Korea
| | - Oh Yoen Kim
- Department of Food Science and Nutrition, Dong A University, Sahagu, Nakdongdaero 550 beon-gil, 49315, Busan, Republic of Korea
- Department of Health Sciences, Graduate School of Dong-A University, Sahagu, Nakdongdaero 550 beon-gil, 49315, Busan, Republic of Korea
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun, 58128, Jeollanam-do, Republic of Korea
| |
Collapse
|
55
|
Zhong Y, Liu Z, Wang Y, Cai S, Qiao Z, Hu X, Wang T, Yi J. Preventive Methods for Colorectal Cancer Through Dietary Interventions: A Focus on Gut Microbiota Modulation. FOOD REVIEWS INTERNATIONAL 2024:1-29. [DOI: 10.1080/87559129.2024.2414908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Yujie Zhong
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
- Yunnan Key Laboratory for Plateau Food Advanced Manufacturing, Kunming University of Science and Technology, Kunming, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming University of Science and Technology, Kunming, China
| | - Zhijia Liu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
- Yunnan Key Laboratory for Plateau Food Advanced Manufacturing, Kunming University of Science and Technology, Kunming, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming University of Science and Technology, Kunming, China
| | - Yanfei Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
- Yunnan Key Laboratory for Plateau Food Advanced Manufacturing, Kunming University of Science and Technology, Kunming, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming University of Science and Technology, Kunming, China
| | - Shengbao Cai
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
- Yunnan Key Laboratory for Plateau Food Advanced Manufacturing, Kunming University of Science and Technology, Kunming, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming University of Science and Technology, Kunming, China
| | - Zhu Qiao
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian, Henan Province, China
| | - Xiaosong Hu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
- Yunnan Key Laboratory for Plateau Food Advanced Manufacturing, Kunming University of Science and Technology, Kunming, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming University of Science and Technology, Kunming, China
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Tao Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
- Yunnan Key Laboratory for Plateau Food Advanced Manufacturing, Kunming University of Science and Technology, Kunming, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming University of Science and Technology, Kunming, China
| | - Junjie Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
- Yunnan Key Laboratory for Plateau Food Advanced Manufacturing, Kunming University of Science and Technology, Kunming, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
56
|
Ashraf A, Hassan MI. Microbial Endocrinology: Host metabolism and appetite hormones interaction with gut microbiome. Mol Cell Endocrinol 2024; 592:112281. [PMID: 38810719 DOI: 10.1016/j.mce.2024.112281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/07/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024]
Affiliation(s)
- Anam Ashraf
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
| |
Collapse
|
57
|
Li L, Sun JY, Li YL, Zhu SW, Duan SZ. The Gut Microbiota Mediates the Protective Effects of Spironolactone on Myocardial Infarction. J Microbiol 2024; 62:883-895. [PMID: 39225943 DOI: 10.1007/s12275-024-00164-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/06/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Myocardial infarction (MI) is a type of cardiovascular disease that influences millions of human beings worldwide and has a great rate of mortality and morbidity. Spironolactone has been used as a critical drug for the treatment of cardiac failure and it ameliorates cardiac dysfunction post-MI. Despite these findings, whether there is a relationship between the therapeutic effects of spironolactone and the gut microorganism after MI has not been determined. In our research, we used male C57BL/6 J mice to explore whether the gut microbiota mediates the beneficial function of spironolactone after myocardial infarction. We demonstrated that deletion of the gut microbiota eliminated the beneficial function of spironolactone in MI mice, displaying exacerbated cardiac dysfunction, cardiac infarct size. In addition, the gut microbiota was altered by spironolactone after sham or MI operation in mice. We also used male C57BL/6 J mice to investigate the function of a probiotic in the myocardial infarction. In summary, our findings reveal a precious role of the gut flora in the therapeutic function of spironolactone on MI.
Collapse
Affiliation(s)
- Lu Li
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, People's Republic of China
- Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, 200011, People's Republic of China
| | - Jian-Yong Sun
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, People's Republic of China
- Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, 200011, People's Republic of China
| | - Yu-Lin Li
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, People's Republic of China
- Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, 200011, People's Republic of China
| | - Shi-Wei Zhu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China
| | - Sheng-Zhong Duan
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, People's Republic of China.
- Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
58
|
Chakraborty N, Hoke A, Campbell R, Holmes-Hampton G, Kumar VP, Moyler C, Gautam A, Hammamieh R, Ghosh SP. Ionizing Radiation Dose Differentially Affects the Host-Microbe Relationship over Time. Microorganisms 2024; 12:1995. [PMID: 39458305 PMCID: PMC11509422 DOI: 10.3390/microorganisms12101995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/05/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Microorganisms that colonize in or on a host play significant roles in regulating the host's immunological fitness and bioenergy production, thus controlling the host's stress responses. Radiation elicits a pro-inflammatory and bioenergy-expensive state, which could influence the gut microbial compositions and, therefore, the host-microbe bidirectional relationship. To test this hypothesis, young adult mice were exposed to total body irradiation (TBI) at doses of 9.5 Gy and 11 Gy, respectively. The irradiated mice were euthanized on days 1, 3, and 9 post TBI, and their descending colon contents (DCCs) were collected. The 16S ribosomal RNAs from the DCCs were screened to find the differentially enriched bacterial taxa due to TBI. Subsequently, these data were analyzed to identify the metagenome-specific biofunctions. The bacterial community of the DCCs showed increased levels of diversity as time progressed following TBI. The abundance profile was the most divergent at day 9 post 11 Gy TBI. For instance, an anti-inflammatory and energy-harvesting bacterium, namely, Firmicutes, became highly abundant and co-expressed in the DCC with pro-inflammatory Deferribacteres at day 9 post 11 Gy TBI. A systems evaluation found a diverging trend in the regulation profiles of the functional networks that were linked to the bacteria and metabolites of the DCCs, respectively. Additionally, the network clusters associated with lipid metabolism and bioenergy synthesis were found to be activated in the DCC bacteria but inhibited in the metabolite space at day 9 post 11 Gy. Taking these results together, the present analysis indicated a disrupted mouse-bacteria symbiotic relationship as time progressed after lethal irradiation. This information can help develop precise interventions to ameliorate the symptoms triggered by TBI.
Collapse
Affiliation(s)
- Nabarun Chakraborty
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (N.C.); (A.H.); (R.C.); (C.M.); (A.G.)
| | - Allison Hoke
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (N.C.); (A.H.); (R.C.); (C.M.); (A.G.)
| | - Ross Campbell
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (N.C.); (A.H.); (R.C.); (C.M.); (A.G.)
- The Geneva Foundation, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Gregory Holmes-Hampton
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD 20889, USA; (G.H.-H.); (V.P.K.)
| | - Vidya P. Kumar
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD 20889, USA; (G.H.-H.); (V.P.K.)
| | - Candace Moyler
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (N.C.); (A.H.); (R.C.); (C.M.); (A.G.)
- The Geneva Foundation, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Aarti Gautam
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (N.C.); (A.H.); (R.C.); (C.M.); (A.G.)
| | - Rasha Hammamieh
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (N.C.); (A.H.); (R.C.); (C.M.); (A.G.)
| | - Sanchita P. Ghosh
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD 20889, USA; (G.H.-H.); (V.P.K.)
| |
Collapse
|
59
|
Hu J, Yao Q, Zhao L. Evidences and perspectives on the association between gut microbiota and sepsis: A bibliometric analysis from 2003 to 2023. Heliyon 2024; 10:e37921. [PMID: 39315201 PMCID: PMC11417584 DOI: 10.1016/j.heliyon.2024.e37921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/25/2024] Open
Abstract
Background In the last two decades, the role of the gut microbiome in the development, maintenance, and outcome of sepsis has received increased attention; however, few descriptive studies exist on its research focus, priorities, and future prospects. This study aimed to identify the current state, evolution, and emerging trends in the field of gut microbiota and sepsis using bibliometric analysis. Methods All publications on sepsis and gut microbiota were retrieved from the Web of Science Core Collection and included in this study. VOSviewer, CiteSpace, and the Web of Science online analysis platform were used to visualize trends based on publication country, institution, author, journal, and keywords. Results A total of 1,882 articles on sepsis-related gut microbiota were screened, mainly from 95 countries or regions and 2,581 institutions. The United States and China contributed the most to this research field, with 521 (27.683 %) and 376 (19.979 %) articles, respectively. Scientists from the University of California were the most prolific, publishing 63 (3.348 %) articles. Cani PD published papers with the highest H-index, establishing himself as a leader in the field. The most publications were published in the journals "Nutrients" and "PLOS One." The journals with the most co-citations were "PLOS One," "Nature," and "Gut." The most used keywords were prebiotics, gut microbiota, and sepsis. The keyword burst research analysis revealed that research on treatment strategies based on the intestinal microbiota, intestine-liver axis, and regulatory mechanisms of bacterial metabolites are currently hot directions. Conclusion This study presents a global overview of the current state and potential trends in the field of sepsis-related gut microbiota. This study identified hot research sub-directions and new trends through comparison and analysis, which will aid in the development of this field.
Collapse
Affiliation(s)
- Jiahui Hu
- Department of Pathology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou City, 310003, China
| | - Qigu Yao
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China
| | - Linjun Zhao
- Department of Emergency, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, 261 Huansha Rd, Hangzhou City, 310006, China
| |
Collapse
|
60
|
Chang X, Zhang S, Li C, Zhang H, Yang W, Zhang W, Ye Z, Liang Y, Qiu X, Zeng J. Inhibitory Effect of Lactobacillus Paracasei CMU-Pb-L5 In a Subcutaneous Transplanted Tumor Model of Colorectal Cancer. Int J Med Sci 2024; 21:2525-2536. [PMID: 39439459 PMCID: PMC11492875 DOI: 10.7150/ijms.99646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/13/2024] [Indexed: 10/25/2024] Open
Abstract
Lactobacillus paracasei (L.p) is a prevalent probiotic strain within the Lactobacillus genus, which has robust intestinal colonization capabilities. Previous studies have demonstrated the anticancer properties of L.p both in vivo and in vitro. However, the mechanisms underlying its anticancer activity in vivo remain unclear. This study established a subcutaneous transplanted tumor model of colorectal cancer (CRC) in mice to investigate the impact of L.p CMU-Pb-L5. Various parameters including tumor volume, tumor weight, histological alterations in tumor tissue, levels of polyamines and immune-related cytokines in serum, as well as the expression of polyamine metabolism-related and apoptosis-related proteins were evaluated. The results suggested that L.p CMU-Pb-L5 exhibited inhibitory effects on tumor cell proliferation, promotion of tumor cell apoptosis, reduction in polyamine levels, and enhancement of the immune response in CRC mice. To sum up, these results suggested that L.p CMU-Pb-L5 holds promise for potential clinical applications in the treatment of CRC.
Collapse
Affiliation(s)
- Xiaodan Chang
- Department of Neonatology, The Second Central Hospital of Baoding, Baoding 071051, China
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
| | - Shaobing Zhang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
| | - Cong Li
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
- Dongguan Key Laboratory of Metabolic Immunology and Oral Disease, Department of Stomatology, Dongguan Maternal and Child Health Care Hospital, Dongguan 523000, China
| | - Hailiang Zhang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
| | - Weiqing Yang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
| | - Weijian Zhang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
- Community health service center of Dongguan Dalang Town, Dongguan 523000, China
| | - Ziyu Ye
- Xinghai Institute of Cell, Guangdong Xianhua Institute for Medical Research, Dongguan 523808, China
| | - Yanfang Liang
- Dongguan Key Laboratory of Molecular Immunopathology, Department of Pathology, Binhaiwan Central Hospital of Dongguan, Dongguan 523000, China
| | - Xianxiu Qiu
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
| | - Jincheng Zeng
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
- Xinghai Institute of Cell, Guangdong Xianhua Institute for Medical Research, Dongguan 523808, China
| |
Collapse
|
61
|
Nakhal MM, Yassin LK, Alyaqoubi R, Saeed S, Alderei A, Alhammadi A, Alshehhi M, Almehairbi A, Al Houqani S, BaniYas S, Qanadilo H, Ali BR, Shehab S, Statsenko Y, Meribout S, Sadek B, Akour A, Hamad MIK. The Microbiota-Gut-Brain Axis and Neurological Disorders: A Comprehensive Review. Life (Basel) 2024; 14:1234. [PMID: 39459534 PMCID: PMC11508655 DOI: 10.3390/life14101234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Microbes have inhabited the earth for hundreds of millions of years longer than humans. The microbiota-gut-brain axis (MGBA) represents a bidirectional communication pathway. These communications occur between the central nervous system (CNS), the enteric nervous system (ENS), and the emotional and cognitive centres of the brain. The field of research on the gut-brain axis has grown significantly during the past two decades. Signalling occurs between the gut microbiota and the brain through the neural, endocrine, immune, and humoral pathways. A substantial body of evidence indicates that the MGBA plays a pivotal role in various neurological diseases. These include Alzheimer's disease (AD), autism spectrum disorder (ASD), Rett syndrome, attention deficit hyperactivity disorder (ADHD), non-Alzheimer's neurodegeneration and dementias, fronto-temporal lobe dementia (FTLD), Wilson-Konovalov disease (WD), multisystem atrophy (MSA), Huntington's chorea (HC), Parkinson's disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), temporal lobe epilepsy (TLE), depression, and schizophrenia (SCZ). Furthermore, the bidirectional correlation between therapeutics and the gut-brain axis will be discussed. Conversely, the mood of delivery, exercise, psychotropic agents, stress, and neurologic drugs can influence the MGBA. By understanding the MGBA, it may be possible to facilitate research into microbial-based interventions and therapeutic strategies for neurological diseases.
Collapse
Affiliation(s)
- Mohammed M. Nakhal
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Lidya K. Yassin
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Rana Alyaqoubi
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Sara Saeed
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Alreem Alderei
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Alya Alhammadi
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Mirah Alshehhi
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Afra Almehairbi
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Shaikha Al Houqani
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Shamsa BaniYas
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Haia Qanadilo
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Bassam R. Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Safa Shehab
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Yauhen Statsenko
- Department of Radiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
- Neuroscience Platform, ASPIRE Precision Medicine Institute in Abu Dhabi, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Sarah Meribout
- Internal Medicine Department, Maimonides Medical Center, New York, NY 11219, USA;
| | - Bassem Sadek
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Bo Box 15551, United Arab Emirates; (B.S.); (A.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 1551, United Arab Emirates
| | - Amal Akour
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Bo Box 15551, United Arab Emirates; (B.S.); (A.A.)
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Mohammad I. K. Hamad
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| |
Collapse
|
62
|
Ma Z, Zuo T, Frey N, Rangrez AY. A systematic framework for understanding the microbiome in human health and disease: from basic principles to clinical translation. Signal Transduct Target Ther 2024; 9:237. [PMID: 39307902 PMCID: PMC11418828 DOI: 10.1038/s41392-024-01946-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/03/2024] [Accepted: 08/01/2024] [Indexed: 09/26/2024] Open
Abstract
The human microbiome is a complex and dynamic system that plays important roles in human health and disease. However, there remain limitations and theoretical gaps in our current understanding of the intricate relationship between microbes and humans. In this narrative review, we integrate the knowledge and insights from various fields, including anatomy, physiology, immunology, histology, genetics, and evolution, to propose a systematic framework. It introduces key concepts such as the 'innate and adaptive genomes', which enhance genetic and evolutionary comprehension of the human genome. The 'germ-free syndrome' challenges the traditional 'microbes as pathogens' view, advocating for the necessity of microbes for health. The 'slave tissue' concept underscores the symbiotic intricacies between human tissues and their microbial counterparts, highlighting the dynamic health implications of microbial interactions. 'Acquired microbial immunity' positions the microbiome as an adjunct to human immune systems, providing a rationale for probiotic therapies and prudent antibiotic use. The 'homeostatic reprogramming hypothesis' integrates the microbiome into the internal environment theory, potentially explaining the change in homeostatic indicators post-industrialization. The 'cell-microbe co-ecology model' elucidates the symbiotic regulation affecting cellular balance, while the 'meta-host model' broadens the host definition to include symbiotic microbes. The 'health-illness conversion model' encapsulates the innate and adaptive genomes' interplay and dysbiosis patterns. The aim here is to provide a more focused and coherent understanding of microbiome and highlight future research avenues that could lead to a more effective and efficient healthcare system.
Collapse
Affiliation(s)
- Ziqi Ma
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| | - Tao Zuo
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Norbert Frey
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| | - Ashraf Yusuf Rangrez
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| |
Collapse
|
63
|
Guraka A, Duff R, Waldron J, Tripathi G, Kermanizadeh A. Co-Culture of Gut Bacteria and Metabolite Extraction Using Fast Vacuum Filtration and Centrifugation. Methods Protoc 2024; 7:74. [PMID: 39311375 PMCID: PMC11417889 DOI: 10.3390/mps7050074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024] Open
Abstract
This protocol describes a robust method for the extraction of intra and extracellular metabolites of gut bacterial mono and co-cultures. In recent years, the co-culture techniques employed in the field of microbiology have demonstrated significant importance in regard to understanding cell-cell interactions, cross-feeding, and the metabolic interactions between different bacteria, fungi, and microbial consortia which enable the mimicking of complex co-habitant conditions. This protocol highlights a robust reproducible physiologically relevant culture and extraction protocol for the co-culture of gut bacterium. The novel extraction steps are conducted without using quenching and cell disruption through bead-cell methods, freeze-thaw cycles, and sonication, which tend to affect the physical and biochemical properties of intracellular metabolites and secretome. The extraction procedure of inoculated bacterial co-cultures and monocultures use fast vacuum filtration and centrifugation. The extraction methodology is fast, effective, and robust, requiring 4 h to complete.
Collapse
Affiliation(s)
- Asha Guraka
- College of Science and Engineering, University of Derby, Derby DE22 1GB, UK
| | - Richard Duff
- College of Science and Engineering, University of Derby, Derby DE22 1GB, UK
| | - Joe Waldron
- College of Science and Engineering, University of Derby, Derby DE22 1GB, UK
| | - Gyanendra Tripathi
- School of Science and Technology, Nottingham Trent University, Nottingham NG1 4BU, UK;
| | - Ali Kermanizadeh
- College of Science and Engineering, University of Derby, Derby DE22 1GB, UK
| |
Collapse
|
64
|
Hemat Jouy S, Mohan S, Scichilone G, Mostafa A, Mahmoud AM. Adipokines in the Crosstalk between Adipose Tissues and Other Organs: Implications in Cardiometabolic Diseases. Biomedicines 2024; 12:2129. [PMID: 39335642 PMCID: PMC11428859 DOI: 10.3390/biomedicines12092129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Adipose tissue was previously regarded as a dormant organ for lipid storage until the identification of adiponectin and leptin in the early 1990s. This revelation unveiled the dynamic endocrine function of adipose tissue, which has expanded further. Adipose tissue has emerged in recent decades as a multifunctional organ that plays a significant role in energy metabolism and homeostasis. Currently, it is evident that adipose tissue primarily performs its function by secreting a diverse array of signaling molecules known as adipokines. Apart from their pivotal function in energy expenditure and metabolism regulation, these adipokines exert significant influence over a multitude of biological processes, including but not limited to inflammation, thermoregulation, immune response, vascular function, and insulin sensitivity. Adipokines are pivotal in regulating numerous biological processes within adipose tissue and facilitating communication between adipose tissue and various organs, including the brain, gut, pancreas, endothelial cells, liver, muscle, and more. Dysregulated adipokines have been implicated in several metabolic diseases, like obesity and diabetes, as well as cardiovascular diseases. In this article, we attempted to describe the significance of adipokines in developing metabolic and cardiovascular diseases and highlight their role in the crosstalk between adipose tissues and other tissues and organs.
Collapse
Affiliation(s)
- Shaghayegh Hemat Jouy
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Central Tehran Branch, Islamic Azad University, Tehran 14778-93855, Iran;
| | - Sukrutha Mohan
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (S.M.); (G.S.)
| | - Giorgia Scichilone
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (S.M.); (G.S.)
| | - Amro Mostafa
- Department of Pharmacology, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA;
| | - Abeer M. Mahmoud
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (S.M.); (G.S.)
- Department of Kinesiology and Nutrition, College of Applied Health Sciences, University of Illinois Chicago, Chicago, IL 60612, USA
| |
Collapse
|
65
|
Zhang K, Zhang Q, Qiu H, Ma Y, Hou N, Zhang J, Kan C, Han F, Sun X, Shi J. The complex link between the gut microbiome and obesity-associated metabolic disorders: Mechanisms and therapeutic opportunities. Heliyon 2024; 10:e37609. [PMID: 39290267 PMCID: PMC11407058 DOI: 10.1016/j.heliyon.2024.e37609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024] Open
Abstract
Microbial interactions are widespread and important processes that support the link between disease and microbial ecology. The gut microbiota is a major source of microbial stimuli that can have detrimental or beneficial effects on human health. It is also an endocrine organ that maintains energy homeostasis and host immunity. Obesity is a highly and increasingly prevalent metabolic disease and the leading cause of preventable death worldwide. An imbalance in the gut microbiome is associated with several diseases including obesity-related metabolic disorders. This review summarizes the complex association between the gut microbiome and obesity-associated metabolic diseases and validates the role and mechanisms of ecological dysregulation in the gut in obesity-associated metabolic disorders. Therapies that could potentially alleviate obesity-associated metabolic diseases by modulating the gut microbiota are discussed.
Collapse
Affiliation(s)
- Kexin Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Qi Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Hongyan Qiu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Yanhui Ma
- Department of Pathology, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Ningning Hou
- Department of Endocrinology and Metabolism, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Jingwen Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Fang Han
- Department of Endocrinology and Metabolism, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, China
- Department of Pathology, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Junfeng Shi
- Department of Endocrinology and Metabolism, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| |
Collapse
|
66
|
Paone P, Latousakis D, Terrasi R, Vertommen D, Jian C, Borlandelli V, Suriano F, Johansson MEV, Puel A, Bouzin C, Delzenne NM, Salonen A, Juge N, Florea BI, Muccioli GG, Overkleeft H, Van Hul M, Cani PD. Human milk oligosaccharide 2'-fucosyllactose protects against high-fat diet-induced obesity by changing intestinal mucus production, composition and degradation linked to changes in gut microbiota and faecal proteome profiles in mice. Gut 2024; 73:1632-1649. [PMID: 38740509 PMCID: PMC11420753 DOI: 10.1136/gutjnl-2023-330301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 04/27/2024] [Indexed: 05/16/2024]
Abstract
OBJECTIVE To decipher the mechanisms by which the major human milk oligosaccharide (HMO), 2'-fucosyllactose (2'FL), can affect body weight and fat mass gain on high-fat diet (HFD) feeding in mice. We wanted to elucidate whether 2'FL metabolic effects are linked with changes in intestinal mucus production and secretion, mucin glycosylation and degradation, as well as with the modulation of the gut microbiota, faecal proteome and endocannabinoid (eCB) system. RESULTS 2'FL supplementation reduced HFD-induced obesity and glucose intolerance. These effects were accompanied by several changes in the intestinal mucus layer, including mucus production and composition, and gene expression of secreted and transmembrane mucins, glycosyltransferases and genes involved in mucus secretion. In addition, 2'FL increased bacterial glycosyl hydrolases involved in mucin glycan degradation. These changes were linked to a significant increase and predominance of bacterial genera Akkermansia and Bacteroides, different faecal proteome profile (with an upregulation of proteins involved in carbon, amino acids and fat metabolism and a downregulation of proteins involved in protein digestion and absorption) and, finally, to changes in the eCB system. We also investigated faecal proteomes from lean and obese humans and found similar changes observed comparing lean and obese mice. CONCLUSION Our results show that the HMO 2'FL influences host metabolism by modulating the mucus layer, gut microbiota and eCB system and propose the mucus layer as a new potential target for the prevention of obesity and related disorders.
Collapse
Affiliation(s)
- Paola Paone
- Louvain Drug Research Institute (LDRI), Metabolism and Nutrition research group (MNUT), UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Dimitris Latousakis
- The Gut Microbiome and Health and Food Safety Institute Strategic Programme, Norwich Research Park, Quadram Institute Bioscience, Norwich, UK
| | - Romano Terrasi
- Louvain Drug Research Institute (LDRI), Bioanalysis and Pharmacology of Bioactive Lipids Research Group (BPBL), UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Didier Vertommen
- de Duve Institute, MASSPROT platform, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Ching Jian
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Valentina Borlandelli
- Department Bio-organic Synthesis, Leids Instituut voor Chemisch Onderzoek, Leiden University, Leiden, The Netherlands
| | - Francesco Suriano
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Malin E V Johansson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Anthony Puel
- Louvain Drug Research Institute (LDRI), Metabolism and Nutrition research group (MNUT), UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) Department, WEL Research Institute, Wavre, Belgium
| | - Caroline Bouzin
- Institute of Experimental and Clinical Research (IREC), IREC Imaging Platform (2IP RRID:SCR_023378), UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Nathalie M Delzenne
- Louvain Drug Research Institute (LDRI), Metabolism and Nutrition research group (MNUT), UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Anne Salonen
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Nathalie Juge
- The Gut Microbiome and Health and Food Safety Institute Strategic Programme, Norwich Research Park, Quadram Institute Bioscience, Norwich, UK
| | - Bogdan I Florea
- Department Bio-organic Synthesis, Leids Instituut voor Chemisch Onderzoek, Leiden University, Leiden, The Netherlands
| | - Giulio G Muccioli
- Louvain Drug Research Institute (LDRI), Bioanalysis and Pharmacology of Bioactive Lipids Research Group (BPBL), UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Herman Overkleeft
- Department Bio-organic Synthesis, Leids Instituut voor Chemisch Onderzoek, Leiden University, Leiden, The Netherlands
| | - Matthias Van Hul
- Louvain Drug Research Institute (LDRI), Metabolism and Nutrition research group (MNUT), UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) Department, WEL Research Institute, Wavre, Belgium
| | - Patrice D Cani
- Louvain Drug Research Institute (LDRI), Metabolism and Nutrition research group (MNUT), UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) Department, WEL Research Institute, Wavre, Belgium
- Institute of Experimental and Clinical Research (IREC), UCLouvain, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
67
|
Cao C, Yue S, Lu A, Liang C. Host-Gut Microbiota Metabolic Interactions and Their Role in Precision Diagnosis and Treatment of Gastrointestinal Cancers. Pharmacol Res 2024; 207:107321. [PMID: 39038631 DOI: 10.1016/j.phrs.2024.107321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/30/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024]
Abstract
The critical role of the gut microbiome in gastrointestinal cancers is becoming increasingly clear. Imbalances in the gut microbial community, referred to as dysbiosis, are linked to increased risks for various forms of gastrointestinal cancers. Pathogens like Fusobacterium and Helicobacter pylori relate to the onset of esophageal and gastric cancers, respectively, while microbes such as Porphyromonas gingivalis and Clostridium species have been associated with a higher risk of pancreatic cancer. In colorectal cancer, bacteria such as Fusobacterium nucleatum are known to stimulate the growth of tumor cells and trigger cancer-promoting pathways. On the other hand, beneficial microbes like Bifidobacteria offer a protective effect, potentially inhibiting the development of gastrointestinal cancers. The potential for therapeutic interventions that manipulate the gut microbiome is substantial, including strategies to engineer anti-tumor metabolites and employ microbiota-based treatments. Despite the progress in understanding the influence of the microbiome on gastrointestinal cancers, significant challenges remain in identifying and understanding the precise contributions of specific microbial species and their metabolic products. This knowledge is essential for leveraging the role of the gut microbiome in the development of precise diagnostics and targeted therapies for gastrointestinal cancers.
Collapse
Affiliation(s)
- Chunhao Cao
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China; Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong Special Administrative Region of China
| | - Siran Yue
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China; Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong Special Administrative Region of China
| | - Aiping Lu
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong Special Administrative Region of China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou 510006, China; Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Chao Liang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China; Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong Special Administrative Region of China; State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China.
| |
Collapse
|
68
|
Xu Z, Chen M, Ng SC. Metabolic Regulation of Microbiota and Tissue Response. Gastroenterol Clin North Am 2024; 53:399-412. [PMID: 39068002 DOI: 10.1016/j.gtc.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The microbiota in our gut regulates the sophisticated metabolic system that the human body has, essentially converting food into energy and the building blocks for various bodily functions. In this review, we discuss the multifaceted impact of the microbiota on host nutritional status by producing short-chain fatty acids, influencing gut hormones and mediating bile acid metabolism, and the key role in maintaining intestinal barrier integrity and immune homeostasis. Understanding and leveraging the power of the gut microbiome holds tremendous potential for enhancing human health and preventing various diseases.
Collapse
Affiliation(s)
- Zhilu Xu
- Microbiota I-Center (MagIC), Hong Kong SAR, China; Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Manman Chen
- Microbiota I-Center (MagIC), Hong Kong SAR, China; Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Siew Chien Ng
- Microbiota I-Center (MagIC), Hong Kong SAR, China; Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
69
|
Savytska M, Kozyk M, Strubchevska K, Yosypenko K, Falalyeyeva T, Kobyliak N, Boccuto L, Pellicano R, Fagoonee S, Scarpellini E, Abenavoli L. Association between intestinal microflora and obesity. Minerva Gastroenterol (Torino) 2024; 70:342-352. [PMID: 36943206 DOI: 10.23736/s2724-5985.23.03379-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Obesity has become one of modern society's most serious health problems. Studies from the last 30 years revealed a direct relationship between imbalanced energy intake and increased healthcare costs related to the treatment or management of obesity. Recent research has highlighted significant effects of gut microbial composition on obesity. We aimed to report the current knowledge on the definition, composition, and functions of intestinal microbiota. We have performed an extensive review of the literature searching for the following key words: metabolism, gut microbiota, dysbiosis, and obesity. There is evidence that an association between intestinal microbiota and obesity exists at any age. There are complex genetic, metabolic, and inflammatory mechanisms involved in the pathogenesis of obesity. Revision of indications for use of probiotics, prebiotics, and antibiotics in obese patients should be considered. Microbial composition of the gut may be an important factor involved in the development of obesity. Changes in the gut microbiota may result in changes in human metabolism and weight loss.
Collapse
Affiliation(s)
- Maryana Savytska
- Department of Normal Physiology, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Marko Kozyk
- Corewell Health, William Beaumont Hospital, Royal Oak, MI, USA
| | | | - Kateryna Yosypenko
- Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Tetyana Falalyeyeva
- Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
- Medical Laboratory CSD, Kyiv, Ukraine
| | - Nazarii Kobyliak
- Medical Laboratory CSD, Kyiv, Ukraine
- Department of Endocrinology, Bogomolets National Medical University, Kyiv, Ukraine
| | - Luigi Boccuto
- School of Nursing, Clemson University, Clemson, SC, USA
| | - Rinaldo Pellicano
- Unit of Gastroenterology, Molinette Hospital, Città della Salute e della Scienza, Turin, Italy -
| | - Sharmila Fagoonee
- National Research Council, Molecular Biotechnology Center, Institute of Biostructure and Bioimaging, Turin, Italy
| | - Emidio Scarpellini
- Department of Translational Research in Gastrointestinal Disorders (T.A.R.G.I.D.), Gasthuisberg University Hospital, KU Leuven, Leuven, Belgium
| | - Ludovico Abenavoli
- Department of Health Sciences, Magna Græcia University of Catanzaro, Catanzaro, Italy
| |
Collapse
|
70
|
Lefebvre C, Tiffay A, Breemeersch CE, Dreux V, Bôle-Feysot C, Guérin C, Breton J, Maximin E, Monnoye M, Déchelotte P, Douard V, Goichon A, Coëffier M. Sex-dependent effects of a high fat diet on metabolic disorders, intestinal barrier function and gut microbiota in mouse. Sci Rep 2024; 14:19835. [PMID: 39191839 DOI: 10.1038/s41598-024-70931-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 08/22/2024] [Indexed: 08/29/2024] Open
Abstract
Obesity is often associated with sex-dependent metabolic complications, in which altered intestinal barrier function and gut microbiota contribute. We aimed to characterize in mice the sex-dependent effects of a high fat diet on these parameters. Male and female C57BL/6 mice received a standard (SD) or high fat diet (HFD; 60% kcal from fat) during 14 weeks (W14). Body composition, glucose tolerance, insulin sensitivity, intestinal permeability, colonic expression of 44 genes encoding factors involved in inflammatory response and gut barrier function, cecal microbiota, plasma adipokines and white adipose tissue response have been assessed. Both male and female HFD mice exhibited an increase of body weight and fat mass gain and glucose intolerance compared to SD mice. However, only male HFD mice tended to develop insulin resistance associated to increased Tnfα and Ccl2 mRNA expression in perigonadal adipose tissue. By contrast, only female HFD mice showed significant intestinal hyperpermeability that was associated with more markedly altered colonic inflammatory response. Cecal microbiota richness was markedly reduced in both sexes (Observed species) with sex-dependent modifications at the phyla or family level, e.g. decreased relative abundance of Bacillota and Lachnospiraceae in females, increased of Bacteroidaceae in males. Interestingly, some of these microbiota alterations were correlated with peripheral metabolic and inflammatory markers. In conclusions, male and female mice exhibit different responses to a high fat diet with specific changes of gut microbiota, intestinal barrier function, colonic and white adipose tissue inflammation, metabolic markers and body weight gain. The underlying mechanisms should be deciphered in further investigations.
Collapse
Affiliation(s)
- Candice Lefebvre
- Univ Rouen Normandie, INSERM, Normandie Univ, ADEN UMR1073 "Nutrition, Inflammation and Microbiota-Gut-Brain Axis", UFR Santé, 22 Boulevard Gambetta, 76000, Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), Univ Rouen Normandie, 76000, Rouen, France
| | - Adam Tiffay
- Univ Rouen Normandie, INSERM, Normandie Univ, ADEN UMR1073 "Nutrition, Inflammation and Microbiota-Gut-Brain Axis", UFR Santé, 22 Boulevard Gambetta, 76000, Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), Univ Rouen Normandie, 76000, Rouen, France
| | - Charles-Edward Breemeersch
- Univ Rouen Normandie, INSERM, Normandie Univ, ADEN UMR1073 "Nutrition, Inflammation and Microbiota-Gut-Brain Axis", UFR Santé, 22 Boulevard Gambetta, 76000, Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), Univ Rouen Normandie, 76000, Rouen, France
| | - Virginie Dreux
- Univ Rouen Normandie, INSERM, Normandie Univ, ADEN UMR1073 "Nutrition, Inflammation and Microbiota-Gut-Brain Axis", UFR Santé, 22 Boulevard Gambetta, 76000, Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), Univ Rouen Normandie, 76000, Rouen, France
| | - Christine Bôle-Feysot
- Univ Rouen Normandie, INSERM, Normandie Univ, ADEN UMR1073 "Nutrition, Inflammation and Microbiota-Gut-Brain Axis", UFR Santé, 22 Boulevard Gambetta, 76000, Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), Univ Rouen Normandie, 76000, Rouen, France
| | - Charlène Guérin
- Univ Rouen Normandie, INSERM, Normandie Univ, ADEN UMR1073 "Nutrition, Inflammation and Microbiota-Gut-Brain Axis", UFR Santé, 22 Boulevard Gambetta, 76000, Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), Univ Rouen Normandie, 76000, Rouen, France
| | - Jonathan Breton
- Univ Rouen Normandie, INSERM, Normandie Univ, ADEN UMR1073 "Nutrition, Inflammation and Microbiota-Gut-Brain Axis", UFR Santé, 22 Boulevard Gambetta, 76000, Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), Univ Rouen Normandie, 76000, Rouen, France
| | - Elise Maximin
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, Domaine de Vilvert, 78350, Jouy-en-Josas, France
| | - Magali Monnoye
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, Domaine de Vilvert, 78350, Jouy-en-Josas, France
| | - Pierre Déchelotte
- Univ Rouen Normandie, INSERM, Normandie Univ, ADEN UMR1073 "Nutrition, Inflammation and Microbiota-Gut-Brain Axis", UFR Santé, 22 Boulevard Gambetta, 76000, Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), Univ Rouen Normandie, 76000, Rouen, France
- Department of Nutrition, CHU Rouen, 76000, Rouen, France
| | - Véronique Douard
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, Domaine de Vilvert, 78350, Jouy-en-Josas, France
| | - Alexis Goichon
- Univ Rouen Normandie, INSERM, Normandie Univ, ADEN UMR1073 "Nutrition, Inflammation and Microbiota-Gut-Brain Axis", UFR Santé, 22 Boulevard Gambetta, 76000, Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), Univ Rouen Normandie, 76000, Rouen, France
| | - Moïse Coëffier
- Univ Rouen Normandie, INSERM, Normandie Univ, ADEN UMR1073 "Nutrition, Inflammation and Microbiota-Gut-Brain Axis", UFR Santé, 22 Boulevard Gambetta, 76000, Rouen, France.
- Institute for Research and Innovation in Biomedicine (IRIB), Univ Rouen Normandie, 76000, Rouen, France.
- Department of Nutrition, CHU Rouen, 76000, Rouen, France.
| |
Collapse
|
71
|
Koutsokostas C, Merkouris E, Goulas A, Aidinopoulou K, Sini N, Dimaras T, Tsiptsios D, Mueller C, Nystazaki M, Tsamakis K. Gut Microbes Associated with Neurodegenerative Disorders: A Comprehensive Review of the Literature. Microorganisms 2024; 12:1735. [PMID: 39203576 PMCID: PMC11357424 DOI: 10.3390/microorganisms12081735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 09/03/2024] Open
Abstract
Evidence shows that neurodegenerative and neuropsychiatric disorders are influenced by alterations in the gut microbiome. Various diseases have been linked to microbiome dysbiosis, yet there are inconclusive data regarding which microorganisms are associated with each disorder. The aim of our study is to systematically review the recent literature of the past decade to clarify whether the gut microbiome contributes to the understanding of pathogenesis and progression of neurodegenerative disorders. Most included studies showed a strong correlation between the relative abundance of certain microorganisms, mainly species of the phyla Firmicutes and Bacteroidetes, and disorders such as Parkinson's disease (PD) and Alzheimer's disease (AD). It is speculated that the microorganisms and their byproducts have a significant role in brain protein accumulation, neuro-inflammation, and gut permeability. The estimation of microbial populations could potentially improve clinical outcomes and hinder the progression of the disease. However, further research is needed to include more diseases and larger patient samples and identify specific species and subspecies associated with these disorders.
Collapse
Affiliation(s)
- Christos Koutsokostas
- Neurology Department, Democritus University of Thrace, 68100 Alexandroupoli, Greece; (C.K.); (E.M.); (A.G.); (K.A.); (N.S.); (T.D.)
| | - Ermis Merkouris
- Neurology Department, Democritus University of Thrace, 68100 Alexandroupoli, Greece; (C.K.); (E.M.); (A.G.); (K.A.); (N.S.); (T.D.)
| | - Apostolos Goulas
- Neurology Department, Democritus University of Thrace, 68100 Alexandroupoli, Greece; (C.K.); (E.M.); (A.G.); (K.A.); (N.S.); (T.D.)
| | - Konstantina Aidinopoulou
- Neurology Department, Democritus University of Thrace, 68100 Alexandroupoli, Greece; (C.K.); (E.M.); (A.G.); (K.A.); (N.S.); (T.D.)
| | - Niki Sini
- Neurology Department, Democritus University of Thrace, 68100 Alexandroupoli, Greece; (C.K.); (E.M.); (A.G.); (K.A.); (N.S.); (T.D.)
| | - Theofanis Dimaras
- Neurology Department, Democritus University of Thrace, 68100 Alexandroupoli, Greece; (C.K.); (E.M.); (A.G.); (K.A.); (N.S.); (T.D.)
| | | | - Christoph Mueller
- Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London SE5 8AB, UK;
- Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, London SE5 8AF, UK
| | - Maria Nystazaki
- 2nd Department of Psychiatry, University General Hospital ‘Attikon’, 12462 Athens, Greece;
| | - Konstantinos Tsamakis
- Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London SE5 8AB, UK;
- Institute of Medical and Biomedical Education, St George’s, University of London, London SW17 0RE, UK
| |
Collapse
|
72
|
Wang M, Zheng L, Meng Y, Ma S, Zhao D, Xu Y. Broadening horizons: intestinal microbiota as a novel biomarker and potential treatment for hypertensive disorders of pregnancy. Front Cell Infect Microbiol 2024; 14:1446580. [PMID: 39239636 PMCID: PMC11374776 DOI: 10.3389/fcimb.2024.1446580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/24/2024] [Indexed: 09/07/2024] Open
Abstract
Hypertensive disorders of pregnancy (HDP) are severe complications of pregnancy with high morbidity and are a major cause of increased maternal and infant morbidity and mortality. Currently, there is a lack of effective early diagnostic indicators and safe and effective preventive strategies for HDP in clinical practice, except for monitoring maternal blood pressure levels, the degree of proteinuria, organ involvement and fetal conditions. The intestinal microbiota consists of the gut flora and intestinal environment, which is the largest microecosystem of the human body and participates in material and energy metabolism, gene expression regulation, immunity regulation, and other functions. During pregnancy, due to changes in hormone levels and altered immune function, the intestinal microecological balance is affected, triggering HDP. A dysregulated intestinal microenvironment influences the composition and distribution of the gut flora and changes the intestinal barrier, driving beneficial or harmful bacterial metabolites and inflammatory responses to participate in the development of HDP and promote its malignant development. When the gut flora is dysbiotic and affects blood pressure, supplementation with probiotics and dietary fiber can be used to intervene. In this review, the interaction between the intestinal microbiota and HDP was investigated to explore the feasibility of the gut flora as a novel biomarker of HDP and to provide a new strategy and basis for the prevention and treatment of clinical HDP.
Collapse
Affiliation(s)
- Min Wang
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Lianwen Zheng
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Yang Meng
- Jilin Province Product Quality Supervision and Inspection Institute, Changchun, China
| | - Shuai Ma
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Donghai Zhao
- Department of Pathology, Jilin Medical College, Jilin, China
| | - Ying Xu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
73
|
Zhang CY, Jiang SJ, Cao JJ, Xu Y, Wang XY, Li R, Miao ZW. Investigating the causal relationship between gut microbiota and gastroenteropancreatic neuroendocrine neoplasms: a bidirectional Mendelian randomization study. Front Microbiol 2024; 15:1420167. [PMID: 39193433 PMCID: PMC11347282 DOI: 10.3389/fmicb.2024.1420167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024] Open
Abstract
Background The interaction between the intestinal flora and gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs) remains poorly understood, despite the known effect of the gut microbiota on gastrointestinal adenocarcinomas. Hence, the present research aimed to determine the potential causal correlation between the intestinal flora and GEP-NENs by conducting a bidirectional Mendelian randomization (MR) analysis. Methods Two-sample MR analysis was conducted using the summary statistics of the gut microbiota from the MiBioGen consortium and those of GEP-NENs from the FinnGen research project. The inverse-variance weighted approach was utilized as the primary analytical method. To enhance the robustness of our findings, multiple sensitivity tests were performed, including Cochran's Q test for evaluating heterogeneity, the MR-Egger intercept test to detect horizontal pleiotropy, and the MR-PRESSO test to identify outliers and assess pleiotropy bias. Additionally, a leave-one-out analysis was performed to validate the consistency of our findings. The MR-Steiger test was also utilized to determine the causal direction in the correlation between the gut microbiota and GEP-NENs. Finally, a reverse MR analysis was performed to assess reverse causality between the intestinal flora and GEP-NENs. Results We identified 42 taxa of the gut microbiota that were potentially causally associated with GEP-NENs; of these taxa, 7, 8, 11, and 16 taxa were causally associated with pancreatic NENs, colorectal NENs, small intestinal NENs, and gastric NENs, respectively. After adjusting for false discovery rate (FDR) correction, we found significant causal links of Euryarchaeota with small intestinal NENs and Family XIII UCG-001 with gastric NENs. The sensitivity analyses confirmed the stability of these correlations. In the reverse MR analysis, colorectal NENs and small intestinal NENs were found to be associated with variations in 8 and 6 different taxa of the gut microbiota, respectively. After adjusting for FDR correction, no significant causal links were detected between GEP-NENs and the intestinal flora. Conclusion The present study reveals a potential causal association between certain taxa of the intestinal flora and GEP-NENs, thus providing new perspectives regarding the role of the intestinal flora in the development of these tumors. These insights could provide innovative approaches to screen and prevent these diseases.
Collapse
Affiliation(s)
- Chun-yu Zhang
- Zhangjiagang Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | | | - Jing-jing Cao
- Zhangjiagang Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yan Xu
- Zhangjiagang Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiao-yu Wang
- Zhangjiagang Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Rui Li
- The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhi-wei Miao
- Zhangjiagang Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
74
|
Yang L, Gao Y, Gong J, Su Q, Guo Z, Farag MA, Xiao J. Myricetin ameliorates prediabetes through gut microbiota-SCFAs-Gpr43 axis. Crit Rev Food Sci Nutr 2024:1-18. [PMID: 39126667 DOI: 10.1080/10408398.2024.2386450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Affiliation(s)
- Li Yang
- Department of Pharmacy, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Yongchao Gao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Jupeng Gong
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang, China
| | - Qiaoling Su
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang, China
| | - Zhen Guo
- Hunan Provincial Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha, China
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt
| | - Jianbo Xiao
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA) - CITEXVI, Vigo, Spain
| |
Collapse
|
75
|
Bi B, Fu X, Jian X, Zhang Y, Jiang Y, Zhou W, Zhao H. Assessment of the potential risks in SD rats gavaged with genetically modified yeast containing the cp4-epsps gene. Front Vet Sci 2024; 11:1411520. [PMID: 39170628 PMCID: PMC11335726 DOI: 10.3389/fvets.2024.1411520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/21/2024] [Indexed: 08/23/2024] Open
Abstract
Introduction Despite the absence of definitive evidence indicating that the cp4-epsps gene and its resultant recombinant proteins have significant harmful effects on either human or animal health, the safety assessment of genetically modified (GM) crops expressing the CP4-EPSPS proteins has been controversial. This study endeavor was aimed at evaluating the potential risks posed by the CP4-EPSPS protein in transgenic crops, thereby contributing to the advancement of risk assessment methodologies in the context of genetically engineered crops. Methods To ascertain the appropriate daily dosages for oral gavage administration, the expression levels of the CP4-EPSPS protein in a recombinant yeast were quantified. Subsequently, physiological and biochemical analysis, metabolomics, and metagenomic analysis were conducted based on a 90-day Sprague-Dawley (SD) rats feeding experiment, respectively, thereby enhancing the depth and precision of our risk assessment framework. Results The results from the physiological and biochemical analysis, organ pathological, blood metabolism, gut microbiota, and correlation analysis of metabolites and gut microbiota revealed several biomarkers for further risk assessment. These biomarkers include clinical biochemical indexes such as total bilirubin (TBIL), direct bilirubin (DBIL), creatine kinase (CK), and lactate dehydrogenase (LDH); metabolites like Methionine, 2-Oxovaleric acid, and LysoPC (16:0); and gut microbiota including Blautia wexlerae, Holdemanella biformis, Dorea sp. CAG 317, Coriobacteriaceae and Erysipelotrichaceae. Conclusion In conclusion, the risk can be significantly reduced by directly consuming inactivated recombinant CP4-EPSPS. Therefore, in everyday life, the risk associated with consuming GM foods containing recombinant CP4-EPSPS is substantially reduced after heat treatment.
Collapse
Affiliation(s)
- Bo Bi
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, Research Center of Biomass 3D Printing Materials, College of Materials and Energy, South China Agricultural University, Guangzhou, China
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xuewei Fu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, Research Center of Biomass 3D Printing Materials, College of Materials and Energy, South China Agricultural University, Guangzhou, China
| | - Xuewen Jian
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, Research Center of Biomass 3D Printing Materials, College of Materials and Energy, South China Agricultural University, Guangzhou, China
| | - Yu Zhang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, Research Center of Biomass 3D Printing Materials, College of Materials and Energy, South China Agricultural University, Guangzhou, China
| | - Yizhi Jiang
- Guangzhou Zhixin High School, Guangzhou, China
| | - Wuyi Zhou
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, Research Center of Biomass 3D Printing Materials, College of Materials and Energy, South China Agricultural University, Guangzhou, China
| | - Hui Zhao
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, Research Center of Biomass 3D Printing Materials, College of Materials and Energy, South China Agricultural University, Guangzhou, China
| |
Collapse
|
76
|
Jacob T, Sindhu S, Hasan A, Malik MZ, Arefanian H, Al-Rashed F, Nizam R, Kochumon S, Thomas R, Bahman F, Shenouda S, Wilson A, Akther N, Al-Roub A, Abukhalaf N, Albeloushi S, Abu-Farha M, Al Madhoun A, Alzaid F, Thanaraj TA, Koistinen HA, Tuomilehto J, Al-Mulla F, Ahmad R. Soybean oil-based HFD induces gut dysbiosis that leads to steatosis, hepatic inflammation and insulin resistance in mice. Front Microbiol 2024; 15:1407258. [PMID: 39165573 PMCID: PMC11334085 DOI: 10.3389/fmicb.2024.1407258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/09/2024] [Indexed: 08/22/2024] Open
Abstract
High-fat diets (HFDs) shape the gut microbiome and promote obesity, inflammation, and liver steatosis. Fish and soybean are part of a healthy diet; however, the impact of these fats, in the absence of sucrose, on gut microbial dysbiosis and its association with liver steatosis remains unclear. Here, we investigated the effect of sucrose-free soybean oil-and fish oil-based high fat diets (HFDs) (SF-Soy-HFD and SF-Fish-HFD, respectively) on gut dysbiosis, obesity, steatosis, hepatic inflammation, and insulin resistance. C57BL/6 mice were fed these HFDs for 24 weeks. Both diets had comparable effects on liver and total body weights. But 16S-rRNA sequencing of the gut content revealed induction of gut dysbiosis at different taxonomic levels. The microbial communities were clearly separated, showing differential dysbiosis between the two HFDs. Compared with the SF-Fish-HFD control group, the SF-Soy-HFD group had an increased abundance of Bacteroidetes, Firmicutes, and Deferribacteres, but a lower abundance of Verrucomicrobia. The Clostridia/Bacteroidia (C/B) ratio was higher in the SF-Soy-HFD group (3.11) than in the SF-Fish-HFD group (2.5). Conversely, the Verrucomicrobiacae/S24_7 (also known as Muribaculaceae family) ratio was lower in the SF-Soy-HFD group (0.02) than that in the SF-Fish-HFD group (0.75). The SF-Soy-HFD group had a positive association with S24_7, Clostridiales, Allobaculum, Coriobacteriaceae, Adlercreutzia, Christensenellaceae, Lactococcus, and Oscillospira, but was related to a lower abundance of Akkermansia, which maintains gut barrier integrity. The gut microbiota in the SF-Soy-HFD group had predicted associations with host genes related to fatty liver and inflammatory pathways. Mice fed the SF-Soy-HFD developed liver steatosis and showed increased transcript levels of genes associated with de novo lipogenesis (Acaca, Fasn, Scd1, Elovl6) and cholesterol synthesis (Hmgcr) pathways compared to those in the SF-Fish-HFD-group. No differences were observed in the expression of fat uptake genes (Cd36 and Fabp1). The expression of the fat efflux gene (Mttp) was reduced in the SF-Soy-HFD group. Moreover, hepatic inflammation markers (Tnfa and Il1b) were notably expressed in SF-Soy-HFD-fed mice. In conclusion, SF-Soy-HFD feeding induced gut dysbiosis in mice, leading to steatosis, hepatic inflammation, and impaired glucose homeostasis.
Collapse
Affiliation(s)
- Texy Jacob
- Dasman Diabetes Institute, Dasman, Kuwait
| | | | - Amal Hasan
- Dasman Diabetes Institute, Dasman, Kuwait
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Fawaz Alzaid
- Dasman Diabetes Institute, Dasman, Kuwait
- INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Université Paris Cité, Paris, France
| | | | - Heikki A. Koistinen
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Jaakko Tuomilehto
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
| | | | | |
Collapse
|
77
|
Mo C, Lou X, Xue J, Shi Z, Zhao Y, Wang F, Chen G. The influence of Akkermansia muciniphila on intestinal barrier function. Gut Pathog 2024; 16:41. [PMID: 39097746 PMCID: PMC11297771 DOI: 10.1186/s13099-024-00635-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 07/20/2024] [Indexed: 08/05/2024] Open
Abstract
Intestinal barriers play a crucial role in human physiology, both in homeostatic and pathological conditions. Disruption of the intestinal barrier is a significant factor in the pathogenesis of gastrointestinal inflammatory diseases, such as inflammatory bowel disease. The profound influence of the gut microbiota on intestinal diseases has sparked considerable interest in manipulating it through dietary interventions, probiotics, and fecal microbiota transplantation as potential approaches to enhance the integrity of the intestinal barrier. Numerous studies have underscored the protective effects of specific microbiota and their associated metabolites. In recent years, an increasing body of research has demonstrated that Akkermansia muciniphila (A. muciniphila, Am) plays a beneficial role in various diseases, including diabetes, obesity, aging, cancer, and metabolic syndrome. It is gaining popularity as a regulator that influences the intestinal flora and intestinal barrier and is recognized as a 'new generation of probiotics'. Consequently, it may represent a potential target and promising therapy option for intestinal diseases. This article systematically summarizes the role of Am in the gut. Specifically, we carefully discuss key scientific issues that need resolution in the future regarding beneficial bacteria represented by Am, which may provide insights for the application of drugs targeting Am in clinical treatment.
Collapse
Affiliation(s)
- Chunyan Mo
- Medical School, Kunming University of Science and Technology, 727 Jingming South Road, Chenggong District, Kunming, 650500, China
| | - Xiran Lou
- Medical School, Kunming University of Science and Technology, 727 Jingming South Road, Chenggong District, Kunming, 650500, China
| | - Jinfang Xue
- Medical School, Kunming University of Science and Technology, 727 Jingming South Road, Chenggong District, Kunming, 650500, China
| | - Zhuange Shi
- Department of Emergency Medicine, The First People's Hospital of Yunnan Province, 157 Jinbi Road, Xishan District, Kunming, 650034, China
| | - Yifang Zhao
- Department of Emergency Medicine, The First People's Hospital of Yunnan Province, 157 Jinbi Road, Xishan District, Kunming, 650034, China
| | - Fuping Wang
- Department of Emergency Medicine, The First People's Hospital of Yunnan Province, 157 Jinbi Road, Xishan District, Kunming, 650034, China
| | - Guobing Chen
- Department of Emergency Medicine, The First People's Hospital of Yunnan Province, 157 Jinbi Road, Xishan District, Kunming, 650034, China.
| |
Collapse
|
78
|
Pires L, González-Paramás AM, Heleno SA, Calhelha RC. Exploring Therapeutic Advances: A Comprehensive Review of Intestinal Microbiota Modulators. Antibiotics (Basel) 2024; 13:720. [PMID: 39200020 PMCID: PMC11350912 DOI: 10.3390/antibiotics13080720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/18/2024] [Accepted: 07/29/2024] [Indexed: 09/01/2024] Open
Abstract
The gut microbiota establishes a mutually beneficial relationship with the host starting from birth, impacting diverse metabolic and immunological processes. Dysbiosis, characterized by an imbalance of microorganisms, is linked to numerous medical conditions, including gastrointestinal disorders, cardiovascular diseases, and autoimmune disorders. This imbalance promotes the proliferation of toxin-producing bacteria, disrupts the host's equilibrium, and initiates inflammation. Genetic factors, dietary choices, and drug use can modify the gut microbiota. However, there is optimism. Several therapeutic approaches, such as probiotics, prebiotics, synbiotics, postbiotics, microbe-derived products, and microbial substrates, aim to alter the microbiome. This review thoroughly explores the therapeutic potential of these microbiota modulators, analysing recent studies to evaluate their efficacy and limitations. It underscores the promise of microbiota-based therapies for treating dysbiosis-related conditions. This article aims to ensure practitioners feel well-informed and up to date on the most influential methods in this evolving field by providing a comprehensive review of current research.
Collapse
Affiliation(s)
- Lara Pires
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.P.); (R.C.C.)
- Laboratório Associado para Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Grupo de Investigación en Polifenoles, Área de Nutrición y Bromatología, Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno s/n, 37007 Salamanca, Spain;
| | - Ana M. González-Paramás
- Grupo de Investigación en Polifenoles, Área de Nutrición y Bromatología, Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno s/n, 37007 Salamanca, Spain;
| | - Sandrina A. Heleno
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.P.); (R.C.C.)
- Laboratório Associado para Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ricardo C. Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.P.); (R.C.C.)
- Laboratório Associado para Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
79
|
Rahman Z, Bhale NA, Dikundwar AG, Dandekar MP. Multistrain Probiotics with Fructooligosaccharides Improve Middle Cerebral Artery Occlusion-Driven Neurological Deficits by Revamping Microbiota-Gut-Brain Axis. Probiotics Antimicrob Proteins 2024; 16:1251-1269. [PMID: 37365420 DOI: 10.1007/s12602-023-10109-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2023] [Indexed: 06/28/2023]
Abstract
Recent burgeoning literature unveils the importance of gut microbiota in the neuropathology of post-stroke brain injury and recovery. Indeed, ingestion of prebiotics/probiotics imparts positive effects on post-stroke brain injury, neuroinflammation, gut dysbiosis, and intestinal integrity. However, information on the disease-specific preference of selective prebiotics/probiotics/synbiotics and their underlying mechanism is yet elusive. Herein, we examined the effect of a new synbiotic formulation containing multistrain probiotics (Lactobacillus reuteri UBLRu-87, Lactobacillus plantarum UBLP-40, Lactobacillus rhamnosus UBLR-58, Lactobacillus salivarius UBLS-22, and Bifidobacterium breve UBBr-01), and prebiotic fructooligosaccharides using a middle cerebral artery occlusion (MCAO) model of cerebral ischemia in female and male rats. Three weeks pre-MCAO administration of synbiotic rescinded the MCAO-induced sensorimotor and motor deficits on day 3 post-stroke in rotarod, foot-fault, adhesive removal, and paw whisker test. We also observed a decrease in infarct volume and neuronal death in the ipsilateral hemisphere of synbiotic-treated MCAO rats. The synbiotic treatment also reversed the elevated levels/mRNA expression of the glial fibrillary acidic protein (GFAP), NeuN, IL-1β, TNF-α, IL-6, matrix metalloproteinase-9, and caspase-3 and decreased levels of occludin and zonula occludens-1 in MCAO rats. 16S rRNA gene-sequencing data of intestinal contents indicated an increase in genus/species of Prevotella (Prevotella copri), Lactobacillus (Lactobacillus reuteri), Roseburia, Allobaculum, and Faecalibacterium prausnitzii, and decreased abundance of Helicobacter, Desulfovibrio, and Akkermansia (Akkermansia muciniphila) in synbiotic-treated rats compared to the MCAO surgery group. These findings confer the potential benefits of our novel synbiotic preparation for MCAO-induced neurological dysfunctions by reshaping the gut-brain-axis mediators in rats.
Collapse
Affiliation(s)
- Ziaur Rahman
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Nagesh A Bhale
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Amol G Dikundwar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Manoj P Dandekar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India.
| |
Collapse
|
80
|
Ma Y, Nenkov M, Chen Y, Gaßler N. The Role of Adipocytes Recruited as Part of Tumor Microenvironment in Promoting Colorectal Cancer Metastases. Int J Mol Sci 2024; 25:8352. [PMID: 39125923 PMCID: PMC11313311 DOI: 10.3390/ijms25158352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/15/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Adipose tissue dysfunction, which is associated with an increased risk of colorectal cancer (CRC), is a significant factor in the pathophysiology of obesity. Obesity-related inflammation and extracellular matrix (ECM) remodeling promote colorectal cancer metastasis (CRCM) by shaping the tumor microenvironment (TME). When CRC occurs, the metabolic symbiosis of tumor cells recruits adjacent adipocytes into the TME to supply energy. Meanwhile, abundant immune cells, from adipose tissue and blood, are recruited into the TME, which is stimulated by pro-inflammatory factors and triggers a chronic local pro-inflammatory TME. Dysregulated ECM proteins and cell surface adhesion molecules enhance ECM remodeling and further increase contractibility between tumor and stromal cells, which promotes epithelial-mesenchymal transition (EMT). EMT increases tumor migration and invasion into surrounding tissues or vessels and accelerates CRCM. Colorectal symbiotic microbiota also plays an important role in the promotion of CRCM. In this review, we provide adipose tissue and its contributions to CRC, with a special emphasis on the role of adipocytes, macrophages, neutrophils, T cells, ECM, and symbiotic gut microbiota in the progression of CRC and their contributions to the CRC microenvironment. We highlight the interactions between adipocytes and tumor cells, and potential therapeutic approaches to target these interactions.
Collapse
Affiliation(s)
| | | | | | - Nikolaus Gaßler
- Section Pathology of the Institute of Forensic Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany (M.N.)
| |
Collapse
|
81
|
Gallardo-Navarro O, Aguilar-Salinas B, Rocha J, Olmedo-Álvarez G. Higher-order interactions and emergent properties of microbial communities: The power of synthetic ecology. Heliyon 2024; 10:e33896. [PMID: 39130413 PMCID: PMC11315108 DOI: 10.1016/j.heliyon.2024.e33896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 06/28/2024] [Indexed: 08/13/2024] Open
Abstract
Humans have long relied on microbial communities to create products, produce energy, and treat waste. The microbiota residing within our bodies directly impacts our health, while the soil and rhizosphere microbiomes influence the productivity of our crops. However, the complexity and diversity of microbial communities make them challenging to study and difficult to develop into applications, as they often exhibit the emergence of unpredictable higher-order phenomena. Synthetic ecology aims at simplifying complexity by constituting synthetic or semi-natural microbial communities with reduced diversity that become easier to study and analyze. This strategy combines methodologies that simplify existing complex systems (top-down approach) or build the system from its constituent components (bottom-up approach). Simplified communities are studied to understand how interactions among populations shape the behavior of the community and to model and predict their response to external stimuli. By harnessing the potential of synthetic microbial communities through a multidisciplinary approach, we can advance knowledge of ecological concepts and address critical public health, agricultural, and environmental issues more effectively.
Collapse
Affiliation(s)
- Oscar Gallardo-Navarro
- Centro de Investigación y de Estudios Avanzado del Instituto Politécnico Nacional, Unidad Irapuato, Mexico
| | - Bernardo Aguilar-Salinas
- Centro de Investigación y de Estudios Avanzado del Instituto Politécnico Nacional, Unidad Irapuato, Mexico
| | - Jorge Rocha
- Centro de Investigaciones Biológicas del Noroeste, S. C., La Paz, Mexico
| | - Gabriela Olmedo-Álvarez
- Centro de Investigación y de Estudios Avanzado del Instituto Politécnico Nacional, Unidad Irapuato, Mexico
| |
Collapse
|
82
|
Zhou L, Yan Z, Yang S, Lu G, Nie Y, Ren Y, Xue Y, Shi JS, Xu ZH, Geng Y. High methionine intake alters gut microbiota and lipid profile and leads to liver steatosis in mice. Food Funct 2024; 15:8053-8069. [PMID: 38989659 DOI: 10.1039/d4fo01613k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Methionine is an important sulfur-containing amino acid. Health effects of both methionine restriction (MR) and methionine supplementation (MS) have been studied. This study aimed to investigate the impact of a high-methionine diet (HMD) (1.64% methionine) on both the gut and liver functions in mice through multi-omic analyses. Hepatic steatosis and compromised gut barrier function were observed in mice fed the HMD. RNA-sequencing (RNA-seq) analysis of liver gene expression patterns revealed the upregulation of lipid synthesis and degradation pathways, cholesterol metabolism and inflammation-related nucleotide-binding oligomerization domain (NOD)-like receptor signaling pathway. Metagenomic sequencing of cecal content demonstrated a shift in gut microbial composition with an increased abundance of opportunistic pathogens and gut microbial functions with up-regulated lipopolysaccharide (LPS) biosynthesis in mice fed HMD. Metabolomic study of cecal content showed an altered gut lipid profile and the level of bioactive lipids, including docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), palmitoylethanolamide (PEA), linoleoyl ethanolamide (LEA) and arachidonoyl ethanolamide (AEA), that carry anti-inflammatory effects significantly reduced in the gut of mice fed the HMD. Correlation analysis demonstrated that gut microbiota was highly associated with liver and gut functions and gut bioactive lipid content. In conclusion, this study suggested that the HMD exerted negative impacts on both the gut and liver, and an adequate amount of methionine intake should be carefully determined to ensure normal physiological function without causing adverse effects.
Collapse
Affiliation(s)
- Lingxi Zhou
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhen Yan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China.
| | - Songfan Yang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China.
| | - Gexue Lu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China.
| | - Yawen Nie
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China.
| | - Yilin Ren
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yuzheng Xue
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China.
| | - Zheng-Hong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
- Innovation Center for Advanced Brewing Science and Technology, Sichuan University, Chengdu, China.
| | - Yan Geng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China.
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi, China
| |
Collapse
|
83
|
Veseli I, Chen YT, Schechter MS, Vanni C, Fogarty EC, Watson AR, Jabri BA, Blekhman R, Willis AD, Yu MK, Fernandez-Guerra A, Fussel J, Eren AM. Microbes with higher metabolic independence are enriched in human gut microbiomes under stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.10.540289. [PMID: 37293035 PMCID: PMC10245760 DOI: 10.1101/2023.05.10.540289] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A wide variety of human diseases are associated with loss of microbial diversity in the human gut, inspiring a great interest in the diagnostic or therapeutic potential of the microbiota. However, the ecological forces that drive diversity reduction in disease states remain unclear, rendering it difficult to ascertain the role of the microbiota in disease emergence or severity. One hypothesis to explain this phenomenon is that microbial diversity is diminished as disease states select for microbial populations that are more fit to survive environmental stress caused by inflammation or other host factors. Here, we tested this hypothesis on a large scale, by developing a software framework to quantify the enrichment of microbial metabolisms in complex metagenomes as a function of microbial diversity. We applied this framework to over 400 gut metagenomes from individuals who are healthy or diagnosed with inflammatory bowel disease (IBD). We found that high metabolic independence (HMI) is a distinguishing characteristic of microbial communities associated with individuals diagnosed with IBD. A classifier we trained using the normalized copy numbers of 33 HMI-associated metabolic modules not only distinguished states of health versus IBD, but also tracked the recovery of the gut microbiome following antibiotic treatment, suggesting that HMI is a hallmark of microbial communities in stressed gut environments.
Collapse
|
84
|
Kim B, Song A, Son A, Shin Y. Gut microbiota and epigenetic choreography: Implications for human health: A review. Medicine (Baltimore) 2024; 103:e39051. [PMID: 39029010 PMCID: PMC11398772 DOI: 10.1097/md.0000000000039051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 07/02/2024] [Indexed: 07/21/2024] Open
Abstract
The interwoven relationship between gut microbiota and the epigenetic landscape constitutes a pivotal axis in understanding human health and disease. Governed by a myriad of dietary, genetic, and environmental influences, the gut microbiota orchestrates a sophisticated metabolic interplay, shaping nutrient utilization, immune responses, and defenses against pathogens. Recent strides in genomics and metabolomics have shed light on the intricate connections between these microbial influencers and the host's physiological dynamics, presenting a dynamic panorama across diverse disease spectra. DNA methylation and histone modifications, as key players in epigenetics, intricately align with the dynamic orchestration of the gut microbiota. This seamless collaboration, notably evident in conditions like inflammatory bowel disease and obesity, has captured the attention of researchers, prompting an exploration of its nuanced choreography. Nevertheless, challenges abound. Analyzing data is intricate due to the multifaceted nature of the gut microbiota and the limitations of current analytical methods. This underscores the need for a multidisciplinary approach, where diverse disciplines converge to pave innovative research pathways. The integration of insights from microbiome and epigenome studies assumes paramount importance in unraveling the complexities of this intricate partnership. Deciphering the synchronized interactions within this collaboration offers a deeper understanding of these delicate interplays, potentially heralding revolutionary strides in treatment modalities and strategies for enhancing public health.
Collapse
Affiliation(s)
- Bailee Kim
- Crescenta Valley High School, La Crescenta, CA
| | - Angel Song
- Harvard-Westlake School, Studio City, CA
| | - Andrew Son
- Bellarmine College Preparatory, San Jose, CA
| | - Yonghwan Shin
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA
| |
Collapse
|
85
|
Ghosh N, Sinha K, Sil PC. Pesticides and the Gut Microbiota: Implications for Parkinson's Disease. Chem Res Toxicol 2024; 37:1071-1085. [PMID: 38958636 DOI: 10.1021/acs.chemrestox.4c00057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Parkinson's disease (PD) affects more people worldwide than just aging alone can explain. This is likely due to environmental influences, genetic makeup, and changes in daily habits. The disease develops in a complex way, with movement problems caused by Lewy bodies and the loss of dopamine-producing neurons. Some research suggests Lewy bodies might start in the gut, hinting at a connection between these structures and gut health in PD patients. These patients often have different gut bacteria and metabolites. Pesticides are known to increase the risk of PD, with evidence showing they harm more than just dopamine neurons. Long-term exposure to pesticides in food might affect the gut barrier, gut bacteria, and the blood-brain barrier, but the exact link is still unknown. This review looks at how pesticides and gut bacteria separately influence PD development and progression, highlighting the harmful effects of pesticides and changes in gut bacteria. We have examined the interaction between pesticides and gut bacteria in PD patients, summarizing how pesticides cause imbalances in gut bacteria, the resulting changes, and their overall effects on the PD prognosis.
Collapse
Affiliation(s)
- Nabanita Ghosh
- Assistant Professor in Zoology, Maulana Azad College, Kolkata 700013, India
| | - Krishnendu Sinha
- Assistant Professor in Zoology, Jhargram Raj College, Jhargram 721507 India
| | - Parames C Sil
- Professor, Division of Molecular Medicine, Bose Institute, Kolkata 700054 India
| |
Collapse
|
86
|
Gazerani P, Papetti L, Dalkara T, Cook CL, Webster C, Bai J. The Brain, the Eating Plate, and the Gut Microbiome: Partners in Migraine Pathogenesis. Nutrients 2024; 16:2222. [PMID: 39064664 PMCID: PMC11280178 DOI: 10.3390/nu16142222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
This review summarizes the relationship between diet, the gut microbiome, and migraine. Key findings reveal that certain dietary factors, such as caffeine and alcohol, can trigger migraine, while nutrients like magnesium and riboflavin may help alleviate migraine symptoms. The gut microbiome, through its influence on neuroinflammation (e.g., vagus nerve and cytokines), gut-brain signaling (e.g., gamma-aminobutyric acid), and metabolic function (e.g., short-chain fatty acids), plays a crucial role in migraine susceptibility. Migraine can also alter eating behaviors, leading to poor nutritional choices and further exacerbating the condition. Individual variability in diet and microbiome composition highlights the need for personalized dietary and prebiotic interventions. Epidemiological and clinical data support the effectiveness of tailored nutritional approaches, such as elimination diets and the inclusion of beneficial nutrients, in managing migraine. More work is needed to confirm the role of prebiotics, probiotics, and potentially fecal microbiome translation in the management of migraine. Future research should focus on large-scale studies to elucidate the underlying mechanisms of bidirectional interaction between diet and migraine and develop evidence-based clinical guidelines. Integrating dietary management, gut health optimization, and lifestyle modifications can potentially offer a holistic approach to reducing migraine frequency and severity, ultimately improving patient outcomes and quality of life.
Collapse
Affiliation(s)
- Parisa Gazerani
- Department of Life Sciences and Health, Faculty of Health Sciences, Oslo Metropolitan University, 0130 Oslo, Norway
- Department of Health Science & Technology, Faculty of Medicine, Aalborg University, 9260 Gistrup, Denmark
| | - Laura Papetti
- Developmental Neurology, Bambino Gesù Children’s Hospital, IRCCS, Piazza di Sant’Onofrio 4, 00165 Rome, Italy;
| | - Turgay Dalkara
- Departments of Neuroscience and Molecular Biology and Genetics, Bilkent University, Ankara 06800, Turkey;
| | - Calli Leighann Cook
- Emory Brain Health Center, General Neurology, Atlanta, GA 30329, USA;
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA 30322, USA; (C.W.); (J.B.)
| | - Caitlin Webster
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA 30322, USA; (C.W.); (J.B.)
| | - Jinbing Bai
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA 30322, USA; (C.W.); (J.B.)
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
87
|
Lehr K, Lange UG, Hipler NM, Vilchez-Vargas R, Hoffmeister A, Feisthammel J, Buchloh D, Schanze D, Zenker M, Gockel I, Link A, Jansen-Winkeln B. Prediction of anastomotic insufficiency based on the mucosal microbiome prior to colorectal surgery: a proof-of-principle study. Sci Rep 2024; 14:15335. [PMID: 38961176 PMCID: PMC11222535 DOI: 10.1038/s41598-024-65320-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 06/19/2024] [Indexed: 07/05/2024] Open
Abstract
Anastomotic leakage (AL) is a potentially life-threatening complication following colorectal cancer (CRC) resection. In this study, we aimed to unravel longitudinal changes in microbial structure before, during, and after surgery and to determine if microbial alterations may be predictive for risk assessment between sufficient anastomotic healing (AS) and AL prior surgery. We analysed the microbiota of 134 colon mucosal biopsies with 16S rRNA V1-V2 gene sequencing. Samples were collected from three location sites before, during, and after surgery, and patients received antibiotics after the initial collection and during surgery. The microbial structure showed dynamic surgery-related changes at different time points. Overall bacterial diversity and the abundance of some genera such as Faecalibacterium or Alistipes decreased over time, while the genera Enterococcus and Escherichia_Shigella increased. The distribution of taxa between AS and AL revealed significant differences in the abundance of genera such as Prevotella, Faecalibacterium and Phocaeicola. In addition to Phocaeicola, Ruminococcus2 and Blautia showed significant differences in abundance between preoperative sample types. ROC analysis of the predictive value of these genera for AL revealed an AUC of 0.802 (p = 0.0013). In summary, microbial composition was associated with postoperative outcomes, and the abundance of certain genera may be predictive of postoperative complications.
Collapse
Affiliation(s)
- Konrad Lehr
- Department of Gastroenterology, Hepatology and Infectious Diseases, Faculty of Medicine, Section of Molecular Gastroenterology and Microbiota-Associated Diseases, Otto Von Guericke University Magdeburg, Magdeburg, Germany
| | - Undine Gabriele Lange
- Clinic and Polyclinic for Visceral, Transplant, Thoracic and Vascular Surgery, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Noam Mathias Hipler
- Department of Gastroenterology, Hepatology and Infectious Diseases, Faculty of Medicine, Section of Molecular Gastroenterology and Microbiota-Associated Diseases, Otto Von Guericke University Magdeburg, Magdeburg, Germany
| | - Ramiro Vilchez-Vargas
- Department of Gastroenterology, Hepatology and Infectious Diseases, Faculty of Medicine, Section of Molecular Gastroenterology and Microbiota-Associated Diseases, Otto Von Guericke University Magdeburg, Magdeburg, Germany
| | - Albrecht Hoffmeister
- Clinic and Polyclinic for Oncology, Gastroenterology, Hepatology and Pneumology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Jürgen Feisthammel
- Clinic and Polyclinic for Oncology, Gastroenterology, Hepatology and Pneumology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Dorina Buchloh
- Clinic for General and Visceral Surgery, Protestant Deaconess House Leipzig, Leipzig, Germany
| | - Denny Schanze
- Institute of Human Genetics, Faculty of Medicine, Otto Von Guericke University Magdeburg, Magdeburg, Germany
| | - Martin Zenker
- Institute of Human Genetics, Faculty of Medicine, Otto Von Guericke University Magdeburg, Magdeburg, Germany
| | - Ines Gockel
- Clinic and Polyclinic for Visceral, Transplant, Thoracic and Vascular Surgery, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Alexander Link
- Department of Gastroenterology, Hepatology and Infectious Diseases, Faculty of Medicine, Section of Molecular Gastroenterology and Microbiota-Associated Diseases, Otto Von Guericke University Magdeburg, Magdeburg, Germany.
| | - Boris Jansen-Winkeln
- Clinic and Polyclinic for Visceral, Transplant, Thoracic and Vascular Surgery, Faculty of Medicine, University of Leipzig, Leipzig, Germany.
- Clinic for General, Visceral, Thoracic and Vascular Surgery, Clinic St. Georg Leipzig, Leipzig, Germany.
| |
Collapse
|
88
|
Fijan S, Šmigoc T. Overview of the Efficacy of Using Probiotics for Neurosurgical and Potential Neurosurgical Patients. Microorganisms 2024; 12:1361. [PMID: 39065129 PMCID: PMC11279057 DOI: 10.3390/microorganisms12071361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
This review delves into the emerging field of the gut microbiota-brain axis, emphasizing its bidirectional communication and implications for neurological health, particularly in trauma and neurosurgery. While disruptions in this axis can lead to dysbiosis and hinder neurological recovery, recent studies have highlighted the therapeutic potential of interventions like probiotics in targeting this axis. This review aims to focus on the efficacy of probiotic supplementation to support the gut microbiota-brain axis in trauma, neurosurgery, or pain based on the current clinical trials to assess the complex interplays among probiotics, the gut microbiota, and the central nervous system (CNS). This comprehensive literature review identified 10 relevant publications on probiotic interventions for various neurosurgical conditions across multiple countries. These studies demonstrated diverse outcomes, with significant improvements observed in gastrointestinal mobility, inflammatory responses, and infection rates, particularly in post-traumatic brain injury and spinal surgery. Probiotics also showed promise in mitigating antibiotic-associated diarrhea and modulating inflammatory cytokines. Despite the promising findings, the complex interplays among probiotics, the gut microbiota, and the central nervous system (CNS) call for cautious interpretation. Conflicting outcomes emphasize the need for better-designed trials to understand strain-specific and disease-specific effects accurately. In conclusion, probiotics offer a promising adjuvant therapy for neurosurgical patients, traumatic brain injuries, and post-spinal surgery. However, further well-designed randomized controlled trials are essential to elucidate the intricate relationship between microbiome-modulating interventions and the CNS via the gut microbiota-brain axis.
Collapse
Affiliation(s)
- Sabina Fijan
- Faculty of Health Sciences, University of Maribor, Žitna ulica 15, 2000 Maribor, Slovenia
| | - Tomaž Šmigoc
- Department of Neurosurgery, University Medical Centre Maribor, Ljubljanska ulica 5, 2000 Maribor, Slovenia;
| |
Collapse
|
89
|
Thompson E, Qureshi A. Pathogens in FRI - Do bugs matter? - An analysis of FRI studies to assess your enemy. J Orthop 2024; 53:59-72. [PMID: 38476676 PMCID: PMC10925936 DOI: 10.1016/j.jor.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 02/09/2024] [Indexed: 03/14/2024] Open
Abstract
Fracture-related infection (FRI) is a devasting complication for both patients and their treating Orthopaedic surgeon that can lead to loss of limb function or even amputation. The unique and unpredictable features of FRI make its diagnosis and treatment a significant challenge. It has substantial morbidity and financial implications for patients, their families and healthcare providers. In this article, we perform an in-depth and comprehensive review of FRI through recent and seminal literature to highlight evolving definitions, diagnostic and treatment approaches, focusing on common pathogens such as Staphylococcus aureus, polymicrobial infections and multi-drug-resistant organisms (MDRO). Furthermore, multiple resistance mechanisms and adaptations for microbial survival are discussed, as well as modern evidence-based medical and surgical advancements in treatment strategies in combating FRI.
Collapse
Affiliation(s)
- Emmet Thompson
- Limb Reconstruction Service, Trauma & Orthopaedic Department, University Hospital Southampton, Southampton, UK
| | - Amir Qureshi
- Limb Reconstruction Service, Trauma & Orthopaedic Department, University Hospital Southampton, Southampton, UK
| |
Collapse
|
90
|
Sehrawat N, Yadav M, Sharma AK, Sharma V, Chandran D, Chakraborty S, Dey A, Chauhan SC, Dhama K. Dietary mung bean as promising food for human health: gut microbiota modulation and insight into factors, regulation, mechanisms and therapeutics-an update. Food Sci Biotechnol 2024; 33:2035-2045. [PMID: 39130662 PMCID: PMC11315822 DOI: 10.1007/s10068-023-01495-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/14/2023] [Accepted: 11/27/2023] [Indexed: 08/13/2024] Open
Abstract
Plant-based functional foods have gained wider attention in current scenario with mung bean harboring several bioactive compounds with promising gut health benefits and pharmacological importance. Consumption of mung bean has a positive impact on beneficial gut microbes and microbial metabolite production. The effects of dietary mung bean on gut microbial homeostasis and the management of gut-related diseases along with the possible mechanism of action, have been highlighted through this review paving a way for a promising role of dietary mung bean as a functional food in the management of gut-related diseases for example mung bean peptides can help not only in treating prediabetes but also delaying the aging process by targeting the intestinal microflora. In addition, expanding our knowledge of how diets affect host health and disease, including the effects of mung bean dietary components on gut microbiota-derived metabolites, will eventually allow for the development of tailored diets and nutrients.
Collapse
Affiliation(s)
- Nirmala Sehrawat
- Department of Bio-Sciences and Technology, MMEC, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, Haryana India
| | - Mukesh Yadav
- Department of Bio-Sciences and Technology, MMEC, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, Haryana India
| | - Anil Kumar Sharma
- Department of Biotechnology, Amity University, Sector 82 A, IT City Rd, Block D, Sahibzada Ajit Singh Nagar, Mohali, Punjab 140306 India
| | - Varruchi Sharma
- Department of Biotechnology & Bioinformatics, Sri Guru Gobind Singh College, Sector 26, Chandigarh, India
| | - Deepak Chandran
- Department of Animal Husbandry, Government of Kerala, Palakkad, Kerala, 679335 India
| | - Sandip Chakraborty
- Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, R.K. Nagar, West Tripura, Tripura 799008 India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, West Bengal 700073 India
| | - Subhash C. Chauhan
- Department of Microbiology and Immunology, Institute of Cancer Immunotherapy School of Medicine, University of Texas Rio Grande Valley (UTRGV), Edinburg, Texas 78504 USA
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh India
| |
Collapse
|
91
|
Bermingham KM, Linenberg I, Polidori L, Asnicar F, Arrè A, Wolf J, Badri F, Bernard H, Capdevila J, Bulsiewicz WJ, Gardner CD, Ordovas JM, Davies R, Hadjigeorgiou G, Hall WL, Delahanty LM, Valdes AM, Segata N, Spector TD, Berry SE. Effects of a personalized nutrition program on cardiometabolic health: a randomized controlled trial. Nat Med 2024; 30:1888-1897. [PMID: 38714898 PMCID: PMC11271409 DOI: 10.1038/s41591-024-02951-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/26/2024] [Indexed: 05/15/2024]
Abstract
Large variability exists in people's responses to foods. However, the efficacy of personalized dietary advice for health remains understudied. We compared a personalized dietary program (PDP) versus general advice (control) on cardiometabolic health using a randomized clinical trial. The PDP used food characteristics, individual postprandial glucose and triglyceride (TG) responses to foods, microbiomes and health history, to produce personalized food scores in an 18-week app-based program. The control group received standard care dietary advice (US Department of Agriculture Guidelines for Americans, 2020-2025) using online resources, check-ins, video lessons and a leaflet. Primary outcomes were serum low-density lipoprotein cholesterol and TG concentrations at baseline and at 18 weeks. Participants (n = 347), aged 41-70 years and generally representative of the average US population, were randomized to the PDP (n = 177) or control (n = 170). Intention-to-treat analysis (n = 347) between groups showed significant reduction in TGs (mean difference = -0.13 mmol l-1; log-transformed 95% confidence interval = -0.07 to -0.01, P = 0.016). Changes in low-density lipoprotein cholesterol were not significant. There were improvements in secondary outcomes, including body weight, waist circumference, HbA1c, diet quality and microbiome (beta-diversity) (P < 0.05), particularly in highly adherent PDP participants. However, blood pressure, insulin, glucose, C-peptide, apolipoprotein A1 and B, and postprandial TGs did not differ between groups. No serious intervention-related adverse events were reported. Following a personalized diet led to some improvements in cardiometabolic health compared to standard dietary advice. ClinicalTrials.gov registration: NCT05273268 .
Collapse
Affiliation(s)
- Kate M Bermingham
- Department of Nutritional Sciences, King's College London, London, UK
- Zoe Ltd, London, UK
| | - Inbar Linenberg
- Department of Nutritional Sciences, King's College London, London, UK
- Zoe Ltd, London, UK
| | | | - Francesco Asnicar
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | | | | | | | | | | | | | | | - Jose M Ordovas
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
- IMDEA Food Institute, Campus of International Excellence, Universidad Autónoma de Madrid, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Universidad Camilo José Cela, Madrid, Spain
| | | | | | - Wendy L Hall
- Department of Nutritional Sciences, King's College London, London, UK
| | - Linda M Delahanty
- Diabetes Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ana M Valdes
- School of Medicine, University of Nottingham, Nottingham, UK
- Nottingham National Institute for Health and Care Research Biomedical Research Centre, Nottingham, UK
| | - Nicola Segata
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Tim D Spector
- Department of Nutritional Sciences, King's College London, London, UK
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Sarah E Berry
- Department of Nutritional Sciences, King's College London, London, UK.
| |
Collapse
|
92
|
Sheng C, Huang W, Liao M, Yang P. The Role of Gut Microbiota in Thromboangiitis Obliterans: Cohort and Mendelian Randomization Study. Biomedicines 2024; 12:1459. [PMID: 39062030 PMCID: PMC11274368 DOI: 10.3390/biomedicines12071459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/20/2024] [Accepted: 06/30/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND AND AIMS Thromboangiitis obliterans (TAO), also known as Buerger's disease, is a rare vasculitis. Observational epidemiology studies have suggested a relationship between the gut microbiota and TAO. However, due to confounding factors and reverse causality, the causal relationship remains unclear. Based on the assumption of their association, this study sought specific gut microbiota causally linked to TAO. METHODS The case-control study was conducted at the Xiangya Hospital of Central South University from November 2022 to January 2023 including twelve TAO patients and nine healthy controls. We conducted a Mendelian randomization (MR) study using summary statistics from a genome-wide association study (GWAS) of gut microbiota and TAO. Considering the scale and accessibility of the data, the MiBioGen consortium served as the exposure, whereas the FinnGen consortium GWAS study served as the outcome. Finally, we compared the results of the MR with those of the case-control studies. RESULTS The inverse variance weighted (IVW) (OR = 0.119, 95% CI: 0.021-0.688, p = 0.017) and maximum likelihood (ML) (OR = 0.121, 95% CI: 0.020-0.742, p = 0.022) estimates suggest that Ruminiclostridium 5 has a suggestive protective effect on TAO while the IVW (OR = 5.383, 95% CI: 1.128-25.693, p = 0.035) and ML (OR = 5.658, 95% CI: 1.142-28.021, p = 0.034) estimates suggest that Eubacterium (xylanophilum group) has a suggestive risk effect on TAO, and the ML (OR = 0.055, 95% CI: 0.004-0.755, p = 0.030) estimates suggest that Lachnospira has a suggestive protective effect on TAO. No significant heterogeneity of instrumental variables or horizontal pleiotropy was found. The results of the case-control study showed that the TAO had a lower relative abundance of Ruminiclostridium 5 (p = 0.015) and Lachnospira (p = 0.048), and a higher relative abundance of Eubacterium (xylanophilum group) (p = 0.029) than the healthy controls. These results were consistent with the MR analysis. CONCLUSIONS Our study demonstrates that Ruminiclostridium 5, Lachnospira, and Eubacterium (xylanophilum group) are causally related to TAO, suggesting their potential significance for the prevention and treatment of TAO.
Collapse
Affiliation(s)
- Chang Sheng
- Department of Vascular Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Weihua Huang
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, Changsha 410078, China
- Institute of Clinical Pharmacology, Hunan Key Laboratory, Pharmacogenetics Xiangya Hospital, Central South University, Changsha 410078, China
- National Clinical Research Center for Geriatric Disorders, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410128, China
| | - Mingmei Liao
- National Health Commission Key Laboratory of Nanobiological Technology, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Pu Yang
- Department of Vascular Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
93
|
Wang J, Yao N, Chen Y, Li X, Jiang Z. Research progress of cGAS-STING signaling pathway in intestinal diseases. Int Immunopharmacol 2024; 135:112271. [PMID: 38762923 DOI: 10.1016/j.intimp.2024.112271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/05/2024] [Accepted: 05/13/2024] [Indexed: 05/21/2024]
Abstract
The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signal has drawn much consideration due to its sensitivity to DNA in innate immune mechanisms. Activation of the cGAS-STIN signaling pathway induces the production of interferon and inflammatory cytokines, resulting in immune responses, or inflammatory diseases. The intestinal tract is a vital organ for the body's nutrition absorption, recent studies have had various points of view on the job of cGAS-STING pathway in various intestinal sicknesses. Therefore, understanding its role and mechanism in the intestinal environment can help to develop new strategies for the treatment of intestinal diseases. This article examines the mechanism of the cGAS-STING pathway and its function in inflammatory bowel disease, intestinal cancer, and long-injury ischemia-reperfusion, lists the current medications that target it for the treatment of intestinal diseases, and discusses the impact of intestinal flora on this signaling pathway, to offer a theoretical and scientific foundation for upcoming targeted therapies for intestinal disorders via the cGAS-STING pathway.
Collapse
Affiliation(s)
- Jiamin Wang
- College of Pharmacy, Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanji, Jilin 133002, China
| | - Naiqi Yao
- Department of Pharmacy, Yanbian University Hospital, Yanji, Jilin 133000, China
| | - Yonghu Chen
- College of Pharmacy, Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanji, Jilin 133002, China
| | - Xuezheng Li
- College of Pharmacy, Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanji, Jilin 133002, China; Department of Pharmacy, Yanbian University Hospital, Yanji, Jilin 133000, China
| | - Zhe Jiang
- College of Pharmacy, Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanji, Jilin 133002, China; Department of Pharmacy, Yanbian University Hospital, Yanji, Jilin 133000, China.
| |
Collapse
|
94
|
Qiu H, Kan C, Han F, Luo Y, Qu N, Zhang K, Ma Y, Hou N, Wu D, Sun X, Shi J. Metagenomic and metabolomic analysis showing the adverse risk-benefit trade-off of the ketogenic diet. Lipids Health Dis 2024; 23:207. [PMID: 38951816 PMCID: PMC11218088 DOI: 10.1186/s12944-024-02198-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Ketogenic diets are increasingly popular for addressing obesity, but their impacts on the gut microbiota and metabolome remain unclear. This paper aimed to investigate how a ketogenic diet affects intestinal microorganisms and metabolites in obesity. METHODS Male mice were provided with one of the following dietary regimens: normal chow, high-fat diet, ketogenic diet, or high-fat diet converted to ketogenic diet. Body weight and fat mass were measured weekly using high-precision electronic balances and minispec body composition analyzers. Metagenomics and non-targeted metabolomics data were used to analyze differences in intestinal contents. RESULTS Obese mice on the ketogenic diet exhibited notable improvements in weight and body fat. However, these were accompanied by a significant decrease in intestinal microbial diversity, as well as an increase in Firmicutes abundance and a 247% increase in the Firmicutes/Bacteroidetes ratio. The ketogenic diet also altered multiple metabolic pathways in the gut, including glucose, lipid, energy, carbohydrate, amino acid, ketone body, butanoate, and methane pathways, as well as bacterial secretion and colonization pathways. These changes were associated with increased intestinal inflammation and dysbiosis in obese mice. Furthermore, the ketogenic diet enhanced the secretion of bile and the synthesis of aminoglycoside antibiotics in obese mice, which may impair the gut microbiota and be associated with intestinal inflammation and immunity. CONCLUSIONS The study suggest that the ketogenic diet had an unfavorable risk-benefit trade-off and may compromise metabolic homeostasis in obese mice.
Collapse
Affiliation(s)
- Hongyan Qiu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
| | - Fang Han
- Department of Endocrinology and Metabolism, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
- Department of Pathology, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
| | - Youhong Luo
- Department of Endocrinology and Metabolism, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
| | - Na Qu
- Department of Pathology, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
| | - Kexin Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
| | - Yanhui Ma
- Department of Pathology, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
| | - Ningning Hou
- Department of Endocrinology and Metabolism, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
| | - Di Wu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China.
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China.
| | - Junfeng Shi
- Department of Endocrinology and Metabolism, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China.
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China.
| |
Collapse
|
95
|
Jensen IT, Janss L, Radutoiu S, Waagepetersen R. Compositionally aware estimation of cross-correlations for microbiome data. PLoS One 2024; 19:e0305032. [PMID: 38941272 PMCID: PMC11213360 DOI: 10.1371/journal.pone.0305032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 05/22/2024] [Indexed: 06/30/2024] Open
Abstract
In the field of microbiome studies, it is of interest to infer correlations between abundances of different microbes (here referred to as operational taxonomic units, OTUs). Several methods taking the compositional nature of the sequencing data into account exist. However, these methods cannot infer correlations between OTU abundances and other variables. In this paper we introduce the novel methods SparCEV (Sparse Correlations with External Variables) and SparXCC (Sparse Cross-Correlations between Compositional data) for quantifying correlations between OTU abundances and either continuous phenotypic variables or components of other compositional datasets, such as transcriptomic data. SparCEV and SparXCC both assume that the average correlation in the dataset is zero. Iterative versions of SparCEV and SparXCC are proposed to alleviate bias resulting from deviations from this assumption. We compare these new methods to empirical Pearson cross-correlations after applying naive transformations of the data (log and log-TSS). Additionally, we test the centered log ratio transformation (CLR) and the variance stabilising transformation (VST). We find that CLR and VST outperform naive transformations, except when the correlation matrix is dense. SparCEV and SparXCC outperform CLR and VST when the number of OTUs is small and perform similarly to CLR and VST for large numbers of OTUs. Adding the iterative procedure increases accuracy for SparCEV and SparXCC for all cases, except when the average correlation in the dataset is close to zero or the correlation matrix is dense. These results are consistent with our theoretical considerations.
Collapse
Affiliation(s)
- Ib Thorsgaard Jensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- Department of Mathematical Sciences, Aalborg University, Aalborg, Denmark
| | - Luc Janss
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus, Denmark
| | - Simona Radutoiu
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
96
|
O'Sullivan D, Arora T, Durif C, Uriot O, Brun M, Riu M, Foguet-Romero E, Samarra I, Domingo-Almenara X, Gahan CGM, Etienne-Mesmin L, Blanquet-Diot S. Impact of Western Diet on Enterohemorrhagic Escherichia coli Colonization in the Human In Vitro Mucosal Artificial Colon as Mediated by Gut Microbiota. Nutrients 2024; 16:2046. [PMID: 38999794 PMCID: PMC11243482 DOI: 10.3390/nu16132046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is a major food-borne pathogen that causes human disease ranging from diarrhea to life-threatening complications. Accumulating evidence demonstrates that the Western diet enhances the susceptibility to enteric infection in mice, but the effect of diet on EHEC colonization and the role of human gut microbiota remains unknown. Our research aimed to investigate the effects of a Standard versus a Western diet on EHEC colonization in the human in vitro Mucosal ARtificial COLon (M-ARCOL) and the associated changes in the gut microbiota composition and activities. After donor selection using simplified fecal batch experiments, two M-ARCOL bioreactors were inoculated with a human fecal sample (n = 4) and were run in parallel, one receiving a Standard diet, the other a Western diet and infected with EHEC O157:H7 strain EDL933. EHEC colonization was dependent on the donor and diet in the luminal samples, but was maintained in the mucosal compartment without elimination, suggesting a favorable niche for the pathogen, and may act as a reservoir. The Western diet also impacted the bacterial short-chain fatty acid and bile acid profiles, with a possible link between high butyrate concentrations and prolonged EHEC colonization. The work demonstrates the application of a complex in vitro model to provide insights into diet, microbiota, and pathogen interactions in the human gut.
Collapse
Affiliation(s)
- Deborah O'Sullivan
- UMR 454 INRAe, Microbiology, Digestive Environment and Health (MEDIS), Université Clermont Auvergne, 28 Place Henri Dunant, F-63000 Clermont-Ferrand, France
| | - Trisha Arora
- Centre for Omics Sciences (COS), Unique Scientific and Technical Infrastructures (ICTS), Eurecat-Technology Centre of Catalonia & Rovira i Virgili University Joint Unit, 43204 Reus, Spain
- Department of Electrical, Electronic and Control Engineering (DEEEA), Universitat Rovira i Virgili, 43007 Tarragona, Spain
- Computational Metabolomics for Systems Biology Lab, Eurecat-Technology Centre of Catalonia, 08005 Barcelona, Spain
| | - Claude Durif
- UMR 454 INRAe, Microbiology, Digestive Environment and Health (MEDIS), Université Clermont Auvergne, 28 Place Henri Dunant, F-63000 Clermont-Ferrand, France
| | - Ophélie Uriot
- UMR 454 INRAe, Microbiology, Digestive Environment and Health (MEDIS), Université Clermont Auvergne, 28 Place Henri Dunant, F-63000 Clermont-Ferrand, France
| | - Morgane Brun
- UMR 454 INRAe, Microbiology, Digestive Environment and Health (MEDIS), Université Clermont Auvergne, 28 Place Henri Dunant, F-63000 Clermont-Ferrand, France
| | - Marc Riu
- Centre for Omics Sciences (COS), Unique Scientific and Technical Infrastructures (ICTS), Eurecat-Technology Centre of Catalonia & Rovira i Virgili University Joint Unit, 43204 Reus, Spain
| | - Elisabet Foguet-Romero
- Centre for Omics Sciences (COS), Unique Scientific and Technical Infrastructures (ICTS), Eurecat-Technology Centre of Catalonia & Rovira i Virgili University Joint Unit, 43204 Reus, Spain
| | - Iris Samarra
- Centre for Omics Sciences (COS), Unique Scientific and Technical Infrastructures (ICTS), Eurecat-Technology Centre of Catalonia & Rovira i Virgili University Joint Unit, 43204 Reus, Spain
| | - Xavier Domingo-Almenara
- Centre for Omics Sciences (COS), Unique Scientific and Technical Infrastructures (ICTS), Eurecat-Technology Centre of Catalonia & Rovira i Virgili University Joint Unit, 43204 Reus, Spain
- Department of Electrical, Electronic and Control Engineering (DEEEA), Universitat Rovira i Virgili, 43007 Tarragona, Spain
- Computational Metabolomics for Systems Biology Lab, Eurecat-Technology Centre of Catalonia, 08005 Barcelona, Spain
| | - Cormac G M Gahan
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland
- School of Microbiology, University College Cork, T12 K8AF Cork, Ireland
- School of Pharmacy, University College Cork, T12 K8AF Cork, Ireland
| | - Lucie Etienne-Mesmin
- UMR 454 INRAe, Microbiology, Digestive Environment and Health (MEDIS), Université Clermont Auvergne, 28 Place Henri Dunant, F-63000 Clermont-Ferrand, France
| | - Stéphanie Blanquet-Diot
- UMR 454 INRAe, Microbiology, Digestive Environment and Health (MEDIS), Université Clermont Auvergne, 28 Place Henri Dunant, F-63000 Clermont-Ferrand, France
| |
Collapse
|
97
|
Napoli TF, Cortez RV, Sparvoli LG, Taddei CR, Salles JEN. Unveiling contrasts in microbiota response: A1c control improves dysbiosis in low-A1c T2DM, but fails in high-A1c cases-a key to metabolic memory? BMJ Open Diabetes Res Care 2024; 12:e003964. [PMID: 38937275 PMCID: PMC11216069 DOI: 10.1136/bmjdrc-2023-003964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/23/2024] [Indexed: 06/29/2024] Open
Abstract
INTRODUCTION Type 2 diabetes mellitus (T2DM) is associated with dysbiosis in the gut microbiota (MB). Individually, each medication appears to partially correct this. However, there are no studies on the response of the MB to changes in A1c. Therefore, we investigated the MB's response to intensive glycemic control. RESEARCH DESIGN AND METHODS We studied two groups of patients with uncontrolled T2DM, one group with an A1c <9% (18 patients-G1) and another group with an A1c >9% (13 patients-G2), aiming for at least a 1% reduction in A1c. We collected A1c and fecal samples at baseline, 6, and 12 months. G1 achieved an average A1c reduction of 1.1%, while G2 a reduction of 3.13%. RESULTS G1's microbiota saw a decrease in Erysipelotrichaceae_UCG_003 and in Mollicutes order (both linked to metabolic syndrome and associated comorbidities). G2, despite having a more significant reduction in A1c, experienced an increase in the proinflammatory bacteria Megasphaera and Acidaminococcus, and only one beneficial genus, Phascolarctobacterium, increased, producer of butyrate. CONCLUSION Despite a notable A1c outcome, G2 could not restore its MB. This seeming resistance to change, leading to a persistent inflammation component found in G2, might be part of the "metabolic memory" in T2DM.
Collapse
Affiliation(s)
- Thiago Fraga Napoli
- Serviço de Endocrinologia e Metabologia, Hospital Servidor Público Estadual de São Paulo, São Paulo, São Paulo, Brazil
- Departamento de Clínica Médica, Disciplina de Endocrinologia, Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, Brazil
| | - Ramon V Cortez
- Department of Clinical Analysis and Toxicology, University of Sao Paulo, Sao Paulo, Brazil
| | - Luiz Gustavo Sparvoli
- Department of Clinical Analysis and Toxicology, University of Sao Paulo, Sao Paulo, Brazil
| | - Carla R Taddei
- Department of Clinical Analysis and Toxicology, University of Sao Paulo, Sao Paulo, Brazil
| | - Joao Eduardo Nunes Salles
- Departamento de Clínica Médica, Disciplina de Endocrinologia, Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, Brazil
| |
Collapse
|
98
|
Shi J, Shen H, Huang H, Zhan L, Chen W, Zhou Z, Lv Y, Xiong K, Jiang Z, Chen Q, Liu L. Gut microbiota characteristics of colorectal cancer patients in Hubei, China, and differences with cohorts from other Chinese regions. Front Microbiol 2024; 15:1395514. [PMID: 38962132 PMCID: PMC11220721 DOI: 10.3389/fmicb.2024.1395514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/27/2024] [Indexed: 07/05/2024] Open
Abstract
The research on the correlation or causality between gut microbiota and the occurrence, development, and treatment of colorectal cancer (CRC) is receiving increasing emphasis. At the same time, the incidence and mortality of colorectal cancer vary among individuals and regions, as does the gut microbiota. In order to gain a better understanding of the characteristics of the gut microbiota in CRC patients and the differences between different regions, we initially compared the gut microbiota of 25 CRC patients and 26 healthy controls in the central region of China (Hubei Province) using 16S rRNA high-throughput sequencing technology. The results showed that Corynebacterium, Enterococcus, Lactobacillus, and Escherichia-Shigella were significantly enriched in CRC patients. In addition, we also compared the potential differences in functional pathways between the CRC group and the healthy control group using PICRUSt's functional prediction analysis. We then analyzed and compared it with five cohort studies from various regions of China, including Central, East, and Northeast China. We found that geographical factors may affect the composition of intestinal microbiota in CRC patients. The composition of intestinal microbiota is crucial information that influences colorectal cancer screening, early detection, and the prediction of CRC treatment outcomes. This emphasizes the importance of conducting research on CRC-related gut microbiota in various regions of China.
Collapse
Affiliation(s)
- Jianguo Shi
- Department of Gastrointestinal Surgery, Intestinal Microenvironment Treatment Center, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hexiao Shen
- School of Life Sciences and Health Engineering, Hubei University, Wuhan, China
| | - Hui Huang
- Department of Gastrointestinal Surgery, Intestinal Microenvironment Treatment Center, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lifang Zhan
- Department of Gastrointestinal Surgery, Intestinal Microenvironment Treatment Center, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Chen
- Department of Gastrointestinal Surgery, Intestinal Microenvironment Treatment Center, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhuohui Zhou
- Department of Gastrointestinal Surgery, Intestinal Microenvironment Treatment Center, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yongling Lv
- Department of Gastrointestinal Surgery, Intestinal Microenvironment Treatment Center, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kai Xiong
- Department of Gastrointestinal Surgery, Intestinal Microenvironment Treatment Center, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhiwei Jiang
- Department of Gastrointestinal Surgery, Intestinal Microenvironment Treatment Center, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qiyi Chen
- Department of Colorectal Disease, Intestinal Microenvironment Treatment Center, Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Lei Liu
- Department of Gastrointestinal Surgery, Intestinal Microenvironment Treatment Center, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
99
|
Lange E, Kranert L, Krüger J, Benndorf D, Heyer R. Microbiome modeling: a beginner's guide. Front Microbiol 2024; 15:1368377. [PMID: 38962127 PMCID: PMC11220171 DOI: 10.3389/fmicb.2024.1368377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/27/2024] [Indexed: 07/05/2024] Open
Abstract
Microbiomes, comprised of diverse microbial species and viruses, play pivotal roles in human health, environmental processes, and biotechnological applications and interact with each other, their environment, and hosts via ecological interactions. Our understanding of microbiomes is still limited and hampered by their complexity. A concept improving this understanding is systems biology, which focuses on the holistic description of biological systems utilizing experimental and computational methods. An important set of such experimental methods are metaomics methods which analyze microbiomes and output lists of molecular features. These lists of data are integrated, interpreted, and compiled into computational microbiome models, to predict, optimize, and control microbiome behavior. There exists a gap in understanding between microbiologists and modelers/bioinformaticians, stemming from a lack of interdisciplinary knowledge. This knowledge gap hinders the establishment of computational models in microbiome analysis. This review aims to bridge this gap and is tailored for microbiologists, researchers new to microbiome modeling, and bioinformaticians. To achieve this goal, it provides an interdisciplinary overview of microbiome modeling, starting with fundamental knowledge of microbiomes, metaomics methods, common modeling formalisms, and how models facilitate microbiome control. It concludes with guidelines and repositories for modeling. Each section provides entry-level information, example applications, and important references, serving as a valuable resource for comprehending and navigating the complex landscape of microbiome research and modeling.
Collapse
Affiliation(s)
- Emanuel Lange
- Multidimensional Omics Data Analysis, Department for Bioanalytics, Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
- Graduate School Digital Infrastructure for the Life Sciences, Bielefeld Institute for Bioinformatics Infrastructure (BIBI), Faculty of Technology, Bielefeld University, Bielefeld, Germany
| | - Lena Kranert
- Institute for Automation Engineering, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Jacob Krüger
- Engineering of Software-Intensive Systems, Department of Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Dirk Benndorf
- Applied Biosciences and Bioprocess Engineering, Anhalt University of Applied Sciences, Köthen, Germany
| | - Robert Heyer
- Multidimensional Omics Data Analysis, Department for Bioanalytics, Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
- Graduate School Digital Infrastructure for the Life Sciences, Bielefeld Institute for Bioinformatics Infrastructure (BIBI), Faculty of Technology, Bielefeld University, Bielefeld, Germany
- Multidimensional Omics Data Analysis, Faculty of Technology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
100
|
Werter DE, Schneeberger C, Geerlings SE, de Groot CJM, Pajkrt E, Kazemier BM. Diagnostic Accuracy of Urine Dipsticks for Urinary Tract Infection Diagnosis during Pregnancy: A Retrospective Cohort Study. Antibiotics (Basel) 2024; 13:567. [PMID: 38927233 PMCID: PMC11200439 DOI: 10.3390/antibiotics13060567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/07/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
OBJECTIVE Urinary tract infections (UTIs) represent the most prevalent infections among pregnant women. Many pregnant women experience frequent voiding or lower abdominal pain during pregnancy due to physiologic changes. Due to the possible consequences of a UTI in pregnancy, pregnant women are more often tested for UTIs. This study aimed to assess the diagnostic accuracy of dipsticks in diagnosing UTIs in pregnant women while using the urine culture as the reference standard. STUDY DESIGN This was a retrospective cohort study, conducted at two academic hospitals in the Netherlands among pregnant women. Pseudonymized data were collected from patient files. The results of the urine dipstick and the urine culture in pregnant women were linked. Additionally, nitrofurantoin prescriptions were linked to culture results. A positive urine culture was considered the reference test for a UTI. RESULTS Between 1 January 2017 and 28 February 2021, a total of 718 urine samples with leukocyte esterase dipstick results within 24 h of the urine culture were analyzed. Of these samples, a nitrite dipstick result was also available in 337 cases. Only 6.8% of the 718 urine samples yielded positive cultures. The sensitivity and specificity of leukocyte esterase were 75.5% and 40.4%, respectively; for nitrite, 72.0% sensitivity and 73.4% specificity were found. When at least one of the two tests was positive, the sensitivity and specificity were 92.0% and 27.9%, respectively. When both tests were positive, the sensitivity and specificity were 52.0% and 82.7%, respectively. In only 16.8% of the women to whom nitrofurantoin was prescribed, the urine cultures returned positive using a cut-off of 105 colony forming units/mL. CONCLUSION The diagnostic performance of leukocyte esterase, nitrite, or their combination in clinical practice is lower than previously reported in study settings among pregnant women. A significant proportion of women treated with nitrofurantoin were found to have no UTI, suggesting potential over-prescription based on dipstick test results. Healthcare providers should be aware of this reduced performance in clinical practice and carefully weigh the risks of antibiotic treatment by suspicion of a UTI against the possibility of delayed treatment awaiting culture results in individual patients.
Collapse
Affiliation(s)
- Dominique E. Werter
- Department of Obstetrics and Gynaecology, Amsterdam UMC Location University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Research Institute, 1105 AZ Amsterdam, The Netherlands
| | - Caroline Schneeberger
- Department of Medical Microbiology and Infection Control, Amsterdam UMC Location University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Nivel (Netherlands Institute for Health Services Research), 3513 CR Utrecht, The Netherlands
| | - Suzanne E. Geerlings
- Department of Internal Medicine, Division of Infectious Diseases, Amsterdam Institute for Infection and Immunology, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam UMC Location University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Christianne J. M. de Groot
- Amsterdam Reproduction and Development Research Institute, 1105 AZ Amsterdam, The Netherlands
- Department of Human Genetics, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Eva Pajkrt
- Department of Obstetrics and Gynaecology, Amsterdam UMC Location University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Research Institute, 1105 AZ Amsterdam, The Netherlands
| | - Brenda M. Kazemier
- Department of Obstetrics and Gynaecology, Amsterdam UMC Location University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Research Institute, 1105 AZ Amsterdam, The Netherlands
- Department of Obstetrics and Gynaecology, Wilhelmina Kinderziekenhuis, University of Utrecht, 3584 CX Utrecht, The Netherlands
| |
Collapse
|