51
|
Hidalgo D, Paz E, Palomares LA, Ramírez OT. Real-time imaging reveals unique heterogeneous population features in insect cell cultures. J Biotechnol 2017; 259:56-62. [DOI: 10.1016/j.jbiotec.2017.08.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/11/2017] [Accepted: 08/18/2017] [Indexed: 01/17/2023]
|
52
|
Li J, Lu N, Shi X, Qiao Y, Chen L, Duan M, Hou Y, Ge Q, Tao Y, Tu J, Lu Z. 1D-Reactor Decentralized MDA for Uniform and Accurate Whole Genome Amplification. Anal Chem 2017; 89:10147-10152. [DOI: 10.1021/acs.analchem.7b02183] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Junji Li
- State
Key Laboratory of Bioelectronics, School of Biological Science and
Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Na Lu
- State
Key Laboratory of Bioelectronics, School of Biological Science and
Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Xulian Shi
- State
Key Laboratory of Bioelectronics, School of Biological Science and
Medical Engineering, Southeast University, Nanjing, 210096, China
- BGI-Shenzhen, Shenzhen 518083, China
- China National GeneBank,
BGI-Shenzhen, Shenzhen 518120, China
| | - Yi Qiao
- State
Key Laboratory of Bioelectronics, School of Biological Science and
Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Liang Chen
- State
Key Laboratory of Bioelectronics, School of Biological Science and
Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Mengqin Duan
- State
Key Laboratory of Bioelectronics, School of Biological Science and
Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yong Hou
- BGI-Shenzhen, Shenzhen 518083, China
- China National GeneBank,
BGI-Shenzhen, Shenzhen 518120, China
| | - Qinyu Ge
- State
Key Laboratory of Bioelectronics, School of Biological Science and
Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yuhan Tao
- State
Key Laboratory of Bioelectronics, School of Biological Science and
Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Jing Tu
- State
Key Laboratory of Bioelectronics, School of Biological Science and
Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Zuhong Lu
- State
Key Laboratory of Bioelectronics, School of Biological Science and
Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
53
|
Generation of ribosome imprinted polymers for sensitive detection of translational responses. Sci Rep 2017; 7:6542. [PMID: 28747643 PMCID: PMC5529568 DOI: 10.1038/s41598-017-06970-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 06/21/2017] [Indexed: 01/01/2023] Open
Abstract
Whilst the profiling of the transcriptome and proteome even of single-cells becomes feasible, the analysis of the translatome, which refers to all messenger RNAs (mRNAs) engaged with ribosomes for protein synthesis, is still an elaborate procedure requiring millions of cells. Herein, we report the generation and use of "smart materials", namely molecularly imprinted polymers (MIPs) to facilitate the isolation of ribosomes and translated mRNAs from merely 1,000 cells. In particular, we show that a hydrogel-based ribosome imprinted polymer could recover ribosomes and associated mRNAs from human, simian and mice cellular extracts, but did not selectively enrich yeast ribosomes, thereby demonstrating selectivity. Furthermore, ribosome imprinted polymers enabled the sensitive measurement of an mRNA translational regulatory event, requiring 1,000-fold less cells than current methodologies. These results provide first evidence for the suitability of MIPs to selectively recover ribonucleoprotein complexes such as ribosomes, founding a novel means for sensitive detection of gene regulation.
Collapse
|
54
|
Wu AR, Wang J, Streets AM, Huang Y. Single-Cell Transcriptional Analysis. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2017; 10:439-462. [PMID: 28301747 DOI: 10.1146/annurev-anchem-061516-045228] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Despite being a relatively recent technological development, single-cell transcriptional analysis through high-throughput sequencing has already been used in hundreds of fruitful studies to make exciting new biological discoveries that would otherwise be challenging or even impossible. Consequently, this has fueled a virtuous cycle of even greater interest in the field and compelled development of further improved technical methodologies and approaches. Thanks to the combined efforts of the research community, including the fields of biochemistry and molecular biology, technology and instrumentation, data science, computational biology, and bioinformatics, the single-cell RNA-sequencing field is advancing at a pace that is both astounding and unprecedented. In this review, we provide a broad introduction to this revolutionary technology by presenting the state-of-the-art in sample preparation methodologies, technology platforms, and computational analysis methods, while highlighting the key considerations for designing, executing, and interpreting a study using single-cell RNA sequencing.
Collapse
Affiliation(s)
- Angela R Wu
- Division of Life Science and Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China;
| | - Jianbin Wang
- School of Life Sciences and Center for Life Sciences, Tsinghua University, Beijing 100084, China;
| | - Aaron M Streets
- Department of Bioengineering, University of California, Berkeley, California 94720;
| | - Yanyi Huang
- Biodynamic Optical Imaging Center (BIOPIC), Beijing Advanced Innovation Center for Genomics (ICG), College of Engineering, and Center for Life Sciences, Peking University, Beijing 100871, China;
| |
Collapse
|
55
|
Long-term preservation of Tetraselmis indica (Chlorodendrophyceae, Chlorophyta) for flow cytometric analysis: Influence of fixative and storage temperature. J Microbiol Methods 2017; 139:123-129. [PMID: 28571924 DOI: 10.1016/j.mimet.2017.05.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 05/29/2017] [Accepted: 05/29/2017] [Indexed: 11/24/2022]
Abstract
Immediate enumeration of phytoplankton is seldom possible. Therefore, fixation and subsequent storage are required for delayed analysis. This study investigated the influence of glutaraldehyde (GA) concentrations (0.25%, 0.5%, and 1%) and storage temperatures (-80°CLN2, -80°C, -20°C, and 5°C) on Tetraselmis indica for flow cytometric analysis. Cell recovery, granularity, and membrane permeability were independent of GA concentration whereas cell size and chlorophyll autofluorescence were concentration dependent. After an initial cell loss (16-19%), no cell loss was observed when samples were stored at 5°C. Cell recovery was not influenced by storage temperature until 4months but later samples preserved at -80°CLN2, -80°C, and -20°C resulted in ~41% cell loss. Although maximum cell recovery with minimal effect on cell integrity was obtained at 5°C, autofluorescence was retained better at -80°CLN2 and -80°C. This suggests that in addition to fixative, the choice of storage temperature is equally important. Thus for long-term preservation, especially to retain autofluorescence, the use of lower concentration (0.25%) of GA when stored at a lower temperature (-80°CLN2 and -80°C) while a higher concentration (1%) of GA when stored at a higher temperature (5°C) is recommended.
Collapse
|
56
|
Delvigne F, Baert J, Sassi H, Fickers P, Grünberger A, Dusny C. Taking control over microbial populations: Current approaches for exploiting biological noise in bioprocesses. Biotechnol J 2017; 12. [PMID: 28544731 DOI: 10.1002/biot.201600549] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/10/2017] [Accepted: 04/12/2017] [Indexed: 01/19/2023]
Abstract
Phenotypic plasticity of microbial cells has attracted much attention and several research efforts have been dedicated to the description of methods aiming at characterizing phenotypic heterogeneity and its impact on microbial populations. However, different approaches have also been suggested in order to take benefit from noise in a bioprocess perspective, e.g. by increasing the robustness or productivity of a microbial population. This review is dedicated to outline these controlling methods. A common issue, that has still to be addressed, is the experimental identification and the mathematical expression of noise. Indeed, the effective interfacing of microbial physiology with external parameters that can be used for controlling physiology depends on the acquisition of reliable signals. Latest technologies, like single cell microfluidics and advanced flow cytometric approaches, enable linking physiology, noise, heterogeneity in productive microbes with environmental cues and hence allow correctly mapping and predicting biological behavior via mathematical representations. However, like in the field of electronics, signals are perpetually subjected to noise. If appropriately interpreted, this noise can give an additional insight into the behavior of the individual cells within a microbial population of interest. This review focuses on recent progress made at describing, treating and exploiting biological noise in the context of microbial populations used in various bioprocess applications.
Collapse
Affiliation(s)
- Frank Delvigne
- University of Liège, TERRA research center, Gembloux Agro-Bio Tech, Microbial Processes and Interactions (MiPI lab), Gembloux, Belgium
| | - Jonathan Baert
- University of Liège, TERRA research center, Gembloux Agro-Bio Tech, Microbial Processes and Interactions (MiPI lab), Gembloux, Belgium
| | - Hosni Sassi
- University of Liège, TERRA research center, Gembloux Agro-Bio Tech, Microbial Processes and Interactions (MiPI lab), Gembloux, Belgium
| | - Patrick Fickers
- University of Liège, TERRA research center, Gembloux Agro-Bio Tech, Microbial Processes and Interactions (MiPI lab), Gembloux, Belgium
| | - Alexander Grünberger
- Forschungszentrum Jülich GmbH, IBG-1: Biotechnology, Jülich, Germany.,Multiscale Bioengineering, Bielefeld University, Bielefeld, Germany
| | - Christian Dusny
- Department Solar Materials, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| |
Collapse
|
57
|
Multidimensional single-cell analysis based on fluorescence microscopy and automated image analysis. Anal Bioanal Chem 2017; 409:4009-4019. [DOI: 10.1007/s00216-017-0344-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/15/2017] [Accepted: 03/28/2017] [Indexed: 02/02/2023]
|
58
|
Harst A, Albaum SP, Bojarzyn T, Trötschel C, Poetsch A. Proteomics of FACS-sorted heterogeneous Corynebacterium glutamicum populations. J Proteomics 2017; 160:1-7. [PMID: 28323243 DOI: 10.1016/j.jprot.2017.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/26/2017] [Accepted: 03/13/2017] [Indexed: 01/20/2023]
Abstract
The metabolic status of individual cells in microbial cultures can differ, being relevant for biotechnology, environmental and medical microbiology. However, it is hardly understood in molecular detail due to limitations of current analytical tools. Here, we demonstrate that FACS in combination with proteomics can be used to sort and analyze cell populations based on their metabolic state. A previously established GFP reporter system was used to detect and sort single Corynebacterium glutamicum cells based on the concentration of branched chain amino acids (BCAA) using FACS. A proteomics workflow optimized for small cell numbers was used to quantitatively compare proteomes of a ΔaceE mutant, lacking functional pyruvate dehydrogenase (PD), and the wild type. About 800 proteins could be quantified from 1,000,000 cells. In the ΔaceE mutant BCAA production was coordinated with upregulation of the glyoxylate cycle and TCA cycle to counter the lack of acetyl CoA resulting from the deletion of aceE. BIOLOGICAL SIGNIFICANCE Metabolic pathways in C. glutamicum WT and ΔaceE, devoid of functional pyruvate dehydrogenase, were compared to understand proteome changes that contribute to the high production of branched chain amino acids (BCAA) in the ΔaceE strain. The data complements previous metabolome studies and corroborates the role of malate provided by the glyoxylate cycle and increased activity of glycolysis and pyruvate carboxylase reaction to replenish the TCA cycle. A slight increase in acetohydroxyacid synthase (ILV subunit B) substantiates the previously reported increased pyruvate pool in C. glutamicumΔaceE, and the benefit of additional ilv gene cluster overexpression for BCAA production.
Collapse
Affiliation(s)
- Andreas Harst
- Department of Plant Biochemistry, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Stefan P Albaum
- Bioinformatics Resource Facility, Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany
| | - Tanja Bojarzyn
- Department of Plant Biochemistry, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Christian Trötschel
- Department of Plant Biochemistry, Ruhr-University Bochum, 44801 Bochum, Germany.
| | - Ansgar Poetsch
- Department of Plant Biochemistry, Ruhr-University Bochum, 44801 Bochum, Germany; School of Biomedical and Healthcare Sciences, Plymouth University, Plymouth PL4 8AA, United Kingdom.
| |
Collapse
|
59
|
Single cell screening approaches for antibody discovery. Methods 2017; 116:34-42. [DOI: 10.1016/j.ymeth.2016.11.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 11/08/2016] [Indexed: 11/17/2022] Open
|
60
|
Zhu Z, Yang CJ. Hydrogel Droplet Microfluidics for High-Throughput Single Molecule/Cell Analysis. Acc Chem Res 2017; 50:22-31. [PMID: 28029779 DOI: 10.1021/acs.accounts.6b00370] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Heterogeneity among individual molecules and cells has posed significant challenges to traditional bulk assays, due to the assumption of average behavior, which would lose important biological information in heterogeneity and result in a misleading interpretation. Single molecule/cell analysis has become an important and emerging field in biological and biomedical research for insights into heterogeneity between large populations at high resolution. Compared with the ensemble bulk method, single molecule/cell analysis explores the information on time trajectories, conformational states, and interactions of individual molecules/cells, all key factors in the study of chemical and biological reaction pathways. Various powerful techniques have been developed for single molecule/cell analysis, including flow cytometry, atomic force microscopy, optical and magnetic tweezers, single-molecule fluorescence spectroscopy, and so forth. However, some of them have the low-throughput issue that has to analyze single molecules/cells one by one. Flow cytometry is a widely used high-throughput technique for single cell analysis but lacks the ability for intercellular interaction study and local environment control. Droplet microfluidics becomes attractive for single molecule/cell manipulation because single molecules/cells can be individually encased in monodisperse microdroplets, allowing high-throughput analysis and manipulation with precise control of the local environment. Moreover, hydrogels, cross-linked polymer networks that swell in the presence of water, have been introduced into droplet microfluidic systems as hydrogel droplet microfluidics. By replacing an aqueous phase with a monomer or polymer solution, hydrogel droplets can be generated on microfluidic chips for encapsulation of single molecules/cells according to the Poisson distribution. The sol-gel transition property endows the hydrogel droplets with new functionalities and diversified applications in single molecule/cell analysis. The hydrogel can act as a 3D cell culture matrix to mimic the extracellular environment for long-term single cell culture, which allows further heterogeneity study in proliferation, drug screening, and metastasis at the single-cell level. The sol-gel transition allows reactions in solution to be performed rapidly and efficiently with product storage in the gel for flexible downstream manipulation and analysis. More importantly, controllable sol-gel regulation provides a new way to maintain phenotype-genotype linkages in the hydrogel matrix for high throughput molecular evolution. In this Account, we will review the hydrogel droplet generation on microfluidics, single molecule/cell encapsulation in hydrogel droplets, as well as the progress made by our group and others in the application of hydrogel droplet microfluidics for single molecule/cell analysis, including single cell culture, single molecule/cell detection, single cell sequencing, and molecular evolution.
Collapse
Affiliation(s)
- Zhi Zhu
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chaoyong James Yang
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
61
|
Kuhn P, Eyer K, Dittrich PS. A microfluidic device for the delivery of enzymes into cells by liposome fusion. Eng Life Sci 2017; 18:149-156. [PMID: 29416447 DOI: 10.1002/elsc.201600150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Liposomes are versatile carriers of drugs or biomolecules and are ideally suited to transport molecules into cells. However, mechanistic studies to understand and improve the fusion of liposomes with cell membranes and endosomes are difficult. Here, we report a method that allows for stable coimmobilization of liposomes and living cells, thereby bringing the membranes into close contact, which is essential for membrane fusion. The small unilamellar liposomes are tethered to the surface by a linker so that no modification of the liposome membrane for cell binding is required. The cells are positioned above the liposomes by posts that are integrated into the microfluidic device, and a pH drop induces the fusion of the cell-liposome membranes. Both membrane fusion and release of molecules into the cytosol are visualized by fluorescence dequenching assays. Furthermore, we proved the efficient delivery of the enzyme β-galactosidase into the cells when a fusogenic liposome composition was used. The device could be used for fusion studies but is also a versatile means for cell transfection.
Collapse
Affiliation(s)
- Phillip Kuhn
- Department of Chemistry and Applied Biosciences, Eth Zurich, Zurich, Switzerland
| | - Klaus Eyer
- Department of Chemistry and Applied Biosciences, Eth Zurich, Zurich, Switzerland
| | - Petra S Dittrich
- Department of Chemistry and Applied Biosciences, Eth Zurich, Zurich, Switzerland.,Department of Biosystems Science and Engineering, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
62
|
Wu JL, Xu YQ, Xu JJ, Wei XM, Chan ACS, Tang AHL, Lau AKS, Chung BMF, Cheung Shum H, Lam EY, Wong KKY, Tsia KK. Ultrafast laser-scanning time-stretch imaging at visible wavelengths. LIGHT, SCIENCE & APPLICATIONS 2017; 6:e16196. [PMID: 30167195 PMCID: PMC6061895 DOI: 10.1038/lsa.2016.196] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 08/04/2016] [Accepted: 08/11/2016] [Indexed: 05/10/2023]
Abstract
Optical time-stretch imaging enables the continuous capture of non-repetitive events in real time at a line-scan rate of tens of MHz-a distinct advantage for the ultrafast dynamics monitoring and high-throughput screening that are widely needed in biological microscopy. However, its potential is limited by the technical challenge of achieving significant pulse stretching (that is, high temporal dispersion) and low optical loss, which are the critical factors influencing imaging quality, in the visible spectrum demanded in many of these applications. We present a new pulse-stretching technique, termed free-space angular-chirp-enhanced delay (FACED), with three distinguishing features absent in the prevailing dispersive-fiber-based implementations: (1) it generates substantial, reconfigurable temporal dispersion in free space (>1 ns nm-1) with low intrinsic loss (<6 dB) at visible wavelengths; (2) its wavelength-invariant pulse-stretching operation introduces a new paradigm in time-stretch imaging, which can now be implemented both with and without spectral encoding; and (3) pulse stretching in FACED inherently provides an ultrafast all-optical laser-beam scanning mechanism at a line-scan rate of tens of MHz. Using FACED, we demonstrate not only ultrafast laser-scanning time-stretch imaging with superior bright-field image quality compared with previous work but also, for the first time, MHz fluorescence and colorized time-stretch microscopy. Our results show that this technique could enable a wider scope of applications in high-speed and high-throughput biological microscopy that were once out of reach.
Collapse
Affiliation(s)
- Jiang-Lai Wu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, China
| | - Yi-Qing Xu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, China
| | - Jing-Jiang Xu
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, USA
| | - Xiao-Ming Wei
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, China
| | - Antony CS Chan
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, China
| | - Anson HL Tang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, China
| | - Andy KS Lau
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, China
| | - Bob MF Chung
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, China
| | - Ho Cheung Shum
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, China
| | - Edmund Y Lam
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, China
| | - Kenneth KY Wong
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, China
| | - Kevin K Tsia
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, China
| |
Collapse
|
63
|
Chen Z, Fu Y, Zhang F, Liu L, Zhang N, Zhou D, Yang J, Pang Y, Huang Y. Spinning micropipette liquid emulsion generator for single cell whole genome amplification. LAB ON A CHIP 2016; 16:4512-4516. [PMID: 27775138 DOI: 10.1039/c6lc01084a] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Many on-chip approaches that use flow-focusing to pinch the continuous aqueous phase into droplets have become the most popular methods that provide monodisperse emulsion droplets. However, not every lab can easily adapt a microfluidic workflow into their familiar protocols. We develop an off-chip approach, spinning micro-pipette liquid emulsion (SiMPLE) generator, to produce highly stable monodisperse water-in-oil emulsions using a moving micropipette to disperse the aqueous phase in an oil-filled microcentrifuge tube. This method provides a simple way to produce picoliter-size droplets in situ with no dead volume during emulsification. With SiMPLE, single-cell emulsion whole genome amplification was performed to demonstrate that this novel method can seamlessly be integrated with experimental operations and supplies that most researchers are familiar with. The SiMPLE generator has effectively lowered the technical difficulties in applications relying on emulsion droplets.
Collapse
Affiliation(s)
- Zitian Chen
- Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, and College of Engineering, Peking University, Beijing, China. and Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, China
| | - Yusi Fu
- Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, and College of Engineering, Peking University, Beijing, China. and Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, China
| | - Fangli Zhang
- Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, and College of Engineering, Peking University, Beijing, China. and Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, China
| | - Lu Liu
- Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, and College of Engineering, Peking University, Beijing, China. and Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, China
| | - Naiqing Zhang
- Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, and College of Engineering, Peking University, Beijing, China.
| | - Dong Zhou
- Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, and College of Engineering, Peking University, Beijing, China.
| | - Junrui Yang
- School of Electronics Engineering and Computer Science, Peking University, Beijing, China
| | - Yuhong Pang
- Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, and College of Engineering, Peking University, Beijing, China. and Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, China
| | - Yanyi Huang
- Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, and College of Engineering, Peking University, Beijing, China. and Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, China and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| |
Collapse
|
64
|
Liang M, Zhou X, Xu C. Systems biology in biofuel. PHYSICAL SCIENCES REVIEWS 2016. [DOI: 10.1515/psr-2016-0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
65
|
Berthuy OI, Muldur SK, Rossi F, Colpo P, Blum LJ, Marquette CA. Multiplex cell microarrays for high-throughput screening. LAB ON A CHIP 2016; 16:4248-4262. [PMID: 27731880 DOI: 10.1039/c6lc00831c] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Microarray technology was developed in the early 1990s to measure the transcription levels of thousands of genes in parallel. The basic premise of high-density arraying has since been expanded to create cell microarrays. Cells on chip are powerful experimental tools for high-throughput and multiplex screening of samples or cellular functions. Miniaturization increases assay throughput while reducing both reagent consumption and cell population heterogeneity effect, making these systems attractive for a wide range of assays, from drug discovery to toxicology, stem cell research and therapy. It is usual to functionalize the surface of a substrate to design cell microarrays. One form of cell microarrays, the transfected cell microarray, wherein plasmid DNA or siRNA spotted on the surface of a substrate is reverse-transfected locally into adherent cells, has become a standard tool for parallel cell-based analysis. With the advent of technology, cells can also be directly spotted onto functionalized surfaces using robotic fluid-dispensing devices or printed directly on bio-ink material. We are providing herein an overview of the latest developments in optical cell microarrays allowing high-throughput and high-content analysis.
Collapse
Affiliation(s)
- Ophélie I Berthuy
- Univ Lyon, Université Lyon1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246, 43, Bd du 11 novembre 1918, 69622 Villeurbanne cedex, France.
| | - Sinan K Muldur
- Européen Commission, Joint Research Centre, Institute for Heath and Consumer Protection, Ispra, VA, Italy
| | - François Rossi
- Européen Commission, Joint Research Centre, Institute for Heath and Consumer Protection, Ispra, VA, Italy
| | - Pascal Colpo
- Européen Commission, Joint Research Centre, Institute for Heath and Consumer Protection, Ispra, VA, Italy
| | - Loïc J Blum
- Univ Lyon, Université Lyon1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246, 43, Bd du 11 novembre 1918, 69622 Villeurbanne cedex, France.
| | - Christophe A Marquette
- Univ Lyon, Université Lyon1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246, 43, Bd du 11 novembre 1918, 69622 Villeurbanne cedex, France.
| |
Collapse
|
66
|
|
67
|
Ma X, Huo YX. The application of microfluidic-based technologies in the cycle of metabolic engineering. Synth Syst Biotechnol 2016; 1:137-142. [PMID: 29062937 PMCID: PMC5640795 DOI: 10.1016/j.synbio.2016.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/15/2016] [Accepted: 09/27/2016] [Indexed: 02/07/2023] Open
Abstract
The process of metabolic engineering consists of multiple cycles of design, build, test and learn, which is typically laborious and time-consuming. To increase the efficiency and the rate of success of strain engineering, novel instrumentation must be applied. Microfluidics, the control of liquid flow in microstructures, has enabled flexible, accurate, automatic, and high-throughput manipulation of cells in liquid at picoliter to nanoliter scale. These attributes hold great promise in advancing metabolic engineering in terms of the phases of design, build, test and learn. To promote the application of microfluidic-based technologies in strain improvement, this review addressed the potentials of microfluidics and the related approaches in DNA assembly, transformation, strain screening, genotyping and phenotyping, and highlighted their adaptations for single-cell analysis. As a result, this facilitates in-depth understanding of the metabolic network, which in turn promote efficient optimization in the following cycles of strain engineering. Taken together, microfluidic-based technologies enable on-chip workflow, and could greatly accelerate the turnaround of metabolic engineering.
Collapse
Affiliation(s)
- Xiaoyan Ma
- College of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing, 100081, China
| | - Yi-Xin Huo
- College of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing, 100081, China
| |
Collapse
|
68
|
Gao T, Li L, Wang B, Zhi J, Xiang Y, Li G. Dynamic Electrochemical Control of Cell Capture-and-Release Based on Redox-Controlled Host–Guest Interactions. Anal Chem 2016; 88:9996-10001. [DOI: 10.1021/acs.analchem.6b02156] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Tao Gao
- State
Key Laboratory of Pharmaceutical Biotechnology and Collaborative Innovation
Center of Chemistry for Life Sciences, Department of Biochemistry, Nanjing University, Nanjing 210093, China
| | - Liudi Li
- State
Key Laboratory of Pharmaceutical Biotechnology and Collaborative Innovation
Center of Chemistry for Life Sciences, Department of Biochemistry, Nanjing University, Nanjing 210093, China
| | - Bei Wang
- State
Key Laboratory of Pharmaceutical Biotechnology and Collaborative Innovation
Center of Chemistry for Life Sciences, Department of Biochemistry, Nanjing University, Nanjing 210093, China
| | - Jun Zhi
- State
Key Laboratory of Pharmaceutical Biotechnology and Collaborative Innovation
Center of Chemistry for Life Sciences, Department of Biochemistry, Nanjing University, Nanjing 210093, China
| | - Yang Xiang
- State
Key Laboratory of Pharmaceutical Biotechnology and Collaborative Innovation
Center of Chemistry for Life Sciences, Department of Biochemistry, Nanjing University, Nanjing 210093, China
| | - Genxi Li
- State
Key Laboratory of Pharmaceutical Biotechnology and Collaborative Innovation
Center of Chemistry for Life Sciences, Department of Biochemistry, Nanjing University, Nanjing 210093, China
- Center
for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
69
|
Sachs CC, Grünberger A, Helfrich S, Probst C, Wiechert W, Kohlheyer D, Nöh K. Image-Based Single Cell Profiling: High-Throughput Processing of Mother Machine Experiments. PLoS One 2016; 11:e0163453. [PMID: 27661996 PMCID: PMC5035088 DOI: 10.1371/journal.pone.0163453] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/07/2016] [Indexed: 11/18/2022] Open
Abstract
Background Microfluidic lab-on-chip technology combined with live-cell imaging has enabled the observation of single cells in their spatio-temporal context. The mother machine (MM) cultivation system is particularly attractive for the long-term investigation of rod-shaped bacteria since it facilitates continuous cultivation and observation of individual cells over many generations in a highly parallelized manner. To date, the lack of fully automated image analysis software limits the practical applicability of the MM as a phenotypic screening tool. Results We present an image analysis pipeline for the automated processing of MM time lapse image stacks. The pipeline supports all analysis steps, i.e., image registration, orientation correction, channel/cell detection, cell tracking, and result visualization. Tailored algorithms account for the specialized MM layout to enable a robust automated analysis. Image data generated in a two-day growth study (≈ 90 GB) is analyzed in ≈ 30 min with negligible differences in growth rate between automated and manual evaluation quality. The proposed methods are implemented in the software molyso (MOther machine AnaLYsis SOftware) that provides a new profiling tool to analyze unbiasedly hitherto inaccessible large-scale MM image stacks. Conclusion Presented is the software molyso, a ready-to-use open source software (BSD-licensed) for the unsupervised analysis of MM time-lapse image stacks. molyso source code and user manual are available at https://github.com/modsim/molyso.
Collapse
Affiliation(s)
- Christian Carsten Sachs
- Institute for Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Alexander Grünberger
- Institute for Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Stefan Helfrich
- Institute for Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Christopher Probst
- Institute for Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Wolfgang Wiechert
- Institute for Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Dietrich Kohlheyer
- Institute for Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Katharina Nöh
- Institute for Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
70
|
Wen N, Zhao Z, Fan B, Chen D, Men D, Wang J, Chen J. Development of Droplet Microfluidics Enabling High-Throughput Single-Cell Analysis. Molecules 2016; 21:E881. [PMID: 27399651 PMCID: PMC6272933 DOI: 10.3390/molecules21070881] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 06/27/2016] [Accepted: 06/28/2016] [Indexed: 12/20/2022] Open
Abstract
This article reviews recent developments in droplet microfluidics enabling high-throughput single-cell analysis. Five key aspects in this field are included in this review: (1) prototype demonstration of single-cell encapsulation in microfluidic droplets; (2) technical improvements of single-cell encapsulation in microfluidic droplets; (3) microfluidic droplets enabling single-cell proteomic analysis; (4) microfluidic droplets enabling single-cell genomic analysis; and (5) integrated microfluidic droplet systems enabling single-cell screening. We examine the advantages and limitations of each technique and discuss future research opportunities by focusing on key performances of throughput, multifunctionality, and absolute quantification.
Collapse
Affiliation(s)
- Na Wen
- Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China.
| | - Zhan Zhao
- Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China.
| | - Beiyuan Fan
- Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China.
| | - Deyong Chen
- Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China.
| | - Dong Men
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Junbo Wang
- Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China.
| | - Jian Chen
- Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
71
|
Lau AKS, Shum HC, Wong KKY, Tsia KK. Optofluidic time-stretch imaging - an emerging tool for high-throughput imaging flow cytometry. LAB ON A CHIP 2016; 16:1743-56. [PMID: 27099993 DOI: 10.1039/c5lc01458a] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Optical imaging is arguably the most effective tool to visualize living cells with high spatiotemporal resolution and in a nearly noninvasive manner. Driven by this capability, state-of-the-art cellular assay techniques have increasingly been adopting optical imaging for classifying different cell types/stages, and thus dissecting the respective cellular functions. However, it is still a daunting task to image and characterize cell-to-cell variability within an enormous and heterogeneous population - an unmet need in single-cell analysis, which is now widely advocated in modern biology and clinical diagnostics. The challenge stems from the fact that current optical imaging technologies still lack the practical speed and sensitivity for measuring thousands to millions of cells down to the single-cell precision. Adopting the wisdom in high-speed fiber-optics communication, optical time-stretch imaging has emerged as a completely new optical imaging concept which is now proven for ultrahigh-throughput optofluidic single-cell imaging, at least 1-2 orders-of-magnitude higher (up to ∼100 000 cells per second) compared to the existing imaging flow cytometers. It also uniquely enables quantification of intrinsic biophysical markers of individual cells - a largely unexploited class of single-cell signatures that is known to be correlated with the overwhelmingly investigated biochemical markers. With the aim of reaching a wider spectrum of experts specializing in cellular assay developments and applications, this paper highlights the essential basics of optical time-stretch imaging, followed by reviewing the recent developments and applications of optofluidic time-stretch imaging. We will also discuss the current challenges of this technology, in terms of providing new insights in basic biology and enriching the clinical diagnostic toolsets.
Collapse
Affiliation(s)
- Andy K S Lau
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong, China.
| | - Ho Cheung Shum
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong, China
| | - Kenneth K Y Wong
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong, China.
| | - Kevin K Tsia
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong, China.
| |
Collapse
|
72
|
Zhang XC, Wei ZW, Gong XY, Si XY, Zhao YY, Yang CD, Zhang SC, Zhang XR. Integrated Droplet-Based Microextraction with ESI-MS for Removal of Matrix Interference in Single-Cell Analysis. Sci Rep 2016; 6:24730. [PMID: 27126222 PMCID: PMC4850364 DOI: 10.1038/srep24730] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 04/04/2016] [Indexed: 11/24/2022] Open
Abstract
Integrating droplet-based microfluidics with mass spectrometry is essential to high-throughput and multiple analysis of single cells. Nevertheless, matrix effects such as the interference of culture medium and intracellular components influence the sensitivity and the accuracy of results in single-cell analysis. To resolve this problem, we developed a method that integrated droplet-based microextraction with single-cell mass spectrometry. Specific extraction solvent was used to selectively obtain intracellular components of interest and remove interference of other components. Using this method, UDP-Glc-NAc, GSH, GSSG, AMP, ADP and ATP were successfully detected in single MCF-7 cells. We also applied the method to study the change of unicellular metabolites in the biological process of dysfunctional oxidative phosphorylation. The method could not only realize matrix-free, selective and sensitive detection of metabolites in single cells, but also have the capability for reliable and high-throughput single-cell analysis.
Collapse
Affiliation(s)
- Xiao-Chao Zhang
- Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zhen-Wei Wei
- Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xiao-Yun Gong
- National Institute of Metrology, Beijing 100013, China
| | - Xing-Yu Si
- Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yao-Yao Zhao
- Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Cheng-Dui Yang
- Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Si-Chun Zhang
- Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xin-Rong Zhang
- Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
73
|
|
74
|
Decipher the Molecular Response of Plant Single Cell Types to Environmental Stresses. BIOMED RESEARCH INTERNATIONAL 2016; 2016:4182071. [PMID: 27088086 PMCID: PMC4818802 DOI: 10.1155/2016/4182071] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 02/18/2016] [Accepted: 02/28/2016] [Indexed: 11/17/2022]
Abstract
The analysis of the molecular response of entire plants or organs to environmental stresses suffers from the cellular complexity of the samples used. Specifically, this cellular complexity masks cell-specific responses to environmental stresses and logically leads to the dilution of the molecular changes occurring in each cell type composing the tissue/organ/plant in response to the stress. Therefore, to generate a more accurate picture of these responses, scientists are focusing on plant single cell type approaches. Several cell types are now considered as models such as the pollen, the trichomes, the cotton fiber, various root cell types including the root hair cell, and the guard cell of stomata. Among them, several have been used to characterize plant response to abiotic and biotic stresses. In this review, we are describing the various -omic studies performed on these different plant single cell type models to better understand plant cell response to biotic and abiotic stresses.
Collapse
|
75
|
Wang X, Dong Q, Liu Y, Shi Y, Song X, Liu Q. Modeling Growth of Pseudomonas Aeruginosa
Single Cells with Temperature Shifts. J Food Saf 2016. [DOI: 10.1111/jfs.12258] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xin Wang
- School of Medical Instrument and Food Engineering; University of Shanghai for Science and Technology; Shanghai China
| | - Qingli Dong
- School of Medical Instrument and Food Engineering; University of Shanghai for Science and Technology; Shanghai China
| | - Yangtai Liu
- School of Medical Instrument and Food Engineering; University of Shanghai for Science and Technology; Shanghai China
| | - Yujiao Shi
- School of Medical Instrument and Food Engineering; University of Shanghai for Science and Technology; Shanghai China
| | - Xiaoyu Song
- China National Center for Food Safety Risk Assessment; Beijing China
| | - Qing Liu
- School of Medical Instrument and Food Engineering; University of Shanghai for Science and Technology; Shanghai China
| |
Collapse
|
76
|
Shegokar R, Sawant S, Al Shaal L. Applications of Cell-Based Drug Delivery Systems: Use of Single Cell Assay. SERIES IN BIOENGINEERING 2016. [DOI: 10.1007/978-3-662-49118-8_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
77
|
Novo P, Dell'Aica M, Janasek D, Zahedi RP. High spatial and temporal resolution cell manipulation techniques in microchannels. Analyst 2016; 141:1888-905. [DOI: 10.1039/c6an00027d] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Reviewing latest developments on lab on chips for enhanced control of cells’ experiments.
Collapse
Affiliation(s)
- Pedro Novo
- Protein Dynamics Group
- Leibniz-Institut für Analytische Wissenschaften – ISAS - e.V
- 44227 Dortmund
- Germany
| | - Margherita Dell'Aica
- Protein Dynamics Group
- Leibniz-Institut für Analytische Wissenschaften – ISAS - e.V
- 44227 Dortmund
- Germany
| | - Dirk Janasek
- Protein Dynamics Group
- Leibniz-Institut für Analytische Wissenschaften – ISAS - e.V
- 44227 Dortmund
- Germany
| | - René P. Zahedi
- Protein Dynamics Group
- Leibniz-Institut für Analytische Wissenschaften – ISAS - e.V
- 44227 Dortmund
- Germany
| |
Collapse
|
78
|
Rahman MH, Ahmad MR, Takeuchi M, Nakajima M, Hasegawa Y, Fukuda T. Single Cell Mass Measurement Using Drag Force Inside Lab-on-Chip Microfluidics System. IEEE Trans Nanobioscience 2015; 14:927-34. [DOI: 10.1109/tnb.2015.2507064] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
79
|
Grünberger A, Probst C, Helfrich S, Nanda A, Stute B, Wiechert W, von Lieres E, Nöh K, Frunzke J, Kohlheyer D. Spatiotemporal microbial single-cell analysis using a high-throughput microfluidics cultivation platform. Cytometry A 2015; 87:1101-15. [DOI: 10.1002/cyto.a.22779] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 05/26/2015] [Accepted: 08/19/2015] [Indexed: 12/18/2022]
Affiliation(s)
| | - Christopher Probst
- Forschungszentrum Jülich GmbH, IBG-1: Biotechnology; Jülich 52425 Germany
| | - Stefan Helfrich
- Forschungszentrum Jülich GmbH, IBG-1: Biotechnology; Jülich 52425 Germany
| | - Arun Nanda
- Forschungszentrum Jülich GmbH, IBG-1: Biotechnology; Jülich 52425 Germany
| | - Birgit Stute
- Forschungszentrum Jülich GmbH, IBG-1: Biotechnology; Jülich 52425 Germany
| | - Wolfgang Wiechert
- Forschungszentrum Jülich GmbH, IBG-1: Biotechnology; Jülich 52425 Germany
| | - Eric von Lieres
- Forschungszentrum Jülich GmbH, IBG-1: Biotechnology; Jülich 52425 Germany
| | - Katharina Nöh
- Forschungszentrum Jülich GmbH, IBG-1: Biotechnology; Jülich 52425 Germany
| | - Julia Frunzke
- Forschungszentrum Jülich GmbH, IBG-1: Biotechnology; Jülich 52425 Germany
| | - Dietrich Kohlheyer
- Forschungszentrum Jülich GmbH, IBG-1: Biotechnology; Jülich 52425 Germany
| |
Collapse
|
80
|
Kalfe A, Telfah A, Lambert J, Hergenröder R. Looking into Living Cell Systems: Planar Waveguide Microfluidic NMR Detector for in Vitro Metabolomics of Tumor Spheroids. Anal Chem 2015; 87:7402-10. [DOI: 10.1021/acs.analchem.5b01603] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Ayten Kalfe
- Leibniz Institut für analytische Wissenschaften - ISAS e.V., Bunsen-Kirchhoff-Strasse 11, 44139 Dortmund, Germany
| | - Ahmad Telfah
- Leibniz Institut für analytische Wissenschaften - ISAS e.V., Bunsen-Kirchhoff-Strasse 11, 44139 Dortmund, Germany
| | - Jörg Lambert
- Leibniz Institut für analytische Wissenschaften - ISAS e.V., Bunsen-Kirchhoff-Strasse 11, 44139 Dortmund, Germany
| | - Roland Hergenröder
- Leibniz Institut für analytische Wissenschaften - ISAS e.V., Bunsen-Kirchhoff-Strasse 11, 44139 Dortmund, Germany
| |
Collapse
|
81
|
Bridier A, Hammes F, Canette A, Bouchez T, Briandet R. Fluorescence-based tools for single-cell approaches in food microbiology. Int J Food Microbiol 2015; 213:2-16. [PMID: 26163933 DOI: 10.1016/j.ijfoodmicro.2015.07.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 06/26/2015] [Accepted: 07/03/2015] [Indexed: 12/31/2022]
Abstract
The better understanding of the functioning of microbial communities is a challenging and crucial issue in the field of food microbiology, as it constitutes a prerequisite to the optimization of positive and technological microbial population functioning, as well as for the better control of pathogen contamination of food. Heterogeneity appears now as an intrinsic and multi-origin feature of microbial populations and is a major determinant of their beneficial or detrimental functional properties. The understanding of the molecular and cellular mechanisms behind the behavior of bacteria in microbial communities requires therefore observations at the single-cell level in order to overcome "averaging" effects inherent to traditional global approaches. Recent advances in the development of fluorescence-based approaches dedicated to single-cell analysis provide the opportunity to study microbial communities with an unprecedented level of resolution and to obtain detailed insights on the cell structure, metabolism activity, multicellular behavior and bacterial interactions in complex communities. These methods are now increasingly applied in the field of food microbiology in different areas ranging from research laboratories to industry. In this perspective, we reviewed the main fluorescence-based tools used for single-cell approaches and their concrete applications with specific focus on food microbiology.
Collapse
Affiliation(s)
| | - F Hammes
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - A Canette
- INRA, UMR1319 Micalis, Jouy-en-Josas, France; AgroParisTech, UMR Micalis, Jouy-en-Josas, France
| | | | - R Briandet
- INRA, UMR1319 Micalis, Jouy-en-Josas, France; AgroParisTech, UMR Micalis, Jouy-en-Josas, France.
| |
Collapse
|
82
|
Dittrich P, Ibáñez AJ. Analysis of metabolites in single cells-what is the best micro-platform? Electrophoresis 2015; 36:2196-2206. [PMID: 25929796 DOI: 10.1002/elps.201500045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 04/04/2015] [Accepted: 04/04/2015] [Indexed: 11/11/2022]
Abstract
This review covers new innovations and developments in the field of single-cell level analysis of metabolites, involving the role of microfluidic and microarray platforms to manipulate and handle the cells prior their detection. Microfluidic and microarray platforms have shown great promise. The latest developments demonstrate their potential to identify a particular cell or even an ensemble of cells (sharing a common property or phenotype) that co-exist in a much larger cell population. The reason for this is the capability of these platforms to perform several complex analytical processes, such as: cleanup, sorting, derivatization, separation, and detection, with great robustness, speed, and reduced sample/reagent consumption. Here, we present several examples that illustrate the rapid strides that have been made for the routine analysis of metabolites by coupling different microfluidics and microarrays devices to a wide range of analytical detectors (e.g. fluorescent microscopy, electrochemical, and mass spectrometry). Herein, we also present selected examples detailing the use of microfluidics and microarrays in the visualization of the natural occurring cell-to-cell heterogeneity in isogenic populations, in particular during the response to external cues. The possibility to accurate monitor the cell-to-cell heterogeneity based on different levels of key metabolites is of clinical relevance, since cell-to-cell heterogeneity can influence, for example, the outcome of a drug treatment.
Collapse
Affiliation(s)
- Petra Dittrich
- ETH Zurich - Chemie und Angewandte Biowissenschaften, Wolfgang-Pauli-Str. 10, Zurich, 8093, Switzerland
| | - Alfredo J Ibáñez
- ETH Zurich - Department of Chemistry and Applied Biosciences, Vladimir-Prelog-weg 3, Zurich, 8093, Switzerland
| |
Collapse
|
83
|
Chen Y, Lv C, Li F, Li T. Distinguishing the rates of gene activation from phenotypic variations. BMC SYSTEMS BIOLOGY 2015; 9:29. [PMID: 26084378 PMCID: PMC4479085 DOI: 10.1186/s12918-015-0172-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 05/29/2015] [Indexed: 11/19/2022]
Abstract
Background Stochastic genetic switching driven by intrinsic noise is an important process in gene expression. When the rates of gene activation/inactivation are relatively slow, fast, or medium compared with the synthesis/degradation rates of mRNAs and proteins, the variability of protein and mRNA levels may exhibit very different dynamical patterns. It is desirable to provide a systematic approach to identify their key dynamical features in different regimes, aiming at distinguishing which regime a considered gene regulatory network is in from their phenotypic variations. Results We studied a gene expression model with positive feedbacks when genetic switching rates vary over a wide range. With the goal of providing a method to distinguish the regime of the switching rates, we first focus on understanding the essential dynamics of gene expression system in different cases. In the regime of slow switching rates, we found that the effective dynamics can be reduced to independent evolutions on two separate layers corresponding to gene activation and inactivation states, and the transitions between two layers are rare events, after which the system goes mainly along deterministic ODE trajectories on a particular layer to reach new steady states. The energy landscape in this regime can be well approximated by using Gaussian mixture model. In the regime of intermediate switching rates, we analyzed the mean switching time to investigate the stability of the system in different parameter ranges. We also discussed the case of fast switching rates from the viewpoint of transition state theory. Based on the obtained results, we made a proposal to distinguish these three regimes in a simulation experiment. We identified the intermediate regime from the fact that the strength of cellular memory is lower than the other two cases, and the fast and slow regimes can be distinguished by their different perturbation-response behavior with respect to the switching rates perturbations. Conclusions We proposed a simulation experiment to distinguish the slow, intermediate and fast regimes, which is the main point of our paper. In order to achieve this goal, we systematically studied the essential dynamics of gene expression system when the switching rates are in different regimes. Our theoretical understanding provides new insights on the gene expression experiments. Electronic supplementary material The online version of this article (doi:10.1186/s12918-015-0172-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ye Chen
- LMAM and School of Mathematical Sciences, Peking University, No. 5 Yiheyuan Road, Beijing, 100871, China.
| | - Cheng Lv
- School of Physics, Peking University, No. 5 Yiheyuan Road, Beijing, 100871, China.
| | - Fangting Li
- School of Physics, Peking University, No. 5 Yiheyuan Road, Beijing, 100871, China. .,Center for Quantitative Biology, Peking University, No. 5 Yiheyuan Road, Beijing, 100871, China.
| | - Tiejun Li
- LMAM and School of Mathematical Sciences, Peking University, No. 5 Yiheyuan Road, Beijing, 100871, China.
| |
Collapse
|
84
|
Türkcan S, Nguyen J, Vilalta M, Shen B, Chin FT, Pratx G, Abbyad P. Single-Cell Analysis of [18F]Fluorodeoxyglucose Uptake by Droplet Radiofluidics. Anal Chem 2015; 87:6667-73. [PMID: 26035453 DOI: 10.1021/acs.analchem.5b00792] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Radiolabels can be used to detect small biomolecules with high sensitivity and specificity without interfering with the biochemical activity of the labeled molecule. For instance, the radiolabeled glucose analogue, [18F]fluorodeoxyglucose (FDG), is routinely used in positron emission tomography (PET) scans for cancer diagnosis, staging, and monitoring. However, despite their widespread usage, conventional radionuclide techniques are unable to measure the variability and modulation of FDG uptake in single cells. We present here a novel microfluidic technique, dubbed droplet radiofluidics, that can measure radiotracer uptake for single cells encapsulated into an array of microdroplets. The advantages of this approach are multiple. First, droplets can be quickly and easily positioned in a predetermined pattern for optimal imaging throughput. Second, droplet encapsulation reduces cell efflux as a confounding factor, because any effluxed radionuclide is trapped in the droplet. Last, multiplexed measurements can be performed using fluorescent labels. In this new approach, intracellular radiotracers are imaged on a conventional fluorescence microscope by capturing individual flashes of visible light that are produced as individual positrons, emitted during radioactive decay, traverse a scintillator plate placed below the cells. This method is used to measure the cell-to-cell heterogeneity in the uptake of tracers such as FDG in cell lines and cultured primary cells. The capacity of the platform to perform multiplexed measurements was demonstrated by measuring differential FDG uptake in single cells subjected to different incubation conditions and expressing different types of glucose transporters. This method opens many new avenues of research in basic cell biology and human disease by capturing the full range of stochastic variations in highly heterogeneous cell populations in a repeatable and high-throughput manner.
Collapse
Affiliation(s)
- Silvan Türkcan
- †Division of Medical Physics, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Julia Nguyen
- ‡Department of Chemistry and Biochemistry, Santa Clara University, Santa Clara, California 95053, United States
| | - Marta Vilalta
- §Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University, Stanford, California 94305, United States
| | - Bin Shen
- ∥Department of Radiology, Stanford University Medical Center, Stanford, California 94305, United States
| | - Frederick T Chin
- ∥Department of Radiology, Stanford University Medical Center, Stanford, California 94305, United States
| | - Guillem Pratx
- †Division of Medical Physics, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Paul Abbyad
- ‡Department of Chemistry and Biochemistry, Santa Clara University, Santa Clara, California 95053, United States
| |
Collapse
|
85
|
Abstract
Carbon nanoelectrodes with tip diameters ranging from tens to hundreds of nanometers are fabricated by pyrolitic deposition of carbon films along the entire inner surfaces of pulled-glass pipettes. The pulled end of each glass pipette is then etched to expose a desired length (typically, a few micrometers) of carbon pipe. The carbon film provides an electrically conductive path from the nanoscopic carbon tip to the distal, macroscopic end of the pipette, bridging between the nanoscale tip and the macroscale handle, without a need for assembly. We used our nanoelectrodes to penetrate into individual cells and cell nuclei and measured the variations in the electrode impedance upon cell and nucleus penetration as well as the electrode impedance as a function of cell penetration depth. Theoretical predictions based on a simple circuit model were in good agreement with experimental data.
Collapse
Affiliation(s)
- Sean E. Anderson
- University of Pennsylvania, Department of Mechanical Engineering and Applied Mechanics, Philadelphia, PA 19104
| | - Haim H. Bau
- University of Pennsylvania, Department of Mechanical Engineering and Applied Mechanics, Philadelphia, PA 19104
| |
Collapse
|
86
|
Dusny C, Grünberger A, Probst C, Wiechert W, Kohlheyer D, Schmid A. Technical bias of microcultivation environments on single-cell physiology. LAB ON A CHIP 2015; 15:1822-1834. [PMID: 25710324 DOI: 10.1039/c4lc01270d] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Microscale cultivation systems are important tools to elucidate cellular dynamics beyond the population average and understand the functional architecture of single cells. However, there is scant knowledge about the bias of different microcultivation technologies on cellular functions. We therefore performed a systematic cross-platform comparison of three different microscale cultivation systems commonly harnessed in single-cell analysis: microfluidic non-contact cell traps driven by negative dielectrophoresis, microfluidic monolayer growth chambers, and semi-solid agarose pads. We assessed the specific single-cell growth rates, division rates and morphological characteristics of single Corynebacterium glutamicum cells and microcolonies as a bacterial model organism with medical and biotechnological relevance under standardized growth conditions. Strikingly, the specific single-cell and microcolony growth rates, μmax, were robust and conserved for several cell generations with all three microcultivation technologies, whereas the division rates of cells grown on agarose pads deviated by up to 50% from those of cells cultivated in negative dielectrophoresis traps and monolayer growth chambers. Furthermore, morphological characteristics like cell lengths and division symmetries of individual cells were affected when the cells were grown on agarose pads. This indicated a significant impact of solid cultivation supports on cellular traits. The results demonstrate the impact of microcultivation technology on microbial physiology for the first time and show the need for a careful selection and design of the microcultivation technology in order to allow unbiased analysis of cellular behavior.
Collapse
Affiliation(s)
- Christian Dusny
- Laboratory of Chemical Biotechnology, Department of Biochemical & Chemical Engineering, TU Dortmund University, Emil-Figge-Str. 66, 44227 Dortmund, Germany.
| | | | | | | | | | | |
Collapse
|
87
|
Zhang S, Li F, Jiang X, Kim J, Luo J, Geng X. Advantages and Challenges of Relaxor-PbTiO 3 Ferroelectric Crystals for Electroacoustic Transducers- A Review. PROGRESS IN MATERIALS SCIENCE 2015; 68:1-66. [PMID: 25530641 PMCID: PMC4267134 DOI: 10.1016/j.pmatsci.2014.10.002] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Relaxor-PbTiO3 (PT) based ferroelectric crystals with the perovskite structure have been investigated over the last few decades due to their ultrahigh piezoelectric coefficients (d33 > 1500 pC/N) and electromechanical coupling factors (k33 > 90%), far outperforming state-of-the-art ferroelectric polycrystalline Pb(Zr,Ti)O3 ceramics, and are at the forefront of advanced electroacoustic applications. In this review, the performance merits of relaxor-PT crystals in various electroacoustic devices are presented from a piezoelectric material viewpoint. Opportunities come from not only the ultrahigh properties, specifically coupling and piezoelectric coefficients, but through novel vibration modes and crystallographic/domain engineering. Figure of merits (FOMs) of crystals with various compositions and phases were established for various applications, including medical ultrasonic transducers, underwater transducers, acoustic sensors and tweezers. For each device application, recent developments in relaxor-PT ferroelectric crystals were surveyed and compared with state-of-the-art polycrystalline piezoelectrics, with an emphasis on their strong anisotropic features and crystallographic uniqueness, including engineered domain - property relationships. This review starts with an introduction on electroacoustic transducers and the history of piezoelectric materials. The development of the high performance relaxor-PT single crystals, with a focus on their uniqueness in transducer applications, is then discussed. In the third part, various FOMs of piezoelectric materials for a wide range of ultrasound applications, including diagnostic ultrasound, therapeutic ultrasound, underwater acoustic and passive sensors, tactile sensors and acoustic tweezers, are evaluated to provide a thorough understanding of the materials' behavior under operational conditions. Structure-property-performance relationships are then established. Finally, the impacts and challenges of relaxor-PT crystals are summarized to guide on-going and future research in the development of relaxor-PT crystals for the next generation electroacoustic transducers.
Collapse
Affiliation(s)
- Shujun Zhang
- Materials Research Institute, Pennsylvania State University, University Park, PA, 16802, US
| | - Fei Li
- Electronic Mater. Res. Lab, Key Lab Ministry of Education and International Center for Dielectric Research, Xi’an Jiaotong University, Xi’an 710049, China
| | - Xiaoning Jiang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, US
| | - Jinwook Kim
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, US
| | - Jun Luo
- TRS Technologies Inc., 2820 E. College Ave., Suite J, State College, PA, 16801, US
| | - Xuecang Geng
- Blatek Inc., 2820 E. College Ave., Suite F, State College, PA, 16801, US
| |
Collapse
|
88
|
Li W, Guan T, Zhang X, Wang Z, Wang M, Zhong W, Feng H, Xing M, Kong J. The Effect of Layer-by-Layer Assembly Coating on the Proliferation and Differentiation of Neural Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2015; 7:3018-3029. [PMID: 25347385 DOI: 10.1021/am504456t] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Nanocoating of a single-cell with biocompatible materials creates a defined microenvironment for cell differentiation and proliferation, as well as a model for studies in cell biology. In addition, the acidic environment in the tissue of stroke victims necessitates drug release upon pH stimuli. Here, we report the encapsulation of single neural stem cells (NSCs) using a layer-by-layer (LbL) self-assembly technique with polyelectrolytes gelatin and alginate. Analysis of the NSCs showed that the LbL encapsulation would not affect the viability, proliferation, or differentiation of the cells. When insulin-like growth factor-1 (IGF-1) was loaded on the coating material alginate, its release from alginate into the medium presented in a time-dependent and pH-dependent way. IGF-1 significantly enhanced the proliferation of the encapsulated NSCs, demonstrating a drug-carrier function of the LbL single-cell nanocoating. It provided a potential treatment strategy for nervous system disorders such as stroke.
Collapse
Affiliation(s)
- Wenyan Li
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University , 30 Gaotanyan Street, Chongqing 400038, China
| | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Blazek M, Santisteban TS, Zengerle R, Meier M. Analysis of fast protein phosphorylation kinetics in single cells on a microfluidic chip. LAB ON A CHIP 2015; 15:726-734. [PMID: 25428717 DOI: 10.1039/c4lc00797b] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In the present study, we developed a microfluidic large-scale integration (mLSI) platform for the temporal and chemical control of cell cultures to study fast kinetics of protein phosphorylation. For in situ protein analysis the mLSI chip integrates the Proximity Ligation Assay (PLA). To investigate cell-signaling events with a time resolution of a few seconds we first engineered and optimized the fluidic layout of the chip with 128 individual addressable cell culture chambers. The functionality of the cell culture operations and PLA is demonstrated by the determination of the minimum cell sample size for obtaining robust quantitative PLA signals at the single-cell level. We show that at least 350 cells per assay condition are required to statistically evaluate single cell PLA data. In the following we used the PLA chip with over 500 hundred cells per condition to record sequential phosphorylation reactions of the canonical protein kinase within the Akt pathway, which is activated in various human cancer types. This was achieved by stimulating mouse fibroblast cell cultures with either the platelet-derived growth factor (PDGF) or insulin-like growth factor (IGF-1). Fluidic cell stimulation pulses of 5 seconds were followed by precisely time shifted cell fixation pulses to obtain a temporal resolution of 10 seconds. PLA was then performed on all fixed arrays of cell cultures to extract the characteristic phosphorylation times at the single cell level for either the PDGF, or IGF-1 receptor and the Akt and GSK3β kinases. Characteristic phosphorylation times for the receptors were between 13 and 35 seconds, whereas for downstream kinases between 25 and 200 seconds. Thus we could reveal a molecular order of the phosphorylation reactions during the signal transduction through the Akt pathway. In dependence of the stimulus we found a temporal difference for the characteristic phosphorylation time of 20 and 150 seconds for the Ser-473 and Thr-308 residues on the Akt kinase, respectively. Temporal alteration of sequential phosphorylation reactions on Akt has been proposed as molecular mechanism to differentiate between stimuli and biophysically determined in the present study.
Collapse
Affiliation(s)
- Matthias Blazek
- Microfluidic and Biological Engineering, Department of Microsystems Engineering - IMTEK, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany.
| | | | | | | |
Collapse
|
90
|
Castellarnau M, Szeto GL, Su HW, Tokatlian T, Love JC, Irvine DJ, Voldman J. Stochastic particle barcoding for single-cell tracking and multiparametric analysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:489-98. [PMID: 25180800 PMCID: PMC4303509 DOI: 10.1002/smll.201401369] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 07/29/2014] [Indexed: 05/04/2023]
Abstract
This study presents stochastic particle barcoding (SPB), a method for tracking cell identity across bioanalytical platforms. In this approach, single cells or small collections of cells are co-encapsulated within an enzymatically-degradable hydrogel block along with a random collection of fluorescent beads, whose number, color, and position encode the identity of the cell, enabling samples to be transferred in bulk between single-cell assay platforms without losing the identity of individual cells. The application of SPB is demonstrated for transferring cells from a subnanoliter protein secretion/phenotyping array platform into a microtiter plate, with re-identification accuracies in the plate assay of 96±2%. Encapsulated cells are recovered by digesting the hydrogel, allowing subsequent genotyping and phenotyping of cell lysates. Finally, a model scaling is developed to illustrate how different parameters affect the accuracy of SPB and to motivate scaling of the method to thousands of unique blocks.
Collapse
Affiliation(s)
- Marc Castellarnau
- Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge MA 02139, USA
| | - Gregory L. Szeto
- Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge MA 02139, USA
| | - Hao-Wei Su
- Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge MA 02139, USA
| | - Talar Tokatlian
- Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge MA 02139, USA
| | - J. Christopher Love
- Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge MA 02139, USA
| | - Darrell J. Irvine
- Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge MA 02139, USA
| | - Joel Voldman
- Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge MA 02139, USA
| |
Collapse
|
91
|
Fujita H, Esaki T, Masujima T, Hotta A, Kim SH, Noji H, Watanabe TM. Comprehensive chemical secretory measurement of single cells trapped in a micro-droplet array with mass spectrometry. RSC Adv 2015. [DOI: 10.1039/c4ra12021c] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
By trapping individual single cells in a micro-well, molecules secreted by a single cell can be analyzed using mass spectrometry.
Collapse
Affiliation(s)
- Hideaki Fujita
- Immunology Frontier Research Center
- Osaka University
- Suita-shi
- Japan
- Laboratory for Comprehensive Bioimaging
| | - Tsuyoshi Esaki
- Laboratory for single cell mass spectrometry
- Quantitative Biology Center
- RIKEN
- Suita-shi
- Japan
| | - Tsutomu Masujima
- Laboratory for single cell mass spectrometry
- Quantitative Biology Center
- RIKEN
- Suita-shi
- Japan
| | - Akitsu Hotta
- Centar for iPS Cell Research and Application
- Kyoto University
- Sakyo-ku
- Japan
- PRESTO
| | - Soo Hyeon Kim
- Department of Applied Chemistry
- School of Engineering
- The University of Tokyo
- Tokyo 113-8654
- Japan
| | - Hiroyuki Noji
- Department of Applied Chemistry
- School of Engineering
- The University of Tokyo
- Tokyo 113-8654
- Japan
| | - Tomonobu M. Watanabe
- Immunology Frontier Research Center
- Osaka University
- Suita-shi
- Japan
- Laboratory for Comprehensive Bioimaging
| |
Collapse
|
92
|
Schoendube J, Wright D, Zengerle R, Koltay P. Single-cell printing based on impedance detection. BIOMICROFLUIDICS 2015; 9:014117. [PMID: 25759750 PMCID: PMC4327922 DOI: 10.1063/1.4907896] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 01/29/2015] [Indexed: 05/07/2023]
Abstract
Label-free isolation of single cells is essential for the growing field of single-cell analysis. Here, we present a device which prints single living cells encapsulated in free-flying picoliter droplets. It combines inkjet printing and impedance flow cytometry. Droplet volume can be controlled in the range of 500 pl-800 pl by piezo actuator displacement. Two sets of parallel facing electrodes in a 50 μm × 55 μm channel are applied to measure the presence and velocity of a single cell in real-time. Polystyrene beads with <5% variation in diameter generated signal variations of 12%-17% coefficients of variation. Single bead efficiency (i.e., printing events with single beads vs. total number of printing events) was 73% ± 11% at a throughput of approximately 9 events/min. Viability of printed HeLa cells and human primary fibroblasts was demonstrated by culturing cells for at least eight days.
Collapse
Affiliation(s)
| | - D Wright
- Zurich Instruments AG , Technoparkstrasse 1, 8005 Zurich, Switzerland
| | | | | |
Collapse
|
93
|
Dusny C, Schmid A. Microfluidic single-cell analysis links boundary environments and individual microbial phenotypes. Environ Microbiol 2014; 17:1839-56. [DOI: 10.1111/1462-2920.12667] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 10/02/2014] [Accepted: 10/11/2014] [Indexed: 12/11/2022]
Affiliation(s)
- Christian Dusny
- Department of Solar Materials; Helmholtz Centre for Environmental Research GmbH - UFZ; Permoserstr. 15 Leipzig DE 04318 Germany
- Laboratory of Chemical Biotechnology; Department of Biochemical and Chemical Engineering; TU Dortmund University; Emil-Figge-Str. 66 D-44227 Dortmund Germany
| | - Andreas Schmid
- Department of Solar Materials; Helmholtz Centre for Environmental Research GmbH - UFZ; Permoserstr. 15 Leipzig DE 04318 Germany
- Laboratory of Chemical Biotechnology; Department of Biochemical and Chemical Engineering; TU Dortmund University; Emil-Figge-Str. 66 D-44227 Dortmund Germany
| |
Collapse
|
94
|
Delvigne F, Zune Q, Lara AR, Al-Soud W, Sørensen SJ. Metabolic variability in bioprocessing: implications of microbial phenotypic heterogeneity. Trends Biotechnol 2014; 32:608-16. [DOI: 10.1016/j.tibtech.2014.10.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 09/24/2014] [Accepted: 10/01/2014] [Indexed: 12/19/2022]
|
95
|
Klepárník K. Recent advances in combination of capillary electrophoresis with mass spectrometry: Methodology and theory. Electrophoresis 2014; 36:159-78. [DOI: 10.1002/elps.201400392] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 09/11/2014] [Accepted: 09/11/2014] [Indexed: 12/15/2022]
Affiliation(s)
- Karel Klepárník
- Institute of Analytical Chemistry; Academy of Sciences of the Czech Republic; Brno Czech Republic
| |
Collapse
|
96
|
Li X, Chen W, Li Z, Li L, Gu H, Fu J. Emerging microengineered tools for functional analysis and phenotyping of blood cells. Trends Biotechnol 2014; 32:586-594. [PMID: 25283971 DOI: 10.1016/j.tibtech.2014.09.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 09/09/2014] [Accepted: 09/09/2014] [Indexed: 01/09/2023]
Abstract
The available techniques for assessing blood cell functions are limited considering the various types of blood cell and their diverse functions. In the past decade, rapid advances in microengineering have enabled an array of blood cell functional measurements that are difficult or impossible to achieve using conventional bulk platforms. Such miniaturized blood cell assay platforms also provide the attractive capabilities of reducing chemical consumption, cost, and assay time, as well as exciting opportunities for device integration, automation, and assay standardization. This review summarizes these contemporary microengineered tools and discusses their promising potential for constructing accurate in vitro models and rapid clinical diagnosis using minimal amounts of whole-blood samples.
Collapse
Affiliation(s)
- Xiang Li
- Integrated Biosystems and Biomechanics Laboratory, University of Michigan, Ann Arbor, MI 48109, USA; Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Weiqiang Chen
- Integrated Biosystems and Biomechanics Laboratory, University of Michigan, Ann Arbor, MI 48109, USA; Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zida Li
- Integrated Biosystems and Biomechanics Laboratory, University of Michigan, Ann Arbor, MI 48109, USA; Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ling Li
- Department of Precision Instruments, Tsinghua University, Beijing 100084, China
| | - Hongchen Gu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jianping Fu
- Integrated Biosystems and Biomechanics Laboratory, University of Michigan, Ann Arbor, MI 48109, USA; Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
97
|
Misra BB, Assmann SM, Chen S. Plant single-cell and single-cell-type metabolomics. TRENDS IN PLANT SCIENCE 2014; 19:637-46. [PMID: 24946988 DOI: 10.1016/j.tplants.2014.05.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 05/22/2014] [Accepted: 05/23/2014] [Indexed: 05/19/2023]
Abstract
In conjunction with genomics, transcriptomics, and proteomics, plant metabolomics is providing large data sets that are paving the way towards a comprehensive and holistic understanding of plant growth, development, defense, and productivity. However, dilution effects from organ- and tissue-based sampling of metabolomes have limited our understanding of the intricate regulation of metabolic pathways and networks at the cellular level. Recent advances in metabolomics methodologies, along with the post-genomic expansion of bioinformatics knowledge and functional genomics tools, have allowed the gathering of enriched information on individual cells and single cell types. Here we review progress, current status, opportunities, and challenges presented by single cell-based metabolomics research in plants.
Collapse
Affiliation(s)
- Biswapriya B Misra
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32610, USA
| | - Sarah M Assmann
- Department of Biology, Penn State University, 208 Mueller Laboratory, University Park, PA 16802, USA
| | - Sixue Chen
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32610, USA; Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
98
|
Abstract
Unprecedented access to the biology of single cells is now feasible, enabled by recent technological advancements that allow us to manipulate and measure sparse samples and achieve a new level of resolution in space and time. This review focuses on advances in tools to study single cells for specific areas of biology. We examine both mature and nascent techniques to study single cells at the genomics, transcriptomics, and proteomics level. In addition, we provide an overview of tools that are well suited for following biological responses to defined perturbations with single-cell resolution. Techniques to analyze and manipulate single cells through soluble and chemical ligands, the microenvironment, and cell-cell interactions are provided. For each of these topics, we highlight the biological motivation, applications, methods, recent advances, and opportunities for improvement. The toolbox presented in this review can function as a starting point for the design of single-cell experiments.
Collapse
|
99
|
Shah P, Zhu X, Chen C, Hu Y, Li CZ. Lab-on-chip device for single cell trapping and analysis. Biomed Microdevices 2014; 16:35-41. [PMID: 23948962 DOI: 10.1007/s10544-013-9803-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Traditional cell assay gives us an average result of multiple cells and it is assumed that the resultant is the outcome of all cells in population. However, single cell studies have revealed that individual cells of same type may differ dramatically and these differences may have important role to play in cells functionality. Such information can be obscured in only studying cell population experimental approach. To uncover biological principles and ultimately to improve the detection and treatment of disease, new approaches are highly required to single cell analysis. We propose to fabricate a lab on chip device to study high throughput single cell nanotoxicity analysis. The chip incorporates independently addressable active microwell electrodes for cell manipulation and analysis. We employed positive-dielectrophoresis approach to quickly and efficiently capture single cells in each wells with having control over individual microwells. We examined change in impedance properties to verify cell capture in microwell and its health and present a novel model of single cell assay for nanotoxicity, and drug testing.
Collapse
Affiliation(s)
- Pratikkumar Shah
- Biomedical Engineering Department, Florida International University, Miami, FL, USA
| | | | | | | | | |
Collapse
|
100
|
|