51
|
Functional analysis of a bitter gustatory receptor highly expressed in the larval maxillary galea of Helicoverpa armigera. PLoS Genet 2022; 18:e1010455. [PMID: 36206313 PMCID: PMC9581421 DOI: 10.1371/journal.pgen.1010455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/19/2022] [Accepted: 09/29/2022] [Indexed: 11/19/2022] Open
Abstract
Many plant secondary substances are feeding deterrents for insects and play a key role in the selection of host plants. The taste sensilla of phytophagous insects contain gustatory sensory neurons sensitive to deterrents but the molecular basis of deterrent chemoreception remains unknown. We investigated the function of Gr180, the most highly expressed bitter gustatory receptor in the maxillary galea of Helicoverpa armigera larvae. Functional analyses using the Xenopus oocyte expression system and two-electrode voltage clamp revealed that the oocytes expressing Gr180 responded to coumarin. Tip recording results showed that the medial sensilla styloconica of the maxilla of fifth instar larvae exhibited electrophysiological responses to coumarin. Two-choice feeding bioassays confirmed that coumarin inhibited larval feeding. A homozygous mutant strain of H. armigera with truncated Gr180 proteins (Gr180-/-) was established using the CRISPR-Cas9 system. The responses of the medial sensilla styloconica in Gr180-/- to coumarin were almost abolished, and the responses to sinigrin and strychnine were also significantly decreased. Knockout of Gr180 alleviated the feeding deterrent effects of coumarin, sinigrin, and strychnine. Thus, we conclude that Gr180 is a receptor responding to coumarin,and also participates in sensing sinigrin and strychnine. These results enhance our understanding of the gustatory sensing mechanisms of phytophagous insects to deterrents.
Collapse
|
52
|
Zhang G, Cao S, Guo T, Wang H, Qi X, Ren X, Niu C. Identification and expression profiles of gustatory receptor genes in Bactrocera minax larvae (Diptera: Tephritidae): Role of BminGR59f in larval growth. INSECT SCIENCE 2022; 29:1240-1250. [PMID: 35146929 DOI: 10.1111/1744-7917.13014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/03/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Insects employ various types of gustatory receptors (GRs) to identify nutrient-rich food and avoid toxic substances. The larval gustatory system is the critical checkpoint for food acceptance or rejection. As a specialist herbivore, the larvae of Bactrocera minax feed only on unripe citrus fruits. However, how larvae use GRs to check and adapt to the secondary metabolites in unripe citrus fruits remains unknown. In this study, we first performed developmental expression profiles showing that most BminGRs genes were highly expressed in 1st and 2nd instar larvae and that tissue-specific expression indicated high expression of most BminGRs genes in the mouthparts of 2nd instar larvae. Furthermore, we found that silencing BminGR59f by RNA interference (RNAi) affected the growth of 2nd instar B. minax larvae. Hesperidin and naringin were screened as ligands of BminGR59f via RNAi and cell calcium imaging, and the combination of these two flavones increased the body weight of larvae. In summary, we identified a novel gustatory perception pattern in B. minax for detecting hesperidin and naringin, which boosted the growth of B. minax larvae. These results shed light on how specialist herbivores detect and adapt to host metabolites in adverse environments depending on larval GRs.
Collapse
Affiliation(s)
- Guijian Zhang
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Shuai Cao
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Tong Guo
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Haoran Wang
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Xuewei Qi
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Xueming Ren
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Changying Niu
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
53
|
Ai D, Dong C, Yang B, Yu C, Wang G. A fructose receptor gene influences development and feed intake in Helicoverpa armigera. INSECT SCIENCE 2022; 29:993-1005. [PMID: 34780113 DOI: 10.1111/1744-7917.12984] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
Gustatory receptors (GRs) are critical for multiple life activities of insects. Owing to the rapid development of genome and transcriptome sequencing, numerous insect GRs have been identified. However, the expression patterns and functions of these receptors are poorly understood. In this study, we analyzed the expression pattern of GRs in Helicoverpa armigera and found that the fructose receptor HarmGR9 was highly expressed in the foregut and abdomen. The function of HarmGR9 was identified using the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system. Knockout of the HarmGR9 gene shortened the developmental period of the larval stages and increased food consumption in both larvae and adults. This study revealed the tissue distribution of sugar-sense-related receptors in H. armigera and thereby expanded the understanding of insect feeding regulation.
Collapse
Affiliation(s)
- Dong Ai
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chenxi Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bin Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Caihong Yu
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, China
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong Province, China
| |
Collapse
|
54
|
Keesey IW. Sensory neuroecology and multimodal evolution across the genus Drosophila. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.932344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The neural basis and genetic mechanisms for sensory evolution are increasingly being explored in depth across many closely related members of the Drosophila genus. This has, in part, been achieved due to the immense efforts toward adapting gene-editing technologies for additional, non-model species. Studies targeting both peripheral sensory variations, as well as interspecies divergence in coding or neural connectivity, have generated numerous, tangible examples of how and where the evolution of sensory-driven animal behavior has occurred. Here, we review and discuss studies that each aim to identify the neurobiological and genetic components of sensory system evolution to provide a comparative overview of the types of functional variations observed across both perceptual input and behavioral output. In addition, we examined the roles neuroecology and neuroevolution play in speciation events, such as courtship and intraspecies communication, as well as those aspects related to behavioral divergence in host navigation or egg-laying preferences. Through the investigation of comparative, large-scale trends and correlations across diverse, yet closely related species within this highly ecologically variable genus of flies, we can begin to describe the underlying pressures, mechanisms, and constraints that have guided sensory and nervous system evolution within the natural environments of these organisms.
Collapse
|
55
|
McDowell SAT, Stanley M, Gordon MD. A molecular mechanism for high salt taste in Drosophila. Curr Biol 2022; 32:3070-3081.e5. [PMID: 35772408 DOI: 10.1016/j.cub.2022.06.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/04/2022] [Accepted: 06/07/2022] [Indexed: 11/25/2022]
Abstract
Dietary salt detection and consumption are crucial to maintaining fluid and ionic homeostasis. To optimize salt intake, animals employ salt-dependent activation of multiple taste pathways. Generally, sodium activates attractive taste cells, but attraction is overridden at high salt concentrations by cation non-selective activation of aversive taste cells. In flies, high salt avoidance is driven by both "bitter" taste neurons and a class of glutamatergic "high salt" neurons expressing pickpocket23 (ppk23). Although the cellular basis of salt taste has been described, many of the molecular mechanisms remain elusive. Here, we show that ionotropic receptor 7c (IR7c) is expressed in glutamatergic high salt neurons, where it functions with co-receptors IR76b and IR25a to detect high salt and is essential for monovalent salt taste. Misexpression of IR7c in sweet neurons, which endogenously express IR76b and IR25a, confers responsiveness to non-sodium salts, indicating that IR7c is sufficient to convert a sodium-selective gustatory receptor neuron to a cation non-selective one. Furthermore, the resultant transformation of taste neuron tuning switches potassium chloride from an aversive to an attractive tastant. This research provides insight into the molecular basis of monovalent and divalent salt-taste coding.
Collapse
Affiliation(s)
- Sasha A T McDowell
- Department of Zoology and Life Sciences Institute, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Molly Stanley
- Department of Zoology and Life Sciences Institute, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Michael D Gordon
- Department of Zoology and Life Sciences Institute, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
56
|
Copy number changes in co-expressed odorant receptor genes enable selection for sensory differences in drosophilid species. Nat Ecol Evol 2022; 6:1343-1353. [PMID: 35864227 DOI: 10.1038/s41559-022-01830-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 06/15/2022] [Indexed: 11/09/2022]
Abstract
Despite numerous examples of chemoreceptor gene family expansions and contractions, how these relate to modifications in the sensory neuron populations in which they are expressed remains unclear. Drosophila melanogaster's odorant receptor (Or) family is ideal for addressing this question because most Ors are expressed in distinct olfactory sensory neuron (OSN) types. Between-species changes in Or copy number may therefore indicate increases or reductions in the number of OSN populations. Here we investigated the Or67a subfamily, which exhibits copy number variation in D. melanogaster and its closest relatives: D. simulans, D. sechellia and D. mauritiana. These species' common ancestor had three Or67a paralogues that had already diverged adaptively. Following speciation, two Or67a paralogues were lost independently in D. melanogaster and D. sechellia, with ongoing positive selection shaping the intact genes. Unexpectedly, the functionally diverged Or67a paralogues in D. simulans are co-expressed in a single neuron population, which projects to a glomerulus homologous to that innervated by Or67a neurons in D. melanogaster. Thus, while sensory pathway neuroanatomy is conserved, independent selection on co-expressed receptors has contributed to species-specific peripheral coding. This work reveals a type of adaptive change largely overlooked for olfactory evolution, raising the possibility that similar processes influence other cases of insect Or co-expression.
Collapse
|
57
|
Pontes G, Latorre-Estivalis JM, Gutiérrez ML, Cano A, Berón de Astrada M, Lorenzo MG, Barrozo RB. Molecular and functional basis of high-salt avoidance in a blood-sucking insect. iScience 2022; 25:104502. [PMID: 35720264 PMCID: PMC9204723 DOI: 10.1016/j.isci.2022.104502] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/14/2022] [Accepted: 05/26/2022] [Indexed: 12/05/2022] Open
Abstract
Salts are essential nutrients required for many physiological processes, and accordingly, their composition and concentration are tightly regulated. Taste is the ultimate sensory modality involved in resource quality assessment, resulting in acceptance or rejection. Here we found that high salt concentrations elicit feeding avoidance in the blood-sucking bug Rhodnius prolixus and elucidate the molecular and neurophysiological mechanisms involved. We found that high-salt avoidance is mediated by a salt-sensitive antennal gustatory receptor neuron (GRN). Using RNAi, we demonstrate that this process requires two amiloride-sensitive pickpocket channels (PPKs; Rpro PPK014276 and Rpro PPK28) expressed within these cells. We found that antennal GRNs project to the insect primary olfactory center, the antennal lobes, revealing these centers as potential sites for the integration of taste and olfactory host-derived cues. Moreover, the identification of the gustatory basis of high-salt detection in a hematophagous insect suggests novel targets for the prevention of biting and feeding.
Collapse
Affiliation(s)
- Gina Pontes
- Grupo de Neuroetología de Insectos Vectores, Laboratorio Fisiología de Insectos, Instituto de Biodiversidad, Biología Experimental y Aplicada, CONICET - UBA, Departamento Biodiversidad y Biología Experimental, Facultad Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - José Manuel Latorre-Estivalis
- Grupo de Comportamento de Vetores e Interação com Patógenos-CNPq, Centro de Pesquisas René Rachou/FIOCRUZ, Belo Horizonte, Brazil
| | - María Laura Gutiérrez
- Grupo de Neuroetología de Insectos Vectores, Laboratorio Fisiología de Insectos, Instituto de Biodiversidad, Biología Experimental y Aplicada, CONICET - UBA, Departamento Biodiversidad y Biología Experimental, Facultad Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Agustina Cano
- Grupo de Neuroetología de Insectos Vectores, Laboratorio Fisiología de Insectos, Instituto de Biodiversidad, Biología Experimental y Aplicada, CONICET - UBA, Departamento Biodiversidad y Biología Experimental, Facultad Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Martin Berón de Astrada
- Laboratorio de Fisiología de la Visión, Instituto de Biociencias, Biotecnología y Biología Traslacional, Departamento de Fisiología, Biología Molecular y Celular, Facultad Ciencias Exactas y Naturales, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Marcelo G. Lorenzo
- Grupo de Comportamento de Vetores e Interação com Patógenos-CNPq, Centro de Pesquisas René Rachou/FIOCRUZ, Belo Horizonte, Brazil
| | - Romina B. Barrozo
- Grupo de Neuroetología de Insectos Vectores, Laboratorio Fisiología de Insectos, Instituto de Biodiversidad, Biología Experimental y Aplicada, CONICET - UBA, Departamento Biodiversidad y Biología Experimental, Facultad Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
58
|
Comparisons of chemosensory gene repertoires in human and non-human feeding Anopheles mosquitoes link olfactory genes to anthropophily. iScience 2022; 25:104521. [PMID: 35754720 PMCID: PMC9213756 DOI: 10.1016/j.isci.2022.104521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 05/08/2022] [Accepted: 05/30/2022] [Indexed: 11/06/2022] Open
Abstract
We investigate the genetic basis of anthropophily (human host use) in a non-model mosquito species group, the Anopheles farauti complex from the southwest Pacific. This complex has experienced multiple transitions from anthropophily to zoophily, contrasting with well-studied systems (the global species Aedes aegypti and the African Anopheles gambiae complex) that have evolved to be specialist anthropophiles. By performing tests of selection and assessing evolutionary patterns for >200 olfactory genes from nine genomes, we identify several candidate genes associated with differences in anthropophily in this complex. Based on evolutionary patterns (phylogenetic relationships, fixed amino acid differences, and structural differences) as well as results from selection analyses, we identify numerous genes that are likely to play an important role in mosquitoes’ ability to detect humans as hosts. Our findings contribute to the understanding of the evolution of insect olfactory gene families and mosquito host preference as well as having potential applied outcomes. Genomes of Anopheles mosquitoes with differing host preferences were sequenced Evolutionary comparisons were performed on >200 insect chemosensory genes These comparisons revealed candidate genes involved in human feeding Two of the main candidates identified were co-receptor Ir8a and Or75
Collapse
|
59
|
The neuronal logic of how internal states control food choice. Nature 2022; 607:747-755. [DOI: 10.1038/s41586-022-04909-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 05/25/2022] [Indexed: 11/08/2022]
|
60
|
Shiu PK, Sterne GR, Engert S, Dickson BJ, Scott K. Taste quality and hunger interactions in a feeding sensorimotor circuit. eLife 2022; 11:e79887. [PMID: 35791902 PMCID: PMC9292995 DOI: 10.7554/elife.79887] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/27/2022] [Indexed: 11/30/2022] Open
Abstract
Taste detection and hunger state dynamically regulate the decision to initiate feeding. To study how context-appropriate feeding decisions are generated, we combined synaptic resolution circuit reconstruction with targeted genetic access to specific neurons to elucidate a gustatory sensorimotor circuit for feeding initiation in adult Drosophila melanogaster. This circuit connects gustatory sensory neurons to proboscis motor neurons through three intermediate layers. Most neurons in this pathway are necessary and sufficient for proboscis extension, a feeding initiation behavior, and respond selectively to sugar taste detection. Pathway activity is amplified by hunger signals that act at select second-order neurons to promote feeding initiation in food-deprived animals. In contrast, the feeding initiation circuit is inhibited by a bitter taste pathway that impinges on premotor neurons, illuminating a local motif that weighs sugar and bitter taste detection to adjust the behavioral outcomes. Together, these studies reveal central mechanisms for the integration of external taste detection and internal nutritive state to flexibly execute a critical feeding decision.
Collapse
Affiliation(s)
- Philip K Shiu
- University of California, BerkeleyBerkeleyUnited States
| | - Gabriella R Sterne
- University of California, BerkeleyBerkeleyUnited States
- Janelia Research Campus, Howard Hughes Medical InstituteChevy ChaseUnited States
| | | | - Barry J Dickson
- Janelia Research Campus, Howard Hughes Medical InstituteChevy ChaseUnited States
- Queensland Brain Institute, University of QueenslandBrisbaneAustralia
| | - Kristin Scott
- University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
61
|
Li X, Li JW, Sun WX, Li W, Gao HY, Liu TX, Qu MJ. Candidate Chemosensory Genes Identified in the Adult Antennae of Sympiezomias velatus and Binding Property of Odorant-Binding Protein 15. Front Physiol 2022; 13:907667. [PMID: 35711318 PMCID: PMC9193972 DOI: 10.3389/fphys.2022.907667] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
Chemosensory genes play important roles in insect behaviors and have thus become potential molecular targets for pest control based on the manipulation of chemoreception-driven behaviors. The great gray weevil Sympiezomias velatus (Chevrolat) (Coleoptera: Curculionidae) is an important agricultural pest that causes serious economic losses to many crops in China, but its chemosensory genes have not been reported. Here we assembled the antennal transcriptomes of female and male adult S. velatus and revealed the major chemosensory genes necessary for olfaction. A total of 138 candidate chemosensory genes in six families were identified, including 41 encoding odorant-binding proteins (OBPs), 11 encoding chemosensory proteins (CSPs), 62 encoding odorant receptors (ORs), 15 encoding gustatory receptors (GRs), six encoding ionotropic receptors (IRs), and three encoding sensory neuron membrane proteins (SNMPs). We analyzed their phylogenetic relationship based on the amino acid sequences of these chemosensory-related protein families in S. velatus and other insects, and the expression profiles based on their antennal transcriptomes. Chemosensory genes that show antenna-abundant/specific or sex-biased expression were observed, suggesting that these genes might have functions in olfaction. Furthermore, we chose an antenna-abundant OBP belonging to ABPX subfamily, SvelOBP15, to investigate its binding property. The results showed that among 33 tested compounds, SvelOBP15 displayed high binding affinities (Ki = 7.36-12.94 μmol/L) with farnesol, nerolidol, limonene and diisobutyl phthalate, indicating that SvelOBP15 plays olfactory roles by binding and transporting specific plant volatiles. These findings will help us better understand the olfactory systems of S. velatus, and provide a basis for functional elucidation of these chemosensory genes.
Collapse
Affiliation(s)
- Xiao Li
- Shandong Peanut Research Institute, Qingdao, China
| | - Jian-Wen Li
- College of Life Sciences, Yangtze University, Jingzhou, China.,Weinan Product Quality Supervision and Inspection Institute, Weinan, China
| | - Wen-Xiu Sun
- College of Life Sciences, Yangtze University, Jingzhou, China
| | - Wei Li
- College of Life Sciences, Yangtze University, Jingzhou, China
| | - Hua-Yuan Gao
- Peanut Research Institute, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Tong-Xian Liu
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Ming-Jing Qu
- Shandong Peanut Research Institute, Qingdao, China
| |
Collapse
|
62
|
Kohatsu S, Tanabe N, Yamamoto D, Isono K. Which Sugar to Take and How Much to Take? Two Distinct Decisions Mediated by Separate Sensory Channels. Front Mol Neurosci 2022; 15:895395. [PMID: 35726300 PMCID: PMC9206540 DOI: 10.3389/fnmol.2022.895395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
In Drosophila melanogaster, gustatory receptor neurons (GRNs) for sugar taste coexpress various combinations of gustatory receptor (Gr) genes and are found in multiple sites in the body. To determine whether diverse sugar GRNs expressing different combinations of Grs have distinct behavioral roles, we examined the effects on feeding behavior of genetic manipulations which promote or suppress functions of GRNs that express either or both of the sugar receptor genesGr5a (Gr5a+ GRNs) and Gr61a (Gr61a+ GRNs). Cell-population-specific overexpression of the wild-type form of Gr5a (Gr5a+) in the Gr5a mutant background revealed that Gr61a+ GRNs localized on the legs and internal mouthpart critically contribute to food choice but not to meal size decisions, while Gr5a+ GRNs, which are broadly expressed in many sugar-responsive cells across the body with an enrichment in the labella, are involved in both food choice and meal size decisions. The legs harbor two classes of Gr61a expressing GRNs, one with Gr5a expression (Gr5a+/Gr61a+ GRNs) and the other without Gr5aexpression (Gr5a−/Gr61a+ GRNs). We found that blocking the Gr5a+ class in the entire body reduced the preference for trehalose and blocking the Gr5a- class reduced the preference for fructose. These two subsets of GRNsare also different in their central projections: axons of tarsal Gr5a+/Gr61a+ GRNs terminate exclusively in the ventral nerve cord, while some axons of tarsal Gr5a−/Gr61a+ GRNs ascend through the cervical connectives to terminate in the subesophageal ganglion. We propose that tarsal Gr5a+/Gr61a+ GRNs and Gr5a−/Gr61a+ GRNs represent functionally distinct sensory pathways that function differently in food preference and meal-size decisions.
Collapse
Affiliation(s)
- Soh Kohatsu
- Neuro-ICT Laboratory, Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Japan
- *Correspondence: Soh Kohatsu Kunio Isono
| | - Noriko Tanabe
- Fukuoka Junior College for Kindergarten Teachers, Fukuoka, Japan
| | - Daisuke Yamamoto
- Neuro-ICT Laboratory, Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Japan
| | - Kunio Isono
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
- *Correspondence: Soh Kohatsu Kunio Isono
| |
Collapse
|
63
|
Sun LL, Liu XL, Wang YN, Berg BG, Xie GY, Chen WB, Liu Y, Wang GR, Zhao XC, Tang QB. Neuronal architecture and functional mapping of the taste center of larval Helicoverpa armigera (Lepidoptera: Noctuidae). INSECT SCIENCE 2022; 29:730-748. [PMID: 34427391 DOI: 10.1111/1744-7917.12965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
The sense of taste plays a crucial role in herbivorous insects by discriminating nutrients from complex plant metabolic compounds. The peripheral coding of taste has been thoroughly studied in many insect species, but the central gustatory pathways are poorly described. In the present study, we characterized single neurons in the gnathal ganglion of Helicoverpa armigera larvae using the intracellular recording/staining technique. We identified different types of neurons, including sensory neurons, interneurons, and motor neurons. The morphologies of these neurons were largely diverse and their arborizations seemingly covered the whole gnathal ganglion. The representation of the single neurons responding to the relevant stimuli of sweet and bitter cues showed no distinct patterns in the gnathal ganglion. We postulate that taste signals may be processed in a manner consistent with the principle of population coding in the gnathal ganglion of H. armigera larvae.
Collapse
Affiliation(s)
- Long-Long Sun
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiao-Lan Liu
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Ya-Nan Wang
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Bente G Berg
- Chemosensory laboratory, Department of Psychology, Norwegian University of Science and Technology, Trondheim, 7489, Norway
| | - Gui-Ying Xie
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Wen-Bo Chen
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yang Liu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Gui-Rong Wang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xin-Cheng Zhao
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Qing-Bo Tang
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| |
Collapse
|
64
|
Task D, Lin CC, Vulpe A, Afify A, Ballou S, Brbic M, Schlegel P, Raji J, Jefferis GSXE, Li H, Menuz K, Potter CJ. Chemoreceptor co-expression in Drosophila melanogaster olfactory neurons. eLife 2022; 11:e72599. [PMID: 35442190 PMCID: PMC9020824 DOI: 10.7554/elife.72599] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 03/07/2022] [Indexed: 12/20/2022] Open
Abstract
Drosophila melanogaster olfactory neurons have long been thought to express only one chemosensory receptor gene family. There are two main olfactory receptor gene families in Drosophila, the odorant receptors (ORs) and the ionotropic receptors (IRs). The dozens of odorant-binding receptors in each family require at least one co-receptor gene in order to function: Orco for ORs, and Ir25a, Ir8a, and Ir76b for IRs. Using a new genetic knock-in strategy, we targeted the four co-receptors representing the main chemosensory families in D. melanogaster (Orco, Ir8a, Ir76b, Ir25a). Co-receptor knock-in expression patterns were verified as accurate representations of endogenous expression. We find extensive overlap in expression among the different co-receptors. As defined by innervation into antennal lobe glomeruli, Ir25a is broadly expressed in 88% of all olfactory sensory neuron classes and is co-expressed in 82% of Orco+ neuron classes, including all neuron classes in the maxillary palp. Orco, Ir8a, and Ir76b expression patterns are also more expansive than previously assumed. Single sensillum recordings from Orco-expressing Ir25a mutant antennal and palpal neurons identify changes in olfactory responses. We also find co-expression of Orco and Ir25a in Drosophila sechellia and Anopheles coluzzii olfactory neurons. These results suggest that co-expression of chemosensory receptors is common in insect olfactory neurons. Together, our data present the first comprehensive map of chemosensory co-receptor expression and reveal their unexpected widespread co-expression in the fly olfactory system.
Collapse
Affiliation(s)
- Darya Task
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Chun-Chieh Lin
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University School of MedicineBaltimoreUnited States
- Mortimer B. Zuckermann Mind Brain Behavior Institute, Columbia UniversityNew YorkUnited States
| | - Alina Vulpe
- Physiology & Neurobiology Department, University of ConnecticutMansfieldUnited States
| | - Ali Afify
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Sydney Ballou
- Physiology & Neurobiology Department, University of ConnecticutMansfieldUnited States
| | - Maria Brbic
- Department of Computer Science, Stanford UniversityStanfordUnited States
| | - Philipp Schlegel
- Drosophila Connectomics Group, Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | - Joshua Raji
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Gregory SXE Jefferis
- Drosophila Connectomics Group, Department of Zoology, University of CambridgeCambridgeUnited Kingdom
- Neurobiology Division, MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | - Hongjie Li
- Department of Biology, Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | - Karen Menuz
- Physiology & Neurobiology Department, University of ConnecticutMansfieldUnited States
| | - Christopher J Potter
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University School of MedicineBaltimoreUnited States
| |
Collapse
|
65
|
Cui X, Gruzdeva A, Kim H, Yapici N. Of flies, mice and neural control of food intake: lessons to learn from both models. Curr Opin Neurobiol 2022; 73:102531. [PMID: 35390643 PMCID: PMC9167741 DOI: 10.1016/j.conb.2022.102531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/20/2022] [Accepted: 03/02/2022] [Indexed: 11/03/2022]
Abstract
In her book, A Room of One's Own, the famous author Virginia Woolf writes "One cannot think well, love well, sleep well if one has not dined well". This is true. All animals need to forage for food and consume specific nutrients to maintain their physiological homeostasis, maximize their fitness and their reproduction. After decades of research in humans and many model organisms, we now know that our brain is one of the key players that control what, when, and how much we eat. In this review, we discuss the recent literature on neural control of food intake behaviors in mice and flies with the view that these two model organisms complement one another in efforts to uncover conserved principles brains use to regulate energy metabolism and food ingestion.
Collapse
Affiliation(s)
- Xinyue Cui
- Department of Neurobiology and Behavior, Cornell University, 14853, Ithaca, NY, USA
| | - Anna Gruzdeva
- Department of Neurobiology and Behavior, Cornell University, 14853, Ithaca, NY, USA
| | - Haein Kim
- Department of Neurobiology and Behavior, Cornell University, 14853, Ithaca, NY, USA
| | - Nilay Yapici
- Department of Neurobiology and Behavior, Cornell University, 14853, Ithaca, NY, USA.
| |
Collapse
|
66
|
Drosophila melanogaster Chemosensory Pathways as Potential Targets to Curb the Insect Menace. INSECTS 2022; 13:insects13020142. [PMID: 35206716 PMCID: PMC8874460 DOI: 10.3390/insects13020142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary The perception and processing of chemosensory stimuli are indispensable to the survival of living organisms. In insects, olfaction and gustation play a critical role in seeking food, finding mates and avoiding signs of danger. This review aims to present updated information about olfactory and gustatory signaling in the fruit fly Drosophila melanogaster. We have described the mechanisms involved in olfactory and gustatory perceptions at the molecular level, the receptors along with the allied molecules involved, and their signaling pathways in the fruit fly. Due to the magnifying problems of disease-causing insect vectors and crop pests, the applications of chemosensory signaling in controlling pests and insect vectors are also discussed. Abstract From a unicellular bacterium to a more complex human, smell and taste form an integral part of the basic sensory system. In fruit flies Drosophila melanogaster, the behavioral responses to odorants and tastants are simple, though quite sensitive, and robust. They explain the organization and elementary functioning of the chemosensory system. Molecular and functional analyses of the receptors and other critical molecules involved in olfaction and gustation are not yet completely understood. Hence, a better understanding of chemosensory cue-dependent fruit flies, playing a major role in deciphering the host-seeking behavior of pathogen transmitting insect vectors (mosquitoes, sandflies, ticks) and crop pests (Drosophila suzukii, Queensland fruit fly), is needed. Using D. melanogaster as a model organism, the knowledge gained may be implemented to design new means of controlling insects as well as in analyzing current batches of insect and pest repellents. In this review, the complete mechanisms of olfactory and gustatory perception, along with their implementation in controlling the global threat of disease-transmitting insect vectors and crop-damaging pests, are explained in fruit flies.
Collapse
|
67
|
Kaushik S, Kumar R, Kumar S, Sanghi S, Kain P. Modulation of sugar feeding behavior by Gymnema sylvestre in Drosophila melanogaster. Sci Prog 2022; 105:368504211067666. [PMID: 34989256 PMCID: PMC7612715 DOI: 10.1177/00368504211067666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Sugar is the main source of energy for nearly all animals. However, consumption of a high amount of sugars can lead to many metabolic disorders hence, balancing calorie intake in the form of sugar is required. Various herbs are in use to control body weight, cure diabetes and control elevated blood sugar levels. One such herb is Gymnema sylvestre commonly called Gurmar (destroyer of sugar). Gurmar selectively inhibits sugar sensation by mechanisms that are still elusive. OBJECTIVES The primary objective of this study is to understand the effect of gurmar on sweet taste feeding behaviour in insects using the invertebrate model system Drosophila melanogaster. METHODS For this study, we used feeding assays, spectrophotometry and Proboscis Extension Reflex (PER) assay to determine how flies detect gurmar. Additionally, life span analysis, egg-laying behaviour and developmental profiles were used to probe the role of gurmar on the overall health of the flies. During the whole study, we used only the raw powdered form of gurmar (dried leaves) to examine its effect on sweet taste feeding behaviour. RESULTS Our data demonstrate that whole gurmar in a raw powdered form is aversive to flies and inhibits sugar evoked PER and feeding responses. Also, we observed it takes at least 24 h of starvation time to reduce the consumption of sugar in flies pre-fed on gurmar. Flies lay a fewer number of eggs on gurmar media and show developmental defects. Our data suggest that flies detect gurmar using both taste and olfactory cues. CONCLUSION Understanding how gurmar reshapes taste curves to promote reduced consumption of sugars in flies will open up avenues to help people with health issues related to high sugar consumption, but our data also highlights that its consumption should be carefully considered since gurmar is aversive to flies and has detrimental effects on development.
Collapse
Affiliation(s)
- Shivam Kaushik
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | | | | | - Srishti Sanghi
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, India
| | - Pinky Kain
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| |
Collapse
|
68
|
Abstract
Bitter taste signals a potentially toxic food that should be avoided. A new study shows that taste neurons in Drosophila produce distinct responses after a bitter sip. A bitter aftertaste may help the fly make wise food choices.
Collapse
Affiliation(s)
- Hojoon Lee
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA.
| | - Michael H Alpert
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Marco Gallio
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
69
|
Excessive energy expenditure due to acute physical restraint disrupts Drosophila motivational feeding response. Sci Rep 2021; 11:24208. [PMID: 34921197 PMCID: PMC8683507 DOI: 10.1038/s41598-021-03575-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 12/03/2021] [Indexed: 11/22/2022] Open
Abstract
To study the behavior of Drosophila, it is often necessary to restrain and mount individual flies. This requires removal from food, additional handling, anesthesia, and physical restraint. We find a strong positive correlation between the length of time flies are mounted and their subsequent reflexive feeding response, where one hour of mounting is the approximate motivational equivalent to ten hours of fasting. In an attempt to explain this correlation, we rule out anesthesia side-effects, handling, additional fasting, and desiccation. We use respirometric and metabolic techniques coupled with behavioral video scoring to assess energy expenditure in mounted and free flies. We isolate a specific behavior capable of exerting large amounts of energy in mounted flies and identify it as an attempt to escape from restraint. We present a model where physical restraint leads to elevated activity and subsequent faster nutrient storage depletion among mounted flies. This ultimately further accelerates starvation and thus increases reflexive feeding response. In addition, we show that the consequences of the physical restraint profoundly alter aerobic activity, energy depletion, taste, and feeding behavior, and suggest that careful consideration is given to the time-sensitive nature of these highly significant effects when conducting behavioral, physiological or imaging experiments that require immobilization.
Collapse
|
70
|
Auer TO, Shahandeh MP, Benton R. Drosophila sechellia: A Genetic Model for Behavioral Evolution and Neuroecology. Annu Rev Genet 2021; 55:527-554. [PMID: 34530638 DOI: 10.1146/annurev-genet-071719-020719] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Defining the mechanisms by which animals adapt to their ecological niche is an important problem bridging evolution, genetics, and neurobiology. We review the establishment of a powerful genetic model for comparative behavioral analysis and neuroecology, Drosophila sechellia. This island-endemic fly species is closely related to several cosmopolitan generalists, including Drosophila melanogaster, but has evolved extreme specialism, feeding and reproducing exclusively on the noni fruit of the tropical shrub Morinda citrifolia. We first describe the development and use of genetic approaches to facilitate genotype/phenotype associations in these drosophilids. Next, we survey the behavioral, physiological, and morphological adaptations of D. sechellia throughout its life cycle and outline our current understanding of the genetic and cellular basis of these traits. Finally, we discuss the principles this knowledge begins to establish in the context of host specialization, speciation, and the neurobiology of behavioral evolution and consider open questions and challenges in the field.
Collapse
Affiliation(s)
- Thomas O Auer
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland; , ,
| | - Michael P Shahandeh
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland; , ,
| | - Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland; , ,
| |
Collapse
|
71
|
Devineni AV, Deere JU, Sun B, Axel R. Individual bitter-sensing neurons in Drosophila exhibit both ON and OFF responses that influence synaptic plasticity. Curr Biol 2021; 31:5533-5546.e7. [PMID: 34731675 DOI: 10.1016/j.cub.2021.10.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 09/04/2021] [Accepted: 10/08/2021] [Indexed: 01/07/2023]
Abstract
The brain generates internal representations that translate sensory stimuli into appropriate behavior. In the taste system, different tastes activate distinct populations of sensory neurons. We investigated the temporal properties of taste responses in Drosophila and discovered that different types of taste sensory neurons show striking differences in their response dynamics. Strong responses to stimulus onset (ON responses) and offset (OFF responses) were observed in bitter-sensing neurons in the labellum, whereas bitter neurons in the leg and other classes of labellar taste neurons showed only an ON response. Individual labellar bitter neurons generate both ON and OFF responses through a cell-intrinsic mechanism that requires canonical bitter receptors. A single receptor complex likely generates both ON and OFF responses to a given bitter ligand. These ON and OFF responses in the periphery are propagated to dopaminergic neurons that mediate aversive learning, and the presence of the OFF response impacts synaptic plasticity when bitter is used as a reinforcement cue. These studies reveal previously unknown features of taste responses that impact neural circuit function and may be important for behavior. Moreover, these studies show that OFF responses can dramatically influence timing-based synaptic plasticity, which is thought to underlie associative learning.
Collapse
Affiliation(s)
- Anita V Devineni
- Zuckerman Mind Brain Behavior Institute, Columbia University, 3227 Broadway, New York, NY 10027, USA.
| | - Julia U Deere
- Zuckerman Mind Brain Behavior Institute, Columbia University, 3227 Broadway, New York, NY 10027, USA
| | - Bei Sun
- Zuckerman Mind Brain Behavior Institute, Columbia University, 3227 Broadway, New York, NY 10027, USA
| | - Richard Axel
- Zuckerman Mind Brain Behavior Institute, Columbia University, 3227 Broadway, New York, NY 10027, USA; Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
72
|
Komarov N, Sprecher SG. The chemosensory system of the Drosophila larva: an overview of current understanding. Fly (Austin) 2021; 16:1-12. [PMID: 34612150 PMCID: PMC8496535 DOI: 10.1080/19336934.2021.1953364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Animals must sense their surroundings and be able to distinguish between relevant and irrelevant cues. An enticing area of research aims to uncover the mechanisms by which animals respond to chemical signals that constitute critical sensory input. In this review, we describe the principles of a model chemosensory system: the Drosophila larva. While distinct in many ways, larval behaviour is reminiscent of the dogmatic goals of life: to reach a stage of reproductive potential. It takes into account a number of distinct and identifiable parameters to ultimately provoke or modulate appropriate behavioural output. In this light, we describe current knowledge of chemosensory anatomy, genetic components, and the processing logic of chemical cues. We outline recent advancements and summarize the hypothesized neural circuits of sensory systems. Furthermore, we note yet-unanswered questions to create a basis for further investigation of molecular and systemic mechanisms of chemosensation in Drosophila and beyond.
Collapse
Affiliation(s)
- Nikita Komarov
- Institute of Cell and Developmental Biology, Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Simon G Sprecher
- Institute of Cell and Developmental Biology, Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
73
|
Cho LC, Yu CC, Kao CF. Social perception of young adults prolongs the lifespan of aged Drosophila. NPJ Aging Mech Dis 2021; 7:21. [PMID: 34471134 PMCID: PMC8410773 DOI: 10.1038/s41514-021-00073-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 07/01/2021] [Indexed: 12/02/2022] Open
Abstract
Lifespan is modulated at distinct levels by multiple factors, including genetic backgrounds, the environment, behavior traits, metabolic status, and more interestingly, sensory perceptions. However, the effects of social perception between individuals living in the same space remain less clear. Here, we used the Drosophila model to study the influences of social perception on the lifespan of aged fruit flies. We found the lifespan of aged Drosophila is markedly prolonged after being co-housed with young adults of the same gender. Moreover, the changes of lifespan were affected by several experimental contexts: (1) the ratios of aged and young adults co-housed, (2) the chronological ages of two populations, and (3) the integrity of sensory modalities. Together, we hypothesize the chemical/physical stimuli derived from the interacting young adults are capable of interfering with the physiology and behavior of aged flies, ultimately leading to the alteration of lifespan.
Collapse
Affiliation(s)
- Li-Chun Cho
- Department of Biological Science and Technology, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Chih-Chieh Yu
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan.,Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Chih-Fei Kao
- Department of Biological Science and Technology, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan. .,Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan.
| |
Collapse
|
74
|
Guo D, Zhang YJ, Zhang S, Li J, Guo C, Pan YF, Zhang N, Liu CX, Jia YL, Li CY, Ma JY, Nässel DR, Gao CF, Wu SF. Cholecystokinin-like peptide mediates satiety by inhibiting sugar attraction. PLoS Genet 2021; 17:e1009724. [PMID: 34398892 PMCID: PMC8366971 DOI: 10.1371/journal.pgen.1009724] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 07/17/2021] [Indexed: 11/19/2022] Open
Abstract
Feeding is essential for animal survival and reproduction and is regulated by both internal states and external stimuli. However, little is known about how internal states influence the perception of external sensory cues that regulate feeding behavior. Here, we investigated the neuronal and molecular mechanisms behind nutritional state-mediated regulation of gustatory perception in control of feeding behavior in the brown planthopper and Drosophila. We found that feeding increases the expression of the cholecystokinin-like peptide, sulfakinin (SK), and the activity of a set of SK-expressing neurons. Starvation elevates the transcription of the sugar receptor Gr64f and SK negatively regulates the expression of Gr64f in both insects. Interestingly, we found that one of the two known SK receptors, CCKLR-17D3, is expressed by some of Gr64f-expressing neurons in the proboscis and proleg tarsi. Thus, we have identified SK as a neuropeptide signal in a neuronal circuitry that responds to food intake, and regulates feeding behavior by diminishing gustatory receptor gene expression and activity of sweet sensing GRNs. Our findings demonstrate one nutritional state-dependent pathway that modulates sweet perception and thereby feeding behavior, but our experiments cannot exclude further parallel pathways. Importantly, we show that the underlying mechanisms are conserved in the two distantly related insect species. Food intake is critical for animal survival and reproduction and is regulated both by internal states that signal appetite or satiety, and by external sensory stimuli. It is well known that the internal nutritional state influences the strength of the chemosensory perception of food signals. Thus, both gustatory and olfactory signals of preferred food are strengthened in hungry animals. However, the molecular mechanisms behind satiety-mediated modulation of taste are still not known. We show here that cholecystokinin-like (SK) peptide in brown planthopper and Drosophila signals satiety and inhibits sugar attraction by lowering the activity of sweet-sensing gustatory neurons and transcription of a sugar receptor gene, Gr64f. We show that SK peptide signaling reflects the nutritional state and inhibits feeding behavior. Re-feeding after starvation increases SK peptide expression and spontaneous activity of SK producing neurons. Interestingly, we found that SK peptide negatively regulates the expression of the sweet gustatory receptor and that activation of SK producing neurons inhibits the activity of sweet-sensing gustatory neurons (GRNs). Furthermore, we found that one of the two known SK peptide receptors is expressed in some sweet-sensing GRNs in the proboscis and proleg tarsi. In summary, our findings provide a mechanism that is conserved in distantly related insects and which explains how feeding state modulates sweet perception to regulate feeding behavior. Thus, we have identified a neuropeptide signal and its neuronal circuitry that respond to satiety, and that regulate feeding behavior by inhibiting gustatory receptor gene expression and activity of sweet sensing GRNs.
Collapse
Affiliation(s)
- Di Guo
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Jiangsu, China
| | - Yi-Jie Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Jiangsu, China
| | - Su Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Jiangsu, China
| | - Jian Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Jiangsu, China
| | - Chao Guo
- The Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing, China
| | - Yu-Feng Pan
- The Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing, China
| | - Ning Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Jiangsu, China
| | - Chen-Xi Liu
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Ya-Long Jia
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Jiangsu, China
| | - Chen-Yu Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Jiangsu, China
| | - Jun-Yu Ma
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Jiangsu, China
| | - Dick R. Nässel
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Cong-Fen Gao
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Jiangsu, China
| | - Shun-Fan Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Jiangsu, China
- * E-mail:
| |
Collapse
|
75
|
Jaleel W, Li Q, Shi Q, LYU L. Preference and effect of gustatory sense on sugar-feeding of fire ants. PeerJ 2021; 9:e11943. [PMID: 34447630 PMCID: PMC8364317 DOI: 10.7717/peerj.11943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 07/19/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The red imported fire ant is one of the notorious species of ants all over the world. Sugar is one of the most important components of food and necessary for the survival of ants. Because more than 70% food of fire ants is honeydew produced by Homopteran insects such as aphids and scales. METHODOLOGY It is well known that beetles, flies, and honey bees can recognize the sugar taste through their legs and antennae, but in the case of fire ants, no records regarding gustatory sense were published. In the current study, considering the importance of sugar bait, we investigated the gustatory sense of the fire ant workers to sucrose via behavioral sequence and gustatory behavior. First, the feeding sequence (ethogram) of the fire ant workers on most preferred sugar (sucrose) solution was observed and categorized. Secondly, the gustatory behavior of treated fire ant workers (without flagellum and foreleg tarsi treated with HCL solution) was observed on the sucrose solution. In addition, using scanning electron microscopy (SEM) techniques, we identified the possible porous sensilla types on antenna flagellum and foreleg tarsi of fire ant workers. RESULTS Based on the results of feeding sequence, foreleg tarsi of workers were the main body appendages in the detection of the sucrose droplet as compared to antennae flagellum and palps. Feeding time of treated workers with HCL solution was significantly decreased on sucrose solution as compared to those workers having no flagellum. While both types of treated workers have less feeding time in comparison to normal workers. Based on the results of feeding sequence analysis and feeding time, it is indicating that the foreleg tarsi of workers play a more important role in the detection of sucrose solution as compared to antennae flagellum. Based on the SEM results, sensilla chaetic, trichoid II, and basiconic I and II have a clear pore at their tip. This study provides a substantial basis for elucidating the gustatory function of antennal and tarsal sensilla on appendages of fire ant workers to sugars and further baits improvement for the management of fire ants.
Collapse
Affiliation(s)
- Waqar Jaleel
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection/Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Qunchen Li
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection/Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Department of Entomology, College of Agriculture, South China Agriculture University, Guangzhou, Guangdong, China
| | - Qingxing Shi
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection/Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Lihua LYU
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection/Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
76
|
Yang J, Guo H, Jiang NJ, Tang R, Li GC, Huang LQ, van Loon JJA, Wang CZ. Identification of a gustatory receptor tuned to sinigrin in the cabbage butterfly Pieris rapae. PLoS Genet 2021; 17:e1009527. [PMID: 34264948 PMCID: PMC8282186 DOI: 10.1371/journal.pgen.1009527] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/01/2021] [Indexed: 11/18/2022] Open
Abstract
Glucosinolates are token stimuli in host selection of many crucifer specialist
insects, but the underlying molecular basis for host selection in these insects
remains enigmatic. Using a combination of behavioral, electrophysiological, and
molecular methods, we investigate glucosinolate receptors in the cabbage
butterfly Pieris rapae. Sinigrin, as a potent feeding
stimulant, elicited activity in larval maxillary lateral sensilla styloconica,
as well as in adult medial tarsal sensilla. Two P.
rapae gustatory receptor genes PrapGr28
and PrapGr15 were identified with high expression in female
tarsi, and the subsequent functional analyses showed that
Xenopus oocytes only expressing PrapGr28
had specific responses to sinigrin; when ectopically expressed in
Drosophila sugar sensing neurons, PrapGr28 conferred
sinigrin sensitivity to these neurons. RNA interference experiments further
showed that knockdown of PrapGr28 reduced the sensitivity of
adult medial tarsal sensilla to sinigrin. Taken together, we conclude that
PrapGr28 is a gustatory receptor tuned to sinigrin in P.
rapae, which paves the way for revealing the molecular
basis of the relationships between crucifer plants and their specialist
insects. Preference of crucifer specialist insects to glucosinolates is well known in the
field of insect-plant interactions, but its molecular basis is unclear. This
study uses an integrative approach to investigate the molecular basis of
glucosinolate detection by gustatory receptor neurons in the larval mouthparts
and adult forelegs of the cabbage butterfly Pieris rapae, and
finally reveal that PrapGr28 is a bitter receptor tuned to sinigrin. The current
work takes a significant step towards identifying gustatory receptors tuned to
glucosinolates, crucial recognition signals in crucifer host plants, providing
insights into co-evolution of herbivorous insects and their host plants.
Collapse
Affiliation(s)
- Jun Yang
- State Key Laboratory of Integrated Management of Pest Insects and
Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing,
China
- CAS Center for Excellence in Biotic Interactions, University of Chinese
Academy of Sciences, Beijing, China
| | - Hao Guo
- State Key Laboratory of Integrated Management of Pest Insects and
Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing,
China
- CAS Center for Excellence in Biotic Interactions, University of Chinese
Academy of Sciences, Beijing, China
| | - Nan-Ji Jiang
- State Key Laboratory of Integrated Management of Pest Insects and
Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing,
China
| | - Rui Tang
- State Key Laboratory of Integrated Management of Pest Insects and
Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing,
China
| | - Guo-Cheng Li
- State Key Laboratory of Integrated Management of Pest Insects and
Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing,
China
- CAS Center for Excellence in Biotic Interactions, University of Chinese
Academy of Sciences, Beijing, China
| | - Ling-Qiao Huang
- State Key Laboratory of Integrated Management of Pest Insects and
Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing,
China
| | - Joop J. A. van Loon
- Laboratory of Entomology, Plant Sciences Group, Wageningen University and
Research, Wageningen, the Netherlands
| | - Chen-Zhu Wang
- State Key Laboratory of Integrated Management of Pest Insects and
Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing,
China
- CAS Center for Excellence in Biotic Interactions, University of Chinese
Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
77
|
Sareen PF, McCurdy LY, Nitabach MN. A neuronal ensemble encoding adaptive choice during sensory conflict in Drosophila. Nat Commun 2021; 12:4131. [PMID: 34226544 PMCID: PMC8257655 DOI: 10.1038/s41467-021-24423-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 06/18/2021] [Indexed: 01/02/2023] Open
Abstract
Feeding decisions are fundamental to survival, and decision making is often disrupted in disease. Here, we show that neural activity in a small population of neurons projecting to the fan-shaped body higher-order central brain region of Drosophila represents food choice during sensory conflict. We found that food deprived flies made tradeoffs between appetitive and aversive values of food. We identified an upstream neuropeptidergic and dopaminergic network that relays internal state and other decision-relevant information to a specific subset of fan-shaped body neurons. These neurons were strongly inhibited by the taste of the rejected food choice, suggesting that they encode behavioral food choice. Our findings reveal that fan-shaped body taste responses to food choices are determined not only by taste quality, but also by previous experience (including choice outcome) and hunger state, which are integrated in the fan-shaped body to encode the decision before relay to downstream motor circuits for behavioral implementation.
Collapse
Affiliation(s)
- Preeti F Sareen
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, USA
| | - Li Yan McCurdy
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
| | - Michael N Nitabach
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, USA.
- Department of Genetics, Yale University, New Haven, CT, USA.
- Department of Neuroscience, Yale University, New Haven, CT, USA.
| |
Collapse
|
78
|
Fetter-Pruneda I, Hart T, Ulrich Y, Gal A, Oxley PR, Olivos-Cisneros L, Ebert MS, Kazmi MA, Garrison JL, Bargmann CI, Kronauer DJC. An oxytocin/vasopressin-related neuropeptide modulates social foraging behavior in the clonal raider ant. PLoS Biol 2021; 19:e3001305. [PMID: 34191794 PMCID: PMC8244912 DOI: 10.1371/journal.pbio.3001305] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 06/03/2021] [Indexed: 11/30/2022] Open
Abstract
Oxytocin/vasopressin-related neuropeptides are highly conserved and play major roles in regulating social behavior across vertebrates. However, whether their insect orthologue, inotocin, regulates the behavior of social groups remains unknown. Here, we show that in the clonal raider ant Ooceraea biroi, individuals that perform tasks outside the nest have higher levels of inotocin in their brains than individuals of the same age that remain inside the nest. We also show that older ants, which spend more time outside the nest, have higher inotocin levels than younger ants. Inotocin thus correlates with the propensity to perform tasks outside the nest. Additionally, increasing inotocin pharmacologically increases the tendency of ants to leave the nest. However, this effect is contingent on age and social context. Pharmacologically treated older ants have a higher propensity to leave the nest only in the presence of larvae, whereas younger ants seem to do so only in the presence of pupae. Our results suggest that inotocin signaling plays an important role in modulating behaviors that correlate with age, such as social foraging, possibly by modulating behavioral response thresholds to specific social cues. Inotocin signaling thereby likely contributes to behavioral individuality and division of labor in ant societies. The neuropeptides oxytocin and vasopressin modulate social behavior in vertebrates, but their function in invertebrates is not well understood. Using brain staining and pharmacological manipulations, this study shows that a related neuropeptide, inotocin, affects how ants respond to larvae.
Collapse
Affiliation(s)
- Ingrid Fetter-Pruneda
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, New York, United States of America
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- * E-mail: (IFP); (DJCK)
| | - Taylor Hart
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, New York, United States of America
| | - Yuko Ulrich
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, New York, United States of America
- Institute for Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Asaf Gal
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, New York, United States of America
| | - Peter R. Oxley
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, New York, United States of America
- Samuel J. Wood Library, Weill Cornell Medicine, New York, New York, United States of America
| | - Leonora Olivos-Cisneros
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, New York, United States of America
| | - Margaret S. Ebert
- Lulu and Anthony Wang Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, New York, United States of America
| | - Manija A. Kazmi
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York, United States of America
| | - Jennifer L. Garrison
- Lulu and Anthony Wang Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, New York, United States of America
- Buck Institute for Research on Aging, Novato, California, United States of America
| | - Cornelia I. Bargmann
- Lulu and Anthony Wang Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, New York, United States of America
- Chan Zuckerberg Initiative, Redwood City, California, United States of America
| | - Daniel J. C. Kronauer
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, New York, United States of America
- * E-mail: (IFP); (DJCK)
| |
Collapse
|
79
|
Mi T, Mack JO, Lee CM, Zhang YV. Molecular and cellular basis of acid taste sensation in Drosophila. Nat Commun 2021; 12:3730. [PMID: 34140480 PMCID: PMC8211824 DOI: 10.1038/s41467-021-23490-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 05/03/2021] [Indexed: 11/28/2022] Open
Abstract
Acid taste, evoked mainly by protons (H+), is a core taste modality for many organisms. The hedonic valence of acid taste is bidirectional: animals prefer slightly but avoid highly acidic foods. However, how animals discriminate low from high acidity remains poorly understood. To explore the taste perception of acid, we use the fruit fly as a model organism. We find that flies employ two competing taste sensory pathways to detect low and high acidity, and the relative degree of activation of each determines either attractive or aversive responses. Moreover, we establish one member of the fly Otopetrin family, Otopetrin-like a (OtopLa), as a proton channel dedicated to the gustatory detection of acid. OtopLa defines a unique subset of gustatory receptor neurons and is selectively required for attractive rather than aversive taste responses. Loss of otopla causes flies to reject normally attractive low-acid foods. Therefore, the identification of OtopLa as a low-acid sensor firmly supports our competition model of acid taste sensation. Altogether, we have discovered a binary acid-sensing mechanism that may be evolutionarily conserved between insects and mammals. Many animals, including mammals and insects, like slightly acidic yet dislike highly acidic foods, but how animals discriminate low from high acidity is unclear. Here the authors demonstrate that the fruit fly uses an evolutionarily conserved taste receptor to distinguish low from high concentrations of acid.
Collapse
Affiliation(s)
- Tingwei Mi
- Monell Chemical Senses Center, Philadelphia, PA, USA
| | - John O Mack
- Monell Chemical Senses Center, Philadelphia, PA, USA
| | - Christopher M Lee
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Yali V Zhang
- Monell Chemical Senses Center, Philadelphia, PA, USA. .,Department of Physiology, The Diabetes Research Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
80
|
Lau CKS, Jelen M, Gordon MD. A closed-loop optogenetic screen for neurons controlling feeding in Drosophila. G3-GENES GENOMES GENETICS 2021; 11:6170659. [PMID: 33714999 PMCID: PMC8104954 DOI: 10.1093/g3journal/jkab073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 03/03/2021] [Indexed: 11/14/2022]
Abstract
Feeding is an essential part of animal life that is greatly impacted by the sense of taste. Although the characterization of taste-detection at the periphery has been extensive, higher order taste and feeding circuits are still being elucidated. Here, we use an automated closed-loop optogenetic activation screen to detect novel taste and feeding neurons in Drosophila melanogaster. Out of 122 Janelia FlyLight Project GAL4 lines preselected based on expression pattern, we identify six lines that acutely promote feeding and 35 lines that inhibit it. As proof of principle, we follow up on R70C07-GAL4, which labels neurons that strongly inhibit feeding. Using split-GAL4 lines to isolate subsets of the R70C07-GAL4 population, we find both appetitive and aversive neurons. Furthermore, we show that R70C07-GAL4 labels putative second-order taste interneurons that contact both sweet and bitter sensory neurons. These results serve as a resource for further functional dissection of fly feeding circuits.
Collapse
Affiliation(s)
- Celia K S Lau
- Department of Zoology and Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Meghan Jelen
- Department of Zoology and Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Michael D Gordon
- Department of Zoology and Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
81
|
Brown EB, Shah KD, Palermo J, Dey M, Dahanukar A, Keene AC. Ir56d-dependent fatty acid responses in Drosophila uncover taste discrimination between different classes of fatty acids. eLife 2021; 10:67878. [PMID: 33949306 PMCID: PMC8169106 DOI: 10.7554/elife.67878] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/04/2021] [Indexed: 11/24/2022] Open
Abstract
Chemosensory systems are critical for evaluating the caloric value and potential toxicity of food. While animals can discriminate between thousands of odors, much less is known about the discriminative capabilities of taste systems. Fats and sugars represent calorically potent and attractive food sources that contribute to hedonic feeding. Despite the differences in nutritional value between fats and sugars, the ability of the taste system to discriminate between different rewarding tastants is thought to be limited. In Drosophila, taste neurons expressing the ionotropic receptor 56d (IR56d) are required for reflexive behavioral responses to the medium-chain fatty acid, hexanoic acid. Here, we tested whether flies can discriminate between different classes of fatty acids using an aversive memory assay. Our results indicate that flies are able to discriminate medium-chain fatty acids from both short- and long-chain fatty acids, but not from other medium-chain fatty acids. While IR56d neurons are broadly responsive to short-, medium-, and long-chain fatty acids, genetic deletion of IR56d selectively disrupts response to medium-chain fatty acids. Further, IR56d+ GR64f+ neurons are necessary for proboscis extension response (PER) to medium-chain fatty acids, but both IR56d and GR64f neurons are dispensable for PER to short- and long-chain fatty acids, indicating the involvement of one or more other classes of neurons. Together, these findings reveal that IR56d is selectively required for medium-chain fatty acid taste, and discrimination of fatty acids occurs through differential receptor activation in shared populations of neurons. Our study uncovers a capacity for the taste system to encode tastant identity within a taste category.
Collapse
Affiliation(s)
- Elizabeth B Brown
- Department of Biological Sciences, Florida Atlantic University, Jupiter, United States
| | - Kreesha D Shah
- Department of Biological Sciences, Florida Atlantic University, Jupiter, United States.,Wilkes Honors College, Florida Atlantic University, Jupiter, United States
| | - Justin Palermo
- Department of Biological Sciences, Florida Atlantic University, Jupiter, United States
| | - Manali Dey
- Interdepartmental Neuroscience Program, University of California, Riverside, Riverside, United States
| | - Anupama Dahanukar
- Interdepartmental Neuroscience Program, University of California, Riverside, Riverside, United States.,Department of Molecular, Cell & Systems Biology, University of California, Riverside, Riverside, United States
| | - Alex C Keene
- Department of Biological Sciences, Florida Atlantic University, Jupiter, United States
| |
Collapse
|
82
|
Bestea L, Réjaud A, Sandoz JC, Carcaud J, Giurfa M, de Brito Sanchez MG. Peripheral taste detection in honey bees: What do taste receptors respond to? Eur J Neurosci 2021; 54:4417-4444. [PMID: 33934411 DOI: 10.1111/ejn.15265] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 11/30/2022]
Abstract
Understanding the neural principles governing taste perception in species that bear economic importance or serve as research models for other sensory modalities constitutes a strategic goal. Such is the case of the honey bee (Apis mellifera), which is environmentally and socioeconomically important, given its crucial role as pollinator agent in agricultural landscapes and which has served as a traditional model for visual and olfactory neurosciences and for research on communication, navigation, and learning and memory. Here we review the current knowledge on honey bee gustatory receptors to provide an integrative view of peripheral taste detection in this insect, highlighting specificities and commonalities with other insect species. We describe behavioral and electrophysiological responses to several tastant categories and relate these responses, whenever possible, to known molecular receptor mechanisms. Overall, we adopted an evolutionary and comparative perspective to understand the neural principles of honey bee taste and define key questions that should be answered in future gustatory research centered on this insect.
Collapse
Affiliation(s)
- Louise Bestea
- Research Centre on Animal Cognition, Center for Integrative Biology, CNRS (UMR 5169), University of Toulouse, Toulouse, France
| | - Alexandre Réjaud
- Laboratoire Evolution et Diversité Biologique, CNRS, IRD (UMR 5174), University of Toulouse, Toulouse, France
| | - Jean-Christophe Sandoz
- Evolution, Genomes, Behavior and Ecology, CNRS, IRD (UMR 9191, University Paris Saclay, Gif-sur-Yvette, France
| | - Julie Carcaud
- Evolution, Genomes, Behavior and Ecology, CNRS, IRD (UMR 9191, University Paris Saclay, Gif-sur-Yvette, France
| | - Martin Giurfa
- Research Centre on Animal Cognition, Center for Integrative Biology, CNRS (UMR 5169), University of Toulouse, Toulouse, France.,College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China.,Institut Universitaire de France (IUF), Paris, France
| | - Maria Gabriela de Brito Sanchez
- Research Centre on Animal Cognition, Center for Integrative Biology, CNRS (UMR 5169), University of Toulouse, Toulouse, France
| |
Collapse
|
83
|
Piñero JC, Stoffolano JG, Chiu K, Colletti K, Dixon Z, Salemme V, Crnjar R, Sollai G. Effects of chitosan and erythritol on labellar taste neuron activity, proboscis extension reflex, daily food intake, and mortality of male and female spotted-winged drosophila, Drosophila suzukii. JOURNAL OF INSECT PHYSIOLOGY 2021; 131:104240. [PMID: 33845094 DOI: 10.1016/j.jinsphys.2021.104240] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
In recent years, there has been interest in reduced-risk materials with insecticidal properties for the invasive pest spotted-wing drosophila, Drosophila suzukii. Here, we compared the peripheral sensitivity (via the tip-recording technique, used to monitor the neural activity of gustatory receptor neurons [GRNs]) and palatability (via the Proboscis Extension Reflex [PER]) of chitosan, a polysaccharide derived from chitin, with that of erythritol, a sugar alcohol, to male and female D. suzukii. Because in some insect species it has previously been shown that chitosan has some insecticidal properties, then treatment effects on mortality rates of male and female D. suzukii were quantified. Physiological recordings from the l-type labellar sensilla showed that erythritol evoked responses from one GRN, while chitosan elicited spiked activity from a second one. The first PER bioassay revealed that the level of response to erythritol increased significantly for males and females as the concentrations increased, and the effect of fly sex was non-significant. The second PER bioassay compared the male and female response to chitosan and erythritol each at 0.125, 0.25, 0.5, 1, and 2% concentrations. The overall female PER to erythritol was significantly greater than that exhibited by males, and no differences were noted between sexes when chitosan was evaluated. These results indicate that chitosan alone can elicit PER responses in adult D. suzukii. In the third experiment, chitosan was toxic to D. suzukii. When combined with sucrose (2%), chitosan elicited high levels (80-100%) of mortality of adult D. suzukii within 3 days, particularly in males. The presence of erythritol did not seem to increase the toxic effect of chitosan.
Collapse
Affiliation(s)
- Jaime C Piñero
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA.
| | - John G Stoffolano
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| | - Katherine Chiu
- Biology Department, University of Massachusetts, Amherst, MA 01003, USA
| | - Kay Colletti
- Environmental Science and Policy, Smith College, Northampton, MA 01063, USA
| | - Zoe Dixon
- Biology Department, University of Massachusetts, Amherst, MA 01003, USA
| | - Victoria Salemme
- Animal Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Roberto Crnjar
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, CA, Italy
| | - Giorgia Sollai
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, CA, Italy
| |
Collapse
|
84
|
Dweck HK, Talross GJ, Wang W, Carlson JR. Evolutionary shifts in taste coding in the fruit pest Drosophila suzukii. eLife 2021; 10:64317. [PMID: 33616529 PMCID: PMC7899650 DOI: 10.7554/elife.64317] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/23/2021] [Indexed: 01/17/2023] Open
Abstract
Although most Drosophila species lay eggs in overripe fruit, the agricultural pest Drosophila suzukii lays eggs in ripe fruit. We found that changes in bitter taste perception have accompanied this adaptation. We show that bitter-sensing mutants of Drosophila melanogaster undergo a shift in egg laying preference toward ripe fruit. D. suzukii has lost 20% of the bitter-sensing sensilla from the labellum, the major taste organ of the head. Physiological responses to various bitter compounds are lost. Responses to strawberry purées are lost from two classes of taste sensilla. Egg laying is not deterred by bitter compounds that deter other species. Profiling of labellar transcriptomes reveals reduced expression of several bitter Gr genes (gustatory receptors). These findings support a model in which bitter compounds in early ripening stages deter egg laying in most Drosophila species, but a loss of bitter response contributes to the adaptation of D. suzukii to ripe fruit. A new agricultural pest has recently emerged in the United States and Northern Europe. The invasive species is a type of fruit fly that normally lives in Southeast Asia called Drosophila suzukii (also known as the spotted wing Drosophila). This fly poses a threat to fruit crops – including strawberries, blueberries, cherries, peaches and grapes – because, while other fruit flies lay eggs in overripe fruit, D. suzukii lays eggs in ripe fruit, leading to agricultural losses. This shift in where fruit flies prefer to lay their eggs is related to changes in the senses of smell and touch, and taste could also play a role. Insects have evolved mechanisms that dissuade them from eating or laying eggs in plants with high levels of toxins, which taste bitter. If D. suzukii is less sensitive to bitter tastes than other flies, this could help explain why it lays eggs in just-ripe fruit, since the levels of certain bitter compounds are higher in the early stages of ripening than later on. To figure out if this is the case, Dweck et al. studied different species of fruit fly. Compared to Drosophila melanogaster (a fruit fly common in America and Europe that is regularly used in scientific studies), D. suzukii had fewer bitter taste receptor neurons on the major taste organ of the fly head. These receptor neurons were also less responsive to a variety of bitter compounds. Next, Dweck et al. tested whether D. melanogaster and D. suzukii showed different preferences for where to lay their eggs by offering them strawberry purées made from fruit at different ripening stages. In this experiment, D. suzukii preferred to lay its eggs on purées made from unripe or just-ripe strawberries, while D. melanogaster showed a preference for fermented (overripe) purée. Furthermore, when D. melanogaster flies were genetically modified so that they became less sensitive to bitter taste, they preferred to lay their eggs in ripe (rather than overripe) fruit, similar to D. suzukii. These results suggest that taste has a major role in the egg laying preferences of D. suzukii. Further research is needed to determine which bitter compounds influence egg-laying decisions in each species of fruit fly, and what receptors respond to these compounds. However, Dweck et al.’s results lay the groundwork for new approaches to reducing D. suzukii’s impact on agriculture.
Collapse
Affiliation(s)
- Hany Km Dweck
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| | - Gaëlle Js Talross
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| | - Wanyue Wang
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| | - John R Carlson
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| |
Collapse
|
85
|
Wang X, Verschut TA, Billeter JC, Maan ME. Seven Questions on the Chemical Ecology and Neurogenetics of Resource-Mediated Speciation. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.640486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Adaptation to different environments can result in reproductive isolation between populations and the formation of new species. Food resources are among the most important environmental factors shaping local adaptation. The chemosensory system, the most ubiquitous sensory channel in the animal kingdom, not only detects food resources and their chemical composition, but also mediates sexual communication and reproductive isolation in many taxa. Chemosensory divergence may thus play a crucial role in resource-mediated adaptation and speciation. Understanding how the chemosensory system can facilitate resource-mediated ecological speciation requires integrating mechanistic studies of the chemosensory system with ecological studies, to link the genetics and physiology of chemosensory properties to divergent adaptation. In this review, we use examples of insect research to present seven key questions that can be used to understand how the chemosensory system can facilitate resource-mediated ecological speciation in consumer populations.
Collapse
|
86
|
Abstract
The integration of two or more distinct sensory cues can help animals make more informed decisions about potential food sources, but little is known about how feeding-related multimodal sensory integration happens at the cellular and molecular levels. Here, we show that multimodal sensory integration contributes to a stereotyped feeding behavior in the model organism Drosophila melanogaster Simultaneous olfactory and mechanosensory inputs significantly influence a taste-evoked feeding behavior called the proboscis extension reflex (PER). Olfactory and mechanical information are mediated by antennal Or35a neurons and leg hair plate mechanosensory neurons, respectively. We show that the controlled delivery of three different sensory cues can produce a supra-additive PER via the concurrent stimulation of olfactory, taste, and mechanosensory inputs. We suggest that the fruit fly is a versatile model system to study multisensory integration related to feeding, which also likely exists in vertebrates.
Collapse
|
87
|
May CE, Dus M. Confection Confusion: Interplay Between Diet, Taste, and Nutrition. Trends Endocrinol Metab 2021; 32:95-105. [PMID: 33384209 PMCID: PMC8021035 DOI: 10.1016/j.tem.2020.11.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/12/2020] [Accepted: 11/24/2020] [Indexed: 12/18/2022]
Abstract
Although genetics shapes our sense of taste to prefer some foods over others, taste sensation is plastic and changes with age, disease state, and nutrition. We have known for decades that diet composition can influence the way we perceive foods, but many questions remain unanswered, particularly regarding the effects of chemosensory plasticity on feeding behavior. Here, we review recent evidence on the effects of high-nutrient diets, especially high dietary sugar, on sweet taste in vinegar flies, rodents, and humans, and discuss open questions about molecular and neural mechanisms and research priorities. We also consider ways in which diet-dependent chemosensory plasticity may influence food intake and play a role in the etiology of obesity and metabolic disease. Understanding the interplay between nutrition, taste sensation, and feeding will help us define the role of the food environment in mediating chronic disease and design better public health strategies to combat it.
Collapse
Affiliation(s)
- Christina E May
- Neuroscience Graduate Program, The University of Michigan, Ann Arbor, MI, USA; Department of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Monica Dus
- Neuroscience Graduate Program, The University of Michigan, Ann Arbor, MI, USA; Department of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
88
|
Shao X, Lai D, Xiao W, Yang W, Yan Y, Kuang S. The botanical eurycomanone is a potent growth regulator of the diamondback moth. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111647. [PMID: 33396167 DOI: 10.1016/j.ecoenv.2020.111647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/30/2020] [Accepted: 11/09/2020] [Indexed: 06/12/2023]
Abstract
Eurycomanone is a quassinoid compound that is derived from Eurycoma longifolia, and it is often used as an indicator to evaluate the active ingredients of Eurycoma longifolia. However, Eurycomanone has rarely been reported to have biological activity toward pests. In this study, we evaluated the antifeedant activity of eurycomanone against the diamondback moth(Plutella xylostella), with a non-selective AFC50(the concentration that corresponds to 50% antifeedant action) value and selective AFC50 of 17.5 mg/L and 14.2 mg/L, respectively, which were 2.1-fold (36.9 mg/L) and 2-fold (28.5 mg/L) lower than that of azadirachtin, respectively. In addition, eurycomanone was used to treat the roots of Brassica chinensis L. at a concentration of 100 µg/g for 72 h. The antifeedant index was found to reach 93% by tracking the leaves. After feeding with 20 µg/g eurycomanone, no pupae or eclosion were observed. To explore this mechanism, we used scanning electron microscopy to discover that eurycomanone could prevent the development of taste receptors on the maxillary palp of diamondback moth larvae. Additional electrophysiological measurements showed that eurycomanone exhibited excitatory action to the central taste neurons of diamondback moth and significantly inhibited the GABAA receptor current. Eurycomanone exhibited significant activity as an antifeedant, inhibited growth and excelled at systemic absorption.
Collapse
Affiliation(s)
- Xuehua Shao
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (MOA), Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Duo Lai
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (MOA), Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Weiqiang Xiao
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (MOA), Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Weiqun Yang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou, Guangdong 510632, China
| | - Ying Yan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China; The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou 510370, China.
| | - Shizi Kuang
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (MOA), Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| |
Collapse
|
89
|
Siju KP, De Backer JF, Grunwald Kadow IC. Dopamine modulation of sensory processing and adaptive behavior in flies. Cell Tissue Res 2021; 383:207-225. [PMID: 33515291 PMCID: PMC7873103 DOI: 10.1007/s00441-020-03371-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/26/2020] [Indexed: 12/31/2022]
Abstract
Behavioral flexibility for appropriate action selection is an advantage when animals are faced with decisions that will determine their survival or death. In order to arrive at the right decision, animals evaluate information from their external environment, internal state, and past experiences. How these different signals are integrated and modulated in the brain, and how context- and state-dependent behavioral decisions are controlled are poorly understood questions. Studying the molecules that help convey and integrate such information in neural circuits is an important way to approach these questions. Many years of work in different model organisms have shown that dopamine is a critical neuromodulator for (reward based) associative learning. However, recent findings in vertebrates and invertebrates have demonstrated the complexity and heterogeneity of dopaminergic neuron populations and their functional implications in many adaptive behaviors important for survival. For example, dopaminergic neurons can integrate external sensory information, internal and behavioral states, and learned experience in the decision making circuitry. Several recent advances in methodologies and the availability of a synaptic level connectome of the whole-brain circuitry of Drosophila melanogaster make the fly an attractive system to study the roles of dopamine in decision making and state-dependent behavior. In particular, a learning and memory center-the mushroom body-is richly innervated by dopaminergic neurons that enable it to integrate multi-modal information according to state and context, and to modulate decision-making and behavior.
Collapse
Affiliation(s)
- K. P. Siju
- School of Life Sciences, Department of Molecular Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Jean-Francois De Backer
- School of Life Sciences, Department of Molecular Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Ilona C. Grunwald Kadow
- School of Life Sciences, Department of Molecular Life Sciences, Technical University of Munich, 85354 Freising, Germany
| |
Collapse
|
90
|
Jové V, Gong Z, Hol FJH, Zhao Z, Sorrells TR, Carroll TS, Prakash M, McBride CS, Vosshall LB. Sensory Discrimination of Blood and Floral Nectar by Aedes aegypti Mosquitoes. Neuron 2020; 108:1163-1180.e12. [PMID: 33049200 PMCID: PMC9831381 DOI: 10.1016/j.neuron.2020.09.019] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 07/13/2020] [Accepted: 09/11/2020] [Indexed: 02/06/2023]
Abstract
Blood-feeding mosquitoes survive by feeding on nectar for metabolic energy but require a blood meal to develop eggs. Aedes aegypti females must accurately discriminate blood and nectar because each meal promotes mutually exclusive feeding programs with distinct sensory appendages, meal sizes, digestive tract targets, and metabolic fates. We investigated the syringe-like blood-feeding appendage, the stylet, and discovered that sexually dimorphic stylet neurons taste blood. Using pan-neuronal calcium imaging, we found that blood is detected by four functionally distinct stylet neuron classes, each tuned to specific blood components associated with diverse taste qualities. Stylet neurons are insensitive to nectar-specific sugars and respond to glucose only in the presence of additional blood components. The distinction between blood and nectar is therefore encoded in specialized neurons at the very first level of sensory detection in mosquitoes. This innate ability to recognize blood is the basis of vector-borne disease transmission to millions of people worldwide.
Collapse
Affiliation(s)
- Veronica Jové
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Zhongyan Gong
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Felix J H Hol
- Insect-Virus Interactions Unit, Department of Virology, Institut Pasteur, 75724 Paris, France; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Zhilei Zhao
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA; Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Trevor R Sorrells
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA; Kavli Neural Systems Institute, New York, NY 10065, USA
| | - Thomas S Carroll
- Bioinformatics Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Manu Prakash
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford, CA 94305, USA
| | - Carolyn S McBride
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA; Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Leslie B Vosshall
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA; Kavli Neural Systems Institute, New York, NY 10065, USA; Howard Hughes Medical Institute, New York, NY 10065, USA.
| |
Collapse
|
91
|
Benton R, Dessimoz C, Moi D. A putative origin of the insect chemosensory receptor superfamily in the last common eukaryotic ancestor. eLife 2020; 9:62507. [PMID: 33274716 PMCID: PMC7746228 DOI: 10.7554/elife.62507] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 12/03/2020] [Indexed: 01/26/2023] Open
Abstract
The insect chemosensory repertoires of Odorant Receptors (ORs) and Gustatory Receptors (GRs) together represent one of the largest families of ligand-gated ion channels. Previous analyses have identified homologous 'Gustatory Receptor-Like' (GRL) proteins across Animalia, but the evolutionary origin of this novel class of ion channels is unknown. We describe a survey of unicellular eukaryotic genomes for GRLs, identifying several candidates in fungi, protists and algae that contain many structural features characteristic of animal GRLs. The existence of these proteins in unicellular eukaryotes, together with ab initio protein structure predictions, provide evidence for homology between GRLs and a family of uncharacterized plant proteins containing the DUF3537 domain. Together, our analyses suggest an origin of this protein superfamily in the last common eukaryotic ancestor.
Collapse
Affiliation(s)
- Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Christophe Dessimoz
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.,Department of Computational Biology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland.,Department of Genetics, Evolution and Environment, University College London, London, United Kingdom.,Department of Computer Science, University College London, London, United Kingdom
| | - David Moi
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.,Department of Computational Biology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
92
|
Li F, Liu ZH, Tian X, Liu T, Wang HL, Xiao G. Black soybean seed coat extract protects Drosophila melanogaster against Pb toxicity by promoting iron absorption. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
93
|
Vaziri A, Khabiri M, Genaw BT, May CE, Freddolino L, Dus M. Persistent epigenetic reprogramming of sweet taste by diet. SCIENCE ADVANCES 2020; 6:eabc8492. [PMID: 33177090 PMCID: PMC7673743 DOI: 10.1126/sciadv.abc8492] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/23/2020] [Indexed: 05/25/2023]
Abstract
Diets rich in sugar, salt, and fat alter taste perception and food preference, contributing to obesity and metabolic disorders, but the molecular mechanisms through which this occurs are unknown. Here, we show that in response to a high sugar diet, the epigenetic regulator Polycomb Repressive Complex 2.1 (PRC2.1) persistently reprograms the sensory neurons of Drosophila melanogaster flies to reduce sweet sensation and promote obesity. In animals fed high sugar, the binding of PRC2.1 to the chromatin of the sweet gustatory neurons is redistributed to repress a developmental transcriptional network that modulates the responsiveness of these cells to sweet stimuli, reducing sweet sensation. Half of these transcriptional changes persist despite returning the animals to a control diet, causing a permanent decrease in sweet taste. Our results uncover a new epigenetic mechanism that, in response to the dietary environment, regulates neural plasticity and feeding behavior to promote obesity.
Collapse
Affiliation(s)
- Anoumid Vaziri
- The Molecular, Cellular and Developmental Biology Graduate Program, The University of Michigan, Ann Arbor, MI 49109, USA
- Department of Molecular, Cellular and Developmental Biology, College of Literature, Science, and the Arts, The University of Michigan, Ann Arbor, MI 49109, USA
| | - Morteza Khabiri
- Department of Biological Chemistry, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Brendan T Genaw
- Program in Biology, College of Literature, Science, and the Arts, The University of Michigan, Ann Arbor, MI, 48109, USA
| | - Christina E May
- Department of Molecular, Cellular and Developmental Biology, College of Literature, Science, and the Arts, The University of Michigan, Ann Arbor, MI 49109, USA
- The Neuroscience Graduate Program, The University of Michigan, Ann Arbor, MI 49109, USA
| | - Lydia Freddolino
- Department of Biological Chemistry, The University of Michigan, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Monica Dus
- The Molecular, Cellular and Developmental Biology Graduate Program, The University of Michigan, Ann Arbor, MI 49109, USA.
- Department of Molecular, Cellular and Developmental Biology, College of Literature, Science, and the Arts, The University of Michigan, Ann Arbor, MI 49109, USA
- Program in Biology, College of Literature, Science, and the Arts, The University of Michigan, Ann Arbor, MI, 48109, USA
- The Neuroscience Graduate Program, The University of Michigan, Ann Arbor, MI 49109, USA
| |
Collapse
|
94
|
Jayapalan JJ, Subramanian P, Kani A, Hiji J, Najjar SG, Abdul-Rahman PS, Hashim OH. Hesperidin modulates the rhythmic proteomic profiling in Drosophila melanogaster under oxidative stress. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 105:e21738. [PMID: 32924199 DOI: 10.1002/arch.21738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/21/2020] [Accepted: 08/21/2020] [Indexed: 06/11/2023]
Abstract
The circadian clock regulates vital aspects of physiology including protein synthesis and oxidative stress response. In this investigation, we performed a proteome-wide scrutiny of rhythmic protein accrual in Drosophila melanogaster on exposure to rotenone, rotenone + hesperidin and hesperidin in D. melanogaster. Total protein from fly samples collected at 6 h intervals over the 24 h period was subjected to two-dimensional gel electrophoresis and mass spectrometry. Bioinformatics tool, Protein ANalysis THrough Evolutionary Relationships classification system was used to the determine the biological processes of the proteins of altered abundance. Conspicuous variations in the proteome (151 proteins) of the flies exposed to oxidative stress (by rotenone treatment) and after alleviating oxidative stress (by hesperidin treatment) were observed during the 24 h cycle. Significantly altered levels of abundance of a wide variety of proteins under oxidative stress (rotenone treatment) and under alleviation of oxidative stress (rotenone + hesperidin treatment) and hesperidin (alone) treatment were observed. These proteins are involved in metabolism, muscle activity, heat shock response, redox homeostasis, protein synthesis/folding/degradation, development, ion-channel/cellular transport, and gustatory and olfactory function of the flies. Our data indicates that numerous cellular processes are involved in the temporal regulation of proteins and widespread modulations happen under rotenone treatment and, action of hesperidin could also be seen on these categories of proteins.
Collapse
Affiliation(s)
- Jaime J Jayapalan
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- University of Malaya Centre for Proteomics Research (UMCPR), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Perumal Subramanian
- Department of Biochemistry and Biotechnology, Annamalai University, Chidambaram, Tamil Nadu, India
| | - Akshaya Kani
- Department of Biochemistry and Biotechnology, Annamalai University, Chidambaram, Tamil Nadu, India
| | - Jumriah Hiji
- University of Malaya Centre for Proteomics Research (UMCPR), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Sara G Najjar
- University of Malaya Centre for Proteomics Research (UMCPR), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Puteri S Abdul-Rahman
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- University of Malaya Centre for Proteomics Research (UMCPR), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Onn H Hashim
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- University of Malaya Centre for Proteomics Research (UMCPR), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
95
|
Chen Z, Zhang Q, Shan J, Lu Y, Liu Q. Detection of Bitter Taste Molecules Based on Odorant-Binding Protein-Modified Screen-Printed Electrodes. ACS OMEGA 2020; 5:27536-27545. [PMID: 33134717 PMCID: PMC7594143 DOI: 10.1021/acsomega.0c04089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 09/29/2020] [Indexed: 05/08/2023]
Abstract
Bitter taste substances commonly represent a signal of toxicity. Fast and reliable detection of bitter molecules improves the safety of foods and beverages. Here, we report a biosensor using an easily accessible and cost-effective odorant-binding protein (OBP) of Drosophila melanogaster as a biosensitive material for the detection of bitter molecules. Based on the theoretical evaluation of the protein-ligand interaction, binding energies between the OBP and bitter molecules were calculated via molecular docking for the prediction and verification of binding affinities. Through one-step reduction, gold nanoparticles (AuNPs) and reduced graphene oxide (rGO) were deposited on the screen-printed electrodes for improving the electrochemical properties of electrodes. After the electrodes were immobilized with OBPs via layer-by-layer self-assembly, typical bitter molecules, such as denatonium, quinine, and berberine, were investigated through electrochemical impedance spectroscopy. The bitter molecules showed significant binding properties to the OBP with linear response concentrations ranging from 10-9 to 10-6 mg/mL. Therefore, the OBP-based biosensor offered powerful analytic techniques for the detection of bitter molecules and showed promising applications in the field of bitter taste evaluation.
Collapse
Affiliation(s)
- Zetao Chen
- Biosensor
National Special Laboratory, Key Laboratory for Biomedical Engineering
of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Qingqing Zhang
- Biosensor
National Special Laboratory, Key Laboratory for Biomedical Engineering
of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Jianzhen Shan
- The
First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, P. R. China
| | - Yanli Lu
- Biosensor
National Special Laboratory, Key Laboratory for Biomedical Engineering
of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- Collaborative
Innovation Center of TCM Health Management, Fujian University of Traditional Chinese Medicine, Fuzhou 350108, P. R. China
- . Tel/Fax: +86 571 87953796
| | - Qingjun Liu
- Biosensor
National Special Laboratory, Key Laboratory for Biomedical Engineering
of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- Collaborative
Innovation Center of TCM Health Management, Fujian University of Traditional Chinese Medicine, Fuzhou 350108, P. R. China
| |
Collapse
|
96
|
Gutierrez R, Fonseca E, Simon SA. The neuroscience of sugars in taste, gut-reward, feeding circuits, and obesity. Cell Mol Life Sci 2020; 77:3469-3502. [PMID: 32006052 PMCID: PMC11105013 DOI: 10.1007/s00018-020-03458-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/06/2020] [Accepted: 01/10/2020] [Indexed: 12/19/2022]
Abstract
Throughout the animal kingdom sucrose is one of the most palatable and preferred tastants. From an evolutionary perspective, this is not surprising as it is a primary source of energy. However, its overconsumption can result in obesity and an associated cornucopia of maladies, including type 2 diabetes and cardiovascular disease. Here we describe three physiological levels of processing sucrose that are involved in the decision to ingest it: the tongue, gut, and brain. The first section describes the peripheral cellular and molecular mechanisms of sweet taste identification that project to higher brain centers. We argue that stimulation of the tongue with sucrose triggers the formation of three distinct pathways that convey sensory attributes about its quality, palatability, and intensity that results in a perception of sweet taste. We also discuss the coding of sucrose throughout the gustatory pathway. The second section reviews how sucrose, and other palatable foods, interact with the gut-brain axis either through the hepatoportal system and/or vagal pathways in a manner that encodes both the rewarding and of nutritional value of foods. The third section reviews the homeostatic, hedonic, and aversive brain circuits involved in the control of food intake. Finally, we discuss evidence that overconsumption of sugars (or high fat diets) blunts taste perception, the post-ingestive nutritional reward value, and the circuits that control feeding in a manner that can lead to the development of obesity.
Collapse
Affiliation(s)
- Ranier Gutierrez
- Laboratory of Neurobiology of Appetite, Department of Pharmacology, CINVESTAV, 07360, Mexico City, Mexico.
| | - Esmeralda Fonseca
- Laboratory of Neurobiology of Appetite, Department of Pharmacology, CINVESTAV, 07360, Mexico City, Mexico
| | - Sidney A Simon
- Department of Neurobiology, Duke University Medical Center, Durham, NC, 27710, USA
| |
Collapse
|
97
|
Li L, Gao X, Gui H, Lan M, Zhu J, Xie Y, Zhan Y, Wang Z, Li Z, Ye M, Wu G. Identification and preliminary characterization of chemosensory-related proteins in the gall fly, Procecidochares utilis by transcriptomic analysis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 36:100724. [PMID: 32836214 DOI: 10.1016/j.cbd.2020.100724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/24/2020] [Accepted: 08/05/2020] [Indexed: 01/20/2023]
Abstract
Chemoreception is critical for insect behaviors such as foraging, host searching and oviposition. The process of chemoreception is mediated by a series of proteins, including odorant-binding proteins (OBPs), gustatory receptors (GRs), odorant receptors (ORs), ionotropic receptors (IRs), chemosensory proteins (CSPs) and sensory neuron membrane proteins (SNMPs). The tephritid stem gall fly, Procecidochares utilis Stone, is a type of egg parasitic insect, which is an effective biological control agent for the invasive weed Ageratina adenophora in many countries. However, the study of molecular components related to the olfactory system of P. utilis has not been investigated. Here, we conducted the developmental transcriptome (egg, first-third instar larva, pupa, female and male adult) of P. utilis using next-generation sequencing technology and identified a total of 133 chemosensory genes, including 40 OBPs, 29 GRs, 24 ORs, 28 IRs, 6 CSPs, and 6 SNMPs. The sequences of these candidate chemosensory genes were confirmed by BLAST, and phylogenetic analysis was performed. Quantitative real-time PCR (qRT-PCR) confirmed that the expression levels of the candidate OBPs varied at the different developmental stages of P. utilis with most OBPs expressed mainly in the pupae, female and male adults but scarcely in eggs and larvae, which was consistent with the differentially expressed genes (DEGs) analysis using the fragments per kilobase per million fragments (FPKM) value. Our results provide a significant contribution towards the knowledge of the set of chemosensory proteins and help advance the use of P. utilis as biological control agents.
Collapse
Affiliation(s)
- Lifang Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Xi Gao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Huamin Gui
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Mingxian Lan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Jiaying Zhu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Yonghui Xie
- Kunming Branch of Yunnan Provincial Tobacco Company, Kunming 650021, China
| | - Youguo Zhan
- Kunming Branch of Yunnan Provincial Tobacco Company, Kunming 650021, China
| | - Zhijiang Wang
- Kunming Branch of Yunnan Provincial Tobacco Company, Kunming 650021, China
| | - Zhengyue Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Min Ye
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.
| | - Guoxing Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
98
|
Augustine V, Lee S, Oka Y. Neural Control and Modulation of Thirst, Sodium Appetite, and Hunger. Cell 2020; 180:25-32. [PMID: 31923398 DOI: 10.1016/j.cell.2019.11.040] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/13/2019] [Accepted: 11/27/2019] [Indexed: 01/01/2023]
Abstract
The function of central appetite neurons is instructing animals to ingest specific nutrient factors that the body needs. Emerging evidence suggests that individual appetite circuits for major nutrients-water, sodium, and food-operate on unique driving and quenching mechanisms. This review focuses on two aspects of appetite regulation. First, we describe the temporal relationship between appetite neuron activity and consumption behaviors. Second, we summarize ingestion-related satiation signals that differentially quench individual appetite circuits. We further discuss how distinct appetite and satiation systems for each factor may contribute to nutrient homeostasis from the functional and evolutional perspectives.
Collapse
Affiliation(s)
- Vineet Augustine
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA; Department of Neuroscience, The Scripps Research Institute, La Jolla, California, USA
| | - Sangjun Lee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Yuki Oka
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA.
| |
Collapse
|
99
|
High Dietary Sugar Reshapes Sweet Taste to Promote Feeding Behavior in Drosophila melanogaster. Cell Rep 2020; 27:1675-1685.e7. [PMID: 31067455 DOI: 10.1016/j.celrep.2019.04.027] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 03/14/2019] [Accepted: 04/03/2019] [Indexed: 11/20/2022] Open
Abstract
Recent studies find that sugar tastes less intense to humans with obesity, but whether this sensory change is a cause or a consequence of obesity is unclear. To tackle this question, we study the effects of a high sugar diet on sweet taste sensation and feeding behavior in Drosophila melanogaster. On this diet, fruit flies have lower taste responses to sweet stimuli, overconsume food, and develop obesity. Excess dietary sugar, but not obesity or dietary sweetness alone, caused taste deficits and overeating via the cell-autonomous action of the sugar sensor O-linked N-Acetylglucosamine (O-GlcNAc) transferase (OGT) in the sweet-sensing neurons. Correcting taste deficits by manipulating the excitability of the sweet gustatory neurons or the levels of OGT protected animals from diet-induced obesity. Our work demonstrates that the reshaping of sweet taste sensation by excess dietary sugar drives obesity and highlights the role of glucose metabolism in neural activity and behavior.
Collapse
|
100
|
Miroschnikow A, Schlegel P, Pankratz MJ. Making Feeding Decisions in the Drosophila Nervous System. Curr Biol 2020; 30:R831-R840. [DOI: 10.1016/j.cub.2020.06.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|