51
|
Tsai CJ, Marino J, Adaixo R, Pamula F, Muehle J, Maeda S, Flock T, Taylor NMI, Mohammed I, Matile H, Dawson RJP, Deupi X, Stahlberg H, Schertler G. Cryo-EM structure of the rhodopsin-Gαi-βγ complex reveals binding of the rhodopsin C-terminal tail to the gβ subunit. eLife 2019; 8:e46041. [PMID: 31251171 PMCID: PMC6629373 DOI: 10.7554/elife.46041] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 06/26/2019] [Indexed: 12/22/2022] Open
Abstract
One of the largest membrane protein families in eukaryotes are G protein-coupled receptors (GPCRs). GPCRs modulate cell physiology by activating diverse intracellular transducers, prominently heterotrimeric G proteins. The recent surge in structural data has expanded our understanding of GPCR-mediated signal transduction. However, many aspects, including the existence of transient interactions, remain elusive. We present the cryo-EM structure of the light-sensitive GPCR rhodopsin in complex with heterotrimeric Gi. Our density map reveals the receptor C-terminal tail bound to the Gβ subunit of the G protein, providing a structural foundation for the role of the C-terminal tail in GPCR signaling, and of Gβ as scaffold for recruiting Gα subunits and G protein-receptor kinases. By comparing available complexes, we found a small set of common anchoring points that are G protein-subtype specific. Taken together, our structure and analysis provide new structural basis for the molecular events of the GPCR signaling pathway.
Collapse
Affiliation(s)
- Ching-Ju Tsai
- Division of Biology and Chemistry / Laboratory of Biomolecular ResearchPaul Scherrer InstituteVilligenSwitzerland
| | - Jacopo Marino
- Division of Biology and Chemistry / Laboratory of Biomolecular ResearchPaul Scherrer InstituteVilligenSwitzerland
| | - Ricardo Adaixo
- Center for Cellular Imaging and NanAnalytics (C-CINA), BiozentrumUniversity of BaselBaselSwitzerland
| | - Filip Pamula
- Division of Biology and Chemistry / Laboratory of Biomolecular ResearchPaul Scherrer InstituteVilligenSwitzerland
| | - Jonas Muehle
- Division of Biology and Chemistry / Laboratory of Biomolecular ResearchPaul Scherrer InstituteVilligenSwitzerland
| | - Shoji Maeda
- Division of Biology and Chemistry / Laboratory of Biomolecular ResearchPaul Scherrer InstituteVilligenSwitzerland
| | - Tilman Flock
- Division of Biology and Chemistry / Laboratory of Biomolecular ResearchPaul Scherrer InstituteVilligenSwitzerland
- Department of BiologyETH ZurichZürichSwitzerland
| | - Nicholas MI Taylor
- Center for Cellular Imaging and NanAnalytics (C-CINA), BiozentrumUniversity of BaselBaselSwitzerland
| | - Inayatulla Mohammed
- Center for Cellular Imaging and NanAnalytics (C-CINA), BiozentrumUniversity of BaselBaselSwitzerland
| | - Hugues Matile
- Pharma Research and Early Development, Therapeutic modalities, Roche Innovation Center BaselHoffmann-La Roche LtdBaselSwitzerland
| | - Roger JP Dawson
- Pharma Research and Early Development, Therapeutic modalities, Roche Innovation Center BaselHoffmann-La Roche LtdBaselSwitzerland
| | - Xavier Deupi
- Division of Biology and Chemistry / Laboratory of Biomolecular ResearchPaul Scherrer InstituteVilligenSwitzerland
- Condensed Matter Theory GroupPaul Scherrer InstituteVilligenSwitzerland
| | - Henning Stahlberg
- Center for Cellular Imaging and NanAnalytics (C-CINA), BiozentrumUniversity of BaselBaselSwitzerland
| | - Gebhard Schertler
- Division of Biology and Chemistry / Laboratory of Biomolecular ResearchPaul Scherrer InstituteVilligenSwitzerland
- Department of BiologyETH ZurichZürichSwitzerland
| |
Collapse
|
52
|
Vedel L, Nøhr AC, Gloriam DE, Bräuner-Osborne H. Pharmacology and function of the orphan GPR139 G protein-coupled receptor. Basic Clin Pharmacol Toxicol 2019; 126 Suppl 6:35-46. [PMID: 31132229 PMCID: PMC7318219 DOI: 10.1111/bcpt.13263] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/21/2019] [Indexed: 12/17/2022]
Abstract
G protein-coupled receptors (GPCRs) constitute the largest family of receptors and membrane proteins in the human genome with ~800 members of which half are olfactory. GPCRs are activated by a very broad range of endogenous signalling molecules and are involved in a plethora of physiological functions. All GPCRs contain a transmembrane domain, consisting of a bundle of seven α-helices spanning the cell membrane, and forming the majority of the known ortho- or allosteric ligand binding sites. Due to their many physiological functions and the accessible and druggable transmembrane pocket, GPCRs constitute the largest family of drug targets mediating the actions of 34% of currently marketed drugs. GPCRs activate one or more of the four G protein families (Gq/11 , Gi/o , Gs and G12/13 ) and/or ß-arrestin. About a third of the non-olfactory GPCRs are referred to as orphan receptors which means that their endogenous agonist(s) have not yet been found or firmly established. In this MiniReview, we focus on the orphan GPR139 receptor, for which the aromatic amino acids L-Trp and L-Phe as well as ACTH/α-MSH-related peptides have been proposed as endogenous agonists. GPR139 has been reported to activate several G protein pathways of which Gq/11 is the primary one. The receptor shows the highest expression in the striatum, thalamus, hypothalamus, pituitary and habenula of the human, rat and mouse CNS. We review the surrogate agonists and antagonists that have been published as well as the agonist pharmacophore and binding site. Finally, the putative physiological functions and therapeutic potential are outlined.
Collapse
Affiliation(s)
- Line Vedel
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Anne Cathrine Nøhr
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - David E Gloriam
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Hans Bräuner-Osborne
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
53
|
Emery MA, Eitan S. Members of the same pharmacological family are not alike: Different opioids, different consequences, hope for the opioid crisis? Prog Neuropsychopharmacol Biol Psychiatry 2019; 92:428-449. [PMID: 30790677 DOI: 10.1016/j.pnpbp.2019.02.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 02/15/2019] [Accepted: 02/15/2019] [Indexed: 01/14/2023]
Abstract
Pain management is the specialized medical practice of modulating pain perception and thus easing the suffering and improving the life quality of individuals suffering from painful conditions. Since this requires the modulation of the activity of endogenous systems involved in pain perception, and given the large role that the opioidergic system plays in pain perception, opioids are currently the most effective pain treatment available and are likely to remain relevant for the foreseeable future. This contributes to the rise in opioid use, misuse, and overdose death, which is currently characterized by public health officials in the United States as an epidemic. Historically, the majority of preclinical rodent studies were focused on morphine. This has resulted in our understanding of opioids in general being highly biased by our knowledge of morphine specifically. However, recent in vitro studies suggest that direct extrapolation of research findings from morphine to other opioids is likely to be flawed. Notably, these studies suggest that different opioid analgesics (opioid agonists) engage different downstream signaling effects within the cell, despite binding to and activating the same receptors. This recognition implies that, in contrast to the historical status quo, different opioids cannot be made equivalent by merely dose adjustment. Notably, even at equianalgesic doses, different opioids could result in different beneficial and risk outcomes. In order to foster further translational research regarding drug-specific differences among opioids, here we review basic research elucidating differences among opioids in pharmacokinetics, pharmacodynamics, their capacity for second messenger pathway activation, and their interactions with the immune system and the dopamine D2 receptors.
Collapse
Affiliation(s)
- Michael A Emery
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX 77843, USA; Interdisciplinary Program in Neuroscience, Texas A&M Institute for Neuroscience (TAMIN), College Station, TX, USA
| | - Shoshana Eitan
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX 77843, USA; Interdisciplinary Program in Neuroscience, Texas A&M Institute for Neuroscience (TAMIN), College Station, TX, USA.
| |
Collapse
|
54
|
Seyedabadi M, Ghahremani MH, Albert PR. Biased signaling of G protein coupled receptors (GPCRs): Molecular determinants of GPCR/transducer selectivity and therapeutic potential. Pharmacol Ther 2019; 200:148-178. [PMID: 31075355 DOI: 10.1016/j.pharmthera.2019.05.006] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/26/2019] [Indexed: 02/07/2023]
Abstract
G protein coupled receptors (GPCRs) convey signals across membranes via interaction with G proteins. Originally, an individual GPCR was thought to signal through one G protein family, comprising cognate G proteins that mediate canonical receptor signaling. However, several deviations from canonical signaling pathways for GPCRs have been described. It is now clear that GPCRs can engage with multiple G proteins and the line between cognate and non-cognate signaling is increasingly blurred. Furthermore, GPCRs couple to non-G protein transducers, including β-arrestins or other scaffold proteins, to initiate additional signaling cascades. Receptor/transducer selectivity is dictated by agonist-induced receptor conformations as well as by collateral factors. In particular, ligands stabilize distinct receptor conformations to preferentially activate certain pathways, designated 'biased signaling'. In this regard, receptor sequence alignment and mutagenesis have helped to identify key receptor domains for receptor/transducer specificity. Furthermore, molecular structures of GPCRs bound to different ligands or transducers have provided detailed insights into mechanisms of coupling selectivity. However, receptor dimerization, compartmentalization, and trafficking, receptor-transducer-effector stoichiometry, and ligand residence and exposure times can each affect GPCR coupling. Extrinsic factors including cell type or assay conditions can also influence receptor signaling. Understanding these factors may lead to the development of improved biased ligands with the potential to enhance therapeutic benefit, while minimizing adverse effects. In this review, evidence for ligand-specific GPCR signaling toward different transducers or pathways is elaborated. Furthermore, molecular determinants of biased signaling toward these pathways and relevant examples of the potential clinical benefits and pitfalls of biased ligands are discussed.
Collapse
Affiliation(s)
- Mohammad Seyedabadi
- Department of Pharmacology, School of Medicine, Bushehr University of Medical Sciences, Iran; Education Development Center, Bushehr University of Medical Sciences, Iran
| | | | - Paul R Albert
- Ottawa Hospital Research Institute, Neuroscience, University of Ottawa, Canada.
| |
Collapse
|
55
|
Abstract
A great deal of experimental evidence suggests that ligands can stabilize different receptor active states that go on to interact with cellular signaling proteins to form a range of different complexes in varying quantities. In pleiotropically linked receptor systems, this leads to selective activation of some signaling pathways at the expense of others (biased signaling). This article summarizes the current knowledge about the complex components of receptor systems, the evidence that biased signaling is used in natural physiology to fine-tune signaling, and the current thoughts on how this mechanism may be applied to the design of better drugs. Although this is a fairly newly discovered phenomenon, theoretical and experimental data suggest that it is a ubiquitous behavior of ligands and receptors and to be expected. Biased signaling is simple to detect in vitro and there are numerous methods to quantify the effect with scales that can be used to optimize this activity in structure-activity medicinal chemistry studies. At present, the major hurdle in the application of this mechanism to therapeutics is the translation of in vitro bias to in vivo effect; this is because of the numerous factors that can modify measures of bias in natural physiologic systems. In spite of this, biased signaling still has the potential to justify revisiting of receptor targets previously thought to be intractable and also furnishes the means to pursue targets previously thought to be forbidden due to deleterious physiology (as these may be eliminated through biased signaling).
Collapse
Affiliation(s)
- Terry Kenakin
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|
56
|
Gavriilidou AFM, Hunziker H, Mayer D, Vuckovic Z, Veprintsev DB, Zenobi R. Insights into the Basal Activity and Activation Mechanism of the β1 Adrenergic Receptor Using Native Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:529-537. [PMID: 30511235 DOI: 10.1007/s13361-018-2110-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/01/2018] [Accepted: 11/08/2018] [Indexed: 06/09/2023]
Abstract
In the absence of orthosteric ligands, most G protein-coupled receptors (GPCRs) exist in an equilibrium of different conformational states. This equilibrium is shifted by an agonist towards the active state or by an inverse agonist towards the inactive state. The basal activity of the receptor, and its ability to activate intracellular signaling pathways, is defined by the probability that a fraction of the receptor adopts the active state in the absence of ligand. Despite breakthroughs in native MS of membrane proteins, GPCR-transducing complexes have not been studied by this approach until very recently. Here, we investigated different conformational states of the turkey β1 adrenergic receptor (tβ1AR) in complex with two transducing partners: a G protein mimicking nanobody, Nb80, and an engineered truncated Gs protein (miniGs), in the presence of the full agonist isoprenaline by native MS. Interestingly, complex formation with both transducing partners was also observed in the absence of agonist, and allowed us to quantify basal activity of tβ1AR. We followed the stepwise disassembly of the transducing complexes by increasing the concentration of the inverse agonist S32212 in the presence of a constant concentration of isoprenaline. This allowed us to determine the relative binding affinity of S32212 in comparison to isoprenaline by native MS. Our approach provides a fast and sensitive way to detect complexes, study their stability in the presence of different ligands, and determine relative ligand affinities. Native mass spectrometry thus has the potential to become a useful tool to screen for orthosteric and allosteric GPCR drugs. Graphical Abstract.
Collapse
Affiliation(s)
- Agni F M Gavriilidou
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
- OMass Technologies Ltd The Schrodinger Building, Heatly Road, Oxford Science Park, Oxford, OX4 4GE, UK
| | - Hanna Hunziker
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Daniel Mayer
- Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland
- Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Ziva Vuckovic
- Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland
- Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Dmitry B Veprintsev
- Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland.
- Department of Biology, ETH Zurich, Zurich, Switzerland.
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK.
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK.
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
57
|
Sleno R, Hébert TE. Shaky ground - The nature of metastable GPCR signalling complexes. Neuropharmacology 2019; 152:4-14. [PMID: 30659839 DOI: 10.1016/j.neuropharm.2019.01.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 12/20/2018] [Accepted: 01/16/2019] [Indexed: 01/19/2023]
Abstract
How G protein-coupled receptors (GPCR) interact with one another remains an area of active investigation. Obligate dimers of class C GPCRs such as metabotropic GABA and glutamate receptors are well accepted, although whether this is a general feature of other GPCRs is still strongly debated. In this review, we focus on the idea that GPCR dimers and oligomers are better imagined as parts of larger metastable signalling complexes. We discuss the nature of functional oligomeric entities, their stabilities and kinetic features and how structural and functional asymmetries of such metastable entities might have implications for drug discovery. This article is part of the Special Issue entitled 'Receptor heteromers and their allosteric receptor-receptor interactions'.
Collapse
Affiliation(s)
- Rory Sleno
- Marketed Pharmaceuticals and Medical Devices Bureau, Marketed Health Products Directorate, Health Products and Food Branch, Health Canada, Canada
| | - Terence E Hébert
- Department of Pharmacology and Therapeutics, McGill University, Canada.
| |
Collapse
|
58
|
Jayachandran R, Gumienny A, Bolinger B, Ruehl S, Lang MJ, Fucile G, Mazumder S, Tchang V, Woischnig AK, Stiess M, Kunz G, Claudi B, Schmaler M, Siegmund K, Li J, Dertschnig S, Holländer G, Medina E, Karrer U, Moshous D, Bumann D, Khanna N, Rossi SW, Pieters J. Disruption of Coronin 1 Signaling in T Cells Promotes Allograft Tolerance while Maintaining Anti-Pathogen Immunity. Immunity 2019; 50:152-165.e8. [PMID: 30611611 DOI: 10.1016/j.immuni.2018.12.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/18/2018] [Accepted: 12/10/2018] [Indexed: 11/18/2022]
Abstract
The ability of the immune system to discriminate self from non-self is essential for eradicating microbial pathogens but is also responsible for allograft rejection. Whether it is possible to selectively suppress alloresponses while maintaining anti-pathogen immunity remains unknown. We found that mice deficient in coronin 1, a regulator of naive T cell homeostasis, fully retained allografts while maintaining T cell-specific responses against microbial pathogens. Mechanistically, coronin 1-deficiency increased cyclic adenosine monophosphate (cAMP) concentrations to suppress allo-specific T cell responses. Costimulation induced on microbe-infected antigen presenting cells was able to overcome cAMP-mediated immunosuppression to maintain anti-pathogen immunity. In vivo pharmacological modulation of this pathway or a prior transfer of coronin 1-deficient T cells actively suppressed allograft rejection. These results define a coronin 1-dependent regulatory axis in T cells important for allograft rejection and suggest that modulation of this pathway may be a promising approach to achieve long-term acceptance of mismatched allografts.
Collapse
Affiliation(s)
| | | | | | | | | | - Geoffrey Fucile
- Swiss Institute of Bioinformatics, sciCORE Computing Center, University of Basel, Basel, Switzerland
| | | | | | - Anne-Kathrin Woischnig
- Department of Biomedicine, University and University Hospital of Basel, Basel, Switzerland
| | | | | | | | - Mathias Schmaler
- Department of Biomedicine, University and University Hospital of Basel, Basel, Switzerland
| | | | | | - Simone Dertschnig
- Department of Biomedicine, University and University Hospital of Basel, Basel, Switzerland
| | - George Holländer
- Department of Biomedicine, University and University Hospital of Basel, Basel, Switzerland; Department of Paediatrics, University of Oxford, Oxford, UK
| | - Eva Medina
- Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Urs Karrer
- Division of Infectious Diseases and Department of Medicine, Cantonal Hospital of Winterthur, Winterthur, Switzerland
| | - Despina Moshous
- Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Paris, France and APHP Hôpital Universitaire Necker-Enfants Malades, Unité d'Immunologie-Hématologie et Rhumatologie Pédiatrique, Paris, France
| | - Dirk Bumann
- Biozentrum, University of Basel, Basel, Switzerland
| | - Nina Khanna
- Department of Biomedicine, University and University Hospital of Basel, Basel, Switzerland; Division of Infectious Diseases, University and University Hospital of Basel, Switzerland
| | - Simona W Rossi
- Department of Biomedicine, University and University Hospital of Basel, Basel, Switzerland
| | - Jean Pieters
- Biozentrum, University of Basel, Basel, Switzerland.
| |
Collapse
|
59
|
Abstract
Modulation of neurotransmitter exocytosis by activated Gi/o coupled G-protein coupled receptors (GPCRs) is a universal regulatory mechanism used both to avoid overstimulation and to influence circuitry. One of the known modulation mechanisms is the interaction between Gβγ and the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNAREs). There are 5 Gβ and 12 Gγ subunits, but specific Gβγs activated by a given GPCR and the specificity to effectors, such as SNARE, in vivo are not known. Although less studied, Gβγ binding to the exocytic fusion machinery (i.e. SNARE) provides a more direct regulatory mechanism for neurotransmitter release. Here, we review some recent insights in the architecture of the synaptic terminal, modulation of synaptic transmission, and implications of G protein modulation of synaptic transmission in diseases. Numerous presynaptic proteins are involved in the architecture of synaptic terminals, particularly the active zone, and their importance in the regulation of exocytosis is still not completely understood. Further understanding of the Gβγ-SNARE interaction and the architecture and mechanisms of exocytosis may lead to the discovery of novel therapeutic targets to help patients with various disorders such as hypertension, attention-deficit/hyperactivity disorder, post-traumatic stress disorder, and acute/chronic pain.
Collapse
Affiliation(s)
- Yun Young Yim
- Department of Pharmacology, Vanderbilt University, Nashville 37232-6600, TN, United States
| | - Zack Zurawski
- Department of Pharmacology, Vanderbilt University, Nashville 37232-6600, TN, United States
| | - Heidi Hamm
- Department of Pharmacology, Vanderbilt University, Nashville 37232-6600, TN, United States.
| |
Collapse
|
60
|
Choi C, Thi Thao Tran N, Van Ngu T, Park SW, Song MS, Kim SH, Bae YU, Ayudthaya PDN, Munir J, Kim E, Baek MJ, Song S, Ryu S, Nam KH. Promotion of tumor progression and cancer stemness by MUC15 in thyroid cancer via the GPCR/ERK and integrin-FAK signaling pathways. Oncogenesis 2018; 7:85. [PMID: 30420637 PMCID: PMC6232104 DOI: 10.1038/s41389-018-0094-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 09/10/2018] [Accepted: 10/03/2018] [Indexed: 12/21/2022] Open
Abstract
Thyroid cancer is the fifth most common cancer diagnosed in women worldwide. Notwithstanding advancements in the prognosis and treatment of thyroid cancer, 10–20% of thyroid cancer patients develops chemotherapeutic resistance and experience relapse. According to previous reports and TCGA database, MUC15 (MUCIN 15) upregulation is highly correlated with thyroid cancer progression. However, the role of MUC15 in tumor progression and metastasis is unclear. This study aimed to investigate factors mediating cancer stemness in thyroid cancer. MUC15 plays an important role in sphere formation, as an evident from the expression of stemness markers including SOX2, KLF4, ALDH1A3, and IL6. Furthermore, ectopic expression of MUC15 activated extracellular signal-regulated kinase (ERK) signaling via G-protein–coupled receptor (GPCR)/cyclic AMP (cAMP) and integrin/focal adhesion kinase pathways. Interestingly, ectopic expression of MUC15 did not affect RAF/mitogen-activated protein kinase kinase (MEK)-mediated ERK activation. The present findings may provide novel insights into the development of diagnostic, prognostic, and therapeutic applications of MUC15 in thyroid cancer.
Collapse
Affiliation(s)
- Cheolwon Choi
- Soonchunhyang Institute of Med-bioscience (SIMS), Soonchunhyang University, Cheonan, Korea
| | - Nguyen Thi Thao Tran
- Soonchunhyang Institute of Med-bioscience (SIMS), Soonchunhyang University, Cheonan, Korea
| | - Trinh Van Ngu
- Soonchunhyang Institute of Med-bioscience (SIMS), Soonchunhyang University, Cheonan, Korea
| | - Sae Woong Park
- Department of Microbiology & Immunology, Weill Cornell Medical College, New York, USA
| | - Min Suk Song
- Department of Life Sciences, Yeungnam University, Gyeongsan, Korea
| | - Sung Hyun Kim
- Department of Physiology, Kyung Hee University, School of Medicine, Seoul, Korea
| | - Yun-Ui Bae
- Soonchunhyang Institute of Med-bioscience (SIMS), Soonchunhyang University, Cheonan, Korea
| | | | - Javaria Munir
- Soonchunhyang Institute of Med-bioscience (SIMS), Soonchunhyang University, Cheonan, Korea
| | - Eunbit Kim
- Soonchunhyang Institute of Med-bioscience (SIMS), Soonchunhyang University, Cheonan, Korea
| | - Moo-Jun Baek
- Department of Surgery, College of Medicine, Soonchunhyang University, Chonan, Korea
| | - Sujung Song
- Soonchunhyang Institute of Med-bioscience (SIMS), Soonchunhyang University, Cheonan, Korea
| | - Seongho Ryu
- Soonchunhyang Institute of Med-bioscience (SIMS), Soonchunhyang University, Cheonan, Korea.
| | - Kee-Hyun Nam
- Department of Surgery, College of Medicine, Yonsei University, Seoul, Korea.
| |
Collapse
|
61
|
Abstract
Chemogenetic technologies enable selective pharmacological control of specific cell populations. An increasing number of approaches have been developed that modulate different signaling pathways. Selective pharmacological control over G protein-coupled receptor signaling, ion channel conductances, protein association, protein stability, and small molecule targeting allows modulation of cellular processes in distinct cell types. Here, we review these chemogenetic technologies and instances of their applications in complex tissues in vivo and ex vivo.
Collapse
Affiliation(s)
- Deniz Atasoy
- Department of Physiology, School of Medicine and Regenerative-Restorative Medicine Research Center (REMER), Istanbul Medipol University , Istanbul , Turkey ; and Janelia Research Campus, Howard Hughes Medical Institute , Ashburn, Virginia
| | - Scott M Sternson
- Department of Physiology, School of Medicine and Regenerative-Restorative Medicine Research Center (REMER), Istanbul Medipol University , Istanbul , Turkey ; and Janelia Research Campus, Howard Hughes Medical Institute , Ashburn, Virginia
| |
Collapse
|
62
|
Gorzkiewicz A, Szemraj J. Brain endocannabinoid signaling exhibits remarkable complexity. Brain Res Bull 2018; 142:33-46. [PMID: 29953913 DOI: 10.1016/j.brainresbull.2018.06.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/06/2018] [Accepted: 06/21/2018] [Indexed: 01/04/2023]
Abstract
The endocannabinoid (eCB) signaling system is one of the most extensive of the mammalian brain. Despite the involvement of only few specific ligands and receptors, the system encompasses a vast diversity of triggered mechanisms and driven effects. It mediates a wide range of phenomena, including the regulation of transmitter release, neural excitability, synaptic plasticity, impulse spread, long-term neuronal potentiation, neurogenesis, cell death, lineage segregation, cell migration, inflammation, oxidative stress, nociception and the sleep cycle. It is also known to be involved in the processes of learning and memory formation. This extensive scope of action is attained by combining numerous variables. In a properly functioning brain, the correlations of these variables are kept in a strictly controlled balance; however, this balance is disrupted in many pathological conditions. However, while this balance is known to be disrupted by drugs in the case of addicts, the stimuli and mechanisms influencing the neurodegenerating brain remain elusive. This review examines the multiple factors and phenomena affecting the eCB signaling system in the brain. It evaluates techniques of controlling the eCB system to identify the obstacles in their applications and highlights the crucial interdependent variables that may influence biomedical research outcomes.
Collapse
Affiliation(s)
- Anna Gorzkiewicz
- Medical University of Lodz, ul.Mazowiecka 6/8, 92-215, Lodz, Poland.
| | - Janusz Szemraj
- Medical University of Lodz, ul.Mazowiecka 6/8, 92-215, Lodz, Poland
| |
Collapse
|
63
|
Abstract
G protein-coupled receptor kinases (GRKs) are classically known for their role in regulating the activity of the largest known class of membrane receptors, which influence diverse biological processes in every cell type in the human body. As researchers have tried to uncover how this family of kinases, containing only 7 members, achieves selective and coordinated control of receptors, they have uncovered a growing number of noncanonical activities for these kinases. These activities include phosphorylation of nonreceptor targets and kinase-independent molecular interactions. In particular, GRK2, GRK3, and GRK5 are the predominant members expressed in the heart. Their canonical and noncanonical actions within cardiac and other tissues have significant implications for cardiovascular function in healthy animals and for the development and progression of disease. This review summarizes what is currently known regarding the activity of these kinases, and particularly the role of GRK2 and GRK5 in the molecular alterations that occur during heart failure. This review further highlights areas of GRK regulation that remain poorly understood and how they may represent novel targets for therapeutic development.
Collapse
|
64
|
Kang N, Kang JY, Park S, Shin DM. Increased store-operated Ca 2+ entry mediated by GNB5 and STIM1. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2018; 22:343-348. [PMID: 29719456 PMCID: PMC5928347 DOI: 10.4196/kjpp.2018.22.3.343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/14/2018] [Accepted: 02/19/2018] [Indexed: 01/27/2023]
Abstract
Recent human genetic studies have shown that Gβ5 is related to various clinical symptoms, such as sinus bradycardia, cognitive disability, and attention deficit hyperactivity disorder. Although the calcium signaling cascade is closely associated with a heterotrimeric G-protein, the function of Gβ5 in calcium signaling and its relevance to clinical symptoms remain unknown. In this study, we investigated the in vitro changes of store-operated calcium entry (SOCE) with exogenous expression of Gβ5. The cells expressing Gβ5 had enhanced SOCE after depletion of calcium ion inside the endoplasmic reticulum. Gβ5 also augmented Stim1- and Orai1-dependent SOCE. An ORAI1 loss-of-function mutant did not show inhibition of Gβ5-induced SOCE, and a STIM1-ERM truncation mutant showed no enhancement of SOCE. These results suggested a novel role of GNB5 and Stim1, and provided insight into the regulatory mechanism of SOCE.
Collapse
Affiliation(s)
- Namju Kang
- Department of Oral Biology, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul 03722, Korea
| | - Jung Yun Kang
- Department of Oral Biology, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul 03722, Korea
| | - Soonhong Park
- Department of Oral Biology, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul 03722, Korea
| | - Dong Min Shin
- Department of Oral Biology, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul 03722, Korea
| |
Collapse
|
65
|
The G-protein γ subunit of Phytophthora infestans is involved in sporangial development. Fungal Genet Biol 2018; 116:73-82. [PMID: 29704555 DOI: 10.1016/j.fgb.2018.04.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/17/2018] [Accepted: 04/21/2018] [Indexed: 11/23/2022]
Abstract
The oomycete Phytophthora infestans is a notorious plant pathogen with potato and tomato as its primary hosts. Previous research showed that the heterotrimeric G-protein subunits Gα and Gβ have a role in zoospore motility and virulence, and sporangial development, respectively. Here, we present analyses of the gene encoding a Gγ subunit in P. infestans, Pigpg1. The overall similarity of PiGPG1 with non-oomycete Gγ subunits is low, with only the most conserved amino acids maintained, but similarity with its homologs in other oomycetes is high. Pigpg1 is expressed in all life stages and shows a similar expression profile as the gene encoding the Gβ subunit, Pigpb1. To elucidate its function, transformants were generated in which Pigpg1 is silenced or overexpressed and their phenotypes were analyzed. Pigpg1-silenced lines produce less sporangia, which are malformed. Altogether, the results show that PiGPG1 is crucial for proper sporangia development and zoosporogenesis. PiGPG1 is a functional Gγ, and likely forms a dimer with PiGPB1 that mediates signaling.
Collapse
|
66
|
Sleno R, Hébert TE. The Dynamics of GPCR Oligomerization and Their Functional Consequences. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 338:141-171. [PMID: 29699691 DOI: 10.1016/bs.ircmb.2018.02.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The functional importance of G protein-coupled receptor (GPCR) oligomerization remains controversial. Although obligate dimers of class C GPCRs are well accepted, the generalizability of this phenomenon is still strongly debated with respect to other classes of GPCRs. In this review, we focus on understanding the organization and dynamics between receptor equivalents and their signaling partners in oligomeric receptor complexes, with a view toward integrating disparate viewpoints into a unified understanding. We discuss the nature of functional oligomeric entities, and how asymmetries in receptor structure and function created by oligomers might have implications for receptor function as allosteric machines and for future drug discovery.
Collapse
|
67
|
Zhang B, Tran U, Wessely O. Polycystin 1 loss of function is directly linked to an imbalance in G-protein signaling in the kidney. Development 2018. [PMID: 29530879 DOI: 10.1242/dev.158931] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The development of the kidney relies on the establishment and maintenance of a precise tubular diameter of its functional units, the nephrons. This process is disrupted in polycystic kidney disease (PKD), resulting in dilations of the nephron and renal cyst formation. In the course of exploring G-protein-coupled signaling in the Xenopus pronephric kidney, we discovered that loss of the G-protein α subunit, Gnas, results in a PKD phenotype. Polycystin 1, one of the genes mutated in human PKD, encodes a protein resembling a G-protein-coupled receptor. Furthermore, deletion of the G-protein-binding domain present in the intracellular C terminus of polycystin 1 impacts functionality. A comprehensive analysis of all the G-protein α subunits expressed in the Xenopus pronephric kidney demonstrates that polycystin 1 recruits a select subset of G-protein α subunits and that their knockdown - as in the case of Gnas - results in a PKD phenotype. Mechanistically, the phenotype is caused by increased endogenous G-protein β/γ signaling and can be reversed by pharmacological inhibitors as well as knocking down Gnb1. Together, our data support the hypothesis that G proteins are recruited to the intracellular domain of PKD1 and that this interaction is crucial for its function in the kidney.
Collapse
Affiliation(s)
- Bo Zhang
- Cleveland Clinic Foundation, Lerner Research Institute, Department of Cellular and Molecular Medicine, 9500 Euclid Avenue/NC10, Cleveland, OH 44195, USA.,LSU Health Sciences Center, Department of Cell Biology and Anatomy, 1901 Perdido Street, New Orleans, LA 70112, USA
| | - Uyen Tran
- Cleveland Clinic Foundation, Lerner Research Institute, Department of Cellular and Molecular Medicine, 9500 Euclid Avenue/NC10, Cleveland, OH 44195, USA
| | - Oliver Wessely
- Cleveland Clinic Foundation, Lerner Research Institute, Department of Cellular and Molecular Medicine, 9500 Euclid Avenue/NC10, Cleveland, OH 44195, USA
| |
Collapse
|
68
|
Abstract
Sensing external signals and transducing these into intracellular responses requires a molecular signaling system that is crucial for every living organism. Two important eukaryotic signal transduction pathways that are often interlinked are G-protein signaling and phospholipid signaling. Heterotrimeric G-protein subunits activated by G-protein-coupled receptors (GPCRs) are typical stimulators of phospholipid signaling enzymes such as phosphatidylinositol phosphate kinases (PIPKs) or phospholipase C (PLC). However, a direct connection between the two pathways likely exists in oomycetes and slime molds, as they possess a unique class of GPCRs that have a PIPK as an accessory domain. In principle, these so-called GPCR-PIPKs have the capacity of perceiving an external signal (via the GPCR domain) that, via PIPK, directly activates downstream phospholipid signaling. Here we reveal the sporadic occurrence of GPCR-PIPKs in all eukaryotic supergroups, except for plants. Notably, all species having GPCR-PIPKs are unicellular microorganisms that favor aquatic environments. Phylogenetic analysis revealed that GPCR-PIPKs are likely ancestral to eukaryotes and significantly expanded in the last common ancestor of oomycetes. In addition to GPCR-PIPKs, we identified five hitherto-unknown classes of GPCRs with accessory domains, four of which are universal players in signal transduction. Similarly to GPCR-PIPKs, this enables a direct coupling between extracellular sensing and downstream signaling. Overall, our findings point to an ancestral signaling system in eukaryotes where GPCR-mediated sensing is directly linked to downstream responses. G-protein-coupled receptors (GPCRs) are central sensors that activate eukaryotic signaling and are the primary targets of human drugs. In this report, we provide evidence for the widespread though limited presence of a novel class of GPCRs in a variety of unicellular eukaryotes. These include free-living organisms and organisms that are pathogenic for plants, animals, and humans. The novel GPCRs have a C-terminal phospholipid kinase domain, pointing to a direct link between sensing external signals via GPCRs and downstream intracellular phospholipid signaling. Genes encoding these receptors were likely present in the last common eukaryotic ancestor and were lost during the evolution of higher eukaryotes. We further describe five other types of GPCRs with a catalytic accessory domain, the so-called GPCR-bigrams, four of which may potentially have a role in signaling. These findings shed new light onto signal transduction in microorganisms and provide evidence for alternative eukaryotic signaling pathways.
Collapse
|
69
|
Abstract
The Sonic Hedgehog (Shh) signaling pathway is active during embryonic development in metazoans, and provides instructional cues necessary for proper tissue patterning. The pathway signal transducing component, Smoothened (Smo), is a G protein-coupled receptor (GPCR) that has been demonstrated to signal through at least two effector routes. The first is a G protein–independent canonical route that signals to Gli transcriptional effectors to establish transcriptional programs specifying cell fate during early embryonic development. The second, commonly referred to as the noncanonical Smo signal, induces rapid, transcription-independent responses that are essential for establishing and maintaining distinct cell behaviors during development. Herein, we discuss contributions of this noncanonical route during embryonic development. We also highlight important open questions regarding noncanonical Smo signal route selection during development, and consider implications of noncanonical signal corruption in disease.
Collapse
|
70
|
King JR, Gillevet TC, Kabbani N. A G protein-coupled α7 nicotinic receptor regulates signaling and TNF-α release in microglia. FEBS Open Bio 2017; 7:1350-1361. [PMID: 28904864 PMCID: PMC5586346 DOI: 10.1002/2211-5463.12270] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 07/14/2017] [Indexed: 11/21/2022] Open
Abstract
Acetylcholine activation of α7 nicotinic acetylcholine receptors (α7 nAChRs) in microglia attenuates neuroinflammation and regulates TNF‐α release. We used lipopolysaccharide to model inflammation in the microglial cell line EOC20 and examined signaling by the α7 nAChR. Co‐immunoprecipitation experiments confirm that α7 nAChRs bind heterotrimeric G proteins in EOC20 cells. Interaction with Gαi mediates α7 nAChR signaling via enhanced intracellular calcium release and a decrease in cAMP, p38 phosphorylation, and TNF‐α release. These α7 nAChR effects were blocked by the inhibition of Gαi signaling via pertussis toxin, PLC activity with U73122, and α7 nAChR channel activity with the selective antagonist α‐bungarotoxin. Moreover, α7 nAChR signaling in EOC20 cells was significantly diminished by the expression of a dominant‐negative α7 nAChR, α7345‐8A, shown to be impaired in G protein binding. These findings indicate an essential role for G protein coupling in α7 nAChR function in microglia leading to the regulation of inflammation in the nervous system.
Collapse
Affiliation(s)
- Justin R King
- Interdisciplinary Program in Neuroscience Krasnow Institute for Advanced Study George Mason University Fairfax VA USA
| | - Trudy C Gillevet
- Interdisciplinary Program in Neuroscience Krasnow Institute for Advanced Study George Mason University Fairfax VA USA
| | - Nadine Kabbani
- School of Systems Biology Krasnow Institute for Advanced Study George Mason University Fairfax VA USA
| |
Collapse
|
71
|
Martemyanov KA, Sampath AP. The Transduction Cascade in Retinal ON-Bipolar Cells: Signal Processing and Disease. Annu Rev Vis Sci 2017; 3:25-51. [PMID: 28715957 DOI: 10.1146/annurev-vision-102016-061338] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Our robust visual experience is based on the reliable transfer of information from our photoreceptor cells, the rods and cones, to higher brain centers. At the very first synapse of the visual system, information is split into two separate pathways, ON and OFF, which encode increments and decrements in light intensity, respectively. The importance of this segregation is borne out in the fact that receptive fields in higher visual centers maintain a separation between ON and OFF regions. In the past decade, the molecular mechanisms underlying the generation of ON signals have been identified, which are unique in their use of a G-protein signaling cascade. In this review, we consider advances in our understanding of G-protein signaling in ON-bipolar cell (BC) dendrites and how insights about signaling have emerged from visual deficits, mostly night blindness. Studies of G-protein signaling in ON-BCs reveal an intricate mechanism that permits the regulation of visual sensitivity over a wide dynamic range.
Collapse
Affiliation(s)
| | - Alapakkam P Sampath
- Jules Stein Eye Institute, University of California, Los Angeles, California 90095;
| |
Collapse
|
72
|
Hunter MR, Finlay DB, Macdonald CE, Cawston EE, Grimsey NL, Glass M. Real-Time Measurement of Cannabinoid Receptor-Mediated cAMP Signaling. Methods Enzymol 2017; 593:43-59. [PMID: 28750814 DOI: 10.1016/bs.mie.2017.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cannabinoid receptors, like other GPCRs, signal via a spectrum of related signaling pathways. Recently, monitoring GPCR-mediated cAMP signaling has become significantly easier with the development of genetically encoded, transfectable cAMP biosensors. Cell lines transfected with these biosensors can be monitored continuously, allowing the analysis of receptor-mediated signaling in unprecedented detail. Here, we describe a protocol for transfectable biosensors which report cellular cAMP concentrations by bioluminescence resonance energy transfer (BRET). This assay system has been utilized to elucidate the temporal nature of agonists and allosteric modulators of the cannabinoid receptor CB1. In particular, the CB1 allosteric modulator ORG27569 has been shown to modify receptor agonism in a time-dependent fashion; a characteristic which would not have been observed via traditional endpoint methods of detecting cAMP signaling. BRET cAMP biosensors are suitable for miniaturization and automation, and as such are valuable and cost-effective tools for moderate- to high-throughput experimental protocols.
Collapse
|
73
|
Wattiez AS, Walder RY, Sande CM, White SR, Hammond DL. Peripheral inflammatory injury alters the relative abundance of Gα subunits in the dorsal horn of the spinal cord and in the rostral ventromedial medulla of male rats. Mol Pain 2017; 13:1744806917715210. [PMID: 28604220 PMCID: PMC5486491 DOI: 10.1177/1744806917715210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Abstract A diverse array of G protein-coupled receptors (GPCRs) is implicated in the modulation of nociception. The efficacy and potency of several GPCR agonists change as a consequence of peripheral inflammatory injury. Whether these changes reflect alterations in expression of the G proteins themselves is not known. This study examined the expression of transcripts and proteins for the α subunits of three classes of heteromeric G proteins in the dorsal horn of the spinal cord and the rostral ventromedial medulla (RVM) of male rats four days and two weeks after intraplantar injection of complete Freund’s adjuvant (CFA) or saline. Levels of Gα transcript in the dorsal horn or RVM were unchanged by CFA treatment. However, in the dorsal horn, Gαi protein decreased in cytosolic and membrane fractions four days after CFA treatment. Levels of Gαz protein decreased in the membrane fraction. Levels of the other Gα subunits did not differ. Levels of the Gα subunits were unchanged two weeks after CFA treatment. In the RVM, Gαz protein levels decreased in the cytosolic fraction four days after CFA treatment. No other differences were observed. Two weeks after CFA, the levels for all Gα subunits trended higher in the RVM. These data indicate that peripheral inflammatory injury induces subtle changes in the abundance of Gα subunits that is specific with respect to class, subcellular compartment, tissue, and time after injury. These changes have the potential to alter the balance of the different subcellular signaling pathways through which GPCR agonists act to modulate nociception.
Collapse
|
74
|
Sleno R, Devost D, Pétrin D, Zhang A, Bourque K, Shinjo Y, Aoki J, Inoue A, Hébert TE. Conformational biosensors reveal allosteric interactions between heterodimeric AT1 angiotensin and prostaglandin F2α receptors. J Biol Chem 2017; 292:12139-12152. [PMID: 28584054 DOI: 10.1074/jbc.m117.793877] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 05/31/2017] [Indexed: 11/06/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are conformationally dynamic proteins transmitting ligand-encoded signals in multiple ways. This transmission is highly complex and achieved through induction of distinct GPCR conformations, which preferentially drive specific receptor-mediated signaling events. This conformational capacity can be further enlarged via allosteric effects between dimers, warranting further study of these effects. Using GPCR conformation-sensitive biosensors, we investigated allosterically induced conformational changes in the recently reported F prostanoid (FP)/angiotensin II type 1 receptor (AT1R) heterodimer. Ligand occupancy of the AT1R induced distinct conformational changes in FP compared with those driven by PGF2α in bioluminescence resonance energy transfer (BRET)-based FP biosensors engineered with Renilla luciferase (RLuc) as an energy donor in the C-tail and fluorescein arsenical hairpin binder (FlAsH)-labeled acceptors at different positions in the intracellular loops. We also found that this allosteric communication is mediated through Gαq and may also involve proximal (phospholipase C) but not distal (protein kinase C) signaling partners. Interestingly, β-arrestin-biased AT1R agonists could also transmit a Gαq-dependent signal to FP without activation of downstream Gαq signaling. This transmission of information was specific to the AT1R/FP complex, as activation of Gαq by the oxytocin receptor did not recapitulate the same phenomenon. Finally, information flow was asymmetric in the sense that FP activation had negligible effects on AT1R-based conformational biosensors. The identification of partner-induced GPCR conformations may help identify novel allosteric effects when investigating multiprotein receptor signaling complexes.
Collapse
Affiliation(s)
- Rory Sleno
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Dominic Devost
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Darlaine Pétrin
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Alice Zhang
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Kyla Bourque
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Yuji Shinjo
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Junken Aoki
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Chiyoda-ku, Tokyo 100-0004, Japan
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Kawaguchi, Saitama 332-0012, Japan
| | - Terence E Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada.
| |
Collapse
|
75
|
Gβ1 is required for neutrophil migration in zebrafish. Dev Biol 2017; 428:135-147. [PMID: 28554852 DOI: 10.1016/j.ydbio.2017.05.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 05/23/2017] [Accepted: 05/24/2017] [Indexed: 11/20/2022]
Abstract
Signaling mediated by G protein-coupled receptors (GPCRs) is essential for the migration of cells toward chemoattractants. The recruitment of neutrophils to injured tissues in zebrafish larvae is a useful model for studying neutrophil migration and trafficking in vivo. Indeed, the study of this process led to the discovery that PI3Kγ is required for the polarity and motility of neutrophils, features that are necessary for the directed migration of these cells to wounds. However, the mechanism by which PI3Kγ is activated remains to be determined. Here we show that signaling by specifically the heterotrimeric G protein subunit Gβ1 is critical for neutrophil migration in response to wounding. In embryos treated with small-molecule inhibitors of Gβγ signaling, neutrophils failed to migrate to wound sites. Although both the Gβ1 and Gβ4 isoforms are expressed in migrating neutrophils, only deficiency for the former (morpholino-based knockdown) interfered with the directed migration of neutrophils towards wounds. The Gβ1 deficiency also impaired the ability of cells to change cell shape and reduced their general motility, defects that are similar to those in neutrophils deficient for PI3Kγ. Transplantation assays showed that the requirement for Gβ1 in neutrophil migration is cell autonomous. Finally, live imaging revealed that Gβ1 is required for polarized activation of PI3K, and for the actin dynamics that enable neutrophil migration. Collectively, our data indicate that Gβ1 signaling controls proper neutrophil migration by activating PI3K and modulating actin dynamics. Moreover, they illustrate a role for a specific Gβ isoform in chemotaxis in vivo.
Collapse
|
76
|
Park HJ, Kim SH, Moon DO. Growth inhibition of human breast carcinoma cells by overexpression of regulator of G-protein signaling 4. Oncol Lett 2017; 13:4357-4363. [PMID: 28588709 DOI: 10.3892/ol.2017.6009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 07/15/2016] [Indexed: 01/05/2023] Open
Abstract
Breast cancer remains the second largest cause of mortality in women with cancer and does not respond well to conventional therapies. Regulator of G-protein signaling 4 (RGS4) is a GTPase-activating protein of the heterotrimeric Gq and Gi proteins. Altered levels of RGS4 are reportedly linked with several human diseases, including cancer. The present study investigated whether overexpression of RGS4 inhibited the growth of human breast cancer cells. Protein expression was investigated by western blot analysis. Cell viability and apoptosis were analyzed by MTT assay and flow cytometric analysis, respectively. Cell cycle analysis was performed using propidium iodide staining in order to examine the anti-proliferative function of increased RGS4 levels. Next, changes in the expression levels of G2/M cell cycle-related proteins were examined. Overexpression of RGS4 led to the upregulation of phosphorylayed (p)-Ser216 cell division cycle (Cdc)25C and p-Tyr15 Cdc2. Importantly, MG132-induced proteasome blockade prevented degradation of RGS4. Suppression of proliferation was associated with G2/M-phase cell cycle arrest. Furthermore, enhanced endogenous RGS4 protein levels significantly inhibited breast cancer cell growth, which was reversed by a pharmacological inhibitor of RGS4. Taken together, these results suggest that overexpression of RGS4 in human breast cancer cells by molecular means may offer a potential therapeutic approach.
Collapse
Affiliation(s)
- Hyun-Jung Park
- Department of Biology Education, Daegu University, Gyeongsan, Gyeongsangbuk-do 38453, Republic of Korea
| | - Seung-Hyun Kim
- Department of Biology Education, Daegu University, Gyeongsan, Gyeongsangbuk-do 38453, Republic of Korea
| | - Dong-Oh Moon
- Department of Biology Education, Daegu University, Gyeongsan, Gyeongsangbuk-do 38453, Republic of Korea
| |
Collapse
|
77
|
Sokolina K, Kittanakom S, Snider J, Kotlyar M, Maurice P, Gandía J, Benleulmi-Chaachoua A, Tadagaki K, Oishi A, Wong V, Malty RH, Deineko V, Aoki H, Amin S, Yao Z, Morató X, Otasek D, Kobayashi H, Menendez J, Auerbach D, Angers S, Pržulj N, Bouvier M, Babu M, Ciruela F, Jockers R, Jurisica I, Stagljar I. Systematic protein-protein interaction mapping for clinically relevant human GPCRs. Mol Syst Biol 2017; 13:918. [PMID: 28298427 PMCID: PMC5371730 DOI: 10.15252/msb.20167430] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
G‐protein‐coupled receptors (GPCRs) are the largest family of integral membrane receptors with key roles in regulating signaling pathways targeted by therapeutics, but are difficult to study using existing proteomics technologies due to their complex biochemical features. To obtain a global view of GPCR‐mediated signaling and to identify novel components of their pathways, we used a modified membrane yeast two‐hybrid (MYTH) approach and identified interacting partners for 48 selected full‐length human ligand‐unoccupied GPCRs in their native membrane environment. The resulting GPCR interactome connects 686 proteins by 987 unique interactions, including 299 membrane proteins involved in a diverse range of cellular functions. To demonstrate the biological relevance of the GPCR interactome, we validated novel interactions of the GPR37, serotonin 5‐HT4d, and adenosine ADORA2A receptors. Our data represent the first large‐scale interactome mapping for human GPCRs and provide a valuable resource for the analysis of signaling pathways involving this druggable family of integral membrane proteins.
Collapse
Affiliation(s)
- Kate Sokolina
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | | | - Jamie Snider
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Max Kotlyar
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Pascal Maurice
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS UMR 8104, Paris, France.,Sorbonne Paris Cité, University of Paris Descartes, Paris, France.,UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | - Jorge Gandía
- Unitat de Farmacologia, Departament de Patologia i Terapèutica Experimental, Facultat de Medicina, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Abla Benleulmi-Chaachoua
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS UMR 8104, Paris, France.,Sorbonne Paris Cité, University of Paris Descartes, Paris, France
| | - Kenjiro Tadagaki
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS UMR 8104, Paris, France.,Sorbonne Paris Cité, University of Paris Descartes, Paris, France
| | - Atsuro Oishi
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS UMR 8104, Paris, France.,Sorbonne Paris Cité, University of Paris Descartes, Paris, France
| | - Victoria Wong
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Ramy H Malty
- Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, SK, Canada
| | - Viktor Deineko
- Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, SK, Canada
| | - Hiroyuki Aoki
- Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, SK, Canada
| | - Shahreen Amin
- Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, SK, Canada
| | - Zhong Yao
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Xavier Morató
- Unitat de Farmacologia, Departament de Patologia i Terapèutica Experimental, Facultat de Medicina, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - David Otasek
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Hiroyuki Kobayashi
- Department of Biochemistry, Institute for Research in Immunology & Cancer, Université de Montréal, Montréal, QC, Canada
| | | | | | - Stephane Angers
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy and Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Natasa Pržulj
- Department of Computing, University College London, London, UK
| | - Michel Bouvier
- Department of Biochemistry, Institute for Research in Immunology & Cancer, Université de Montréal, Montréal, QC, Canada
| | - Mohan Babu
- Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, SK, Canada
| | - Francisco Ciruela
- Unitat de Farmacologia, Departament de Patologia i Terapèutica Experimental, Facultat de Medicina, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Ralf Jockers
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS UMR 8104, Paris, France.,Sorbonne Paris Cité, University of Paris Descartes, Paris, France
| | - Igor Jurisica
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada.,Departments of Medical Biophysics and Computer Science, University of Toronto, Toronto, ON, Canada.,Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Igor Stagljar
- Donnelly Centre, University of Toronto, Toronto, ON, Canada .,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
78
|
Ghosh P, Rangamani P, Kufareva I. The GAPs, GEFs, GDIs and…now, GEMs: New kids on the heterotrimeric G protein signaling block. Cell Cycle 2017; 16:607-612. [PMID: 28287365 DOI: 10.1080/15384101.2017.1282584] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
The canonical process of activation of heterotrimeric G proteins by G protein coupled receptors (GPCRs) is well studied. Recently, a rapidly emerging paradigm has revealed the existence of a new, non-canonical set of cytosolic G protein modulators, guanine exchange modulators (GEMs). Among G proteins regulators, GEMs are uniquely capable of initiating pleiotropic signals: these bifunctional modulators can activate cAMP inhibitory (Gi) proteins and inhibit cAMP-stimulatory (Gs) proteins through a single short evolutionarily conserved module. A prototypical member of the GEM family, GIV/Girdin, integrates signals downstream of a myriad of cell surface receptors, e.g., growth factor RTKs, integrins, cytokine, GPCRs, etc., and translates these signals into G protein activation or inhibition. By their pleiotropic action, GIV and other GEMs modulate several key pathways within downstream signaling network. Unlike canonical G protein signaling that is finite and is triggered directly and exclusively by GPCRs, the temporal and spatial features of non-canonical activation of G protein via GIV-family of cytosolic GEMs are unusually relaxed. GIV uses this relaxed circuitry to integrate, reinforce and compartmentalize signals downstream of both growth factors and G proteins in a way that enables it to orchestrate cellular phenotypes in a sustained manner. Mounting evidence suggests the importance of GIV and other GEMs as disease modulators and their potential to serve as therapeutic targets; however, a lot remains unknown within the layers of the proverbial onion that must be systematically peeled. This perspective summarizes the key concepts of the GEM-dependent G protein signaling paradigm and discusses the multidisciplinary approaches that are likely to revolutionize our understanding of this paradigm from the atomic level to systems biology.
Collapse
Affiliation(s)
- Pradipta Ghosh
- a Departments of Medicine and Cell and Molecular Medicine , University of California at San Diego , La Jolla , CA , USA
| | - Padmini Rangamani
- b Department of Mechanical and Aerospace Engineering , Jacobs School of Engineering, University of California at San Diego , La Jolla , CA , USA
| | - Irina Kufareva
- c Skaggs School of Pharmacy and Pharmaceutical Sciences , University of California at San Diego , La Jolla , CA , USA
| |
Collapse
|
79
|
|
80
|
Shi Y, Lai X, Ye L, Chen K, Cao Z, Gong W, Jin L, Wang C, Liu M, Liao Y, Wang JM, Zhou N. Activated niacin receptor HCA2 inhibits chemoattractant-mediated macrophage migration via Gβγ/PKC/ERK1/2 pathway and heterologous receptor desensitization. Sci Rep 2017; 7:42279. [PMID: 28186140 PMCID: PMC5301212 DOI: 10.1038/srep42279] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 01/08/2017] [Indexed: 12/18/2022] Open
Abstract
The niacin receptor HCA2 is implicated in controlling inflammatory host responses with yet poorly understood mechanistic basis. We previously reported that HCA2 in A431 epithelial cells transduced Gβγ-protein kinase C- and Gβγ-metalloproteinase/EGFR-dependent MAPK/ERK signaling cascades. Here, we investigated the role of HCA2 in macrophage-mediated inflammation and the underlying mechanisms. We found that proinflammatory stimulants LPS, IL-6 and IL-1β up-regulated the expression of HCA2 on macrophages. Niacin significantly inhibited macrophage chemotaxis in response to chemoattractants fMLF and CCL2 by disrupting polarized distribution of F-actin and Gβ protein. Niacin showed a selected additive effect on chemoattractant-induced activation of ERK1/2, JNK and PI3K pathways, but only the MEK inhibitor UO126 reduced niacin-mediated inhibition of macrophage chemotaxis, while activation of ERK1/2 by EGF alone did not inhibit fMLF-mediated migration of HEK293T cells co-expressing HCA2 and fMLF receptor FPR1. In addition, niacin induced heterologous desensitization and internalization of FPR1. Furthermore, niacin rescued mice from septic shock by diminishing inflammatory symptoms and the effect was abrogated in HCA2-/- mice. These results suggest that Gβγ/PKC-dependent ERK1/2 activation and heterologous desensitization of chemoattractant receptors are involved in the inhibition of chemoattractant-induced migration of macrophages by niacin. Thus, HCA2 plays a critical role in host protection against pro-inflammatory insults.
Collapse
Affiliation(s)
- Ying Shi
- College of Life Sciences, Zhejiang University, Yu Hang Tang Load 388, Hangzhou, PR China
| | - Xiangru Lai
- College of Life Sciences, Zhejiang University, Yu Hang Tang Load 388, Hangzhou, PR China
| | - Lingyan Ye
- College of Life Sciences, Zhejiang University, Yu Hang Tang Load 388, Hangzhou, PR China
| | - Keqiang Chen
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute-Frederick, NIH, Frederick, MD 21702, USA
| | - Zheng Cao
- College of Life Sciences, Zhejiang University, Yu Hang Tang Load 388, Hangzhou, PR China
| | - Wanghua Gong
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute-Frederick, NIH, Frederick, MD 21702, USA
| | - Lili Jin
- College of Life Sciences, Zhejiang University, Yu Hang Tang Load 388, Hangzhou, PR China
| | - Chunyan Wang
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute-Frederick, NIH, Frederick, MD 21702, USA.,Xuzhou Yes Biotech Laboratories Ltd. Xuzhou, Jiangsu, PR China
| | - Mingyong Liu
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute-Frederick, NIH, Frederick, MD 21702, USA.,Department of Spine Surgery, Daping Hospital, Third Military Medical University, Chongqing, PR China
| | - Yuan Liao
- College of Life Sciences, Zhejiang University, Yu Hang Tang Load 388, Hangzhou, PR China
| | - Ji Ming Wang
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute-Frederick, NIH, Frederick, MD 21702, USA
| | - Naiming Zhou
- College of Life Sciences, Zhejiang University, Yu Hang Tang Load 388, Hangzhou, PR China
| |
Collapse
|
81
|
Swain DM, Sahoo RK, Srivastava VK, Tripathy BC, Tuteja R, Tuteja N. Function of heterotrimeric G-protein γ subunit RGG1 in providing salinity stress tolerance in rice by elevating detoxification of ROS. PLANTA 2017; 245:367-383. [PMID: 27785615 DOI: 10.1007/s00425-016-2614-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 10/20/2016] [Indexed: 05/07/2023]
Abstract
The present study provides evidence of a unique function of RGG1 in providing salinity stress tolerance in transgenic rice without affecting yield. It also provides a good example for signal transduction from the external environment to inside for enhanced agricultural production that withstands the extreme climatic conditions and ensures food security. The role of heterotrimeric G-proteins functioning as signalling molecules has not been studied as extensively in plants as in animals. Recently, their importance in plant stress signalling has been emerging. In this study, the function of rice G-protein γ subunit (RGG1) in the promotion of salinity tolerance in rice (Oryza sativa L. cv. IR64) was investigated. The overexpression of RGG1 driven by the CaMV35S promoter in transgenic rice conferred high salinity tolerance even in the presence of 200 mM NaCl. Transcript levels of antioxidative genes, i.e., CAT, APX, and GR, and their enzyme activities increased in salinity-stressed transgenic rice plants suggesting a better antioxidant system to cope the oxidative-damages caused by salinity stress. The RGG1-induced signalling events that conferred tolerance to salinity was mediated by increased gene expression of the enzymes that scavenged reactive oxygen species. In salinity-stressed RGG1 transgenic lines, the transcript levels of RGG2, RGB, RGA, DEP1, and GS3 also increased in addition to RGG1. These observations suggest that most likely the stoichiometry of the G-protein complex was not disturbed under stress. Agronomic parameters, endogenous sugar content (glucose and fructose) and hormones (GA3, zeatin and IAA) were also higher in the transgenic plants compared with the wild-type plants. A BiFC assay confirmed the interaction of RGG1 with different stress-responsive proteins which play active roles in signalling and prevention of aggregation of proteins under stress-induced perturbation. The present study will help in understanding the G-protein-mediated stress tolerance in plants.
Collapse
Affiliation(s)
- Durga Madhab Swain
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
- Department of Biotechnology, Ravenshaw University, Cuttack, Odisha, 753003, India
| | - Ranjan Kumar Sahoo
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Vineet Kumar Srivastava
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Baishnab Charan Tripathy
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
- Department of Biotechnology, Ravenshaw University, Cuttack, Odisha, 753003, India
| | - Renu Tuteja
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Narendra Tuteja
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
- Amity Institute of Microbial Technology, Amity University, Noida, 201313, India.
| |
Collapse
|
82
|
Zhang B, Sun N, Mu X, Zhi L, Zhai L, Jiang Y, Fu Z, Yao Z. G Protein Alpha S Subunit Promotes Cell Proliferation of Renal Cell Carcinoma with Involvement of Protein Kinase A Signaling. DNA Cell Biol 2017; 36:237-242. [PMID: 28051330 DOI: 10.1089/dna.2016.3535] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Heterotrimeric G proteins, which are composed of Gα and Gβγ subunits, transduce signals sensed by the coupled surface receptors. Aberrant expressions of G proteins have been observed in many cancer types. This study aimed to determine the expression level of the stimulatory G protein alpha S subunit (Gαs, the main transcript encoded by the GNAS locus) and its biological function in renal cell carcinoma (RCC). Western blotting and quantitative reverse transcription-PCR results show that Gαs expression dramatically increased in RCC cell lines (ACHN, GRC-1, and 786-O) compared to normal renal epithelial cells HK-2. Knockdown of Gαs by small interfering RNA (siRNA) caused a significant inhibition on proliferation of ACHN cells as indicated by MTT assay and colony formation assay. Overexpression of Gαs in HK-2 cells promoted cell proliferation and led to a higher level of intracellular cyclic adenosine monophosphate (cAMP) in response to parathyroid hormone (PTH) compared to the cells transfected with empty vector. Notably, the growth of HK-2 cells overexpressing Gαs was efficiently inhibited in the presence of protein kinase A (PKA) inhibitor H89. Furthermore, in a xenograft model by subcutaneous injection of ACHN cells, tumor growth was also suppressed by H89. Taken together, these results suggest that Gαs plays a tumor-promoting role in RCC and possibly acts through a PKA-dependent pathway. Our findings may provide new clues for target therapy for RCC in the future.
Collapse
Affiliation(s)
- Bo Zhang
- 1 Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University , Tianjin, People's Republic of China
| | - Nan Sun
- 2 Tianjin Medical University , Tianjin, People's Republic of China
| | - Xin Mu
- 3 Tianjin Central Hospital of Gynecology Obstetrics , Tianjin, People's Republic of China
| | - Lei Zhi
- 4 Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry, Tianjin Medical University , Tianjin, People's Republic of China
| | - Lei Zhai
- 5 Department of Orthopedic Surgery, The Affiliated Hospital of Logistics College of Chinese People's Armed Police Force , Tianjin, People's Republic of China
| | - Yuan Jiang
- 1 Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University , Tianjin, People's Republic of China
| | - Zheng Fu
- 1 Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University , Tianjin, People's Republic of China
| | - Zhi Yao
- 1 Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University , Tianjin, People's Republic of China
| |
Collapse
|
83
|
Jean-Alphonse FG, Wehbi VL, Chen J, Noda M, Taboas JM, Xiao K, Vilardaga JP. β 2-adrenergic receptor control of endosomal PTH receptor signaling via Gβγ. Nat Chem Biol 2016; 13:259-261. [PMID: 28024151 DOI: 10.1038/nchembio.2267] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 10/18/2016] [Indexed: 11/09/2022]
Abstract
Cells express several G-protein-coupled receptors (GPCRs) at their surfaces, transmitting simultaneous extracellular hormonal and chemical signals into cells. A comprehensive understanding of mechanisms underlying the integrated signaling response induced by distinct GPCRs is thus required. Here we found that the β2-adrenergic receptor, which induces a short cAMP response, prolongs nuclear cAMP and protein kinase A (PKA) activation by promoting endosomal cAMP production in parathyroid hormone (PTH) receptor signaling through the stimulatory action of G protein Gβγ subunits on adenylate cyclase type 2.
Collapse
Affiliation(s)
- Frédéric G Jean-Alphonse
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Vanessa L Wehbi
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jingming Chen
- Department of Biomedical Engineering, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Masaki Noda
- Department of Molecular Pharmacology, Medical Research Institute Tokyo Medical and Dental University, Bunkyo-Ku, Tokyo, Japan
| | - Juan M Taboas
- Department of Biomedical Engineering, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,McGowan Institute of Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Kunhong Xiao
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jean-Pierre Vilardaga
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
84
|
Beta 2-adrenergic receptor homodimers: Role of transmembrane domain 1 and helix 8 in dimerization and cell surface expression. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1859:1445-1455. [PMID: 27993566 DOI: 10.1016/j.bbamem.2016.12.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/05/2016] [Accepted: 12/08/2016] [Indexed: 11/22/2022]
Abstract
Even though there are hundreds of reports in the published literature supporting the hypothesis that G protein-coupled receptors (GPCR) form and function as dimers this remains a highly controversial area of research and mechanisms governing homodimer formation are poorly understood. Crystal structures revealing homodimers have been reported for many different GPCR. For adrenergic receptors, a potential dimer interface involving transmembrane domain 1 (TMD1) and helix 8 (H8) was identified in crystal structures of the beta1-adrenergic (β1-AR) and β2-AR. The purpose of this study was to investigate a potential role for TMD1 and H8 in dimerization and plasma membrane expression of functional β2-AR. Charged residues at the base of TMD1 and in the distal portion of H8 were replaced, singly and in combination, with non-polar residues or residues of opposite charge. Wild type and mutant β2-AR, tagged with YFP and expressed in HEK293 cells, were evaluated for plasma membrane expression and function. Homodimer formation was evaluated using bioluminescence resonance energy transfer, bimolecular fluorescence complementation, and fluorescence correlation spectroscopy. Amino acid substitutions at the base of TMD1 and in the distal portion of H8 disrupted homodimer formation and caused receptors to be retained in the endoplasmic reticulum. Mutations in the proximal region of H8 did not disrupt dimerization but did interfere with plasma membrane expression. This study provides biophysical evidence linking a potential TMD1/H8 interface with ER export and the expression of functional β2-AR on the plasma membrane. This article is part of a Special Issue entitled: Interactions between membrane receptors in cellular membranes edited by Kalina Hristova.
Collapse
|
85
|
Sharifat N, Mohammad Zadeh G, Ghaffari MA, Dayati P, Kamato D, Little PJ, Babaahmadi-Rezaei H. Endothelin-1 (ET-1) stimulates carboxy terminal Smad2 phosphorylation in vascular endothelial cells by a mechanism dependent on ET receptors and de novo protein synthesis. ACTA ACUST UNITED AC 2016; 69:66-72. [PMID: 27905105 DOI: 10.1111/jphp.12654] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/18/2016] [Indexed: 12/11/2022]
Abstract
OBJECTIVE G protein-coupled receptor (GPCR) agonists through their receptors can transactivate protein tyrosine kinase receptors such as epidermal growth factor receptor and serine/threonine kinase receptors most notably transforming growth factor (TGF)-β receptor (TβRI). This signalling mechanism represents a major expansion in the cellular outcomes attributable to GPCR signalling. This study addressed the role and mechanisms involved in GPCR agonist, endothelin-1 (ET-1)-mediated transactivation of the TβRI in bovine aortic endothelial cells (BAECs). METHOD The in-vitro model used BAECs. Signalling intermediate phospho-Smad2 in the carboxy terminal was detected and quantified by Western blotting. KEY FINDING ET-1 treatment of BAECs resulted in a time and concentration-dependent increase in pSmad2C. Peak phosphorylation was evident with 100 nm treatment of ET-1 at 4-6 h. TβRI antagonist, SB431542 inhibited ET-1-mediated pSmad2C. In the presence of bosentan, a mixed ETA and ETB receptor antagonist ET-1-mediated pSmad2C levels were inhibited. The ET-mediated pSmad2C was blocked by the protein synthesis inhibitor, cycloheximide. CONCLUSION In BAECs, ET-1 via the ETB receptor is involved in transactivation of the TβRI. The transactivation-dependent response is dependent upon de novo protein synthesis.
Collapse
Affiliation(s)
- Narges Sharifat
- Student Research Committee, Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ghorban Mohammad Zadeh
- Hyperlipidemia Research Center, Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad-Ali Ghaffari
- Cellular and Molecular Research Center, Ahvaz Jundishapour University of Medical Sciences, Ahvaz, Iran
| | - Parisa Dayati
- Student Research Committee, Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Danielle Kamato
- Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Qld, Australia
| | - Peter J Little
- Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Qld, Australia
| | - Hossein Babaahmadi-Rezaei
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Atherosclerosis Research Center, Ahvaz, Iran
| |
Collapse
|
86
|
VCP/p97 regulates β 2AR quality control during receptor biosynthesis. Cell Signal 2016; 30:50-58. [PMID: 27887991 DOI: 10.1016/j.cellsig.2016.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 11/08/2016] [Accepted: 11/17/2016] [Indexed: 11/20/2022]
Abstract
GPCRs form signalling complexes with other receptors as part of dimers, G proteins and effector partners. A proteomic screen to identify proteins that associate with the β2-adrenergic receptor (β2AR) identified many of components of the Endoplasmic-Reticulum-Associated Degradation (ERAD) quality control system [1], including the valosin-containing protein (VCP/p97). Here, we validated the interaction of VCP with co-expressed FLAG-β2AR, demonstrating, using an inducible expression system, that the interaction of FLAG-β2AR and VCP is not an artifact of overexpression of the β2AR per se. We knocked down VCP and noted that levels of FLAG-β2AR were increased in cells with lower VCP levels. This increase in the level of FLAG-β2AR did not lead to an increase in the level of functional receptor observed at the cell surface. Similarly, inhibition of the proteasome lead to a dramatic increase in the abundance of TAP-β2AR, while cellular responses again remained unchanged. Taken together, our data suggests that a substantial proportion of the β2AR produced is non-functional and VCP plays a key role in the maturation and trafficking of the β2AR as part of the ERAD quality control process.
Collapse
|
87
|
Vázquez-Prado J, Bracho-Valdés I, Cervantes-Villagrana RD, Reyes-Cruz G. Gβγ Pathways in Cell Polarity and Migration Linked to Oncogenic GPCR Signaling: Potential Relevance in Tumor Microenvironment. Mol Pharmacol 2016; 90:573-586. [PMID: 27638873 DOI: 10.1124/mol.116.105338] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/14/2016] [Indexed: 02/14/2025] Open
Abstract
Cancer cells and stroma cells in tumors secrete chemotactic agonists that exacerbate invasive behavior, promote tumor-induced angiogenesis, and recruit protumoral bone marrow-derived cells. In response to shallow gradients of chemotactic stimuli recognized by G protein-coupled receptors (GPCRs), Gβγ-dependent signaling cascades contribute to specifying the spatiotemporal assembly of cytoskeletal structures that can dynamically alter cell morphology. This sophisticated process is intrinsically linked to the activation of Rho GTPases and their cytoskeletal-remodeling effectors. Thus, Rho guanine nucleotide exchange factors, the activators of these molecular switches, and their upstream signaling partners are considered participants of tumor progression. Specifically, phosphoinositide-3 kinases (class I PI3Ks, β and γ) and P-Rex1, a Rac-specific guanine nucleotide exchange factor, are fundamental Gβγ effectors in the pathways controlling directionally persistent motility. In addition, GPCR-dependent chemotactic responses often involve endosomal trafficking of signaling proteins; coincidently, endosomes serve as signaling platforms for Gβγ In preclinical murine models of cancer, inhibition of Gβγ attenuates tumor growth, whereas in cancer patients, aberrant overexpression of chemotactic Gβγ effectors and recently identified mutations in Gβ correlate with poor clinical outcome. Here we discuss emerging paradigms of Gβγ signaling in cancer, which are essential for chemotactic cell migration and represent novel opportunities to develop pathway-specific pharmacologic treatments.
Collapse
Affiliation(s)
- José Vázquez-Prado
- Departments of Pharmacology (J.V.-P., R.D.C.-V.) and Cell Biology (G.R.-C.). CINVESTAV-IPN, Mexico City, and Department of Pharmacology (I.B.-V.), School of Medicine, UABC, Mexicali, B.C., Mexico
| | - Ismael Bracho-Valdés
- Departments of Pharmacology (J.V.-P., R.D.C.-V.) and Cell Biology (G.R.-C.). CINVESTAV-IPN, Mexico City, and Department of Pharmacology (I.B.-V.), School of Medicine, UABC, Mexicali, B.C., Mexico
| | - Rodolfo Daniel Cervantes-Villagrana
- Departments of Pharmacology (J.V.-P., R.D.C.-V.) and Cell Biology (G.R.-C.). CINVESTAV-IPN, Mexico City, and Department of Pharmacology (I.B.-V.), School of Medicine, UABC, Mexicali, B.C., Mexico
| | - Guadalupe Reyes-Cruz
- Departments of Pharmacology (J.V.-P., R.D.C.-V.) and Cell Biology (G.R.-C.). CINVESTAV-IPN, Mexico City, and Department of Pharmacology (I.B.-V.), School of Medicine, UABC, Mexicali, B.C., Mexico
| |
Collapse
|
88
|
Gβγ subunits-Different spaces, different faces. Pharmacol Res 2016; 111:434-441. [PMID: 27378564 DOI: 10.1016/j.phrs.2016.06.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 06/27/2016] [Accepted: 06/28/2016] [Indexed: 11/20/2022]
Abstract
Gβγ subunits play key roles in modulation of canonical effectors in G protein-coupled receptor (GPCR)-dependent signalling at the cell surface. However, a number of recent studies of Gβγ function have revealed that they regulate a large number of molecules at distinct subcellular sites. These novel, non-canonical Gβγ roles have reshaped our understanding of how important Gβγ signalling is compared to our original notion of Gβγ subunits as simple negative regulators of Gα subunits. Gβγ dimers have now been identified as regulators of transcription, anterograde and retrograde trafficking and modulators of second messenger molecule generation in intracellular organelles. Here, we review some recent advances in our understanding of these novel non-canonical roles of Gβγ.
Collapse
|
89
|
Hunter MR, Grimsey NL, Glass M. Sulfation of the FLAG epitope is affected by co-expression of G protein-coupled receptors in a mammalian cell model. Sci Rep 2016; 6:27316. [PMID: 27273047 PMCID: PMC4895180 DOI: 10.1038/srep27316] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 05/15/2016] [Indexed: 01/13/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are important therapeutic targets and therefore extensively studied. Like most transmembrane proteins, there has been considerable difficulty in developing reliable specific antibodies for them. To overcome this, epitope tags are often used to facilitate antibody recognition in studies on fundamental receptor signalling and trafficking. In our study of cannabinoid CB1/dopamine D2 interactions we sought to generate HEK293 cells expressing FLAG-tagged D2 for use in antibody-based assays of GPCR localisation and trafficking activity, however observed that stable FLAG-hD2 expression was particularly challenging to maintain. In contrast, when expressed in cell lines expressing hCB1 robust and stable FLAG-hD2 expression was observed. We hypothesised that co-expression of CB1 might stabilise surface FLAG-hD2 expression, and therefore investigated this further. Here, we describe the observation that co-expression of either cannabinoid CB1 or CB2 receptors in HEK293 decreases the sulfation of a FLAG epitope appended at the N-terminus of the dopamine D2 receptor. Sulfation alters epitope recognition by some anti-FLAG antibodies, leading to the detection of fewer receptors, even though expression is maintained. This demonstrates that cannabinoid receptor expression modifies posttranslational processing of the FLAG-hD2 receptor, and importantly, has wider implications for the utilisation and interpretation of receptor studies involving epitope tags.
Collapse
Affiliation(s)
- Morag Rose Hunter
- Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland, New Zealand
| | - Natasha Lillia Grimsey
- Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland, New Zealand
| | - Michelle Glass
- Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland, New Zealand
| |
Collapse
|
90
|
Cattaneo F, Parisi M, Fioretti T, Sarnataro D, Esposito G, Ammendola R. Nuclear localization of Formyl-Peptide Receptor 2 in human cancer cells. Arch Biochem Biophys 2016; 603:10-9. [PMID: 27177968 DOI: 10.1016/j.abb.2016.05.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/06/2016] [Accepted: 05/06/2016] [Indexed: 12/20/2022]
Abstract
Current models of G protein-coupled receptors (GPCRs) signaling describe binding of external agonists to cell surface receptors which, in turn, trigger several biological responses. New paradigms indicate that GPCRs localize to and signal at the nucleus, thus regulating distinct signaling cascades. The formyl-peptide receptor FPR2 belongs to the GPCR super-family and is coupled to PTX-sensitive Gi proteins. We show by western blot analysis, immunofluorescence experiments and radioligand binding assays that FPR2 is expressed at nuclear level in CaLu-6 and AGS cells. Nuclear FPR2 is a functional receptor, since it participates in intra-nuclear signaling, as assessed by decreased G protein-FPR2 association and enhanced ERK2, c-Jun and c-Myc phosphorylation upon stimulation of intact nuclei with the FPR2 agonist, WKYMVm. We analyzed FPR2 sequence for the search of a nuclear localization sequence (NLS) and we found a stretch of basic aminoacids (227-KIHKK-231) in the third cytoplasmic loop of the receptor. We performed single (K230A) and multiple (H229A/K230A/K231A) mutagenesis of NLS. The constructs were individually overexpressed in HEK293 cells and immunofluorescence and western blot analysis showed that nuclear localization or translocation of FPR2 depends on the integrity of the H(229) and K(231) residues within the NLS.
Collapse
Affiliation(s)
- Fabio Cattaneo
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy
| | - Melania Parisi
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy
| | - Tiziana Fioretti
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy; IRCCS SDN, Via E. Gianturco 113, Naples 80143, Italy
| | - Daniela Sarnataro
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy; CEINGE-Biotecnologie Avanzate s.c.a.r.l., Via G. Salvatore 486, Naples 80145, Italy
| | - Gabriella Esposito
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy; CEINGE-Biotecnologie Avanzate s.c.a.r.l., Via G. Salvatore 486, Naples 80145, Italy
| | - Rosario Ammendola
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy.
| |
Collapse
|
91
|
Gastaldi S, Zamboni M, Bolasco G, Di Segni G, Tocchini-Valentini GP. Analysis of random PCR-originated mutants of the yeast Ste2 and Ste3 receptors. Microbiologyopen 2016; 5:670-86. [PMID: 27150158 PMCID: PMC4985600 DOI: 10.1002/mbo3.361] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/01/2016] [Accepted: 03/08/2016] [Indexed: 01/16/2023] Open
Abstract
The G protein-coupled receptors Ste2 and Ste3 bind α- and a-factor, respectively, in Saccharomyces cerevisiae. These receptors share a similar conformation, with seven transmembrane segments, three intracellular loops, a C-terminus tail, and three extracellular loops. However, the amino acid sequences of these two receptors bear no resemblance to each other. Coincidently the two ligands, α- and a-factor, have different sequences. Both receptors activate the same G protein. To identify amino acid residues that are important for signal transduction, the STE2 and STE3 genes were mutagenized by a random PCR-based method. Mutant receptors were analyzed in MATα cells mutated in the ITC1 gene, whose product represses transcription of a-specific genes in MATα. Expression of STE2 or STE3 in these cells results in autocrine activation of the mating pathway, since this strain produces the Ste2 receptor in addition to its specific ligand, α-factor. It also produces a-factor in addition to its specific receptor, Ste3. Therefore, this strain provides a convenient model to analyze mutants of both receptors in the same background. Many hyperactive mutations were found in STE3, whereas none was detected in STE2. This result is consistent with the different strategies that the two genes have adopted to be expressed.
Collapse
Affiliation(s)
- Serena Gastaldi
- CNR, Institute of Cell Biology and Neurobiology (IBCN), Monterotondo (Rome), 00015, Italy
| | - Michela Zamboni
- CNR, Institute of Cell Biology and Neurobiology (IBCN), Monterotondo (Rome), 00015, Italy
| | - Giulia Bolasco
- EMBL, European Molecular Biology Laboratory, Monterotondo (Rome), 00015, Italy
| | - Gianfranco Di Segni
- CNR, Institute of Cell Biology and Neurobiology (IBCN), Monterotondo (Rome), 00015, Italy
| | | |
Collapse
|
92
|
Zha Z, Han XR, Smith MD, Lei QY, Guan KL, Xiong Y. Hypertension-associated C825T polymorphism impairs the function of Gβ3 to target GRK2 ubiquitination. Cell Discov 2016; 2:16005. [PMID: 27462452 PMCID: PMC4849471 DOI: 10.1038/celldisc.2016.5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 02/08/2016] [Indexed: 01/08/2023] Open
Abstract
Population-based and case-control studies in different ethnicities have linked a polymorphism, C825T, in exon 10 of GNB3 gene to hypertension and several additional diseases. The 825T allele is associated with alternative splicing and results in a shortened Gβ3 protein, referred to as Gβ3s, which loses 41 amino acids encompassing one WD40 repeat domain. The mechanism of how Gβ3 C825T polymorphism is associated with hypertension has remained unclear, but an impairment of its canonical function in G-protein-coupled receptor signaling has been ruled out. Here, we report that Gβ3, like other Gβ proteins, binds to DDB1 and assembles a DDB1-CUL4A-ROC1 E3 ubiquitin ligase (CRL4A(Gβ3)) to target GRK2 ubiquitination. The loss of the 41 amino-acid residues disrupts the Gβ3-DDB1 binding and impairs the function of Gβ3s to ubiquitinate GRK2. GRK2 ubiquitination levels were decreased and protein levels were accumulated in the blood samples of Gβ3 825T allele carriers. Deletion of Cul4a in mice resulted in systolic pressure increased and weakened heart function in male mice that can be partially rescued by the deletion of one Grk2 allele. These results reveal a mechanism explaining the link between Gβ3 C825T polymorphism and hypertension.
Collapse
Affiliation(s)
- Zhengyu Zha
- Key Laboratory of Molecular Medicine, Ministry of Education, and Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai, China
- Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- School of Life Sciences, Fudan University, Shanghai, China
- Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Xiao-Ran Han
- Key Laboratory of Molecular Medicine, Ministry of Education, and Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai, China
- Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- School of Life Sciences, Fudan University, Shanghai, China
| | - Matthew D Smith
- Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Qun-Ying Lei
- Key Laboratory of Molecular Medicine, Ministry of Education, and Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai, China
| | - Kun-Liang Guan
- Key Laboratory of Molecular Medicine, Ministry of Education, and Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai, China
- Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Department of Pharmacology and Moores Cancer Center, University of California at San Diego, La Jolla, CA, USA
| | - Yue Xiong
- Key Laboratory of Molecular Medicine, Ministry of Education, and Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai, China
- Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
93
|
Galandrin S, Onfroy L, Poirot MC, Sénard JM, Galés C. Delineating biased ligand efficacy at 7TM receptors from an experimental perspective. Int J Biochem Cell Biol 2016; 77:251-63. [PMID: 27107932 DOI: 10.1016/j.biocel.2016.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/15/2016] [Accepted: 04/16/2016] [Indexed: 12/17/2022]
Abstract
During the last 10 years, the concept of "biased agonism" also called "functional selectivity" swamped the pharmacology of 7 transmembrane receptors and paved the way for developing signaling pathway-selective drugs with increased efficacy and less adverse effects. Initially thought to select the activation of only a subset of the signaling pathways by the reference agonist, bias ligands revealed higher complexity as they have been shown to stabilize variable receptor conformations that associate with distinct signaling events from the reference. Today, one major challenge relies on the in vitro determination of the bias and classification of these ligands, as a prerequisite for future in vivo and clinical translation. In this review, current experimental considerations for the bias evaluation related to choice of the cellular model, of the signaling pathway as well as of the assays are presented and discussed.
Collapse
Affiliation(s)
- Ségolène Galandrin
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM, UMR 1048, Université Toulouse, F-31432 Toulouse, France
| | - Lauriane Onfroy
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM, UMR 1048, Université Toulouse, F-31432 Toulouse, France
| | - Mathias Charles Poirot
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM, UMR 1048, Université Toulouse, F-31432 Toulouse, France
| | - Jean-Michel Sénard
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM, UMR 1048, Université Toulouse, F-31432 Toulouse, France; Service de Pharmacologie Clinique, Faculté de médecine, Centre Hospitalier Universitaire de Toulouse, Université de Toulouse, F-31000 Toulouse, France
| | - Céline Galés
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM, UMR 1048, Université Toulouse, F-31432 Toulouse, France.
| |
Collapse
|
94
|
The TRPM1 channel in ON-bipolar cells is gated by both the α and the βγ subunits of the G-protein Go. Sci Rep 2016; 6:20940. [PMID: 26883481 PMCID: PMC4756708 DOI: 10.1038/srep20940] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/16/2015] [Indexed: 12/25/2022] Open
Abstract
Transmission from photoreceptors to ON bipolar cells in mammalian retina is mediated by a sign-inverting cascade. Upon binding glutamate, the metabotropic glutamate receptor mGluR6 activates the heterotrimeric G-protein Gαoβ3γ13, and this leads to closure of the TRPM1 channel (melastatin). TRPM1 is thought to be constitutively open, but the mechanism that leads to its closure is unclear. We investigated this question in mouse rod bipolar cells by dialyzing reagents that modify the activity of either Gαo or Gβγ and then observing their effects on the basal holding current. After opening the TRPM1 channels with light, a constitutively active mutant of Gαo closed the channel, but wild-type Gαo did not. After closing the channels by dark adaptation, phosducin or inactive Gαo (both sequester Gβγ) opened the channel while the active mutant of Gαo did not. Co-immunoprecipitation showed that TRPM1 interacts with Gβ3 and with the active and inactive forms of Gαo. Furthermore, bioluminescent energy transfer assays indicated that while Gαo interacts with both the N- and the C- termini of TRPM1, Gβγ interacts only with the N-terminus. Our physiological and biochemical results suggest that both Gαo and Gβγ bind TRPM1 channels and cooperate to close them.
Collapse
|
95
|
Abstract
According to the standard model of G protein-coupled receptor (GPCR) signaling, GPCRs are localized to the cell membrane where they respond to extracellular signals. Stimulation of GPCRs leads to the activation of heterotrimeric G proteins and their intracellular signaling pathways. However, this model fails to accommodate GPCRs, G proteins, and their downstream effectors that are found on the nuclear membrane or in the nucleus. Evidence from isolated nuclei indicates the presence of GPCRs on the nuclear membrane that can activate similar G protein-dependent signaling pathways in the nucleus as at the cell surface. These pathways also include activation of cyclic adenosine monophosphate, calcium and nitric oxide synthase signaling in cardiomyocytes. In addition, a number of distinct heterotrimeric and monomeric G proteins have been found in the nucleus of various cell types. This review will focus on understanding the function of nuclear G proteins with a focus on cardiac signaling where applicable.
Collapse
|
96
|
Fine-tuning of integrin activation. Blood 2016; 127:275-6. [PMID: 26796106 DOI: 10.1182/blood-2015-10-676908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
97
|
Rankovic Z, Brust TF, Bohn LM. Biased agonism: An emerging paradigm in GPCR drug discovery. Bioorg Med Chem Lett 2016; 26:241-250. [PMID: 26707396 PMCID: PMC5595354 DOI: 10.1016/j.bmcl.2015.12.024] [Citation(s) in RCA: 200] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 12/04/2015] [Accepted: 12/08/2015] [Indexed: 01/11/2023]
Abstract
G protein coupled receptors have historically been one of the most druggable classes of cellular proteins. The members of this large receptor gene family couple to primary effectors, G proteins, that have built in mechanisms for regeneration and amplification of signaling with each engagement of receptor and ligand, a kinetic event in itself. In recent years GPCRs, have been found to interact with arrestin proteins to initiate signal propagation in the absence of G protein interactions. This pinnacle observation has changed a previously held notion of the linear spectrum of GPCR efficacy and uncovered a new paradigm in GPCR research and drug discovery that relies on multidimensionality of GPCR signaling. Ligands were found that selectively confer activity in one pathway over another, and this phenomenon has been referred to as 'biased agonism' or 'functional selectivity'. While great strides in the understanding of this phenomenon have been made in recent years, two critical questions still dominate the field: How can we rationally design biased GPCR ligands, and ultimately, which physiological responses are due to G protein versus arrestin interactions? This review will discuss the current understanding of some of the key aspects of biased signaling that are related to these questions, including mechanistic insights in the nature of biased signaling and methods for measuring ligand bias, as well as relevant examples of drug discovery applications and medicinal chemistry strategies that highlight the challenges and opportunities in this rapidly evolving field.
Collapse
Affiliation(s)
- Zoran Rankovic
- Discovery Chemistry and Research Technologies, Eli Lilly and Company, 893 South Delaware Street, Indianapolis, IN 46285, USA.
| | - Tarsis F Brust
- Department of Molecular Therapeutics, and Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Laura M Bohn
- Department of Molecular Therapeutics, and Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA.
| |
Collapse
|
98
|
Kamp ME, Liu Y, Kortholt A. Function and Regulation of Heterotrimeric G Proteins during Chemotaxis. Int J Mol Sci 2016; 17:ijms17010090. [PMID: 26784171 PMCID: PMC4730333 DOI: 10.3390/ijms17010090] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 12/22/2015] [Accepted: 12/31/2015] [Indexed: 01/10/2023] Open
Abstract
Chemotaxis, or directional movement towards an extracellular gradient of chemicals, is necessary for processes as diverse as finding nutrients, the immune response, metastasis and wound healing. Activation of G-protein coupled receptors (GPCRs) is at the very base of the chemotactic signaling pathway. Chemotaxis starts with binding of the chemoattractant to GPCRs at the cell-surface, which finally leads to major changes in the cytoskeleton and directional cell movement towards the chemoattractant. Many chemotaxis pathways that are directly regulated by Gβγ have been identified and studied extensively; however, whether Gα is just a handle that regulates the release of Gβγ or whether Gα has its own set of distinct chemotactic effectors, is only beginning to be understood. In this review, we will discuss the different levels of regulation in GPCR signaling and the downstream pathways that are essential for proper chemotaxis.
Collapse
Affiliation(s)
- Marjon E Kamp
- Department of Cell Biochemistry, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands.
| | - Youtao Liu
- Department of Cell Biochemistry, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands.
| | - Arjan Kortholt
- Department of Cell Biochemistry, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands.
| |
Collapse
|
99
|
Allosteric Modulators of the Class A G Protein Coupled Receptors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 917:185-207. [PMID: 27236557 DOI: 10.1007/978-3-319-32805-8_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Allosteric modulation is the regulation of a protein by binding of an effector molecule at the proteins allosteric site (a site other than that of the endogenous ligand). Allosteric modulators, by virtue of the fact that they may stabilize different global conformations of a receptor, have the potential to disrupt protein-protein interactions of very large proteins and elicit diverse functional responses. The existence of ligands that allosterically modulate the G protein receptor (GPCR) functions provides both challenges and opportunities for drug development campaigns. A number of therapeutic advantages of allosteric modulators over classic orthosteric ligands were proposed, involving nature of response, improved selectivity and ligand-directed signaling. In this review I discuss various aspects of allosteric modulation of GPCRs, which arise from the interactions of receptors with synthetic or endogenous small molecules, ions, lipids and diverse proteins. Detection and quantification of allosteric modulation will be also addressed. In the conclusion I will present future opportunities and challenges in the development of allosteric modulators as therapeutics.
Collapse
|
100
|
Xie K, Masuho I, Shih CC, Cao Y, Sasaki K, Lai CWJ, Han PL, Ueda H, Dessauer CW, Ehrlich ME, Xu B, Willardson BM, Martemyanov KA. Stable G protein-effector complexes in striatal neurons: mechanism of assembly and role in neurotransmitter signaling. eLife 2015; 4. [PMID: 26613416 PMCID: PMC4728126 DOI: 10.7554/elife.10451] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 11/26/2015] [Indexed: 12/23/2022] Open
Abstract
In the striatum, signaling via G protein-coupled neurotransmitter receptors is essential for motor control. Critical to this process is the effector enzyme adenylyl cyclase type 5 (AC5) that produces second messenger cAMP upon receptor-mediated activation by G protein Golf. However, the molecular organization of the Golf-AC5 signaling axis is not well understood. In this study, we report that in the striatum AC5 exists in a stable pre-coupled complex with subunits of Golf heterotrimer. We use genetic mouse models with disruption in individual components of the complex to reveal hierarchical order of interactions required for AC5-Golf stability. We further identify that the assembly of AC5-Golf complex is mediated by PhLP1 chaperone that plays central role in neurotransmitter receptor coupling to cAMP production motor learning. These findings provide evidence for the existence of stable G protein-effector signaling complexes and identify a new component essential for their assembly.
Collapse
Affiliation(s)
- Keqiang Xie
- Department of Neuroscience, The Scripps Research Institute, Jupiter, United States
| | - Ikuo Masuho
- Department of Neuroscience, The Scripps Research Institute, Jupiter, United States
| | - Chien-Cheng Shih
- Department of Neuroscience, The Scripps Research Institute, Jupiter, United States.,Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, United States
| | - Yan Cao
- Department of Neuroscience, The Scripps Research Institute, Jupiter, United States
| | - Keita Sasaki
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Chun Wan J Lai
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, United States
| | - Pyung-Lim Han
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Hiroshi Ueda
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Carmen W Dessauer
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center, Houston, United States
| | - Michelle E Ehrlich
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, United States.,Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, United States.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Baoji Xu
- Department of Neuroscience, The Scripps Research Institute, Jupiter, United States
| | - Barry M Willardson
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, United States
| | - Kirill A Martemyanov
- Department of Neuroscience, The Scripps Research Institute, Jupiter, United States
| |
Collapse
|