51
|
Romano A, Friuli M, Cifani C, Gaetani S. Oxytocin in the neural control of eating: At the crossroad between homeostatic and non-homeostatic signals. Neuropharmacology 2020; 171:108082. [PMID: 32259527 DOI: 10.1016/j.neuropharm.2020.108082] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/10/2020] [Accepted: 03/30/2020] [Indexed: 12/21/2022]
Abstract
The understanding of the biological substrates regulating feeding behavior is relevant to address the health problems related to food overconsumption. Several studies have expanded the conventional view of the homeostatic regulation of body weight mainly orchestrated by the hypothalamus, to include also the non-homeostatic control of appetite. Such processes include food reward and are mainly coordinated by the activation of the central mesolimbic dopaminergic pathway. The identification of endogenous systems acting as a bridge between homoeostatic and non-homeostatic pathways might represent a significant step toward the development of drugs for the treatment of aberrant eating patterns. Oxytocin is a hypothalamic hormone that is directly secreted into the brain and reaches the blood circulation through the neurohypophysis. Oxytocin regulates a variety of physiologic functions, including eating and metabolism. In the last years both preclinical and clinical studies well characterized oxytocin for its effects in reducing food intake and body weight. In the present review we summarize the role played by oxytocin in the control of both homeostatic and non-homeostatic eating, within cognitive, metabolic and reward mechanisms, to mostly highlight its potential therapeutic effects as a new pharmacological approach for the development of drugs for eating disorders. We conclude that the central oxytocinergic system is possibly one of the mechanisms that coordinate energy balance at the crossroads between homeostatic and non-homeostatic mechanisms. This concept should foster studies aimed at exploring the possible exploitation of oxytocin in the treatment of aberrant eating patterns. This article is part of the special issue on Neuropeptides.
Collapse
Affiliation(s)
- Adele Romano
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Marzia Friuli
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Carlo Cifani
- School of Pharmacy, Pharmacology Unit, University of Camerino, via Madonna delle Carceri, 9, 62032, Camerino, MC, Italy
| | - Silvana Gaetani
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
52
|
McCormack SE, Blevins JE, Lawson EA. Metabolic Effects of Oxytocin. Endocr Rev 2020; 41:5658523. [PMID: 31803919 PMCID: PMC7012298 DOI: 10.1210/endrev/bnz012] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 11/04/2019] [Indexed: 12/13/2022]
Abstract
There is growing evidence that oxytocin (OXT), a hypothalamic hormone well recognized for its effects in inducing parturition and lactation, has important metabolic effects in both sexes. The purpose of this review is to summarize the physiologic effects of OXT on metabolism and to explore its therapeutic potential for metabolic disorders. In model systems, OXT promotes weight loss by decreasing energy intake. Pair-feeding studies suggest that OXT-induced weight loss may also be partly due to increased energy expenditure and/or lipolysis. In humans, OXT appears to modulate both homeostatic and reward-driven food intake, although the observed response depends on nutrient milieu (eg, obese vs. nonobese), clinical characteristics (eg, sex), and experimental paradigm. In animal models, OXT is anabolic to muscle and bone, which is consistent with OXT-induced weight loss occurring primarily via fat loss. In some human observational studies, circulating OXT concentrations are also positively associated with lean mass and bone mineral density. The impact of exogenous OXT on human obesity is the focus of ongoing investigation. Future randomized, placebo-controlled clinical trials in humans should include rigorous, standardized, and detailed assessments of adherence, adverse effects, pharmacokinetics/pharmacodynamics, and efficacy in the diverse populations that may benefit from OXT, in particular those in whom hypothalamic OXT signaling may be abnormal or impaired (eg, individuals with Sim1 deficiency, Prader-Willi syndrome, or craniopharyngioma). Future studies will also have the opportunity to investigate the characteristics of new OXT mimetic peptides and the obligation to consider long-term effects, especially when OXT is given to children and adolescents. (Endocrine Reviews XX: XX - XX, 2020).
Collapse
Affiliation(s)
- Shana E McCormack
- Neuroendocrine Center, Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - James E Blevins
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, Washington.,Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, Washington
| | - Elizabeth A Lawson
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, Massachusetts.,Department of Medicine, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
53
|
Lawson EA, Olszewski PK, Weller A, Blevins JE. The role of oxytocin in regulation of appetitive behaviour, body weight and glucose homeostasis. J Neuroendocrinol 2020; 32:e12805. [PMID: 31657509 PMCID: PMC7186135 DOI: 10.1111/jne.12805] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/14/2019] [Accepted: 10/24/2019] [Indexed: 12/28/2022]
Abstract
Obesity and its associated complications have reached epidemic proportions in the USA and also worldwide, highlighting the need for new and more effective treatments. Although the neuropeptide oxytocin (OXT) is well recognised for its peripheral effects on reproductive behaviour, the release of OXT from somatodendrites and axonal terminals within the central nervous system (CNS) is also implicated in the control of energy balance. In this review, we summarise historical data highlighting the effects of exogenous OXT as a short-term regulator of food intake in a context-specific manner and the receptor populations that may mediate these effects. We also describe what is known about the physiological role of endogenous OXT in the control of energy balance and whether serum and brain levels of OXT relate to obesity on a consistent basis across animal models and humans with obesity. We describe recent data on the effectiveness of chronic CNS administration of OXT to decrease food intake and weight gain or to elicit weight loss in diet-induced obese (DIO) and genetically obese mice and rats. Of clinical importance is the finding that chronic central and peripheral OXT treatments both evoke weight loss in obese animal models with impaired leptin signalling at doses that are not associated with visceral illness, tachyphylaxis or adverse cardiovascular effects. Moreover, these results have been largely recapitulated following chronic s.c. or intranasal treatment in DIO non-human primates (rhesus monkeys) and obese humans, respectively. We also identify plausible mechanisms that contribute to the effects of OXT on body weight and glucose homeostasis in rodents, non-human primates and humans. We conclude by describing the ongoing challenges that remain before OXT-based therapeutics can be used as a long-term strategy to treat obesity in humans.
Collapse
Affiliation(s)
- Elizabeth A Lawson
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Pawel K Olszewski
- Faculty of Science and Engineering, University of Waikato, Hamilton, New Zealand
- Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, MN, USA
| | - Aron Weller
- Psychology Department and Gonda Brain Research Center, Bar Ilan University, Ramat-Gan, Israel
| | - James E Blevins
- Department of Veterans Affairs Medical Center, Office of Research and Development Medical Research Service, VA Puget Sound Health Care System, Seattle, WA, USA
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
54
|
Response of the expression of oxytocin neurons to ghrelin in female mice. Exp Brain Res 2020; 238:1085-1095. [PMID: 32215671 DOI: 10.1007/s00221-020-05793-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/18/2020] [Indexed: 12/17/2022]
Abstract
Ghrelin is an orexigenic agonist that acts directly on neurons in the hypothalamus, controlling appetite and energy balance. Although its role in appetite-associated neurons has been described, the relationship between peripheral ghrelin stimulation and oxytocin expression in the paraventricular nucleus is not fully understood. We evaluated the suppressive function of ghrelin in oxytocin-positive paraventricular nucleus neurons in ovariectomized C57BL/6 mice 2 h after ghrelin injection. The results showed that, in intact mice, peripheral ghrelin stimulation activated estrogen receptor alpha-expressing neurons during the estrous cycle and that agouti-related peptide mRNA expression was remarkably increased. Agouti-related peptide neuron axons co-localized with oxytocin neurons in the paraventricular nucleus. Moreover, the response of oxytocin-positive paraventricular nucleus neurons to ghrelin was suppressed in the proestrus period, while ghrelin decreased the serum concentration of estradiol in the proestrus phase. These data suggest that ghrelin may suppress oxytocin-positive neuron expression via the arcuate nucleus agouti-related peptide circuit, with the possible influence of estradiol in the murine estrous cycle. Unraveling the mechanism of ghrelin-induced oxytocin expression in the hypothalamus paraventricular nucleus broadens the horizon for ghrelin-related appetite research.
Collapse
|
55
|
Deol P, Kozlova E, Valdez M, Ho C, Yang EW, Richardson H, Gonzalez G, Truong E, Reid J, Valdez J, Deans JR, Martinez-Lomeli J, Evans JR, Jiang T, Sladek FM, Curras-Collazo MC. Dysregulation of Hypothalamic Gene Expression and the Oxytocinergic System by Soybean Oil Diets in Male Mice. Endocrinology 2020; 161:5698148. [PMID: 31912136 PMCID: PMC7041656 DOI: 10.1210/endocr/bqz044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/04/2020] [Indexed: 01/04/2023]
Abstract
Soybean oil consumption has increased greatly in the past half-century and is linked to obesity and diabetes. To test the hypothesis that soybean oil diet alters hypothalamic gene expression in conjunction with metabolic phenotype, we performed RNA sequencing analysis using male mice fed isocaloric, high-fat diets based on conventional soybean oil (high in linoleic acid, LA), a genetically modified, low-LA soybean oil (Plenish), and coconut oil (high in saturated fat, containing no LA). The 2 soybean oil diets had similar but nonidentical effects on the hypothalamic transcriptome, whereas the coconut oil diet had a negligible effect compared to a low-fat control diet. Dysregulated genes were associated with inflammation, neuroendocrine, neurochemical, and insulin signaling. Oxt was the only gene with metabolic, inflammation, and neurological relevance upregulated by both soybean oil diets compared to both control diets. Oxytocin immunoreactivity in the supraoptic and paraventricular nuclei of the hypothalamus was reduced, whereas plasma oxytocin and hypothalamic Oxt were increased. These central and peripheral effects of soybean oil diets were correlated with glucose intolerance but not body weight. Alterations in hypothalamic Oxt and plasma oxytocin were not observed in the coconut oil diet enriched in stigmasterol, a phytosterol found in soybean oil. We postulate that neither stigmasterol nor LA is responsible for effects of soybean oil diets on oxytocin and that Oxt messenger RNA levels could be associated with the diabetic state. Given the ubiquitous presence of soybean oil in the American diet, its observed effects on hypothalamic gene expression could have important public health ramifications.
Collapse
Affiliation(s)
- Poonamjot Deol
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California
| | - Elena Kozlova
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California
- Neuroscience Graduate Program, University of California, Riverside, California
| | - Matthew Valdez
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California
- Neuroscience Graduate Program, University of California, Riverside, California
| | - Catherine Ho
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California
| | - Ei-Wen Yang
- Department of Computer Science and Engineering, University of California Riverside, California
| | - Holly Richardson
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California
| | - Gwendolyn Gonzalez
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California
| | - Edward Truong
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California
| | - Jack Reid
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California
| | - Joseph Valdez
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California
| | - Jonathan R Deans
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California
| | - Jose Martinez-Lomeli
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California
| | - Jane R Evans
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California
| | - Tao Jiang
- Department of Computer Science and Engineering, University of California Riverside, California
| | - Frances M Sladek
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California
| | - Margarita C Curras-Collazo
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California
- Neuroscience Graduate Program, University of California, Riverside, California
- Correspondence: Margarita C. Curras-Collazo, PhD, FAPS, Department of Molecular, Cell and Systems Biology, University of California, 2110 Biological Sciences Building, Riverside, California 92521. E-mail:
| |
Collapse
|
56
|
Chu C, Hammock EAD, Joiner TE. Unextracted plasma oxytocin levels decrease following in-laboratory social exclusion in young adults with a suicide attempt history. J Psychiatr Res 2020; 121:173-181. [PMID: 31835187 PMCID: PMC6939138 DOI: 10.1016/j.jpsychires.2019.11.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/01/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022]
Abstract
Social exclusion is associated with greater suicide risk and more needs to be known about the biological processes contributing to this association. Oxytocin, a neuropeptide that regulates social interactions, may protect against the negative effects of exclusion by motivating social engagement. Oxytocin levels and desire for social engagement increase when non-psychiatric controls experience acute social exclusion. However, among individuals with borderline personality disorder and chronic depression, oxytocin levels decrease following exclusion. Both of these psychiatric illnesses are associated with high rates of suicidal behavior. No research has examined changes in oxytocin following social exclusion among individuals at risk for suicide. This quasi-experimental study examined differences in oxytocin levels and perceptions of social connectedness following an in-laboratory, acute social exclusion task among (a) individuals with no depression or suicide attempt histories, (b) individuals with current depression symptoms, and (c) individuals with current depression symptoms and suicide attempt histories. Young adults (N = 100) completed self-report measures and provided blood samples before and after an acute social exclusion task (Cyberball). Oxytocin was quantified via enzyme-linked immunosorbent assay. Mixed-design ANCOVAs were used to evaluate changes in unextracted and extracted oxytocin levels, desire for emotional support, thwarted belongingness, and perceived burdensomeness. Among suicide attempters, unextracted oxytocin levels decreased and desire for emotional support did not significantly change following exclusion. Among depressed and healthy controls, desire for emotional support increased and unextracted oxytocin levels did not significantly change. No significant changes in extracted oxytocin levels, thwarted belongingness and perceived burdensomeness emerged. Further research is needed to determine if dysregulated oxytocin-related processes biologically predispose individuals with suicide attempt histories to greater social disconnection and suicide risk.
Collapse
Affiliation(s)
- Carol Chu
- Department of Psychology, Harvard University, Cambridge, MA, USA.
| | | | - Thomas E Joiner
- Department of Psychology, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
57
|
Iwasa T, Matsuzaki T, Mayila Y, Kawakita T, Yanagihara R, Irahara M. The effects of chronic oxytocin administration on body weight and food intake in DHT-induced PCOS model rats. Gynecol Endocrinol 2020; 36:55-60. [PMID: 31220962 DOI: 10.1080/09513590.2019.1631276] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is commonly associated with metabolic disorders, which are exacerbated by obesity. Recent studies have revealed that oxytocin contributes to metabolic, appetite, and body weight regulation. In the present study, we evaluated the effects of chronic administration of oxytocin on body weight, food intake, and fat mass in a dihydrotestosterone-induced rat model of PCOS. Body weight, body weight change, and relative cumulative food intake were significantly lower in the oxytocin-treated PCOS rats than in the vehicle-treated control PCOS rats. Similarly, visceral adipocyte size was significantly smaller in the oxytocin-treated PCOS rats than in the vehicle-treated control PCOS rats. On the other hand, the numbers of cystic follicles in the ovary did not differ between the two groups. The chronic administration of oxytocin did not affect the rats' serum aspartate aminotransferase, alanine aminotransferase, or lactate dehydrogenase levels, indicating that it does not have adverse effects on hepatic function. These findings suggest that oxytocin could be a candidate drug for preventing the onset of obesity-related metabolic disorders in PCOS patients.
Collapse
Affiliation(s)
- Takeshi Iwasa
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Toshiya Matsuzaki
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yiliyasi Mayila
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Takako Kawakita
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Rie Yanagihara
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Minoru Irahara
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
58
|
Hayashi R, Kasahara Y, Hidema S, Fukumitsu S, Nakagawa K, Nishimori K. Oxytocin Ameliorates Impaired Behaviors of High Fat Diet-Induced Obese Mice. Front Endocrinol (Lausanne) 2020; 11:379. [PMID: 32719656 PMCID: PMC7347791 DOI: 10.3389/fendo.2020.00379] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 05/12/2020] [Indexed: 12/18/2022] Open
Abstract
Excessive intake of fat is a major risk factor for lifestyle-related diseases such as heart disease and also affects brain function such as object recognition memory, social recognition, anxiety behavior, and depression-like behavior. Although oxytocin (OXT) has been reported to improve object recognition, social recognition, anxiety behavior, and depression-like behavior in specific conditions, previous studies did not explore the impact of OXT in high-fat diet (HFD)-fed mice. Furthermore, it remains unclear whether intake of HFD affects OXT/oxytocin receptor (OXTR) in the brain. Here, we demonstrated that peripheral OXT administration improves not only social recognition but also object recognition and depressive-like behavior in HFD-fed mice. In contrast, peripheral OXT administration to HFD-fed male mice increased fear and anxiety-related behavior. In addition, we observed that intake of HFD decreased OXTR and c-fos mRNA expression in the hippocampus, specifically. Furthermore, peripheral OXT administration increased OXT mRNA expression in the hypothalamus. Altogether, these findings suggest that OXT has the potential to improve various recognition memory processes via peripheral administration but also has side effects that increase fear-related behavior in males.
Collapse
Affiliation(s)
- Ryotaro Hayashi
- Laboratory of Molecular Biology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- Nippon Flour Mills Co., Ltd., Innovation Center, Kanagawa, Japan
| | - Yoshiyuki Kasahara
- Department of Fetal Pathology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Shizu Hidema
- Laboratory of Molecular Biology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Satoshi Fukumitsu
- Nippon Flour Mills Co., Ltd., Innovation Center, Kanagawa, Japan
- Collaborative Graduate School Program, University of Tsukuba, Tsukuba, Japan
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Japan
| | - Kiyotaka Nakagawa
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Katsuhiko Nishimori
- Laboratory of Molecular Biology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- Department of Obesity and Inflammation Research, Fukushima Medical University School of Medicine, Fukushima, Japan
- *Correspondence: Katsuhiko Nishimori
| |
Collapse
|
59
|
Pflimlin E, Zhou Z, Amso Z, Fu Q, Lee C, Muppiddi A, Joseph SB, Nguyen-Tran V, Shen W. Engineering a Potent, Long-Acting, and Periphery-Restricted Oxytocin Receptor Agonist with Anorexigenic and Body Weight Reducing Effects. J Med Chem 2019; 63:382-390. [PMID: 31850759 DOI: 10.1021/acs.jmedchem.9b01862] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The effects of oxytocin on food intake and body weight reduction have been demonstrated in both animal models and human clinical studies. Despite being efficacious, oxytocin is enzymatically unstable and thus considered to be unsuitable for long-term use in patients with obesity. Herein, a series of oxytocin derivatives were engineered through conjugation with fatty acid moieties that are known to exhibit high binding affinities to serum albumin. One analog (OT-12) in particular was shown to be a potent full agonist at the oxytocin receptor (OTR) in vitro with good selectivity and long half-life (24 h) in mice. Furthermore, OT-12 is peripherally restricted, with very limited brain exposure (1/190 of the plasma level). In a diet-induced obesity mouse model, daily subcutaneous administration of OT-12 exhibited more potent anorexigenic and body weight reducing effects than carbetocin. Thus, our results suggest that the long-acting, peripherally restricted OTR agonist may offer potential therapeutic benefits for obesity.
Collapse
Affiliation(s)
- Elsa Pflimlin
- Calibr at The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Zhihong Zhou
- Calibr at The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Zaid Amso
- Calibr at The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Qiangwei Fu
- Calibr at The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Candy Lee
- Calibr at The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Avinash Muppiddi
- Calibr at The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Sean B Joseph
- Calibr at The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Vân Nguyen-Tran
- Calibr at The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Weijun Shen
- Calibr at The Scripps Research Institute , La Jolla , California 92037 , United States
| |
Collapse
|
60
|
Kerem L, Hadjikhani N, Holsen L, Lawson EA, Plessow F. Oxytocin reduces the functional connectivity between brain regions involved in eating behavior in men with overweight and obesity. Int J Obes (Lond) 2019; 44:980-989. [PMID: 31740723 PMCID: PMC7192759 DOI: 10.1038/s41366-019-0489-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 10/11/2019] [Accepted: 10/31/2019] [Indexed: 02/06/2023]
Abstract
Background: Oxytocin (OXT), shown to decrease food intake in animal models and men, is a promising novel treatment for obesity. We have shown that in men with overweight and obesity, intranasal (IN) OXT reduced the functional magnetic resonance imaging (fMRI) blood oxygenation level-dependent signal in the ventral tegmental area (VTA), the origin of the mesolimbic dopaminergic reward system, in response to high-calorie food vs. non-food images. Here, we employed functional connectivity fMRI analysis, which measures the synchrony in activation between neural systems in a context-dependent manner. We hypothesized that OXT would attenuate the functional connectivity of the VTA with key food motivation brain areas only when participants viewed high-calorie food stimuli. Methods: This randomized, double-blind, placebo-controlled crossover study of 24 IU IN OXT included 10 men with overweight or obesity (mean±SEM BMI: 28.9±0.8 kg/m2). Following drug administration, subjects completed an fMRI food motivation paradigm including images of high and low-calorie foods, non-food objects, and fixation stimuli. A psychophysiological interaction analysis was performed with the VTA as seed region. Results: Following OXT administration, compared with placebo, participants exhibited significantly attenuated functional connectivity between the VTA and the insula, oral somatosensory cortex, amygdala, hippocampus, operculum, and middle temporal gyrus in response to viewing high-calorie foods (Z≥3.1, cluster-corrected, p<0.05). There was no difference in functional connectivity between VTA and these brain areas when comparing OXT and placebo for low-calorie food, non-food, and fixation images. Conclusion: In men with overweight and obesity, OXT attenuates the functional connectivity between the VTA and food motivation brain regions in response to high-calorie visual food images. These findings could partially explain the observed anorexigenic effect of OXT, providing insight into the mechanism through which OXT ameliorates food cue-induced reward anticipation in patients with obesity. Additional studies are ongoing to further delineate the anorexigenic effect of OXT in obesity.
Collapse
Affiliation(s)
- Liya Kerem
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Division of Pediatric Endocrinology, Massachusetts General Hospital for Children, Boston, MA, USA
| | - Nouchine Hadjikhani
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Boston, MA, USA.,Gillberg Neuropsychiatry Center, University of Gothenburg, Gothenburg, Sweden
| | - Laura Holsen
- Division of Women's Health, Department of Medicine and Department of Psychiatry, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Elizabeth A Lawson
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Franziska Plessow
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
61
|
Weingarten MFJ, Scholz M, Wohland T, Horn K, Stumvoll M, Kovacs P, Tönjes A. Circulating Oxytocin Is Genetically Determined and Associated With Obesity and Impaired Glucose Tolerance. J Clin Endocrinol Metab 2019; 104:5621-5632. [PMID: 31361301 DOI: 10.1210/jc.2019-00643] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 07/22/2019] [Indexed: 01/01/2023]
Abstract
CONTEXT Despite the emerging evidence on the role of oxytocin (OXT) in metabolic diseases, there is a lack of well-powered studies addressing the relationship of circulating OXT with obesity and diabetes. OBJECTIVES AND DESIGN Here, we measured OXT in a study cohort (n = 721; 396 women, 325 men; mean age ± SD, 47.7 ± 15.2 years) with subphenotypes related to obesity, including anthropometric traits such as body mass index [BMI (mean ± SD), 26.8 ± 4.6 kg/m2], waist-to-hip ratio (WHR; 0.88 ± 0.09), blood parameters (glucose, 5.32 ± 0.50 mmol/L; insulin, 5.3 ± 3.3 µU/mL), and oral glucose tolerance test to clarify the association with OXT. We also tested in a genome-wide association study (GWAS) whether the interindividual variation in OXT serum levels might be explained by genetic variation. RESULTS The OXT concentration was increased in subjects with elevated BMI and positively correlated with WHR, waist circumference, and triglyceride levels. The OXT concentration in subjects with BMI <25 kg/m2 was significantly lower (n = 256; 78.6 pg/mL) than in subjects with a BMI between 25 and 30 kg/m2 (n = 314; 98.5 pg/mL, P = 6 × 10-6) and with BMI >30 kg/m2 (n = 137; 106.4 pg/mL, P = 8 × 10-6). OXT levels were also positively correlated with plasma glucose and insulin and were elevated in subjects with impaired glucose tolerance (P = 4.6 × 10-3). Heritability of OXT was estimated at 12.8%. In a GWAS, two hits in linkage disequilibrium close (19 kb) to the OXT reached genome-wide significant association (top-hit rs12625893, P = 3.1 × 10-8, explained variance 3%). CONCLUSIONS Our data show that OXT is genetically affected by a variant near OXT and is associated with obesity and impaired glucose tolerance.
Collapse
Affiliation(s)
| | - Markus Scholz
- Institute for Medical Informatics, Statistics, and Epidemiology, University of Leipzig, Leipzig, Germany
- LIFE Research Center, University of Leipzig, Leipzig, Germany
| | - Tobias Wohland
- IFB Adiposity Diseases, University of Leipzig Medical Center, Leipzig, Germany
| | - Katrin Horn
- Institute for Medical Informatics, Statistics, and Epidemiology, University of Leipzig, Leipzig, Germany
- LIFE Research Center, University of Leipzig, Leipzig, Germany
| | - Michael Stumvoll
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Peter Kovacs
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
- IFB Adiposity Diseases, University of Leipzig Medical Center, Leipzig, Germany
| | - Anke Tönjes
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| |
Collapse
|
62
|
Skinner JA, Garg ML, Dayas CV, Burrows TL. Is weight status associated with peripheral levels of oxytocin? A pilot study in healthy women. Physiol Behav 2019; 212:112684. [PMID: 31629767 DOI: 10.1016/j.physbeh.2019.112684] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 09/09/2019] [Accepted: 09/16/2019] [Indexed: 12/13/2022]
Abstract
The neuropeptide oxytocin is best known for its role during parturition and the milk-let down reflex. Recent evidence identifies a role for oxytocin in eating behaviour. After oxytocin administration, caloric intake is reduced with stronger inhibitory effects in individuals with obesity. Whether the experience of visual food cues affects secretion or circulating levels of oxytocin is unknown. This pilot study had three aims: 1) to measure fasting appetite hormones with a focus on plasma oxytocin concentrations; 2) determine whether healthy vs. hyperpalatable visual food cues differentially altered plasma oxytocin; and 3) assess whether appetite hormone responses to healthy vs. hyperpalatable food images depended on weight or food addiction status. Eighteen healthy women of varying weight status, with/without self-reported food addiction were recruited. Study participants completed a set of standardised questionnaires, including Yale Food Addiction Scale, and attended a one-off experimental session. Blood was collected before and after viewing two sets of food images (healthy and hyperpalatable foods). Participants were randomly allocated in a crossover design to view either healthy images or hyperpalatable foods first. A positive correlation between BMI and plasma oxytocin was found (r2 = 0.32, p = 0.021) at baseline. Oxytocin levels were higher, and cholecystokinin levels lower, in food addicted (n = 6) vs. non-food addicted females (p = 0.015 and p<0.001, respectively). There were no significant changes (p>0.05) in plasma oxytocin levels in response to either healthy or hyperpalatable food images. Given that endogenous oxytocin administration tends to suppress eating behaviour; these data indicate that oxytocin receptor desensitization or oxytocin resistance may be important factors in the pathogenesis of obesity and food addiction. However, further studies in larger samples are needed to determine if peripheral oxytocin is responsive to visual food cues.
Collapse
Affiliation(s)
- Janelle A Skinner
- Nutrition and Dietetics, School of Health Sciences, Faculty of Health and Medicine, University of Newcastle, Callaghan NSW 2308, Australia; Priority Research Centre for Physical Activity and Nutrition, University of Newcastle, Callaghan NSW 2308, Australia
| | - Manohar L Garg
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan NSW 2308, Australia
| | - Christopher V Dayas
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan NSW 2308, Australia
| | - Tracy L Burrows
- Nutrition and Dietetics, School of Health Sciences, Faculty of Health and Medicine, University of Newcastle, Callaghan NSW 2308, Australia; Priority Research Centre for Physical Activity and Nutrition, University of Newcastle, Callaghan NSW 2308, Australia.
| |
Collapse
|
63
|
Daubenbüchel AM, Özyurt J, Boekhoff S, Warmuth-Metz M, Eveslage M, Müller HL. Eating behaviour and oxytocin in patients with childhood-onset craniopharyngioma and different grades of hypothalamic involvement. Pediatr Obes 2019; 14:e12527. [PMID: 31013553 DOI: 10.1111/ijpo.12527] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/12/2019] [Accepted: 02/25/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND Patients with childhood-onset craniopharyngioma (CP) often suffer from tumour or treatment-related hypothalamic lesions (HL). These lesions may alter production of oxytocin, which plays a major role in the regulation of eating behaviour and body composition. OBJECTIVE In CP with different degrees of HL, we investigated associations between HL, eating behaviour/eating attitudes, and oxytocin saliva concentrations (OSC). METHODS In a cross-sectional case-control study on 34 CP and 73 healthy controls, OSC were measured before, and 60 minutes after breakfast by immunoassay. Eating behaviour, attitudes, and habits were assessed by standardized questionnaires. RESULTS CP with anterior + posterior HL presented with more adverse eating behaviours/symptoms of eating disorders than CP without HL, CP with anterior HL, and controls. Eating behaviour in CP with anterior HL was similar to controls, except for their tendency towards high dietary restraints. Decreases in postprandial compared with fasting OSC were associated with adverse eating behaviour in CP and controls and with higher BMI in CP. CONCLUSIONS CP with anterior HL and CP with anterior + posterior HL present with distinct patterns of eating behaviour. Reduced postprandial compared with fasting OSC is associated with weight problems in CP and with adverse eating behaviour and symptoms of eating disorders in both CP and controls.
Collapse
Affiliation(s)
- Anna M Daubenbüchel
- Department of Pediatrics and Pediatric Hematology/Oncology, University Children's Hospital, Klinikum Oldenburg AöR, Carl von Ossietzky University, Oldenburg, Germany
| | - Jale Özyurt
- Biological Psychology Lab, Department of Psychology, Carl von Ossietzky University, Oldenburg, Germany
| | - Svenja Boekhoff
- Department of Pediatrics and Pediatric Hematology/Oncology, University Children's Hospital, Klinikum Oldenburg AöR, Carl von Ossietzky University, Oldenburg, Germany
| | | | - Maria Eveslage
- Institute of Biostatistics and Clinical Research, University Münster, Münster, Germany
| | - Hermann L Müller
- Department of Pediatrics and Pediatric Hematology/Oncology, University Children's Hospital, Klinikum Oldenburg AöR, Carl von Ossietzky University, Oldenburg, Germany
| |
Collapse
|
64
|
Abstract
PURPOSE OF REVIEW The neurohypophysial endocrine system is identified here as a potential target for therapeutic interventions toward improving obesity-related metabolic dysfunction, given its coinciding pleiotropic effects on psychological, neurological and metabolic systems that are disrupted in obesity. RECENT FINDINGS Copeptin, the C-terminal portion of the precursor of arginine-vasopressin, is positively associated with body mass index and risk of type 2 diabetes. Plasma oxytocin is decreased in obesity and several other conditions of abnormal glucose homeostasis. Recent data also show non-classical tissues, such as myocytes, hepatocytes and β-cells, exhibit responses to oxytocin and vasopressin receptor binding that may contribute to alterations in metabolic function. The modulation of anorexigenic and orexigenic pathways appears to be the dominant mechanism underlying the effects of oxytocin and vasopressin on body weight regulation; however, there are apparent limitations associated with their use in direct pharmacological applications. A clearer picture of their wider physiological effects is needed before either system can be considered for therapeutic use.
Collapse
Affiliation(s)
| | - Faidon Magkos
- Department of Nutrition, Exercise and Sports-Section of Obesity Research, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C; Building 2-85, Room H134, Copenhagen, Denmark.
| |
Collapse
|
65
|
Turkson S, Kloster A, Hamilton PJ, Neigh GN. Neuroendocrine drivers of risk and resilience: The influence of metabolism & mitochondria. Front Neuroendocrinol 2019; 54:100770. [PMID: 31288042 PMCID: PMC6886586 DOI: 10.1016/j.yfrne.2019.100770] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/20/2019] [Accepted: 07/03/2019] [Indexed: 02/07/2023]
Abstract
The manifestation of risk versus resilience has been considered from varying perspectives including genetics, epigenetics, early life experiences, and type and intensity of the challenge with which the organism is faced. Although all of these factors are central to determining risk and resilience, the current review focuses on what may be a final common pathway: metabolism. When an organism is faced with a perturbation to the environment, whether internal or external, appropriate energy allocation is essential to resolving the divergence from equilibrium. This review examines the potential role of metabolism in the manifestation of stress-induced neural compromise. In addition, this review details the current state of knowledge on neuroendocrine factors which are poised to set the tone of the metabolic response to a systemic challenge. The goal is to provide an essential framework for understanding stress in a metabolic context and appreciation for key neuroendocrine signals.
Collapse
Affiliation(s)
- Susie Turkson
- Department of Anatomy & Neurobiology, Virginia Commonwealth University, Richmond, VA, United States
| | - Alix Kloster
- Department of Anatomy & Neurobiology, Virginia Commonwealth University, Richmond, VA, United States
| | - Peter J Hamilton
- Department of Anatomy & Neurobiology, Virginia Commonwealth University, Richmond, VA, United States
| | - Gretchen N Neigh
- Department of Anatomy & Neurobiology, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
66
|
Reiss AB, Glass DS, Lam E, Glass AD, De Leon J, Kasselman LJ. Oxytocin: Potential to mitigate cardiovascular risk. Peptides 2019; 117:170089. [PMID: 31112739 DOI: 10.1016/j.peptides.2019.05.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/17/2019] [Accepted: 05/10/2019] [Indexed: 02/08/2023]
Abstract
Cardiovascular disease (CVD) remains the leading cause of death worldwide, despite multiple treatment options. In addition to elevated lipid levels, oxidative stress and inflammation are key factors driving atherogenesis and CVD. New strategies are required to mitigate risk and most urgently for statin-intolerant patients. The neuropeptide hormone oxytocin, synthesized in the brain hypothalamus, is worthy of consideration as a CVD ancillary treatment because it moderates factors directly linked to atherosclerotic CVD such as inflammation, weight gain, food intake and insulin resistance. Though initially studied for its contribution to parturition and lactation, oxytocin participates in social attachment and bonding, associative learning, memory and stress responses. Oxytocin has shown promise in animal models of atherosclerosis and in some human studies as well. A number of properties of oxytocin make it a candidate CVD treatment. Oxytocin not only lowers fat mass and cytokine levels, but also improves glucose tolerance, lowers blood pressure and relieves anxiety. Further, it has an important role in communication in the gut-brain axis that makes it a promising treatment for obesity and type 2 diabetes. Oxytocin acts through its receptor which is a class I G-protein-coupled receptor present in cells of the vascular system including the heart and arteries. While oxytocin is not used for heart disease at present, residual CVD risk remains in a substantial portion of patients despite multidrug regimens, leaving open the possibility of using the endogenous nonapeptide as an adjunct therapy. This review discusses the possible role for oxytocin in human CVD prevention and treatment.
Collapse
Affiliation(s)
- Allison B Reiss
- Department of Medicine and Research Institute, NYU Winthrop Hospital, Mineola NY 11501, USA.
| | - Daniel S Glass
- Department of Medicine and Research Institute, NYU Winthrop Hospital, Mineola NY 11501, USA
| | - Eric Lam
- Department of Medicine and Research Institute, NYU Winthrop Hospital, Mineola NY 11501, USA
| | - Amy D Glass
- Department of Medicine and Research Institute, NYU Winthrop Hospital, Mineola NY 11501, USA
| | - Joshua De Leon
- Department of Medicine and Research Institute, NYU Winthrop Hospital, Mineola NY 11501, USA
| | - Lora J Kasselman
- Department of Medicine and Research Institute, NYU Winthrop Hospital, Mineola NY 11501, USA
| |
Collapse
|
67
|
Iwasa T, Matsuzaki T, Mayila Y, Yanagihara R, Yamamoto Y, Kawakita T, Kuwahara A, Irahara M. Oxytocin treatment reduced food intake and body fat and ameliorated obesity in ovariectomized female rats. Neuropeptides 2019; 75:49-57. [PMID: 30885500 DOI: 10.1016/j.npep.2019.03.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/05/2019] [Accepted: 03/10/2019] [Indexed: 02/06/2023]
Abstract
Recent studies have shown that oxytocin reduces food intake and body weight gain and promotes lipolysis in some species, including humans. Interestingly, these effects of oxytocin are more marked in obese individuals. Although the menopausal loss of ovarian function induces increased visceral adiposity and some metabolic disorders, no safe medical interventions for these conditions have been established. In this study, we evaluated the effects of oxytocin on appetite, body weight, and fat mass in ovariectomized rats. Six-day oxytocin treatment attenuated cumulative food intake and body weight gain, and reduced visceral and subcutaneous fat weight and adipocyte cell area in ovariectomized rats. Blood examinations indicated that 6-day oxytocin treatment did not alter renal or hepatic functions. Instead, it might prevent ovariectomy-induced liver damage. In addition, acute oxytocin treatment did not affect body temperature or locomotor activity. These results indicate that oxytocin might be useful for treating or preventing menopause-induced metabolic disorders, without causing any adverse effects.
Collapse
Affiliation(s)
- Takeshi Iwasa
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-Cho, Tokushima 770-8503, Japan.
| | - Toshiya Matsuzaki
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-Cho, Tokushima 770-8503, Japan
| | - Yiliyasi Mayila
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-Cho, Tokushima 770-8503, Japan
| | - Rie Yanagihara
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-Cho, Tokushima 770-8503, Japan
| | - Yuri Yamamoto
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-Cho, Tokushima 770-8503, Japan
| | - Takako Kawakita
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-Cho, Tokushima 770-8503, Japan
| | - Akira Kuwahara
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-Cho, Tokushima 770-8503, Japan
| | - Minoru Irahara
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-Cho, Tokushima 770-8503, Japan
| |
Collapse
|
68
|
Aulinas A, Pulumo RL, Asanza E, Mancuso CJ, Slattery M, Tolley C, Plessow F, Thomas JJ, Eddy KT, Miller KK, Klibanski A, Misra M, Lawson EA. Endogenous Oxytocin Levels in Relation to Food Intake, Menstrual Phase, and Age in Females. J Clin Endocrinol Metab 2019; 104:1348-1356. [PMID: 30445502 PMCID: PMC6408871 DOI: 10.1210/jc.2018-02036] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/13/2018] [Indexed: 12/22/2022]
Abstract
CONTEXT Oxytocin regulates a range of physiological processes including eating behavior and oxytocin administration reduces caloric intake in males. There are few data on oxytocin and eating behavior in healthy females or on the response of endogenous oxytocin to food intake and its relationship to appetite in humans. OBJECTIVES To determine the postprandial pattern of oxytocin levels, the relationship between oxytocin and appetite, and the impact of menstrual cycle phase and age on oxytocin levels in females. DESIGN Cross-sectional. SETTING Clinical research center. PARTICIPANTS Fifty-five healthy females (age 10 to 45 years). INTERVENTIONS A standardized mixed meal was administered. MAIN OUTCOME MEASUREMENTS Blood sampling for oxytocin occurred at fasting and at 30, 60, and 120 minutes postmeal. Appetite was assessed using Visual Analogue Scales pre- and postmeal. RESULTS Mean fasting oxytocin levels were 1011.2 ± 52.3 pg/mL (SEM) and decreased at 30 and 60 minutes postmeal (P = 0.001 and P = 0.003, respectively). Mean oxytocin levels decreased19.6% ± 3.0% from baseline to nadir. Oxytocin area under the curve was lower in the early to midfollicular menstrual cycle phase (P = 0.0003) and higher in younger females (P = 0.002). The percent change in oxytocin (baseline to nadir) was associated with postprandial hunger (rs = -0.291, P = 0.03) and fullness (rs = 0.345, P = 0.009). These relations remained significant after controlling for calories consumed, menstrual cycle status, and age (P = 0.023 and P = 0.0001, respectively). CONCLUSIONS Peripheral oxytocin levels in females decrease after a mixed meal and are associated with appetite independent of menstrual phase, age, and caloric intake, suggesting that endogenous oxytocin levels may play a role in perceived hunger and satiety.
Collapse
Affiliation(s)
- Anna Aulinas
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, Massachusetts
- Harvard Medical School, Boston Massachusetts
| | | | - Elisa Asanza
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, Massachusetts
| | | | - Meghan Slattery
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, Massachusetts
| | - Christiane Tolley
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, Massachusetts
| | - Franziska Plessow
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, Massachusetts
- Harvard Medical School, Boston Massachusetts
| | - Jennifer J Thomas
- Harvard Medical School, Boston Massachusetts
- Eating Disorders Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital, Boston Massachusetts
| | - Kamryn T Eddy
- Harvard Medical School, Boston Massachusetts
- Eating Disorders Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital, Boston Massachusetts
| | - Karen K Miller
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, Massachusetts
- Harvard Medical School, Boston Massachusetts
| | - Anne Klibanski
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, Massachusetts
- Harvard Medical School, Boston Massachusetts
| | - Madhusmita Misra
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, Massachusetts
- Harvard Medical School, Boston Massachusetts
- Pediatric Endocrine Unit, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts
| | - Elizabeth A Lawson
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, Massachusetts
- Harvard Medical School, Boston Massachusetts
- Correspondence and Reprint Requests: Elizabeth A. Lawson, MD, MMSc, Neuroendocrine Unit, Massachusetts General Hospital, 55 Fruit Street, Boston, Massachusetts 02114. E-mail:
| |
Collapse
|
69
|
Yamamoto Y, Liang M, Munesue S, Deguchi K, Harashima A, Furuhara K, Yuhi T, Zhong J, Akther S, Goto H, Eguchi Y, Kitao Y, Hori O, Shiraishi Y, Ozaki N, Shimizu Y, Kamide T, Yoshikawa A, Hayashi Y, Nakada M, Lopatina O, Gerasimenko M, Komleva Y, Malinovskaya N, Salmina AB, Asano M, Nishimori K, Shoelson SE, Yamamoto H, Higashida H. Vascular RAGE transports oxytocin into the brain to elicit its maternal bonding behaviour in mice. Commun Biol 2019; 2:76. [PMID: 30820471 PMCID: PMC6389896 DOI: 10.1038/s42003-019-0325-6] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 01/22/2019] [Indexed: 12/18/2022] Open
Abstract
Oxytocin sets the stage for childbirth by initiating uterine contractions, lactation and maternal bonding behaviours. Mice lacking secreted oxcytocin (Oxt−/−, Cd38−/−) or its receptor (Oxtr−/−) fail to nurture. Normal maternal behaviour is restored by peripheral oxcytocin replacement in Oxt−/− and Cd38−/−, but not Oxtr−/− mice, implying that circulating oxcytocin crosses the blood-brain barrier. Exogenous oxcytocin also has behavioural effects in humans. However, circulating polypeptides are typically excluded from the brain. We show that oxcytocin is transported into the brain by receptor for advanced glycation end-products (RAGE) on brain capillary endothelial cells. The increases in oxcytocin in the brain which follow exogenous administration are lost in Ager−/− male mice lacking RAGE, and behaviours characteristic to abnormalities in oxcytocin signalling are recapitulated in Ager−/− mice, including deficits in maternal bonding and hyperactivity. Our findings show that RAGE-mediated transport is critical to the behavioural actions of oxcytocin associated with parenting and social bonding. Yasuhiko Yamamoto et al. show that oxytocin is transported into the brain by the receptor for advanced glycation end-products (RAGE) on the blood-brain barrier. This study explains how circulating oxytocin crosses the blood-brain barrier, which is important to manifest oxytocin’s maternal bonding effects.
Collapse
Affiliation(s)
- Yasuhiko Yamamoto
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan.
| | - Mingkun Liang
- Department of Basic Research on Social Recognition and Memory, Research Centre for Child Mental Development, Kanazawa University, Kanazawa, 920-8640, Japan
| | - Seiichi Munesue
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan
| | - Kisaburo Deguchi
- Medical Research Institute, Kanazawa Medical University and Medical Care Proteomics Biotechnology Co., Uchinada, Ishikawa, 920-0293, Japan
| | - Ai Harashima
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan
| | - Kazumi Furuhara
- Department of Basic Research on Social Recognition and Memory, Research Centre for Child Mental Development, Kanazawa University, Kanazawa, 920-8640, Japan
| | - Teruko Yuhi
- Department of Basic Research on Social Recognition and Memory, Research Centre for Child Mental Development, Kanazawa University, Kanazawa, 920-8640, Japan
| | - Jing Zhong
- Department of Basic Research on Social Recognition and Memory, Research Centre for Child Mental Development, Kanazawa University, Kanazawa, 920-8640, Japan
| | - Shirin Akther
- Department of Basic Research on Social Recognition and Memory, Research Centre for Child Mental Development, Kanazawa University, Kanazawa, 920-8640, Japan
| | - Hisanori Goto
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan
| | - Yuya Eguchi
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan
| | - Yasuko Kitao
- Department of Neuroanatomy, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan
| | - Osamu Hori
- Department of Neuroanatomy, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan
| | - Yoshitake Shiraishi
- Department of Functional Anatomy, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan
| | - Noriyuki Ozaki
- Department of Functional Anatomy, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan
| | - Yu Shimizu
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan.,Department of Neurosurgery, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan
| | - Tomoya Kamide
- Department of Neuroanatomy, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan.,Department of Neurosurgery, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan
| | - Akifumi Yoshikawa
- Department of Neuroanatomy, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan.,Department of Neurosurgery, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan
| | - Yasuhiko Hayashi
- Department of Neurosurgery, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan
| | - Mitsutoshi Nakada
- Department of Neurosurgery, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan
| | - Olga Lopatina
- Department of Basic Research on Social Recognition and Memory, Research Centre for Child Mental Development, Kanazawa University, Kanazawa, 920-8640, Japan.,Laboratory for Social Brain Studies, Research Institute of Molecular Medicine and Pathobiochemistry, and Department of Biochemistry, Krasnoyarsk State Medical University, Krasnoyarsk, Russia, 660022
| | - Maria Gerasimenko
- Department of Basic Research on Social Recognition and Memory, Research Centre for Child Mental Development, Kanazawa University, Kanazawa, 920-8640, Japan
| | - Yulia Komleva
- Laboratory for Social Brain Studies, Research Institute of Molecular Medicine and Pathobiochemistry, and Department of Biochemistry, Krasnoyarsk State Medical University, Krasnoyarsk, Russia, 660022
| | - Natalia Malinovskaya
- Laboratory for Social Brain Studies, Research Institute of Molecular Medicine and Pathobiochemistry, and Department of Biochemistry, Krasnoyarsk State Medical University, Krasnoyarsk, Russia, 660022
| | - Alla B Salmina
- Department of Basic Research on Social Recognition and Memory, Research Centre for Child Mental Development, Kanazawa University, Kanazawa, 920-8640, Japan.,Laboratory for Social Brain Studies, Research Institute of Molecular Medicine and Pathobiochemistry, and Department of Biochemistry, Krasnoyarsk State Medical University, Krasnoyarsk, Russia, 660022
| | - Masahide Asano
- Division of Transgenic Animal Science, Kanazawa University Advanced Science Research Centre, Kanazawa, 920-8640, Japan
| | - Katsuhiko Nishimori
- Laboratory of Molecular Biology, Department of Molecular and Cell Biology, Graduate School of Agricultural Science, Tohoku University, Sendai, 981-8555, Japan
| | - Steven E Shoelson
- Joslin Diabetes Centre & Harvard Medical School, Boston, MA, 02215, USA
| | - Hiroshi Yamamoto
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan.,Komatsu University, Komatsu, 923-0921, Japan
| | - Haruhiro Higashida
- Department of Basic Research on Social Recognition and Memory, Research Centre for Child Mental Development, Kanazawa University, Kanazawa, 920-8640, Japan. .,Laboratory for Social Brain Studies, Research Institute of Molecular Medicine and Pathobiochemistry, and Department of Biochemistry, Krasnoyarsk State Medical University, Krasnoyarsk, Russia, 660022.
| |
Collapse
|
70
|
Ding C, Leow MKS, Magkos F. Oxytocin in metabolic homeostasis: implications for obesity and diabetes management. Obes Rev 2019; 20:22-40. [PMID: 30253045 PMCID: PMC7888317 DOI: 10.1111/obr.12757] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/25/2018] [Accepted: 07/25/2018] [Indexed: 12/20/2022]
Abstract
Oxytocin was once understood solely as a neuropeptide with a central role in social bonding, reproduction, parturition, lactation and appetite regulation. Recent evidence indicates that oxytocin enhances glucose uptake and lipid utilization in adipose tissue and skeletal muscle, suggesting that dysfunction of the oxytocin system could underlie the pathogenesis of insulin resistance and dyslipidaemia. Murine studies revealed that deficiencies in oxytocin signalling and oxytocin receptor expression lead to obesity despite normal food intake, motor activity and increased leptin levels. In addition, plasma oxytocin concentration is notably lower in obese individuals with diabetes, which may suggest an involvement of the oxytocin system in the pathogenesis of cardiometabolic disease. More recently, small scale studies demonstrated that intranasal administration of oxytocin was associated with significant weight loss as well as improvements in insulin sensitivity and pancreatic β-cell responsivity in human subjects. The multi-pronged effects of oxytocin signalling on improving peripheral insulin sensitivity, pancreatic function and lipid homeostasis strongly suggest a role for this system as a therapeutic target in obesity and diabetes management. The complexity of obesity aetiology and the pathogenesis of obesity-related metabolic complications underscore the need for a systems approach to better understand the role of oxytocin in metabolic function.
Collapse
Affiliation(s)
- C Ding
- Clinical Nutrition Research Centre (CNRC), Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR) and National University Health System, Singapore
| | - M K-S Leow
- Clinical Nutrition Research Centre (CNRC), Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR) and National University Health System, Singapore.,Department of Endocrinology, Tan Tock Seng Hospital, Singapore.,Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - F Magkos
- Clinical Nutrition Research Centre (CNRC), Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR) and National University Health System, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore
| |
Collapse
|
71
|
Skinner JA, Campbell EJ, Dayas CV, Garg ML, Burrows TL. The relationship between oxytocin, dietary intake and feeding: A systematic review and meta-analysis of studies in mice and rats. Front Neuroendocrinol 2019; 52:65-78. [PMID: 30315826 DOI: 10.1016/j.yfrne.2018.09.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 09/13/2018] [Accepted: 09/28/2018] [Indexed: 01/11/2023]
Abstract
The neuropeptide oxytocin has been associated with food intake and feeding behaviour. This systematic review aimed to investigate the impact of oxytocin on dietary intake and feeding behaviour in rodent studies. Six electronic databases were searched to identify published studies to April 2018. Preclinical studies in mice and rats were included if they reported: (1) a dietary measure (i.e. food or nutrient and/or behaviour (2) an oxytocin measure, and (3) relationship between the two measures. A total of 75 articles (n = 246 experiments) were included, and study quality appraised. The majority of studies were carried out in males (87%). The top three oxytocin outcomes assessed were: exogenous oxytocin administration (n = 126), oxytocin-receptor antagonist administration (n = 46) and oxytocin gene deletion (n = 29). Meta-analysis of exogenous studies in mice (3 studies, n = 43 comparisons) and rats (n = 8 studies, n = 82 comparisons) showed an overall decrease in food intake with maximum effect shown at 2 h post-administration.
Collapse
Affiliation(s)
- Janelle A Skinner
- Nutrition and Dietetics, School of Health Sciences, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia; Priority Research Centre for Physical Activity and Nutrition, University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Erin J Campbell
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052, Australia; Florey Department of Neuroscience and Mental Health, University of Melbourne, Victoria 3010, Australia.
| | - Christopher V Dayas
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Manohar L Garg
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Tracy L Burrows
- Nutrition and Dietetics, School of Health Sciences, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia; Priority Research Centre for Physical Activity and Nutrition, University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
72
|
Xu T, Lu B. The effects of phytochemicals on circadian rhythm and related diseases. Crit Rev Food Sci Nutr 2018; 59:882-892. [DOI: 10.1080/10408398.2018.1493678] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Tao Xu
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture and Rural affairs, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Baiyi Lu
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture and Rural affairs, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
73
|
Santoso P, Nakata M, Ueta Y, Yada T. Suprachiasmatic vasopressin to paraventricular oxytocin neurocircuit in the hypothalamus relays light reception to inhibit feeding behavior. Am J Physiol Endocrinol Metab 2018; 315:E478-E488. [PMID: 28174180 DOI: 10.1152/ajpendo.00338.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Light synchronizes the body's circadian rhythms by modulating the master clock located in the suprachiasmatic nucleus (SCN) of the hypothalamus. In modern lifestyles that run counter to normal circadian rhythms, the extended and/or irregular light exposure impairs circadian rhythms and, consequently, promotes feeding and metabolic disorders. However, the neuronal pathway through which light is coupled to feeding behavior is less elucidated. The present study employed the light exposure during the dark phase of the day in rats and observed its effect on neuronal activity and feeding behavior. Light exposure acutely suppressed food intake and elevated c-Fos expression in the AVP neurons of SCN and the oxytocin (Oxt) neurons of paraventricular nucleus (PVN) in the hypothalamus. The light-induced suppression of food intake was abolished by blockade of the Oxt receptor in the brain. Retrograde tracer analysis demonstrated the projection of SCN AVP neurons to the PVN. Furthermore, intracerebroventricular injection of AVP suppressed food intake and increased c-Fos in PVN Oxt neurons. Intra-PVN injection of AVP exerted a stronger anorexigenic effect than intracerebroventriclar injection. AVP also induced intracellular Ca2+ signaling and increased firing frequency in Oxt neurons in PVN slices. These results reveal the novel neurocircuit from SCN AVP to PVN Oxt that relays light reception to inhibition of feeding behavior. This light-induced neurocircuit may serve as a pathway for forming the circadian feeding rhythm and linking irregular light exposure to arrhythmic feeding and, consequently, obesity and metabolic diseases.
Collapse
Affiliation(s)
- Putra Santoso
- Department of Physiology, Division of Integrative Physiology, Jichi Medical University School of Medicine, Shimotsuke, Tochigi , Japan
| | - Masanori Nakata
- Department of Physiology, Division of Integrative Physiology, Jichi Medical University School of Medicine, Shimotsuke, Tochigi , Japan
| | - Yoichi Ueta
- Department of Physiology, University of Occupational and Environmental Health , Kitakyushu , Japan
| | - Toshihiko Yada
- Department of Physiology, Division of Integrative Physiology, Jichi Medical University School of Medicine, Shimotsuke, Tochigi , Japan
| |
Collapse
|
74
|
Abstract
PURPOSE OF REVIEW The neurohormone oxytocin (OXT) impacts food intake as well as cognitive, emotional, and social functioning-all of which are central to eating disorder (ED) pathology across the weight spectrum. Here, we review findings on endogenous OXT levels and their relationship to ED pathology, the impact of exogenous OXT on mechanisms that drive ED presentation and chronicity, and the potential role of genetic predispositions in the OXT-ED link. RECENT FINDINGS Current findings suggest a role of the OXT system in the pathophysiology of anorexia nervosa. In individuals with bulimia nervosa, endogenous OXT levels were comparable to those of healthy controls, and exogenous OXT reduced food intake. Studies in other ED are lacking. However, genetic studies suggest a broad role of the OXT system in influencing ED pathology. Highlighting findings on why OXT represents a potential biomarker of and treatment target for ED, we advocate for a systematic research approach spanning the entire ED spectrum.
Collapse
|
75
|
Seelke AM, Rhine MA, Khun K, Shweyk AN, Scott AM, Bond JM, Graham JL, Havel PJ, Wolden-Hanson T, Bales KL, Blevins JE. Intranasal oxytocin reduces weight gain in diet-induced obese prairie voles. Physiol Behav 2018; 196:67-77. [PMID: 30144467 DOI: 10.1016/j.physbeh.2018.08.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/17/2018] [Accepted: 08/19/2018] [Indexed: 12/17/2022]
Abstract
Oxytocin (OT) elicits weight loss in diet-induced obese (DIO) rodents, nonhuman primates and humans by reducing food intake and increasing energy expenditure. In addition to being important in the regulation of energy balance, OT is involved in social behaviors including parent-infant bonds, friendships, and pair bonds. However, the impact of social context on susceptibility to diet-induced obesity (DIO) and feeding behavior (including food sharing) has not been investigated in a rodent model that forms strong social bonds (i.e. prairie vole). Our goals were to determine in Prairie voles (Microtus ochrogaster) whether i) social context impacts susceptibility to DIO and ii) chronic intranasal OT reverses DIO. Voles were housed in divided cages with holes in the divider and paired with a same-sex animal with either the same food [high fat diet (HFD)/HFD, [low fat diet (LFD; chow)/chow], or the opposite food (HFD/chow or chow/HFD) for 19 weeks. HFD-fed voles pair-housed with voles maintained on the HFD demonstrated increased weight relative to pair-housed voles that were both maintained on chow. The study was repeated to determine the impact of social context on DIO susceptibility and body composition when animals are maintained on purified sugar-sweetened HFD and LFD to enhance palatability. As before, we found that voles demonstrated higher weight gain on the HFD/HFD housing paradigm, in part, through increased energy intake and the weight gain was a consequence of an increase in fat mass. However, HFD-fed animals housed with LFD-fed animals (and vice versa) showed intermediate patterns of weight gain and evidence of food sharing. Of translational importance is the finding that chronic intranasal OT appeared to reduce weight gain in DIO voles through a decrease in fat mass with no reduction in lean body mass. These effects were associated with transient reductions in food intake and increased food sharing. These findings identify a role of social context in the pathogenesis of DIO and indicate that chronic intranasal OT treatment reduces weight gain and body fat mass in DIO prairie voles, in part, by reducing food intake.
Collapse
Affiliation(s)
- Adele M Seelke
- Department of Psychology, University of California, Davis, CA, USA
| | - Maya A Rhine
- Department of Psychology, University of California, Davis, CA, USA
| | - Konterri Khun
- Department of Psychology, University of California, Davis, CA, USA
| | - Amira N Shweyk
- Department of Psychology, University of California, Davis, CA, USA
| | | | - Jessica M Bond
- Department of Psychology, University of California, Davis, CA, USA
| | - James L Graham
- Department of Nutrition and Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Peter J Havel
- Department of Nutrition and Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Tami Wolden-Hanson
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
| | - Karen L Bales
- Department of Psychology, University of California, Davis, CA, USA
| | - James E Blevins
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA; Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
76
|
Freeman SM, Ngo J, Singh B, Masnaghetti M, Bales KL, Blevins JE. Effects of Chronic Oxytocin Administration and Diet Composition on Oxytocin and Vasopressin 1a Receptor Binding in the Rat Brain. Neuroscience 2018; 392:241-251. [PMID: 30071278 DOI: 10.1016/j.neuroscience.2018.07.037] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 12/19/2022]
Abstract
Oxytocin (OT) elicits weight loss in diet-induced obese (DIO) rodents, nonhuman primates, and humans, in part, by reducing food intake. Chronic OT administration produces more sustained weight loss in high-fat diet (HFD)-fed DIO rodents relative to chow-fed controls, but the reasons for this effect remain unclear. We hypothesized that HFD-induced obesity is associated with elevated OT receptor (OXTR) binding in brain regions where OT is known to cause decreased food intake and that this sensitized neural system is one mechanism by which OT preferentially elicits weight loss in DIO rodents. We therefore determined the impact of diet (HFD vs chow) and drug treatment (chronic OT infusion vs vehicle) on (1) OXTR binding in hindbrain and forebrain sites where OT suppresses food intake relative to control sites that express OXTR and (2) forebrain vasopressin 1a receptor (AVPR1a) density to evaluate the specificity of any OT effects. Using quantitative receptor autoradiography, we found that (1) diet composition failed to alter OXTR or AVPR1a binding; (2) chronic OT treatment produced largely global reductions in forebrain OXTR and AVPR1a binding without significantly altering hindbrain OXTR binding. These findings suggest that forebrain OXTR and AVPR1a are down-regulated in response to chronic OT treatment. Given that chronic intranasal OT may be used as a therapeutic strategy to treat obesity, future studies should consider the potential downregulatory effect that chronic treatment can have across forebrain and hindbrain nonapeptide receptors and assess the potential contribution of both receptor subtypes to the outcome measures.
Collapse
Affiliation(s)
- Sara M Freeman
- Department of Psychology, University of California, Davis, CA, USA
| | - Julie Ngo
- Department of Psychology, University of California, Davis, CA, USA
| | - Bhavdeep Singh
- Department of Psychology, University of California, Davis, CA, USA
| | | | - Karen L Bales
- Department of Psychology, University of California, Davis, CA, USA
| | - James E Blevins
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA; Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
77
|
Pataky Z, Guessous I, Caillon A, Golay A, Rohner-Jeanrenaud F, Altirriba J. Variable oxytocin levels in humans with different degrees of obesity and impact of gastric bypass surgery. Int J Obes (Lond) 2018; 43:1120-1124. [PMID: 30006581 DOI: 10.1038/s41366-018-0150-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/21/2018] [Accepted: 06/03/2018] [Indexed: 01/04/2023]
Abstract
Exogenous oxytocin administration in obese mice, rats, and monkeys was shown to induce sustained weight loss, mostly due to a decrease in fat mass, accompanied by an improvement of glucose metabolism. A pilot study in obese humans confirmed the weight-reducing effect of oxytocin. Knowledge about circulating oxytocin levels in human obesity might help indicating which obese subjects could potentially benefit from an oxytocin treatment. Conclusive results on this topic are missing. The aim of this study was to measure circulating oxytocin levels in lean (n = 37) and obese (n = 72) individuals across a wide range of body mass index (BMI) values (18.5-60 kg/m2) and to determine the impact of pronounced body weight loss following gastric bypass surgery in 12 morbidly obese patients. We observed that oxytocin levels were unchanged in overweight and in class I and II obese subjects and only morbidly obese patients (obesity class III, BMI > 40 kg/m2) exhibited significantly higher levels than lean individuals, with no modification 1 year after gastric bypass surgery, despite substantial body weight loss. In conclusion, morbidly obese subjects present elevated oxytocin levels which were unaltered following pronounced weight loss.
Collapse
Affiliation(s)
- Zoltan Pataky
- Service of Therapeutic Education for Chronic Diseases, WHO Collaborating Centre, University Hospitals of Geneva and University of Geneva, Geneva, Switzerland
| | - Idris Guessous
- Unit of Population Epidemiology, Department of Community Medicine, Primary Care and Emergency Medicine, Division of Primary Care Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Aurélie Caillon
- Laboratory of Metabolism, Department of Medicine Specialties, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Alain Golay
- Service of Therapeutic Education for Chronic Diseases, WHO Collaborating Centre, University Hospitals of Geneva and University of Geneva, Geneva, Switzerland
| | - Françoise Rohner-Jeanrenaud
- Laboratory of Metabolism, Department of Medicine Specialties, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Jordi Altirriba
- Laboratory of Metabolism, Department of Medicine Specialties, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
78
|
Zhang B, Nakata M, Nakae J, Ogawa W, Yada T. Central insulin action induces activation of paraventricular oxytocin neurons to release oxytocin into circulation. Sci Rep 2018; 8:10415. [PMID: 29991705 PMCID: PMC6039480 DOI: 10.1038/s41598-018-28816-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/15/2018] [Indexed: 12/11/2022] Open
Abstract
Oxytocin neurons in the paraventricular nucleus (PVN) of hypothalamus regulate energy metabolism and reproduction. Plasma oxytocin concentration is reduced in obese subjects with insulin resistance. These findings prompted us to hypothesize that insulin serves to promote oxytocin release. This study examined whether insulin activates oxytocin neurons in the PVN, and explored the underlying signaling. We generated the mice deficient of 3-phosphoinositide-dependent protein kinase-1 (PDK1), a major signaling molecule particularly for insulin, specifically in oxytocin neurons (Oxy Pdk1 KO). Insulin increased cytosolic calcium concentration ([Ca2+]i) in oxytocin neurons with larger (≧25 μm) and smaller (<25 μm) diameters isolated from PVN in C57BL/6 mice. In PDK1 Oxy Pdk1 KO mice, in contrast, this effect of insulin to increase [Ca2+]i was markedly diminished in the larger-sized oxytocin neurons, while it was intact in the smaller-sized oxytocin neurons. Furthermore, intracerebroventricular insulin administration induced oxytocin release into plasma in Oxy Cre but not Oxy Pdk1 KO mice. These results demonstrate that insulin PDK1-dependently preferentially activates PVN magnocellular oxytocin neurons to release oxytocin into circulation, possibly serving as a mechanism for the interaction between metabolism and perinatal functions.
Collapse
Affiliation(s)
- Boyang Zhang
- Department of Physiology, Division of Integrative Physiology, Faculty of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Masanori Nakata
- Department of Physiology, Division of Integrative Physiology, Faculty of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan. .,Department of Physiology, Faculty of Medicine, Wakayama Medical University School of Medicine, 641-8509, Kimiidera 811-1, Wakayama, Wakayama, Japan.
| | - Jun Nakae
- Frontier Medicine on Metabolic Syndrome, Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Wataru Ogawa
- Department of Internal Medicine, Division of Diabetes and Endocrinology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Toshihiko Yada
- Department of Physiology, Division of Integrative Physiology, Faculty of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan. .,Kansai Electric Power Medical Research Institute, 1-5-6 Minatojimaminamimachi, Chuou-ku, Kobe, 650-0047, Japan.
| |
Collapse
|
79
|
Jurek B, Neumann ID. The Oxytocin Receptor: From Intracellular Signaling to Behavior. Physiol Rev 2018; 98:1805-1908. [DOI: 10.1152/physrev.00031.2017] [Citation(s) in RCA: 408] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The many facets of the oxytocin (OXT) system of the brain and periphery elicited nearly 25,000 publications since 1930 (see FIGURE 1 , as listed in PubMed), which revealed central roles for OXT and its receptor (OXTR) in reproduction, and social and emotional behaviors in animal and human studies focusing on mental and physical health and disease. In this review, we discuss the mechanisms of OXT expression and release, expression and binding of the OXTR in brain and periphery, OXTR-coupled signaling cascades, and their involvement in behavioral outcomes to assemble a comprehensive picture of the central and peripheral OXT system. Traditionally known for its role in milk let-down and uterine contraction during labor, OXT also has implications in physiological, and also behavioral, aspects of reproduction, such as sexual and maternal behaviors and pair bonding, but also anxiety, trust, sociability, food intake, or even drug abuse. The many facets of OXT are, on a molecular basis, brought about by a single receptor. The OXTR, a 7-transmembrane G protein-coupled receptor capable of binding to either Gαior Gαqproteins, activates a set of signaling cascades, such as the MAPK, PKC, PLC, or CaMK pathways, which converge on transcription factors like CREB or MEF-2. The cellular response to OXT includes regulation of neurite outgrowth, cellular viability, and increased survival. OXTergic projections in the brain represent anxiety and stress-regulating circuits connecting the paraventricular nucleus of the hypothalamus, amygdala, bed nucleus of the stria terminalis, or the medial prefrontal cortex. Which OXT-induced patterns finally alter the behavior of an animal or a human being is still poorly understood, and studying those OXTR-coupled signaling cascades is one initial step toward a better understanding of the molecular background of those behavioral effects.
Collapse
Affiliation(s)
- Benjamin Jurek
- Department of Behavioural and Molecular Neurobiology, Institute of Zoology, University of Regensburg, Regensburg, Germany
| | - Inga D. Neumann
- Department of Behavioural and Molecular Neurobiology, Institute of Zoology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
80
|
Najam SS, Zglinicki B, Vinnikov IA, Konopka W. MicroRNAs in the hypothalamic control of energy homeostasis. Cell Tissue Res 2018; 375:173-177. [DOI: 10.1007/s00441-018-2876-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/19/2018] [Indexed: 11/28/2022]
|
81
|
Zaidi M, New MI, Blair HC, Zallone A, Baliram R, Davies TF, Cardozo C, Iqbal J, Sun L, Rosen CJ, Yuen T. Actions of pituitary hormones beyond traditional targets. J Endocrinol 2018; 237:R83-R98. [PMID: 29555849 PMCID: PMC5924585 DOI: 10.1530/joe-17-0680] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 03/19/2018] [Indexed: 01/14/2023]
Abstract
Studies over the past decade have challenged the long-held belief that pituitary hormones have singular functions in regulating specific target tissues, including master hormone secretion. Our discovery of the action of thyroid-stimulating hormone (TSH) on bone provided the first glimpse into the non-traditional functions of pituitary hormones. Here we discuss evolving experimental and clinical evidence that growth hormone (GH), follicle-stimulating hormone (FSH), adrenocorticotrophic hormone (ACTH), prolactin, oxytocin and arginine vasopressin (AVP) regulate bone and other target tissues, such as fat. Notably, genetic and pharmacologic FSH suppression increases bone mass and reduces body fat, laying the framework for targeting the FSH axis for treating obesity and osteoporosis simultaneously with a single agent. Certain 'pituitary' hormones, such as TSH and oxytocin, are also expressed in bone cells, providing local paracrine and autocrine networks for the regulation of bone mass. Overall, the continuing identification of new roles for pituitary hormones in biology provides an entirely new layer of physiologic circuitry, while unmasking new therapeutic targets.
Collapse
Affiliation(s)
- Mone Zaidi
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Correspondence: Mone Zaidi, MD, PhD, The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, Box 1055, New York, NY 10029;
| | - Maria I. New
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Harry C. Blair
- The Pittsburgh VA Medical Center and Departments of Pathology and of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Alberta Zallone
- Department of Histology, University of Bari, 70121 Bari, Italy
| | - Ramkumarie Baliram
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Terry F. Davies
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Christopher Cardozo
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - James Iqbal
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Li Sun
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Tony Yuen
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
82
|
Everett NA, McGregor IS, Baracz SJ, Cornish JL. The role of the vasopressin V1A receptor in oxytocin modulation of methamphetamine primed reinstatement. Neuropharmacology 2018; 133:1-11. [DOI: 10.1016/j.neuropharm.2017.12.036] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 12/11/2017] [Accepted: 12/20/2017] [Indexed: 12/17/2022]
|
83
|
Skinner JA, Garg ML, Dayas CV, Fenton S, Burrows TL. Relationship between dietary intake and behaviors with oxytocin: a systematic review of studies in adults. Nutr Rev 2018. [DOI: 10.1093/nutrit/nux078] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Janelle A Skinner
- Nutrition and Dietetics School of Health Sciences, Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia
- Priority Research Centre for Physical Activity and Nutrition, University of Newcastle, Callaghan, New South Wales, Australia
| | - Manohar L Garg
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia
| | - Christopher V Dayas
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia
| | - Sasha Fenton
- Priority Research Centre for Physical Activity and Nutrition, University of Newcastle, Callaghan, New South Wales, Australia
| | - Tracy L Burrows
- Nutrition and Dietetics School of Health Sciences, Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia
- Priority Research Centre for Physical Activity and Nutrition, University of Newcastle, Callaghan, New South Wales, Australia
| |
Collapse
|
84
|
Leslie M, Silva P, Paloyelis Y, Blevins J, Treasure J. A Systematic Review and Quantitative Meta-Analysis of Oxytocin's Effects on Feeding. J Neuroendocrinol 2018; 30:10.1111/jne.12584. [PMID: 29480934 PMCID: PMC6292740 DOI: 10.1111/jne.12584] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 02/20/2018] [Indexed: 12/15/2022]
Abstract
PURPOSE Oxytocin's anorexigenic effects have been widely documented and accepted; however, no paper has yet used the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines to compile previous findings in a single systematic review and quantitative meta-analysis. The current paper aimed to identify published and unpublished studies examining the effects of oxytocin on energy intake in animals and humans, and the factors that moderate this effect. METHODS Web of Science, Pub Med, and Ovid were searched for published and unpublished studies reporting the effects of oxytocin on energy intake in wild-type animals and in humans, when administered in the absence of other active drugs or surgery. RESULTS 2049 articles were identified through the original systematic literature search, from which 54 articles were identified as relevant for inclusion in this review. An additional 3 relevant articles were identified in a later update of the literature search. Overall, a single-dose of oxytocin was found to reduce feeding in animals. Despite several individual studies which found that this effect persists to the end of the third week of chronic administration in rodent models, overall, this anorexigenic effect did not hold in the meta-analyses testing the effects of chronic administration. There was no overall effect of oxytocin on energy intake in humans, although a trend was identified for oxytocin to reduce consumption of solid foods. CONCLUSIONS Oxytocin reduces energy intake when administered as a single dose. Oxytocin can inhibit feeding over two- to three-week periods in rodent models. These effects typically do not persist beyond the third week of treatment. The anorexigenic effect of oxytocin is moderated by pregnant status, dose, method of administration, and diet composition. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Monica Leslie
- Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London (KCL), London, UK
| | - Paulo Silva
- Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London (KCL), London, UK
| | - Yannis Paloyelis
- Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London (KCL), London, UK
| | - James Blevins
- Department of Veterans Affairs Medical Center, Office of Research and Development Medical Research Service, VA Puget Sound Health Care System, Seattle, WA, USA
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Janet Treasure
- Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London (KCL), London, UK
| |
Collapse
|
85
|
Hsu EA, Miller JL, Perez FA, Roth CL. Oxytocin and Naltrexone Successfully Treat Hypothalamic Obesity in a Boy Post-Craniopharyngioma Resection. J Clin Endocrinol Metab 2018; 103:370-375. [PMID: 29220529 DOI: 10.1210/jc.2017-02080] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/01/2017] [Indexed: 11/19/2022]
Abstract
CONTEXT Hypothalamic obesity, a treatment-resistant condition common to survivors of craniopharyngioma (CP), is strongly associated with a poor quality of life in this population. Oxytocin (OT), a hypothalamic neuropeptide, has been shown to play a role in the regulation of energy balance and to have anorexigenic effects in animal studies. Naltrexone (NAL), an opiate antagonist, has been shown to deter hedonic eating and to potentiate OT's effects. DESIGN In this parent-observed study, we tested the administration of intranasal OT for 10 weeks (phase 1), followed by a combination of intranasal OT and NAL for 38 weeks (phase 2) in a 13-year-old male with confirmed hypothalamic obesity and hyperphagia post-CP resection. Treatment resulted in 1) reduction in body mass index (BMI) z score from 1.77 to 1.49 over 10 weeks during phase 1; 2) reduction in BMI z score from 1.49 to 0.82 over 38 weeks during phase 2; 3) reduced hyperphagia during phases 1 and 2; 4) continued hedonic high-carbohydrate food-seeking in the absence of hunger during phases 1 and 2; and 5) sustained weight reduction during decreased parental monitoring and free access to unlocked food in the home during the last 10 weeks of phase 2. CONCLUSION This successful intervention of CP-related hypothalamic obesity and hyperphagia by OT alone and in combination with NAL is promising for conducting future studies of this treatment-recalcitrant form of obesity.
Collapse
Affiliation(s)
- Eugenie A Hsu
- Department of Psychiatry, Kaiser Permanente Medical Center, Oakland, California
| | - Jennifer L Miller
- Division of Endocrinology, Department of Pediatrics, University of Florida, Gainesville, Florida
| | - Francisco A Perez
- Department of Radiology, Seattle Children's Hospital and Research Institute, Seattle, Washington
| | - Christian L Roth
- Center for Integrative Brain Research, Seattle Children's Hospital and Research Institute, Seattle, Washington
- Department of Pediatric Endocrinology, Seattle Children's Hospital and Research Institute, Seattle, Washington
| |
Collapse
|
86
|
Oxytocin is lower in African American men with diabetes and associates with psycho-social and metabolic health factors. PLoS One 2018; 13:e0190301. [PMID: 29300770 PMCID: PMC5754076 DOI: 10.1371/journal.pone.0190301] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 12/12/2017] [Indexed: 12/13/2022] Open
Abstract
Objective Recently, it has been suggested that oxytocin (OT) has a role in metabolism and neuropsychiatry health and disease, and therefore, it may represent a potential therapeutic target. The current study aimed to investigate relationships between OT and glycemic status along with psycho-social and behavioral factors. Design and methods A total of 92 obese or overweight, African American, male subjects were enrolled in the study. Biometric and biochemical data were collected including oral glucose tolerance testing and urinary OT (measured by ELISA). Subjects also completed questionnaires on social and lifestyle factors. Results OT levels were found to be significantly lower in subjects with type 2 diabetes mellitus (T2DM) compared to normal glucose tolerance (p<0.05). When stratified by OT tertiles, subjects with higher OT had lower weight, body mass index (BMI) and hemoglobin A1c, but higher eGFR which remained significant after BMI adjustment. The highest OT tertile also had more smokers and more users of psychiatric medications. A stepwise ordered logistic regression supported these findings and could account for 21% of the variation in OT categories (pseudoR2 = 0.21). Conclusions In this unique population, OT was found lower in subjects with diabetes but higher with better renal function, cigarette smoking and use of psychiatric medications. Future studies are needed to confirm these findings and examine the potential therapeutic role of OT.
Collapse
|
87
|
Maejima Y, Yokota S, Nishimori K, Shimomura K. The Anorexigenic Neural Pathways of Oxytocin and Their Clinical Implication. Neuroendocrinology 2018; 107:91-104. [PMID: 29660735 DOI: 10.1159/000489263] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 04/15/2018] [Indexed: 12/21/2022]
Abstract
Oxytocin was discovered in 1906 as a peptide that promotes delivery and milk ejection; however, its additional physiological functions were determined 100 years later. Many recent articles have reported newly discovered effects of oxytocin on social communication, bonding, reward-related behavior, adipose tissue, and muscle and food intake regulation. Because oxytocin neurons project to various regions in the brain that contribute to both feeding reward (hedonic feeding) and the regulation of energy balance (homeostatic feeding), the mechanisms of oxytocin on food intake regulation are complicated and largely unknown. Oxytocin neurons in the paraventricular nucleus (PVN) receive neural projections from the arcuate nucleus (ARC), which is an important center for feeding regulation. On the other hand, these neurons in the PVN and supraoptic nucleus project to the ARC. PVN oxytocin neurons also project to the brain stem and the reward-related limbic system. In addition to this, oxytocin induces lipolysis and decreases fat mass. However, these effects in feeding and adipose tissue are known to be dependent on body weight (BW). Oxytocin treatment is more effective in food intake regulation and fat mass decline for individuals with leptin resistance and higher BW, but is known to be less effective in individuals with normal BW. In this review, we present in detail the recent findings on the physiological role of oxytocin in feeding regulation and the anorexigenic neural pathway of oxytocin neurons, as well as the advantage of oxytocin usage for anti-obesity treatment.
Collapse
Affiliation(s)
- Yuko Maejima
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Shoko Yokota
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Katsuhiko Nishimori
- Department of Molecular and Cell Biology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Kenju Shimomura
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, Fukushima, Japan
| |
Collapse
|
88
|
Abstract
Oxytocin, a hypothalamic hormone that is secreted directly into the brain and enters the peripheral circulation through the posterior pituitary gland, regulates a range of physiologic processes, including eating behaviour and metabolism. In rodents and nonhuman primates, chronic oxytocin administration leads to sustained weight reduction by reducing food intake, increasing energy expenditure and inducing lipolysis. Oxytocin might improve glucose homeostasis, independently of its effects on weight. Clinical studies are beginning to translate these important preclinical findings to humans. This Review describes key data linking oxytocin to eating behaviour and metabolism in humans. For example, a single intranasal dose of oxytocin can reduce caloric intake, increase fat oxidation and improve insulin sensitivity in men. Furthermore, a pilot study of 8 weeks of oxytocin treatment in adults with obesity or overweight led to substantial weight loss. Together, these data support further investigation of interventions that target pathways involving oxytocin as potential therapeutics in metabolic disorders, including obesity and diabetes mellitus. Therapeutic considerations and areas for further research are also discussed.
Collapse
Affiliation(s)
- Elizabeth A Lawson
- Neuroendocrine Unit, Massachusetts General Hospital, 55 Fruit Street, Bulfinch 457 D, Boston, Massachusetts 02114, USA
| |
Collapse
|
89
|
Klockars OA, Waas JR, Klockars A, Levine AS, Olszewski PK. Neural Basis of Ventromedial Hypothalamic Oxytocin-Driven Decrease in Appetite. Neuroscience 2017; 366:54-61. [DOI: 10.1016/j.neuroscience.2017.10.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 10/05/2017] [Accepted: 10/06/2017] [Indexed: 02/03/2023]
|
90
|
Lancaster K, Goldbeck L, Pournajafi-Nazarloo H, Connelly JJ, Carter CS, Morris JP. The Role of Endogenous Oxytocin in Anxiolysis: Structural and Functional Correlates. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2017; 3:618-625. [PMID: 30047477 DOI: 10.1016/j.bpsc.2017.10.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/26/2017] [Accepted: 10/09/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND Oxytocin is anxiolytic, and administration of synthetic oxytocin in humans reduces amygdala reactivity to negative stimuli. However, it is unknown whether endogenous oxytocin levels-which are heritable and stable across time-attenuate anxiety via similar mechanisms. METHODS In this study, we used plasma assays and structural and functional neuroimaging to examine potential anxiolytic effects of endogenous oxytocin in 73 participants. RESULTS We found that higher endogenous oxytocin levels are associated with reduced central amygdala volume and blood oxygen level-dependent activity in response to aversive stimuli. In contrast to previous reports, we found that oxytocin was not related to patterns of functional connectivity between the amygdala and other brain regions. CONCLUSIONS Together, our results underscore the importance of considering individual differences in participants' endogenous oxytocin with respect to anxiety-related neural activity and neuromorphology.
Collapse
Affiliation(s)
| | | | | | | | - C Sue Carter
- The Kinsey Institute, Indiana University, Bloomington, Indiana
| | | |
Collapse
|
91
|
Abstract
PURPOSE OF REVIEW Laboratory animal experiments have consistently shown that oxytocin causes early termination of food intake, thereby promoting a decrease in body weight in a long term. Recent studies have also assessed some of oxytocin's effects on appetite and energy balance in humans. The present study examines the findings of the key basic research and of the few clinical studies published thus far in the context of potential benefits and challenges stemming from the use of oxytocin in obese patients. RECENT FINDINGS Basic research indicates the involvement of oxytocin in satiety, processing, in reducing a drive to eat for pleasure and because of psychosocial factors. Although the results of clinical studies are very scarce, they suggest that oxytocin administered intranasally in humans decreases energy-induced and reward-induced eating, supports cognitive control of food choices, and improves glucose homeostasis, and its effectiveness may be BMI dependent. SUMMARY Despite the wealth of basic research showing broad anorexigenic effects of oxytocin, clinical studies on oxytocin's therapeutic potential in obesity, are still in their infancy. Future implementation of oxytocin-based pharmacological strategies in controlling energy balance will likely depend on our ability to integrate diverse behavioral and metabolic effects of oxytocin in obesity treatment regimens.
Collapse
Affiliation(s)
- Pawel K Olszewski
- aDepartment of Food Science and Nutrition, University of Minnesota, St Paul, Minnesota, USA bDepartment of Biological Sciences, Faculty of Science and Engineering, University of Waikato, Hamilton, New Zealand
| | | | | |
Collapse
|
92
|
Ong ZY, Bongiorno DM, Hernando MA, Grill HJ. Effects of Endogenous Oxytocin Receptor Signaling in Nucleus Tractus Solitarius on Satiation-Mediated Feeding and Thermogenic Control in Male Rats. Endocrinology 2017; 158:2826-2836. [PMID: 28575174 PMCID: PMC5659667 DOI: 10.1210/en.2017-00200] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/24/2017] [Indexed: 12/15/2022]
Abstract
Central oxytocin receptor (OT-R) signaling reduces food intake and increases energy expenditure, but the central sites and mechanisms mediating these effects are unresolved. We showed previously that pharmacological activation of OT-R in hindbrain/nucleus tractus solitarius (NTS) amplifies the intake-inhibitory effects of gastrointestinal (GI) satiation signals. Unexplored were the energetic effects of hindbrain OT-R agonism and the physiological relevance of NTS OT-R signaling on food intake and energy expenditure control. Using a virally mediated OT-R knockdown (KD) strategy and a range of behavioral paradigms, this study examined the role of endogenous NTS OT-R signaling on satiation-mediated food intake inhibition and thermogenic control. Results showed that, compared with controls, NTS OT-R KD rats consumed larger meals, were less responsive to the intake-inhibitory effects of a self-ingested preload, and consumed more chow following a 24-hour fast. These data indicate that NTS OT-R signaling is necessary for normal satiation control. Whereas both control and NTS OT-R KD rats increased core temperature following high-fat diet maintenance (relative to chow maintenance), the percent increase in core temperature was greater in control compared with NTS OT-R KD rats during the light cycle. Hindbrain oxytocin agonist delivery increased core temperature in both control and NTS OT-R KD rats and the percent increase relative to vehicle treatment was not significantly different between groups. Together, data reveal a critical role for endogenous NTS OT-R signaling in mediating the intake-inhibitory effects of endogenous GI satiation signals and in diet-induced thermogenesis.
Collapse
Affiliation(s)
- Zhi Yi Ong
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Diana M. Bongiorno
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Mary Ann Hernando
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Harvey J. Grill
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
93
|
Maejima Y, Aoyama M, Sakamoto K, Jojima T, Aso Y, Takasu K, Takenosihita S, Shimomura K. Impact of sex, fat distribution and initial body weight on oxytocin's body weight regulation. Sci Rep 2017; 7:8599. [PMID: 28819236 PMCID: PMC5561196 DOI: 10.1038/s41598-017-09318-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 07/26/2017] [Indexed: 02/07/2023] Open
Abstract
Obesity is considered as a worldwide problem in both males and females. Although many studies have demonstrated the efficiency of oxytocin (Oxt) as an anti-obesity peptide, there is no comparative study of its effect in males and females. This study aims to determine factors (sex, initial body weight, and fat distribution) that may affect the ability of Oxt to regulate body weight (BW). With regard to sex, Oxt reduced BW similarly in males and females under both high fat diet (HFD) and standard chow-fed condition. The BW reduction induced by Oxt correlated with initial BW in male and female mice under HFD conditions. Oxt showed an equal efficacy in fat degradation in both the visceral and subcutaneous fat mass in both males and females fed with HFD. The effect of Oxt on BW reduction was attenuated in standard chow-fed male and female mice. Therefore, our results suggest that administration of Oxt is more effective in reducing BW in subjects with a high initial BW with increased fat accumulation. The present data contains important information for the possible clinical application of Oxt for the treatment of obesity.
Collapse
Affiliation(s)
- Yuko Maejima
- Department of Pharmacology, Fukushima Medical University School of Medicine, Fukushima-shi, 960-1295, Japan.
| | - Masato Aoyama
- Department of Animal Science, Faculty of Agriculture, Utsunomiya University, Utsunomiya-Shi, 321-8505, Japan
| | - Kazuho Sakamoto
- Department of Pharmacology, Fukushima Medical University School of Medicine, Fukushima-shi, 960-1295, Japan
| | - Teruo Jojima
- Department of Endocrinology and Metabolism, Dokkyo Medical University, Mibu-Machi, 321-0293, Japan
| | - Yoshimasa Aso
- Department of Endocrinology and Metabolism, Dokkyo Medical University, Mibu-Machi, 321-0293, Japan
| | | | - Seiichi Takenosihita
- Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, Fukushima-shi, 960-1295, Japan
| | - Kenju Shimomura
- Department of Pharmacology, Fukushima Medical University School of Medicine, Fukushima-shi, 960-1295, Japan
| |
Collapse
|
94
|
Schorr M, Marengi DA, Pulumo RL, Yu E, Eddy KT, Klibanski A, Miller KK, Lawson EA. Oxytocin and Its Relationship to Body Composition, Bone Mineral Density, and Hip Geometry Across the Weight Spectrum. J Clin Endocrinol Metab 2017; 102:2814-2824. [PMID: 28586943 PMCID: PMC5546854 DOI: 10.1210/jc.2016-3963] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 05/05/2017] [Indexed: 01/06/2023]
Abstract
CONTEXT Oxytocin (OXT), an anorexigenic hypothalamic hormone anabolic to bone, may reflect energy availability. Basal serum OXT levels are lower in anorexia nervosa (AN, state of energy deficit) than healthy controls (HC) and negatively associated with spine bone mineral density (BMD). Reports are conflicting regarding OXT levels in overweight/obesity (OB, state of energy excess). Relationships between OXT and BMD in OB and hip geometry across the weight spectrum are unknown. OBJECTIVE To determine whether overnight serum OXT levels are (1) elevated in OB and (2) associated with body composition, BMD, and hip geometry across the weight spectrum. DESIGN Cross-sectional. SETTING Clinical research center. PARTICIPANTS Fifty-nine women, ages 18 to 45 years: amenorrheic AN (N = 16), eumenorrheic HC (N = 24), eumenorrheic OB (N = 19). MAIN OUTCOME MEASURES Serum sampled every 20 minutes from 8 pm to 8 am and pooled for integrated overnight OXT levels. Body composition, BMD, and hip structural analysis measured by dual x-ray absorptiometry. RESULTS OXT levels were lowest in AN, higher in HC, and highest in OB (P ≤ 0.02). There were positive associations between OXT and (1) body mass index (P = 0.0004); (2) total, visceral, and subcutaneous fat (P ≤ 0.0002); (3) spine and hip BMD Z-scores (P ≤ 0.01); and (4) favorable hip geometry, namely buckling ratio (P ≤ 0.05). In a subset analysis of HC and OB, relationships between OXT and body composition, but not bone parameters, remained significant. CONCLUSIONS These data suggest OXT is a marker of energy availability and may be a mediator of bone density, structure, and strength. OXT pathways may provide targets for obesity and osteoporosis treatment.
Collapse
Affiliation(s)
- Melanie Schorr
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, Massachusetts 02114
- Harvard Medical School, Boston, Massachusetts 02115
| | - Dean A Marengi
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Reitumetse L Pulumo
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Elaine Yu
- Harvard Medical School, Boston, Massachusetts 02115
- Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Kamryn T Eddy
- Harvard Medical School, Boston, Massachusetts 02115
- Eating Disorders Clinical and Research Program, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Anne Klibanski
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, Massachusetts 02114
- Harvard Medical School, Boston, Massachusetts 02115
| | - Karen K Miller
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, Massachusetts 02114
- Harvard Medical School, Boston, Massachusetts 02115
| | - Elizabeth A Lawson
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, Massachusetts 02114
- Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
95
|
Cuesto G, Everaerts C, León LG, Acebes A. Molecular bases of anorexia nervosa, bulimia nervosa and binge eating disorder: shedding light on the darkness. J Neurogenet 2017; 31:266-287. [PMID: 28762842 DOI: 10.1080/01677063.2017.1353092] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Eating-disorders (EDs) consequences to human health are devastating, involving social, mental, emotional, physical and life-threatening aspects, concluding on impairment and death in cases of extreme anorexia nervosa. It also implies that people suffering an ED need to find psychiatric and psychological help as soon as possible to achieve a fully physical and emotional recovery. Unfortunately, to date, there is a crucial lack of efficient clinical treatment to these disorders. In this review, we present an overview concerning the actual pharmacological and psychological treatments, the knowledge of cells, circuits, neuropeptides, neuromodulators and hormones in the human brain- and other organs- underlying these disorders, the studies in animal models and, finally, the genetic approaches devoted to face this challenge. We will also discuss the need for new perspectives, avenues and strategies to be developed in order to pave the way to novel and more efficient therapeutics.
Collapse
Affiliation(s)
- Germán Cuesto
- a Centre for Biomedical Research of the Canary Islands , Institute of Biomedical Technologies, University of La Laguna , Tenerife , Spain
| | - Claude Everaerts
- b Centre des Sciences du Goût et de l'Alimentation , UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne Franche-Comté , Dijon , France
| | - Leticia G León
- c Cancer Pharmacology Lab , AIRC Start Up Unit, University of Pisa , Pisa , Italy
| | - Angel Acebes
- a Centre for Biomedical Research of the Canary Islands , Institute of Biomedical Technologies, University of La Laguna , Tenerife , Spain
| |
Collapse
|
96
|
Roberts ZS, Wolden-Hanson T, Matsen ME, Ryu V, Vaughan CH, Graham JL, Havel PJ, Chukri DW, Schwartz MW, Morton GJ, Blevins JE. Chronic hindbrain administration of oxytocin is sufficient to elicit weight loss in diet-induced obese rats. Am J Physiol Regul Integr Comp Physiol 2017; 313:R357-R371. [PMID: 28747407 DOI: 10.1152/ajpregu.00169.2017] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/30/2017] [Accepted: 07/02/2017] [Indexed: 02/06/2023]
Abstract
Oxytocin (OT) administration elicits weight loss in diet-induced obese (DIO) rodents, nonhuman primates, and humans by reducing energy intake and increasing energy expenditure. Although the neurocircuitry underlying these effects remains uncertain, OT neurons in the paraventricular nucleus are positioned to control both energy intake and sympathetic nervous system outflow to interscapular brown adipose tissue (BAT) through projections to the hindbrain nucleus of the solitary tract and spinal cord. The current work was undertaken to examine whether central OT increases BAT thermogenesis, whether this effect involves hindbrain OT receptors (OTRs), and whether such effects are associated with sustained weight loss following chronic administration. To assess OT-elicited changes in BAT thermogenesis, we measured the effects of intracerebroventricular administration of OT on interscapular BAT temperature in rats and mice. Because fourth ventricular (4V) infusion targets hindbrain OTRs, whereas third ventricular (3V) administration targets both forebrain and hindbrain OTRs, we compared responses to OT following chronic 3V infusion in DIO rats and mice and chronic 4V infusion in DIO rats. We report that chronic 4V infusion of OT into two distinct rat models recapitulates the effects of 3V OT to ameliorate DIO by reducing fat mass. While reduced food intake contributes to this effect, our finding that 4V OT also increases BAT thermogenesis suggests that increased energy expenditure may contribute as well. Collectively, these findings support the hypothesis that, in DIO rats, OT action in the hindbrain evokes sustained weight loss by reducing energy intake and increasing BAT thermogenesis.
Collapse
Affiliation(s)
- Zachary S Roberts
- Veterans Affairs Puget Sound Health Care System, Office of Research and Development, Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, Washington
| | - Tami Wolden-Hanson
- Veterans Affairs Puget Sound Health Care System, Office of Research and Development, Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, Washington
| | - Miles E Matsen
- University of Washington Diabetes Institute, University of Washington School of Medicine, Seattle, Washington
| | - Vitaly Ryu
- Department of Biology, Georgia State University, Atlanta, Georgia; and.,Center for Obesity Reversal, Georgia State University, Atlanta, Georgia
| | - Cheryl H Vaughan
- Department of Biology, Georgia State University, Atlanta, Georgia; and.,Center for Obesity Reversal, Georgia State University, Atlanta, Georgia
| | - James L Graham
- Departments of Nutrition and Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California
| | - Peter J Havel
- Departments of Nutrition and Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California
| | - Daniel W Chukri
- Veterans Affairs Puget Sound Health Care System, Office of Research and Development, Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, Washington
| | - Michael W Schwartz
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, Washington.,University of Washington Diabetes Institute, University of Washington School of Medicine, Seattle, Washington
| | - Gregory J Morton
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, Washington.,University of Washington Diabetes Institute, University of Washington School of Medicine, Seattle, Washington
| | - James E Blevins
- Veterans Affairs Puget Sound Health Care System, Office of Research and Development, Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, Washington; .,Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, Washington
| |
Collapse
|
97
|
Klockars A, Brunton C, Li L, Levine AS, Olszewski PK. Intravenous administration of oxytocin in rats acutely decreases deprivation-induced chow intake, but it fails to affect consumption of palatable solutions. Peptides 2017; 93:13-19. [PMID: 28460894 DOI: 10.1016/j.peptides.2017.04.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 04/22/2017] [Accepted: 04/27/2017] [Indexed: 01/03/2023]
Abstract
Despite its limited ability to cross the blood-brain barrier, peripherally administered oxytocin (OT) acutely decreases food intake, most likely via the brainstem and hypothalamic mechanisms. Studies performed to date have focused mainly on the effects of subcutaneous or intraperitoneal OT on the consumption of only solid calorie-dense diets (either standard or high-fat), whereas it is unknown whether, similarly to central OT, peripherally administered peptide reduces intake of calorie-dilute and non-caloric palatable solutions. In this project, we established that 0.1μg/kg intravenous (IV) OT is the lowest anorexigenic dose, decreasing deprivation-induced standard chow intake by ca. 40% in rats and its effect does not stem from aversion. We then used this dose in paradigms in which effects of centrally acting OT ligands on consumption of palatable solutions had been previously reported. We found that IV OT did not change episodic intake of individually presented palatable solutions containing 10% sucrose, 0.1% saccharin, combined 10% sucrose-0.1% saccharin or 4.1%. Intralipid and it failed to affect daily scheduled consumption of a sucrose solution in non-deprived rats. In a two-bottle choice test, IV OT did not shift animals' preference from sucrose to Intralipid. Finally, OT injected IV prior to the simultaneous presentation chow and a sucrose solution in food-deprived rats significantly decreased chow intake, whereas sugar water consumption remained unchanged. We conclude that IV OT reduces deprivation-induced chow intake without causing aversion, but the dose effective in decreasing energy-driven consumption of high-calorie food fails to affect consumption of palatable calorie-dilute solutions.
Collapse
Affiliation(s)
- Anica Klockars
- Department of Biological Sciences, Faculty of Science and Engineering, University of Waikato, Hamilton, New Zealand
| | - Chloe Brunton
- Department of Biological Sciences, Faculty of Science and Engineering, University of Waikato, Hamilton, New Zealand
| | - Lu Li
- University of Auckland, Waikato Clinical School, Hamilton, 3240 New Zealand
| | - Allen S Levine
- Department of Food Science and Nutrition, University of Minnesota, St Paul, MN, USA
| | - Pawel K Olszewski
- Department of Biological Sciences, Faculty of Science and Engineering, University of Waikato, Hamilton, New Zealand; Department of Food Science and Nutrition, University of Minnesota, St Paul, MN, USA.
| |
Collapse
|
98
|
Wu L, Meng J, Shen Q, Zhang Y, Pan S, Chen Z, Zhu LQ, Lu Y, Huang Y, Zhang G. Caffeine inhibits hypothalamic A 1R to excite oxytocin neuron and ameliorate dietary obesity in mice. Nat Commun 2017; 8:15904. [PMID: 28654087 PMCID: PMC5490268 DOI: 10.1038/ncomms15904] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 05/10/2017] [Indexed: 12/14/2022] Open
Abstract
Caffeine, an antagonist of the adenosine receptor A1R, is used as a dietary supplement to reduce body weight, although the underlying mechanism is unclear. Here, we report that adenosine level in the cerebrospinal fluid, and hypothalamic expression of A1R, are increased in the diet-induced obesity (DIO) mouse. We find that mice with overexpression of A1R in the neurons of paraventricular nucleus (PVN) of the hypothalamus are hyperphagic, have glucose intolerance and high body weight. Central or peripheral administration of caffeine reduces the body weight of DIO mice by the suppression of appetite and increasing of energy expenditure. We also show that caffeine excites oxytocin expressing neurons, and blockade of the action of oxytocin significantly attenuates the effect of caffeine on energy balance. These data suggest that caffeine inhibits A1Rs expressed on PVN oxytocin neurons to negatively regulate energy balance in DIO mice.
Collapse
Affiliation(s)
- Liufeng Wu
- Key Laboratory of Environmental Health, Ministry of Education, Department of Toxicology, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jia Meng
- Key Laboratory of Environmental Health, Ministry of Education, Department of Toxicology, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Qing Shen
- Key Laboratory of Environmental Health, Ministry of Education, Department of Toxicology, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yi Zhang
- Key Laboratory of Environmental Health, Ministry of Education, Department of Toxicology, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Susu Pan
- Key Laboratory of Environmental Health, Ministry of Education, Department of Toxicology, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zhuo Chen
- Key Laboratory of Environmental Health, Ministry of Education, Department of Toxicology, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ling-Qiang Zhu
- Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Youming Lu
- Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yuan Huang
- Key Laboratory of Environmental Health, Ministry of Education, Department of Toxicology, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Guo Zhang
- Key Laboratory of Environmental Health, Ministry of Education, Department of Toxicology, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| |
Collapse
|
99
|
Miller GD. Appetite Regulation: Hormones, Peptides, and Neurotransmitters and Their Role in Obesity. Am J Lifestyle Med 2017; 13:586-601. [PMID: 31662725 DOI: 10.1177/1559827617716376] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 05/18/2017] [Accepted: 05/31/2017] [Indexed: 12/29/2022] Open
Abstract
Understanding body weight regulation will aid in the development of new strategies to combat obesity. This review examines energy homeostasis and food intake behaviors, specifically with regards to hormones, peptides, and neurotransmitters in the periphery and central nervous system, and their potential role in obesity. Dysfunction in feeding signals by the brain is a factor in obesity. The hypothalamic (arcuate nucleus) and brainstem (nucleus tractus solitaris) areas integrate behavioral, endocrine, and autonomic responses via afferent and efferent pathways from and to the brainstem and peripheral organs. Neurons present in the arcuate nucleus express pro-opiomelanocortin, Neuropeptide Y, and Agouti Related Peptide, with the former involved in lowering food intake, and the latter two acutely increasing feeding behaviors. Action of peripheral hormones from the gut, pancreas, adipose, and liver are also involved in energy homeostasis. Vagal afferent neurons are also important in regulating energy homeostasis. Peripheral signals respond to the level of stored and currently available fuel. By studying their actions, new agents maybe developed that disable orexigenic responses and enhance anorexigenic signals. Although there are relatively few medications currently available for obesity treatment, a number of agents are in development that work through these pathways.
Collapse
Affiliation(s)
- Gary D Miller
- Department of Health and Exercise Science, Wake Forest University, Winston-Salem, North Carolina
| |
Collapse
|
100
|
Maejima Y, Takahashi S, Takasu K, Takenoshita S, Ueta Y, Shimomura K. Orexin action on oxytocin neurons in the paraventricular nucleus of the hypothalamus. Neuroreport 2017; 28:360-366. [PMID: 28338525 DOI: 10.1097/wnr.0000000000000773] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Oxytocin neurons in the paraventricular nucleus (PVN) of the hypothalamus play an important role in food intake regulation. It has been shown that the secretion of oxytocin from the hypothalamus shows a diurnal circadian rhythmic pattern and disturbance of this pattern leads to the development of obesity. However, whether oxytocin secretion from the PVN has a diurnal pattern remains unknown. Here, we show that oxytocin secretion from the PVN does have a diurnal pattern and that the terminals of orexin neurons, the neuropeptide responsible for regulating the sleep-wake rhythm, are synapsed with PVN oxytocin neurons. Using transgenic rats selectively expressing monomeric red fluorescent protein 1 in oxytocin neurons, we found that orexin-A inhibits the activities of PVN oxytocin neurons by inhibiting glutamatergic excitatory synaptic input. These data suggest that orexin is a possible candidate to regulate the circadian rhythm of PVN oxytocin neurons. The circadian rhythmic secretion of oxytocin is considered to play an important role in maintaining homeostasis, including body weight regulation. Our present data indicate a possible contribution of orexin toward the development of circadian rhythm in PVN oxytocin neurons.
Collapse
Affiliation(s)
- Yuko Maejima
- Departments of aMedical Electrophysiology bOrgan Regulatory Surgery, Fukushima Medical University School of Medicine, Fukushima cTakasu Clinic, Nagoya dDepartment of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | | | | | | | | | | |
Collapse
|