51
|
The effect of l-carnosine on the circadian resetting of clock genes in the heart of rats. Mol Biol Rep 2014; 42:87-94. [DOI: 10.1007/s11033-014-3745-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Accepted: 09/16/2014] [Indexed: 10/24/2022]
|
52
|
Jenwitheesuk A, Nopparat C, Mukda S, Wongchitrat P, Govitrapong P. Melatonin regulates aging and neurodegeneration through energy metabolism, epigenetics, autophagy and circadian rhythm pathways. Int J Mol Sci 2014; 15:16848-84. [PMID: 25247581 PMCID: PMC4200827 DOI: 10.3390/ijms150916848] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/03/2014] [Accepted: 09/12/2014] [Indexed: 12/19/2022] Open
Abstract
Brain aging is linked to certain types of neurodegenerative diseases and identifying new therapeutic targets has become critical. Melatonin, a pineal hormone, associates with molecules and signaling pathways that sense and influence energy metabolism, autophagy, and circadian rhythms, including insulin-like growth factor 1 (IGF-1), Forkhead box O (FoxOs), sirtuins and mammalian target of rapamycin (mTOR) signaling pathways. This review summarizes the current understanding of how melatonin, together with molecular, cellular and systemic energy metabolisms, regulates epigenetic processes in the neurons. This information will lead to a greater understanding of molecular epigenetic aging of the brain and anti-aging mechanisms to increase lifespan under healthy conditions.
Collapse
Affiliation(s)
- Anorut Jenwitheesuk
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakornpathom 73170, Thailand.
| | - Chutikorn Nopparat
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakornpathom 73170, Thailand.
| | - Sujira Mukda
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakornpathom 73170, Thailand.
| | - Prapimpun Wongchitrat
- Center for Innovation Development and Technology Transfer, Faculty of Medical Technology, Mahidol University, Salaya, Nakornpathom 73170, Thailand.
| | - Piyarat Govitrapong
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakornpathom 73170, Thailand.
| |
Collapse
|
53
|
Young ME, Brewer RA, Peliciari-Garcia RA, Collins HE, He L, Birky TL, Peden BW, Thompson EG, Ammons BJ, Bray MS, Chatham JC, Wende AR, Yang Q, Chow CW, Martino TA, Gamble KL. Cardiomyocyte-specific BMAL1 plays critical roles in metabolism, signaling, and maintenance of contractile function of the heart. J Biol Rhythms 2014; 29:257-76. [PMID: 25238855 PMCID: PMC4260630 DOI: 10.1177/0748730414543141] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Circadian clocks are cell autonomous, transcriptionally based, molecular mechanisms that confer the selective advantage of anticipation, enabling cells/organs to respond to environmental factors in a temporally appropriate manner. Critical to circadian clock function are 2 transcription factors, CLOCK and BMAL1. The purpose of the present study was to reveal novel physiologic functions of BMAL1 in the heart, as well as to determine the pathologic consequences of chronic disruption of this circadian clock component. To address this goal, we generated cardiomyocyte-specific Bmal1 knockout (CBK) mice. Following validation of the CBK model, combined microarray and in silico analyses were performed, identifying 19 putative direct BMAL1 target genes, which included a number of metabolic (e.g., β-hydroxybutyrate dehydrogenase 1 [Bdh1]) and signaling (e.g., the p85α regulatory subunit of phosphatidylinositol 3-kinase [Pik3r1]) genes. Results from subsequent validation studies were consistent with regulation of Bdh1 and Pik3r1 by BMAL1, with predicted impairments in ketone body metabolism and signaling observed in CBK hearts. Furthermore, CBK hearts exhibited depressed glucose utilization, as well as a differential response to a physiologic metabolic stress (i.e., fasting). Consistent with BMAL1 influencing critical functions in the heart, echocardiographic, gravimetric, histologic, and molecular analyses revealed age-onset development of dilated cardiomyopathy in CBK mice, which was associated with a severe reduction in life span. Collectively, our studies reveal that BMAL1 influences metabolism, signaling, and contractile function of the heart.
Collapse
Affiliation(s)
- Martin E Young
- Division of Cardiovascular Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Rachel A Brewer
- Division of Cardiovascular Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Rodrigo A Peliciari-Garcia
- Division of Cardiovascular Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA Institute of Biomedical Sciences-I, Department of Physiology and Biophysics, University of Sao Paulo, Sao Paulo, Brazil
| | - Helen E Collins
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Lan He
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Tana L Birky
- Division of Cardiovascular Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Bradley W Peden
- Division of Cardiovascular Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Emily G Thompson
- Division of Cardiovascular Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Billy-Joe Ammons
- Division of Cardiovascular Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Molly S Bray
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - John C Chatham
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Adam R Wende
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Qinglin Yang
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Chi-Wing Chow
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Tami A Martino
- Department of Biomedical Science, University of Guelph, Guelph, Ontario, Canada
| | - Karen L Gamble
- Division of Behavioral Neurobiology, Department of Psychiatry, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
54
|
Arul D, Subramanian P. Daytime food restriction influences the circadian rhythms of circulatory hepatic marker enzymes activity in rats. BIOL RHYTHM RES 2014. [DOI: 10.1080/09291016.2014.884306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
55
|
Lipkova J, Splichal Z, Bienertova-Vasku JA, Jurajda M, Parenica J, Vasku A, Goldbergova MP. Period3VNTR polymorphism influences the time-of-day pain onset of acute myocardial infarction with ST elevation. Chronobiol Int 2014; 31:878-90. [DOI: 10.3109/07420528.2014.921790] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
56
|
Rotter D, Grinsfelder DB, Parra V, Pedrozo Z, Singh S, Sachan N, Rothermel BA. Calcineurin and its regulator, RCAN1, confer time-of-day changes in susceptibility of the heart to ischemia/reperfusion. J Mol Cell Cardiol 2014; 74:103-11. [PMID: 24838101 DOI: 10.1016/j.yjmcc.2014.05.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 04/25/2014] [Accepted: 05/06/2014] [Indexed: 12/01/2022]
Abstract
Many important components of the cardiovascular system display circadian rhythmicity. In both humans and mice, cardiac damage from ischemia/reperfusion (I/R) is greatest at the transition from sleep to activity. The causes of this window of susceptibility are not fully understood. In the murine heart we have reported high amplitude circadian oscillations in the expression of the cardioprotective protein regulator of calcineurin 1 (Rcan1). This study was designed to test whether Rcan1 contributes to the circadian rhythm in cardiac protection from I/R damage. Wild type (WT), Rcan1 KO, and Rcan1-Tg mice, with cardiomyocyte-specific overexpression of Rcan1, were subjected to 45min of myocardial ischemia followed by 24h of reperfusion. Surgeries were performed either during the first 2h (AM) or during the last 2h (PM) of the animal's light phase. The area at risk was the same for all genotypes at either time point; however, in WT mice, PM-generated infarcts were 78% larger than AM-generated infarcts. Plasma cardiac troponin I levels were likewise greater in PM-operated animals. In Rcan1 KO mice there was no significant difference between the AM- and PM-operated hearts, which displayed greater indices of damage similar to that of PM-operated WT animals. Mice with cardiomyocyte-specific overexpression of human RCAN1, likewise, showed no time-of-day difference, but had smaller infarcts comparable to those of AM-operated WT mice. In vitro, cardiomyocytes depleted of RCAN1 were more sensitive to simulated I/R and the calcineurin inhibitor, FK506, restored protection. FK506 also conferred protection to PM-infarcted WT animals. Importantly, transcription of core circadian clock genes was not altered in Rcan1 KO hearts. These studies identify the calcineurin/Rcan1-signaling cascade as a potential therapeutic target through which to benefit from innate circadian changes in cardiac protection without disrupting core circadian oscillations that are essential to cardiovascular, metabolic, and mental health.
Collapse
Affiliation(s)
- David Rotter
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| | - D Bennett Grinsfelder
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| | - Valentina Parra
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| | - Zully Pedrozo
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| | - Sarvjeet Singh
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| | - Nita Sachan
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| | - Beverly A Rothermel
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| |
Collapse
|
57
|
Lipkova J, Bienertova-Vasku JA, Spinarova L, Bienert P, Hlavna M, Pavkova Goldbergova M, Parenica J, Spinar J, Vasku A. Per3 VNTR polymorphism and chronic heart failure. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2014; 158:80-3. [DOI: 10.5507/bp.2012.069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 07/04/2012] [Indexed: 01/03/2023] Open
|
58
|
Bonaconsa M, Malpeli G, Montaruli A, Carandente F, Grassi-Zucconi G, Bentivoglio M. Differential modulation of clock gene expression in the suprachiasmatic nucleus, liver and heart of aged mice. Exp Gerontol 2014; 55:70-9. [PMID: 24674978 DOI: 10.1016/j.exger.2014.03.011] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 02/24/2014] [Accepted: 03/17/2014] [Indexed: 11/30/2022]
Abstract
Studies on the molecular clockwork during aging have been hitherto addressed to core clock genes. These previous investigations indicate that circadian profiles of core clock gene expression at an advanced age are relatively preserved in the master circadian pacemaker and the hypothalamic suprachiasmatic nucleus (SCN), and relatively impaired in peripheral tissues. It remains to be clarified whether the effects of aging are confined to the primary loop of core clock genes, or also involve secondary clock loop components, including Rev-erbα and the clock-controlled genes Dbp and Dec1. Using quantitative real-time RT-PCR, we here report a comparative analysis of the circadian expression of canonical core clock genes (Per1, Per2, Cry1, Cry2, Clock and Bmal1) and non-core clock genes (Rev-erbα, Dbp and Dec1) in the SCN, liver, and heart of 3month-old vs 22month-old mice. The results indicate that circadian clock gene expression is significantly modified in the SCN and peripheral oscillators of aged mice. These changes are not only highly tissue-specific, but also involve different clock gene loops. In particular, we here report changes of secondary clock loop components in the SCN, changes of the primary clock loop in the liver, and minor changes of clock gene expression in the heart of aged mice. The present findings outline a track to further understanding of the role of primary and secondary clock loop components and their crosstalk in the impairment of circadian output which characterizes aging.
Collapse
Affiliation(s)
- Marta Bonaconsa
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy.
| | - Giorgio Malpeli
- Department of Pathology and Diagnostics, University of Verona, Verona, Italy
| | - Angela Montaruli
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Franca Carandente
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | | | - Marina Bentivoglio
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
59
|
Abstract
Sleep apnea is evident in approximately 10% of adults in the general population, but in certain cardiovascular diseases, and in particular those characterized by sodium and water retention, its prevalence can exceed 50%. Although sleep apnea is not as yet integrated into formal cardiovascular risk assessment algorithms, there is increasing awareness of its importance in the causation or promotion of hypertension, coronary artery disease, heart failure, atrial arrhythmias, and stroke, and thus, not surprisingly, as a predictor of premature cardiovascular death. Sleep apnea manifests as two principal phenotypes, both characterized by respiratory instability: obstructive (OSA), which arises when sleep-related withdrawal of respiratory drive to the upper airway dilator muscles is superimposed upon a narrow and highly compliant airway predisposed to collapse, and central (CSA), which occurs when the partial pressure of arterial carbon dioxide falls below the apnea threshold, resulting in withdrawal of central drive to respiratory muscles. The present objectives are to: (1) review the epidemiology and patho-physiology of OSA and CSA, with particular emphasis on the role of renal sodium retention in initiating and promoting these processes, and on population studies that reveal the long-term consequences of untreated OSA and CSA; (2) illustrate mechanical, autonomic, chemical, and inflammatory mechanisms by which OSA and CSA can increase cardiovascular risk and event rates by initiating or promoting hypertension, atherosclerosis, coronary artery disease, heart failure, arrhythmias, and stroke; (3) highlight insights from randomized trials in which treating sleep apnea was the specific target of therapy; (4) emphasize the present lack of evidence that treating sleep apnea reduces cardiovascular risk and the current clinical equipoise concerning treatment of asymptomatic patients with sleep apnea; and (5) consider clinical implications and future directions of clinical research and practice.
Collapse
Affiliation(s)
- John S Floras
- University Health Network and Mount Sinai Hospital Division of Cardiology, Canada; Faculty of Medicine, University of Toronto, Canada.
| |
Collapse
|
60
|
Bamne MN, Ponder CA, Wood JA, Mansour H, Frank E, Kupfer DJ, Young MW, Nimgaonkar VL. Application of an ex vivo cellular model of circadian variation for bipolar disorder research: a proof of concept study. Bipolar Disord 2013; 15:694-700. [PMID: 23782472 PMCID: PMC3762935 DOI: 10.1111/bdi.12095] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Accepted: 03/29/2013] [Indexed: 01/20/2023]
Abstract
OBJECTIVES Disruption of circadian function has been observed in several human disorders, including bipolar disorder (BD). Research into these disorders can be facilitated by human cellular models that evaluate external factors (zeitgebers) that impact circadian pacemaker activity. Incorporating a firefly luciferase reporter system into human fibroblasts provides a facile, bioluminescent readout that estimates circadian phase, while leaving the cells intact. We evaluated whether this system can be adapted to clinical BD research and whether it can incorporate zeitgeber challenge paradigms. METHODS Fibroblasts from patients with bipolar I disorder (BD-I) (n = 13) and controls (n = 12) were infected ex vivo with a lentiviral reporter incorporating the promoter sequences for Bmal1, a circadian gene to drive expression of the firefly luciferase gene. Following synchronization, the bioluminescence was used to estimate period length. Phase response curves (PRCs) were also generated following forskolin challenge and the phase response patterns were characterized. RESULTS Period length and PRCs could be estimated reliably from the constructs. There were no significant case-control differences in period length, with a nonsignificant trend for differences in PRCs following the phase-setting experiments. CONCLUSIONS An ex vivo cellular fibroblast-based model can be used to investigate circadian function in BD-I. It can be generated from specific individuals and this could usefully complement ongoing circadian clinical research.
Collapse
Affiliation(s)
- Mikhil N Bamne
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Circadian aspects of energy metabolism and aging. Ageing Res Rev 2013; 12:931-40. [PMID: 24075855 DOI: 10.1016/j.arr.2013.09.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Revised: 09/10/2013] [Accepted: 09/17/2013] [Indexed: 11/24/2022]
Abstract
Life span extension has been a goal of research for several decades. Resetting circadian rhythms leads to well being and increased life span, while clock disruption is associated with increased morbidity accelerated aging. Increased longevity and improved health can be achieved by different feeding regimens that reset circadian rhythms and may lead to better synchrony in metabolism and physiology. This review focuses on the circadian aspects of energy metabolism and their relationship with aging in mammals.
Collapse
|
62
|
Blood Pressure Variability: A Novel and Important Risk Factor. Can J Cardiol 2013; 29:557-63. [DOI: 10.1016/j.cjca.2013.02.012] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Revised: 02/18/2013] [Accepted: 02/18/2013] [Indexed: 11/22/2022] Open
|
63
|
Gamble KL, Young ME. Metabolism as an integral cog in the mammalian circadian clockwork. Crit Rev Biochem Mol Biol 2013; 48:317-31. [PMID: 23594144 DOI: 10.3109/10409238.2013.786672] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Circadian rhythms are an integral part of life. These rhythms are apparent in virtually all biological processes studies to date, ranging from the individual cell (e.g. DNA synthesis) to the whole organism (e.g. behaviors such as physical activity). Oscillations in metabolism have been characterized extensively in various organisms, including mammals. These metabolic rhythms often parallel behaviors such as sleep/wake and fasting/feeding cycles that occur on a daily basis. What has become increasingly clear over the past several decades is that many metabolic oscillations are driven by cell-autonomous circadian clocks, which orchestrate metabolic processes in a temporally appropriate manner. During the process of identifying the mechanisms by which clocks influence metabolism, molecular-based studies have revealed that metabolism should be considered an integral circadian clock component. The implications of such an interrelationship include the establishment of a vicious cycle during cardiometabolic disease states, wherein metabolism-induced perturbations in the circadian clock exacerbate metabolic dysfunction. The purpose of this review is therefore to highlight recent insights gained regarding links between cell-autonomous circadian clocks and metabolism and the implications of clock dysfunction in the pathogenesis of cardiometabolic diseases.
Collapse
Affiliation(s)
- Karen L Gamble
- Division of Behavioral Neurobiology, Department of Psychiatry, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | |
Collapse
|
64
|
Fernandez DC, Sande PH, de Zavalía N, Belforte N, Dorfman D, Casiraghi LP, Golombek D, Rosenstein RE. Effect of Experimental Diabetic Retinopathy on the Non-Image-Forming Visual System. Chronobiol Int 2013; 30:583-97. [DOI: 10.3109/07420528.2012.754453] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
65
|
Chatham JC, Young ME. Regulation of myocardial metabolism by the cardiomyocyte circadian clock. J Mol Cell Cardiol 2013; 55:139-46. [PMID: 22766272 PMCID: PMC4107417 DOI: 10.1016/j.yjmcc.2012.06.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Revised: 06/19/2012] [Accepted: 06/20/2012] [Indexed: 11/24/2022]
Abstract
On a daily basis, the heart is subjected to dramatic fluctuations in energetic demand and neurohumoral influences, many of which occur in a temporally predictable manner. In order to preserve cardiac performance, the heart must therefore maintain metabolic flexibility, even within the confines of a single day. Recent studies have established mechanistic links between time-of-day-dependent oscillations in myocardial metabolism and the cardiomyocyte circadian clock. More specifically, evidence suggests that this cell autonomous molecular mechanism regulates myocardial glucose uptake, flux through both glycolysis and the hexosamine biosynthetic pathway, and pyruvate oxidation, as well as glycogen, triglyceride, and protein turnover. These observations have led to the hypothesis that the cardiomyocyte circadian clock confers the selective advantage of anticipation of increased energetic demand during the awake period. Here, we review the accumulative evidence in support of this hypothesis thus far, and discuss the possibility that attenuation of these metabolic rhythms, through disruption of the cardiomyocyte circadian clock, contributes towards the etiology of cardiac dysfunction in various disease states. This article is part of a Special Issue entitled "Focus on Cardiac Metabolism".
Collapse
Affiliation(s)
- John C. Chatham
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Martin E. Young
- Division of Cardiovascular Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
66
|
Liu Z, Chu G. Chronobiology in mammalian health. Mol Biol Rep 2012; 40:2491-501. [DOI: 10.1007/s11033-012-2330-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 11/19/2012] [Indexed: 11/30/2022]
|
67
|
van der Veen DR, Shao J, Xi Y, Li L, Duffield GE. Cardiac atrial circadian rhythms in PERIOD2::LUCIFERASE and per1:luc mice: amplitude and phase responses to glucocorticoid signaling and medium treatment. PLoS One 2012; 7:e47692. [PMID: 23110090 PMCID: PMC3479129 DOI: 10.1371/journal.pone.0047692] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 09/17/2012] [Indexed: 11/26/2022] Open
Abstract
Circadian rhythms in cardiac function are apparent in e.g., blood pressure, heart rate, and acute adverse cardiac events. A circadian clock in heart tissue has been identified, but entrainment pathways of this clock are still unclear. We cultured tissues of mice carrying bioluminescence reporters of the core clock genes, period 1 or 2 (per1luc or PER2LUC) and compared in vitro responses of atrium to treatment with medium and a synthetic glucocorticoid (dexamethasone [DEX]) to that of the suprachiasmatic nucleus (SCN) and liver. We observed that PER2LUC, but not per1luc is rhythmic in atrial tissue, while both per1luc and PER2LUC exhibit rhythmicity in other cultured tissues. In contrast to the SCN and liver, both per1luc and PER2LUC bioluminescence amplitudes were increased in response to DEX treatment, and the PER2LUC amplitude response was dependent on the time of treatment. Large phase-shift responses to both medium and DEX treatments were observed in the atrium, and phase responses to medium treatment were not attributed to serum content but the treatment procedure itself. The phase-response curves of atrium to both DEX and medium treatments were found to be different to the liver. Moreover, the time of day of the culturing procedure itself influenced the phase of the circadian clock in each of the cultured tissues, but the magnitude of this response was uniquely large in atrial tissue. The current data describe novel entrainment signals for the atrial circadian clock and specifically highlight entrainment by mechanical treatment, an intriguing observation considering the mechanical nature of cardiac tissue.
Collapse
Affiliation(s)
- Daan R. van der Veen
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Biochemistry and Physiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Jinping Shao
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Physiology, Nankai University School of Medicine, Tianjin, People’s Republic of China
| | - Yang Xi
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Physiology, Nankai University School of Medicine, Tianjin, People’s Republic of China
| | - Lei Li
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Physiology, Nankai University School of Medicine, Tianjin, People’s Republic of China
| | - Giles E. Duffield
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
- * E-mail:
| |
Collapse
|
68
|
Imeraj L, Sonuga-Barke E, Antrop I, Roeyers H, Wiersema R, Bal S, Deboutte D. Altered circadian profiles in attention-deficit/hyperactivity disorder: An integrative review and theoretical framework for future studies. Neurosci Biobehav Rev 2012; 36:1897-919. [DOI: 10.1016/j.neubiorev.2012.04.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2011] [Revised: 04/20/2012] [Accepted: 04/23/2012] [Indexed: 12/26/2022]
|
69
|
Carvas JM, Vukolic A, Yepuri G, Xiong Y, Popp K, Schmutz I, Chappuis S, Albrecht U, Ming XF, Montani JP, Yang Z. Period2 gene mutant mice show compromised insulin-mediated endothelial nitric oxide release and altered glucose homeostasis. Front Physiol 2012; 3:337. [PMID: 22934083 PMCID: PMC3429102 DOI: 10.3389/fphys.2012.00337] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 08/01/2012] [Indexed: 01/18/2023] Open
Abstract
Period2 (Per2) is an important component of the circadian clock. Mutation of this gene is associated with vascular endothelial dysfunction and altered glucose metabolism. The aim of this study is to further characterize whole body glucose homeostasis and endothelial nitric oxide (NO) production in response to insulin in the mPer2Brdm1 mice. We show that mPer2Brdm1 mice exhibit compromised insulin receptor activation and Akt signaling in various tissues including liver, fat, heart, and aortas with a tissue-specific heterogeneous diurnal pattern, and decreased insulin-stimulated NO release in the aortas in both active and inactive phases of the animals. As compared to wild type (WT) mice, the mPer2Brdm1 mice reveal hyperinsulinemia, hypoglycemia with lower fasting hepatic glycogen content and glycogen synthase level, no difference in glucose tolerance and insulin tolerance. The mPer2Brdm1 mice do not show increased predisposition to obesity either on normal chow or high fat diet compared to WT controls. Thus, mice with Per2 gene mutation show altered glucose homeostasis and compromised insulin-stimulated NO release, independently of obesity.
Collapse
Affiliation(s)
- João M Carvas
- Faculty of Science, Division of Physiology, Department of Medicine, University of Fribourg Fribourg, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Tong M, Watanabe E, Yamamoto N, Nagahata-Ishiguro M, Maemura K, Takeda N, Nagai R, Ozaki Y. Circadian expressions of cardiac ion channel genes in mouse might be associated with the central clock in the SCN but not the peripheral clock in the heart. BIOL RHYTHM RES 2012; 44:519-530. [PMID: 23420534 PMCID: PMC3570950 DOI: 10.1080/09291016.2012.704801] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 06/13/2012] [Indexed: 11/03/2022]
Abstract
Significant circadian variations exist in the frequency of cardiac arrhythmia, but few studies have examined the relation between cardiac ion channels genes and biological clocks. We investigated this relation using suprachiasmatic nuclei lesion (SCNX) and pharmacological autonomic nervous system block (ANSB) mice. Significant 24-h variations were observed in the expression of clock genes Per2, Bmal1, and Dbp and ion channel genes KCNA5, KCND2, KCHIP2, and KCNK3 in the control mice hearts. In the SCNX mice, all genes examined lost circadian rhythm. In the ANSB mice, the expressions of the three clock genes were dampened significantly but still had circadian rhythm, whereas the four ion channel gene expressions lost rhythm. Heart rate also lost circadian rhythm in both the SCNX and ANSB mice. These results suggest that some ion channel gene expressions might be regulated by the central clock in the SCN through the ANS but not the peripheral clock in the heart.
Collapse
Affiliation(s)
- Maoqing Tong
- Department of Cardiology, Fujita Health University School of Medicine, Toyoake, Japan
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Tsimakouridze EV, Straume M, Podobed PS, Chin H, LaMarre J, Johnson R, Antenos M, Kirby GM, Mackay A, Huether P, Simpson JA, Sole M, Gadal G, Martino TA. Chronomics of Pressure Overload–Induced Cardiac Hypertrophy in Mice Reveals Altered Day/Night Gene Expression and Biomarkers of Heart Disease. Chronobiol Int 2012; 29:810-21. [DOI: 10.3109/07420528.2012.691145] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
72
|
Portaluppi F, Tiseo R, Smolensky MH, Hermida RC, Ayala DE, Fabbian F. Circadian rhythms and cardiovascular health. Sleep Med Rev 2012; 16:151-166. [PMID: 21641838 DOI: 10.1016/j.smrv.2011.04.003] [Citation(s) in RCA: 201] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 04/27/2011] [Indexed: 11/30/2022]
Abstract
The functional organization of the cardiovascular system shows clear circadian rhythmicity. These and other circadian rhythms at all levels of organization are orchestrated by a central biological clock, the suprachiasmatic nuclei of the hypothalamus. Preservation of the normal circadian time structure from the level of the cardiomyocyte to the organ system appears to be essential for cardiovascular health and cardiovascular disease prevention. Myocardial ischemia, acute myocardial infarct, and sudden cardiac death are much greater in incidence than expected in the morning. Moreover, supraventricular and ventricular cardiac arrhythmias of various types show specific day-night patterns, with atrial arrhythmias--premature beats, tachycardias, atrial fibrillation, and flutter - generally being of higher frequency during the day than night--and ventricular fibrillation and ventricular premature beats more common, respectively, in the morning and during the daytime activity than sleep span. Furthermore, different circadian patterns of blood pressure are found in arterial hypertension, in relation to different cardiovascular morbidity and mortality risk. Such temporal patterns result from circadian periodicity in pathophysiological mechanisms that give rise to predictable-in-time differences in susceptibility-resistance to cyclic environmental stressors that trigger these clinical events. Circadian rhythms also may affect the pharmacokinetics and pharmacodynamics of cardiovascular and other medications. Knowledge of 24-h patterns in the risk of cardiac arrhythmias and cardiovascular disease morbidity and mortality plus circadian rhythm-dependencies of underlying pathophysiologic mechanisms suggests the requirement for preventive and therapeutic interventions is not the same throughout the day and night, and should be tailored accordingly to improve outcomes.
Collapse
|
73
|
Wu T, Sun L, ZhuGe F, Guo X, Zhao Z, Tang R, Chen Q, Chen L, Kato H, Fu Z. Differential roles of breakfast and supper in rats of a daily three-meal schedule upon circadian regulation and physiology. Chronobiol Int 2012; 28:890-903. [PMID: 22080734 DOI: 10.3109/07420528.2011.622599] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The timing of meals has been suggested to play an important role in circadian regulation and metabolic health. Three meals a day is a well-established human feeding habit, which in today's lifestyle may or may not be followed. The aim of this study was to test whether the absence of breakfast or supper significantly affects the circadian system and physiological function. The authors developed a rat model for their daily three meals study, whereby animals were divided into three groups (three meals, TM; no first meal, NF; no last meal, NL) all fed with the same amount of food every day. Rats in the NF group displayed significantly decreased levels of plasma triglyceride (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and glucose in the activity phase, accompanied by delayed circadian phases of hepatic peripheral clock and downstream metabolic genes. Rats in the NL group showed lower concentration of plasma TC, HDL-C, and glucose in the rest phase, plus reduced adipose tissue accumulation and body weight gain. Real-time polymerase chain reaction (PCR) analysis indicated an attenuated rhythm in the food-entraining pathway, including down-regulated expression of the clock genes Per2, Bmal1, and Rev-erbα, which may further contribute to the delayed and decreased expression of FAS in lipogenesis in this group. Our findings are consistent with the conclusion that the daily first meal determines the circadian phasing of peripheral clocks, such as in the liver, whereas the daily last meal tightly couples to lipid metabolism and adipose tissue accumulation, which suggests differential physiological effects and function of the respective meal timings.
Collapse
Affiliation(s)
- Tao Wu
- College of Biological and Environmental Engineering , Zhejiang University of Technology, Hangzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Abstract
Ageing leads to a functional deterioration of many brain systems, including the circadian clock--an internal time-keeping system that generates ∼24-hour rhythms in physiology and behaviour. Numerous clinical studies have established a direct correlation between abnormal circadian clock functions and the severity of neurodegenerative and sleep disorders. Latest data from experiments in model organisms, gene expression studies and clinical trials imply that dysfunctions of the circadian clock contribute to ageing and age-associated pathologies, thereby suggesting a functional link between the circadian clock and age-associated decline of brain functions. Potential molecular mechanisms underlying this link include the circadian control of physiological processes such as brain metabolism, reactive oxygen species homeostasis, hormone secretion, autophagy and stem cell proliferation.
Collapse
|
75
|
Hardeland R, Madrid JA, Tan DX, Reiter RJ. Melatonin, the circadian multioscillator system and health: the need for detailed analyses of peripheral melatonin signaling. J Pineal Res 2012; 52:139-66. [PMID: 22034907 DOI: 10.1111/j.1600-079x.2011.00934.x] [Citation(s) in RCA: 301] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Evidence is accumulating regarding the importance of circadian core oscillators, several associated factors, and melatonin signaling in the maintenance of health. Dysfunction of endogenous clocks, melatonin receptor polymorphisms, age- and disease-associated declines of melatonin likely contribute to numerous diseases including cancer, metabolic syndrome, diabetes type 2, hypertension, and several mood and cognitive disorders. Consequences of gene silencing, overexpression, gene polymorphisms, and deviant expression levels in diseases are summarized. The circadian system is a complex network of central and peripheral oscillators, some of them being relatively independent of the pacemaker, the suprachiasmatic nucleus. Actions of melatonin on peripheral oscillators are poorly understood. Various lines of evidence indicate that these clocks are also influenced or phase-reset by melatonin. This includes phase differences of core oscillator gene expression under impaired melatonin signaling, effects of melatonin and melatonin receptor knockouts on oscillator mRNAs or proteins. Cross-connections between melatonin signaling pathways and oscillator proteins, including associated factors, are discussed in this review. The high complexity of the multioscillator system comprises alternate or parallel oscillators based on orthologs and paralogs of the core components and a high number of associated factors with varying tissue-specific importance, which offers numerous possibilities for interactions with melatonin. It is an aim of this review to stimulate research on melatonin signaling in peripheral tissues. This should not be restricted to primary signal molecules but rather include various secondarily connected pathways and discriminate between direct effects of the pineal indoleamine at the target organ and others mediated by modulation of oscillators.
Collapse
Affiliation(s)
- Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Germany.
| | | | | | | |
Collapse
|
76
|
Abstract
Resetting the circadian clock leads to well being and increased life span, whereas clock disruption is associated with aging and morbidity. Increased longevity and improved health can be achieved by different feeding regimens that reset circadian rhythms and may lead to better synchrony in metabolism and physiology. This review focuses on recent findings concerning the relationships between circadian rhythms, aging attenuation, and life-span extension in mammals.
Collapse
Affiliation(s)
- Oren Froy
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.
| |
Collapse
|
77
|
Remacle C, Bieswal F, Bol V, Reusens B. Developmental programming of adult obesity and cardiovascular disease in rodents by maternal nutrition imbalance. Am J Clin Nutr 2011; 94:1846S-1852S. [PMID: 21543546 DOI: 10.3945/ajcn.110.001651] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Studies on fetal undernutrition have generated the hypothesis that fetal programming corresponds to an attempt of the fetus to adapt to adverse conditions encountered in utero. These adaptations would be beneficial if these conditions prevail later in life, but they become detrimental in the case of normal or plentiful nutrition and favor the appearance of the metabolic syndrome. In this article, the discussion is limited to the developmental programming of obesity and cardiovascular disorders caused by an early mismatched nutrition, particularly intrauterine growth retardation followed by postnatal catch-up growth. Selected data in humans are reviewed before evoking some mechanisms revealed or suggested by experiments in rodents. A variety of physiologic mechanisms are implicated in obesity programming, 2 of which are detailed. In some, but not all observations, hyperphagia resulting namely from perturbed development of the hypothalamic circuitry devoted to appetite regulation may contribute to obesity. Another contribution may be the developmental changes in the population of fat cell precursors in adipose tissue. Even if the link between obesity and cardiovascular disease is well established, alteration of blood pressure regulation may appear independently of obesity. A loss of diurnal variation in heart rate and blood pressure in adulthood has resulted from maternal undernutrition followed by postnatal overnutrition. Further research should clarify the effect of mismatched early nutrition on the development of brain centers regulating energy intake, energy expenditure, and circadian rhythms.
Collapse
Affiliation(s)
- Claude Remacle
- Université Catholique de Louvain, Life Sciences Institute, Louvain-la-Neuve, Belgium.
| | | | | | | |
Collapse
|
78
|
Shift work and cardiovascular risk factors: new knowledge from the past decade. Arch Cardiovasc Dis 2011; 104:636-68. [PMID: 22152516 DOI: 10.1016/j.acvd.2011.09.004] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 09/09/2011] [Accepted: 09/12/2011] [Indexed: 01/07/2023]
Abstract
Cardiovascular diseases remain a major public health problem. The involvement of several occupational factors has recently been discussed, notably the organization of work schedules, e.g. shift work. To analyse the progress of knowledge on the relationship between cardiovascular risk factors and shift work. A review of English-language literature dealing with the link between cardiovascular factors and shift workers (published during 2000-2010) was conducted. Studies published in the past 10 years tend to document an impact of shift work on blood pressure, lipid profile (triglyceride levels), metabolic syndrome and, possibly, body mass index. However, the consequences on glucose metabolism are unclear. These results are not yet firmly established, but are supported by strong hypotheses. Some advice could reasonably be proposed to guide the clinical practitioner.
Collapse
|
79
|
Ko ML, Shi L, Tsai JY, Young ME, Neuendorff N, Earnest DJ, Ko GYP. Cardiac-specific mutation of Clock alters the quantitative measurements of physical activities without changing behavioral circadian rhythms. J Biol Rhythms 2011; 26:412-22. [PMID: 21921295 PMCID: PMC3181102 DOI: 10.1177/0748730411414170] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Even though peripheral circadian oscillators in the cardiovascular system are known to exist, the daily rhythms of the cardiovascular system are mainly attributed to autonomic or hormonal inputs under the control of the central oscillator, the suprachiasmatic nucleus (SCN). In order to examine the role of peripheral oscillators in the cardiovascular system, we used a transgenic mouse where the Clock gene is specifically disrupted in cardiomyocytes. In this cardiomyocyte-specific CLOCK mutant (CCM) mouse model, the circadian input from the SCN remains intact. Both CCM and wild-type (WT) littermates displayed circadian rhythms in wheel-running behavior. However, the overall wheel-running activities were significantly lower in CCM mice compared to WT over the course of 5 weeks, indicating that CCM mice either have lower baseline physical activities or they have lower physical adaptation abilities because daily wheel running, like routine exercise, induces physical adaptation over a period of time. Upon further biochemical analysis, it was revealed that the diurnal oscillations of phosphorylation states of several kinases and protein expression of the L-type voltage-gated calcium channel (L-VGCC) α1D subunit found in WT hearts were abolished in CCM hearts, indicating that in mammalian hearts, the daily oscillations of the activities of these kinases and L-VGCCs were downstream elements of the cardiac core oscillators. However, the phosphorylation of p38 MAPK exhibited robust diurnal rhythms in both WT and CCM hearts, indicating that cardiac p38 could be under the influence of the central clock through neurohormonal signals or be part of the circadian input pathway in cardiomyocytes. Taken together, these results indicate that the cardiac core oscillators have an impact in regulating circadian rhythmicities and cardiac function.
Collapse
Affiliation(s)
- Michael L. Ko
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX
| | - Liheng Shi
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX
| | - Ju-Yun Tsai
- US Department of Agriculture/Agricultural Research Service Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Martin E. Young
- Division of Cardiovascular Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Nichole Neuendorff
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, College Station, TX
| | - David J. Earnest
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, College Station, TX
| | - Gladys Y.-P. Ko
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX
| |
Collapse
|
80
|
Durgan DJ, Tsai JY, Grenett MH, Pat BM, Ratcliffe WF, Villegas-Montoya C, Garvey ME, Nagendran J, Dyck JRB, Bray MS, Gamble KL, Gimble JM, Young ME. Evidence suggesting that the cardiomyocyte circadian clock modulates responsiveness of the heart to hypertrophic stimuli in mice. Chronobiol Int 2011; 28:187-203. [PMID: 21452915 DOI: 10.3109/07420528.2010.550406] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Circadian dyssynchrony of an organism (at the whole-body level) with its environment, either through light-dark (LD) cycle or genetic manipulation of clock genes, augments various cardiometabolic diseases. The cardiomyocyte circadian clock has recently been shown to influence multiple myocardial processes, ranging from transcriptional regulation and energy metabolism to contractile function. The authors, therefore, reasoned that chronic dyssychrony of the cardiomyocyte circadian clock with its environment would precipitate myocardial maladaptation to a circadian challenge (simulated shiftwork; SSW). To test this hypothesis, 2- and 20-month-old wild-type and CCM (Cardiomyocyte Clock Mutant; a model with genetic temporal suspension of the cardiomyocyte circadian clock at the active-to-sleep phase transition) mice were subjected to chronic (16-wks) biweekly 12-h phase shifts in the LD cycle (i.e., SSW). Assessment of adaptation/maladaptation at whole-body homeostatic, gravimetric, humoral, histological, transcriptional, and cardiac contractile function levels revealed essentially identical responses between wild-type and CCM littermates. However, CCM hearts exhibited increased biventricular weight, cardiomyocyte size, and molecular markers of hypertrophy (anf, mcip1), independent of aging and/or SSW. Similarly, a second genetic model of selective temporal suspension of the cardiomyocyte circadian clock (Cardiomyocyte-specific BMAL1 Knockout [CBK] mice) exhibits increased biventricular weight and mcip1 expression. Wild-type mice exhibit 5-fold greater cardiac hypertrophic growth (and 6-fold greater anf mRNA induction) when challenged with the hypertrophic agonist isoproterenol at the active-to-sleep phase transition, relative to isoproterenol administration at the sleep-to-active phase transition. This diurnal variation was absent in CCM mice. Collectively, these data suggest that the cardiomyocyte circadian clock likely influences responsiveness of the heart to hypertrophic stimuli.
Collapse
Affiliation(s)
- David J Durgan
- Division of Cardiovascular Diseases, Department of Medicine, University of Alabama at Birmingham, 35294, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Martino TA, Tata N, Simpson JA, Vanderlaan R, Dawood F, Kabir MG, Khaper N, Cifelli C, Podobed P, Liu PP, Husain M, Heximer S, Backx PH, Sole MJ. The primary benefits of angiotensin-converting enzyme inhibition on cardiac remodeling occur during sleep time in murine pressure overload hypertrophy. J Am Coll Cardiol 2011; 57:2020-8. [PMID: 21565639 DOI: 10.1016/j.jacc.2010.11.022] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 11/15/2010] [Accepted: 11/18/2010] [Indexed: 10/18/2022]
Abstract
OBJECTIVES Our objective was to test the hypothesis that there is a significant diurnal variation for the therapeutic benefit of angiotensin-converting enzyme (ACE) inhibitors on pressure-overload cardiovascular hypertrophy. BACKGROUND Physiological and molecular processes exhibit diurnal rhythms that may affect efficacy of disease treatment (chronotherapy). Evidence suggests that the heart primarily remodels during sleep. Although a growing body of clinical and epidemiological evidence suggests that the timing of therapy, such as ACE inhibition, alters diurnal blood pressure patterns in patients with hypertension, the benefits of chronotherapy on myocardial and vascular remodeling have not been studied. METHODS We examined the effects of the short-acting ACE inhibitor, captopril, on the structure and function of cardiovascular tissue subjected to pressure overload by transverse aortic constriction (TAC) in mice. Captopril (15 mg/kg intraperitoneally) or placebo was administered at either murine sleep time or wake time for 8 weeks starting 1 week after surgery. RESULTS TAC mice given captopril at sleep time had improved cardiac function and significantly decreased heart: body weight ratios, myocyte cross-sectional areas, intramyocardial vascular medial wall thickness, and perivascular collagen versus TAC mice given captopril or placebo during wake time. Captopril induced similar drops in blood pressure at sleep or wake time, suggesting that time-of-day differences were not attributable to blood pressure changes. These beneficial effects of captopril were correlated with diurnal changes in ACE mRNA expression in the heart. CONCLUSIONS The ACE inhibitor captopril benefited cardiovascular remodeling only when administered during sleep; wake-time captopril ACE inhibition was identical to that of placebo. These studies support the hypothesis that the heart (and vessels) remodel during sleep time and also illustrate the importance of diurnal timing for some cardiovascular therapies.
Collapse
Affiliation(s)
- Tami A Martino
- Department of Biomedical Science, University of Guelph, Guelph, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Karabag T, Aydin M, Dogan SM, Sayin MR, Cetiner MA. The influence of circadian variations on echocardiographic parameters in healthy people. Echocardiography 2011; 28:612-8. [PMID: 21676017 DOI: 10.1111/j.1540-8175.2011.01411.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Our aim was to investigate whether diastolic functions, myocardial velocities and pulmonary vein flow show diurnal variation within a 24-hour day. METHOD AND RESULTS Fourty-four healthy subjects with no history of cardiovascular or systemic diseases (32 males, 12 females; mean age 34.7 ± 8.7 years, mean BMI: 25.5 ± 3.5 kg/m(2)) were enrolled in this study. None of the subjects had a history, symptoms or signs of cardiovascular or systemic diseases or were taking drugs of any kind. All underwent echocardiographic examination at 7 a.m., 1 p.m., 7 p.m., and 1 a.m. M-mode systolic, diastolic velocities and pulmonary vein flow measurements were obtained. There were no differences in systolic and diastolic blood pressures and heart rate. The left atrial diameter was greater at 1 p.m. (3.80 ± 0.44; P = 0.031). The isovolumic contraction time (ICT) was found to be the shortest (41 ± 12 msn; P = 0.050), and ejection time (ET) the longest (290 ± 31 msn; P = 0.017) at the 1 am measurements. The mitral myocardial performance index (MPI) was lowest during the 1 a.m. measurements (0.42 ± 0.11; P = 0.001). The systolic myocardial velocities (Sm) obtained from the septum and inferior region were significantly higher at 1 p.m. and lower at 7 a.m. (9.17 ± 1.79, 10.25 ± 2.29; 8.11 ± 1.06, 8.63 ± 1.49; P < 0.05). The late diastolic velocities obtained from the lateral, inferior and anterior regions were higher at 1 p.m. and 7 p.m. CONCLUSION The left ventricular diameter and ejection fraction did not exhibit circadian variations. However, our data indicate that some parameters reflecting diastolic function, systolic myocardial velocities and MPI, as well as left atrial diameter change at different times of the day, independent of blood pressure and heart rate.
Collapse
Affiliation(s)
- Turgut Karabag
- Department of Cardiology, Faculty of Medicine, Zonguldak Karaelmas University, Zonguldak, Turkey.
| | | | | | | | | |
Collapse
|
83
|
McKelvie RS, Moe GW, Cheung A, Costigan J, Ducharme A, Estrella-Holder E, Ezekowitz JA, Floras J, Giannetti N, Grzeslo A, Harkness K, Heckman GA, Howlett JG, Kouz S, Leblanc K, Mann E, O'Meara E, Rajda M, Rao V, Simon J, Swiggum E, Zieroth S, Arnold JMO, Ashton T, D'Astous M, Dorian P, Haddad H, Isaac DL, Leblanc MH, Liu P, Sussex B, Ross HJ. The 2011 Canadian Cardiovascular Society Heart Failure Management Guidelines Update: Focus on Sleep Apnea, Renal Dysfunction, Mechanical Circulatory Support, and Palliative Care. Can J Cardiol 2011; 27:319-38. [DOI: 10.1016/j.cjca.2011.03.011] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 03/15/2011] [Indexed: 10/18/2022] Open
|
84
|
Takeda N, Maemura K. Circadian clock and cardiovascular disease. J Cardiol 2011; 57:249-56. [DOI: 10.1016/j.jjcc.2011.02.006] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2011] [Accepted: 02/22/2011] [Indexed: 12/17/2022]
|
85
|
Peliciari-Garcia RA, Zanquetta MM, Andrade-Silva J, Gomes DA, Barreto-Chaves ML, Cipolla-Neto J. Expression of circadian clock and melatonin receptors within cultured rat cardiomyocytes. Chronobiol Int 2011; 28:21-30. [PMID: 21182401 DOI: 10.3109/07420528.2010.525675] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Melatonin, the pineal gland hormone, provides entrainment of many circadian rhythms to the ambient light/dark cycle. Recently, cardiovascular studies have demonstrated melatonin interactions with many physiological processes and diseases, such as hypertension and cardiopathologies. Although membrane melatonin receptors (MT1, MT2) and the transcriptional factor RORα have been reported to be expressed in the heart, there is no evidence of the cell-type expressing receptors as well as the possible role of melatonin on the expression of the circadian clock of cardiomyocytes, which play an important role in cardiac metabolism and function. Therefore, the aim of this study was to evaluate the mRNA and protein expressions of MT1, MT2, and RORα and to determine whether melatonin directly influences expression of circadian clocks within cultured rat cardiomyocytes. Adult rat cardiomyocyte cultures were created, and the cells were stimulated with 1 nM melatonin or vehicle. Gene expressions were assayed by real-time polymerase chain reaction (PCR). The mRNA and protein expressions of membrane melatonin receptors and RORα were established within adult rat cardiomyocytes. Two hours of melatonin stimulation did not alter the expression pattern of the analyzed genes. However, given at the proper time, melatonin kept Rev-erbα expression chronically high, specifically 12 h after melatonin treatment, avoiding the rhythmic decline of Rev-erbα mRNA. The blockage of MT1 and MT2 by luzindole did not alter the observed melatonin-induced expression of Rev-erbα mRNA, suggesting the nonparticipation of MT1 and MT2 on the melatonin effect within cardiomyocytes. It is possible to speculate that melatonin, in adult rat cardiomyocytes, may play an important role in the light signal transduction to peripheral organs, such as the heart, modulating its intrinsic rhythmicity.
Collapse
Affiliation(s)
- Rodrigo A Peliciari-Garcia
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | | | | | | | | | | |
Collapse
|
86
|
Ko ML, Shi L, Grushin K, Nigussie F, Ko GYP. Circadian profiles in the embryonic chick heart: L-type voltage-gated calcium channels and signaling pathways. Chronobiol Int 2011; 27:1673-96. [PMID: 20969517 DOI: 10.3109/07420528.2010.514631] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Circadian clocks exist in the heart tissue and modulate multiple physiological events, from cardiac metabolism to contractile function and expression of circadian oscillator and metabolic-related genes. Ample evidence has demonstrated that there are endogenous circadian oscillators in adult mammalian cardiomyocytes. However, mammalian embryos cannot be entrained independently to light-dark (LD) cycles in vivo without any maternal influence, but circadian genes are well expressed and able to oscillate in embryonic stages. The authors took advantage of using chick embryos that are independent of maternal influences to investigate whether embryonic hearts could be entrained under LD cycles in ovo. The authors found circadian regulation of L-type voltage-gated calcium channels (L-VGCCs), the ion channels responsible for the production of cardiac muscle contraction in embryonic chick hearts. The mRNA levels and protein expression of VGCCα1C and VGCCα1D are under circadian control, and the average L-VGCC current density is significantly larger when cardiomyocytes are recorded during the night than day. The phosphorylation states of several kinases involved in insulin signaling and cardiac metabolism, including extracellular signal-regulated kinase (Erk), stress-activated protein kinase (p38), protein kinase B (Akt), and glycogen synthase kinase-3β (GSK-3β), are also under circadian control. Both Erk and p38 have been implicated in regulating cardiac contractility and in the development of various pathological states, such as cardiac hypertrophy and heart failure. Even though both Erk and phosphoinositide 3-kinase (PI3K)-Akt signaling pathways participate in complex cellular processes regarding physiological or pathological states of cardiomyocytes, the circadian oscillators in the heart regulate these pathways independently, and both pathways contribute to the circadian regulation of L-VGCCs.
Collapse
Affiliation(s)
- Michael L Ko
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | |
Collapse
|
87
|
Cui H, Kohsaka A, Waki H, Bhuiyan MER, Gouraud SS, Maeda M. Metabolic cycles are linked to the cardiovascular diurnal rhythm in rats with essential hypertension. PLoS One 2011; 6:e17339. [PMID: 21364960 PMCID: PMC3043102 DOI: 10.1371/journal.pone.0017339] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 01/27/2011] [Indexed: 01/21/2023] Open
Abstract
Background The loss of diurnal rhythm in blood pressure (BP) is an important predictor of end-organ damage in hypertensive and diabetic patients. Recent evidence has suggested that two major physiological circadian rhythms, the metabolic and cardiovascular rhythms, are subject to regulation by overlapping molecular pathways, indicating that dysregulation of metabolic cycles could desynchronize the normal diurnal rhythm of BP with the daily light/dark cycle. However, little is known about the impact of changes in metabolic cycles on BP diurnal rhythm. Methodology/Principal Findings To test the hypothesis that feeding-fasting cycles could affect the diurnal pattern of BP, we used spontaneously hypertensive rats (SHR) which develop essential hypertension with disrupted diurnal BP rhythms and examined whether abnormal BP rhythms in SHR were caused by alteration in the daily feeding rhythm. We found that SHR exhibit attenuated feeding rhythm which accompanies disrupted rhythms in metabolic gene expression not only in metabolic tissues but also in cardiovascular tissues. More importantly, the correction of abnormal feeding rhythms in SHR restored the daily BP rhythm and was accompanied by changes in the timing of expression of key circadian and metabolic genes in cardiovascular tissues. Conclusions/Significance These results indicate that the metabolic cycle is an important determinant of the cardiovascular diurnal rhythm and that disrupted BP rhythms in hypertensive patients can be normalized by manipulating feeding cycles.
Collapse
Affiliation(s)
- He Cui
- Department of Physiology, Wakayama Medical University School of Medicine, Wakayama, Japan
| | - Akira Kohsaka
- Department of Physiology, Wakayama Medical University School of Medicine, Wakayama, Japan
- * E-mail:
| | - Hidefumi Waki
- Department of Physiology, Wakayama Medical University School of Medicine, Wakayama, Japan
| | - Mohammad E. R. Bhuiyan
- Department of Physiology, Wakayama Medical University School of Medicine, Wakayama, Japan
| | - Sabine S. Gouraud
- Department of Physiology, Wakayama Medical University School of Medicine, Wakayama, Japan
| | - Masanobu Maeda
- Department of Physiology, Wakayama Medical University School of Medicine, Wakayama, Japan
| |
Collapse
|
88
|
Sachan N, Dey A, Rotter D, Grinsfelder DB, Battiprolu PK, Sikder D, Copeland V, Oh M, Bush E, Shelton JM, Bibb JA, Hill JA, Rothermel BA. Sustained hemodynamic stress disrupts normal circadian rhythms in calcineurin-dependent signaling and protein phosphorylation in the heart. Circ Res 2011; 108:437-45. [PMID: 21233454 DOI: 10.1161/circresaha.110.235309] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Despite overwhelming evidence of the importance of circadian rhythms in cardiovascular health and disease, little is known regarding the circadian regulation of intracellular signaling pathways controlling cardiac function and remodeling. OBJECTIVE To assess circadian changes in processes dependent on the protein phosphatase calcineurin, relative to changes in phosphorylation of cardiac proteins, in normal, hypertrophic, and failing hearts. METHODS AND RESULTS We found evidence of large circadian oscillations in calcineurin-dependent activities in the left ventricle of healthy C57BL/6 mice. Calcineurin-dependent transcript levels and nuclear occupancy of the NFAT (nuclear factor of activated T cells) regularly fluctuated as much as 20-fold over the course of a day, peaking in the morning when mice enter a period of rest. Phosphorylation of the protein phosphatase 1 inhibitor 1 (I-1), a direct calcineurin substrate, and phospholamban, an indirect target, oscillated directly out of phase with calcineurin-dependent signaling. Using a surgical model of cardiac pressure overload, we found that although calcineurin-dependent activities were markedly elevated, the circadian pattern of activation was maintained, whereas, oscillations in phospholamban and I-1 phosphorylation were lost. Changes in the expression of fetal gene markers of heart failure did not mirror the rhythm in calcineurin/NFAT activation, suggesting that these may not be direct transcriptional target genes. Cardiac function in mice subjected to pressure overload was significantly lower in the morning than in the evening when assessed by echocardiography. CONCLUSIONS Normal, opposing circadian oscillations in calcineurin-dependent activities and phosphorylation of proteins that regulate contractility are disrupted in heart failure.
Collapse
Affiliation(s)
- Nita Sachan
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-8573, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Froy O, Miskin R. Effect of feeding regimens on circadian rhythms: implications for aging and longevity. Aging (Albany NY) 2010; 2:7-27. [PMID: 20228939 PMCID: PMC2837202 DOI: 10.18632/aging.100116] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2009] [Accepted: 01/09/2010] [Indexed: 01/19/2023]
Abstract
Increased longevity and improved health can be achieved in mammals by two feeding regimens, caloric restriction (CR), which limits the amount of daily calorie intake, and intermittent fasting (IF), which allows the food to be available ad libitum every other day. The precise mechanisms mediating these beneficial effects are still unresolved. Resetting the circadian clock is another intervention that can lead to increased life span and well being, while clock disruption is associated with aging and morbidity. Currently, a large body of evidence links circadian rhythms with metabolism and feeding regimens. In particular, CR, and possibly also IF, can entrain the master clock located in the suprachiasmatic nuclei (SCN) of the brain hypothalamus. These findings raise the hypothesis that the beneficial effects exerted by these feeding regimens could be mediated, at least in part, through resetting of the circadian clock, thus leading to synchrony in metabolism and physiology. This hypothesis is reinforced by a transgenic mouse model showing spontaneously reduced eating alongside robust circadian rhythms and increased life span. This review will summarize recent findings concerning the relationships between feeding regimens, circadian rhythms, and metabolism with implications for ageing attenuation and life span extension.
Collapse
Affiliation(s)
- Oren Froy
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| | | |
Collapse
|
90
|
Suprachiasmatic nucleus: Still a forgotten circadian pacemaker in acute myocardial infarction. Int J Cardiol 2010; 145:228-229. [DOI: 10.1016/j.ijcard.2009.07.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 07/25/2009] [Indexed: 11/22/2022]
|
91
|
Abstract
Mammals have developed an endogenous circadian clock located in the SCN (suprachiasmatic nuclei) of the anterior hypothalamus that responds to the environmental light–dark cycle. Human homoeostatic systems have adapted to daily changes in a way that the body anticipates the sleep and activity periods. Similar clocks have been found in peripheral tissues, such as the liver, intestine and adipose tissue. Recently it has been found that the circadian clock regulates cellular and physiological functions in addition to the expression and/or activity of enzymes and hormones involved in metabolism. In turn, key metabolic enzymes and transcription activators interact with and affect the core clock mechanism. Animals with mutations in clock genes that disrupt cellular rhythmicity have provided evidence to the relationship between the circadian clock and metabolic homoeostasis. The present review will summarize recent findings concerning the relationship between metabolism and circadian rhythms.
Collapse
|
92
|
Wang Q, Maillard M, Schibler U, Burnier M, Gachon F. Cardiac hypertrophy, low blood pressure, and low aldosterone levels in mice devoid of the three circadian PAR bZip transcription factors DBP, HLF, and TEF. Am J Physiol Regul Integr Comp Physiol 2010; 299:R1013-9. [DOI: 10.1152/ajpregu.00241.2010] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cardiovascular system is under the control of the circadian clock, and disturbed circadian rhythms can induce cardiovascular pathologies. This cyclic regulation is probably brought about by the circadian expression of genes encoding enzymes and regulators involved in cardiovascular functions. We have previously shown that the rhythmic transcription of output genes is, in part, regulated by the clock-controlled PAR bZip transcription factors DBP (albumin D-site binding protein), HLF (hepatic leukemia factor), and TEF (thyrotroph embryonic factor). The simultaneous deletion of all three PAR bZip transcription factors leads to increased morbidity and shortened life span. In the present study, we demonstrate that Dbp/ Tef/ Hlf triple knockout mice develop cardiac hypertrophy and left ventricular dysfunction associated with a low blood pressure. These dysfunctions are exacerbated by an abnormal response to this low blood pressure characterized by low aldosterone levels. The phenotype of PAR bZip knockout mice highlights the importance of circadian regulators in the modulation of cardiovascular functions.
Collapse
Affiliation(s)
- Qing Wang
- Service of Nephrology and Hypertension, Centre Hospitalier Universitaire Vaudois, Lausanne
- Huazhong University of Science and Technology, Wuhan, China
| | - Marc Maillard
- Service of Nephrology and Hypertension, Centre Hospitalier Universitaire Vaudois, Lausanne
| | - Ueli Schibler
- Department of Molecular Biology and National Center of Competence Research Frontiers in Genetics, University of Geneva, Geneva
| | - Michel Burnier
- Service of Nephrology and Hypertension, Centre Hospitalier Universitaire Vaudois, Lausanne
| | - Frédéric Gachon
- Department of Molecular Biology and National Center of Competence Research Frontiers in Genetics, University of Geneva, Geneva
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland; and
| |
Collapse
|
93
|
Bol V, Desjardins F, Reusens B, Balligand JL, Remacle C. Does early mismatched nutrition predispose to hypertension and atherosclerosis, in male mice? PLoS One 2010; 5:e12656. [PMID: 20844591 PMCID: PMC2936567 DOI: 10.1371/journal.pone.0012656] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 07/21/2010] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND A link between early mismatched nutritional environment and development of components of the metabolic syndrome later in life has been shown in epidemiological and animal data. The aim of this study was to investigate whether an early mismatched nutrition produced by catch-up growth after fetal protein restriction could induce the appearance of hypertension and/or atherosclerosis in adult male mice. METHODOLOGY/PRINCIPAL FINDINGS Wild-type C57BL6/J or LDLr-/- dams were fed a low protein (LP) or a control (C) diet during gestation. Catch-up growth was induced in LP offspring by feeding dams with a control diet and by culling the litter to 4 pups against 8 in controls. At weaning, male mice were fed either standard chow or an obesogenic diet (OB), leading to 4 experimental groups. Blood pressure (BP) and heart rate (HR) were assessed in conscious unrestrained wild-type mice by telemetry. Atherosclerosis plaque area was measured in aortic root sections of LDLr-/- mice. We found that: (1) postnatal OB diet increased significantly BP (P<0.0001) and HR (P<0.008) in 3-month old OB-C and OB-LP offspring, respectively; (2) that maternal LP diet induced a significant higher BP (P<0.009) and HR (P<0.004) and (3) an altered circadian rhythm in addition to higher plasma corticosterone concentration in 9 months-old LP offspring; (4) that, although LP offspring showed higher plasma total cholesterol than control offspring, atherosclerosis assessed in aortic roots of 6-mo old mice featured increased plaque area due to OB feeding but not due to early mismatched nutrition. CONCLUSIONS/SIGNIFICANCE These results indicate a long-term effect of early mismatched nutrition on the appearance of hypertension independently of obesity, while no effect on atherosclerosis was noticed at this age.
Collapse
Affiliation(s)
- Vanesa Bol
- Laboratory of Cell Biology, Institute of Life Science, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Fanny Desjardins
- Unit of Pharmacology and Theurapeutics, Université Catholique de Louvain, Brussels, Belgium
| | - Brigitte Reusens
- Laboratory of Cell Biology, Institute of Life Science, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Jen-Luc Balligand
- Unit of Pharmacology and Theurapeutics, Université Catholique de Louvain, Brussels, Belgium
| | - Claude Remacle
- Laboratory of Cell Biology, Institute of Life Science, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
94
|
Sukumaran S, Xue B, Jusko WJ, Dubois DC, Almon RR. Circadian variations in gene expression in rat abdominal adipose tissue and relationship to physiology. Physiol Genomics 2010; 42A:141-52. [PMID: 20682845 DOI: 10.1152/physiolgenomics.00106.2010] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Circadian rhythms occur in all levels of organization from expression of genes to complex physiological processes. Although much is known about the mechanism of the central clock in the suprachiasmatic nucleus, the regulation of clocks present in peripheral tissues as well as the genes regulated by those clocks is still unclear. In this study, the circadian regulation of gene expression was examined in rat adipose tissue. A rich time series involving 54 animals euthanized at 18 time points within the 24-h cycle (12:12 h light-dark) was performed. mRNA expression was examined with Affymetrix gene array chips and quantitative real-time PCR, along with selected physiological measurements. Transcription factors involved in the regulation of central rhythms were examined, and 13 showed circadian oscillations. Mining of microarray data identified 190 probe sets that showed robust circadian oscillations. Circadian regulated probe sets were further parsed into seven distinct temporal clusters, with >70% of the genes showing maximum expression during the active/dark period. These genes were grouped into eight functional categories, which were examined within the context of their temporal expression. Circadian oscillations were also observed in plasma leptin, corticosterone, insulin, glucose, triglycerides, free fatty acids, and LDL cholesterol. Circadian oscillation in these physiological measurements along with the functional categorization of these genes suggests an important role for circadian rhythms in controlling various functions in white adipose tissue including adipogenesis, energy metabolism, and immune regulation.
Collapse
Affiliation(s)
- Siddharth Sukumaran
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY 14260, USA
| | | | | | | | | |
Collapse
|
95
|
Dominguez-Rodriguez A, Abreu-Gonzalez P, Sanchez-Sanchez JJ, Kaski JC, Reiter RJ. Melatonin and circadian biology in human cardiovascular disease. J Pineal Res 2010; 49:14-22. [PMID: 20536686 DOI: 10.1111/j.1600-079x.2010.00773.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Diurnal rhythms influence cardiovascular physiology, i.e. heart rate and blood pressure, and they appear to also modulate the incidence of serious adverse cardiac events. Diurnal variations occur also at the molecular level including changes in gene expression in the heart and blood vessels. Moreover, the risk/benefit ratio of some therapeutic strategies and the concentration of circulating cardiovascular system biomarkers may also vary across the 24-hr light/dark cycle. Synchrony between external and internal diurnal rhythms and harmony among molecular rhythms within the cell are essential for normal organ biology. Diurnal variations in the responsiveness of the cardiovascular system to environmental stimuli are mediated by a complex interplay between extracellular (i.e. neurohumoral factors) and intracellular (i.e. specific genes that are differentially light/dark regulated) mechanisms. Neurohormones, which are particularly relevant to the cardiovascular system, such as melatonin, exhibit a diurnal variation and may play a role in the synchronization of molecular circadian clocks in the peripheral tissue and the suprachiasmatic nucleus. Moreover, mounting evidence reveals that the blood melatonin rhythm has a crucial role in several cardiovascular functions, including daily variations in blood pressure. Melatonin has antioxidant, anti-inflammatory, chronobiotic and, possibly, epigenetic regulatory functions. This article reviews current knowledge related to the biological role of melatonin and its circadian rhythm in cardiovascular disease.
Collapse
|
96
|
Takeda N, Maemura K. Cardiovascular disease, chronopharmacotherapy, and the molecular clock. Adv Drug Deliv Rev 2010; 62:956-66. [PMID: 20451570 DOI: 10.1016/j.addr.2010.04.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 03/10/2010] [Accepted: 04/28/2010] [Indexed: 10/19/2022]
Abstract
Cardiovascular functions such as heart rate and blood pressure show 24h variation. The incidence of cardiovascular diseases including acute myocardial infarction and arrhythmia also exhibits diurnal variation. The center of this circadian clock is located in the suprachiasmatic nucleus in the hypothalamus. However, recent findings revealed that each organ, including cardiovascular tissues, has its own internal clock, which has been termed a peripheral clock. The functional roles played by peripheral clocks have been reported recently. Since the peripheral clock is considered to play considerable roles in the processes of cardiac tissues, the identification of genes specifically regulated by this clock will provide insights into its role in the pathogenesis of cardiovascular disorders. In addition, the discovery of small compounds that modulate the peripheral clock will help to establish chronotherapeutic approaches. Understanding the biological relevance of the peripheral clock will provide novel approaches to the prevention and treatment of cardiovascular diseases.
Collapse
|
97
|
Abstract
This review focuses on the evidence accumulated in humans and animal models to the effect that mitochondria are key players in the progression of heart failure (HF). Mitochondria are the primary source of energy in the form of adenosine triphosphate that fuels the contractile apparatus, and are thus essential for the pumping activity of the heart. We evaluate changes in mitochondrial morphology and alterations in the main components of mitochondrial energetics, such as substrate utilization and oxidative phosphorylation coupled with the level of respirasomes, in the context of their contribution to the chronic energy deficit and mechanical dysfunction in HF.
Collapse
Affiliation(s)
- Mariana G Rosca
- Center for Mitochondrial Diseases, Case Western Reserve University, Cleveland, OH, USA
| | | |
Collapse
|
98
|
Zhou L, Zhang P, Cheng Z, Hao W, Wang R, Fang Q, Cao JM. Altered circadian rhythm of cardiac β3-adrenoceptor activity following myocardial infarction in the rat. Basic Res Cardiol 2010; 106:37-50. [PMID: 20661603 DOI: 10.1007/s00395-010-0110-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 07/06/2010] [Accepted: 07/09/2010] [Indexed: 01/03/2023]
Abstract
Circadian rhythms influence the incidence of adverse cardiac events but the underlying mechanisms are not well defined. We sought to investigate the role of the β3-adrenoceptor (β3-AR) in cardiac circadian disorders and arrhythmia severity after myocardial infarction (MI). MI was created by ligating the left anterior descending coronary artery of the rat heart in situ. Circadian variations of the myocardial expressions of β3-AR and clock genes Bmal1 and Npas2 were examined by real time reverse transcription polymerase chain reaction, Western blot and immunohistochemistry. Electrocardiograms and myocardial contraction were recorded in vivo and/or ex vivo. Ventricular tachyarrhythmias were induced by isoprenaline. Normal rats showed circadian oscillations in both the myocardial transcriptional expression of β3-AR and the β3-AR-induced positive chronotropic and negative inotropic cardiac effects. However, these circadian rhythms were significantly blunted or even abolished in rats with either acute MI (within 24 h) or healed MI (14 days after coronary ligation). The nocturnal level of β3-AR protein was higher in MI rats than in normal rats. In contrast, the circadian oscillations of the transcripts of Bmal1 and Npas2 in the myocardium were significantly augmented in rats with either acute MI or healed MI. BRL37344, a preferential β3-AR selective agonist, reduced the occurrence of ventricular tachycardia (VT) and ventricular fibrillation (VF) in rats with either acute MI or healed MI. We conclude that circadian rhythms of myocardial β3-AR activities are disturbed after MI and β3-AR activation offers anti-arrhythmic protection.
Collapse
Affiliation(s)
- Lan Zhou
- Department of Physiology and Pathophysiology, Institute of Basic Medical Sciences, School of Basic Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China
| | | | | | | | | | | | | |
Collapse
|
99
|
AbuMweis SS, Jew S, Jones PJH. Optimizing clinical trial design for assessing the efficacy of functional foods. Nutr Rev 2010; 68:485-99. [DOI: 10.1111/j.1753-4887.2010.00308.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
100
|
|