51
|
Montanari T, Pošćić N, Colitti M. Factors involved in white-to-brown adipose tissue conversion and in thermogenesis: a review. Obes Rev 2017; 18:495-513. [PMID: 28187240 DOI: 10.1111/obr.12520] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/10/2017] [Accepted: 01/11/2017] [Indexed: 12/21/2022]
Abstract
Obesity is the result of energy intake chronically exceeding energy expenditure. Classical treatments against obesity do not provide a satisfactory long-term outcome for the majority of patients. After the demonstration of functional brown adipose tissue in human adults, great effort is being devoted to develop therapies based on the adipose tissue itself, through the conversion of fat-accumulating white adipose tissue into energy-dissipating brown adipose tissue. Anti-obesity treatments that exploit endogenous, pharmacological and nutritional factors to drive such conversion are especially in demand. In the present review, we summarize the current knowledge about the various molecules that can be applied in promoting white-to-brown adipose tissue conversion and energy expenditure and the cellular mechanisms involved.
Collapse
Affiliation(s)
- T Montanari
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - N Pošćić
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - M Colitti
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| |
Collapse
|
52
|
Glöde A, Naumann J, Gnad T, Cannone V, Kilic A, Burnett JC, Pfeifer A. Divergent effects of a designer natriuretic peptide CD-NP in the regulation of adipose tissue and metabolism. Mol Metab 2017; 6:276-287. [PMID: 28271034 PMCID: PMC5323888 DOI: 10.1016/j.molmet.2016.12.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/20/2016] [Accepted: 12/29/2016] [Indexed: 01/06/2023] Open
Abstract
Objective Obesity is defined as an abnormal increase in white adipose tissue (WAT) and is a major risk factor for type 2 diabetes and cardiovascular disease. Brown adipose tissue (BAT) dissipates energy and correlates with leanness. Natriuretic peptides have been shown to be beneficial for brown adipocyte differentiation and browning of WAT. Methods Here, we investigated the effects of an optimized designer natriuretic peptide (CD-NP) on murine adipose tissues in vitro and in vivo. Results In murine brown and white adipocytes, CD-NP activated cGMP production, promoted adipogenesis, and increased thermogenic markers. Consequently, mice treated for 10 days with CD-NP exhibited increased “browning” of WAT. To study CD-NP effects on diet-induced obesity (DIO), we delivered CD-NP for 12 weeks. Although CD-NP reduced inflammation in WAT, CD-NP treated DIO mice exhibited a significant increase in body mass, worsened glucose tolerance, and hepatic steatosis. Long-term CD-NP treatment resulted in an increased expression of the NP scavenging receptor (NPR-C) and decreased lipolytic activity. Conclusions NP effects differed depending on the duration of treatment raising questions about the rational of natriuretic peptide treatment in obese patients. The optimized designer natriuretic peptide CD-NP promotes adipogenesis. Duration of treatment is decisive: short-term promotes browning whereas long-term treatment exacerbates obesity and diabetes. Long-term CD-NP treatment reduces WAT inflammation and increases adiponectin expression.
Collapse
Affiliation(s)
- Anja Glöde
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany; Bonn International Graduate School of Drug Sciences BIGSDrugS, University of Bonn, Bonn, Germany
| | - Jennifer Naumann
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany
| | - Thorsten Gnad
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany
| | - Valentina Cannone
- Cardiorenal Research Laboratory, Department of Cardiovascular Diseases, Mayo Clinic, Rochester, USA
| | - Ana Kilic
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany
| | - John C Burnett
- Cardiorenal Research Laboratory, Department of Cardiovascular Diseases, Mayo Clinic, Rochester, USA
| | - Alexander Pfeifer
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany; Bonn International Graduate School of Drug Sciences BIGSDrugS, University of Bonn, Bonn, Germany.
| |
Collapse
|
53
|
Ikeda M, Honda H, Takahashi K, Shishido K, Shibata T. N-Terminal Pro-B-Type Natriuretic Peptide as a Biomarker for Loss of Muscle Mass in Prevalent Hemodialysis Patients. PLoS One 2016; 11:e0166804. [PMID: 27870908 PMCID: PMC5117720 DOI: 10.1371/journal.pone.0166804] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/03/2016] [Indexed: 12/24/2022] Open
Abstract
Protein-energy wasting (PEW) is common in hemodialysis (HD) patients. A recent study demonstrated that a high level of N-terminal pro-B-type natriuretic peptide (NT-proBNP) may be associated with PEW in those patients. This prospective study aimed to assess the association of NT-proBNP with body composition and muscle loss. A cohort of prevalent HD patients (n = 238) was examined. Blood samples were obtained at baseline to measure high-sensitive C-reactive protein (hsCRP), interleukin-6 (IL-6), adiponectin and NT-proBNP. Nutritional status and changes in muscle mass were assessed by subjective global assessment, percentage creatinine generation rate (%CGR), creatinine index (CI) and lean body mass (LBM) estimated by dual-energy X-ray absorptiometry (DXA). The %CGR and CI were calculated five times for one year, and DXA was performed at baseline and one year later. Cardiac function was estimated by ultrasonography at baseline. NT-proBNP was significantly higher in HD patients with PEW. High NT-proBNP was associated with cardiac dysfunction, increased levels of hsCRP and IL-6, and serially decreased levels of the indexes for muscle mass. Multiple regression analysis adjusted with confounders showed that NT-proBNP was an independent predictor for decrease in LBM and serial lower levels of %CGR and CI. In conclusion, the present study demonstrated a novel association between NT-proBNP and muscle loss. NT-proBNP may be an independent biomarker for malnutrition in HD patients, especially in patients with muscles loss, regardless of chronic inflammation, cardiac dysfunction, or overhydration.
Collapse
Affiliation(s)
- Misa Ikeda
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Hirokazu Honda
- Division of Nephrology, Department of Medicine, Showa University Koto Toyosu Hospital, Tokyo, Japan
- * E-mail:
| | - Keiko Takahashi
- Division of Dialysis, Kitami Higashiyama Clinic, Tokyo, Japan
| | - Kanji Shishido
- Department of Medicine, Kawasaki Clinic, Kawasaki, Japan
| | - Takanori Shibata
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
54
|
Moro C. Targeting cardiac natriuretic peptides in the therapy of diabetes and obesity. Expert Opin Ther Targets 2016; 20:1445-1452. [DOI: 10.1080/14728222.2016.1254198] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
55
|
Abstract
Heart failure affects ≈5.7 million people in the United States alone. Angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, β-blockers, and aldosterone antagonists have improved mortality in patients with heart failure and reduced ejection fraction, but mortality remains high. In July 2015, the US Food and Drug Administration approved the first of a new class of drugs for the treatment of heart failure: Valsartan/sacubitril (formerly known as LCZ696 and currently marketed by Novartis as Entresto) combines the angiotensin receptor blocker valsartan and the neprilysin inhibitor prodrug sacubitril in a 1:1 ratio in a sodium supramolecular complex. Sacubitril is converted by esterases to LBQ657, which inhibits neprilysin, the enzyme responsible for the degradation of the natriuretic peptides and many other vasoactive peptides. Thus, this combined angiotensin receptor antagonist and neprilysin inhibitor addresses 2 of the pathophysiological mechanisms of heart failure: activation of the renin-angiotensin-aldosterone system and decreased sensitivity to natriuretic peptides. In the Prospective Comparison of ARNI With ACEI to Determine Impact on Global Mortality and Morbidity in Heart Failure (PARADIGM-HF) trial, valsartan/sacubitril significantly reduced mortality and hospitalization for heart failure, as well as blood pressure, compared with enalapril in patients with heart failure, reduced ejection fraction, and an elevated circulating level of brain natriuretic peptide or N-terminal pro-brain natriuretic peptide. Ongoing clinical trials are evaluating the role of valsartan/sacubitril in the treatment of heart failure with preserved ejection fraction and hypertension. We review here the mechanisms of action of valsartan/sacubitril, the pharmacological properties of the drug, and its efficacy and safety in the treatment of heart failure and hypertension.
Collapse
Affiliation(s)
- Scott A Hubers
- From Department of Medicine, Vanderbilt University Medical Center, Nashville, TN.
| | - Nancy J Brown
- From Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
56
|
Ruiz-Ojeda FJ, Aguilera CM, Rupérez AI, Gil Á, Gomez-Llorente C. An analogue of atrial natriuretic peptide (C-ANP4-23) modulates glucose metabolism in human differentiated adipocytes. Mol Cell Endocrinol 2016; 431:101-8. [PMID: 27181211 DOI: 10.1016/j.mce.2016.05.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 04/27/2016] [Accepted: 05/10/2016] [Indexed: 12/21/2022]
Abstract
The present study was undertaken to investigate the effects of C-atrial natriuretic peptide (C-ANP4-23) in human adipose-derived stem cells differentiated into adipocytes over 10 days (1 μM for 4 h). The intracellular cAMP, cGMP and protein kinase A levels were determined by ELISA and gene and protein expression were determined by qRT-PCR and Western blot, respectively, in the presence or absence of C-ANP4-23. The levels of lipolysis and glucose uptake were also determined. C-ANP4-23 treatment significantly increased the intracellular cAMP levels and the gene expression of glucose transporter type 4 (GLUT4) and protein kinase, AMP-activated, alpha 1 catalytic subunit (AMPK). Western blot showed a significant increase in GLUT4 and phosphor-AMPKα levels. Importantly, the adenylate cyclase inhibitor SQ22536 abolished these effects. Additionally, C-ANP4-23 increased glucose uptake by 2-fold. Our results show that C-ANP4-23 enhances glucose metabolism and might contribute to the development of new peptide-based therapies for metabolic diseases.
Collapse
Affiliation(s)
- Francisco Javier Ruiz-Ojeda
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain; Institute of Nutrition and Food Technology "José Mataix", Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n, 18016 Armilla, Granada, Spain; Instituto de Investigación Biosanitaria ibs, Granada, Spain
| | - Concepción María Aguilera
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain; Institute of Nutrition and Food Technology "José Mataix", Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n, 18016 Armilla, Granada, Spain; Instituto de Investigación Biosanitaria ibs, Granada, Spain; CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Madrid, Spain
| | - Azahara Iris Rupérez
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain; Institute of Nutrition and Food Technology "José Mataix", Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n, 18016 Armilla, Granada, Spain
| | - Ángel Gil
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain; Institute of Nutrition and Food Technology "José Mataix", Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n, 18016 Armilla, Granada, Spain; Instituto de Investigación Biosanitaria ibs, Granada, Spain; CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Madrid, Spain
| | - Carolina Gomez-Llorente
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain; Institute of Nutrition and Food Technology "José Mataix", Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n, 18016 Armilla, Granada, Spain; Instituto de Investigación Biosanitaria ibs, Granada, Spain; CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Madrid, Spain.
| |
Collapse
|
57
|
Thornton SN. Increased Hydration Can Be Associated with Weight Loss. Front Nutr 2016; 3:18. [PMID: 27376070 PMCID: PMC4901052 DOI: 10.3389/fnut.2016.00018] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 05/30/2016] [Indexed: 12/25/2022] Open
Abstract
This mini-review develops the hypothesis that increased hydration leads to body weight loss, mainly through a decrease in feeding, and a loss of fat, through increased lipolysis. The publications cited come from animal, mainly rodent, studies where manipulations of the central and/or the peripheral renin–angiotensin system lead to an increased drinking response and a decrease in body weight. This hypothesis derives from a broader association between chronic hypohydration (extracellular dehydration) and raised levels of the hormone angiotensin II (AngII) associated with many chronic diseases, such as obesity, diabetes, cancer, and cardiovascular disease. Proposed mechanisms to explain these effects involve an increase in metabolism due to hydration expanding cell volume. The results of these animal studies often can be applied to the humans. Human studies are consistent with this hypothesis for weight loss and for reducing the risk factors in the development of obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Simon N Thornton
- INSERM U_1116, Université de Lorraine , Vandoeuvre les Nancy , France
| |
Collapse
|
58
|
Natriuretic peptide control of energy balance and glucose homeostasis. Biochimie 2016; 124:84-91. [DOI: 10.1016/j.biochi.2015.05.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 05/19/2015] [Indexed: 12/27/2022]
|
59
|
Mauriège P, Joanisse D, Cartier A, Lemieux I, Bergeron J, Biron S, Marceau P, Richard D. Gene expression in a rarely studied intraabdominal adipose depot, the round ligament, in severely obese women: A pilot study. Adipocyte 2016; 5:27-34. [PMID: 27144094 DOI: 10.1080/21623945.2015.1103404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 09/17/2015] [Accepted: 09/29/2015] [Indexed: 01/04/2023] Open
Abstract
Gene expression (qPCR) was compared in round ligament (RL), omental (OME) and mesenteric (MES) ATs from 48 severely obese women (BMI, 54±11 kg/m(2); 38±9 yrs). The mRNA levels of enzymes of lipid metabolism (LPL, HSL, and PDE-3B), cortisol production (11βHSD-1), adipogenesis (PPAR-γ1/2), thrombosis and inflammation (PAI-1, IL-6, TNF-α and adiponectin) were determined. AT-LPL mRNA was highest in RL. The highest PDE-3B and lowest PAI-1 mRNA levels were observed in RL and MES. The lowest IL-6 and TNF-α and the highest adiponectin and PPAR-g1/2 mRNA levels were found in RL AT. 11βHSD-1 was highest in RL and OME. A higher lipogenic and adipogenic, and lower pro-inflammatory and pro-thrombotic profiles of the RL suggest a lesser deleterious impact on obesity-related complications.
Collapse
|
60
|
Coué M, Badin PM, Vila IK, Laurens C, Louche K, Marquès MA, Bourlier V, Mouisel E, Tavernier G, Rustan AC, Galgani JE, Joanisse DR, Smith SR, Langin D, Moro C. Defective Natriuretic Peptide Receptor Signaling in Skeletal Muscle Links Obesity to Type 2 Diabetes. Diabetes 2015; 64:4033-45. [PMID: 26253614 DOI: 10.2337/db15-0305] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 07/31/2015] [Indexed: 11/13/2022]
Abstract
Circulating natriuretic peptide (NP) levels are reduced in obesity and predict the risk of type 2 diabetes (T2D). Since skeletal muscle was recently shown as a key target tissue of NP, we aimed to investigate muscle NP receptor (NPR) expression in the context of obesity and T2D. Muscle NPRA correlated positively with whole-body insulin sensitivity in humans and was strikingly downregulated in obese subjects and recovered in response to diet-induced weight loss. In addition, muscle NP clearance receptor (NPRC) increased in individuals with impaired glucose tolerance and T2D. Similar results were found in obese diabetic mice. Although no acute effect of brain NP (BNP) on insulin sensitivity was observed in lean mice, chronic BNP infusion improved blood glucose control and insulin sensitivity in skeletal muscle of obese and diabetic mice. This occurred in parallel with a reduced lipotoxic pressure in skeletal muscle due to an upregulation of lipid oxidative capacity. In addition, chronic NP treatment in human primary myotubes increased lipid oxidation in a PGC1α-dependent manner and reduced palmitate-induced lipotoxicity. Collectively, our data show that activation of NPRA signaling in skeletal muscle is important for the maintenance of long-term insulin sensitivity and has the potential to treat obesity-related metabolic disorders.
Collapse
MESH Headings
- Adult
- Animals
- Body Mass Index
- Cells, Cultured
- Diabetes Mellitus, Type 2/etiology
- Diabetes Mellitus, Type 2/prevention & control
- Diet, Reducing
- Disease Progression
- Glucose Intolerance/etiology
- Glucose Intolerance/prevention & control
- Humans
- Insulin Resistance
- Male
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Middle Aged
- Muscle, Skeletal/cytology
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Obesity/diet therapy
- Obesity/metabolism
- Obesity/pathology
- Obesity/physiopathology
- Random Allocation
- Receptors, Atrial Natriuretic Factor/agonists
- Receptors, Atrial Natriuretic Factor/genetics
- Receptors, Atrial Natriuretic Factor/metabolism
- Signal Transduction
- Specific Pathogen-Free Organisms
- Weight Loss
Collapse
Affiliation(s)
- Marine Coué
- Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Toulouse, France University of Toulouse, UMR1048, Paul Sabatier University, Toulouse, France
| | - Pierre-Marie Badin
- Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Toulouse, France University of Toulouse, UMR1048, Paul Sabatier University, Toulouse, France
| | - Isabelle K Vila
- Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Toulouse, France University of Toulouse, UMR1048, Paul Sabatier University, Toulouse, France
| | - Claire Laurens
- Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Toulouse, France University of Toulouse, UMR1048, Paul Sabatier University, Toulouse, France
| | - Katie Louche
- Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Toulouse, France University of Toulouse, UMR1048, Paul Sabatier University, Toulouse, France
| | - Marie-Adeline Marquès
- Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Toulouse, France University of Toulouse, UMR1048, Paul Sabatier University, Toulouse, France
| | - Virginie Bourlier
- Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Toulouse, France University of Toulouse, UMR1048, Paul Sabatier University, Toulouse, France
| | - Etienne Mouisel
- Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Toulouse, France University of Toulouse, UMR1048, Paul Sabatier University, Toulouse, France
| | - Geneviève Tavernier
- Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Toulouse, France University of Toulouse, UMR1048, Paul Sabatier University, Toulouse, France
| | - Arild C Rustan
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Jose E Galgani
- School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Denis R Joanisse
- Department of Kinesiology, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Laval, Canada
| | - Steven R Smith
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Sanford-Burnham Medical Research Institute, Orlando, FL
| | - Dominique Langin
- Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Toulouse, France University of Toulouse, UMR1048, Paul Sabatier University, Toulouse, France Department of Clinical Biochemistry, Toulouse University Hospitals, Toulouse, France
| | - Cedric Moro
- Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Toulouse, France University of Toulouse, UMR1048, Paul Sabatier University, Toulouse, France
| |
Collapse
|
61
|
Morigny P, Houssier M, Mouisel E, Langin D. Adipocyte lipolysis and insulin resistance. Biochimie 2015; 125:259-66. [PMID: 26542285 DOI: 10.1016/j.biochi.2015.10.024] [Citation(s) in RCA: 301] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 10/30/2015] [Indexed: 12/15/2022]
Abstract
Obesity-induced insulin resistance is a major risk factor for the development of type 2 diabetes. Basal fat cell lipolysis (i.e., fat cell triacylglycerol breakdown into fatty acids and glycerol in the absence of stimulatory factors) is elevated during obesity and is closely associated with insulin resistance. Inhibition of adipocyte lipolysis may therefore be a promising therapeutic strategy for treating insulin resistance and preventing obesity-associated type 2 diabetes. In this review, we explore the relationship between adipose lipolysis and insulin sensitivity. After providing an overview of the components of fat cell lipolytic machinery, we describe the hypotheses that may support the causality between lipolysis and insulin resistance. Excessive circulating fatty acids may ectopically accumulate in insulin-sensitive tissues and impair insulin action. Increased basal lipolysis may also modify the secretory profile of adipose tissue, influencing whole body insulin sensitivity. Finally, excessive fatty acid release may also worsen adipose tissue inflammation, a well-known parameter contributing to insulin resistance. Partial genetic or pharmacologic inhibition of fat cell lipases in mice as well as short term clinical trials using antilipolytic drugs in humans support the benefit of fat cell lipolysis inhibition on systemic insulin sensitivity and glucose metabolism, which occurs without an increase of fat mass. Modulation of fatty acid fluxes and, putatively, of fat cell secretory pattern may explain the amelioration of insulin sensitivity whereas changes in adipose tissue immune response do not seem involved.
Collapse
Affiliation(s)
- Pauline Morigny
- INSERM, UMR1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, UMR1048, Paul Sabatier University, France
| | - Marianne Houssier
- INSERM, UMR1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, UMR1048, Paul Sabatier University, France
| | - Etienne Mouisel
- INSERM, UMR1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, UMR1048, Paul Sabatier University, France
| | - Dominique Langin
- INSERM, UMR1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, UMR1048, Paul Sabatier University, France; Toulouse University Hospitals, Department of Clinical Biochemistry, Toulouse, France.
| |
Collapse
|
62
|
Sibjotang Increases Atrial Natriuretic Peptide Secretion in Beating Rabbit Atria. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:268643. [PMID: 26495007 PMCID: PMC4606132 DOI: 10.1155/2015/268643] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 09/13/2015] [Indexed: 11/18/2022]
Abstract
Sibjotang (Shizaotang), traditional herbal medicine formula, which was first documented in the Shanghanlun, has long been prescribed for the treatment of impairment of the body fluid homeostasis. The purpose of the present study was to identify the effects of Sibjotang on the secretion of a cardiac hormone, atrial natriuretic peptide (ANP), one of the main hormones involved in the regulation of the body fluid and blood pressure homeostasis. Water extract of Sibjotang increased ANP secretion concomitantly with an increase in atrial dynamics in a concentration-dependent manner. Sibjotang-induced increase in ANP secretion and positive inotropic effect were attenuated by GO6976 and LY333531, selective inhibitors of conventional protein kinase C, but not Rottlerin, an inhibitor of novel PKCδ. Similarly to the effect of Sibjotang, extracts of components of Sibjotang, Euphorbia kansui, and Daphne genkwa, but not Euphorbia pekinensis and Ziziphus jujuba, increased ANP secretion and atrial dynamics. Ingredients of Sibjotang, apigenin, rosmarinic acid, and salvianolic acid B decreased ANP secretion and atrial dynamics. These findings suggest that Sibjotang increases ANP secretion and atrial dynamics via activation of conventional protein kinase C signaling. This finding provides experimental evidence for the rationale in the use of Sibjotang in the treatment of impairment of the regulation of body fluid and blood pressure homeostasis.
Collapse
|
63
|
Kerkelä R, Ulvila J, Magga J. Natriuretic Peptides in the Regulation of Cardiovascular Physiology and Metabolic Events. J Am Heart Assoc 2015; 4:e002423. [PMID: 26508744 PMCID: PMC4845118 DOI: 10.1161/jaha.115.002423] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Risto Kerkelä
- Department of Pharmacology and Toxicology, Research Unit of Biomedicine, University of Oulu, Finland (R.K., J.U., J.M.) Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Finland (R.K.)
| | - Johanna Ulvila
- Department of Pharmacology and Toxicology, Research Unit of Biomedicine, University of Oulu, Finland (R.K., J.U., J.M.)
| | - Johanna Magga
- Department of Pharmacology and Toxicology, Research Unit of Biomedicine, University of Oulu, Finland (R.K., J.U., J.M.)
| |
Collapse
|
64
|
Rydén M, Bäckdahl J, Petrus P, Thorell A, Gao H, Coue M, Langin D, Moro C, Arner P. Impaired atrial natriuretic peptide-mediated lipolysis in obesity. Int J Obes (Lond) 2015; 40:714-20. [PMID: 26499437 DOI: 10.1038/ijo.2015.222] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 09/10/2015] [Accepted: 09/28/2015] [Indexed: 11/09/2022]
Abstract
BACKGROUND Catecholamines and natriuretic peptides (NPs) are the only hormones with pronounced lipolytic effects in human white adipose tissue. Although catecholamine-induced lipolysis is well known to be impaired in obesity and insulin resistance, it is not known whether the effect of NPs is also altered. METHODS Catecholamine- and atrial NP (ANP)-induced lipolysis was investigated in abdominal subcutaneous adipocytes in vitro and in situ by microdialysis. RESULTS In a cohort of 122 women, both catecholamine- and ANP-induced lipolysis in vitro was markedly attenuated in obesity (n=87), but normalized after substantial body weight loss (n=52). The impairment of lipolysis differed between the two hormones when expressing lipolysis per lipid weight, the ratio of stimulated over basal (spontaneous) lipolysis rate or per number of adipocytes. Thus, while the response to catecholamines was lower when expressed as the former two measures, it was higher when expressed per cell number, a consequence of the significantly larger fat cell size in obesity. In contrast, although ANP-induced lipolysis was also attenuated when expressed per lipid weight or the ratio stimulated/basal, it was similar between non-obese and obese subjects when expressed per cell number suggesting that the lipolytic effect of ANP may be even more sensitive to the effects of obesity than catecholamines. Obesity was characterized by a decrease in the protein expression of the signaling NP A receptor (NPRA) and a trend toward increased levels of the clearance receptor NPRC. The impairment in ANP-induced lipolysis observed in vitro was corroborated by microdialysis experiments in situ in a smaller cohort of lean and overweight men. CONCLUSIONS ANP- and catecholamine-induced lipolysis is reversibly attenuated in obesity. The pro-lipolytic effects of ANP are relatively more impaired compared with that of catecholamines, which may in part be due to specific changes in NP receptor expression.
Collapse
Affiliation(s)
- M Rydén
- Department of Medicine-H7, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - J Bäckdahl
- Department of Medicine-H7, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - P Petrus
- Department of Medicine-H7, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - A Thorell
- Department of Surgery, Karolinska Institutet, Ersta Hospital, Stockholm, Sweden
| | - H Gao
- Department of of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - M Coue
- INSERM, UMR1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France.,University of Toulouse, UMR1048, Paul Sabatier University, France
| | - D Langin
- INSERM, UMR1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France.,University of Toulouse, UMR1048, Paul Sabatier University, France.,Department of Clinical Biochemistry, Toulouse University Hospitals, Toulouse, France
| | - C Moro
- INSERM, UMR1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France.,University of Toulouse, UMR1048, Paul Sabatier University, France
| | - P Arner
- Department of Medicine-H7, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
65
|
Katsi V, Skalis G, Pavlidis AN, Makris T, Nihoyannopoulos P, Tousoulis D, Kallikazaros I. Angiotensin receptor neprilysin inhibitor LCZ696: a novel targeted therapy for arterial hypertension? EUROPEAN HEART JOURNAL. CARDIOVASCULAR PHARMACOTHERAPY 2015; 1:260-264. [PMID: 27532450 DOI: 10.1093/ehjcvp/pvv031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 06/29/2015] [Indexed: 01/22/2025]
Abstract
The need for novel antihypertensive therapies represents a continuous challenge. LCZ696 is a first-in-class angiotensin receptor neprilysin inhibitor that has been shown to enhance endogenous natriuretic peptide (NP) actions on neurohormonal activation. This effect seems to be additive to that of the renin-angiotensin-aldosterone system (RAAS) suppression, as impressively suggested in the PARADIGM HF study. LCZ696 has been shown to be effective in reducing blood pressure in several small studies; however, its effectiveness and safety remain to be proved in larger studies. This review summarizes the role of RAAS and NP system in the pathophysiology of hypertension and reviews the current data on the antihypertensive effects of LCZ696.
Collapse
Affiliation(s)
- Vasiliki Katsi
- Cardiology Department, Hippokration Hospital, Athens, Greece
| | - Georgios Skalis
- Department of Cardiology, Helena Venizelou Hospital, Athens, Greece
| | - Antonis N Pavlidis
- Department of Cardiology, Guy's and St Thomas' NHS Foundation Trust, Westminster Bridge Road, SE1 7EH London, UK
| | - Thomas Makris
- Department of Cardiology, Helena Venizelou Hospital, Athens, Greece
| | - Petros Nihoyannopoulos
- 1st Department of Cardiology, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitris Tousoulis
- 1st Department of Cardiology, National and Kapodistrian University of Athens, Athens, Greece
| | | |
Collapse
|
66
|
Stinkens R, Goossens GH, Jocken JWE, Blaak EE. Targeting fatty acid metabolism to improve glucose metabolism. Obes Rev 2015; 16:715-57. [PMID: 26179344 DOI: 10.1111/obr.12298] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/23/2015] [Accepted: 05/10/2015] [Indexed: 12/15/2022]
Abstract
Disturbances in fatty acid metabolism in adipose tissue, liver, skeletal muscle, gut and pancreas play an important role in the development of insulin resistance, impaired glucose metabolism and type 2 diabetes mellitus. Alterations in diet composition may contribute to prevent and/or reverse these disturbances through modulation of fatty acid metabolism. Besides an increased fat mass, adipose tissue dysfunction, characterized by an altered capacity to store lipids and an altered secretion of adipokines, may result in lipid overflow, systemic inflammation and excessive lipid accumulation in non-adipose tissues like liver, skeletal muscle and the pancreas. These impairments together promote the development of impaired glucose metabolism, insulin resistance and type 2 diabetes mellitus. Furthermore, intrinsic functional impairments in either of these organs may contribute to lipotoxicity and insulin resistance. The present review provides an overview of fatty acid metabolism-related pathways in adipose tissue, liver, skeletal muscle, pancreas and gut, which can be targeted by diet or food components, thereby improving glucose metabolism.
Collapse
Affiliation(s)
- R Stinkens
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - G H Goossens
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - J W E Jocken
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - E E Blaak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
67
|
Brain Natriuretic Peptide Levels and the Occurrence of Subclinical Pulmonary Edema in Healthy Lowlanders at High Altitude. Can J Cardiol 2015; 31:1025-31. [DOI: 10.1016/j.cjca.2015.03.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 03/20/2015] [Accepted: 03/20/2015] [Indexed: 11/19/2022] Open
|
68
|
Abstract
Natriuretic peptides are cardiac-derived hormones with a range of protective functions, including natriuresis, diuresis, vasodilation, lusitropy, lipolysis, weight loss, and improved insulin sensitivity. Their actions are mediated through membrane-bound guanylyl cyclases that lead to production of the intracellular second-messenger cyclic guanosine monophosphate. A growing body of evidence demonstrates that genetic and acquired deficiencies of the natriuretic peptide system can promote hypertension, cardiac hypertrophy, obesity, diabetes mellitus, the metabolic syndrome, and heart failure. Clinically, natriuretic peptides are robust diagnostic and prognostic markers, and augmenting natriuretic peptides is a target for therapeutic strategies in cardiometabolic disease. This review will summarize current understanding and highlight novel aspects of natriuretic peptide biology.
Collapse
Affiliation(s)
- Deepak K Gupta
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Division of Cardiovascular Medicine, Vanderbilt University School of Medicine
| | | |
Collapse
|
69
|
Hsiao HL, Langenickel TH, Greeley M, Roberts J, Zhou W, Pal P, Rebello S, Rajman I, Sunkara G. Pharmacokinetic drug-drug interaction assessment between LCZ696, an angiotensin receptor neprilysin inhibitor, and hydrochlorothiazide, amlodipine, or carvedilol. Clin Pharmacol Drug Dev 2015; 4:407-17. [PMID: 27137712 DOI: 10.1002/cpdd.183] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 02/05/2015] [Indexed: 11/12/2022]
Abstract
LCZ696 is a first-in-class angiotensin receptor neprilysin inhibitor in development for treatments of hypertension and heart failure indications. In 3 separate studies, pharmacokinetic drug-drug interactions (DDIs) potential was assessed when LCZ696 was coadministered with hydrochlorothiazide (HCTZ), amlodipine, or carvedilol. The studies used a open-label, single-sequence, 3-period, crossover design in healthy subjects. Blood samples were collected to determine the pharmacokinetic parameters of LCZ696 analytes (AHU377, LBQ657, and valsartan), HCTZ, amlodipine, or carvedilol (R[+]- and S[-]-carvedilol) for statistical analysis. When coadministered LCZ696 with HCTZ, the 90% CIs of the geometric mean ratios of AUCtau,ss of HCTZ and that of LBQ657 were within a 0.80-1.25 interval, whereas HCTZ Cmax,ss decreased by 26%, LBQ657 Cmax,ss increased by 19%, and the AUCtau,ss and Cmax,ss of valsartan increased by 14% and 16%, respectively. Pharmacokinetics of amlodipine, R(+)- and S(-)-carvedilol, or LBQ657 were not altered after coadministration of LCZ696 with amlodipine or carvedilol. Coadministration of LCZ696 400 mg once daily (qd) with HCTZ 25 mg qd, amlodipine 10 mg qd, or carvedilol 25 mg twice a day (bid) had no clinically relevant pharmacokinetic drug-drug interactions. LCZ696, HCTZ, amlodipine, and carvedilol were safe and well tolerated when given alone or concomitantly in the investigated studies.
Collapse
Affiliation(s)
- Hsiu-Ling Hsiao
- Novartis Institutes for Biomedical Research, Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| | | | - Michael Greeley
- Oncology Clinical Pharmacology, Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| | - John Roberts
- Oncology Clinical Pharmacology, Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| | - Wei Zhou
- Novartis Institutes for Biomedical Research, Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| | - Parasar Pal
- Novartis Healthcare Pvt. Ltd., Hyderabad, India
| | - Sam Rebello
- Novartis Institutes for Biomedical Research, Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| | | | - Gangadhar Sunkara
- Novartis Institutes for Biomedical Research, Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| |
Collapse
|
70
|
Bruno G, Barutta F, Landi A, Pinach S, Caropreso P, Mengozzi G, Baldassarre S, Fragapani S, Civera S, Cavallo Perin P, Gruden G. Levels of N-terminal pro brain natriuretic peptide are enhanced in people with the uncomplicated metabolic syndrome: a case-cohort analysis of the population-based Casale Monferrato study. Diabetes Metab Res Rev 2015; 31:360-7. [PMID: 25370350 DOI: 10.1002/dmrr.2616] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/21/2014] [Accepted: 09/26/2014] [Indexed: 11/08/2022]
Abstract
BACKGROUND Both metabolic syndrome (MetS) and N-amino terminal fragment of the prohormone B-type natriuretic peptide (NT-proBNP) confer increased risk of cardiovascular diseases (CVD). We assessed if NT-proBNP levels were greater in people with uncomplicated MetS, who had neither CVD/chronic kidney disease (CKD) nor diabetes, as compared with subjects who met none of the defining criteria of the MetS. METHODS A case-cohort study from the non-diabetic population-based Casale Monferrato study was performed, after exclusion of all subjects with established CVD, CKD [estimated glomerular filtration rate (eGFR) < 60 mL/min/1.73 m(2)], and CRP values ≥3 mg/L. Cases (n = 161) with MetS were compared with all subjects within the cohort (n = 124) who were completely free of any component of the MetS. Serum NT-proBNP was centrally measured by immunoenzymatic assay. RESULTS NT-proBNP levels were significantly higher in cases than in control subjects [35.4 (15.5-98.2) vs 24.4 (11.7-49.6) pg/mL, p = 0.014]. In logistic regression analysis, compared with NT-proBNP values in the lower quartiles (≤49.64 pg/mL), higher values conferred odds ratio 4.17 (1.30-13.44) of having the MetS, independently of age, sex, microalbuminuria, CRP, eGFR, and central obesity. This association was evident even after the exclusion of hypertensive subjects. Further adjustment for log-HOMA and diastolic blood pressure did not modify the strength of the association, while central obesity was a negative confounder. CONCLUSIONS Compared with people without any component of the MetS, those with uncomplicated MetS, who had neither CVD/CKD nor diabetes, had increased NT-proBNP values, even if they were normotensive and although absolute values were still in the low range. The insulin resistance state did not mediate this association, while central obesity was a negative confounder.
Collapse
Affiliation(s)
- Graziella Bruno
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Reeks TA, Fry BG, Alewood PF. Privileged frameworks from snake venom. Cell Mol Life Sci 2015; 72:1939-58. [PMID: 25693678 PMCID: PMC11113608 DOI: 10.1007/s00018-015-1844-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 01/22/2015] [Accepted: 01/26/2015] [Indexed: 11/25/2022]
Abstract
Venom as a form of chemical prey capture is a key innovation that has underpinned the explosive radiation of the advanced snakes (Caenophidia). Small venom proteins are often rich in disulfide bonds thus facilitating stable molecular scaffolds that present key functional residues on the protein surface. New toxin types are initially developed through the venom gland over-expression of normal body proteins, their subsequent gene duplication and diversification that leads to neofunctionalisation as random mutations modify their structure and function. This process has led to preferentially selected (privileged) cysteine-rich scaffolds that enable the snake to build arrays of toxins many of which may lead to therapeutic products and research tools. This review focuses on cysteine-rich small proteins and peptides found in snake venoms spanning natriuretic peptides to phospholipase enzymes, while highlighting their three-dimensional structures and biological functions as well as their potential as therapeutic agents or research tools.
Collapse
Affiliation(s)
- T. A. Reeks
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072 Australia
| | - B. G. Fry
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St Lucia, QLD 4072 Australia
| | - P. F. Alewood
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072 Australia
| |
Collapse
|
72
|
Kim T, Folcher M, Charpin-El Hamri G, Fussenegger M. A synthetic cGMP-sensitive gene switch providing Viagra(®)-controlled gene expression in mammalian cells and mice. Metab Eng 2015; 29:169-179. [PMID: 25843350 DOI: 10.1016/j.ymben.2015.03.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 03/11/2015] [Accepted: 03/25/2015] [Indexed: 01/20/2023]
Abstract
Cyclic guanosine monophosphate (cGMP) is a universal second messenger that is synthesized from guanosine triphosphate (GTP) by guanylyl cyclases (GCs) and hydrolyzed into guanosine monophosphate (GMP) by phosphodiesterases (PDEs). Small-molecule drugs that induce high cGMP levels in specialized tissues by boosting GC activity or inhibiting PDE activity have become the predominant treatment strategy for a wide range of medical conditions, including congestive heart failure, pulmonary hypertension, atherosclerosis-based claudication and erectile dysfunction. By fusing the cGMP receptor protein (CRP) of Rhodospirillum centenum to the Herpes simplex-derived transactivation domain VP16, we created a novel synthetic mammalian cGMP-sensing transcription factor (GTA) that activates synthetic promoters (PGTA) containing newly identified GTA-specific operator sites in a concentration-dependent manner. In cell lines expressing endogenous natriuretic peptide receptor A (NPR-A) (HeLa), GTA/PGTA-driven transgene expression was induced by B-type natriuretic peptide (BNP; Nesiritide(®)) in a concentration-dependent manner, which activated NPR-A׳s intracellular GC domain and triggered a corresponding cGMP surge. Ectopic expression of NPR-A in NPR-A-negative cell lines (HEK-293T) produced high cGMP levels and mediated maximum GTA/PGTA-driven transgene expression, which was suppressed by co-expression of PDEs (PDE-3A, PDE-5A and PDE-9A) and was re-triggered by the corresponding PDE inhibitor drugs (Pletal(®), Perfan(®), Primacor(®) (PDE-3A), Viagra(®), Levitra(®), Cialis(®) (PDE-5A) and BAY73-6691 (PDE-9A)). Mice implanted with microencapsulated designer cells co-expressing the GTA/PGTA device with NPR-A and PDE-5A showed control of blood SEAP levels through administration of sildenafil (Viagra(®)). Designer cells engineered for PDE inhibitor-modulated transgene expression may provide a cell-based PDE-targeting drug discovery platform and enable drug-adjusted gene- and cell-based therapies.
Collapse
Affiliation(s)
- Taeuk Kim
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Marc Folcher
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | | | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland; Faculty of Science, University of Basel, Mattenstrasse 26, CH-4058 Basel, Switzerland.
| |
Collapse
|
73
|
Abstract
Obesity is the result of disequilibrium between energy intake and energy expenditure (EE). Successful long-term weight loss is difficult to achieve with current strategies for the correction of this caloric imbalance. Non-shivering thermogenesis (NST) in brown adipose tissue (BAT) is a possible therapeutic target for the prevention and treatment of obesity and associated metabolic diseases. In recent years, more knowledge about the function and stimulation of bat has been obtained. The sympathetic nervous system (SNS) is currently seen as the main effector for brown fat function. Also, interplay between the thyroid axis and SNS plays an important role in BAT thermogenesis. Almost daily new pathways for the induction of BAT thermogenesis and 'browning' of white adipose tissue (WAT) are identified. Especially the activation of BAT via endogenous pathways has received strong scientific attention. Here we will discuss the relevance of several pathways in activating BAT and their implications for the treatment of obesity. In this review we will focus on the discussion of the most promising endocrine and paracrine pathways to stimulate BAT, by factors and pathways that naturally occur in the human body.
Collapse
Affiliation(s)
- Evie Broeders
- Department of Human Biology, NUTRIM - School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre , Maastricht , the Netherlands
| | | | | |
Collapse
|
74
|
Abstract
Brown adipose tissue (BAT) is the site of sympathetically activated adaptive thermogenesis during cold exposure and after hyperphagia, thereby controlling whole-body energy expenditure (EE) and body fat. BAT thermogenesis is primarily dependent on the energy-dissipating activity of uncoupling protein 1 (UCP1). There are two types of UCP1-expressing adipocyte, classical brown and beige/brite adipocytes. Recent radionuclide studies have demonstrated the existence of metabolically active BAT composed of mainly beige/brite adipocytes in adult humans. Human BAT is activated by acute cold exposure, being positively correlated to cold-induced increases in EE. The inverse relationship between the BAT activity and body fatness suggests that BAT, because of its energy-dissipating activity, is protective against body fat accumulation. In fact, either repeated cold exposure or daily ingestion of some food ingredients acting on transient receptor potential channels recruited BAT in association with increased EE and decreased body fat. Moreover, possible contribution of BAT to glucose tolerance has been suggested. In addition to the sympathetic nervous system, some endocrine factors also have potential for activation/recruitment of BAT. Thus, BAT is a promising therapeutic target for combating human obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Takeshi Yoneshiro
- Department of Anatomy, Hokkaido University Graduate School of Medicine , Sapporo , Japan
| | | |
Collapse
|
75
|
Furuhashi M, Saitoh S, Shimamoto K, Miura T. Fatty Acid-Binding Protein 4 (FABP4): Pathophysiological Insights and Potent Clinical Biomarker of Metabolic and Cardiovascular Diseases. CLINICAL MEDICINE INSIGHTS-CARDIOLOGY 2015; 8:23-33. [PMID: 25674026 PMCID: PMC4315049 DOI: 10.4137/cmc.s17067] [Citation(s) in RCA: 205] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/16/2014] [Accepted: 12/16/2014] [Indexed: 12/13/2022]
Abstract
Over the past decade, evidences of an integration of metabolic and inflammatory pathways, referred to as metaflammation in several aspects of metabolic syndrome, have been accumulating. Fatty acid-binding protein 4 (FABP4), also known as adipocyte FABP (A-FABP) or aP2, is mainly expressed in adipocytes and macrophages and plays an important role in the development of insulin resistance and atherosclerosis in relation to metaflammation. Despite lack of a typical secretory signal peptide, FABP4 has been shown to be released from adipocytes in a non-classical pathway associated with lipolysis, possibly acting as an adipokine. Elevation of circulating FABP4 levels is associated with obesity, insulin resistance, diabetes mellitus, hypertension, cardiac dysfunction, atherosclerosis, and cardiovascular events. Furthermore, ectopic expression and function of FABP4 in several types of cells and tissues have been recently demonstrated. Here, we discuss both the significant role of FABP4 in pathophysiological insights and its usefulness as a biomarker of metabolic and cardiovascular diseases.
Collapse
Affiliation(s)
- Masato Furuhashi
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Shigeyuki Saitoh
- Department of Nursing, Division of Medical and Behavioral Subjects, Sapporo Medical University School of Health Sciences, Sapporo, Japan
| | | | - Tetsuji Miura
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
76
|
Mita T, Furuhashi M, Hiramitsu S, Ishii J, Hoshina K, Ishimura S, Fuseya T, Watanabe Y, Tanaka M, Ohno K, Akasaka H, Ohnishi H, Yoshida H, Saitoh S, Shimamoto K, Miura T. FABP4 is secreted from adipocytes by adenyl cyclase-PKA- and guanylyl cyclase-PKG-dependent lipolytic mechanisms. Obesity (Silver Spring) 2015; 23:359-67. [PMID: 25521833 DOI: 10.1002/oby.20954] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 10/05/2014] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Fatty acid-binding protein 4 (FABP4) is expressed in adipocytes, and elevated plasma FABP4 level is associated with obesity-mediated metabolic phenotype. Postprandial regulation and secretory signaling of FABP4 has been investigated. METHODS Time courses of FABP4 levels were examined during an oral glucose tolerance test (OGTT; n=53) or a high-fat test meal eating (n=35). Effects of activators and inhibitors of adenyl cyclase (AC)-protein kinase A (PKA) signaling and guanylyl cyclase (GC)-protein kinase G (PKG) signaling on FABP4 secretion from mouse 3T3-L1 adipocytes were investigated. RESULTS FABP4 level significantly declined after the OGTT or a high-fat meal eating, while insulin level was increased. Treatment with low and high glucose concentration or palmitate for 2 h did not affect FABP4 secretion from 3T3-L1 adipocytes. FABP4 secretion was increased by stimulation of lipolysis using isoproterenol, a β3 -adrenoceptor agonist (CL316243), forskolin, dibutyryl-cAMP and atrial natriuretic peptide, and the induced FABP4 secretion was suppressed by insulin or an inhibitor of PKA (H-89), PKG (KT5823) or hormone sensitive lipase (CAY10499). CONCLUSIONS FABP4 is secreted from adipocytes in association with lipolysis regulated by AC-PKA- and GC-PKG-mediated signal pathways. Plasma FABP4 level declines postprandially, and suppression of FABP4 secretion by insulin-induced anti-lipolytic signaling may be involved in this decline in FABP4 level.
Collapse
Affiliation(s)
- Tomohiro Mita
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, 060-8543, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Shi Z, Fu F, Yu L, Xing W, Su F, Liang X, Tie R, Ji L, Zhu M, Yu J, Zhang H. Vasonatrin peptide attenuates myocardial ischemia-reperfusion injury in diabetic rats and underlying mechanisms. Am J Physiol Heart Circ Physiol 2014; 308:H281-90. [PMID: 25485902 DOI: 10.1152/ajpheart.00666.2014] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Diabetes mellitus increases morbidity/mortality of ischemic heart disease. Although atrial natriuretic peptide and C-type natriuretic peptide reduce the myocardial ischemia-reperfusion damage in nondiabetic rats, whether vasonatrin peptide (VNP), the artificial synthetic chimera of atrial natriuretic peptide and C-type natriuretic peptide, confers cardioprotective effects against ischemia-reperfusion injury, especially in diabetic patients, is still unclear. This study was designed to investigate the effects of VNP on ischemia-reperfusion injury in diabetic rats and to further elucidate its mechanisms. The high-fat diet-fed streptozotocin-induced diabetic Sprague-Dawley rats were subjected to ischemia-reperfusion operation. VNP treatment (100 μg/kg iv, 10 min before reperfusion) significantly improved the instantaneous first derivation of left ventricle pressure (±LV dP/dtmax) and LV systolic pressure and reduced LV end-diastolic pressure, apoptosis index, caspase-3 activity, plasma creatine kinase (CK), and lactate dehydrogenase (LDH) activities. Moreover, VNP inhibited endoplasmic reticulum (ER) stress by suppressing glucose-regulated protein 78 (GRP78) and C/EBP homologous protein (CHOP). These effects were mimicked by 8-bromine-cyclic guanosinemonophosphate (8-Br-cGMP), a cGMP analog, whereas they were inhibited by KT-5823, the selective inhibitor of PKG. In addition, pretreatment with tauroursodeoxycholic acid (TUDCA), a specific inhibitor of ER stress, could not further promote the VNP's cardioprotective effect in diabetic rats. In vitro H9c2 cardiomyocytes were subjected to hypoxia/reoxygenation and incubated with or without VNP (10(-8) mol/l). Gene knockdown of PKG1α with siRNA blunted VNP inhibition of ER stress and apoptosis, while overexpression of PKG1α resulted in significant decreased ER stress and apoptosis. VNP protects the diabetic heart against ischemia-reperfusion injury by inhibiting ER stress via the cGMP-PKG signaling pathway. These results suggest that VNP may have potential therapeutic value for the diabetic patients with ischemic heart disease.
Collapse
Affiliation(s)
- Zhenwei Shi
- Experiment Teaching Center, Fourth Military Medical University, Xi'an, China
| | - Feng Fu
- Department of Physiology, Fourth Military Medical University, Xi'an, China
| | - Liming Yu
- Experiment Teaching Center, Fourth Military Medical University, Xi'an, China
| | - Wenjuan Xing
- Department of Physiology, Fourth Military Medical University, Xi'an, China
| | - Feifei Su
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China; and
| | - Xiangyan Liang
- Experiment Teaching Center, Fourth Military Medical University, Xi'an, China
| | - Ru Tie
- Experiment Teaching Center, Fourth Military Medical University, Xi'an, China
| | - Lele Ji
- Experiment Teaching Center, Fourth Military Medical University, Xi'an, China
| | - Miaozhang Zhu
- Department of Physiology, Fourth Military Medical University, Xi'an, China
| | - Jun Yu
- Experimental Center, The Second Affiliated Hospital, School of Medicine, Xi'an Medical University, Xi'an, China
| | - Haifeng Zhang
- Experiment Teaching Center, Fourth Military Medical University, Xi'an, China;
| |
Collapse
|
78
|
Jin X, Zhang Y, Li X, Zhang J, Xu D. C-type natriuretic peptide ameliorates ischemia/reperfusion-induced acute kidney injury by inhibiting apoptosis and oxidative stress in rats. Life Sci 2014; 117:40-45. [PMID: 25283078 DOI: 10.1016/j.lfs.2014.09.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 08/30/2014] [Accepted: 09/20/2014] [Indexed: 10/24/2022]
Abstract
AIMS Although atrial natriuretic peptide has been shown to attenuate ischemia-reperfusion (IR)-induced kidney injury, the effect of natriuretic peptide receptor (NPR)-B activation on IR-induced acute kidney injury is not well documented. The purpose of the present study was to identify the effect of C-type natriuretic peptide (CNP), a selective activator of NPR-B, on the IR-induced acute kidney injury and its mechanisms involved. MAIN METHODS Unilaterally nephrectomized rats were insulted by IR in their remnant kidney, and they were randomly divided into three groups: sham, vehicle+IR, and CNP+IR groups. CNP (0.2μg/kg/min) was administered intravenously at the start of a 45-min renal ischemia for 2h. Rats were then killed 24h after I/R, and the blood and tissue samples were collected to assess renal function, histology, TUNEL assay, and Western blot analysis of kidney Bax and Bcl-2 expressions. KEY FINDINGS The levels of blood urea nitrogen and serum creatinine were significantly increased in rats after IR compared with vehicle-treated rats. IR elevated apoptosis, Bcl-2/Bax ratio, TUNEL positivity, oxidative stress parameters, malondialdehyde concentration, and superoxide dismutase activity. IR also induced epithelial desquamation of the proximal tubules and glomerular shrinkage. CNP significantly attenuated the IR-induced increase in BUN and serum creatinine. Furthermore, CNP restored the suppressed renal cyclic guanosine 3' 5'-monophosphate levels caused by IR insult. SIGNIFICANCE Study findings suggest that CNP could ameliorate IR-induced acute kidney injury through inhibition of apoptotic and oxidative stress pathways, possibly through NPR-B-cGMP signaling.
Collapse
Affiliation(s)
- Xiunan Jin
- Department of Urology, Affiliated Hospital of Yanbian University, Yanji (133000), Jilin Province, China
| | - Youchen Zhang
- Department of Anatomy, Medical College of Yanbian University, Yanji (133000), Jilin Province, China
| | - Xiangdan Li
- Department of Anatomy, Medical College of Yanbian University, Yanji (133000), Jilin Province, China
| | - Jun Zhang
- Department of Anatomy, Medical College of Yanbian University, Yanji (133000), Jilin Province, China
| | - Dongyuan Xu
- Department of Anatomy, Medical College of Yanbian University, Yanji (133000), Jilin Province, China.
| |
Collapse
|
79
|
Gruden G, Landi A, Bruno G. Natriuretic peptides, heart, and adipose tissue: new findings and future developments for diabetes research. Diabetes Care 2014; 37:2899-908. [PMID: 25342830 DOI: 10.2337/dc14-0669] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Natriuretic peptides (NPs) play a key role in cardiovascular homeostasis, counteracting the deleterious effects of volume and pressure overload and activating antibrotic and antihypertrophic pathways in the heart. N-terminal B-type NP (NT-proBNP) also is a promising biomarker of global cardiovascular risk in the general population, and there is increasing interest on its potential use in diabetic patients for screening of silent cardiovascular abnormalities, cardiovascular risk stratification, and guided intervention. Recently, both atrial NP (ANP) and B-type NP (BNP) have emerged as key mediators in the control of metabolic processes including the heart in the network of organs that regulate energy usage and metabolism. Epidemiological studies have shown that ANP and BNP are reduced in people with obesity, insulin resistance, and diabetes, and this deficiency may contribute to enhance their global cardiovascular risk. Moreover, ANP and BNP have receptors in the adipose tissue, enhance lipolysis and energy expenditure, and modulate adipokine release and food intake. Therefore, low ANP and BNP levels may be not only a consequence but also a cause of obesity, and recent prospective studies have shown that low levels of NT-proBNP and midregional proANP (MR-proANP) are a strong predictor of type 2 diabetes onset. Whether ANP and BNP supplementation may result in either cardiovascular or metabolic benefits in humans remains, however, to be established.
Collapse
Affiliation(s)
- Gabriella Gruden
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Andrea Landi
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Graziella Bruno
- Department of Medical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
80
|
MicroRNA Functions in Brite/Brown Fat - Novel Perspectives towards Anti-Obesity Strategies. Comput Struct Biotechnol J 2014; 11:101-5. [PMID: 25408843 PMCID: PMC4232565 DOI: 10.1016/j.csbj.2014.09.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 09/10/2014] [Accepted: 09/11/2014] [Indexed: 12/19/2022] Open
Abstract
Current anti-obesity strategies are aiming at restricting energy uptake, but still, obesity treatment is far from being satisfactory. The discovery of active brown adipose tissue (BAT) in adult humans currently opens new avenues to combat obesity and follow-up complications as it tackles the other site of the energy balance: energy expenditure via non-shivering thermogenesis. This process of energy dissipation in the adipose tissue is tightly controlled, and the elucidation of its regulatory network is a key plank for therapeutic applications. MicroRNAs (miRNAs) belong to a novel class of regulatory determinants which are small non-coding RNAs with vital roles in regulating gene expression that also play a role in many human diseases. In this review we summarize miRNAs which have been shown to govern thermogenic, i.e. brite or brown, adipocyte recruitment and physiology. Notably, most miRNAs in this context have so far been characterized solely in mice, revealing a great demand for more human studies. As in the context of other diseases, RNA-based therapeutics have meanwhile entered clinical trials, further exploring the functions of miRNAs in brown and white adipose tissues could result in novel therapeutic approaches to treat obesity and its follow-up complications.
Collapse
|
81
|
Leiss V, Illison J, Domes K, Hofmann F, Lukowski R. Expression of cGMP-dependent protein kinase type I in mature white adipocytes. Biochem Biophys Res Commun 2014; 452:151-6. [DOI: 10.1016/j.bbrc.2014.08.071] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Accepted: 08/15/2014] [Indexed: 01/01/2023]
|
82
|
The increasing impact of a higher body mass index on the decrease in plasma B-type natriuretic peptide levels. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.ijcme.2014.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
83
|
Pfeifer A, Hoffmann LS. Brown, beige, and white: the new color code of fat and its pharmacological implications. Annu Rev Pharmacol Toxicol 2014; 55:207-27. [PMID: 25149919 DOI: 10.1146/annurev-pharmtox-010814-124346] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Brown adipose tissue (BAT) was previously regarded as a special type of fat relevant only for defending hibernating animals and newborns against a cold environment. Recently, BAT has received considerable attention following its (re)discovery in humans. Using glucose tracers, multiple laboratories independently found metabolically active BAT in adults. The enormous metabolic powers of BAT in animal models could make it an attractive target for antiobesity therapies in humans. Here, we review the present knowledge on the role of BAT in energy homeostasis and metabolism, focusing on signaling pathways and potential targets for novel therapeutics. We also shine light on ongoing debates, including those about the true color of brown fat in adults, as well as on the requirements for translation of basic research on BAT into clinical medicine.
Collapse
Affiliation(s)
- Alexander Pfeifer
- Institute of Pharmacology and Toxicology, Biomedical Center, University of Bonn, 53105 Bonn, Germany;
| | | |
Collapse
|
84
|
Volpe M. Natriuretic peptides and cardio-renal disease. Int J Cardiol 2014; 176:630-9. [PMID: 25213572 DOI: 10.1016/j.ijcard.2014.08.032] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 08/03/2014] [Accepted: 08/05/2014] [Indexed: 12/21/2022]
Abstract
The natriuretic peptide (NP) system is an important endocrine, autocrine and paracrine system, consisting of a family of peptides which provide cardiac, renal and vascular effects that, through their beneficial physiological actions, play a key role in maintaining overall cardiovascular health. Traditionally, the pathophysiological origins of cardio-renal disease have been viewed as the domain of the renin-angiotensin-aldosterone system (RAAS) and the sympathetic nervous system (SNS), with inappropriate activation of both systems leading to deleterious changes in cardio-renal function and structure. Therapies designed to suppress the RAAS and the SNS have been routinely employed to address the consequences of cardio-renal disease. However, it is now becoming increasingly apparent that enhancing the beneficial physiological effects of the NP system may represent an attractive alternative therapeutic approach to counter the pathophysiological effects of disease. In particular, innovative therapeutic strategies aimed at enhancing the physiological benefits afforded by NPs while simultaneously suppressing the RAAS are generating increasing interest as potential treatment options for the management of cardio-renal disease.
Collapse
Affiliation(s)
- Massimo Volpe
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, University of Rome Sapienza, Rome, Italy; IRCCS Neuromed, Pozzilli, Italy.
| |
Collapse
|
85
|
Heinonen I, Luotolahti M, Vuolteenaho O, Nikinmaa M, Saraste A, Hartiala J, Koskenvuo J, Knuuti J, Arjamaa O. Circulating N-terminal brain natriuretic peptide and cardiac function in response to acute systemic hypoxia in healthy humans. J Transl Med 2014; 12:189. [PMID: 24989366 PMCID: PMC4086279 DOI: 10.1186/1479-5876-12-189] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 06/09/2014] [Indexed: 11/22/2022] Open
Abstract
Background As it remains unclear whether hypoxia of cardiomyocytes could trigger the release of brain natriuretic peptide (BNP) in humans, we investigated whether breathing normobaric hypoxic gas mixture increases the circulating NT-proBNP in healthy male subjects. Methods Ten healthy young men (age 29 ± 5 yrs, BMI 24.7 ± 2.8 kg/m2) breathed normobaric hypoxic gas mixture (11% O2/89% N2) for one hour. Venous blood samples were obtained immediately before, during, and 2 and 24 hours after hypoxic exposure. Cardiac function and flow velocity profile in the middle left anterior descending coronary artery (LAD) were measured by Doppler echocardiography. Results Arterial oxygen saturation decreased steadily from baseline value of 99 ± 1% after the initiation hypoxia challenge and reached steady-state level of 73 ± 6% within 20–30 minutes. Cardiac output increased from 6.0 ± 1.2 to 8.1 ± 1.6 L/min and ejection fraction from 67 ± 4% to 75 ± 6% (both p < 0.001). Peak diastolic flow velocity in the LAD increased from 0.16 ± 0.04 to 0.28 ± 0.07 m/s, while its diameter remained unchanged. In the whole study group, NT-proBNP was similar to baseline (60 ± 32 pmol/ml) at all time points. However, at 24 h, concentration of NT-proBNP was higher (34 ± 18%) in five subjects and lower (17 ± 17%), p = 0.002 between the groups) in five subjects than at baseline. Conclusion In conclusion, there is no consistent increase in circulating NT-proBNP in response to breathing severely hypoxic normobaric gas mixture in healthy humans, a possible reason being that the oxygen flux to cardiac myocytes does not decrease because of increased coronary blood flow. However, the divergent individual responses as well as responses in different cardiac diseases warrant further investigations.
Collapse
Affiliation(s)
- Ilkka Heinonen
- Turku PET Centre, University of Turku and Turku University Hospital, PO Box 52, FI-20521 Turku, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Emodin accentuates atrial natriuretic peptide secretion in cardiac atria. Eur J Pharmacol 2014; 735:44-51. [DOI: 10.1016/j.ejphar.2014.04.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 04/04/2014] [Accepted: 04/09/2014] [Indexed: 01/04/2023]
|
87
|
Abstract
In adipocytes the hydrolysis of TAG to produce fatty acids and glycerol under fasting conditions or times of elevated energy demands is tightly regulated by neuroendocrine signals, resulting in the activation of lipolytic enzymes. Among the classic regulators of lipolysis, adrenergic stimulation and the insulin-mediated control of lipid mobilisation are the best known. Initially, hormone-sensitive lipase (HSL) was thought to be the rate-limiting enzyme of the first lipolytic step, while we now know that adipocyte TAG lipase is the key enzyme for lipolysis initiation. Pivotal, previously unsuspected components have also been identified at the protective interface of the lipid droplet surface and in the signalling pathways that control lipolysis. Perilipin, comparative gene identification-58 (CGI-58) and other proteins of the lipid droplet surface are currently known to be key regulators of the lipolytic machinery, protecting or exposing the TAG core of the droplet to lipases. The neuroendocrine control of lipolysis is prototypically exerted by catecholaminergic stimulation and insulin-induced suppression, both of which affect cyclic AMP levels and hence the protein kinase A-mediated phosphorylation of HSL and perilipin. Interestingly, in recent decades adipose tissue has been shown to secrete a large number of adipokines, which exert direct effects on lipolysis, while adipocytes reportedly express a wide range of receptors for signals involved in lipid mobilisation. Recently recognised mediators of lipolysis include some adipokines, structural membrane proteins, atrial natriuretic peptides, AMP-activated protein kinase and mitogen-activated protein kinase. Lipolysis needs to be reanalysed from the broader perspective of its specific physiological or pathological context since basal or stimulated lipolytic rates occur under diverse conditions and by different mechanisms.
Collapse
|
88
|
Bruno G, Barutta F, Landi A, Cavallo Perin P, Gruden G. The effect of age and NT-proBNP on the association of central obesity with 6-years cardiovascular mortality of middle-aged and elderly diabetic people: the population-based Casale Monferrato study. PLoS One 2014; 9:e96076. [PMID: 24788805 PMCID: PMC4006893 DOI: 10.1371/journal.pone.0096076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 04/03/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Among people with type 2 diabetes the relationship between central obesity and cardiovascular mortality has not been definitely assessed. Moreover, NT-proBNP is negatively associated with central obesity, but no study has examined their combined effect on survival. We have examined these issues in a well-characterized population-based cohort. METHODS AND FINDINGS Survival data of 2272 diabetic people recruited in 2000 who had no other chronic disease have been updated to 31 December 2006. NT-proBNP was measured in a subgroup of 1690 patients. Cox proportional hazards modeling was employed to estimate the independent associations between cardiovascular and all-cause mortality and waist circumference. Mean age was 67.9 years, 49.3% were men. Both age and NT-proBNP were negatively correlated with waist circumference (r = -0.11, p<0.001 and r = -0.07, p = 0.002). Out of 2272 subjects, 520 deaths (221 for CV mortality) occurred during a median follow-up of 5.4 years. Central obesity was not associated with CV mortality (hazard ratio, HR, adjusted for age, sex, diabetes duration, 1.14, 95% CI 0.86-1.52). NTproBNP was a negative confounder and age a strong modifier of this relationship (p for interaction<0.001): age<70 years, fully adjusted model HR = 3.52 (1.17-10.57) and age ≥70 years, HR = 0.80 (0.46-1.40). Respective HRs for all-cause mortality were 1.86 (1.03-3.32) and 0.73 (0.51-1.04). CONCLUSIONS In diabetic people aged 70 years and lower, central obesity was independently associated with increased cardiovascular mortality, independently of the negative effect of NT-proBNP. In contrast, no effect on 6-years survival was evident in diabetic people who have yet survived up to 70 years.
Collapse
Affiliation(s)
- Graziella Bruno
- Dept. of Medical Sciences, University of Turin, Turin, Italy
- * E-mail:
| | | | - Andrea Landi
- Dept. of Medical Sciences, University of Turin, Turin, Italy
| | | | | |
Collapse
|
89
|
Arner P, Langin D. Lipolysis in lipid turnover, cancer cachexia, and obesity-induced insulin resistance. Trends Endocrinol Metab 2014; 25:255-62. [PMID: 24731595 DOI: 10.1016/j.tem.2014.03.002] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 02/19/2014] [Accepted: 03/04/2014] [Indexed: 12/14/2022]
Abstract
Triglycerides in adipose tissue are rapidly mobilized during times of energy needs via lipolysis, a catabolic process that plays important role in whole body triglyceride turnover. Lipolysis is regulated through cell surface receptors via neurotransmitters, hormones, and paracrine factors that activate various intracellular pathways. These pathways converge on the lipid droplet, the site of action of lipases and cofactors. Fat cell lipolysis is also involved in the pathogenesis of metabolic disorders, and recent human studies have underscored its role in disease states such as cancer cachexia and obesity-induced insulin resistance. We highlight here topics and findings with physiological and clinical relevance, namely lipid turnover in human fat cells and the role of lipolysis in cancer cachexia and obesity-induced insulin resistance.
Collapse
Affiliation(s)
- Peter Arner
- Karolinska Institutet, Department of Medicine at Karolinska University Hospital, 141 86 Stockholm, Sweden.
| | - Dominique Langin
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche (UMR) 1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, 31432 Toulouse, France; University of Toulouse, UMR 1048, Paul Sabatier University, 31432 Toulouse, France; Toulouse University Hospitals, Department of Clinical Biochemistry, 31059 Toulouse, France
| |
Collapse
|
90
|
Abstract
Almost 20 years ago, the protein encoded by the ob locus in mice was identified as an adipocyte-secreted hormone, now termed leptin, which functions as a peripheral signal to communicate the organism's energy reserve--and thereby protects against starvation due to insufficient caloric resources. Additional peripheral factors have since been identified that coordinate interorgan crosstalk to manage energy resources. The heart is included in this network through its regulated release of natriuretic peptides A and B--cardiac hormones originally identified as important in blood pressure control. Emerging evidence that natriuretic peptide receptors are expressed in adipose tissue, and that circulating levels of these peptides are decreased in animals and humans with obesity, could imply that natriuretic peptides are also involved in the regulation of energy metabolism. The natriuretic peptides stimulate triglyceride lipolysis in adipocytes, a process also regulated by the sympathetic nervous system. In addition, these two pathways promote uncoupling of mitochondrial respiration and thermogenesis in brown adipocytes. This Review focuses on the roles of the natriuretic peptides and the sympathetic nervous system in regulating adipocyte metabolism. The potential for manipulating the natriuretic peptide pathway to increase energy expenditure in obesity and manage the complications of cardiometabolic disease is also discussed.
Collapse
Affiliation(s)
- Sheila Collins
- Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute, 6400 Sanger Road, Orlando, FL 32827, USA
| |
Collapse
|
91
|
Circulating Cardiac Biomarkers and Outcome. Resuscitation 2014. [DOI: 10.1007/978-88-470-5507-0_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
92
|
Abstract
PURPOSE OF REVIEW Cardiac natriuretic peptides have emerged as potent metabolic hormones during the past decade. We here discuss recent work highlighting the potential importance of these hormones in metabolic physiology and diseases. RECENT FINDINGS Natriuretic peptides signal through a cyclic guanosine monophosphate pathway to convey their biological effects at the cell level. Similarly to cyclic adenosine monophosphate, activation of cyclic guanosine monophosphate signaling induces a browning of white fat and thermogenesis. Natriuretic peptides also enhance oxidative capacity and fat oxidation in skeletal muscle of mice and humans. The molecular mechanism involves an upregulation of mitochondrial fat oxidative capacity and respiration. This may be particularly relevant to relay the physiological adaptations of chronic exercise. Population-based studies indicate that circulating natriuretic peptides are lowered in obesity and predict type 2 diabetes. Recent work also directly link natriuretic peptides with type 2 diabetes through a gut-heart axis. SUMMARY Natriuretic peptides exhibit a wide range of biological actions to control metabolic homeostasis. Natriuretic peptides deficiency in obesity may trigger metabolic dysfunction and lead to type 2 diabetes. Increasing circulating natriuretic peptides level and tissue signaling may help to fight against metabolic complications of obesity.
Collapse
Affiliation(s)
- Cedric Moro
- aInserm, UMR1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases (I2MC) bUMR1048, Paul Sabatier University, Toulouse, France
| |
Collapse
|
93
|
Karner-Rezek K, Knechtle B, Fenzl M, Gredig J, Rosemann T. Does continuous endurance exercise in water elicit a higher release of ANP and BNP and a higher plasma concentration of FFAs in pre-obese and obese men than high intensity intermittent endurance exercise? - study protocol for a randomized controlled trial. Trials 2013; 14:328. [PMID: 24112444 PMCID: PMC3852003 DOI: 10.1186/1745-6215-14-328] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Accepted: 10/01/2013] [Indexed: 11/26/2022] Open
Abstract
Background Atrial natriuretic peptides (ANP) and Brain natriuretic peptides (BNP) stimulate fat cell plasma membrane receptors. They are potent lipolytic agents on isolated fat cells from subcutaneous adipose tissue. The physiological effects of continuous endurance exercise on ANP release and plasma free fatty acids (FFA) concentrations have been well described. The enhancement of fat metabolism using high intensity intermittent exercise protocols has been assessed in more recent investigations. The combined effects of endurance exercise and water immersion on ANP and FFA plasma concentration and the magnitude of excess post-exercise oxygen consumption (EPOC) might be further enhanced by choosing the most effective exercise protocol. Exercise modalities may play a significant role in the future prevention and treatment of obesity. Methods/design The two testing trials will be performed according to a randomized and cross-over design. Twenty healthy sedentary pre-obese and obese class-1 men will be scrutinized with regard to their metabolic responses to continuous exercise in water and to high intensity endurance exercise in water. Both trials will be matched for energy expenditure. After preliminary testing, the tests will be conducted as repeated measurements. The two different exercise protocols will be compared. The aims of the study are to investigate (1) whether continuous endurance exercise or high intensity intermittent endurance exercise in water elicits both a higher release of ANP and BNP and a higher plasma concentration of glycerol and (2) to determine whether continuous endurance exercise in water or a high intensity intermittent endurance exercise in water would lead to a more pronounced short term (two hours) EPOC effect. Discussion If our hypothesis would be confirmed, the most effective exercise protocol based on the combined effects of high intensity endurance exercise and water immersion on ANP and BNP release and glycerol plasma concentrations can be identified. Moreover, the magnitude of the EPOC effect can be augmented. Our study would provide a major contribution for creating optimized exercise modalities in the prevention and treatment of obesity. Trial registration Current controlled trials, ISRCTN95488515
Collapse
Affiliation(s)
- Klaus Karner-Rezek
- Institute of General Practice and for Health Services Research, University of Zurich, Zurich, Switzerland.
| | | | | | | | | |
Collapse
|
94
|
Moro C. Contrôle du métabolisme énergétique par les peptides natriurétiques. Med Sci (Paris) 2013; 29:252-4. [DOI: 10.1051/medsci/2013293008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
95
|
Langenickel TH, Dole WP. Angiotensin receptor-neprilysin inhibition with LCZ696: a novel approach for the treatment of heart failure. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.ddstr.2013.11.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|