51
|
Affiliation(s)
- Jürg Biber
- Institute of Physiology and Zurich Center for Integrative Human Physiology, University of Zurich, CH-8057 Zurich, Switzerland; , ,
| | - Nati Hernando
- Institute of Physiology and Zurich Center for Integrative Human Physiology, University of Zurich, CH-8057 Zurich, Switzerland; , ,
| | - Ian Forster
- Institute of Physiology and Zurich Center for Integrative Human Physiology, University of Zurich, CH-8057 Zurich, Switzerland; , ,
| |
Collapse
|
52
|
Zhifeng X, Rejun F, Longchang H, Wenqing S. Molecular cloning and functional characterization of swine sodium dependent phosphate cotransporter type II b (NaPi-IIb) gene. Mol Biol Rep 2012; 39:10557-64. [PMID: 23065201 DOI: 10.1007/s11033-012-1941-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 10/01/2012] [Indexed: 11/29/2022]
Abstract
A sodium-dependent phosphate transporter gene, NaPi-IIb, was isolated from swine small intestine using cDNA library screening method. Sequencing analysis revealed that the NaPi-IIb cDNA sequences was 2,016 bp in length and encoded an open-reading frame consisting of 671 amino acids. The cDNA showed 83.1 % sequences identity to the human NaPi-IIb and 78.7 % sequences identity to the chicken NaPi-IIb. Prediction of membrane spanning domains based on the hydrophilic and hydrophobic properties of the amino acids suggested that a putative protein had nine transmembrane domains, with both the NH(2) and COOH terminal being intracellular. By northern blot, a ~4.2 kb transcript was found to be abundantly expressed in mall intestine, lung, ovary, mammary glands, liver, kidney, salivary glands, placenta and thymus. Microinjection of swine NaPi-IIb cRNA into Xenopus oocytes demonstrated that the NaPi-IIb showed sodium-dependent Pi cotransport activity, and an approximate 31-fold increase of Pi uptake was seen in cRNA injected oocytes. The swine NaPi-IIb transporter expressed in Xenopus oocytes had a Km for Pi of ~79.35 ± 7.2 μM. Furthermore, the pH dependency characterization of swine NaPi-IIb transporter showed activation at extracellular alkaline-pH.
Collapse
Affiliation(s)
- Xiang Zhifeng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, Hunan Province, China.
| | | | | | | |
Collapse
|
53
|
Roles of major facilitator superfamily transporters in phosphate response in Drosophila. PLoS One 2012; 7:e31730. [PMID: 22359624 PMCID: PMC3280997 DOI: 10.1371/journal.pone.0031730] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 01/11/2012] [Indexed: 12/23/2022] Open
Abstract
The major facilitator superfamily (MFS) transporter Pho84 and the type III transporter Pho89 are responsible for metabolic effects of inorganic phosphate in yeast. While the Pho89 ortholog Pit1 was also shown to be involved in phosphate-activated MAPK in mammalian cells, it is currently unknown, whether orthologs of Pho84 have a role in phosphate-sensing in metazoan species. We show here that the activation of MAPK by phosphate observed in mammals is conserved in Drosophila cells, and used this assay to characterize the roles of putative phosphate transporters. Surprisingly, while we found that RNAi-mediated knockdown of the fly Pho89 ortholog dPit had little effect on the activation of MAPK in Drosophila S2R+ cells by phosphate, two Pho84/SLC17A1–9 MFS orthologs (MFS10 and MFS13) specifically inhibited this response. Further, using a Xenopus oocyte assay, we show that MSF13 mediates uptake of [33P]-orthophosphate in a sodium-dependent fashion. Consistent with a role in phosphate physiology, MSF13 is expressed highest in the Drosophila crop, midgut, Malpighian tubule, and hindgut. Altogether, our findings provide the first evidence that Pho84 orthologs mediate cellular effects of phosphate in metazoan cells. Finally, while phosphate is essential for Drosophila larval development, loss of MFS13 activity is compatible with viability indicating redundancy at the levels of the transporters.
Collapse
|
54
|
Donate-Correa J, Muros-de-Fuentes M, Mora-Fernández C, Navarro-González JF. FGF23/Klotho axis: phosphorus, mineral metabolism and beyond. Cytokine Growth Factor Rev 2012; 23:37-46. [PMID: 22360923 DOI: 10.1016/j.cytogfr.2012.01.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 01/26/2012] [Indexed: 01/05/2023]
Abstract
In this work we summarizes the steps that allowed the identification of the fibroblast growth factor (FGF) 23/Klotho axis as the principal regulator of phosphate homeostasis, exerting actions on intestine, bone, parathyroid glands, and kidney. We review the not fully understood mechanisms of action of this axis on the regulation of mineral homeostasis and, in addition, we discuss its potential role in the pathophysiology of chronic kidney disease and the associated complications. We also reflect the actual tendency to consider the components of this system as better predictors of the pathological conditions frequently associated to mineral disorders, and review some recent studies linking these components to cardiovascular disease even in population without mineral disorders. Finally, we consider the numerous processes in which Klotho is involved, including anti-ageing and mineral control processes, independently of its functions as obligated-coreceptor for FGF23.
Collapse
|
55
|
Kuwahara S, Aranami F, Segawa H, Onitsuka A, Honda N, Tominaga R, Hanabusa E, Kaneko I, Yamanaka S, Sasaki S, Ohi A, Nomura K, Tatsumi S, Kido S, Ito M, Miyamoto KI. Identification and functional analysis of a splice variant of mouse sodium-dependent phosphate transporter Npt2c. THE JOURNAL OF MEDICAL INVESTIGATION 2012; 59:116-26. [DOI: 10.2152/jmi.59.116] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Shoji Kuwahara
- Department of Molecular Nutrition, Institution of Health Biosciences, the University of Tokushima Graduate School
| | - Fumito Aranami
- Department of Molecular Nutrition, Institution of Health Biosciences, the University of Tokushima Graduate School
| | - Hiroko Segawa
- Department of Molecular Nutrition, Institution of Health Biosciences, the University of Tokushima Graduate School
| | - Akemi Onitsuka
- Department of Molecular Nutrition, Institution of Health Biosciences, the University of Tokushima Graduate School
| | - Naoko Honda
- Department of Molecular Nutrition, Institution of Health Biosciences, the University of Tokushima Graduate School
| | - Rieko Tominaga
- Department of Molecular Nutrition, Institution of Health Biosciences, the University of Tokushima Graduate School
| | - Etsuyo Hanabusa
- Department of Molecular Nutrition, Institution of Health Biosciences, the University of Tokushima Graduate School
| | - Ichiro Kaneko
- Department of Molecular Nutrition, Institution of Health Biosciences, the University of Tokushima Graduate School
| | - Setsuko Yamanaka
- Department of Molecular Nutrition, Institution of Health Biosciences, the University of Tokushima Graduate School
| | - Shohei Sasaki
- Department of Molecular Nutrition, Institution of Health Biosciences, the University of Tokushima Graduate School
| | - Akiko Ohi
- Department of Molecular Nutrition, Institution of Health Biosciences, the University of Tokushima Graduate School
| | - Kengo Nomura
- Department of Molecular Nutrition, Institution of Health Biosciences, the University of Tokushima Graduate School
| | - Sawako Tatsumi
- Department of Molecular Nutrition, Institution of Health Biosciences, the University of Tokushima Graduate School
| | - Shinsuke Kido
- Department of Molecular Nutrition, Institution of Health Biosciences, the University of Tokushima Graduate School
| | - Mikiko Ito
- Department of Molecular Nutrition, Institution of Health Biosciences, the University of Tokushima Graduate School
- University of Hyogo School of Human Science and Environment
| | - Ken-ichi Miyamoto
- Department of Molecular Nutrition, Institution of Health Biosciences, the University of Tokushima Graduate School
| |
Collapse
|
56
|
Foote AP, Lambert BD, Brady JA, Muir JP. Phosphate transporter expression in Holstein cows. J Dairy Sci 2011; 94:1913-6. [PMID: 21426981 DOI: 10.3168/jds.2010-3691] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Accepted: 01/12/2011] [Indexed: 11/19/2022]
Abstract
Phosphorus nutrition in cattle is increasingly becoming an important topic because excess dietary P is excreted in manure and can be washed into surface water, causing increased algal growth and eutrophication. However, little is known about the mechanism or regulation of P absorption in dairy cattle. Phosphorus transporters have been characterized in other species and homologous genes have been found to be expressed in bovine cell cultures. However, no other information is available regarding the active transport of phosphate in the digestive tract of cattle. The objective of this study was to determine the patterns of expression of a known phosphate transporter, NaPi-IIb, in 4 sections of the small intestine of Holstein cows. Ribonucleic acid was isolated from the duodenal, proximal jejunal, distal jejunal, and ileal mucosa of 20 Holstein cows. Relative amounts of NaPi-IIb mRNA expression were determined using real-time reverse-transcription PCR. Expression of NaPi-IIb was highest in the 2 distal sections and almost absent in the proximal sections. Expression did not differ between the 2 proximal sections or the 2 distal sections. These data suggest that a Na+-dependent secondary active P transport system is not responsible for P absorption in the proximal portion of the bovine small intestine, whereas it does contribute to the P absorbed in the distal sections of the bovine small intestine.
Collapse
Affiliation(s)
- A P Foote
- Department of Animal Sciences, Tarleton State University, Stephenville, TX 76402, USA
| | | | | | | |
Collapse
|
57
|
Bøttger P, Pedersen L. Mapping of the minimal inorganic phosphate transporting unit of human PiT2 suggests a structure universal to PiT-related proteins from all kingdoms of life. BMC BIOCHEMISTRY 2011; 12:21. [PMID: 21586110 PMCID: PMC3126765 DOI: 10.1186/1471-2091-12-21] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 05/17/2011] [Indexed: 11/10/2022]
Abstract
BACKGROUND The inorganic (Pi) phosphate transporter (PiT) family comprises known and putative Na(+)- or H(+)-dependent Pi-transporting proteins with representatives from all kingdoms. The mammalian members are placed in the outer cell membranes and suggested to supply cells with Pi to maintain house-keeping functions. Alignment of protein sequences representing PiT family members from all kingdoms reveals the presence of conserved amino acids and that bacterial phosphate permeases and putative phosphate permeases from archaea lack substantial parts of the protein sequence when compared to the mammalian PiT family members. Besides being Na(+)-dependent P(i) (NaP(i)) transporters, the mammalian PiT paralogs, PiT1 and PiT2, also are receptors for gamma-retroviruses. We have here exploited the dual-function of PiT1 and PiT2 to study the structure-function relationship of PiT proteins. RESULTS We show that the human PiT2 histidine, H(502), and the human PiT1 glutamate, E(70),--both conserved in eukaryotic PiT family members--are critical for P(i) transport function. Noticeably, human PiT2 H(502) is located in the C-terminal PiT family signature sequence, and human PiT1 E(70) is located in ProDom domains characteristic for all PiT family members.A human PiT2 truncation mutant, which consists of the predicted 10 transmembrane (TM) domain backbone without a large intracellular domain (human PiT2ΔR(254)-V(483)), was found to be a fully functional P(i) transporter. Further truncation of the human PiT2 protein by additional removal of two predicted TM domains together with the large intracellular domain created a mutant that resembles a bacterial phosphate permease and an archaeal putative phosphate permease. This human PiT2 truncation mutant (human PiT2ΔL(183)-V(483)) did also support P(i) transport albeit at very low levels. CONCLUSIONS The results suggest that the overall structure of the P(i)-transporting unit of the PiT family proteins has remained unchanged during evolution. Moreover, in combination, our studies of the gene structure of the human PiT1 and PiT2 genes (SLC20A1 and SLC20A2, respectively) and alignment of protein sequences of PiT family members from all kingdoms, along with the studies of the dual functions of the human PiT paralogs show that these proteins are excellent as models for studying the evolution of a protein's structure-function relationship.
Collapse
Affiliation(s)
- Pernille Bøttger
- Department of Molecular Biology, Aarhus University, C. F. Møllers Allé 3, Aarhus C, DK-8000, Denmark
| | | |
Collapse
|
58
|
Yee J. Phosphate enters the syzygy. Adv Chronic Kidney Dis 2011; 18:55-6. [PMID: 21406287 DOI: 10.1053/j.ackd.2011.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 02/03/2011] [Indexed: 11/11/2022]
|
59
|
Forster I, Hernando N, Sorribas V, Werner A. Phosphate transporters in renal, gastrointestinal, and other tissues. Adv Chronic Kidney Dis 2011; 18:63-76. [PMID: 21406290 DOI: 10.1053/j.ackd.2011.01.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 01/17/2011] [Accepted: 01/18/2011] [Indexed: 11/11/2022]
Abstract
Inorganic phosphate (Pi) is essential for all living organisms. Bound to organic molecules, Pi fulfills structural, metabolic, and signaling tasks. Therefore, cell growth and maintenance depends on efficient transport of Pi across cellular membranes into the intracellular space. Uptake of Pi requires energy because the substrate is transported against its electrochemical gradient. Till recently, 2 major families of physiologically relevant Pi-specific transporters have been identified: the solute carrier families Slc34 and Slc20. Interestingly, phylogenetic links can be detected between prokaryotic and eukaryotic transporters in both families. Because less complex model organisms are often instrumental in establishing paradigms for protein function in human beings, a brief assessment of Slc34 and Slc20 phylogeny is of interest.
Collapse
|
60
|
Bergwitz C, Jüppner H. Phosphate sensing. Adv Chronic Kidney Dis 2011; 18:132-44. [PMID: 21406298 PMCID: PMC3059779 DOI: 10.1053/j.ackd.2011.01.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 01/10/2011] [Accepted: 01/17/2011] [Indexed: 02/07/2023]
Abstract
Human phosphate homeostasis is regulated at the level of intestinal absorption of phosphate from the diet, release of phosphate through bone resorption, and renal phosphate excretion, and involves the actions of parathyroid hormone, 1,25-dihydroxy-vitamin D, and fibroblast growth factor 23 to maintain circulating phosphate levels within a narrow normal range, which is essential for numerous cellular functions, for the growth of tissues and for bone mineralization. Prokaryotic and single cellular eukaryotic organisms such as bacteria and yeast "sense" ambient phosphate with a multi-protein complex located in their plasma membrane, which modulates the expression of genes important for phosphate uptake and metabolism (pho pathway). Database searches based on amino acid sequence conservation alone have been unable to identify metazoan orthologs of the bacterial and yeast phosphate sensors. Thus, little is known about how human and other metazoan cells sense inorganic phosphate to regulate the effects of phosphate on cell metabolism ("metabolic" sensing) or to regulate the levels of extracellular phosphate through feedback system(s) ("endocrine" sensing). Whether the "metabolic" and the "endocrine" sensor use the same or different signal transduction cascades is unknown. This article will review the bacterial and yeast phosphate sensors, and then discuss what is currently known about the metabolic and endocrine effects of phosphate in multicellular organisms and human beings.
Collapse
Affiliation(s)
- Clemens Bergwitz
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | | |
Collapse
|
61
|
Khoshniat S, Bourgine A, Julien M, Weiss P, Guicheux J, Beck L. The emergence of phosphate as a specific signaling molecule in bone and other cell types in mammals. Cell Mol Life Sci 2011; 68:205-18. [PMID: 20848155 PMCID: PMC11114507 DOI: 10.1007/s00018-010-0527-z] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 08/02/2010] [Accepted: 08/31/2010] [Indexed: 02/07/2023]
Abstract
Although considerable advances in our understanding of the mechanisms of phosphate homeostasis and skeleton mineralization have recently been made, little is known about the initial events involving the detection of changes in the phosphate serum concentrations and the subsequent downstream regulation cascade. Recent data has strengthened a long-established hypothesis that a phosphate-sensing mechanism may be present in various organs. Such a phosphate sensor would detect changes in serum or local phosphate concentration and would inform the body, the local environment, or the individual cell. This suggests that phosphate in itself could represent a signal regulating multiple factors necessary for diverse biological processes such as bone or vascular calcification. This review summarizes findings supporting the possibility that phosphate represents a signaling molecule, particularly in bone and cartilage, but also in other tissues. The involvement of various signaling pathways (ERK1/2), transcription factors (Fra-1, Runx2) and phosphate transporters (PiT1, PiT2) is discussed.
Collapse
Affiliation(s)
- Solmaz Khoshniat
- Group STEP (Skeletal Tissue Engineering and Physiopathology), Centre for Osteoarticular and Dental Tissue Engineering (LIOAD), INSERM, U791, 44042 Nantes, France
- UFR Odontologie, Pres UNAM, 44042 Nantes, France
| | - Annabelle Bourgine
- Group STEP (Skeletal Tissue Engineering and Physiopathology), Centre for Osteoarticular and Dental Tissue Engineering (LIOAD), INSERM, U791, 44042 Nantes, France
- UFR Odontologie, Pres UNAM, 44042 Nantes, France
| | - Marion Julien
- Group STEP (Skeletal Tissue Engineering and Physiopathology), Centre for Osteoarticular and Dental Tissue Engineering (LIOAD), INSERM, U791, 44042 Nantes, France
- UFR Odontologie, Pres UNAM, 44042 Nantes, France
| | - Pierre Weiss
- Group STEP (Skeletal Tissue Engineering and Physiopathology), Centre for Osteoarticular and Dental Tissue Engineering (LIOAD), INSERM, U791, 44042 Nantes, France
- UFR Odontologie, Pres UNAM, 44042 Nantes, France
| | - Jérôme Guicheux
- Group STEP (Skeletal Tissue Engineering and Physiopathology), Centre for Osteoarticular and Dental Tissue Engineering (LIOAD), INSERM, U791, 44042 Nantes, France
- UFR Odontologie, Pres UNAM, 44042 Nantes, France
| | - Laurent Beck
- Growth and Signalling Research Center, INSERM, U845, 75015 Paris, France
- Faculté de Médecine, Centre de Recherche, INSERM U845, Université Paris Descartes, 156 Rue de Vaugirard, 75015 Paris, France
| |
Collapse
|
62
|
Guerreiro PM, Canario AVM, Power DM, Renfro JL. Piscine PTHrP regulation of calcium and phosphate transport in winter flounder renal proximal tubule primary cultures. Am J Physiol Regul Integr Comp Physiol 2010; 299:R603-11. [PMID: 20484696 DOI: 10.1152/ajpregu.00509.2009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Multiple factors control calcium (Ca(2+)) and inorganic phosphate (P(i)) transport in the fish nephron, and the recently discovered members of the piscine parathyroid hormone-like protein family are likely participants in such regulatory mechanisms. The effects of an NH(2)-terminal peptide (amino acids 1-34) of Takifugu rubripes parathyroid hormone-related protein, (1-34)PTHrP, on Ca(2+) and P(i) transport were investigated in winter flounder (Pseudopleuronectes americanus) proximal tubule cells in primary culture (fPTCs). RT-PCR performed on RNA extracted from fPTCs and from intact kidney tissue indicated that expression of PTHrP and types 1 and 3 PTH/PTHrP receptors occurred both in vivo and in vitro and that circulating levels of PTHrP measured by specific radioimmunoassay averaged 2.5 +/- 0.13 ng/ml. fPTC monolayers were mounted in Ussing chambers, and under neutral electrochemical conditions, addition of 10 nM (1-34)PTHrP to the basolateral side induced a slight increase in Ca(2+) transport rate from luminal to peritubular side, significantly stimulating net Ca(2+) reabsorption. (1-34)PTHrP also significantly increased the P(i) secretory flux, and slightly reduced P(i) reabsorption, evoking a significant increase in P(i) net secretion. This stimulatory effect was partially inhibited by bisindolylmaleimide, an inhibitor of protein kinase C. Incubation of ex vivo flounder renal tubules with (1-34)PTHrP resulted in apparent reduction of Na(+)-P(i) cotransporter type II (NaP(i)-II) protein in tubule membranes. PTHrP seems therefore to participate in the modulation of Ca(2+) and P(i) homeostasis by fish kidney.
Collapse
Affiliation(s)
- Pedro M Guerreiro
- Centre of Marine Sciences, Universidade do Algarve, 8005-139 Faro, Portugal.
| | | | | | | |
Collapse
|
63
|
Beck L, Leroy C, Salaün C, Margall-Ducos G, Desdouets C, Friedlander G. Identification of a novel function of PiT1 critical for cell proliferation and independent of its phosphate transport activity. J Biol Chem 2009; 284:31363-74. [PMID: 19726692 DOI: 10.1074/jbc.m109.053132] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
PiT1 is a Na(+)-phosphate (P(i)) cotransporter located at the plasma membrane that enables P(i) entry into the cell. Its broad tissue expression pattern has led to the idea that together with the closely related family member PiT2, PiT1 is the ubiquitous supplier of P(i) to the cell. Moreover, the role of P(i) in phosphorylation reactions, ATP production, DNA structure, and synthesis has led to the view that P(i) availability could be an important determinant of cell growth. However, these issues have not been clearly addressed to date, and the role of either P(i) or PiT proteins in cell proliferation is unknown. Using RNA interference in HeLa and HepG2 cells, we show that transient or stable PiT1 depletion markedly reduces cell proliferation, delays cell cycle, and impairs mitosis and cytokinesis. In vivo, PiT1 depletion greatly reduced tumor growth when engineered HeLa cells were injected into nude mice. We provide evidence that this effect on cell proliferation is specific to PiT1 and not shared by PiT2 and is not the consequence of impaired membrane Na(+)-P(i) transport. Moreover, we show that modulation of cell proliferation by PiT1 is independent from its transport function because the proliferation of PiT1-depleted cells can be rescued by non-transporting PiT1 mutants. PiT1 depletion leads to the phosphorylation of p38 mitogen-activated protein (MAP) kinase, whereas other MAP kinases and downstream targets of mammalian target of rapamycin (mTOR) remain unaffected. This study is the first to describe the effects of a P(i) transporter in cell proliferation, tumor growth, and cell signaling.
Collapse
Affiliation(s)
- Laurent Beck
- Growth and Signalling Research Center, INSERM, U845, F-75015 Paris.
| | | | | | | | | | | |
Collapse
|
64
|
Nabeshima YI. Discovery of alpha-Klotho unveiled new insights into calcium and phosphate homeostasis. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2009; 85:125-41. [PMID: 19282648 PMCID: PMC3524302 DOI: 10.2183/pjab.85.125] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Accepted: 01/27/2009] [Indexed: 05/27/2023]
Abstract
alpha-Klotho was first identified as the responsible gene in a mutant mouse line whose disruption results in a variety of premature aging-related phenotypes. alpha-Klotho has been shown to participate in the regulation of parathyroid hormone secretion and trans-epithelial transport of Ca(2+) in the choroid plexus and kidney. alpha-Klotho, acting as a cofactor for FGF23, is also a major regulator of vitamin D biosynthesis and phosphate reabsorption in the kidney. These suggest that alpha-Klotho is a key player that integrates a multi-step regulatory system of calcium and phosphate homeostasis. Collectively, the molecular function of alpha-Klotho reveals a new paradigm that may change current concepts in mineral homeostasis and give rise to new insights in this field.
Collapse
Affiliation(s)
- Yo-ichi Nabeshima
- Department of Pathology and Tumor Biology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| |
Collapse
|
65
|
Carlile M, Nalbant P, Preston-Fayers K, McHaffie GS, Werner A. Processing of naturally occurring sense/antisense transcripts of the vertebrate Slc34a gene into short RNAs. Physiol Genomics 2008; 34:95-100. [PMID: 18413783 DOI: 10.1152/physiolgenomics.00004.2008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Overlapping sense/antisense RNAs transcribed in opposite directions from the same genomic locus are common in vertebrates. The impact of antisense transcription on gene regulation and cell biology is largely unknown. We show that sense/antisense RNAs of an evolutionarily conserved phosphate transporter gene (Slc34a2a) are coexpressed in a short time window during embryonic development of zebrafish at 48 hours postfertilization (hpf). To address the mechanism by which coexpressed sense/antisense transcripts are processed, we injected sense/antisense RNAs in various combinations into Xenopus oocytes. In the cytoplasm RNAs were stable in whatever combination expressed. In the nucleus coinjected sense/antisense transcripts were degraded into short RNAs of approximately 23 bases within 4 h. A homologous transcript from toad or another isoform (Slc34a2b) from zebrafish failed to trigger processing. In oocytes that were primed with nuclear sense/antisense RNA coinjections, a reporter RNA was rapidly degraded. We produced evidence that the observed processing of complementary transcripts was not restricted to Xenopus oocytes, because Slc34a-related short RNAs were detected in zebrafish embryos by Northern blotting. Signals were observed at stages that showed coexpression of sense/antisense transcripts. Remarkably, strand-specific probes revealed that the orientation of short RNAs was developmentally regulated. In addition, RNA from zebrafish embryos 48 hpf was able to induce degradation of reporter constructs in Xenopus oocytes. Our findings may give important clues to understanding the physiological role of the widespread antisense transcription.
Collapse
Affiliation(s)
- Mark Carlile
- RNA Biology Group, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | | | | | | | | |
Collapse
|
66
|
Kirchner S, Muduli A, Casirola D, Prum K, Douard V, Ferraris RP. Luminal fructose inhibits rat intestinal sodium-phosphate cotransporter gene expression and phosphate uptake. Am J Clin Nutr 2008; 87:1028-38. [PMID: 18400728 PMCID: PMC2430509 DOI: 10.1093/ajcn/87.4.1028] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND While searching by microarray for sugar-responsive genes, we inadvertently discovered that sodium-phosphate cotransporter 2B (NaPi-2b) mRNA concentrations were much lower in fructose-perfused than in glucose-perfused intestines of neonatal rats. Changes in NaPi-2b mRNA abundance by sugars were accompanied by similar changes in NaPi-2b protein abundance and in rates of inorganic phosphate (Pi) uptake. OBJECTIVE We tested the hypothesis that luminal fructose regulates NaPi-2b. DESIGN We perfused into the intestine fructose, glucose, and nonmetabolizable or poorly transported glucose analogs as well as phlorizin. RESULTS NaPi-2b mRNA concentrations and Pi uptake rates in fructose-perfused intestines were approximately 30% of those in glucose and its analogs. NaPi-2b inhibition by fructose is specific because the mRNA abundance and activity of the fructose transporter GLUT5 (glucose transporter 5) increased with fructose perfusion, whereas those of other transporters were independent of the perfusate. Plasma Pi after 4 h of perfusion was independent of the perfusate, probably because normal kidneys can maintain normophosphatemia. Inhibiting glucose-6-phosphatase, another fructose-responsive gene, with tungstate or vanadate nonspecifically inhibited NaPi-2b mRNA expression and Pi uptake in both glucose- or fructose-perfused intestines. The AMP kinase (AMPK)-activator AICAR (5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside) enhanced and the fatty acid synthase-AMPK inhibitor C75 (3-carboxy-4-octyl-2-methylenebutyrolactone trans-4-carboxy-5-octyl-3-methylenebutyrolactone) prevented fructose inhibition of NaPi-2b but had no effect on expression of other transporters. NaPi-2b expression decreased markedly with age and was inhibited by fructose in all age groups. CONCLUSIONS Energy levels in enterocytes may play a role in NaPi-2b inhibition by luminal fructose. Consumption of fructose that supplies approximately 10% of caloric intake by Americans clearly affects absorption of Pi and may promote Pi homeostasis in patients with impaired renal function.
Collapse
Affiliation(s)
- Séverine Kirchner
- Department of Pharmacology and Physiology, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, NJ 07103-2714, USA
| | | | | | | | | | | |
Collapse
|
67
|
Perera T, Berna A, Scott K, Lemaitre-Guillier C, Bernier F. Proteins related to St. John's Wort p27SJ, a suppressor of HIV-1 expression, are ubiquitous in plants. PHYTOCHEMISTRY 2008; 69:865-72. [PMID: 18006028 DOI: 10.1016/j.phytochem.2007.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Revised: 09/28/2007] [Accepted: 10/01/2007] [Indexed: 05/25/2023]
Abstract
Proteins belonging to the family of DING proteins are ubiquitous in animals and several of them are associated with various diseases. Their presence in a few plant species has previously been reported and the St John's Wort DING protein was recently described as an inhibitor of HIV replication and transcription. However, data about DING protein occurrence in plants and their biochemical properties remain almost nonexistent. We describe methods for the purification of DING proteins from plants that may have general applicability since they are not dependent upon specific affinity ligands, contrary to previously described protocols. Cibacron Blue chromatography, sometimes preceded by an ion-exchange chromatographic step, is suitable for most plant extracts. DING proteins were purified from various species and cell types and their identity was confirmed immunologically and, in some cases, by N-terminal sequence analysis, indicating that they are ubiquitous in the plant kingdom. They are associated with the cell wall and sometimes secreted in the medium for in vitro grown cells. High-molecular-weight DING precursors were often observed. Internal peptides were also sequenced, as a prelude to gene cloning experiments.
Collapse
Affiliation(s)
- Tekla Perera
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | | | | | | | | |
Collapse
|
68
|
Shaikh A, Berndt T, Kumar R. Regulation of phosphate homeostasis by the phosphatonins and other novel mediators. Pediatr Nephrol 2008; 23:1203-10. [PMID: 18288501 PMCID: PMC2441591 DOI: 10.1007/s00467-008-0751-z] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Revised: 11/29/2007] [Accepted: 12/03/2007] [Indexed: 01/23/2023]
Abstract
A variety of factors regulate the efficiency of phosphate absorption in the intestine and phosphate reabsorption in kidney. Apart from the well-known regulators of phosphate homeostasis, namely parathyroid hormone (PTH) and the vitamin D-endocrine system, a number of peptides collectively known as the "phosphatonins" have been recently identified as a result of the study of various diseases associated with hypophosphatemia. These factors, fibroblast growth factor 23 (FGF-23), secreted frizzled-related protein 4 (sFRP-4), fibroblast growth factor 7 (FGF-7) and matrix extracellular phosphoglycoprotein (MEPE), have been shown to play a role in the pathogenesis of various hypophosphatemic and hyperphosphatemic disorders, such as oncogenic osteomalacia, X-linked hypophosphatemic rickets, autosomal dominant hypophosphatemic rickets, autosomal recessive hypophosphatemia and tumoral calcinosis. Whether these factors are true hormones, in the sense that they are regulated by the intake of dietary phosphorus and the needs of the organism for higher or lower amounts of phosphorus, remains to be firmly established in humans. Additionally, new information demonstrates that the intestine "senses" luminal concentrations of phosphate and regulates the excretion of phosphate in the kidney by elaborating novel factors that alter renal phosphate reabsorption.
Collapse
Affiliation(s)
- Aisha Shaikh
- Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic Rochester, 200 First St SW, Rochester, MN 55905 USA
| | - Theresa Berndt
- Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic Rochester, 200 First St SW, Rochester, MN 55905 USA ,Department of Physiology and Biomedical Engineering, Mayo Clinic Rochester, Rochester, MN USA
| | - Rajiv Kumar
- Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic Rochester, 200 First St SW, Rochester, MN 55905 USA ,Department of Biochemistry and Molecular Biology, Mayo Clinic Rochester, Rochester, MN USA
| |
Collapse
|
69
|
Virkki LV, Biber J, Murer H, Forster IC. Phosphate transporters: a tale of two solute carrier families. Am J Physiol Renal Physiol 2007; 293:F643-54. [PMID: 17581921 DOI: 10.1152/ajprenal.00228.2007] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Phosphate is an essential component of life and must be actively transported into cells against its electrochemical gradient. In vertebrates, two unrelated families of Na+ -dependent P(i) transporters carry out this task. Remarkably, the two families transport different P(i) species: whereas type II Na+/P(i) cotransporters (SCL34) prefer divalent HPO(4)(2-), type III Na(+)/P(i) cotransporters (SLC20) transport monovalent H2PO(4)(-). The SCL34 family comprises both electrogenic and electroneutral members that are expressed in various epithelia and other polarized cells. Through regulated activity in apical membranes of the gut and kidney, they maintain body P(i) homeostasis, and in salivary and mammary glands, liver, and testes they play a role in modulating the P(i) content of luminal fluids. The two SLC20 family members PiT-1 and PiT-2 are electrogenic and ubiquitously expressed and may serve a housekeeping role for cell P(i) homeostasis; however, also more specific roles are emerging for these transporters in, for example, bone mineralization. In this review, we focus on recent advances in the characterization of the transport kinetics, structure-function relationships, and physiological implications of having two distinct Na+/P(i) cotransporter families.
Collapse
Affiliation(s)
- Leila V Virkki
- Institute of Physiology and Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | | | | | | |
Collapse
|
70
|
Pantazaki AA, Tsolkas GP, Kyriakidis DA. A DING phosphatase in Thermus thermophilus. Amino Acids 2007; 34:437-48. [PMID: 17497305 DOI: 10.1007/s00726-007-0549-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2007] [Accepted: 03/21/2007] [Indexed: 10/23/2022]
Abstract
Phosphate transport in bacteria occurs via a phosphate specific transporter system (PSTS) that belongs to the ABC family of transporters, a multisubunit system, containing an alkaline phosphatase. DING proteins were characterized due to the N-terminal amino acid sequence DINGG GATL, which is highly conserved in animal and plant isolates, but more variable in microbes. Most prokaryotic homologues of the DING proteins often have some structural homology to phosphatases or periplasmic phosphate-binding proteins. In E. coli, the product of the inducible gene DinG, possesses ATP hydrolyzing helicase enzymic activity. An alkaline phosphorolytic enzyme of the PSTS system was purified to homogeneity from the thermophilic bacterium Thermus thermophilus. N-terminal sequence analysis of this protein revealed the same high degree of similarity to DING proteins especially to the human synovial stimulatory protein P205, the steroidogenesis-inducing protein and to the phosphate ABC transporter, periplasmic phosphate-binding protein, putative (P. fluorescens Pf-5). The enzyme had a molecular mass of 40 kDa on SDS/PAGE, exhibiting optimal phosphatase activity at pH 12.3 and 70 degrees C. The enzyme possessed characteristics of a DING protein, such as ATPase, ds endonuclease and 3' phosphodiesterase (3'-exonuclease) activities and binding to linear dsDNA, displaying helicase activity on supercoiled DNA. Purification and biochemical characterization of a T. thermophilus DING protein was achieved. The biochemical properties, N-terminal sequence similarities of this protein implied that the enzyme belongs to the PSTS family and might be involved in the DNA repair mechanism of this microorganism.
Collapse
Affiliation(s)
- A A Pantazaki
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, Greece.
| | | | | |
Collapse
|
71
|
Forster IC, Virkki L, Bossi E, Murer H, Biber J. Electrogenic kinetics of a mammalian intestinal type IIb Na(+)/P(i) cotransporter. J Membr Biol 2007; 212:177-90. [PMID: 17342377 DOI: 10.1007/s00232-006-0016-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Revised: 06/08/2006] [Indexed: 10/23/2022]
Abstract
The kinetics of a type IIb Na(+)-coupled inorganic phosphate (Pi) cotransporter (NaPi-IIb) cloned from mouse small intestine were studied using the two-electrode voltage clamp applied to Xenopus oocytes. In the steady state, mouse NaPi-IIb showed a curvilinear I-V relationship, with rate-limiting behavior only for depolarizing potentials. The Pi dose dependence was Michaelian, with an apparent affinity constant for Pi (Km(pi)) of 10 +/- 1 microM: at -60 mV. Unlike for rat NaPi-IIa, (Km(pi)) increased with membrane hyperpolarization, as reported for human NaPi-IIa, flounder NaPi-IIb and zebrafish NaPi-IIb2. The apparent affinity constant for Na(+) (Km(na)) was 23 +/- 1 mM: at -60 mV, and the Na(+) activation was cooperative with a Hill coefficient of approximately 2. Pre-steady-state currents were documented in the absence of Pi and showed a strong dependence on external Na(+). The hyperpolarizing shift of the charge distribution midpoint potential was 65 mV/log[Na]. Approximately half the moveable charge was attributable to the empty carrier. A comparison of the voltage dependence of steady-state Pi-induced current and pre-steady-state charge movement indicated that for -120 mV <or= V <or= 0 mV the voltage dependence of the empty carrier was the main determinant of the curvilinear steady-state cotransport characteristic. External protons partially inhibited NaPi-IIb steady-state activity, independent of the titration of mono- and divalent Pi, and immobilized pre-steady-state charge movements associated with the first Na(+) binding step.
Collapse
Affiliation(s)
- Ian C Forster
- Institute of Physiology and Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.
| | | | | | | | | |
Collapse
|
72
|
Abstract
Inorganic phosphate (P(i)) is required for energy metabolism, nucleic acid synthesis, bone mineralization, and cell signaling. The activity of cell-surface sodium-phosphate (Na(+)-P(i)) cotransporters mediates the uptake of P(i) from the extracellular environment. Na(+)-P(i) cotransporters and organ-specific P(i) absorptive processes are regulated by peptide and sterol hormones, such as parathyroid hormone (PTH) and 1alpha,25-dihydroxyvitamin D (1alpha,25(OH)(2)D(3)), which interact in a coordinated fashion to regulate P(i) homeostasis. Recently, several phosphaturic peptides such as fibroblast growth factor-23 (FGF-23), secreted frizzled related protein-4 (sFRP-4), matrix extracellular phosphoglycoprotein, and fibroblast growth factor-7 have been demonstrated to play a pathogenic role in several hypophosphatemic disorders. By inhibiting Na(+)-P(i) transporters in renal epithelial cells, these proteins increase renal P(i) excretion, resulting in hypophosphatemia. FGF-23 and sFRP-4 inhibit 25-hydroxyvitamin D 1alpha-hydroxylase activity, reducing 1alpha,25(OH)(2)D(3) synthesis and thus intestinal P(i) absorption. This review examines the role of these factors in P(i) homeostasis in health and disease.
Collapse
Affiliation(s)
- Theresa Berndt
- Nephrology and Hypertension Research, Department of Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | | |
Collapse
|
73
|
Althoff T, Hentschel H, Luig J, Schütz H, Kasch M, Kinne RKH. Na+ -D-glucose cotransporter in the kidney of Leucoraja erinacea: molecular identification and intrarenal distribution. Am J Physiol Regul Integr Comp Physiol 2007; 292:R2391-9. [PMID: 17322119 DOI: 10.1152/ajpregu.00454.2006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Studies on membrane vesicles from the kidney of Leucoraja erinacea suggested the sole presence of a sodium-D-glucose cotransporter type 1 involved in renal D-glucose reabsorption. For molecular characterization of this transport system, an mRNA library was screened with primers directed against conserved regions of human sglt1. A cDNA was cloned whose nucleotide and derived amino acid sequence revealed high homology to sodium glucose cotransporter 1 (SGLT1). Xenopus laevis oocytes injected with the respective cRNA showed sodium-dependent high-affinity uptake of D-glucose. Many positions considered functionally essential for sodium glucose cotransporter 1 (SGLT1) are also found in the skate protein. High conservation preferentially in transmembrane helices and small linking loops suggests early appearance and continued preservation of these regions. Larger loops, especially loop 13, which is associated with phlorizin binding, were more variable, as is the interaction with the specific inhibitor in various species. To study the intrarenal distribution of the transporter, a skate SGLT1-specific antibody was generated. In cryosections of skate kidney, various nephron segments could be differentiated by lectin staining. Immunoreaction with the antibody was observed in the proximal tubule segments PIa and PIIa, the early distal tubule, and the collecting tubule. Thus Leucoraja, in contrast to the mammalian kidney, employs only SGLT1 to reabsorb d-glucose in the early, as well as in the late segments of the proximal tubule and probably also in the late distal tubule (LDT). Thereby, it differs also partly from the kidney of the close relative Squalus acanthias, which uses SGLT2 in more distal proximal tubule segments but shows also expression in the later nephron parts.
Collapse
Affiliation(s)
- Thorsten Althoff
- Max-Planck-Institut für Molekulare Physiologie, Abteilung Epithelphysiologie, Dortmund, Germany
| | | | | | | | | | | |
Collapse
|
74
|
Yan F, Angel R, Ashwell CM. Characterization of the Chicken Small Intestine Type IIb Sodium Phosphate Cotransporter. Poult Sci 2007; 86:67-76. [PMID: 17179418 DOI: 10.1093/ps/86.1.67] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Intestinal absorption and renal resorption play a critical role in overall phosphorus homeostasis in chickens. Using RNase-ligase-mediated rapid amplification of cDNA ends PCR, we obtained a cDNA from the broiler small intestine that encodes a type IIb Na-dependent phosphate transporter. The cDNA has an open reading frame of 2,022 bp and predicts a 674-amino acid protein with a molecular mass of approximately 74 kDa. Prediction of membrane spanning domains based on the hydrophilic and hydrophobic properties of the amino acids suggests 8 transmembrane domains, with both the NH(2) and COOH termini being intracellular. The Na-inorganic phosphate (Pi) IIb cotransporter has relative high homology with other type II Na-Pi cotransporters but low homology with the type I or type III Na-Pi cotransporters. Northern blot analysis demonstrated the presence of a single mRNA transcript present predominantly in the small intestine, with the highest expression in the duodenum, followed by the jejunum and ileum. In situ hybridization indicated that the Na-Pi cotransporter mRNA is expressed throughout the vertical cryptvillus axis of the small intestine. Reduction of P in the diet of chicks from hatch to 4 d of age resulted in a significant induction of Na-Pi cotransporter mRNA expression in the small intestine. Further study is needed to elucidate its physiological role in intestinal phosphate absorption in chickens.
Collapse
Affiliation(s)
- F Yan
- Department of Animal and Avian Sciences, University of Maryland, College Park 20742, USA
| | | | | |
Collapse
|
75
|
Huber K, Hempel R, Rodehutscord M. Adaptation of epithelial sodium-dependent phosphate transport in jejunum and kidney of hens to variations in dietary phosphorus intake. Poult Sci 2006; 85:1980-6. [PMID: 17032833 DOI: 10.1093/ps/85.11.1980] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The objective of this study was to explore the homeostatic response of jejunal and renal epithelia regarding the inorganic phosphate (P(i)) transport capacities to variations in dietary total phosphorus (tP) supply in hens. Adaptive processes were determined by quantitative measures of intake and excretion, P(i) transport studies across brush border membranes, and semiquantitative detection of sodium-dependent phosphate transporters (NaPi II) based on mRNA expression in the jejunum and kidney. Twelve hens (4/group) were adapted to 3 tP feeding levels in a pair-fed manner (60 g/d): low P diet with 0.073% tP, medium P diet with 0.204% tP, and high P diet with 0.343% tP. Excretion was measured during the last 5 d of a 16-d feeding period. After slaughtering, jejunal mucosa and renal cortex were removed. Tissues were used for (32)P uptake studies in brush-border membrane vesicles by rapid filtration technique and NaPi II mRNA expression studies by northern analyses. Plasma P(i) concentrations were additionally measured. The NaPi II transporter mRNA could specifically be detected in chicken jejunum and kidney. Functional parameters of Na(+)-dependent P(i) transport indicated that these transporters were involved in chicken P(i) transport across the apical membranes of jejunal and renal epithelia. Increased tP intake resulted in an increased overall tP excretion. Correlating individual data from all animals by linear regression highlighted that the adaptive decrease of renal P(i) transport capacity and NaPi IIa mRNA expression was associated with an increase in plasma P(i) levels and resulted in a higher tP excretion. Jejunal P(i) transport capacity and NaPi IIb mRNA expression did not react to variations in dietary tP supply. In conclusion, the homeostatic response was mainly based on the adaptive capacity of the kidney in hens.
Collapse
Affiliation(s)
- K Huber
- Physiologisches Institut, Stiftung Tierärztliche Hochschule Hannover, Germany.
| | | | | |
Collapse
|
76
|
Møbjerg N, Werner A, Hansen SM, Novak I. Physiological and molecular mechanisms of inorganic phosphate handling in the toad Bufo bufo. Pflugers Arch 2006; 454:101-13. [PMID: 17165072 DOI: 10.1007/s00424-006-0176-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Accepted: 09/27/2006] [Indexed: 11/29/2022]
Abstract
The aim of this study was to elucidate mechanisms of P(i) handling in toads (Bufo bufo). We introduced toads to experimental solutions of various [P(i)] and high P(i) diets and measured urine and lymph [P(i)]. Both lymph and urine [P(i)] increased with increasing P(i) loads, indicating P(i) absorption across skin and intestine. An initial fragment of a NaPi-II type transporter was amplified from kidney, and the full-length sequence was obtained. The protein showed the molecular hallmarks of NaPi-IIb transporters. When expressed in Xenopus oocytes the clone showed unusual pH dependence, but apparent affinity constants for P(i) and Na(+) were in the range of other NaPi-II transporters. Expression profiling showed that the transporter was present in skin, intestine and kidney. Reverse transcription-polymerase chain reaction assays on dissected renal tubules indicated expression in the collecting duct system. Collecting tubules and ducts were isolated, perfused and microelectrode recordings showed electrogenic P(i) transport in apical and basolateral membranes. Taken together, our results show that P(i) is handled by intestine, kidney and skin. The presently cloned NaPi-IIb is a likely candidate involved in P(i) absorption across these epithelia. In addition, electrophysiological experiments suggest that the collecting duct system plays an important role in P(i) homeostasis.
Collapse
Affiliation(s)
- Nadja Møbjerg
- Institute of Molecular Biology, University of Copenhagen, August Krogh Building, Universitetsparken 13, 2100 Copenhagen, Denmark.
| | | | | | | |
Collapse
|
77
|
Forster IC, Hernando N, Biber J, Murer H. Proximal tubular handling of phosphate: A molecular perspective. Kidney Int 2006; 70:1548-59. [PMID: 16955105 DOI: 10.1038/sj.ki.5001813] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Members of the SLC34 gene family of solute carriers encode for three Na+-dependent phosphate (P i) cotransporter proteins, two of which (NaPi-IIa/SLC34A1 and NaPi-IIc/SLC34A3) control renal reabsorption of P i in the proximal tubule of mammals, whereas NaPi-IIb/SCLC34A2 mediates P i transport in organs other than the kidney. The P i transport mechanism has been extensively studied in heterologous expression systems and structure-function studies have begun to reveal the intricacies of the transport cycle at the molecular level using techniques such as cysteine scanning mutagenesis, and voltage clamp fluorometry. Moreover, sequence differences between the three types of cotransporters have been exploited to obtain information about the molecular determinants of hormonal sensitivity and electrogenicity. Renal handling of P i is regulated by hormonal and non-hormonal factors. Changes in urinary excretion of P i are almost invariably mirrored by changes in the apical expression of NaPi-IIa and NaPi-IIc in proximal tubules. Therefore, understanding the mechanisms that control the apical expression of NaPi-IIa and NaPi-IIc as well as their functional properties is critical to understanding how an organism achieves P i homeostasis.
Collapse
MESH Headings
- Animals
- Homeostasis
- Humans
- Kidney Tubules, Proximal/metabolism
- Mice
- Parathyroid Hormone/physiology
- Phosphates/metabolism
- Sodium-Phosphate Cotransporter Proteins, Type IIa/chemistry
- Sodium-Phosphate Cotransporter Proteins, Type IIa/genetics
- Sodium-Phosphate Cotransporter Proteins, Type IIa/metabolism
- Sodium-Phosphate Cotransporter Proteins, Type IIb/chemistry
- Sodium-Phosphate Cotransporter Proteins, Type IIb/genetics
- Sodium-Phosphate Cotransporter Proteins, Type IIb/metabolism
- Sodium-Phosphate Cotransporter Proteins, Type IIc/chemistry
- Sodium-Phosphate Cotransporter Proteins, Type IIc/genetics
- Sodium-Phosphate Cotransporter Proteins, Type IIc/metabolism
- Structure-Activity Relationship
Collapse
Affiliation(s)
- I C Forster
- Institute of Physiology and ZIHP, Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.
| | | | | | | |
Collapse
|
78
|
Guerreiro PM, Renfro JL, Power DM, Canario AVM. The parathyroid hormone family of peptides: structure, tissue distribution, regulation, and potential functional roles in calcium and phosphate balance in fish. Am J Physiol Regul Integr Comp Physiol 2006; 292:R679-96. [PMID: 17023665 DOI: 10.1152/ajpregu.00480.2006] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Parathyroid hormone (PTH) and PTH-related protein (PTHrP) are two factors that share amino acid sequence homology and act via a common receptor. In tetrapods, PTH is the main endocrine factor acting in bone and kidney to regulate calcium and phosphate. PTHrP is an essential paracrine developmental factor present in many tissues and is involved in the regulation of ossification, mammary gland development, muscle relaxation, and other functions. Fish apparently lack an equivalent of the parathyroid gland and were long thought to be devoid of PTH. Only in recent years has the existence of PTH-like peptides and their receptors in fish been firmly established. Two forms of PTH, two of PTHrP, and a protein with intermediate characteristics designated PTH-L are encoded by separate genes in teleost fish. Three receptors encoded by separate genes in fish mediate PTH/PTHrP actions, whereas only two receptors have so far been found in terrestrial vertebrates. PTHrP has been more intensively studied than PTH, from lampreys to advanced teleosts. It is expressed in many tissues and is present in high concentration in fish blood. Administration of this peptide alters calcium metabolism and has marked effects on associated gene expression and enzyme activity in vivo and in vitro. This review provides a comprehensive overview of the physiological roles, distribution, and molecular relationships of the piscine PTH-like peptides.
Collapse
Affiliation(s)
- Pedro M Guerreiro
- Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | | | | | | |
Collapse
|
79
|
Virkki LV, Murer H, Forster IC. Voltage clamp fluorometric measurements on a type II Na+-coupled Pi cotransporter: shedding light on substrate binding order. ACTA ACUST UNITED AC 2006; 127:539-55. [PMID: 16636203 PMCID: PMC2151518 DOI: 10.1085/jgp.200609496] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Voltage clamp fluorometry (VCF) combines conventional two-electrode voltage clamp with fluorescence measurements to detect protein conformational changes, as sensed by a fluorophore covalently attached to the protein. We have applied VCF to a type IIb Na+-coupled phosphate cotransporter (NaPi-IIb), in which a novel cysteine was introduced in the putative third extracellular loop and expressed in Xenopus oocytes. Labeling this cysteine (S448C) with methanethiosulfonate (MTS) reagents blocked cotransport function, however previous electrophysiological studies (Lambert G., I.C. Forster, G. Stange, J. Biber, and H. Murer. 1999. J. Gen. Physiol. 114:637–651) suggest that substrate interactions with the protein can still occur, thus permitting study of a limited subset of states. After labeling S448C with the fluorophore tetramethylrhodamine MTS, we detected voltage- and substrate-dependent changes in fluorescence (ΔF), which suggested that this site lies in an environment that is affected by conformational change in the protein. ΔF was substrate dependent (no ΔF was detectable in 0 mM Na+) and showed little correlation with presteady-state charge movements, indicating that the two signals provide insight into different underlying physical processes. Interpretation of ion substitution experiments indicated that the substrate binding order differs from our previous model (Forster, I., N. Hernando, J. Biber, and H. Murer. 1998. J. Gen. Physiol. 112:1–18). In the new model, two (rather than one) Na+ ions precede Pi binding, and only the second Na+ binding transition is voltage dependent. Moreover, we show that Li+, which does not drive cotransport, interacts with the first Na+ binding transition. The results were incorporated in a new model of the transport cycle of type II Na+/Pi cotransporters, the validity of which is supported by simulations that successfully predict the voltage and substrate dependency of the experimentally determined fluorescence changes.
Collapse
Affiliation(s)
- Leila V Virkki
- Institute for Physiology and the Center for Integrative Human Physiology, University of Zurich, Switzerland
| | | | | |
Collapse
|
80
|
Shojaiefard M, Lang F. Stimulation of the intestinal phosphate transporter SLC34A2 by the protein kinase mTOR. Biochem Biophys Res Commun 2006; 345:1611-4. [PMID: 16730658 DOI: 10.1016/j.bbrc.2006.05.067] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Accepted: 05/12/2006] [Indexed: 01/27/2023]
Abstract
Adequate phosphate homeostasis is of critical importance for a wide variety of functions including bone mineralization and energy metabolism. Phosphate balance is a function of intestinal absorption and renal elimination, which are both under tight hormonal control. Intestinal phosphate absorption is accomplished by the Na(+), phosphate cotransporter NaPi IIb (SLC34A2). Signaling mechanisms mediating hormonal regulation of SLC34A2 are incompletely understood. The mammalian target of rapamycin (mTOR) is a kinase regulating a variety of nutrient transporters. The present experiments explored whether mTOR regulates the activity of SLC34A2. In Xenopus oocytes expressing SLC34A2 but not in water injected oocytes phosphate (1 mM) induced a current (Ip) which was significantly enhanced by coexpression of mTOR. Preincubation of the oocytes for 24 h with rapamycin (50 nM) did not significantly affect Ip in the absence of mTOR but virtually abolished the increase of Ip following coexpression of mTOR. The wild type serum and glucocorticoid inducible kinase SGK1 and the constitutively active (S422D)SGK1 similarly stimulated Ip, an effect again reversed by rapamycin. Coexpression of the inactive mutant of the serum and glucocorticoid inducible kinase (K119N)SGK1 significantly decreased Ip and abrogated the stimulating effect of mTOR on Ip. In conclusion, mTOR and SGK1 cooperate in the stimulation of the intestinal phosphate transporter SLC34A2.
Collapse
|
81
|
Abstract
Antisense RNA was a rather uncommon term in a physiology environment until short interfering RNAs emerged as the tool of choice to knock down the expression of specific genes. As a consequence, the concept of RNA having regulatory potential became widely accepted. Yet, there is more to come. Computational studies suggest that between 15 and 25% of mammalian genes overlap, giving rise to pairs of sense and antisense RNAs. The resulting transcripts potentially interfere with each other’s processing, thus representing examples of RNA-mediated gene regulation by endogenous, naturally occurring antisense transcripts. Concerns that the large-scale antisense transcription may represent transcriptional noise rather than a gene regulatory mechanism are strongly opposed by recent reports. A relatively small, well-defined group of antisense or noncoding transcripts is linked to monoallelic gene expression as observed in genomic imprinting, X chromosome inactivation, and clonal expression of B and T leukocytes. For the remaining, much larger group of bidirectionally transcribed genes, however, the physiological consequences of antisense transcription as well as the cellular mechanism(s) involved remain largely speculative.
Collapse
Affiliation(s)
- Andreas Werner
- Institute for Cell and Molecular Biosciences, University of Newcastle upon Tyne, Newcastle, United Kingdom.
| | | |
Collapse
|
82
|
Frei P, Gao B, Hagenbuch B, Mate A, Biber J, Murer H, Meier PJ, Stieger B. Identification and localization of sodium-phosphate cotransporters in hepatocytes and cholangiocytes of rat liver. Am J Physiol Gastrointest Liver Physiol 2005; 288:G771-8. [PMID: 15564340 DOI: 10.1152/ajpgi.00272.2004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hepatocytes and cholangiocytes release ATP into bile, where it is rapidly degraded into adenosine and P(i). In rat, biliary P(i) concentration (0.01 mM) is approximately 100-fold and 200-fold lower than in hepatocytes and plasma, respectively, indicating active reabsorption of biliary P(i). We aimed to functionally characterize canalicular P(i) reabsorption in rat liver and to identify the involved P(i) transport system(s). P(i) transport was determined in isolated rat canalicular liver plasma membrane (LPM) vesicles using a rapid membrane filtration technique. Identification of putative P(i) transporters was performed with RT-PCR from liver mRNA. Phosphate transporter protein expression was confirmed by Western blotting in basolateral and canalicular LPM and by immunofluorescence in intact liver. Transport studies in canalicular LPM vesicles demonstrated sodium-dependent P(i) uptake. Initial P(i) uptake rates were saturable with increasing P(i) concentrations, exhibiting an apparent K(m) value of approximately 11 muM. P(i) transport was stimulated by an acidic extravesicular pH and by an intravesicular negative membrane potential. These data are compatible with transport characteristics of sodium-phosphate cotransporters NaPi-IIb, PiT-1, and PiT-2, of which the mRNAs were detected in rat liver. On the protein level, NaPi-IIb was detected at the canalicular membrane of hepatocytes and at the brush-border membrane of cholangiocytes. In contrast, PiT-1 and PiT-2 were detected at the basolateral membrane of hepatocytes. We conclude that NaPi-IIb is most probably involved in the reabsorption of P(i) from primary hepatic bile and thus might play an important role in the regulation of biliary P(i) concentration.
Collapse
Affiliation(s)
- Pascal Frei
- Division of Clinical Pharmacology and Toxicology, Dept. of Medicine, Univ. Hospital Zürich, Rämistrasse 100, CH-8091 Zürich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
83
|
Scott K, Wu L. Functional properties of a recombinant bacterial DING protein: comparison with a homologous human protein. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1744:234-44. [PMID: 15950753 DOI: 10.1016/j.bbamcr.2005.02.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2004] [Revised: 01/28/2005] [Accepted: 02/15/2005] [Indexed: 11/20/2022]
Abstract
DING proteins are highly-conserved proteins with poorly-defined cell-signalling roles in mammals. Conserved homologues are also commonplace in plants, though not as yet functionally characterized. Poor availability of the proteins, and a lack of genetic structure, hamper progress in elucidating the roles of these eukaryotic DING proteins, but highly-homologous hypothetical DING proteins have recently been identified in Pseudomonas genomes. We have cloned and expressed a DING protein from P. fluorescens SWB25 in Escherichia coli. The recombinant protein, and its natural human homologue, act as phosphate-binding proteins, as predicted by structural homologies with other bacterial proteins. The recombinant protein also displays other functional similarities with mammalian DING proteins, in that, like the human version, it acts as a mitogen for cultured human cells, and can bind cotinine, known to be a binding ligand for a rat neuronal DING protein.
Collapse
Affiliation(s)
- Ken Scott
- School of Biological Sciences, University of Auckland, New Zealand.
| | | |
Collapse
|
84
|
Collins JF, Ghishan FK. Genetic responses to dietary phosphorus deprivation: lessons learned from the rainbow trout. Am J Physiol Regul Integr Comp Physiol 2004; 287:R522-3. [PMID: 15308502 DOI: 10.1152/ajpregu.00389.2004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
85
|
Palmada M, Dieter M, Speil A, Böhmer C, Mack AF, Wagner HJ, Klingel K, Kandolf R, Murer H, Biber J, Closs EI, Lang F. Regulation of intestinal phosphate cotransporter NaPi IIb by ubiquitin ligase Nedd4-2 and by serum- and glucocorticoid-dependent kinase 1. Am J Physiol Gastrointest Liver Physiol 2004; 287:G143-50. [PMID: 15044175 DOI: 10.1152/ajpgi.00121.2003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Serum and glucocorticoid-inducible kinase 1 (SGK1) is highly expressed in enterocytes. The significance of the kinase in regulation of intestinal function has, however, remained elusive. In Xenopus laevis oocytes, SGK1 stimulates the epithelial Na(+) channel by phosphorylating the ubiquitin ligase Nedd4-2, which regulates channels by ubiquitination leading to subsequent degradation of the channel protein. Thus the present study has been performed to explore whether SGK1 regulates transport systems expressed in intestinal epithelial cells, specifically type IIb sodium-phosphate (Na(+)-P(i)) cotransporter (NaPi IIb). Immunohistochemistry in human small intestine revealed SGK1 colocalization with Nedd4-2 in villus enterocytes. For functional analysis cRNA encoding NaPi IIb, the SGK isoforms and/or the Nedd4-2 were injected into X. laevis oocytes, and transport activity was quantified as the substrate-induced current (I(P)). Exposure to 3 mM phosphate induces an I(P) in NaPi IIb-expressing oocytes. Coinjection of Nedd4-2, but not the catalytically inactive mutant (C938S)Nedd4-2, significantly downregulates I(P), whereas the coinjection of (S422D)SGK1 markedly stimulates I(P) and even fully reverses the effect of Nedd4-2 on I(P). The effect of (S422D)SGK1 on NaPi IIb is mimicked by wild-type SGK3 but not by wild-type SGK2, constitutively active (T308D,S473D)PKB, or inactive (K127N)SGK1. Moreover, (S422D)SGK1 and SGK3 phosphorylate Nedd4-2. In conclusion, SGK1 stimulates the NaPi IIb, at least in part, by phosphorylating and thereby inhibiting Nedd4-2 binding to its target. Thus the present study reveals a novel signaling pathway in the regulation of intestinal phosphate transport, which may be important for regulation of phosphate balance.
Collapse
Affiliation(s)
- M Palmada
- Physiologisches Institut, Universitat Tubingen, Gmelinstrasse 5, D-72076 Tubingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Sugiura SH, Ferraris RP. Dietary phosphorus-responsive genes in the intestine, pyloric ceca, and kidney of rainbow trout. Am J Physiol Regul Integr Comp Physiol 2004; 287:R541-50. [PMID: 15166007 DOI: 10.1152/ajpregu.00225.2004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Identification of phosphorus (P)-responsive genes is important in diagnosing the adequacy of dietary P intake well before clinical symptoms arise. The mRNA abundance of selected genes was determined in the intestine, pyloric ceca, and kidney of rainbow trout fed low-P (LP) or sufficient-P (SP) diet for 2, 5, and 20 days. The LP-to-SP ratio (LP/SP) of mRNA abundance was used to evaluate the difference in gene expression between LP and SP fish, and to compare the response with bone and serum P, which are conventional indicators of P status. The LP/SP of intestinal, cecal, and renal type II sodium-phosphate cotransporter (NaPi-II) mRNA abundance changed from approximately 1-2 (day 2) to approximately 1.4-4 (day 5) and to approximately 2-10 (day 20). The LP/SP of renal NaPi-II, vitamin D 24-hydroxylase, and vitamin D receptor mRNA abundance correlated inversely with serum P on day 5 but not on day 2 and day 20. In another study, differentially expressed genes between LP and SP fish were examined by subtractive hybridization, confirmed by Northern blot, and evaluated by t-test and correlation with serum and bone P concentrations. About 30 genes were identified as dietary P responsive at day 20, including intestinal meprin and cysteinesulfinic acid decarboxylase, renal S100 calcium-binding protein and mitochondrial P(i) carrier, and cecal apolipoprotein E, somatomedin B-related protein, and NaPi-II. The LP/SP of mRNA abundance of renal mitochondrial P(i) carrier and intestinal cysteinesulfinic acid decarboxylase changed significantly by day 2, and intestinal meprin by day 5. Hence, these genes and NaPi-II are among the earliest steady-response genes capable of predicting P deficiency well before the onset of clinical deficiency.
Collapse
Affiliation(s)
- Shozo H Sugiura
- Department of Pharmacology and Physiology, UMDNJ-New Jersey Medical School, 185 S. Orange Ave., Newark, NJ 07101-1709, USA
| | | |
Collapse
|
87
|
Abstract
The evolution of the vertebrate kidney records three occasions, each separated by about 50 million years, when fish have abandoned glomeruli to produce urine by tubular mechanisms. The recurring dismissal of glomeruli suggests a mechanism of aglomerular urine formation intrinsic to renal tubules. Indeed, the transepithelial secretion of organic solutes and of inorganic solutes such as sulfate, phosphate, and magnesium can all drive secretory water flow in renal proximal tubules of fish. However, the secretion of NaCl via secondary active transport of Cl is the primary mover of secretory water flow in, surprisingly, proximal tubules of both glomerular and aglomerular fish. In filtering kidneys, the tubular secretion of solute and water is overshadowed by reabsorptive transport activities, but secretion progressively comes to light as glomerular filtration decreases. Thus the difference between glomerular and aglomerular urine formation is more a difference of degree than of kind. At low rates of glomerular filtration in seawater fish, NaCl-coupled water secretion serves to increase the renal excretory capacity by increasing the luminal volume into which waste, excess, and toxic solutes can be secreted. The reabsorption of NaCl and water in the distal nephron and urinary bladder concentrates unwanted solutes for excretion while minimizing renal water loss. In aglomerular fish, NaCl-coupled water secretion across proximal tubules replaces glomerular filtration to increase renal excretory capacity. A review of the literature suggests that tubular secretion of NaCl and water is an early function of the vertebrate proximal tubule that has been retained throughout evolution. Active transepithelial Cl secretion takes place in gall bladders studied as models of the mammalian proximal tubule and in proximal tubules of amphibians and apparently also of mammals. The tubular secretion of Cl is also observed in mammalian distal tubules. The evidence consistent with and for Cl secretion in, respectively, proximal and distal tubules of the mammalian kidney calls for a reexamination of basic assumptions in renal physiology that may lead to new opportunities for managing some forms of renal disease.
Collapse
Affiliation(s)
- Klaus W Beyenbach
- Department of Biomedical Sciences, VRT 8004, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
88
|
Murer H, Forster I, Biber J. The sodium phosphate cotransporter family SLC34. Pflugers Arch 2004; 447:763-7. [PMID: 12750889 DOI: 10.1007/s00424-003-1072-5] [Citation(s) in RCA: 253] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2003] [Accepted: 03/28/2003] [Indexed: 12/01/2022]
Abstract
This review summarizes the characteristics of the solute carrier family SLC34 that is represented by the type ll Na/P(i)-cotransporters NaPi-lla (SLC34A1), NaPi-llb (SLC34A2) and NaPi-llc (SLC34A3). Other Na/P(i)-cotransporters are described within the SLC17 and SLC20 families. Type ll Na/P(i)-cotransporters are expressed in several tissues and play a major role in the homeostasis of inorganic phosphate. In kidney and small intestine, type ll Na/P(i)-cotransporters are located at the apical sites of epithelial cells and represent the rate limiting steps for transepithelial movement of phosphate. Physiological and pathophysiological regulation of renal and small intestinal epithelial transport of phosphate occurs through alterations in the abundance of type ll Na/P(i)-cotransporters.
Collapse
Affiliation(s)
- Heini Murer
- Institute of Physiology, University of Zürich-Irchel, Winterthurerstrasse 190, 8057, Zürich, Switzerland.
| | | | | |
Collapse
|
89
|
Xu Y, Yeung CH, Setiawan I, Avram C, Biber J, Wagenfeld A, Lang F, Cooper TG. Sodium-inorganic phosphate cotransporter NaPi-IIb in the epididymis and its potential role in male fertility studied in a transgenic mouse model. Biol Reprod 2003; 69:1135-41. [PMID: 12773415 DOI: 10.1095/biolreprod.103.018028] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Analysis by cDNA microarrays showed that in the murine epididymis, NaPi-IIb was the predominantly expressed epithelial isoform of the sodium-inorganic phosphate cotransporter and was markedly overexpressed in the proximal region in the infertile knockout (KO) compared to the fertile heterozygous (HET) c-ros transgenic mouse. The apparent up-regulation in the KO mouse confirmed by Northern and Western blot analyses could be explained by the absence of NaPi-IIb from the initial segment of the HET epididymis, as revealed by immunohistochemistry, and its presence on the epithelial brush border throughout the proximal epididymis of KO mice, where differentiation of the initial segment fails to occur. Both NaPi-IIb mRNA and protein were scarce or absent from the cauda epididymidis of both genotypes. A high content of inorganic phosphate was measured enzymatically in the HET cauda luminal fluid, with a 27% decrease in the KO mice. This decrease, presumably from a greater reabsorption of inorganic phosphate, particularly in the initial part of the KO epididymis, may disturb the normal process of sperm maturation in these infertile males. By contrast, no apparent consequences were observed for the transport of Na+ and Ca2+, the concentrations of which (approximately 26 mM and approximately 30 microM, respectively) were measured by microelectrodes to be identical in the caudal fluid from both genotypes.
Collapse
Affiliation(s)
- Yaoxian Xu
- Institute of Reproductive Medicine of the University, Münster, Germany
| | | | | | | | | | | | | | | |
Collapse
|
90
|
Sugiura SH, McDaniel NK, Ferraris RP. In vivo fractional P(i) absorption and NaPi-II mRNA expression in rainbow trout are upregulated by dietary P restriction. Am J Physiol Regul Integr Comp Physiol 2003; 285:R770-81. [PMID: 12816744 DOI: 10.1152/ajpregu.00127.2003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mammalian type II sodium-phosphate cotransporter (NaPi-II) and inorganic phosphate uptake stimulator (PiUS) genes are upregulated by dietary phosphorus (P) restriction to increase intestinal and renal P transport, but little is known about NaPi-II and PiUS regulation in other vertebrates. We studied the 1). the tissue distribution and dietary regulation of NaPi-II, PiUS, and sodium-glucose cotransporter (SGLT1) mRNA and NaPi-II protein in juvenile rainbow trout (Oncorhynchus mykiss) and 2). effects of dietary P on intestinal Pi absorption in vivo. NaPi-II, PiUS, and SGLT1 mRNA were found in the proximal and distal intestine, pyloric ceca, and kidney. PiUS mRNA was also found in the heart, gill, blood, stomach, liver, skin, and muscle. Tissue distribution of NaPi-II protein correlated with that of NaPi-II mRNA except in gill ionocytes where NaPi-II antibodies recognized related epitopes. Chronic consumption of a low-P diet increased NaPi-II and PiUS but not SGLT1 mRNA abundance in the intestine and kidney. Unlike mammals, there was no detectable shift in tissue or cellular localization of NaPi-II protein in response to dietary P restriction. Regulation of NaPi and PiUS mRNA expression was observed only in fish grown under optimal aqueous oxygen concentrations. In vivo fractional absorption of Pi by the intestine decreased in fish fed high-P diets. Decreases in absorption were less pronounced in fish previously fed low-P diets, suggesting that diet history modulates acute regulation of P absorption. Regulation of dietary Pi absorption in vivo may involve a specific change in intestinal NaPi-II and PiUS gene expression.
Collapse
Affiliation(s)
- Shozo H Sugiura
- Department of Pharmacology and Physiology, New Jersey Medical School, Newark, NJ 07103, USA
| | | | | |
Collapse
|
91
|
Coloso RM, King K, Fletcher JW, Weis P, Werner A, Ferraris RP. Dietary P regulates phosphate transporter expression, phosphatase activity, and effluent P partitioning in trout culture. J Comp Physiol B 2003; 173:519-30. [PMID: 12851780 DOI: 10.1007/s00360-003-0360-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2003] [Indexed: 11/26/2022]
Abstract
Phosphate utilization by fish is an important issue because of its critical roles in fish growth and aquatic environmental pollution. High dietary phosphorus (P) levels typically decrease the efficiency of P utilization, thereby increasing the amount of P excreted as metabolic waste in effluents emanating from rainbow trout aquaculture. In mammals, vitamin D3 is a known regulator of P utilization but in fish, its regulatory role is unclear. Moreover, the effects of dietary P and vitamin D3 on expression of enzymatic and transport systems potentially involved in phosphate utilization are little known. We therefore monitored production of effluent P, levels of plasma vitamin D3 metabolites, as well as expression of phosphatases and the sodium phosphate cotransporter (NaPi2) in trout fed semipu diets that varied in dietary P and vitamin D3 levels. Mean soluble P concentrations varied markedly with dietary P but not with vitamin D3, and constituted 40-70% of total effluent P production by trout. Particulate P concentrations accounted for 25-50% of effluent P production, but did not vary with dietary P or vitamin D3. P in settleable wastes accounted for <10% of effluent P. The stronger effect of dietary P on effluent P levels is paralleled by its striking effects on phosphatases and NaPi2. The mRNA abundance of the intestinal and renal sodium phosphate transporters increased in fish fed low dietary P; vitamin D3 had no effect. Low-P diets reduced plasma phosphate concentrations. Intracellular phytase activity increased but brushborder alkaline phosphatase activity decreased in the intestine, pyloric caeca, and gills of trout fed diets containing low dietary P. Vitamin D3 had no effect on enzyme activities. Moreover, plasma concentrations of 25-hydroxyvitamin D3 and of 1,25-dihydroxyvitamin D3 were unaffected by dietary P and vitamin D3 levels. The major regulator of P metabolism, and ultimately of levels of P in the effluent from trout culture, is dietary P.
Collapse
Affiliation(s)
- R M Coloso
- Department of Pharmacology and Physiology, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103-2714, USA
| | | | | | | | | | | |
Collapse
|
92
|
Abstract
PURPOSE OF REVIEW The present review summarizes recent findings that may help in understanding how the cell senses changes in serum phosphate. RECENT FINDINGS The sensing of phosphate determines the organism's response to change in supply of this essential nutrient. Phosphate depletion or surfeit results in homeostatic responses that involve changes in transcription, transcript stability, transporter recruitment or breakdown, and cell replication. These responses are shared across the biological kingdoms, and lessons from unicellular organisms may be relevant to multicellular mammals. An understanding of nutrient sensing in general may help in determining how the cell senses changes in phosphate concentration. SUMMARY Research has yielded important advances in unravelling phosphate sensing and the response to nutrient phosphate supply. However, the actual sensing event for phosphate and most other nutrients must still be defined. Lessons may be learned from those examples in which the sensing event is known, and these are summarized here.
Collapse
Affiliation(s)
- Justin Silver
- Minerva Center for Calcium and Bone Metabolism, Nephrology and Hypertention Services, Hadassah Hospital, The Hebrew University Medical School, Jerusalem, Israel.
| | | |
Collapse
|
93
|
Abstract
The physiological tuning and pathophysiological alterations of renal proximal reabsorption of inorganic phosphate can be ascribed to the net amount of the Na/Pi-cotransporter NaPi-IIa localized in the brush border membrane. The net amount of NaPi-IIa appears to be the result of an endocytotic rate regulated by a complex network of different protein kinases. New approaches demonstrated that NaPi-IIa is part of heteromeric protein complexes, organized by PDZ (postsynaptic protein PSD95, Drosophila junction protein Disc-large, tight junction protein ZO-1) proteins. Such complexes are thought to play important roles in the apical positioning and regulated endocytosis of NaPi-IIa and therefore such interactions have to be considered when explaining proximal phosphate ion reabsorption.
Collapse
Affiliation(s)
- Heini Murer
- Institute of Physiology, University Zürich, 8057 Switzerland.
| | | | | | | |
Collapse
|
94
|
Kobayashi I, Fujiwara S, Shimogawara K, Kaise T, Usuda H, Tsuzuki M. Insertional mutagenesis in a homologue of a Pi transporter gene confers arsenate resistance on chlamydomonas. PLANT & CELL PHYSIOLOGY 2003; 44:597-606. [PMID: 12826625 DOI: 10.1093/pcp/pcg081] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
An arsenate-resistant mutant AR3 of Chlamydomonas reinhardtii is a recessive mutant generated by random insertional mutagenesis using the ARG7 gene. AR3 shows about 10-fold resistance against arsenate toxicity compared with the wild type. By using a flanking region of an inserted tag as a probe, we cloned the corresponding wild-type allele (PTB1) of a mutated gene, which could completely complement the arsenate-resistance phenotype of AR3. The size of PTB1 cDNA is about 6.0 kb and it encodes a putative protein comprising 1666 amino acid residues. This protein exhibits significant sequence similarity with the yeast Pho89 protein, which is known to be a Na(+)/Pi co-transporter, although the PTB1 protein carries an additional Gln- and Gly-rich large hydrophilic region in the middle of its primary structure. Analyses of arsenic accumulation and release revealed that PTB1-disrupted cells show arsenate resistance due to low arsenate uptake. These results suggest that the PTB1 protein is a factor involved in arsenate (or Pi) uptake. Kinetics of Pi uptake revealed that the activity of high-affinity Pi transport component in AR3 is more activated than that in the wild type.
Collapse
Affiliation(s)
- Isao Kobayashi
- School of Life Science, Tokyo University of Pharmacy and Life Science, Horinouchi, Hachioji, Tokyo, 192-0392 Japan
| | | | | | | | | | | |
Collapse
|
95
|
Moz Y, Silver J, Naveh-Many T. Characterization of cis-acting element in renal NaPi-2 cotransporter mRNA that determines mRNA stability. Am J Physiol Renal Physiol 2003; 284:F663-70. [PMID: 12475748 DOI: 10.1152/ajprenal.00332.2002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hypophosphatemia leads to an increase in Na(+)-P(i) cotransporter (NaPi-2) mRNA levels. This increase is posttranscriptional and correlates with a more stable transcript mediated by the terminal 698 nt of the NaPi-2 mRNA. A 71-nt binding element was identified with renal proteins from rats fed control and low-P(i) (-P(i)) diet. The binding of -P(i) renal proteins to this transcript was increased compared with control proteins. The functionality of the cis element was demonstrated by an in vitro degradation assay. -P(i) renal proteins stabilized transcripts that included the cis element compared with control renal extracts. The full-length NaPi-2 transcript, but not control transcripts, was stabilized by -P(i) extracts. Insertion of the binding element into green fluorescent protein (GFP) as a reporter gene decreased chimeric GFP mRNA levels in transfection experiments. Our results suggest that the protein-binding region of the NaPi-2 mRNA functions as a cis-acting instability element. In hypophosphatemia there is increased binding to the cis-acting element and subsequent stabilization of NaPi-2 mRNA.
Collapse
Affiliation(s)
- Yulia Moz
- Minerva Center for Calcium and Bone Metabolism, Nephrology Services, Hadassah University Hospital, Jerusalem, Israel 91120
| | | | | |
Collapse
|
96
|
Graham C, Nalbant P, Schölermann B, Hentschel H, Kinne RKH, Werner A. Characterization of a type IIb sodium-phosphate cotransporter from zebrafish (Danio rerio) kidney. Am J Physiol Renal Physiol 2003; 284:F727-36. [PMID: 12488247 DOI: 10.1152/ajprenal.00356.2002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Zebrafish (Danio rerio) express two isoforms of the type IIb Na-dependent P(i) cotransporter (NaPi). Type NaPi-IIb1 has previously been cloned and characterized. Here, we report the cloning of the NaPi-IIb2 transcript from zebrafish kidney, its localization, and its functional characterization. RT-PCR with renal RNA and degenerate NaPi-IIb-specific primers resulted in a specific fragment. 3'-Rapid amplification of cDNA ends yielded a product that contained typical NaPi-IIb characteristics such as a cysteine-rich COOH terminus and a PDZ (PSD95- Dlg-zona occludens-1) binding motif. Several approaches were unsuccessful at cloning the 5' end of the transcript; products lacked an in-frame start codon. The missing information was obtained from an EST (GenBank accession number ). The combined clone displayed a high degree of homology with published type IIb cotransporter sequences. Specific antibodies were raised against a COOH-terminal epitope of both NaPi-IIb1 and NaPi-IIb2 isoforms. Immunohistochemical mapping revealed apical expression of both isoforms in zebrafish renal and intestinal epithelia, as well as in bile ducts. The novel clone was expressed in oocytes, and function was assayed by the two-electrode voltage-clamp technique. The function of the new NaPi-IIb2 clone was found to be significantly different from NaPi-IIb1 despite strong structural similarities. NaPi-IIb2 was found to be strongly voltage sensitive, with higher affinities for both sodium and phosphate than NaPi-IIb1. Also, NaPi-IIb2 was significantly less sensitive to external pH than NaPi-IIb1. The strong structural similarity but divergent function makes these zebrafish transporters ideal models for the molecular mapping of functionally important regions in the type II NaPi-cotransporter family.
Collapse
Affiliation(s)
- C Graham
- School of Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | | | | | | | | | | |
Collapse
|
97
|
Forster IC, Köhler K, Biber J, Murer H. Forging the link between structure and function of electrogenic cotransporters: the renal type IIa Na+/Pi cotransporter as a case study. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2002; 80:69-108. [PMID: 12379267 DOI: 10.1016/s0079-6107(02)00015-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Electrogenic cotransporters are membrane proteins that use the electrochemical gradient across the cell membrane of a cosubstrate ion, for example Na(+) or H(+), to mediate uphill cotransport of a substrate specific to the transport protein. The cotransport process involves recognition of both cosubstrate and substrate and translocation of each species according to a defined stoichiometry. Electrogenicity implies net movement of charges across the membrane in response to the transmembrane voltage and therefore, in addition to isotope flux assays, the cotransport kinetics can be studied in real-time using electrophysiological methods. As well as the cotransport mode, many cotransporters also display a uniport or slippage mode, whereby the cosubstrate ions translocate in the absence of substrate. The current challenge is to define structure-function relationships by identifying functionally important elements in the protein that confer the transport properties and thus contribute to the ultimate goal of having a 3-D model of the protein that conveys both structural and functional information. In this review we focus on a functional approach to meet this challenge, based on a combination of real-time electrophysiological assays, together with molecular biological and biochemical methods. This is illustrated, by way of example, using data obtained by heterologous expression of the renal Na(+)-coupled inorganic phosphate cotransporter (NaP(i)-IIa) for which structure-function relationships are beginning to emerge.
Collapse
Affiliation(s)
- Ian C Forster
- Physiologisches Institut der Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland.
| | | | | | | |
Collapse
|
98
|
Köhler K, Forster IC, Stange G, Biber J, Murer H. Transport function of the renal type IIa Na+/P(i) cotransporter is codetermined by residues in two opposing linker regions. J Gen Physiol 2002; 120:693-705. [PMID: 12407080 PMCID: PMC2229554 DOI: 10.1085/jgp.20028645] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Two highly similar regions in the predicted first intracellular (ICL-1) and third extracellular loop (ECL-3) of the type IIa Na+/P(i) cotransporter (NaPi-IIa) have been shown previously to contain functionally important sites by applying the substituted cysteine accessibility method (SCAM). Incubation in methanethiosulfonate (MTS) reagents of mutants that contain novel cysteines in both loops led to full inhibition of cotransport activity. To elucidate further the role these regions play in defining the transport mechanism, a double mutant (A203C-S460C) was constructed with novel cysteines in each region. The effect of cysteine modification by different MTS reagents on two electrogenic transport modes (leak and cotransport) was investigated. MTSEA (2-aminoethyl MTS hydrobromide) and MTSES (MTS ethylsulfonate) led to full inhibition of cotransport and increased the leak, whereas incubation in MTSET (2-[trimethylammonium]ethyl MTS bromide) inhibited only cotransport. The behavior of other double mutants with a cysteine retained at one site and hydrophobic or hydrophilic residues substituted at the other site, indicated that most likely only Cys-460 was modifiable, but the residue at Ala-203 was critical for conferring the leak and cotransport mode behavior. Substrate interaction with the double mutant was unaffected by MTS exposure as the apparent P(i) and Na+ affinities for P(i)-induced currents and respective activation functions were unchanged after cysteine modification. This suggested that the modified site did not interfere with substrate recognition/binding, but prevents translocation of the fully loaded carrier. The time-dependency of cotransport loss and leak growth during modification of the double cysteine mutant was reciprocal, which suggested that the modified site is a kinetic codeterminant of both transport modes. The behavior is consistent with a kinetic model for NaPi-IIa that predicts mutual exclusiveness of both transport modes. Together, these findings suggest that parts of the opposing linker regions are associated with the NaPi-IIa transport pathway.
Collapse
Affiliation(s)
- Katja Köhler
- Institute of Physiology, University of Zurich, CH-8057, Zurich, Switzerland
| | | | | | | | | |
Collapse
|
99
|
Affiliation(s)
- John B Pritchard
- Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA.
| |
Collapse
|
100
|
Huber K, Walter C, Schröder B, Breves G. Phosphate transport in the duodenum and jejunum of goats and its adaptation by dietary phosphate and calcium. Am J Physiol Regul Integr Comp Physiol 2002; 283:R296-302. [PMID: 12121840 DOI: 10.1152/ajpregu.00760.2001] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endogenous P(i) recycling is a characteristic feature of the P homeostasis in ruminants. A pronounced salivary P(i) secretion into the rumen is balanced by a high intestinal P(i) absorption and an almost complete renal P(i) reabsorption. In monogastric animals, the major P(i) transport mechanism across the apical membrane of the enterocyte is an Na(+)-dependent transport mediated by NaPi cotransporter type IIb. In ruminants, an Na(+)-, as well as an H(+)-dependent, P(i) transport system seems to exist in the small intestines. Therefore, morphological localization, type of ionic dependence, and ability to adapt to dietary P or Ca restriction of duodenal and jejunal P(i) transport were characterized in goats. In the duodenum, there was an H(+)-dependent, Na(+)-sensitive P(i) transport system that did not belong to the NaPi type II family and was not influenced by dietary P or Ca restriction. In contrast, in the jejunum, there was an Na(+)-dependent, H(+)-sensitive P(i) transport mainly mediated by NaPi IIb. P restriction stimulated the NaPi IIb protein expression, resulting in higher P(i) transport capacity.
Collapse
Affiliation(s)
- Korinna Huber
- Department of Physiology, School of Veterinary Medicine, D-30173 Hannover, Germany.
| | | | | | | |
Collapse
|