51
|
Li M, Tian X, Li X, Huang M, Huang S, Wu Y, Jiang M, Shi Y, Shi L, Wang Z. Diverse energy metabolism patterns in females in Neodon fuscus, Lasiopodomys brandtii, and Mus musculus revealed by comparative transcriptomics under hypoxic conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 783:147130. [PMID: 34088150 DOI: 10.1016/j.scitotenv.2021.147130] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 03/28/2021] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
The effects of global warming and anthropogenic disturbance force animals to migrate from lower to higher elevations to find suitable new habitats. As such migrations increase hypoxic stress on the animals, it is important to understand how plateau- and plain-dwelling animals respond to low-oxygen environments. We used comparative transcriptomics to explore the response of Neodon fuscus, Lasiopodomys brandtii, and Mus musculus skeletal muscle tissues to hypoxic conditions. Results indicate that these species have adopted different oxygen transport and energy metabolism strategies for dealing with a hypoxic environment. N. fuscus promotes oxygen transport by increasing hemoglobin synthesis and reduces the risk of thrombosis through cooperative regulation of genes, including Fga, Fgb, Alb, and Ttr; genes such as Acs16, Gpat4, and Ndufb7 are involved in regulating lipid synthesis, fatty acid β-oxidation, hemoglobin synthesis, and electron-linked transmission, thereby maintaining a normal energy supply in hypoxic conditions. In contrast, the oxygen-carrying capacity and angiogenesis of red blood cells in L. brandtii are promoted by genes in the CYP and COL families; this species maintains its bodily energy supply by enhancing the pentose phosphate pathway and mitochondrial fatty acid synthesis pathway. However, under hypoxia, M. musculus cannot effectively transport additional oxygen; thus, its cell cycle, proliferation, and migration are somewhat affected. Given its lack of hypoxic tolerance experience, M. musculus also shows significantly reduced oxidative phosphorylation levels under hypoxic conditions. Our results suggest that the glucose capacity of M. musculus skeletal muscle does not provide sufficient energy during hypoxia; thus, we hypothesize that it supplements its bodily energy by synthesizing ketone bodies. For the first time, we describe the energy metabolism pathways of N. fuscus and L. brandtii skeletal muscle tissues under hypoxic conditions. Our findings, therefore, improve our understanding of how vertebrates thrive in high altitude and plain habitats when faced with hypoxic conditions.
Collapse
Affiliation(s)
- Mengyang Li
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Xiangyu Tian
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Xiujuan Li
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Maolin Huang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Shuang Huang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yue Wu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Mengwan Jiang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yuhua Shi
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Luye Shi
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China.
| | - Zhenlong Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; School of Physical Education (Main campus), Zhengzhou University, Zhengzhou 450001, Henan, China.
| |
Collapse
|
52
|
Ion Channels, Transporters, and Sensors Interact with the Acidic Tumor Microenvironment to Modify Cancer Progression. Rev Physiol Biochem Pharmacol 2021; 182:39-84. [PMID: 34291319 DOI: 10.1007/112_2021_63] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Solid tumors, including breast carcinomas, are heterogeneous but typically characterized by elevated cellular turnover and metabolism, diffusion limitations based on the complex tumor architecture, and abnormal intra- and extracellular ion compositions particularly as regards acid-base equivalents. Carcinogenesis-related alterations in expression and function of ion channels and transporters, cellular energy levels, and organellar H+ sequestration further modify the acid-base composition within tumors and influence cancer cell functions, including cell proliferation, migration, and survival. Cancer cells defend their cytosolic pH and HCO3- concentrations better than normal cells when challenged with the marked deviations in extracellular H+, HCO3-, and lactate concentrations typical of the tumor microenvironment. Ionic gradients determine the driving forces for ion transporters and channels and influence the membrane potential. Cancer and stromal cells also sense abnormal ion concentrations via intra- and extracellular receptors that modify cancer progression and prognosis. With emphasis on breast cancer, the current review first addresses the altered ion composition and the changes in expression and functional activity of ion channels and transporters in solid cancer tissue. It then discusses how ion channels, transporters, and cellular sensors under influence of the acidic tumor microenvironment shape cancer development and progression and affect the potential of cancer therapies.
Collapse
|
53
|
Deniz S, Uysal TK, Capasso C, Supuran CT, Ozensoy Guler O. Is carbonic anhydrase inhibition useful as a complementary therapy of Covid-19 infection? J Enzyme Inhib Med Chem 2021; 36:1230-1235. [PMID: 34074197 PMCID: PMC8174482 DOI: 10.1080/14756366.2021.1924165] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The ongoing Covid-19 is a contagious disease, and it is characterised by different symptoms such as fever, cough, and shortness of breath. Rising concerns about Covid-19 have severely affected the healthcare system in all countries as the Covid-19 outbreak has developed at a rapid rate all around the globe. Intriguing, a clinically used drug, acetazolamide (a specific inhibitor of carbonic anhydrase, CA, EC 4.2.1.1), is used to treat high-altitude pulmonary oedema (HAPE), showing a high degree of clinical similarities with the pulmonary disease caused by Covid-19. In this context, this preliminary study aims to provide insights into some factors affecting the Covid-19 patients, such as hypoxaemia, hypoxia as well as the blood CA activity. We hypothesise that patients with Covid-19 problems could show a dysregulated acid–base status influenced by CA activity. These preliminary results suggest that the use of CA inhibitors as a pharmacological treatment for Covid-19 may be beneficial.
Collapse
Affiliation(s)
- Secil Deniz
- Department of Infectious Diseases, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Tugba Kevser Uysal
- Department of Medical Biology, Faculty of Medicine, Ankara Yildirim Beyazit University, Ankara, Turkey
| | | | - Claudiu T Supuran
- NEUROFARBA Department, Section of Pharmaceutical and Nutriceutical Chemistry, Università degli Studi di Firenze, Laboratorio di Chimica Bioinorganica, Florence, Italy
| | - Ozen Ozensoy Guler
- Department of Medical Biology, Faculty of Medicine, Ankara Yildirim Beyazit University, Ankara, Turkey
| |
Collapse
|
54
|
Respiratory Dialysis-A Novel Low Bicarbonate Dialysate to Provide Extracorporeal CO2 Removal. Crit Care Med 2021; 48:e592-e598. [PMID: 32304418 DOI: 10.1097/ccm.0000000000004351] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVES We designed a novel respiratory dialysis system to remove CO2 from blood in the form of bicarbonate. We aimed to determine if our respiratory dialysis system removes CO2 at rates comparable to low-flow extracorporeal CO2 removal devices (blood flow < 500 mL/min) in a large animal model. DESIGN Experimental study. SETTING Animal research laboratory. SUBJECTS Female Yorkshire pigs. INTERVENTIONS Five bicarbonate dialysis experiments were performed. Hypercapnia (PCO2 90-100 mm Hg) was established in mechanically ventilated swine by adjusting the tidal volume. Dialysis was then performed with a novel low bicarbonate dialysate. MEASUREMENTS AND MAIN RESULTS We measured electrolytes, blood gases, and plasma-free hemoglobin in arterial blood, as well as blood entering and exiting the dialyzer. We used a physical-chemical acid-base model to understand the factors influencing blood pH after bicarbonate removal. During dialysis, we removed 101 (±13) mL/min of CO2 (59 mL/min when normalized to venous PCO2 of 45 mm Hg), corresponding to a 29% reduction in PaCO2 (104.0 ± 8.1 vs 74.2 ± 8.4 mm Hg; p < 0.001). Minute ventilation and body temperature were unchanged during dialysis (1.2 ± 0.4 vs 1.1 ± 0.4 L/min; p = 1.0 and 35.3°C ± 0.9 vs 35.2°C ± 0.6; p = 1.0). Arterial pH increased after bicarbonate removal (7.13 ± 0.04 vs 7.21 ± 0.05; p < 0.001) despite no attempt to realkalinize the blood. Our modeling showed that dialysate electrolyte composition, plasma albumin, and plasma total CO2 accurately predict the measured pH of blood exiting the dialyser. However, the final effluent dose exceeded conventional doses, depleting plasma glucose and electrolytes, such as potassium and phosphate. CONCLUSIONS Bicarbonate dialysis results in CO2 removal at rates comparable with existing low-flow extracorporeal CO2 removal in a large animal model, but the final dialysis dose delivered needs to be reduced before the technique can be used for prolonged periods.
Collapse
|
55
|
Lukitsch B, Koller R, Ecker P, Elenkov M, Janeczek C, Pekovits M, Haddadi B, Jordan C, Gfoehler M, Harasek M. Water as a Blood Model for Determination of CO 2 Removal Performance of Membrane Oxygenators. MEMBRANES 2021; 11:membranes11050356. [PMID: 34066152 PMCID: PMC8151077 DOI: 10.3390/membranes11050356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 11/23/2022]
Abstract
CO2 removal via membrane oxygenators has become an important and reliable clinical technique. Nevertheless, oxygenators must be further optimized to increase CO2 removal performance and to reduce severe side effects. Here, in vitro tests with water can significantly reduce costs and effort during development. However, they must be able to reasonably represent the CO2 removal performance observed with blood. In this study, the deviation between the CO2 removal rate determined in vivo with porcine blood from that determined in vitro with water is quantified. The magnitude of this deviation (approx. 10%) is consistent with results reported in the literature. To better understand the remaining difference in CO2 removal rate and in order to assess the application limits of in vitro water tests, CFD simulations were conducted. They allow to quantify and investigate the influences of the differing fluid properties of blood and water on the CO2 removal rate. The CFD results indicate that the main CO2 transport resistance, the diffusional boundary layer, behaves generally differently in blood and water. Hence, studies of the CO2 boundary layer should be preferably conducted with blood. In contrast, water tests can be considered suitable for reliable determination of the total CO2 removal performance of oxygenators.
Collapse
Affiliation(s)
- Benjamin Lukitsch
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, 1060 Vienna, Austria; (R.K.); (P.E.); (M.P.); (B.H.); (C.J.); (M.H.)
- Correspondence:
| | - Raffael Koller
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, 1060 Vienna, Austria; (R.K.); (P.E.); (M.P.); (B.H.); (C.J.); (M.H.)
| | - Paul Ecker
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, 1060 Vienna, Austria; (R.K.); (P.E.); (M.P.); (B.H.); (C.J.); (M.H.)
- Institute of Engineering Design and Product Development, TU Wien, 1060 Vienna, Austria; (M.E.); (C.J.); (M.G.)
| | - Martin Elenkov
- Institute of Engineering Design and Product Development, TU Wien, 1060 Vienna, Austria; (M.E.); (C.J.); (M.G.)
| | - Christoph Janeczek
- Institute of Engineering Design and Product Development, TU Wien, 1060 Vienna, Austria; (M.E.); (C.J.); (M.G.)
| | - Markus Pekovits
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, 1060 Vienna, Austria; (R.K.); (P.E.); (M.P.); (B.H.); (C.J.); (M.H.)
- Institute of Engineering Design and Product Development, TU Wien, 1060 Vienna, Austria; (M.E.); (C.J.); (M.G.)
| | - Bahram Haddadi
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, 1060 Vienna, Austria; (R.K.); (P.E.); (M.P.); (B.H.); (C.J.); (M.H.)
| | - Christian Jordan
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, 1060 Vienna, Austria; (R.K.); (P.E.); (M.P.); (B.H.); (C.J.); (M.H.)
| | - Margit Gfoehler
- Institute of Engineering Design and Product Development, TU Wien, 1060 Vienna, Austria; (M.E.); (C.J.); (M.G.)
| | - Michael Harasek
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, 1060 Vienna, Austria; (R.K.); (P.E.); (M.P.); (B.H.); (C.J.); (M.H.)
| |
Collapse
|
56
|
Sharker MR, Sukhan ZP, Sumi KR, Choi SK, Choi KS, Kho KH. Molecular Characterization of Carbonic Anhydrase II (CA II) and Its Potential Involvement in Regulating Shell Formation in the Pacific Abalone, Haliotis discus hannai. Front Mol Biosci 2021; 8:669235. [PMID: 34026840 PMCID: PMC8138131 DOI: 10.3389/fmolb.2021.669235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/14/2021] [Indexed: 12/31/2022] Open
Abstract
Carbonic anhydrases (CAs) are a family of metalloenzymes that can catalyze the reversible interconversion of CO2/HCO3–, ubiquitously present in both prokaryotes and eukaryotes. In the present study, a CA II (designated as HdhCA II) was sequenced and characterized from the mantle tissue of the Pacific abalone. The complete sequence of HdhCA II was 1,169 bp, encoding a polypeptide of 349 amino acids with a NH2-terminal signal peptide and a CA architectural domain. The predicted protein shared 98.57% and 68.59% sequence identities with CA II of Haliotis gigantea and Haliotis tuberculata, respectively. Two putative N-linked glycosylation motifs and two cysteine residues could potentially form intramolecular disulfide bond present in HdhCA II. The phylogenetic analysis indicated that HdhCA II was placed in a gastropod clade and robustly clustered with CA II of H. gigantea and H. tuberculata. The highest level of HdhCA II mRNA expression was detected in the shell forming mantle tissue. During ontogenesis, the mRNA of HdhCA II was detected in all stages, with larval shell formation stage showing the highest expression level. The in situ hybridization results detected the HdhCA II mRNA expression in the epithelial cells of the dorsal mantle pallial, an area known to express genes involved in the formation of a nacreous layer in the shell. This is the first report of HdhCA II in the Pacific abalone, and the results of this study indicate that this gene might play a role in the shell formation of abalone.
Collapse
Affiliation(s)
- Md Rajib Sharker
- Department of Fisheries Science, College of Fisheries and Ocean Sciences, Chonnam National University, Yeosu, South Korea.,Department of Fisheries Biology and Genetics, Faculty of Fisheries, Patuakhali Science and Technology University, Patuakhali, Bangladesh
| | - Zahid Parvez Sukhan
- Department of Fisheries Science, College of Fisheries and Ocean Sciences, Chonnam National University, Yeosu, South Korea
| | - Kanij Rukshana Sumi
- Department of Aquaculture, Faculty of Fisheries, Patuakhali Science and Technology University, Patuakhali, Bangladesh
| | - Sang Ki Choi
- Department of Biological Sciences, College of Life Industry and Science, Sunchon National University, Jeonnam, South Korea
| | - Kap Seong Choi
- Department of Food Science and Technology, Sunchon National University, Jeonnam, South Korea
| | - Kang Hee Kho
- Department of Fisheries Science, College of Fisheries and Ocean Sciences, Chonnam National University, Yeosu, South Korea
| |
Collapse
|
57
|
Bertling E, Blaesse P, Seja P, Kremneva E, Gateva G, Virtanen MA, Summanen M, Spoljaric I, Uvarov P, Blaesse M, Paavilainen VO, Vutskits L, Kaila K, Hotulainen P, Ruusuvuori E. Carbonic anhydrase seven bundles filamentous actin and regulates dendritic spine morphology and density. EMBO Rep 2021; 22:e50145. [PMID: 33719157 PMCID: PMC8025036 DOI: 10.15252/embr.202050145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 01/14/2021] [Accepted: 01/28/2021] [Indexed: 01/02/2023] Open
Abstract
Intracellular pH is a potent modulator of neuronal functions. By catalyzing (de)hydration of CO2 , intracellular carbonic anhydrase (CAi ) isoforms CA2 and CA7 contribute to neuronal pH buffering and dynamics. The presence of two highly active isoforms in neurons suggests that they may serve isozyme-specific functions unrelated to CO2 -(de)hydration. Here, we show that CA7, unlike CA2, binds to filamentous actin, and its overexpression induces formation of thick actin bundles and membrane protrusions in fibroblasts. In CA7-overexpressing neurons, CA7 is enriched in dendritic spines, which leads to aberrant spine morphology. We identified amino acids unique to CA7 that are required for direct actin interactions, promoting actin filament bundling and spine targeting. Disruption of CA7 expression in neocortical neurons leads to higher spine density due to increased proportion of small spines. Thus, our work demonstrates highly distinct subcellular expression patterns of CA7 and CA2, and a novel, structural role of CA7.
Collapse
Affiliation(s)
- Enni Bertling
- Neuroscience CenterHiLIFEUniversity of HelsinkiHelsinkiFinland
- Minerva Institute for Medical ResearchBiomedicum Helsinki 2UHelsinkiFinland
| | - Peter Blaesse
- Institute of Physiology IWestfälische Wilhelms‐Universität MünsterMünsterGermany
- Faculty of Biological and Environmental SciencesMolecular and Integrative Biosciences, and HiLIFEUniversity of HelsinkiHelsinkiFinland
| | - Patricia Seja
- Neuroscience CenterHiLIFEUniversity of HelsinkiHelsinkiFinland
- Faculty of Biological and Environmental SciencesMolecular and Integrative Biosciences, and HiLIFEUniversity of HelsinkiHelsinkiFinland
| | | | | | - Mari A Virtanen
- Neuroscience CenterHiLIFEUniversity of HelsinkiHelsinkiFinland
- Faculty of Biological and Environmental SciencesMolecular and Integrative Biosciences, and HiLIFEUniversity of HelsinkiHelsinkiFinland
- Department of Anesthesiology, PharmacologyIntensive Care and Emergency MedicineUniversity Hospitals of GenevaGenevaSwitzerland
| | - Milla Summanen
- Neuroscience CenterHiLIFEUniversity of HelsinkiHelsinkiFinland
- Faculty of Biological and Environmental SciencesMolecular and Integrative Biosciences, and HiLIFEUniversity of HelsinkiHelsinkiFinland
| | - Inkeri Spoljaric
- Neuroscience CenterHiLIFEUniversity of HelsinkiHelsinkiFinland
- Faculty of Biological and Environmental SciencesMolecular and Integrative Biosciences, and HiLIFEUniversity of HelsinkiHelsinkiFinland
| | - Pavel Uvarov
- Neuroscience CenterHiLIFEUniversity of HelsinkiHelsinkiFinland
- Faculty of Biological and Environmental SciencesMolecular and Integrative Biosciences, and HiLIFEUniversity of HelsinkiHelsinkiFinland
| | | | | | - Laszlo Vutskits
- Department of Anesthesiology, PharmacologyIntensive Care and Emergency MedicineUniversity Hospitals of GenevaGenevaSwitzerland
| | - Kai Kaila
- Neuroscience CenterHiLIFEUniversity of HelsinkiHelsinkiFinland
- Faculty of Biological and Environmental SciencesMolecular and Integrative Biosciences, and HiLIFEUniversity of HelsinkiHelsinkiFinland
| | - Pirta Hotulainen
- Neuroscience CenterHiLIFEUniversity of HelsinkiHelsinkiFinland
- Minerva Institute for Medical ResearchBiomedicum Helsinki 2UHelsinkiFinland
| | - Eva Ruusuvuori
- Neuroscience CenterHiLIFEUniversity of HelsinkiHelsinkiFinland
- Faculty of Biological and Environmental SciencesMolecular and Integrative Biosciences, and HiLIFEUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
58
|
Characterization and Comparative Transcriptomic Analysis of Skeletal Muscle in Pekin Duck at Different Growth Stages Using RNA-Seq. Animals (Basel) 2021; 11:ani11030834. [PMID: 33809502 PMCID: PMC8000258 DOI: 10.3390/ani11030834] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 01/13/2023] Open
Abstract
Simple Summary Skeletal muscle is an important tissue and its development is strictly regulated by genes. In this study, in order to understand the muscle-related gene expression in Pekin duck, RNA-seq was performed to analyze and compare skeletal muscle at different growth stages. Alternative splicing, single nucleotide polymorphisms and insertion–deletions were detected, and 299 novel genes were discovered. MYL4, IGF2BP1, CSRP3, SPP1, KLHL31, LAMB2, LAMA2, ITGB1 and OPN played crucial roles in skeletal muscle development. Oxidative phosphorylation, ECM-receptor interaction, focal adhesion, carbon metabolism, and biosynthesis of amino acids participated in the regulation of skeletal muscle development in Pekin duck. This study provides an important reference for revealing the developmental mechanisms of pectoral and leg muscles in duck. Abstract Skeletal muscle, accounting for approximately 50% of body weight, is the largest and most important tissue. In this study, the gene expression profiles and pathways in skeletal muscle of Pekin duck were investigated and compared at embryonic day 17, 21, and 27 and postnatally at 6 months of age. An average of 49,555,936 reads in each sample was obtained from the transcriptome libraries. Over 70.0% of alternative splicing (AS) in each sample was mainly alternative 5′ first exon (transcription start site)—the first exon splicing (TSS) and alternative 3′ last exon (transcription terminal site)—the last exon splicing (TTS), indicating that TSS and TTS were the most common AS event in Pekin ducks, and these AS events were closely related to the regulation of muscle development at different growth stages. The results provided a valuable genomic resource for selective breeding and functional studies of genes. A total of 299 novel genes with ≥2 exons were obtained. There were 294 to 2806 differentially expressed genes (DEGs) in each pairwise comparison of Pekin duck. Notably, 90 DEGs in breast muscle and 9 DEGs in leg muscle were co-expressed at all developmental points. DEGs were validated by qPCR analysis, which confirmed the tendency of the expression. DEGs related to muscle development were involved in biological processes such as “endodermal cell differentiation”, “muscle cell cellular homeostasis”, “skeletal muscle tissue growth” and “skeletal muscle cell differentiation”, and were involved in pathways such as oxidative phosphorylation, ECM-receptor (extracellular matrix receptor) interaction, focal adhesion, carbon metabolism, and biosynthesis of amino acids. Some DEGs, including MYL4, IGF2BP1, CSRP3, SPP1 and KLHL31, as well as LAMB2, LAMA2, ITGB1 and OPN, played crucial roles in muscle growth and development. This study provides valuable information about the expression profile of mRNAs and pathways from duck skeletal muscle at different growth stages, and further functional study of these mRNAs and pathways could provide new ideas for studying the molecular networks of growth and development in duck skeletal muscle.
Collapse
|
59
|
Coll-Satue C, Bishnoi S, Chen J, Hosta-Rigau L. Stepping stones to the future of haemoglobin-based blood products: clinical, preclinical and innovative examples. Biomater Sci 2021; 9:1135-1152. [DOI: 10.1039/d0bm01767a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Critical overview of the different oxygen therapeutics developed so far to be used when donor blood is not available.
Collapse
Affiliation(s)
- Clara Coll-Satue
- Department of Health Technology
- Centre for Nanomedicine and Theranostics
- DTU Health Tech
- Technical University of Denmark
- 2800 Lyngby
| | - Shahana Bishnoi
- Department of Health Technology
- Centre for Nanomedicine and Theranostics
- DTU Health Tech
- Technical University of Denmark
- 2800 Lyngby
| | - Jiantao Chen
- Department of Health Technology
- Centre for Nanomedicine and Theranostics
- DTU Health Tech
- Technical University of Denmark
- 2800 Lyngby
| | - Leticia Hosta-Rigau
- Department of Health Technology
- Centre for Nanomedicine and Theranostics
- DTU Health Tech
- Technical University of Denmark
- 2800 Lyngby
| |
Collapse
|
60
|
Influences of Blood Lactate Levels on Cognitive Domains and Physical Health during a Sports Stress. Brief Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17239043. [PMID: 33291577 PMCID: PMC7729439 DOI: 10.3390/ijerph17239043] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 01/13/2023]
Abstract
The present review aims to examine the effects of high blood lactate levels in healthy adult humans, for instance, after a period of exhaustive exercise, on the functioning of the cerebral cortex. In some of the examined studies, high blood lactate levels were obtained not only through exhaustive exercise but also with an intravenous infusion of lactate while the subject was immobile. This allowed us to exclude the possibility that the observed post-exercise effects were nonspecific (e.g., cortical changes in temperature, acidity, etc.). We observed that, in both experimental conditions, high levels of blood lactate are associated with a worsening of important cognitive domains such as attention or working memory or stress, without gender differences. Moreover, in both experimental conditions, high levels of blood lactate are associated with an improvement of the primary motor area (M1) excitability. Outside the frontal lobe, the use of visual evoked potentials and somatosensory evoked potentials allowed us to observe, in the occipital and parietal lobe respectively, that high levels of blood lactate are associated with an amplitude’s increase and a latency’s reduction of the early components of the evoked responses. In conclusion, significant increases of blood lactate levels could exercise a double-action in the central nervous system (CNS), with a protecting role on primary cortical areas (such as M1, primary visual area, or primary somatosensory cortex), while reducing the efficiency of adjacent regions, such as the supplementary motor area (SMA) or prefrontal cortex. These observations are compatible with the possibility that lactate works in the brain not only as an energy substrate or an angiogenetic factor but also as a true neuromodulator, which can protect from stress. In this review, we will discuss the mechanisms and effects of lactic acid products produced during an anaerobic exercise lactate, focusing on their action at the level of the central nervous system with particular attention to the primary motor, the somatosensory evoked potentials, and the occipital and parietal lobe.
Collapse
|
61
|
Atangana E, Atangana A. Facemasks simple but powerful weapons to protect against COVID-19 spread: Can they have sides effects? RESULTS IN PHYSICS 2020; 19:103425. [PMID: 33014697 PMCID: PMC7525365 DOI: 10.1016/j.rinp.2020.103425] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 05/18/2023]
Abstract
In the last few months, the spread of COVID-19 among humans has caused serious damages around the globe letting many countries economically unstable. Results obtained from conducted research by epidemiologists and virologists showed that, COVID-19 is mainly spread from symptomatic individuals to others who are in close contact via respiratory droplets, mouth and nose, which are the primary mode of transmission. World health organization regulations to help stop the spread of this deadly virus, indicated that, it is compulsory to utilize respiratory protective devices such as facemasks in the public. Indeed, the use of these facemasks around the globe has helped reduce the spread of COVID-19. The primary aim of facemasks, is to avoid inhaling air that could contain droplets with COVID-19. We should note that, respiration process is the movement of oxygen from external atmosphere to the cells within tissue and the transport of carbon dioxide outside. However, the rebreathing of carbon dioxide using a facemask has not been taken into consideration. The hypercapnia (excess inhaled content of CO2) has been recognized to be related to symptoms of fatigue, discomfort, muscular weakness, headaches as well as drowsiness. Rebreathing of CO2 has been a key to concern regarding the use of a facemask. Rebreathing usually occur when an expired air that is rich in CO2 stays long than normal in the breathing space of the respirator after a breath. The increase of the arterial CO2 concentration leads to symptoms that are aforementioned. Studies have been conducted on facemask shortages and on the appropriate facemask required to reduce the spread of COVID-19; however no study has been conducted to assess the possible relationship between CO2 inhalation due to facemask, to determine and recommend which mask is appropriate in the reduction of the spread of the coronavirus while simultaneously avoid CO2 inhalation by the facemask users. In the current paper, we provided a literature review on the use of facemasks with the aim to determine which facemasks could be used to avoid re-inhaling rejected CO2. Additionally, we presented mathematical models depicting the transport of COVID-19 spread through wind with high speed. We considered first mathematical models for which the effect air-heterogeneity is neglected, such that air flow follows Markovian process with a retardation factor, these models considered two different scenarios, the speed of wind is constant and time-space dependent. Secondly, we assumed that the wind movement could follow different processes, including the power law process, fading memory process and a two-stage processes, these lead us to use differential operators with power law, exponential decay and the generalized Mittag-Leffler function with the aim to capture these processes. A numerical technique based on the Lagrange polynomial interpolation was used to solve some of these models numerically. The numerical solutions were coded in MATLAB software for simulations. The results obtained from the mathematical simulation showed that a wind with speed of 100 km/h could transport droplets as far as 300 m. The results obtained from these simulations together with those presented by other researchers lead us to conclude that, the wind could have helped spread COVID-19 in some places around the world, especially in coastal areas. Therefore, appropriate facemasks that could help avoid re-inhaling enough CO2 should be used every time one is in open air even when alone especially in windy environment.
Collapse
Affiliation(s)
- Ernestine Atangana
- Centre for Environmental Management, Faculty of Natural and Agricultural Science, University of the Free State Bloemfontein, 9301, South Africa
| | - Abdon Atangana
- Institute for Groundwater Studies, Faculty of Natural and Agricultural Sciences, University of the Free State, 9301 Bloemfontein, South Africa
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
62
|
Burianova V, Kalinin S, Supuran CT, Krasavin M. Radiotracers for positron emission tomography (PET) targeting tumour-associated carbonic anhydrase isoforms. Eur J Med Chem 2020; 213:113046. [PMID: 33303236 DOI: 10.1016/j.ejmech.2020.113046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/20/2020] [Accepted: 11/22/2020] [Indexed: 12/11/2022]
Abstract
The tumour-associated, cell membrane-bound isoforms IX and XII of human carbonic anhydrase (CA, EC 4.2.1.1) are overexpressed in cancer cells contributing to the hypoxic tumour pH/metabolism regulating machinery and as thus, can serve as markers of malignant neoplastic tissue. Inhibitors of CAs can be employed both for the treatment of hypoxic tumours and in the design of radiotracers for positron emission tomography and imaging of such cancers. The present review provides a comprehensive summary of the progress achieved to-date in the field of developing PET-tracers based on monoclonal antibodies, biomolecules, and small-molecule ligands of CA IX and XII.
Collapse
Affiliation(s)
- Valeria Burianova
- Institute of Chemistry, St. Petersburg State University, St. Petersburg, Russia
| | - Stanislav Kalinin
- Institute of Chemistry, St. Petersburg State University, St. Petersburg, Russia
| | - Claudiu T Supuran
- Neurofarba Department, Section of Pharmaceutical Sciences, University of Florence, Florence, Italy.
| | - Mikhail Krasavin
- Institute of Chemistry, St. Petersburg State University, St. Petersburg, Russia.
| |
Collapse
|
63
|
Manickavel S. Pathophysiology of respiratory failure and physiology of gas exchange during ECMO. Indian J Thorac Cardiovasc Surg 2020; 37:203-209. [PMID: 33967443 DOI: 10.1007/s12055-020-01042-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 01/11/2023] Open
Abstract
Lungs play a key role in sustaining cellular respiration by regulating the levels of oxygen and carbon dioxide in the blood. This is achieved by exchanging these gases between blood and ambient air across the alveolar capillary membrane by the process of diffusion. In the microstructure of the lung, gas exchange is compartmentalized and happens in millions of microscopic alveolar units. In situations of lung injury, this structural complexity is disrupted resulting in impaired gas exchange. Depending on the severity and the type of lung injury, different aspects of pulmonary physiology are affected. If the respiratory failure is refractory to ventilator support, extracorporeal membrane oxygenation (ECMO) can be utilized to support the gas exchange needs of the body. In ECMO, thin hollow fiber membranes made up of polymethylpentene act as blood-gas interface for diffusion. Decades of innovative engineering with membranes and their alignment with blood and gas flows has enabled modern oxygenators to achieve clinically and physiologically significant amount of gas exchange.
Collapse
Affiliation(s)
- Suresh Manickavel
- Miami Transplant Institute, University of Miami, 1801 NW 9th Ave, Miami, FL 33136 USA
| |
Collapse
|
64
|
Dervieux E, Bodinier Q, Uhring W, Théron M. Measuring hemoglobin spectra: searching for carbamino-hemoglobin. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:JBO-200170RR. [PMID: 33098280 PMCID: PMC7610246 DOI: 10.1117/1.jbo.25.10.105001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/28/2020] [Indexed: 05/06/2023]
Abstract
SIGNIFICANCE The arterial carbon dioxide (CO2) partial pressure PaCO2 is a clinically relevant variable. However, its measurement requires arterial blood sampling or bulky and expensive transcutaneous PtcCO2 meters. While the spectrophotometric determination of hemoglobin species-such as oxy-hemoglobin (O2Hb) and deoxy-hemoglobin (HHb)-allowed for the development of pulse oximetry, the measurement of CO2 blood content with minimal discomfort has not been addressed yet. AIM Characterizing human carbamino-hemoglobin (CO2Hb) absorption spectrum, which is missing from the literature. Providing the theoretical background that will allow for transcutaneous, noninvasive PaCO2 measurements. APPROACH A tonometry-based approach was used to obtain gas-equilibrated, lysed, diluted human blood. Equilibration was performed with both CO2, dinitrogen (N2), and ambient air. Spectrophotometric measurements were carried out on the 235- to 1000-nm range. A theoretical background was also derived from that of pulse oximetry. RESULTS The absorption spectra of both CO2Hb and HHb were extremely close and comparable with that of state-of-the-art HHb. The above-mentioned theoretical background led to an estimated relative error above 30% on the measured amount of CO2Hb in a subject's blood. Auxiliary measurements revealed that the use of ethylene diamine tetraacetic acid did not interfere with spectrophotometric measurements, whereas sodium metabisulfite did. CONCLUSIONS CO2Hb absorption spectrum was measured for the first time. Such spectrum being close to that of HHb, the use of a theoretical background based on pulse oximetry theory for noninvasive PaCO2 measurement seems extremely challenging.
Collapse
Affiliation(s)
- Emmanuel Dervieux
- BiOSENCY, Cesson-Sévigné, France
- University of Strasbourg and CNRS, Strasbourg Cedex, France
- Address all correspondence to Emmanuel Dervieux,
| | | | | | - Michaël Théron
- Université de Bretagne Occidentale, ORPHY, Brest, France
| |
Collapse
|
65
|
Redant S, De Bels D, Barbance O, Loulidi G, Honoré PM. Extracorporeal CO2 Removal Integrated within a Continuous Renal Replacement Circuit Offers Multiple Advantages. Blood Purif 2020; 50:9-16. [PMID: 32585671 DOI: 10.1159/000507875] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/13/2020] [Indexed: 11/19/2022]
Abstract
Extracorporeal CO2 removal within a continuous renal replacement therapy circuit offers multiple advantages for the regulation of the CO2 extraction. The authors review the impact of the dialysate solution, the buffer, and the anticoagulation on CO2 removal. They propose a theoretical model of the ideal circuit for the optimization of CO2 extraction.
Collapse
Affiliation(s)
- Sébastien Redant
- ICU Department, Brugmann University Hospital, Brussels, Belgium,
| | - David De Bels
- ICU Department, Brugmann University Hospital, Brussels, Belgium
| | - Oceane Barbance
- ICU Department, Brugmann University Hospital, Brussels, Belgium
| | - Ghalil Loulidi
- ICU Department, Brugmann University Hospital, Brussels, Belgium
| | | |
Collapse
|
66
|
Junghans P, Strauch G, Voigt J. In vitro application of carbonic anhydrase to accelerate the equilibration of 18O between H 2O and CO 2 for the rapid measurement of 18O/ 16O isotope ratios in aqueous samples. ISOTOPES IN ENVIRONMENTAL AND HEALTH STUDIES 2020; 56:314-323. [PMID: 32490744 DOI: 10.1080/10256016.2020.1772253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
A novel method of the accelerated equilibration of 18O between CO2 and H2O for the measurement of the 18O/16O isotope ratios in aqueous samples with natural isotope abundances is presented. This rapid equilibrium method is based on the in vitro application of the enzyme carbonic anhydrase (CA). The CA from bovine erythrocytes was adsorptively fixed to 3-mm glass beads with an etched surface. After the addition of this carrier-fixed CA catalyst to the water sample, the isotope equilibrium was already reached after 1 h. The previously used non-catalysed 18O isotope exchange in water samples needs about 24 h. Whole blood samples also showed fast 18O isotope equilibration, which definitely results from the native presence of CA in erythrocytes. By shortening the time for sample preparation, the CA catalysed technique can significantly increase the throughput of the samples to be measured, and also 18O and 2H measurement by means of isotope ratio mass spectrometry (IRMS) may be synchronized. The 2H and 18O sample preparation can be performed in the same reaction vessel because cross-effects at the simultaneous use of Pt and CA catalysts do not occur.
Collapse
Affiliation(s)
- Peter Junghans
- Institute of Nutritional Physiology "Oskar Kellner", Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Gerhard Strauch
- Helmholtz-Zentrum für Umweltforschung - UFZ, Leipzig, Germany
| | - Jürgen Voigt
- Institute of Nutritional Physiology "Oskar Kellner", Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| |
Collapse
|
67
|
Crosslinked on novel nanofibers with thermophilic carbonic anhydrase for carbon dioxide sequestration. Int J Biol Macromol 2020; 152:930-938. [DOI: 10.1016/j.ijbiomac.2019.11.234] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/18/2019] [Accepted: 11/29/2019] [Indexed: 11/21/2022]
|
68
|
A Proof of Concept Study, Demonstrating Extracorporeal Carbon Dioxide Removal Using Hemodialysis with a Low Bicarbonate Dialysate. ASAIO J 2020; 65:605-613. [PMID: 30281542 DOI: 10.1097/mat.0000000000000879] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Extracorporeal carbon dioxide removal (ECCO2R) devices remove CO2 directly from blood, facilitating ultraprotective ventilation or even providing an alternative to mechanical ventilation. However, ECCO2R is not widely available, whereas dialysis is available in most intensive care units (ICUs). Prior attempts to provide ECCO2R with dialysis, by removing CO2 in the form of bicarbonate, have been plagued by metabolic acidosis. We hypothesized that bicarbonate dialysis is feasible, provided the plasma strong ion difference is maintained. We used a mathematical model to investigate the effects of bicarbonate removal on pH and CO2 in plasma, and performed in-vitro experiments to test CO2 removal using three dialysates with different bicarbonate concentrations (0, 16, and 32 mmol·L). Our modeling predicted a reduction in partial pressures of CO2 (PCO2) and increased pH with progressive lowering of plasma bicarbonate, provided strong ion difference and plasma proteins (Atot) were maintained. In our in-vitro experiments, total CO2 removal, scaled up to an adult size filter, was highest with our dialysate containing no bicarbonate, where we removed the equivalent of 94 ml·min (±3.0) of CO2. Under the same conditions, our dialysate containing a conventional bicarbonate concentration (32 mmol·L) only removed 5 ml·min (±4; p < 0.001). As predicted, pH increased following bicarbonate removal. Our data show that dialysis using low bicarbonate dialysates is feasible and results in a reduction in plasma PCO2. When scaled up, to estimate equivalent CO2 removal with an adult dialysis circuit, the amount removed competes with existing low-flow ECCO2R devices.
Collapse
|
69
|
Zhang X, Antonelo D, Hendrix J, To V, Campbell Y, Von Staden M, Li S, Suman SP, Zhai W, Chen J, Zhu H, Schilling W. Proteomic Characterization of Normal and Woody Breast Meat from Broilers of Five Genetic Strains. MEAT AND MUSCLE BIOLOGY 2020. [DOI: 10.22175/mmb.8759] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Woody breast (WB) is an emergent broiler myopathy that is macroscopically characterized by hardened areas of the Pectoralis major muscle. Five genetic strains (strains 1–5) of mixed-sex broilers were fed either a control or an amino acid (AA)-reduced diet (20% reduction of digestible lysine, total sulfur AAs, and threonine) for 8 wk. Differences between whole-muscle proteome profiles of normal breast (NB; n = 6 gels) and WB tissue (n = 6 gels) were characterized for (1) broiler strains 1–5 that were fed with a control diet and collected at 0 min; (2) strain 5 (control diet) that were collected at 15 min, 4 h, and 24 h; (3) strain 5 (0 min) that were fed with a control and an AA-reduced diet. Birds that yielded WB were heavier and had a greater pH at death (pH0min) than normal birds. Results indicated that 21 proteins were more abundant (P < 0.05) and 3 proteins were less abundant (P < 0.05) in WB compared with NB. The differentially abundant proteins in each comparison were consistently upregulated or downregulated in WB tissue although the different protein profiles were noticed for each comparison. Strains 2 and 5 had more protein profile differences between WB and NB meat than strains 1, 3, and 4, which potentially indicates a stronger genetic component for strains 2 and 5 with respect to WB formation. The proteins that were more abundant in WB compared to NB are involved in carbohydrate metabolism, oxidative stress, cytoskeleton structure, and transport and signaling. Ingenuity Pathway Analysis indicated that regulated pathways in WB were mainly related to carbohydrate metabolism, cellular repair, cellular organization and maintenance, and cell death and survival. The results support the potential causes of WB myopathy, including the presence of hypoxia, oxidative stress, increased apoptosis, misfolded proteins, and inflammation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Wes Schilling
- Mississippi State University Department of Food Science, Nutrition and Health Promotion
| |
Collapse
|
70
|
Jensen EL, Maberly SC, Gontero B. Insights on the Functions and Ecophysiological Relevance of the Diverse Carbonic Anhydrases in Microalgae. Int J Mol Sci 2020; 21:E2922. [PMID: 32331234 PMCID: PMC7215798 DOI: 10.3390/ijms21082922] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/19/2020] [Accepted: 04/20/2020] [Indexed: 01/07/2023] Open
Abstract
Carbonic anhydrases (CAs) exist in all kingdoms of life. They are metalloenzymes, often containing zinc, that catalyze the interconversion of bicarbonate and carbon dioxide-a ubiquitous reaction involved in a variety of cellular processes. So far, eight classes of apparently evolutionary unrelated CAs that are present in a large diversity of living organisms have been described. In this review, we focus on the diversity of CAs and their roles in photosynthetic microalgae. We describe their essential role in carbon dioxide-concentrating mechanisms and photosynthesis, their regulation, as well as their less studied roles in non-photosynthetic processes. We also discuss the presence in some microalgae, especially diatoms, of cambialistic CAs (i.e., CAs that can replace Zn by Co, Cd, or Fe) and, more recently, a CA that uses Mn as a metal cofactor, with potential ecological relevance in aquatic environments where trace metal concentrations are low. There has been a recent explosion of knowledge about this well-known enzyme with exciting future opportunities to answer outstanding questions using a range of different approaches.
Collapse
Affiliation(s)
- Erik L. Jensen
- Aix Marseille Univ, CNRS, BIP, UMR 7281, IMM, FR3479, 31 Chemin J. Aiguier, CEDEX 20, 13 402 Marseille, France;
| | - Stephen C. Maberly
- UK Centre for Ecology & Hydrology, Lake Ecosystems Group, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LA1 4AP, UK;
| | - Brigitte Gontero
- Aix Marseille Univ, CNRS, BIP, UMR 7281, IMM, FR3479, 31 Chemin J. Aiguier, CEDEX 20, 13 402 Marseille, France;
| |
Collapse
|
71
|
Single-cell O 2 exchange imaging shows that cytoplasmic diffusion is a dominant barrier to efficient gas transport in red blood cells. Proc Natl Acad Sci U S A 2020; 117:10067-10078. [PMID: 32321831 PMCID: PMC7211990 DOI: 10.1073/pnas.1916641117] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Blood is routinely tested for gas-carrying capacity (total hemoglobin), but this cannot determine the speed at which red blood cells (RBCs) exchange gases. Such information is critical for evaluating the physiological fitness of RBCs, which have very limited capillary transit times (<1 s) for turning over substantial volumes of gas. We developed a method to quantify gas exchange in individual RBCs and used it to show that restricted diffusion, imposed by hemoglobin crowding, is a major barrier to gas flows. Consequently, hematological disorders manifesting a change in cell shape or hemoglobin concentration have uncharted implications on gas exchange, which we illustrate using inherited anemias. With its single-cell resolution, the method can identify physiologically inferior subpopulations, providing a clinically useful appraisal of blood quality. Disorders of oxygen transport are commonly attributed to inadequate carrying capacity (anemia) but may also relate to inefficient gas exchange by red blood cells (RBCs), a process that is poorly characterized yet assumed to be rapid. Without direct measurements of gas exchange at the single-cell level, the barriers to O2 transport and their relationship with hematological disorders remain ill defined. We developed a method to track the flow of O2 in individual RBCs by combining ultrarapid solution switching (to manipulate gas tension) with single-cell O2 saturation fluorescence microscopy. O2 unloading from RBCs was considerably slower than previously estimated in acellular hemoglobin solutions, indicating the presence of diffusional barriers in intact cells. Rate-limiting diffusion across cytoplasm was demonstrated by osmotically induced changes to hemoglobin concentration (i.e., diffusive tortuosity) and cell size (i.e., diffusion pathlength) and by comparing wild-type cells with hemoglobin H (HbH) thalassemia (shorter pathlength and reduced tortuosity) and hereditary spherocytosis (HS; expanded pathlength). Analysis of the distribution of O2 unloading rates in HS RBCs identified a subpopulation of spherocytes with greatly impaired gas exchange. Tortuosity imposed by hemoglobin was verified by demonstrating restricted diffusivity of CO2, an acidic gas, from the dissipative spread of photolytically uncaged H+ ions across cytoplasm. Our findings indicate that cytoplasmic diffusion, determined by pathlength and tortuosity, is a major barrier to efficient gas handling by RBCs. Consequently, changes in RBC shape and hemoglobin concentration, which are common manifestations of hematological disorders, can have hitherto unrecognized and clinically significant implications on gas exchange.
Collapse
|
72
|
Grundlagen der Volumetrischen Kapnographie. Anaesthesist 2020; 69:287-296. [DOI: 10.1007/s00101-020-00744-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
73
|
Dichiera AM, McMillan OJL, Clifford AM, Goss GG, Brauner CJ, Esbaugh AJ. The importance of a single amino acid substitution in reduced red blood cell carbonic anhydrase function of early-diverging fish. J Comp Physiol B 2020; 190:287-296. [PMID: 32146532 DOI: 10.1007/s00360-020-01270-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/27/2020] [Accepted: 02/12/2020] [Indexed: 02/07/2023]
Abstract
In most vertebrates, red blood cell carbonic anhydrase (RBC CA) plays a critical role in carbon dioxide (CO2) transport and excretion across epithelial tissues. Many early-diverging fishes (e.g., hagfish and chondrichthyans) are unique in possessing plasma-accessible membrane-bound CA-IV in the gills, allowing some CO2 excretion to occur without involvement from the RBCs. However, implications of this on RBC CA function are unclear. Through homology cloning techniques, we identified the putative protein sequences for RBC CA from nine early-diverging species. In all cases, these sequences contained a modification of the proton shuttle residue His-64, and activity measurements from three early-diverging fish demonstrated significantly reduced CA activity. Site-directed mutagenesis was used to restore the His-64 proton shuttle, which significantly increased RBC CA activity, clearly illustrating the functional significance of His-64 in fish red blood cell CA activity. Bayesian analyses of 55 vertebrate cytoplasmic CA isozymes suggested that independent evolutionary events led to the modification of His-64 and thus reduced CA activity in hagfish and chondrichthyans. Additionally, in early-diverging fish that possess branchial CA-IV, there is an absence of His-64 in RBC CAs and the absence of the Root effect [where a reduction in pH reduces hemoglobin's capacity to bind with oxygen (O2)]. Taken together, these data indicate that low-activity RBC CA may be present in all fish with branchial CA-IV, and that the high-activity RBC CA seen in most teleosts may have evolved in conjunction with enhanced hemoglobin pH sensitivity.
Collapse
Affiliation(s)
- Angelina M Dichiera
- Marine Science Institute, The University of Texas at Austin, 750 Channel View Drive, Port Aransas, TX, 78373-5015, USA.
| | - Olivia J L McMillan
- Zoology Department, The University of British Columbia, 6270 University Blvd., Vancouver, BC, V6T 1Z4, Canada
| | - Alexander M Clifford
- Scripps Institute of Oceanography, The University of California, San Diego, 9500 Gilman Drive #0202, La Jolla, CA, 92093-0202, USA
| | - Greg G Goss
- Department of Biological Sciences, The University of Alberta, 116 St. and 85 Ave., Edmonton, AB, T6G 2R3, Canada.,Bamfield Marine Sciences Centre, 100 Pachena Road, Bamfield, BC, V0R 1B0, Canada
| | - Colin J Brauner
- Zoology Department, The University of British Columbia, 6270 University Blvd., Vancouver, BC, V6T 1Z4, Canada
| | - Andrew J Esbaugh
- Marine Science Institute, The University of Texas at Austin, 750 Channel View Drive, Port Aransas, TX, 78373-5015, USA
| |
Collapse
|
74
|
Colombo R, Wu MA, Castelli A, Fossali T, Rech R, Ottolina D, Cogliati C, Catena E. The effects of severe hemoconcentration on acid-base equilibrium in critically ill patients: the forgotten role of buffers in whole blood. J Crit Care 2020; 57:177-184. [PMID: 32171088 DOI: 10.1016/j.jcrc.2020.02.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/09/2020] [Accepted: 02/25/2020] [Indexed: 01/17/2023]
Abstract
PURPOSE Idiopathic Systemic Capillary Leak Syndrome (ISCLS) is a paroxysmal permeability disorder characterized by abrupt onset of shock and hemoconcentration due to massive shift of fluids and proteins from the intravascular to the interstitial compartment. We hypothesize that increased hemoglobin concentration has a pivotal role in the acid-base imbalance during life-threatening crises. MATERIALS AND METHODS Analysis of the acid-base balance fluctuations during six severe ISCLS flares admitted to ICU of a referral center for ISCLS. RESULTS Acid-base equilibrium was assessed for plasma and the whole blood by single and multicompartmental models. The acute phase of ISCLS was characterized by shock, hypoalbuminemia, severe hemoconcentration, and acidosis. The physical-chemical approach for plasma found a remarkable component of unmeasured anions (SIG) during the acute phase. After correction of the physical-chemical model for the whole blood, the SIG variations disappeared because the buffer role of hemoglobin was relevant. CONCLUSION Hemoglobin has a remarkable role in buffering metabolic acidosis during the shock phase of ISCLS. In these circumstances, the assessment of acid-base equilibrium in plasma alone may overestimate unmeasured anions. On the contrary, the physical-chemical model corrected for whole blood better explains the metabolic component of acid-base imbalance when marked shift of hemoglobin concentration occurs.
Collapse
Affiliation(s)
- Riccardo Colombo
- Department of Anesthesiology and Intensive Care, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, Polo Universitario, University of Milan, Via G.B. Grassi 74, 20157 Milan, Italy.
| | - Maddalena Alessandra Wu
- Department of Biomedical and Clinical Sciences, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, Polo Universitario, University of Milan, Via G.B. Grassi 74, 20157 Milan, Italy
| | - Antonio Castelli
- Department of Anesthesiology and Intensive Care, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, Polo Universitario, University of Milan, Via G.B. Grassi 74, 20157 Milan, Italy
| | - Tommaso Fossali
- Department of Anesthesiology and Intensive Care, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, Polo Universitario, University of Milan, Via G.B. Grassi 74, 20157 Milan, Italy
| | - Roberto Rech
- Department of Anesthesiology and Intensive Care, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, Polo Universitario, University of Milan, Via G.B. Grassi 74, 20157 Milan, Italy
| | - Davide Ottolina
- Department of Anesthesiology and Intensive Care, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, Polo Universitario, University of Milan, Via G.B. Grassi 74, 20157 Milan, Italy
| | - Chiara Cogliati
- Department of Biomedical and Clinical Sciences, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, Polo Universitario, University of Milan, Via G.B. Grassi 74, 20157 Milan, Italy
| | - Emanuele Catena
- Department of Anesthesiology and Intensive Care, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, Polo Universitario, University of Milan, Via G.B. Grassi 74, 20157 Milan, Italy
| |
Collapse
|
75
|
Retta MA, Abera MK, Berghuijs HN, Verboven P, Struik PC, Nicolaï BM. In silico study of the role of cell growth factors in photosynthesis using a virtual leaf tissue generator coupled to a microscale photosynthesis gas exchange model. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:997-1009. [PMID: 31616944 PMCID: PMC6977192 DOI: 10.1093/jxb/erz451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 09/30/2019] [Indexed: 06/10/2023]
Abstract
Computational tools that allow in silico analysis of the role of cell growth and division on photosynthesis are scarce. We present a freely available tool that combines a virtual leaf tissue generator and a two-dimensional microscale model of gas transport during C3 photosynthesis. A total of 270 mesophyll geometries were generated with varying degrees of growth anisotropy, growth extent, and extent of schizogenous airspace formation in the palisade mesophyll. The anatomical properties of the virtual leaf tissue and microscopic cross-sections of actual leaf tissue of tomato (Solanum lycopersicum L.) were statistically compared. Model equations for transport of CO2 in the liquid phase of the leaf tissue were discretized over the geometries. The virtual leaf tissue generator produced a leaf anatomy of tomato that was statistically similar to real tomato leaf tissue. The response of photosynthesis to intercellular CO2 predicted by a model that used the virtual leaf tissue geometry compared well with measured values. The results indicate that the light-saturated rate of photosynthesis was influenced by interactive effects of extent and directionality of cell growth and degree of airspace formation through the exposed surface of mesophyll per leaf area. The tool could be used further in investigations of improving photosynthesis and gas exchange in relation to cell growth and leaf anatomy.
Collapse
Affiliation(s)
- Moges A Retta
- Division BIOSYST-MeBioS, KU Leuven-University of Leuven, Willem de Croylaan 42, B-3001 Leuven, Belgium
| | - Metadel K Abera
- Division BIOSYST-MeBioS, KU Leuven-University of Leuven, Willem de Croylaan 42, B-3001 Leuven, Belgium
| | - Herman Nc Berghuijs
- Centre for Crop Systems Analysis, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- BioSolar Cells, 6700 AB Wageningen, The Netherlands
- Department of Crop Production Ecology, Swedish University of Agricultural Sciences, Ulls väg 16, 75651 Uppsala, Sweden
| | - Pieter Verboven
- Division BIOSYST-MeBioS, KU Leuven-University of Leuven, Willem de Croylaan 42, B-3001 Leuven, Belgium
| | - Paul C Struik
- Centre for Crop Systems Analysis, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- BioSolar Cells, 6700 AB Wageningen, The Netherlands
| | - Bart M Nicolaï
- Division BIOSYST-MeBioS, KU Leuven-University of Leuven, Willem de Croylaan 42, B-3001 Leuven, Belgium
- Flanders Centre of Postharvest Technology, Willem de Croylaan 42, B-3001 Leuven, Belgium
| |
Collapse
|
76
|
Melzner F, Mark FC, Seibel BA, Tomanek L. Ocean Acidification and Coastal Marine Invertebrates: Tracking CO 2 Effects from Seawater to the Cell. ANNUAL REVIEW OF MARINE SCIENCE 2020; 12:499-523. [PMID: 31451083 DOI: 10.1146/annurev-marine-010419-010658] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In the last few decades, numerous studies have investigated the impacts of simulated ocean acidification on marine species and communities, particularly those inhabiting dynamic coastal systems. Despite these research efforts, there are many gaps in our understanding, particularly with respect to physiological mechanisms that lead to pathologies. In this review, we trace how carbonate system disturbances propagate from the coastal environment into marine invertebrates and highlight mechanistic links between these disturbances and organism function. We also point toward several processes related to basic invertebrate biology that are severely understudied and prevent an accurate understanding of how carbonate system dynamics influence organismic homeostasis and fitness-related traits. We recommend that significant research effort be directed to studying cellular phenotypes of invertebrates acclimated or adapted to elevated seawater pCO2 using biochemical and physiological methods.
Collapse
Affiliation(s)
- Frank Melzner
- Marine Ecology Research Division, GEOMAR Helmholtz Centre for Ocean Research Kiel, 24105 Kiel, Germany;
| | - Felix C Mark
- Department of Integrative Ecophysiology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany;
| | - Brad A Seibel
- College of Marine Science, University of South Florida, St. Petersburg, Florida 33701, USA;
| | - Lars Tomanek
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, California 93407, USA;
| |
Collapse
|
77
|
Tas M, Senturk E, Ekinci D, Demirdag R, Comakli V, Bayram M, Akyuz M, Senturk M, Supuran CT. Comparison of blood carbonic anhydrase activity of athletes performing interval and continuous running exercise at high altitude. J Enzyme Inhib Med Chem 2019; 34:218-224. [PMID: 30560698 PMCID: PMC6292344 DOI: 10.1080/14756366.2018.1545768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 10/30/2018] [Accepted: 11/05/2018] [Indexed: 11/12/2022] Open
Abstract
The effects of high-intensity interval and continuous exercise on erythrocytes carbonic anhydrase (CA, EC 4.2.1.1) activity levels were scarcely investigated up until now. Here we present a study focused on the CA activity from erythrocytes of athletes experiencing interval and continuous training for 6 weeks, during cold weather and at high altitude (> 1600 m). We observed a 50% increase in the blood CA activity at the second week after initiation of the training in both interval and continuos running groups, whereas the control group did not experience any variation in the enzyme activity levels. In the trained individuals a mild decrease in their body mass, BMI and an increased [Formula: see text] were also observed. The CA activity returned at the basal values after 4-6 weeks after the training started, probably proving that a metabolic compensation occurred without the need of an enhanced enzyme activity. The unexpected 50% rise of activity for an enzyme which acts as a very efficient catalyst for CO2 hydration/bicarbonate dehydration, such as the blood CA, deserves further investigations for better understanding the physiologic basis of this phenomenon.
Collapse
Affiliation(s)
- Murat Tas
- Faculty of Sport Sciences, Manisa Celal Bayar University, Manisa, Turkey
| | - Esra Senturk
- School of Health Services, Agri Ibrahim Cecen University, Agri, Turkey
| | - Deniz Ekinci
- Faculty of Agriculture, Ondokuz Mayıs University, Samsun, Turkey
| | - Ramazan Demirdag
- School of Health Services, Agri Ibrahim Cecen University, Agri, Turkey
| | - Veysal Comakli
- School of Health Services, Agri Ibrahim Cecen University, Agri, Turkey
| | - Metin Bayram
- Physical Education Sports High School, Agri Ibrahim Cecen University, Agri, Turkey
| | - Murat Akyuz
- Faculty of Sport Sciences, Manisa Celal Bayar University, Manisa, Turkey
| | - Murat Senturk
- Faculty of Pharmacy, Agri Ibrahim Cecen University, Agri, Turkey
| | - Claudiu T. Supuran
- Section of Pharmaceutical Chemistry, Neurofarba Department, University of Florence, Firenze, Italy
| |
Collapse
|
78
|
Guo J, Xu H, Liu S, Wang Z, Dai Y, Lu J, Zheng S, Xu D, Zhou J, Ke L, Cheng X, Xu M, Zhang X, Guo Y, Lin Y, Ding W, Gao G, Wang H, Chen Q, Yu X, Chen H, Qin L, Sun X, Li Z, Zheng S, Wang J, Cheng Y, Qiu S, Hu Y, Huang P, Lin C, Wu Q, Li Y, Chen T, Shaw C, Ho S, Wang Q, Gu H, Rao P. Visualising reactive oxygen species in live mammals and revealing of ROS-related system. Free Radic Res 2019; 53:1073-1083. [PMID: 31631710 DOI: 10.1080/10715762.2019.1677902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Of all the aerobic respiration by-products, cytotoxic superoxide derived from mitochondrial-leaked electrons, is the only one known to be disposed of intracellularly. Is this fate the only destiny for mitochondrial-leaked electrons? When Cynomolgus monkeys were injected intravenously with reactive oxygen species (ROS) indicators, the connective tissues of dura mater, facial fascia, pericardium, linea alba, dorsa fascia and other body parts, emitted specific and intense fluorescent signals. Moreover, the fluorescent signals along the linea alba of SD rats, did not result from the local presence of ROS but from the interaction of ROS indicators with electrons flowing through this tissue. Furthermore, the electrons travelling along the linea alba of mice were revealed to originate from mitochondria. These data suggest that mitochondrial-leaked electrons may be transported extracellularly to a hitherto undescribed system of connective tissues, which is pervasively networked, electrically conductive and metabolically related.
Collapse
Affiliation(s)
- Jingke Guo
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Zhejiang Gongshang University Joint Centre for Food and Nutrition Research, Zhejiang Gongshang University, Hangzhou, China.,Institute of Biotechnology, Fuzhou University, Fuzhou, China
| | - Hang Xu
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Shutao Liu
- Institute of Biotechnology, Fuzhou University, Fuzhou, China
| | - Zicai Wang
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - You Dai
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Zhejiang Gongshang University Joint Centre for Food and Nutrition Research, Zhejiang Gongshang University, Hangzhou, China
| | - Jianzhi Lu
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Shusen Zheng
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Dazheng Xu
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Jianwu Zhou
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Zhejiang Gongshang University Joint Centre for Food and Nutrition Research, Zhejiang Gongshang University, Hangzhou, China
| | - Lijing Ke
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Zhejiang Gongshang University Joint Centre for Food and Nutrition Research, Zhejiang Gongshang University, Hangzhou, China
| | - Xi Cheng
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Mingming Xu
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, China
| | - Xin Zhang
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Yi Guo
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Yingjie Lin
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Wei Ding
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Zhejiang Gongshang University Joint Centre for Food and Nutrition Research, Zhejiang Gongshang University, Hangzhou, China
| | - Guanzhen Gao
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Zhejiang Gongshang University Joint Centre for Food and Nutrition Research, Zhejiang Gongshang University, Hangzhou, China
| | - Huiqin Wang
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Zhejiang Gongshang University Joint Centre for Food and Nutrition Research, Zhejiang Gongshang University, Hangzhou, China
| | - Qi Chen
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Zhejiang Gongshang University Joint Centre for Food and Nutrition Research, Zhejiang Gongshang University, Hangzhou, China
| | - Xiaowei Yu
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Zhejiang Gongshang University Joint Centre for Food and Nutrition Research, Zhejiang Gongshang University, Hangzhou, China
| | - Han Chen
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Zhejiang Gongshang University Joint Centre for Food and Nutrition Research, Zhejiang Gongshang University, Hangzhou, China
| | - Lina Qin
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Xicui Sun
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Zhe Li
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Shuyu Zheng
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Jiaqi Wang
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Yanglei Cheng
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Shuai Qiu
- Department of Orthopedic and Microsurgery, Sun Yat-Sen University First Affiliated Hospital, Guangzhou, China
| | - Yuqiu Hu
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Penghan Huang
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Chuntong Lin
- Institute of Biotechnology, Fuzhou University, Fuzhou, China
| | - Qiming Wu
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Yubo Li
- College of Information Science and Electronic, Zhejiang University, Hangzhou, China
| | - Tianbao Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Chris Shaw
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Sherry Ho
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Qiang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huaiyu Gu
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Pingfan Rao
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Zhejiang Gongshang University Joint Centre for Food and Nutrition Research, Zhejiang Gongshang University, Hangzhou, China.,Institute of Biotechnology, Fuzhou University, Fuzhou, China
| |
Collapse
|
79
|
Aminov D, Pines D, Kiefer PM, Daschakraborty S, Hynes JT, Pines E. Intact carbonic acid is a viable protonating agent for biological bases. Proc Natl Acad Sci U S A 2019; 116:20837-20843. [PMID: 31570591 PMCID: PMC6800339 DOI: 10.1073/pnas.1909498116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Carbonic acid H2CO3 (CA) is a key constituent of the universal CA/bicarbonate/CO2 buffer maintaining the pH of both blood and the oceans. Here we demonstrate the ability of intact CA to quantitatively protonate bases with biologically-relevant pKas and argue that CA has a previously unappreciated function as a major source of protons in blood plasma. We determine with high precision the temperature dependence of pKa(CA), pKa(T) = -373.604 + 16,500/T + 56.478 ln T. At physiological-like conditions pKa(CA) = 3.45 (I = 0.15 M, 37 °C), making CA stronger than lactic acid. We further demonstrate experimentally that CA decomposition to H2O and CO2 does not impair its ability to act as an ordinary carboxylic acid and to efficiently protonate physiological-like bases. The consequences of this conclusion are far reaching for human physiology and marine biology. While CA is somewhat less reactive than (H+)aq, it is more than 1 order of magnitude more abundant than (H+)aq in the blood plasma and in the oceans. In particular, CA is about 70× more abundant than (H+)aq in the blood plasma, where we argue that its overall protonation efficiency is 10 to 20× greater than that of (H+)aq, often considered to be the major protonating agent there. CA should thus function as a major source for fast in vivo acid-base reactivity in the blood plasma, possibly penetrating intact into membranes and significantly helping to compensate for (H+)aq's kinetic deficiency in sustaining the large proton fluxes that are vital for metabolic processes and rapid enzymatic reactions.
Collapse
Affiliation(s)
- Daniel Aminov
- Department of Chemistry, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
| | - Dina Pines
- Department of Chemistry, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
| | - Philip M Kiefer
- Department of Chemistry, University of Colorado Boulder, Boulder, CO 80309-0215
| | | | - James T Hynes
- Department of Chemistry, University of Colorado Boulder, Boulder, CO 80309-0215;
- PASTEUR, Départmente de Chimie, Ecole Normale Supérieure, PSL Research University, Sorbonne Université, UPMC Université Paris 06, CNRS, 75005 Paris, France
| | - Ehud Pines
- Department of Chemistry, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel;
| |
Collapse
|
80
|
Distinto S, Meleddu R, Ortuso F, Cottiglia F, Deplano S, Sequeira L, Melis C, Fois B, Angeli A, Capasso C, Angius R, Alcaro S, Supuran CT, Maccioni E. Exploring new structural features of the 4-[(3-methyl-4-aryl-2,3-dihydro-1,3-thiazol-2-ylidene)amino]benzenesulphonamide scaffold for the inhibition of human carbonic anhydrases. J Enzyme Inhib Med Chem 2019; 34:1526-1533. [PMID: 31431095 PMCID: PMC6713091 DOI: 10.1080/14756366.2019.1654470] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A library of 4-[(3-methyl-4-aryl-2,3-dihydro-1,3-thiazol-2-ylidene)amino]benzene-1-sulphonamides (EMAC8002a–m) was designed and synthesised to evaluate the effect of substituents in the positions 3 and 4 of the dihydrothiazole ring on the inhibitory potency and selectivity toward human carbonic anhydrase isoforms I, II, IX, and XII. Most of the new compounds preferentially inhibit the isoforms II and XII. Both electronic and steric features on the aryl substituent in the position 4 of the dihydrothiazole ring concur to determine the overall biological activity of these new derivatives.
Collapse
Affiliation(s)
- Simona Distinto
- Department of Life and Environmental Sciences, University of Cagliari , Cagliari , Italy
| | - Rita Meleddu
- Department of Life and Environmental Sciences, University of Cagliari , Cagliari , Italy
| | - Francesco Ortuso
- Dipartimento di Scienze della Salute, Università Magna Graecia di Catanzaro , Catanzaro , Italy
| | - Filippo Cottiglia
- Department of Life and Environmental Sciences, University of Cagliari , Cagliari , Italy
| | - Serenella Deplano
- Department of Life and Environmental Sciences, University of Cagliari , Cagliari , Italy
| | - Lisa Sequeira
- Department of Life and Environmental Sciences, University of Cagliari , Cagliari , Italy
| | - Claudia Melis
- Department of Life and Environmental Sciences, University of Cagliari , Cagliari , Italy
| | - Benedetta Fois
- Department of Life and Environmental Sciences, University of Cagliari , Cagliari , Italy
| | - Andrea Angeli
- Dipartimento NEUROFARBA, Sezione di Scienze Farmaceutiche, Università degli Studi di Firenze , Sesto Fiorentino , Italy
| | | | | | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università Magna Graecia di Catanzaro , Catanzaro , Italy
| | - Claudiu T Supuran
- Dipartimento NEUROFARBA, Sezione di Scienze Farmaceutiche, Università degli Studi di Firenze , Sesto Fiorentino , Italy
| | - Elias Maccioni
- Department of Life and Environmental Sciences, University of Cagliari , Cagliari , Italy
| |
Collapse
|
81
|
Link between Heterotrophic Carbon Fixation and Virulence in the Porcine Lung Pathogen Actinobacillus pleuropneumoniae. Infect Immun 2019; 87:IAI.00768-18. [PMID: 31285248 DOI: 10.1128/iai.00768-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 06/24/2019] [Indexed: 01/01/2023] Open
Abstract
Actinobacillus pleuropneumoniae is a capnophilic pathogen of the porcine respiratory tract lacking enzymes of the oxidative branch of the tricarboxylic acid (TCA) cycle. We previously claimed that A. pleuropneumoniae instead uses the reductive branch in order to generate energy and metabolites. Here, we show that bicarbonate and oxaloacetate supported anaerobic growth of A. pleuropneumoniae Isotope mass spectrometry revealed heterotrophic fixation of carbon from stable isotope-labeled bicarbonate by A. pleuropneumoniae, which was confirmed by nano-scale secondary ion mass spectrometry at a single-cell level. By gas chromatography-combustion-isotope ratio mass spectrometry we could further show that the labeled carbon atom is mainly incorporated into the amino acids aspartate and lysine, which are derived from the TCA metabolite oxaloacetate. We therefore suggest that carbon fixation occurs at the interface of glycolysis and the reductive branch of the TCA cycle. The heme precursor δ-aminolevulinic acid supported growth of A. pleuropneumoniae, similar to bicarbonate, implying that anaplerotic carbon fixation is needed for heme synthesis. However, deletion of potential carbon-fixing enzymes, including PEP-carboxylase (PEPC), PEP-carboxykinase (PEPCK), malic enzyme, and oxaloacetate decarboxylase, as well as various combinations thereof, did not affect carbon fixation. Interestingly, generation of a deletion mutant lacking all four enzymes was not possible, suggesting that carbon fixation in A. pleuropneumoniae is an essential metabolic pathway controlled by a redundant set of enzymes. A double deletion mutant lacking PEPC and PEPCK was not impaired in carbon fixation in vitro but showed reduction of virulence in a pig infection model.
Collapse
|
82
|
Occhipinti R, Boron WF. Role of Carbonic Anhydrases and Inhibitors in Acid-Base Physiology: Insights from Mathematical Modeling. Int J Mol Sci 2019; 20:E3841. [PMID: 31390837 PMCID: PMC6695913 DOI: 10.3390/ijms20153841] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 01/25/2023] Open
Abstract
Carbonic anhydrases (CAs) catalyze a reaction fundamental for life: the bidirectional conversion of carbon dioxide (CO2) and water (H2O) into bicarbonate (HCO3-) and protons (H+). These enzymes impact numerous physiological processes that occur within and across the many compartments in the body. Within compartments, CAs promote rapid H+ buffering and thus the stability of pH-sensitive processes. Between compartments, CAs promote movements of H+, CO2, HCO3-, and related species. This traffic is central to respiration, digestion, and whole-body/cellular pH regulation. Here, we focus on the role of mathematical modeling in understanding how CA enhances buffering as well as gradients that drive fluxes of CO2 and other solutes (facilitated diffusion). We also examine urinary acid secretion and the carriage of CO2 by the respiratory system. We propose that the broad physiological impact of CAs stem from three fundamental actions: promoting H+ buffering, enhancing H+ exchange between buffer systems, and facilitating diffusion. Mathematical modeling can be a powerful tool for: (1) clarifying the complex interdependencies among reaction, diffusion, and protein-mediated components of physiological processes; (2) formulating hypotheses and making predictions to be tested in wet-lab experiments; and (3) inferring data that are impossible to measure.
Collapse
Affiliation(s)
- Rossana Occhipinti
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| | - Walter F Boron
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
83
|
Spatiotemporal pH Heterogeneity as a Promoter of Cancer Progression and Therapeutic Resistance. Cancers (Basel) 2019; 11:cancers11071026. [PMID: 31330859 PMCID: PMC6678451 DOI: 10.3390/cancers11071026] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 12/15/2022] Open
Abstract
Dysregulation of pH in solid tumors is a hallmark of cancer. In recent years, the role of altered pH heterogeneity in space, between benign and aggressive tissues, between individual cancer cells, and between subcellular compartments, has been steadily elucidated. Changes in temporal pH-related processes on both fast and slow time scales, including altered kinetics of bicarbonate-CO2 exchange and its effects on pH buffering and gradual, progressive changes driven by changes in metabolism, are further implicated in phenotypic changes observed in cancers. These discoveries have been driven by advances in imaging technologies. This review provides an overview of intra- and extracellular pH alterations in time and space reflected in cancer cells, as well as the available technology to study pH spatiotemporal heterogeneity.
Collapse
|
84
|
Gavelli F, Teboul JL, Monnet X. How can CO 2-derived indices guide resuscitation in critically ill patients? J Thorac Dis 2019; 11:S1528-S1537. [PMID: 31388457 DOI: 10.21037/jtd.2019.07.10] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Assessing the adequacy of oxygen delivery with oxygen requirements is one of the key-goal of haemodynamic resuscitation. Clinical examination, lactate and central or mixed venous oxygen saturation (SvO2 and ScvO2, respectively) all have their limitations. Many of them may be overcome by the use of the carbon dioxide (CO2)-derived variables. The venoarterial difference in CO2 tension ("ΔPCO2" or "PCO2 gap") is not an indicator of anaerobic metabolism since it is influenced by the oxygen consumption. By contrast, it reliably indicates whether blood flow is sufficient to carry CO2 from the peripheral tissue to the lungs in view of its clearance: it, thus, reflects the adequacy of cardiac output with the metabolic condition. The ratio of the PCO2 gap with the arteriovenous difference of oxygen content (PCO2 gap/Ca-vO2) might be a marker of anaerobiosis. Conversely to SvO2 and ScvO2, it remains interpretable if the oxygen extraction is impaired as it is in case of sepsis. Compared to lactate, it has the main advantage to change without delay and to provide a real-time monitoring of tissue hypoxia.
Collapse
Affiliation(s)
- Francesco Gavelli
- Service de médecine intensive-réanimation, Hôpital de Bicêtre, Hôpitaux Universitaires Paris-Sud, Le Kremlin-Bicêtre, France.,Université Paris-Sud, Faculté de médecine Paris-Sud, Inserm UMR S_999, Le Kremlin-Bicêtre, France.,Emergency Medicine Unit, Department of Translational Medicine, Università degli Studi del Piemonte Orientale, Novara, Italy
| | - Jean-Louis Teboul
- Service de médecine intensive-réanimation, Hôpital de Bicêtre, Hôpitaux Universitaires Paris-Sud, Le Kremlin-Bicêtre, France.,Université Paris-Sud, Faculté de médecine Paris-Sud, Inserm UMR S_999, Le Kremlin-Bicêtre, France
| | - Xavier Monnet
- Service de médecine intensive-réanimation, Hôpital de Bicêtre, Hôpitaux Universitaires Paris-Sud, Le Kremlin-Bicêtre, France.,Université Paris-Sud, Faculté de médecine Paris-Sud, Inserm UMR S_999, Le Kremlin-Bicêtre, France
| |
Collapse
|
85
|
Hsu K, Tan S, Chiu C, Chang Y, Ng I. ARduino‐pH Tracker and screening platform for characterization of recombinant carbonic anhydrase in
Escherichia coli. Biotechnol Prog 2019; 35:e2834. [DOI: 10.1002/btpr.2834] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/21/2019] [Accepted: 04/29/2019] [Indexed: 01/06/2023]
Affiliation(s)
- Kao‐Pang Hsu
- Department of Chemical EngineeringNational Cheng Kung University Tainan Taiwan, ROC
| | - Shih‐I Tan
- Department of Chemical EngineeringNational Cheng Kung University Tainan Taiwan, ROC
| | - Chen‐Yaw Chiu
- Graduate School of Biochemical EngineeringMing Chi University of Technology New Taipei City Taiwan, ROC
| | - Yu‐Kaung Chang
- Graduate School of Biochemical EngineeringMing Chi University of Technology New Taipei City Taiwan, ROC
| | - I‐Son Ng
- Department of Chemical EngineeringNational Cheng Kung University Tainan Taiwan, ROC
| |
Collapse
|
86
|
Clinical use of volumetric capnography in mechanically ventilated patients. J Clin Monit Comput 2019; 34:7-16. [PMID: 31152285 DOI: 10.1007/s10877-019-00325-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/21/2019] [Indexed: 10/26/2022]
Abstract
Capnography is a first line monitoring system in mechanically ventilated patients. Volumetric capnography supports noninvasive and breath-by-breath information at the bedside using mainstream CO2 and flow sensors placed at the airways opening. This volume-based capnography provides information of important body functions related to the kinetics of carbon dioxide. Volumetric capnography goes one step forward standard respiratory mechanics and provides a new dimension for monitoring of mechanical ventilation. The article discusses the role of volumetric capnography for the clinical monitoring of mechanical ventilation.
Collapse
|
87
|
Korenchan DE, Gordon JW, Subramaniam S, Sriram R, Baligand C, VanCriekinge M, Bok R, Vigneron DB, Wilson DM, Larson PEZ, Kurhanewicz J, Flavell RR. Using bidirectional chemical exchange for improved hyperpolarized [ 13 C]bicarbonate pH imaging. Magn Reson Med 2019; 82:959-972. [PMID: 31050049 DOI: 10.1002/mrm.27780] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 12/18/2022]
Abstract
PURPOSE Rapid chemical exchange can affect SNR and pH measurement accuracy for hyperpolarized pH imaging with [13 C]bicarbonate. The purpose of this work was to investigate chemical exchange effects on hyperpolarized imaging sequences to identify optimal sequence parameters for high SNR and pH accuracy. METHODS Simulations were performed under varying rates of bicarbonate-CO2 chemical exchange to analyze exchange effects on pH quantification accuracy and SNR under different sampling schemes. Four pulse sequences, including 1 new technique, a multiple-excitation 2D EPI (multi-EPI) sequence, were compared in phantoms using hyperpolarized [13 C]bicarbonate, varying parameters such as tip angles, repetition time, order of metabolite excitation, and refocusing pulse design. In vivo hyperpolarized bicarbonate-CO2 exchange measurements were made in transgenic murine prostate tumors to select in vivo imaging parameters. RESULTS Modeling of bicarbonate-CO2 exchange identified a multiple-excitation scheme for increasing CO2 SNR by up to a factor of 2.7. When implemented in phantom imaging experiments, these sampling schemes were confirmed to yield high pH accuracy and SNR gains. Based on measured bicarbonate-CO2 exchange in vivo, a 47% CO2 SNR gain is predicted. CONCLUSION The novel multi-EPI pulse sequence can boost CO2 imaging signal in hyperpolarized 13 C bicarbonate imaging while introducing minimal pH bias, helping to surmount a major hurdle in hyperpolarized pH imaging.
Collapse
Affiliation(s)
- David E Korenchan
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Jeremy W Gordon
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Sukumar Subramaniam
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Renuka Sriram
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Celine Baligand
- Molecular Imaging Research Center, French Alternative Energies and Atomic Energy Commission Fontenay-aux-Roses, France
| | - Mark VanCriekinge
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Robert Bok
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California.,UC Berkeley, UCSF Graduate Program in Bioengineering, University of California, University of California, San Francisco, Berkeley, California
| | - David M Wilson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California.,UC Berkeley, UCSF Graduate Program in Bioengineering, University of California, University of California, San Francisco, Berkeley, California
| | - John Kurhanewicz
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California.,UC Berkeley, UCSF Graduate Program in Bioengineering, University of California, University of California, San Francisco, Berkeley, California
| | - Robert R Flavell
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| |
Collapse
|
88
|
Amberg BJ, Hodges RJ, Kashyap AJ, Skinner SM, Rodgers KA, McGillick EV, Deprest JA, Hooper SB, Crossley KJ, DeKoninck PLJ. Physiological effects of partial amniotic carbon dioxide insufflation with cold, dry vs heated, humidified gas in a sheep model. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2019; 53:340-347. [PMID: 30461102 PMCID: PMC6635737 DOI: 10.1002/uog.20180] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/30/2018] [Accepted: 11/09/2018] [Indexed: 06/09/2023]
Abstract
OBJECTIVE Partial amniotic carbon dioxide (CO2 ) insufflation (PACI) is used to improve visualization and facilitate complex fetoscopic surgery. However, there are concerns about fetal hypercapnic acidosis and postoperative fetal membrane inflammation. We assessed whether using heated and humidified, rather than cold and dry, CO2 might reduce the impact of PACI on the fetus and fetal membranes in sheep. METHODS Twelve fetal lambs of 105 days' gestational age (term = 145 days) were exteriorized partially, via a midline laparotomy and hysterotomy, and arterial catheters and flow probes were inserted surgically. The 10 surviving fetuses were returned to the uterus, which was then closed and insufflated with cold, dry (22 °C at 0-5% humidity, n = 5) or heated, humidified (40 °C at 100% humidity, n = 5) CO2 at 15 mmHg for 180 min. Fetal membranes were collected immediately after insufflation for histological analysis. Physiological data and membrane leukocyte counts, suggestive of membrane inflammation, were compared between the two groups. RESULTS After 180 min of insufflation, fetal survival was 0% in the group which underwent PACI with cold, dry CO2 , and 60% (n = 3) in the group which received heated, humidified gas. While all insufflated fetuses became progressively hypercapnic (PaCO2 > 68 mmHg), this was considerably less pronounced in those in which heated, humidified gas was used: after 120 min of insufflation, compared with those receiving cold, dry gas (n = 3), fetuses undergoing heated, humidified PACI (n = 5) had lower arterial partial pressure of CO2 (mean ± standard error of the mean, 82.7 ± 9.1 mmHg for heated, humidified CO2 vs 170.5 ± 28.5 for cold, dry CO2 during PACI, P < 0.01), lower lactate levels (1.4 ± 0.4 vs 8.5 ± 0.9 mmol/L, P < 0.01) and higher pH (pH, 7.10 ± 0.04 vs 6.75 ± 0.04, P < 0.01). There was also a non-significant trend for fetal carotid artery pressure to be higher following PACI with heated, humidified compared with cold, dry CO2 (30.5 ± 1.3 vs 8.7 ± 5.5 mmHg, P = 0.22). Additionally, the median (interquartile range) number of leukocytes in the chorion was significantly lower in the group undergoing PACI with heated, humidified CO2 compared with the group receiving cold, dry CO2 (0.7 × 10-5 (0.5 × 10-5 ) vs 3.2 × 10-5 (1.8 × 10-5 ) cells per square micron, P = 0.02). CONCLUSIONS PACI with cold, dry CO2 causes hypercapnia, acidosis, hypotension and fetal membrane inflammation in fetal sheep, raising potential concerns for its use in humans. It seems that using heated, humidified CO2 for insufflation partially mitigates these effects and this may be a suitable alternative for reducing the risk of fetal acid-base disturbances during, and fetal membrane inflammation following, complex fetoscopic surgery. © 2018 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of the International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- B. J. Amberg
- The Ritchie Centre, Hudson Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Obstetrics and GynaecologyMonash UniversityMelbourneVictoriaAustralia
| | - R. J. Hodges
- The Ritchie Centre, Hudson Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Obstetrics and GynaecologyMonash UniversityMelbourneVictoriaAustralia
| | - A. J. Kashyap
- The Ritchie Centre, Hudson Institute of Medical ResearchMelbourneVictoriaAustralia
| | - S. M. Skinner
- The Ritchie Centre, Hudson Institute of Medical ResearchMelbourneVictoriaAustralia
| | - K. A. Rodgers
- The Ritchie Centre, Hudson Institute of Medical ResearchMelbourneVictoriaAustralia
| | - E. V. McGillick
- The Ritchie Centre, Hudson Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Obstetrics and GynaecologyMonash UniversityMelbourneVictoriaAustralia
| | - J. A. Deprest
- Institute of Woman's HealthUniversity College LondonLondonUK
- Department of Development and Regeneration, Cluster Organ Systems, Faculty of MedicineKU LeuvenLeuvenBelgium
| | - S. B. Hooper
- The Ritchie Centre, Hudson Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Obstetrics and GynaecologyMonash UniversityMelbourneVictoriaAustralia
| | - K. J. Crossley
- The Ritchie Centre, Hudson Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Obstetrics and GynaecologyMonash UniversityMelbourneVictoriaAustralia
| | - P. L. J. DeKoninck
- The Ritchie Centre, Hudson Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Obstetrics and GynaecologyMonash UniversityMelbourneVictoriaAustralia
- Department of Obstetrics and GynaecologyErasmus MC‐Sophia Children's HospitalRotterdamThe Netherlands
| |
Collapse
|
89
|
Köksal Z, Alım Z, Bayrak S, Gülçin İ, Özdemir H. Investigation of the effects of some sulfonamides on acetylcholinesterase and carbonic anhydrase enzymes. J Biochem Mol Toxicol 2019; 33:e22300. [DOI: 10.1002/jbt.22300] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/15/2019] [Accepted: 01/29/2019] [Indexed: 01/02/2023]
Affiliation(s)
- Zeynep Köksal
- Department of ChemistryFaculty of Sciences, Istanbul Medeniyet UniversityIstanbul Turkey
| | - Zuhal Alım
- Department of ChemistryFaculty of Science and Arts, Kırşehir Ahi Evran UniversityKırsehir Turkey
| | - Songül Bayrak
- Department of ChemistryFaculty of Sciences, Atatürk UniversityErzurum Turkey
| | - İlhami Gülçin
- Department of ChemistryFaculty of Sciences, Atatürk UniversityErzurum Turkey
| | - Hasan Özdemir
- Department of ChemistryFaculty of Sciences, Atatürk UniversityErzurum Turkey
| |
Collapse
|
90
|
Bernardino RL, Dias TR, Moreira BP, Cunha M, Barros A, Oliveira E, Sousa M, Alves MG, Oliveira PF. Carbonic anhydrases are involved in mitochondrial biogenesis and control the production of lactate by human Sertoli cells. FEBS J 2019; 286:1393-1406. [PMID: 30724485 DOI: 10.1111/febs.14779] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 01/04/2019] [Accepted: 02/04/2019] [Indexed: 01/04/2023]
Abstract
The process that allows cells to control their pH and bicarbonate levels is essential for ionic and metabolic equilibrium. Carbonic anhydrases (CAs) catalyse the conversion of CO2 to HCO 3 - and H+ and are thus essential for this process. Herein, we inhibited CAs with acetazolamide - ACT and SLC-0111 - to study their involvement in the metabolism, mitochondrial potential, mitochondrial biogenesis and lipid metabolism of human Sertoli cells (hSCs), obtained from biopsies from men with conserved spermatogenesis. We were able to identify three isoforms of CAs, one mitochondrial isoform (CA VB) and two cell membrane-bound isoforms (CA IX and CA XII) in hSCs. When assessing the expression of markers for mitochondrial biogenesis, we observed a decrease in HIF-1α, SIRT1, PGC1α and NRF-1 mRNAs after all CAs were inhibited, resulting in decreased mitochondrial DNA copy numbers. This was followed by an increased production of lactate and alanine in the same conditions. In addition, consumption of glucose was maintained after inhibition of all CAs in hSCs. These results indicate a reduced conversion of pyruvate to acetyl-coA, possibly due to decreased mitochondrial function, caused by CA inhibition in hSCs. Inhibition of CAs also caused alterations in lipid metabolism, since we detected an increased expression of hormone-sensitive lipase (HSL) in hSCs. Our results suggest that CAs are essential for mitochondrial biogenesis, glucose and lipid metabolism in hSCs. This is the first report showing that CAs play an essential role in hSC metabolic dynamics, being involved in mitochondrial biogenesis and controlling lactate production.
Collapse
Affiliation(s)
- Raquel L Bernardino
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences, Abel Salazar (ICBAS) and Multidisciplinary Unit for Biomedical Research (UMIB), University of Porto, Portugal
| | - Tânia R Dias
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences, Abel Salazar (ICBAS) and Multidisciplinary Unit for Biomedical Research (UMIB), University of Porto, Portugal.,University of Beira Interior, Covilhã, Portugal.,LAQV/REQUINTE - Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Portugal
| | - Bruno P Moreira
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences, Abel Salazar (ICBAS) and Multidisciplinary Unit for Biomedical Research (UMIB), University of Porto, Portugal
| | - Mariana Cunha
- Centre for Reproductive Genetics Prof. Alberto Barros, Porto, Portugal
| | - Alberto Barros
- Centre for Reproductive Genetics Prof. Alberto Barros, Porto, Portugal.,Department of Genetics, Faculty of Medicine, University of Porto, Portugal.,i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
| | - Elsa Oliveira
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences, Abel Salazar (ICBAS) and Multidisciplinary Unit for Biomedical Research (UMIB), University of Porto, Portugal
| | - Mário Sousa
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences, Abel Salazar (ICBAS) and Multidisciplinary Unit for Biomedical Research (UMIB), University of Porto, Portugal.,Centre for Reproductive Genetics Prof. Alberto Barros, Porto, Portugal
| | - Marco G Alves
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences, Abel Salazar (ICBAS) and Multidisciplinary Unit for Biomedical Research (UMIB), University of Porto, Portugal
| | - Pedro F Oliveira
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences, Abel Salazar (ICBAS) and Multidisciplinary Unit for Biomedical Research (UMIB), University of Porto, Portugal.,Department of Genetics, Faculty of Medicine, University of Porto, Portugal.,i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
| |
Collapse
|
91
|
Ozsoy HZ. Carbonic anhydrase enzymes: Likely targets for inhalational anesthetics. Med Hypotheses 2019; 123:118-124. [PMID: 30696581 DOI: 10.1016/j.mehy.2019.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 01/09/2019] [Indexed: 10/27/2022]
Abstract
Inhalational anesthetics such as isoflurane, desflurane and halothane are the mainstay medications for surgical procedures; upon inhalation, they produce anesthesia described as reversible unconsciousness with the features of amnesia, sleep, immobility and analgesia. To date, how they produce anesthesia is unknown. This study proposes that carbonic anhydrase enzymes are likely targets mediating the actions of inhalational anesthetics. Carbonic anhydrase enzymes, commonly expressed in living organisms, utilize carbon dioxide (CO2) as a substrate and can generate H+ and HCO3- from CO2 with a great efficiency. There are remarkable lines of evidence for their likely roles in mediating anesthetic actions. Firstly, carbonic anhydrase enzymes are extensively expressed in the brain and spinal cord, and their importance in the brain activity, especially for the GABA and NMDA receptor signaling pathways, has been demonstrated in numerous studies. According to these studies, they provide HCO3- for GABA-A receptor activities and also buffer HCO3- excess resulting from NMDA receptor activation. Activation of GABA-A and inhibition of NMDA receptors are associated with the induction of anesthesia by the intravenous general anesthetics propofol and ketamine, respectively. Secondly, the carbonic anhydrase inhibitors topiramate and zonisamide are effectively used in the treatment of epilepsy for decades; their chronic use results in the requirement of increased levels of amobarbital in order to produce anesthesia in the epileptic patients during WADA test. In addition, given that CO2 is a substrate for these enzymes, their tertiary structure is likely has a hydrophobic pocket suitable for the anesthetic molecules to bind. Inhalational anesthetic molecules, which are lipophilic and inert in nature, have an ability to cross the membranes and inhibit carbonic anhydrases, which might not be accessible by topiramate and zonisamide. Unlike carbonic anhydrase inhibitors, they could bind to the hydrophobic pocket for CO2 molecules and produce a profound effect called anesthesia. Finally, there is a great deal of similarities between the physiological actions of inhalational anesthetics and carbonic anhydrase inhibitors; moreover well-known side effects of inhalational anesthetics could be associated with the inhibition of carbonic anhydrases. Therefore, this article presents a hypothesis that the anesthetic actions of inhalational anesthetics could be due to their inhibitory effects on the carbonic anhydrases. Investigating this hypothesis might lead to the development of new safer anesthetics, and more importantly it might reveal an endogenous anesthetic pathway, in which the carbonic anhydrase system is a component along with the GABA-A and NMDA receptor systems.
Collapse
Affiliation(s)
- H Z Ozsoy
- 2515 Gramercy Street, Houston, TX 77030, United States.
| |
Collapse
|
92
|
Brauner CJ, Shartau RB, Damsgaard C, Esbaugh AJ, Wilson RW, Grosell M. Acid-base physiology and CO2 homeostasis: Regulation and compensation in response to elevated environmental CO2. FISH PHYSIOLOGY 2019. [DOI: 10.1016/bs.fp.2019.08.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
93
|
Azuma K, Kagi N, Yanagi U, Osawa H. Effects of low-level inhalation exposure to carbon dioxide in indoor environments: A short review on human health and psychomotor performance. ENVIRONMENT INTERNATIONAL 2018; 121:51-56. [PMID: 30172928 DOI: 10.1016/j.envint.2018.08.059] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/25/2018] [Accepted: 08/25/2018] [Indexed: 05/28/2023]
Abstract
Scientific literature and documents pertaining to the effects of inhalation exposure to carbon dioxide (CO2) on human health and psychomotor performance were reviewed. Linear physiological changes in circulatory, cardiovascular, and autonomic systems on exposure to CO2 at concentrations ranging from 500 to 5000 ppm were evident. Human experimental studies have suggested that short-term CO2 exposure beginning at 1000 ppm affects cognitive performances including decision making and problem resolution. Changes in autonomic systems due to low-level exposure to CO2 may involve these effects. Further research on the long-term effects of low-level CO2 exposure on the autonomic system is required. Numerous epidemiological studies indicate an association between low-level exposure to CO2 beginning at 700 ppm and building-related symptoms. Respiratory symptoms have been indicated in children exposed to indoor CO2 concentrations higher than 1000 ppm. However, other indoor comorbid pollutants are possibly involved in such effects. In the context of significant linear increase of globally ambient CO2 concentration caused by anthropogenic activities and sources, reducing indoor CO2 levels by ventilation with ambient air represents an increase in energy consumption in an air-conditioned building. For the efficient energy control of CO2 intruding a building from ambient air, the rise of atmospheric CO2 concentration needs to be urgently suppressed.
Collapse
Affiliation(s)
- Kenichi Azuma
- Department of Environmental Medicine and Behavioral Science, Kindai University Faculty of Medicine, Osakasayama 589-8511, Japan; Department of Environmental Health, National Institute of Public Health, Wako 351-0197, Japan.
| | - Naoki Kagi
- Department of Mechanical and Environmental Informatics, Graduate School of Information Science and Engineering, Tokyo Institute of Technology, Tokyo 152-8550, Japan; Department of Environmental Health, National Institute of Public Health, Wako 351-0197, Japan.
| | - U Yanagi
- Department of Architecture, School of Architecture, Kogakuin University, Tokyo 163-8677, Japan; Department of Environmental Health, National Institute of Public Health, Wako 351-0197, Japan.
| | - Haruki Osawa
- Department of Environmental Health, National Institute of Public Health, Wako 351-0197, Japan.
| |
Collapse
|
94
|
Yoshimoto M, Schweizer T, Rathlef M, Pleij T, Walde P. Immobilization of Carbonic Anhydrase in Glass Micropipettes and Glass Fiber Filters for Flow-Through Reactor Applications. ACS OMEGA 2018; 3:10391-10405. [PMID: 31459167 PMCID: PMC6645021 DOI: 10.1021/acsomega.8b01517] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/20/2018] [Indexed: 05/20/2023]
Abstract
There are various ways of immobilizing carbonic anhydrase (CA) on solid materials. One of the final aims is to apply immobilized CA for the catalytic hydration of carbon dioxide (CO2) as a first step in the conversion of gaseous CO2 into solid products. The immobilization method investigated allows a straightforward, stable, and quantifiable immobilization of bovine erythrocyte carbonic anhydrase (BCA) on silicate surfaces. The method is based on the use of a water-soluble, polycationic second-generation dendronized polymer with on average 1000 repeating units, abbreviated as de-PG21000. Several copies of BCA were first covalently linked to de-PG21000 through stable bisaryl hydrazone (BAH) bonds. Then, the de-PG21000-BAH-BCA conjugates obtained were adsorbed noncovalently either on microscopy glass coverslips, inside glass micropipettes, or in porous glass fiber filters. The apparent density of the immobilized BCA on the glass surfaces was about 8-10 pmol/cm2. In all three cases, the immobilized enzyme was highly active and stable when tested with p-nitrophenyl acetate as a model enzyme substrate at room temperature. The micropipettes and the glass fiber filters were applied as flow-through systems for continuous operation at room temperature. In the case of the glass fiber filters, the filters were placed inside a homemade flow-through filter holder which allows flow-through runs with more than one filter connected in series. This offers the opportunity of increasing the substrate conversion by increasing the number of BCA-containing filters.
Collapse
Affiliation(s)
- Makoto Yoshimoto
- Department
of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
- Department
of Applied Chemistry, Yamaguchi University, Tokiwadai 2-16-1, Ube 755-8611, Japan
| | - Thomas Schweizer
- Department
of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Marco Rathlef
- Department
of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Tazio Pleij
- Department
of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Peter Walde
- Department
of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
- E-mail:
| |
Collapse
|
95
|
Guo C, Chang TMS. Long term safety and immunological effects of a nanobiotherapeutic, bovine poly-[hemoglobin-catalase-superoxide dismutase-carbonic anhydrase], after four weekly 5% blood volume top-loading followed by a challenge of 30% exchange transfusion. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:1349-1363. [DOI: 10.1080/21691401.2018.1476375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Chen Guo
- Artficial Cells and Organs Research Centre, Departments of Physiology, Medicine and Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Thomas Ming Swi Chang
- Artficial Cells and Organs Research Centre, Departments of Physiology, Medicine and Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
96
|
Dominelli PB, McNeil CJ, Vermeulen TD, Stuckless TJR, Brown CV, Dominelli GS, Swenson ER, Teppema LJ, Foster GE. Effect of acetazolamide and methazolamide on diaphragm and dorsiflexor fatigue: a randomized controlled trial. J Appl Physiol (1985) 2018; 125:770-779. [PMID: 29792554 DOI: 10.1152/japplphysiol.00256.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Acetazolamide, a carbonic anhydrase (CA) inhibitor used clinically and to prevent acute mountain sickness, worsens skeletal muscle fatigue in animals and humans. In animals, methazolamide, a methylated analog of acetazolamide and an equally potent CA inhibitor, reportedly exacerbates fatigue less than acetazolamide. Accordingly, we sought to determine, in humans, if methazolamide would attenuate diaphragm and dorsiflexor fatigue compared with acetazolamide. Healthy men (dorsiflexor: n = 12; diaphragm: n = 7) performed fatiguing exercise on three occasions, after ingesting acetazolamide (250 mg three times a day) and then in random order, methazolamide (100 mg twice a day) or placebo for 48 h. For both muscles, subjects exercised at a fixed intensity until exhaustion on acetazolamide, with subsequent iso-time and -workload trials. Diaphragm exercise was performed using a threshold-loading device, while dorsiflexor exercise was isometric. Neuromuscular function was determined pre- and postexercise by potentiated transdiaphragmatic twitch pressure and dorsiflexor torque in response to stimulation of the phrenic and fibular nerve, respectively. Diaphragm contractility 3-10 min postexercise was impaired more for acetazolamide than methazolamide or placebo (82 ± 10, 87 ± 9, and 91 ± 8% of pre-exercise value; P < 0.05). Similarly, dorsiflexor fatigue was greater for acetazolamide than methazolamide (mean twitch torque of 61 ± 11 vs. 57 ± 13% of baseline, P < 0.05). In normoxia, methazolamide leads to less neuromuscular fatigue than acetazolamide, indicating a possible benefit for clinical use or in the prophylaxis of acute mountain sickness. NEW & NOTEWORTHY Acetazolamide, a carbonic anhydrase inhibitor, may worsen diaphragm and locomotor muscle fatigue after exercise; whereas, in animals, methazolamide does not impair diaphragm function. Compared with both methazolamide and the placebo, acetazolamide significantly compromised dorsiflexor function at rest and after exhaustive exercise. Similarly, diaphragm function was most compromised on acetazolamide followed by methazolamide and placebo. Methazolamide may be preferable over acetazolamide for clinical use and altitude illness prophylaxis to avoid skeletal muscle dysfunction.
Collapse
Affiliation(s)
- Paolo B Dominelli
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Science, University of British Columbia , Kelowna , Canada
| | - Chris J McNeil
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Science, University of British Columbia , Kelowna , Canada
| | - Tyler D Vermeulen
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Science, University of British Columbia , Kelowna , Canada
| | - Troy J R Stuckless
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Science, University of British Columbia , Kelowna , Canada
| | - Courtney V Brown
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Science, University of British Columbia , Kelowna , Canada
| | - Giulio S Dominelli
- Southern Medical Program, University of British Columbia, Kelowna, Canada
| | - Erik R Swenson
- Division of Pulmonary & Critical Care Medicine, VA Puget Sound Health Care System, University of Washington , Seattle, Washington
| | - Lucas J Teppema
- Department of Anesthesiology, Leiden University Medical Center , Leiden , The Netherlands
| | - Glen E Foster
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Science, University of British Columbia , Kelowna , Canada
| |
Collapse
|
97
|
Sow A, Morelle J, Hautem N, Bettoni C, Wagner CA, Devuyst O. Mechanisms of acid-base regulation in peritoneal dialysis. Nephrol Dial Transplant 2018; 33:864-873. [PMID: 29186492 DOI: 10.1093/ndt/gfx307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 09/30/2017] [Indexed: 11/13/2022] Open
Abstract
Background Peritoneal dialysis (PD) contributes to restore acid-base homeostasis in patients with end-stage renal disease. The transport pathways for buffers and carbon dioxide (CO2) across the peritoneal membrane remain poorly understood. Methods Combining well-established PD protocols, whole-body plethysmography and renal function studies in mice, we investigated molecular mechanisms of acid-base regulation in PD, including the potential role of the water channel aquaporin-1 (AQP1). Results After instillation in peritoneal cavity, the pH of acidic dialysis solutions increased within minutes to rapidly equilibrate with blood pH, whereas the neutral pH of biocompatible solutions remained constant. Predictions from the three-pore model of peritoneal transport suggested that local production of HCO3- accounts at least in part for the changes in intraperitoneal pH observed with acidic solutions. Carbonic anhydrase (CA) isoforms were evidenced in the peritoneal membrane and their inhibition with acetazolamide significantly decreased local production of HCO3- and delayed changes in intraperitoneal pH. On the contrary, genetic deletion of AQP1 had no effect on peritoneal transport of buffers and diffusion of CO2. Besides intraperitoneal modifications, the use of acidic dialysis solutions enhanced acid excretion both at pulmonary and renal levels. Conclusions These findings suggest that changes in intraperitoneal pH during PD are mediated by bidirectional buffer transport and by CA-mediated production of HCO3- in the membrane. The use of acidic solutions enhances acid excretion through respiratory and renal responses, which should be considered in patients with renal failure.
Collapse
Affiliation(s)
- Amadou Sow
- Division of Nephrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium.,Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain Medical School, Brussels, Belgium
| | - Johann Morelle
- Division of Nephrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium.,Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain Medical School, Brussels, Belgium
| | - Nicolas Hautem
- Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain Medical School, Brussels, Belgium
| | - Carla Bettoni
- Institute of Physiology, Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Carsten A Wagner
- Institute of Physiology, Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Olivier Devuyst
- Division of Nephrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium.,Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain Medical School, Brussels, Belgium.,Institute of Physiology, Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
98
|
Aspatwar A, Haapanen S, Parkkila S. An Update on the Metabolic Roles of Carbonic Anhydrases in the Model Alga Chlamydomonas reinhardtii. Metabolites 2018. [PMID: 29534024 PMCID: PMC5876011 DOI: 10.3390/metabo8010022] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Carbonic anhydrases (CAs) are metalloenzymes that are omnipresent in nature. CAs catalyze the basic reaction of the reversible hydration of CO2 to HCO3− and H+ in all living organisms. Photosynthetic organisms contain six evolutionarily different classes of CAs, which are namely: α-CAs, β-CAs, γ-CAs, δ-CAs, ζ-CAs, and θ-CAs. Many of the photosynthetic organisms contain multiple isoforms of each CA family. The model alga Chlamydomonas reinhardtii contains 15 CAs belonging to three different CA gene families. Of these 15 CAs, three belong to the α-CA gene family; nine belong to the β-CA gene family; and three belong to the γ-CA gene family. The multiple copies of the CAs in each gene family may be due to gene duplications within the particular CA gene family. The CAs of Chlamydomonas reinhardtii are localized in different subcellular compartments of this unicellular alga. The presence of a large number of CAs and their diverse subcellular localization within a single cell suggests the importance of these enzymes in the metabolic and biochemical roles they perform in this unicellular alga. In the present review, we update the information on the molecular biology of all 15 CAs and their metabolic and biochemical roles in Chlamydomonas reinhardtii. We also present a hypothetical model showing the known functions of CAs and predicting the functions of CAs for which precise metabolic roles are yet to be discovered.
Collapse
Affiliation(s)
- Ashok Aspatwar
- Faculty of Medicine and Life Sciences, University of Tampere, FI-33014 Tampere, Finland.
| | - Susanna Haapanen
- Faculty of Medicine and Life Sciences, University of Tampere, FI-33014 Tampere, Finland.
| | - Seppo Parkkila
- Faculty of Medicine and Life Sciences, University of Tampere, FI-33014 Tampere, Finland.
- Fimlab, Ltd., and Tampere University Hospital, FI-33520 Tampere, Finland.
| |
Collapse
|
99
|
Frizzell KM, Jendral MJ, Maclean IM, Dixon WT, Putman CT. Physicochemical determinants of pH in pectoralis major of three strains of laying hens housed in conventional and furnished cages. Br Poult Sci 2018; 59:286-300. [PMID: 29480030 DOI: 10.1080/00071668.2018.1445198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
1. Post-mortem decline in muscle pH has traditionally been attributed to glycogenolysis-induced lactate accumulation. However, muscle pH ([H+]) is controlled by complex physicochemical relationships encapsulated in the Stewart model of acid-base chemistry and is determined by three system-independent variables - strong ion difference ([SID]), total concentration of weak acids ([Atot]) and partial pressure of CO2 (PCO2). 2. This study investigated these system-independent variables in post-mortem pectoralis major muscles of Shaver White, Lohmann Lite and Lohmann Brown laying hens housed in conventional cages (CC) or furnished cages (FC) and evaluated the model by comparing calculated [H+] with previously measured [H+] values. 3. The model accounted for 99.7% of the variation in muscle [H+]. Differences in [SID] accounted for most or all of the variations in [H+] between strains. Greater PCO2 in FC was counteracted by greater sequestration of strong base cations. The results demonstrate the accuracy and utility of the Stewart model for investigating determinants of meat [H+]. 4. The housing differences identified in this study suggested that hens housed in FC have improved muscle function and overall health due to the increased opportunity for movement. These findings support past studies showing improved animal welfare for hens housed in FC compared to CC. Therefore, the Stewart model has been identified as an accurate method to assess changes in the muscle at a cellular level that affect meat quality that also detect differences in the welfare status of the research subjects.
Collapse
Affiliation(s)
- K M Frizzell
- a Faculty of Physical Education and Recreation, University of Alberta , Exercise Biochemistry Laboratory , Edmonton , Canada
| | - M J Jendral
- a Faculty of Physical Education and Recreation, University of Alberta , Exercise Biochemistry Laboratory , Edmonton , Canada.,b Department of Plant and Animal Sciences , Dalhousie University Agricultural Campus , Truro , Canada
| | - I M Maclean
- a Faculty of Physical Education and Recreation, University of Alberta , Exercise Biochemistry Laboratory , Edmonton , Canada
| | - W T Dixon
- c Department of Agriculture, Food and Nutritional Science, Faculty of Agriculture, Life and Environmental Sciences , University of Alberta , Edmonton , Canada
| | - C T Putman
- a Faculty of Physical Education and Recreation, University of Alberta , Exercise Biochemistry Laboratory , Edmonton , Canada.,d Faculty of Medicine & Dentistry , Neuroscience and Mental Health Institute, University of Alberta , Edmonton , Canada
| |
Collapse
|
100
|
Souza-Bastos LR, Bastos LP, Carneiro PCF, Guiloski IC, Silva de Assis HC, Padial AA, Freire CA. Evaluation of the water quality of the upper reaches of the main Southern Brazil river (Iguaçu river) through in situ exposure of the native siluriform Rhamdia quelen in cages. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 231:1245-1255. [PMID: 28947314 DOI: 10.1016/j.envpol.2017.08.071] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/28/2017] [Accepted: 08/18/2017] [Indexed: 06/07/2023]
Abstract
Increase in industrial growth, urban and agricultural pollution, with consequent impacts on aquatic ecosystems are a major focus of research worldwide. Still, not many studies assess the impacts of contamination through in situ studies, using native species, also considering the influence of seasonality on their responses. This study aimed to evaluate the water quality of the basin of the Upper Iguaçu River, the main source of water supply to Curitiba, a major capital of Southern Brazil, and its Metropolitan area. Several biomarkers were evaluated after in situ exposure of the native catfish Rhamdia quelen inside cages for 7 days. Ten study sites were chosen along the basin, based on a diffuse gradient of contamination, corresponding to regions upstream, downstream, and within "great Curitiba". In each site, fish were exposed in Summer and Winter. The complex mixture of contaminants of this hydrographic basin generated mortality, and ion-, osmoregulatory and respiratory disturbances in the catfish as, for example, reduction of plasma osmolality and ionic concentrations, increased hematocrit levels and gill water content, altered branchial and renal activities of the enzyme carbonic anhydrase, as well as raised levels of plasma cortisol and glucose. Biomarkers were mostly altered in fish exposed in Great Curitiba and immediately downstream. There was a notable influence of season on the responses of the jundiá. A multivariate redundancy analysis revealed that the best environmental variables explained 30% of the variation in biomarkers after controlling for spatial autocorrelation. Thus, this approach and the chosen parameters can be satisfactorily used to evaluate contamination environments with complex mixtures of contaminants, in other urban basins as well.
Collapse
Affiliation(s)
- Luciana R Souza-Bastos
- Department of Physiology, Biological Sciences Sector, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil; Institute of Technology for Development - LACTEC, Curitiba, Paraná, Brazil.
| | - Leonardo P Bastos
- Institute of Technology for Development - LACTEC, Curitiba, Paraná, Brazil
| | - Paulo Cesar F Carneiro
- Brazilian Agricultural Research Company - EMBRAPA Tabuleiros Costeiros, Aracaju, Sergipe, Brazil
| | - Izonete C Guiloski
- Department of Pharmacology, Biological Sciences Sector, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Helena C Silva de Assis
- Department of Pharmacology, Biological Sciences Sector, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| | - André A Padial
- Department of Botany, Biological Sciences Sector, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Carolina A Freire
- Department of Physiology, Biological Sciences Sector, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| |
Collapse
|