51
|
Jin S, Whang YM, Chang IH. Genetically Modified Bacteria as Targeted Agent for Cancer. ACTA ACUST UNITED AC 2016. [DOI: 10.22465/kjuo.2016.14.2.54] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
52
|
Park SH, Zheng JH, Nguyen VH, Jiang SN, Kim DY, Szardenings M, Min JH, Hong Y, Choy HE, Min JJ. RGD Peptide Cell-Surface Display Enhances the Targeting and Therapeutic Efficacy of Attenuated Salmonella-mediated Cancer Therapy. Theranostics 2016; 6:1672-82. [PMID: 27446500 PMCID: PMC4955065 DOI: 10.7150/thno.16135] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 05/16/2016] [Indexed: 01/10/2023] Open
Abstract
Bacteria-based anticancer therapies aim to overcome the limitations of current cancer therapy by actively targeting and efficiently removing cancer. To achieve this goal, new approaches that target and maintain bacterial drugs at sufficient concentrations during the therapeutic window are essential. Here, we examined the tumor tropism of attenuated Salmonella typhimurium displaying the RGD peptide sequence (ACDCRGDCFCG) on the external loop of outer membrane protein A (OmpA). RGD-displaying Salmonella strongly bound to cancer cells overexpressing αvβ3, but weakly bound to αvβ3-negative cancer cells, suggesting the feasibility of displaying a preferential homing peptide on the bacterial surface. In vivo studies revealed that RGD-displaying Salmonellae showed strong targeting efficiency, resulting in the regression in αvβ3-overexpressing cancer xenografts, and prolonged survival of mouse models of human breast cancer (MDA-MB-231) and human melanoma (MDA-MB-435). Thus, surface engineering of Salmonellae to display RGD peptides increases both their targeting efficiency and therapeutic effect.
Collapse
|
53
|
Nguyen VH, Min JJ. Salmonella-Mediated Cancer Therapy: Roles and Potential. Nucl Med Mol Imaging 2016; 51:118-126. [PMID: 28559936 DOI: 10.1007/s13139-016-0415-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/29/2016] [Accepted: 03/28/2016] [Indexed: 01/21/2023] Open
Abstract
The use of bacteria for cancer therapy, which was proposed many years ago, was not recognized as a potential therapeutic strategy until recently. Technological advances and updated knowledge have enabled the genetic engineering of bacteria for their safe and effective application in the treatment of cancer. The efficacy of radiotherapy depends mainly on tissue oxygen levels, and low oxygen concentrations in necrotic and hypoxic regions are a common cause of treatment failure. In addition, the distribution of a drug is important for the therapeutic effect of chemotherapy, and the poor vasculature in tumors impairs drug delivery, limiting the efficacy of a drug, especially in necrotic and hypoxic regions. Bacteria-mediated cancer therapy (BMCT) relies on facultative anaerobes that can survive in well or poorly oxygenated regions, and it therefore improves the therapeutic efficacy drug distribution throughout the tumor mass. Since the mid-1990s, the number of published bacterial therapy papers has increased rapidly, with a doubling time of 2.5 years in which the use of Salmonella increased significantly. BMCT is being reevaluated to overcome some of the drawbacks of conventional therapies. This review focuses on Salmonella-mediated cancer therapy as the most widely used type of BMCT.2.
Collapse
Affiliation(s)
- Vu Hong Nguyen
- Department of Experimental Therapeutics, Beckman Research Institute of City of Hope, Duarte, California, 1500 East Duarte Road, Duarte, CA 91010 USA
| | - Jung-Joon Min
- Department of Nuclear Medicine, Chonnam National University Medical School, 5 Hak1 dong, Dong-gu, Gwangju, 501-746 Republic of Korea
| |
Collapse
|
54
|
Guo H, Liu Y, Gu J, Wang Y, Liu L, Zhang P, Li Y. Endostatin inhibits the growth and migration of 4T1 mouse breast cancer cells by skewing macrophage polarity toward the M1 phenotype. Cancer Immunol Immunother 2016; 65:677-88. [PMID: 27034233 PMCID: PMC11028708 DOI: 10.1007/s00262-016-1824-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 03/07/2016] [Indexed: 11/30/2022]
Abstract
The phenotypic diversity of tumor-associated macrophages (TAMs) increases with tumor development. One of the hallmarks of malignancy is the polarization of TAMs from a pro-immune (M1) phenotype to an immunosuppressive (M2) phenotype. However, the molecular basis of this process is still unclear. Endostatin is a powerful inhibitor of angiogenesis capable of suppressing tumor growth and metastasis. Here, we demonstrate that endostatin induces RAW264.7 cell polarization toward the M1 phenotype in vitro. Endostatin has no effect on TAM numbers in vivo, but results in an increased proportion of F4/80(+)Nos2(+) cells and a decreased proportion of F4/80(+)CD206(+) cells. Overexpression of endostatin in RAW264.7 cells resulted in a decrease in the phosphorylation of STAT3, an increase in expression of vascular endothelial growth factor A and placental growth factor, and an increase in the phosphorylation of STAT1, IκBα and p65 proteins compared with controls. These results indicate that endostatin regulates macrophage polarization, promoting the M1 phenotype by targeting NF-κB and STAT signaling.
Collapse
Affiliation(s)
- Hua Guo
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Center, School of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin, People's Republic of China
| | - Yanan Liu
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Center, School of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin, People's Republic of China
| | - Junlian Gu
- Department of Pathology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250013, Shandong, People's Republic of China
| | - Yue Wang
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Center, School of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin, People's Republic of China
| | - Lianqin Liu
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Center, School of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin, People's Republic of China
| | - Ping Zhang
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Center, School of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin, People's Republic of China
| | - Yang Li
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Center, School of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin, People's Republic of China.
| |
Collapse
|
55
|
Strains, Mechanism, and Perspective: Salmonella-Based Cancer Therapy. Int J Microbiol 2016; 2016:5678702. [PMID: 27190519 PMCID: PMC4848419 DOI: 10.1155/2016/5678702] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 03/11/2016] [Accepted: 03/20/2016] [Indexed: 01/21/2023] Open
Abstract
Recently, investigation of bacterial-based tumor therapy has regained focus due to progress in molecular, cellular, and microbial biology. Many bacteria such as Salmonella, Listeria, Escherichia, and Clostridium have proved to have tumor targeting and in some cases even tumor-destroying phenotypes. Furthermore, bacterial clinical treatments for cancer have been improved by combination with other therapeutic methods such as chemotherapeutic drugs and radioactive agents. Synthetic biology techniques have also driven the development of new bacterial-based cancer therapies. However, basic questions about the mechanisms of bacterial-mediated tumor targeting and destruction are still being elucidated. In this review, we focus on three tumor-therapeutic Salmonella models, the most intensively studied bacterial genus in this field. One of these Salmonella models is our Salmonella enterica serovar Typhimurium LT2 derived strain CRC2631, engineered to minimize toxicity but maximize tumor-targeting and destruction effects. The other two are VNP20009 and A1-R. We compare the means by which these therapeutic candidate strain models were selected for study, their tumor targeting and tumor destruction phenotypes in vitro and in vivo, and what is currently known about the mechanisms by which they target and destroy tumors.
Collapse
|
56
|
Nallar SC, Xu DQ, Kalvakolanu DV. Bacteria and genetically modified bacteria as cancer therapeutics: Current advances and challenges. Cytokine 2016; 89:160-172. [PMID: 26778055 DOI: 10.1016/j.cyto.2016.01.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/05/2016] [Accepted: 01/06/2016] [Indexed: 11/24/2022]
Abstract
Bacteria act as pro- or anti- tumorigenic agents. Whole bacteria or cytotoxic or immunogenic peptides carried by them exert potent anti-tumor effects in the experimental models of cancer. The use of attenuated microorganism(s) e.g., BCG to treat human urinary bladder cancer was found to be superior compared to standard chemotherapy. Although the phase-I clinical trials with Salmonella enterica serovar Typhimurium, has shown limited benefits in human subjects, a recent pre-clinical trial in pet dogs with tumors reported some subjects benefited from this treatment strain. In addition to the attenuated host strains derived by conventional mutagenesis, recombinant DNA technology has been applied to a few microorganisms that have been evaluated in the context of tumor colonization and eradication using mouse models. There is an enormous surge in publications describing bacterial anti-cancer therapies in the past 15years. Vectors for delivering shRNAs that target oncogenic products, express tumor suppressor genes and immunogenic proteins have been developed. These approaches have showed promising anti-tumor activity in mouse models against various tumors. These can be potential therapeutics for humans in the future. In this review, some conceptual and practical issues on how to improve these agents for human applications are discussed.
Collapse
Affiliation(s)
- Shreeram C Nallar
- Department of Microbiology & Immunology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - De-Qi Xu
- Dalian Hissen Biopharm Co Ltd. E&T Development Zone, Dalian 116600, Peoples Republic of China
| | - Dhan V Kalvakolanu
- Department of Microbiology & Immunology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
57
|
Affiliation(s)
- Mark W. Tibbitt
- Koch
Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
- Department
of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
| | - James E. Dahlman
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Robert Langer
- Koch
Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
- Department
of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
- Harvard-MIT
Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
58
|
Lin IYC, Van TTH, Smooker PM. Live-Attenuated Bacterial Vectors: Tools for Vaccine and Therapeutic Agent Delivery. Vaccines (Basel) 2015; 3:940-72. [PMID: 26569321 PMCID: PMC4693226 DOI: 10.3390/vaccines3040940] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 10/30/2015] [Accepted: 10/30/2015] [Indexed: 12/14/2022] Open
Abstract
Genetically attenuated microorganisms, including pathogenic and commensal bacteria, can be engineered to carry and deliver heterologous antigens to elicit host immunity against both the vector as well as the pathogen from which the donor gene is derived. These live attenuated bacterial vectors have been given much attention due to their capacity to induce a broad range of immune responses including localized mucosal, as well as systemic humoral and/or cell-mediated immunity. In addition, the unique tumor-homing characteristics of these bacterial vectors has also been exploited for alternative anti-tumor vaccines and therapies. In such approach, tumor-associated antigen, immunostimulatory molecules, anti-tumor drugs, or nucleotides (DNA or RNA) are delivered. Different potential vectors are appropriate for specific applications, depending on their pathogenic routes. In this review, we survey and summarize the main features of the different types of live bacterial vectors and discussed the clinical applications in the field of vaccinology. In addition, different approaches for using live attenuated bacterial vectors for anti-cancer therapy is discussed, and some promising pre-clinical and clinical studies in this field are outlined.
Collapse
Affiliation(s)
- Ivan Y C Lin
- School of Applied Sciences, RMIT University, Plenty Road, Bundoora VIC-3083, Australia.
| | - Thi Thu Hao Van
- School of Applied Sciences, RMIT University, Plenty Road, Bundoora VIC-3083, Australia.
| | - Peter M Smooker
- School of Applied Sciences, RMIT University, Plenty Road, Bundoora VIC-3083, Australia.
| |
Collapse
|
59
|
Sun Y, Guo BF, Xu LB, Zhong JT, Liu ZW, Liang H, Wen NY, Yun WJ, Zhang L, Zhao XJ. Stat3-siRNA inhibits the growth of gastric cancerin vitroandin vivo. Cell Biochem Funct 2015; 33:495-502. [DOI: 10.1002/cbf.3148] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 09/14/2015] [Accepted: 09/16/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Ying Sun
- Department of Plastic Surgery, the China- Japan Union Hospital; Jilin University; Changchun China
| | - Bao-feng Guo
- Department of Plastic Surgery, the China- Japan Union Hospital; Jilin University; Changchun China
| | - Li-bo Xu
- Department of Pathophysiology, College of Basic Medicine Sciences; Jilin University; Changchun China
| | - Jia-teng Zhong
- Department of Pathophysiology, College of Basic Medicine Sciences; Jilin University; Changchun China
| | - Zhe-wen Liu
- Department of Pathophysiology, College of Basic Medicine Sciences; Jilin University; Changchun China
| | - Hang Liang
- Department of Pathophysiology, College of Basic Medicine Sciences; Jilin University; Changchun China
| | - Nai-yan Wen
- Department of Pathophysiology, College of Basic Medicine Sciences; Jilin University; Changchun China
| | - Wen-jing Yun
- Department of Pathophysiology, College of Basic Medicine Sciences; Jilin University; Changchun China
| | - Ling Zhang
- Department of Pathophysiology, College of Basic Medicine Sciences; Jilin University; Changchun China
| | - Xue-jian Zhao
- Department of Pathophysiology, College of Basic Medicine Sciences; Jilin University; Changchun China
| |
Collapse
|
60
|
Zhou Y, Tian L, Zhang YC, Guo BF, Zhou QW. Apoptotic effects of psiRNA-STAT3 on 4T1 breast cancer cells in vitro. Asian Pac J Cancer Prev 2015; 15:6977-82. [PMID: 25169471 DOI: 10.7314/apjcp.2014.15.16.6977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The aim of this study was to investigate the effect of a Lipofectamine2000 (Life2000) Transfection Reagent transfected psiRNA-STAT3 plasmid on 4T1 breast cancer cells. MATERIALS AND METHODS MTT was used to detect the cell proliferation of breast cancer 4T1 cells at different periods (0h, 6h, 8h, 10h); the cell cycle was assessed by flow cytometry; variation of apoptosis and mitochondrial membrane potential was observed under a fluorescence microscope; immunohistochemical staining was used to determine the expression of caspase-3 and cyclin-D1 protein. RESULTS An obvious effect of inhibition to 4T1 cancer cells could be observed at 8h after the psiRNA-STAT3 was transfected. Typical alterations of apoptotic morphological features were visible in the psiRNA-STAT3 treatment group. Mitochondrial membrane potential decreased significantly, the number of cells was increased in G0/G1 phase, and the number of cells was decreased in S phase, and the data were statistically significant (p<0.05), compared with the Scramble and Mock groups. Expression of caspase-3 protein was increased significantly, while that of cyclin D1 was significantly decreased. CONCLUSIONS Life2000 transfected psiRNA-STAT3 plasmid can inhibit 4T1 tumor cell proliferation and promote apoptosis of 4T1 tumor cells, which process depends on the regulation of expression of cyclin D1 and caspase-3 protein.
Collapse
Affiliation(s)
- Yue Zhou
- School of Pharmacy, 2Department of Breast Surgery , The Second Clinical Hospital, 3Department of Plastic Surgery, the China- Japan Union Hospital, 4Department of Biology and Medical Engineering, Institute of Regenerative Medicine, Jilin University, Changchun, China E-mail : ,
| | | | | | | | | |
Collapse
|
61
|
Synthetic biology expands chemical control of microorganisms. Curr Opin Chem Biol 2015; 28:20-8. [PMID: 26056951 DOI: 10.1016/j.cbpa.2015.05.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 04/30/2015] [Accepted: 05/15/2015] [Indexed: 01/21/2023]
Abstract
The tools of synthetic biology allow researchers to change the ways engineered organisms respond to chemical stimuli. Decades of basic biology research and new efforts in computational protein and RNA design have led to the development of small molecule sensors that can be used to alter organism function. These new functions leap beyond the natural propensities of the engineered organisms. They can range from simple fluorescence or growth reporting to pathogen killing, and can involve metabolic coordination among multiple cells or organisms. Herein, we discuss how synthetic biology alters microorganisms' responses to chemical stimuli resulting in the development of microbes as toxicity sensors, disease treatments, and chemical factories.
Collapse
|
62
|
Chávez-Navarro H, Hernández-Cueto DD, Vilchis-Estrada A, Bermúdez-Pulido DC, Antonio-Andrés G, Luria-Pérez R. [Salmonella enterica: an ally in the therapy of cancer]. BOLETIN MEDICO DEL HOSPITAL INFANTIL DE MEXICO 2015; 72:15-25. [PMID: 29421174 DOI: 10.1016/j.bmhimx.2015.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 01/28/2015] [Accepted: 02/03/2015] [Indexed: 01/01/2023] Open
Abstract
Salmonella enterica, a species of facultative anaerobic bacteria, has demonstrated success as a live-attenuated bacterial vector for vaccination. S. enterica has also demonstrated promise as a therapeutic agent against cancer. Pre-clinical and clinical trials have shown that S. enterica is localized in both solid and semi-solid tumors as well as in metastatic tumors. Moreover, S. enterica reduces resistance to treatment with other agents. In this review we present the novel therapeutic anti-cancer approaches that use S. enterica both for its ability as a delivery system for heterologous moieties against cancer and for its direct anti-cancer properties.
Collapse
Affiliation(s)
- Hilda Chávez-Navarro
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México Federico Gómez, México D.F., México
| | | | - Ariel Vilchis-Estrada
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México Federico Gómez, México D.F., México
| | - David César Bermúdez-Pulido
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México Federico Gómez, México D.F., México
| | - Gabriela Antonio-Andrés
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México Federico Gómez, México D.F., México
| | - Rosendo Luria-Pérez
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México Federico Gómez, México D.F., México.
| |
Collapse
|
63
|
Cheng X, Zhang X, Zhou Y, Zhang C, Hua ZC. A Salmonella Typhimurium mutant strain capable of RNAi delivery: higher tumor-targeting and lower toxicity. Cancer Biol Ther 2014; 15:1068-76. [PMID: 24842165 DOI: 10.4161/cbt.29185] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Bacteria are highly versatile and useful tools that could deliver short interfering RNA. In this study, a phoP/phoQ double-deleted Salmonella Typhimurium named VNP(PhoP/Q(-)) based on the genetic background of VNP20009. The biological safety and function of VNP(PhoP/Q(-)) were also analyzed. Our study revealed the following results: (1) VNP(PhoP/Q(-)) exhibited lower titers in tumor-free livers and spleens than VNP20009, (2) The survival of VNP(PhoP/Q(-)) in macrophages and 4T1 tumor cells was significantly reduced compared with that of VNP20009, (3) The tumor-targeting ability of VNP(PhoP/Q(-)) was significantly enhanced compared with that of VNP20009, and the anticancer effects of VNP(pPhoP/Q(-)) and VNP20009 on tumor-bearing mice were similar, (4) VNP(PhoP/Q(-)) could release an shRNA-expressing plasmid and express the EGFP reporter gene in tumor tissue. Therefore, VNP(PhoP/Q(-)) exhibited a better safety level in tumor-free mice and elicited an anti-tumor effect on tumor-bearing mice. Moreover, VNP(PhoP/Q(-)) could release an shRNA-expressing plasmid into the cytoplasm of host cells to silence targeted genes.
Collapse
Affiliation(s)
- Xiawei Cheng
- The State Key Laboratory of Pharmaceutical Biotechnology; School of Life Science and School of Stomatology; Affiliated Stomatological Hospital; Nanjing University; Nanjing, Jiangsu, PR China
| | - Xiaoxin Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology; School of Life Science and School of Stomatology; Affiliated Stomatological Hospital; Nanjing University; Nanjing, Jiangsu, PR China
| | - Yuqiang Zhou
- The State Key Laboratory of Pharmaceutical Biotechnology; School of Life Science and School of Stomatology; Affiliated Stomatological Hospital; Nanjing University; Nanjing, Jiangsu, PR China
| | - Chunmei Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology; School of Life Science and School of Stomatology; Affiliated Stomatological Hospital; Nanjing University; Nanjing, Jiangsu, PR China
| | - Zi-Chun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology; School of Life Science and School of Stomatology; Affiliated Stomatological Hospital; Nanjing University; Nanjing, Jiangsu, PR China; Changzhou High-Tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc.; Changzhou, Jiangsu, PR China
| |
Collapse
|
64
|
Gu J, Wang B, Liu Y, Zhong L, Tang Y, Guo H, Jiang T, Wang L, Li Y, Cai L. Murine double minute 2 siRNA and wild-type p53 gene therapy interact positively with zinc on prostate tumours in vitro and in vivo. Eur J Cancer 2014; 50:1184-1194. [PMID: 24447832 DOI: 10.1016/j.ejca.2013.12.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 12/29/2013] [Accepted: 12/31/2013] [Indexed: 11/19/2022]
Abstract
Prostate cancer (PCa) often shows either mutations of the p53 gene or inactivation of the P53 protein. The latter may be due to up-regulation of mouse double minute 2 homologue (MDM2), which functions both as an E3 ubiquitin ligase to degrade P53 protein via the proteasome and an inhibitor of P53 transcriptional activation. Zinc plays a crucial role in stabilizing the P53 DNA binding domain, but PCa cells often lack the ability to accumulate sufficient zinc. In the present study, we explore the optimal approach to retention of P53 function. To restore the defective P53 pathway in PCa, we have explored a combined treatment of Pmp53 [a plasmid containing both mdm2 small interfering RNA (Si-MDM2) and the wild-type p53 gene] with zinc. This treatment retains the wild-type P53 conformation and function in PCa in vitro and in vivo. Combined treatments significantly inhibited tumour xenograft growth, retaining wild-type P53 conformation and enhancing its transcriptional regulation of p21 and bax gene expression, leading to the decreased proliferation and increased apoptosis. These in vivo findings were confirmed by in vitro culture of PCa PC-3 (p53 null) or DU145 (mutant p53) cells and showed a positive effect of the combined therapy on cell cycle arrest and massive apoptosis. Our findings suggest that the combined therapy of Pmp53 with zinc is an effective strategy that may open a new therapeutic avenue in some cancers expressing low levels of zinc and a defective P53 status.
Collapse
Affiliation(s)
- Junlian Gu
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Center, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - Bo Wang
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Center, Norman Bethune College of Medicine, Jilin University, Changchun, China; Department of Pathology, Inner Mongolia Forestry General Hospital, Yakeshi, China
| | - Yanan Liu
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Center, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - Lingzhi Zhong
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Yufeng Tang
- Department of Bone and Joint Surgery, First Hospital of Jilin University, Changchun, China
| | - Hua Guo
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Center, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - Tao Jiang
- Department of Blood and Division of Rheumatology, Jilin Province People's Hospital, Changchun, China
| | - Liwei Wang
- Department of Medical Informatics and Health Administration, School of Public Health, Jilin University, Changchun, China
| | - Yang Li
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Center, Norman Bethune College of Medicine, Jilin University, Changchun, China.
| | - Lu Cai
- KCHRI at the Department of Pediatrics, The University of Louisville, Louisville, USA; Departments of Radiation Oncology, Pharmacology and Toxicology, The University of Louisville, Louisville, USA.
| |
Collapse
|
65
|
Gu J, Tang Y, Liu Y, Guo H, Wang Y, Cai L, Li Y, Wang B. Murine double minute 2 siRNA and wild-type p53 gene therapy enhances sensitivity of the SKOV3/DDP ovarian cancer cell line to cisplatin chemotherapy in vitro and in vivo. Cancer Lett 2014; 343:200-209. [PMID: 24161623 DOI: 10.1016/j.canlet.2013.10.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 09/27/2013] [Accepted: 10/07/2013] [Indexed: 01/03/2023]
Abstract
SKOV3/DDP cells urgently require an efficient therapy to improve drug resistance. Here we show a critical role for cisplatin combined with gene therapy, using transfection of a p53 gene/MDM2-siRNA plasmid, in improving cisplatin sensitivity of SKOV3/DDP cells with a strong inhibition of tumor cell growth in vitro and in vivo. The effects may be associated with enhancement of intracellular platinum accumulation via decreased MDR1/P-gp and improvement of apoptotic resistance via increased P53, PUMA and NOXA expression. The combined therapy may efficiently inhibit cell invasion and migration via deceased HIF-1, VEGF, MMP-9 and MMP-2 to suppress malignant progression. These results indicate that cisplatin chemotherapy combined with targeting the MDM2/p53 axis is an attractive strategy to treat SKOV3/DDP cancer.
Collapse
Affiliation(s)
- Junlian Gu
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Center, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - Yufeng Tang
- Department of Bone and Joint Surgery, First Hospital of Jilin University, Changchun, China
| | - Yanan Liu
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Center, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - Hua Guo
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Center, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - Yue Wang
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Center, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - Lu Cai
- KCHRI at the Department of Pediatrics, University of Louisville, Louisville, USA; Departments of Radiation Oncology, Pharmacology and Toxicology, University of Louisville, Louisville, USA
| | - Yang Li
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Center, Norman Bethune College of Medicine, Jilin University, Changchun, China.
| | - Bo Wang
- Departments of Pathology, The Second Clinical Medical School of Inner Mongolia University for the Nationalities (Inner Mongolia General Forestry Hospital), Yakeshi, Inner Mongolia, China.
| |
Collapse
|
66
|
Jiang T, Zhou C, Gu J, Liu Y, Zhao L, Li W, Wang G, Li Y, Cai L. Enhanced therapeutic effect of cisplatin on the prostate cancer in tumor-bearing mice by transfecting the attenuated Salmonella carrying a plasmid co-expressing p53 gene and mdm2 siRNA. Cancer Lett 2013; 337:133-142. [PMID: 23726840 DOI: 10.1016/j.canlet.2013.05.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 05/17/2013] [Accepted: 05/23/2013] [Indexed: 12/12/2022]
Abstract
Prostate cancer urgently needs an efficient therapy. Here we demonstrated that cisplatin combined with gene therapy by transfecting the attenuated Salmonella that carry a plasmid containing p53 gene and MDM2 siRNA provided a super-synergistic effect on the inhibition of prostate cancer growth in vivo. This synergistic therapy was associated with the induction of apoptotic cell death with a decreased Bcl2 to Bax expression ratio and increased expression of cleaved caspase 3 and caspase 9 in the prostate cancer xenograft. These results indicate that cisplatin-chemotherapy in combination with targeting the MDM2/p53 axis is an attractive strategy to treat prostate cancer.
Collapse
Affiliation(s)
- Tao Jiang
- Cancer Center at the First Hospital of Jilin University, Changchun 130021, China
| | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Abstract
In 1813, Vautier published his observation of tumor regression in patients who had suffered from gas gangrene. Since then, many publications have described the use of bacteria as antitumor therapy. For example, Bifidobacterium and Clostridium have been shown to selectively colonize tumors and to reduce tumor size. In addition, recent studies have focused on the use of genetic engineering to induce the expression of pro-drug converting enzymes, cytokines, specific antibodies, or suicide genes in tumor-colonizing bacteria. Moreover, some animal experiments have reported the treatment of tumors with engineered bacteria, and few side effects were observed. Therefore, based on these advances in tumor targeting therapy, bacteria may represent the next generation of cancer therapy.
Collapse
Affiliation(s)
- Chao Zu
- Department of Oncosurgery, First Affiliated Hospital of Medical School, Xi'an Jiaotong University , Xi'an , China
| | | |
Collapse
|
68
|
Emeagi PU, Maenhout S, Dang N, Heirman C, Thielemans K, Breckpot K. Downregulation of Stat3 in melanoma: reprogramming the immune microenvironment as an anticancer therapeutic strategy. Gene Ther 2013; 20:1085-92. [PMID: 23804077 DOI: 10.1038/gt.2013.35] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 03/11/2013] [Accepted: 03/18/2013] [Indexed: 01/11/2023]
Abstract
Persistent activation of the transcription factor, signal transducer and activator of transcription 3 (Stat3) has been shown to mediate several oncogenic features in many types of cancers, including melanoma. In this study, we investigated whether lentiviral (LV) delivery of Stat3-targeting short hairpin RNA (shRNA; LV-shStat3) to K1735-C4 melanoma cells modulates antitumor immunity. Three shStat3 sequences, starting at the position 446, 830 and 1412, were cloned into a mir30 cassette. A shRNA with scrambled sequence served as a control. Transduction with LV-shStat3 resulted in downregulation of Stat3 in vitro. The latter coincided with low cell viability, a reduced expression of survivin and matrix metalloproteinase (MMP)-2. A single injection of LV-shStat3 in K1735-C4 tumors efficiently downregulated Stat3 in vivo and resulted in reduction of both vascular endothelial growth factor secretion and in myeloid-derived suppressor cell (MDSC) numbers. In contrast, we observed an increase in interleukin-6 and interferon-γ secretion, mature dendritic cells (DCs) and CD8(+) T cells. Both DCs and CD8(+) T cells displayed enhanced activity, whereas granulocytic MDSCs lost their suppressive capacity upon Stat3 downregulation. Importantly, a single injection of LV-shStat3 was sufficient to reduce tumor growth, hence prolong survival of tumor-bearing mice. These data demonstrate that Stat3 downregulation in melanoma reinvigorates existing antitumor immunity.
Collapse
Affiliation(s)
- P U Emeagi
- Laboratory of Molecular and Cellular Therapy, Department of Immunology-Physiology, Vrije Universiteit Brussel, Jette, Belgium
| | | | | | | | | | | |
Collapse
|
69
|
Zhang Z, Vu GP, Gong H, Xia C, Chen YC, Liu F, Wu J, Lu S. Engineered external guide sequences are highly effective in inhibiting gene expression and replication of hepatitis B virus in cultured cells. PLoS One 2013; 8:e65268. [PMID: 23776459 PMCID: PMC3680410 DOI: 10.1371/journal.pone.0065268] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 04/23/2013] [Indexed: 01/12/2023] Open
Abstract
External guide sequences (EGSs) are RNA molecules that consist of a sequence complementary to a target mRNA and recruit intracellular ribonuclease P (RNase P), a tRNA processing enzyme, for specific degradation of the target mRNA. We have previously used an in vitro selection procedure to generate EGS variants that efficiently induce human RNase P to cleave a target mRNA in vitro. In this study, we constructed EGSs from a variant to target the overlapping region of the S mRNA, pre-S/L mRNA, and pregenomic RNA (pgRNA) of hepatitis B virus (HBV), which are essential for viral replication and infection. The EGS variant was about 50-fold more efficient in inducing human RNase P to cleave the mRNA in vitro than the EGS derived from a natural tRNA. Following Salmonella-mediated gene delivery, the EGSs were expressed in cultured HBV-carrying cells. A reduction of about 97% and 75% in the level of HBV RNAs and proteins and an inhibition of about 6,000- and 130-fold in the levels of capsid-associated HBV DNA were observed in cells treated with Salmonella vectors carrying the expression cassette for the variant and the tRNA-derived EGS, respectively. Our study provides direct evidence that the EGS variant is more effective in blocking HBV gene expression and DNA replication than the tRNA-derived EGS. Furthermore, these results demonstrate the feasibility of developing Salmonella-mediated gene delivery of highly active EGS RNA variants as a novel approach for gene-targeting applications such as anti-HBV therapy.
Collapse
Affiliation(s)
- Zhigang Zhang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Gia-Phong Vu
- Program in Comparative Biochemistry, University of California, Berkeley, California, United States of America
| | - Hao Gong
- School of Public Health, University of California, Berkeley, California, United States of America
| | - Chuan Xia
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yuan-Chuan Chen
- Program in Comparative Biochemistry, University of California, Berkeley, California, United States of America
| | - Fenyong Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
- Program in Comparative Biochemistry, University of California, Berkeley, California, United States of America
- School of Public Health, University of California, Berkeley, California, United States of America
| | - Jianguo Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Sangwei Lu
- Program in Comparative Biochemistry, University of California, Berkeley, California, United States of America
- School of Public Health, University of California, Berkeley, California, United States of America
| |
Collapse
|
70
|
Yin D, Li Y, Lin H, Guo B, Du Y, Li X, Jia H, Zhao X, Tang J, Zhang L. Functional graphene oxide as a plasmid-based Stat3 siRNA carrier inhibits mouse malignant melanoma growth in vivo. NANOTECHNOLOGY 2013; 24:105102. [PMID: 23425941 DOI: 10.1088/0957-4484/24/10/105102] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Graphene oxide (GO) has attracted intensive interest in the biomedical field in recent years. We investigate whether the use of functional graphene oxide as an efficient delivery system for delivering specific molecular antitumor therapeutics in vivo could achieve a more excellent antitumor effect. Constitutive activation of signal transducer and activator of transcription 3 (Stat3) promotes survival in a wide spectrum of human cancers. In this paper, we study the in vivo behavior of graphene oxide chemically functionalized with polyethylenimine and polyethylene glycol (GO-PEI-PEG) as a plasmid-based Stat3-specific small interfering RNA (siRNA) carrier in mouse malignant melanoma. The in vivo results indicate significant regression in tumor growth and tumor weight after plasmid-based Stat3 siRNA delivered by GO-PEI-PEG treatment. Moreover, there was no significant side effect from GO-PEI-PEG treatment according to histological examination and blood chemistry analysis in mice. Thus, our work is the first success of using GO-PEI-PEG as a promising carrier for plasmid Stat3 siRNA delivery and down-regulation of Stat3 by a polymer-mediated vehicle and suggests the great promise of graphene in biomedical applications such as cancer treatment.
Collapse
Affiliation(s)
- Di Yin
- Prostate Diseases Prevention and Treatment Research Centre and Department of Pathophysiology, Norman Bethune Medical School, Jilin University, Changchun 130021, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Li X, Li Y, Wang B, Ji K, Liang Z, Guo B, Hu J, Yin D, Du Y, Kopecko DJ, Kalvakolanu DV, Zhao X, Xu D, Zhang L. Delivery of the co-expression plasmid pEndo-Si-Stat3 by attenuated Salmonella serovar typhimurium for prostate cancer treatment. J Cancer Res Clin Oncol 2013; 139:971-80. [PMID: 23463096 DOI: 10.1007/s00432-013-1398-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 02/08/2013] [Indexed: 12/18/2022]
Abstract
OBJECTIVES To investigate the therapeutic utility of an attenuated bacterium carrying a plasmid that co-expresses Endostatin, an inhibitor of tumor neovasculogenesis, and a shRNA that targets Stat3 to suppress prostate cancer growth. METHODS Plasmid pEndo-Si-Stat3 was constructed and introduced into an attenuated strain of Salmonella enterica serovar typhimurium. The resultant recombinant bacterium was used as a vector to deliver the plasmid to tumor cells growing in vivo. Tumor-associated gene and protein expression changes were measured by using RT-PCR and Western blot analyses. Expression of Endostatin in tumor tissue was detected by ELISA. The presence of vector bacteria in tissues was monitored and tumor destruction was assessed by using TUNEL and H&E staining assays. RESULTS Bacterially delivered pEndo-Si-Stat3 decreased Stat3 levels and increased Endostatin expression in mouse tumors, resulting in a significant suppression of tumor growth (P < 0.01). Expression of Bcl-2 and PCNA was down-regulated and Caspase3 expression was up-regulated to promote apoptosis of tumor cells. CONCLUSIONS Successful delivery by attenuated Salmonella of the combination therapeutic plasmid simultaneously knocked down the expression of Stat3 and resulted in over-expression of Endostatin, which synergistically inhibited prostate cancer growth.
Collapse
Affiliation(s)
- Xin Li
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Center, Norman Bethune Medical School, Jilin University, Xinmin Street, Changchun, 130021, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Li X, Li Y, Hu J, Wang B, Zhao L, Ji K, Guo B, Yin D, Du Y, Kopecko DJ, Kalvakolanu DV, Zhao X, Xu D, Zhang L. Plasmid-based E6-specific siRNA and co-expression of wild-type p53 suppresses the growth of cervical cancer in vitro and in vivo. Cancer Lett 2013; 335:242-50. [PMID: 23435374 DOI: 10.1016/j.canlet.2013.02.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 02/08/2013] [Accepted: 02/13/2013] [Indexed: 01/29/2023]
Abstract
The E6 protein of the oncogenic HPV-16 functions by interfering with the normal cell cycle control mechanisms, particularly those controlled by p53. In this study, we developed a dual expression plasmid that coexpressed-E6-specific siRNA and wild type p53, and to evaluate its effects on cervical cancer growth. We found that simultaneous expression of pSi-E6-P53 caused a robust suppression of tumor growth when compared to the controls either E6-specific siRNA or p53 alone. In conclusion, our findings demonstrate that a combined strategy of co-expressed E6-specific siRNA and p53 synergistically and more effectively suppressed cervical tumor growth when compared with single treatment.
Collapse
Affiliation(s)
- Xin Li
- Prostate Diseases Prevention and Treatment Research Center and Department of Pathophysiology, Norman Bethune Medical School, Jilin University, Changchun 130021, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Guan GF, Zhao M, Liu LM, Jin CS, Sun K, Zhang DJ, Yu DJ, Cao HW, Lu YQ, Wen LJ. Salmonella typhimurium mediated delivery of Apoptin in human laryngeal cancer. Int J Med Sci 2013; 10:1639-48. [PMID: 24155656 PMCID: PMC3805922 DOI: 10.7150/ijms.6960] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 08/30/2013] [Indexed: 01/26/2023] Open
Abstract
An effective cancer therapeutic should target tumours specifically with limited systemic toxicity. Here, we transformed an attenuated Salmonella typhimurium (S. typhimurium) with an Apoptin expressing plasmid into a human laryngeal carcinoma cell line. The expression of the inserted gene was measured using fluorescence and immunoblotting assays. The attenuated S. typhimurium-mediated Apoptin significantly decreased cytotoxicity and strongly increased cell apoptosis through the activation of caspase-3. The process was mediated by Bax, cytochrome c and caspase-9. A syngeneic nude murine tumour model was used to determine the anti-tumour effects of the recombinant bacteria in vivo. Systemic injection of the recombinant bacteria with and without re-dosing caused significant tumour growth delay and reduced tumour microvessel density, thereby extending host survival. Our findings indicated that the use of recombinant Salmonella typhimurium as an Apoptin expression vector has potential cancer therapeutic benefits.
Collapse
Affiliation(s)
- Guo-fang Guan
- 1. Department of Otolaryngology, Head and Neck Surgery, The Second Hospital of Jilin University, Changchun 130041, P. R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Jia H, Li Y, Zhao T, Li X, Hu J, Yin D, Guo B, Kopecko DJ, Zhao X, Zhang L, Xu DQ. Antitumor effects of Stat3-siRNA and endostatin combined therapies, delivered by attenuated Salmonella, on orthotopically implanted hepatocarcinoma. Cancer Immunol Immunother 2012; 61:1977-87. [PMID: 22527247 PMCID: PMC11028561 DOI: 10.1007/s00262-012-1256-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 03/27/2012] [Indexed: 01/08/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most aggressive carcinomas. Limited therapeutic options, mainly due to a fragmented genetic understanding of HCC, and major HCC resistance to conventional chemotherapy are the key reasons for a poor prognosis. Thus, new effective treatments are urgent and gene therapy may be a novel option. Signal transducer and activator of transcription 3 (Stat3) is a highly studied member of the STAT family. Inhibition of Stat3 signaling has been found to suppress tumor growth and improve survival, providing a molecular target for cancer therapy. Furthermore, HCC is a hypervascular tumor and angiogenesis plays a crucial role in tumor growth and metastasis. Thus, anti-angiogenic therapy, combined with inhibition of Stat3, may be an effective approach to combat HCC. We tested the effect that the combination therapy consisting of endostatin (a powerful angiogenesis inhibitor) and Stat3-specific small interfering RNA, using a DNA vector delivered by attenuated S. typhimurium, on an orthotopic HCC model in C57BL/6 mice. Although antitumor effects were observed with either single therapeutic treatment, the combination therapy provided superior antitumor effects. Correlated with this finding, the combination treatment resulted in significant alteration of Stat3 and endostatin levels and that of the downstream gene VEGF, decreased cell proliferation, induced cell apoptosis and inhibited angiogenesis. Importantly, combined treatment also elicited immune system regulation of various immune cells and cytokines. This study has provided a novel cancer gene therapeutic approach.
Collapse
Affiliation(s)
- Huijie Jia
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Centre, Norman Bethune College of Medicine, Jilin University, Changchun, 130021 People’s Republic of China
| | - Yang Li
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Centre, Norman Bethune College of Medicine, Jilin University, Changchun, 130021 People’s Republic of China
| | - Tiesuo Zhao
- Department of Immunology, Norman Bethune Medical School, Jilin University, Changchun, People’s Republic of China
| | - Xin Li
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Centre, Norman Bethune College of Medicine, Jilin University, Changchun, 130021 People’s Republic of China
| | - Jiadi Hu
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD USA
| | - Di Yin
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Centre, Norman Bethune College of Medicine, Jilin University, Changchun, 130021 People’s Republic of China
| | - Baofeng Guo
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Centre, Norman Bethune College of Medicine, Jilin University, Changchun, 130021 People’s Republic of China
| | - Dennis J. Kopecko
- Laboratory of Enteric and Sexually Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD USA
| | - Xuejian Zhao
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Centre, Norman Bethune College of Medicine, Jilin University, Changchun, 130021 People’s Republic of China
| | - Ling Zhang
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Centre, Norman Bethune College of Medicine, Jilin University, Changchun, 130021 People’s Republic of China
| | - De Qi Xu
- New Vaccine National Engineering Research Center, Beijing three-room South 4 hospital, Chaoyang District, Beijing, 100024 People’s Republic of China
| |
Collapse
|
75
|
Escherichia coli Nissle 1917 targets and restrains mouse B16 melanoma and 4T1 breast tumors through expression of azurin protein. Appl Environ Microbiol 2012; 78:7603-10. [PMID: 22923405 DOI: 10.1128/aem.01390-12] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Many studies have demonstrated that intravenously administered bacteria can target and proliferate in solid tumors and then quickly be released from other organs. Here, we employed the tumor-targeting property of Escherichia coli Nissle 1917 to inhibit mouse B16 melanoma and 4T1 breast tumors through the expression of azurin protein. For this purpose, recombinant azurin-expressing E. coli Nissle 1917 was developed. The levels of in vitro and in vivo azurin secretion in the engineered bacterium were determined by immunochemistry. Our results demonstrated that B16 melanoma and orthotopic 4T1 breast tumor growth were remarkably restrained and pulmonary metastasis was prevented in immunocompetent mice. It is worth noting that this therapeutic effect partially resulted from the antitumor activity of neutrophils and lymphocytes due to inflammatory responses caused by bacterial infections. No toxicity was observed in the animal during the experiments. This study indicates that E. coli Nissle 1917 could be a potential carrier to deliver antitumor drugs effectively for cancer therapy.
Collapse
|
76
|
Tumor-targeting Salmonella typhimurium, a natural tool for activation of prodrug 6MePdR and their combination therapy in murine melanoma model. Appl Microbiol Biotechnol 2012; 97:4393-401. [PMID: 22868826 DOI: 10.1007/s00253-012-4321-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 06/18/2012] [Accepted: 07/18/2012] [Indexed: 10/28/2022]
Abstract
The PNP/6-methylpurine 2'-deoxyriboside (6MePdR) system is an efficient gene-directed enzyme prodrug therapy system with significant antitumor activities. In this system, Escherichia coli purine nucleoside phosphorylase (ePNP) activates nontoxic 6MePdR into potent antitumor drug 6-methylpurine (6MeP). The Salmonella typhimurium PNP (sPNP) gene has a 96-% sequence homology in comparison with ePNP and also has the ability to convert 6MePdR to 6MeP. In this study, we used tumor-targeting S. typhimurium VNP20009 expressing endogenous PNP gene constitutively to activate 6MePdR and a combination treatment of bacteria and prodrug in B16F10 melanoma model. The conversion of 6MePdR to 6MeP by S. typhimurium was analyzed by HPLC and the enzyme activity of sPNP was confirmed by in vitro (tetrazolium-based colorimetric assay) MTT cytotoxicity assay. After systemic administration of VNP20009 to mice, the bacteria largely accumulated and specifically delivered endogenous sPNP in the tumor. In comparison with VNP20009 or 6MePdR treatment alone, combined administration of VNP20009 followed by 6MePdR treatment significantly delayed the growth of B16F10 tumor and increased the CD8(+) T-cell infiltration. In summary, our results demonstrated that the combination therapy of S. typhimurium and prodrug 6MePdR is a promising strategy for cancer therapy.
Collapse
|
77
|
Bugaj LJ, Schaffer DV. Bringing next-generation therapeutics to the clinic through synthetic biology. Curr Opin Chem Biol 2012; 16:355-61. [DOI: 10.1016/j.cbpa.2012.04.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 04/15/2012] [Indexed: 01/21/2023]
|
78
|
Paton AW, Morona R, Paton JC. Bioengineered microbes in disease therapy. Trends Mol Med 2012; 18:417-25. [DOI: 10.1016/j.molmed.2012.05.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 05/11/2012] [Accepted: 05/15/2012] [Indexed: 01/30/2023]
|
79
|
Liu YB, Zhang L, Guo YX, Gao LF, Liu XC, Zhao LJ, Guo BF, Zhao LJ, Zhao XJ, Xu DQ. Plasmid-based Survivin shRNA and GRIM-19 carried by attenuated Salmonella suppresses tumor cell growth. Asian J Androl 2012; 14:536-45. [PMID: 22580637 DOI: 10.1038/aja.2011.179] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Persistent activation of Survivin and its overexpression contribute to the formation, progression and metastasis of several different tumor types. Therefore, Survivin is an ideal target for RNA interference mediated-growth inhibition. Blockade of Survivin using specific short hairpin RNAs (shRNA) can significantly reduce prostate tumor growth. RNA interference does not fully ablate target gene expression, owing to the idiosyncrasies associated with shRNAs and their targets. To enhance the therapeutic efficacy of Survivin-specific shRNA, we employed a combinatorial expression of Survivin-specific shRNA and gene associated with retinoid-interferon-induced mortality-19 (GRIM-19). Then, the GRIM-19 coding sequences and Survivin-specific shRNAs were used to create a dual expression plasmid vector and were carried by an attenuated strain of Salmonella enteric serovar typhimurium (S. typhimurium) to treat prostate cancer in vitro and in vivo. We found that the co-expressed Survivin-specific shRNA and GRIM-19 synergistically and more effectively inhibited prostate tumor proliferation and survival, when compared with treatment with either single agent alone in vitro and in vivo. This study has provided a novel cancer gene therapeutic approach for prostate cancer.
Collapse
Affiliation(s)
- Yan-Bo Liu
- Prostate Diseases Prevention and Treatment Research Centre and Department of Pathophysiology, Norman Bethune Medical School, Jilin University, Changchun130021, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Tian Y, Guo B, Jia H, Ji K, Sun Y, Li Y, Zhao T, Gao L, Meng Y, Kalvakolanu DV, Kopecko DJ, Zhao X, Zhang L, Xu D. Targeted therapy via oral administration of attenuated Salmonella expression plasmid-vectored Stat3-shRNA cures orthotopically transplanted mouse HCC. Cancer Gene Ther 2012; 19:393-401. [PMID: 22555509 DOI: 10.1038/cgt.2012.12] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The development of RNA interference-based cancer gene therapies has been delayed due to the lack of effective tumor-targeting delivery systems. Attenuated Salmonella enterica serovar Typhimurium (S. Typhimurium) has a natural tropism for solid tumors. We report here the use of attenuated S. Typhimurium as a vector to deliver shRNA directly into tumor cells. Constitutively activated signal transducer and activator of transcription 3 (Stat3) is a key transcription factor involved in both hepatocellular carcinoma (HCC) growth and metastasis. In this study, attenuated S. Typhimurium was capable of delivering shRNA-expressing vectors to the targeted cancer cells and inducing RNA interference in vivo. More importantly, a single oral dose of attenuated S. Typhimurium carrying shRNA-expressing vectors targeting Stat3 induced remarkably delayed and reduced HCC (in 70% of mice). Cancer in these cured mice did not recur over 2 years following treatment. These data demonstrated that RNA interference combined with Salmonella as a delivery system may offer a novel clinical approach for cancer gene therapy.
Collapse
Affiliation(s)
- Y Tian
- Prostate Diseases Prevention and Treatment Research Centre and Department of Pathophysiology, Norman Bethune College of Medicine, Jilin University, Changchun, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Li X, Zhang L, Shao Y, Liang Z, Shao C, Wang B, Guo B, Li N, Zhao X, Li Y, Xu D. Effects of a human plasma membrane-associated sialidase siRNA on prostate cancer invasion. Biochem Biophys Res Commun 2011; 416:270-276. [PMID: 22093819 DOI: 10.1016/j.bbrc.2011.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 11/01/2011] [Indexed: 10/15/2022]
Abstract
Human plasma membrane-associated sialidase (Neu3) is one of several sialidases that hydrolyze sialic acids in the terminal position of the carbohydrate groups of glycolipids and glycoproteins. Neu3 is mainly localized in plasma membranes and plays crucial roles in the regulation of cell surface functions. In this study, we investigated the effects and molecular mechanisms of Neu3 on cell invasion and migration in vivo and in vitro. Initially, we found that the levels of Neu3 expression were higher in prostate cancer tissues and cell lines than in normal prostate tissues based on RT-PCR and Western blotting analyses. We then applied a Neu3 siRNA approach to block Neu3 signaling using PC-3M cells as model cells. Transwell invasion assays and wound assays showed significantly decreased invasion and migration potential in the Neu3 siRNA-transfected cells. RT-PCR and Western blotting analyses revealed that Neu3 knockdown decreased the expressions of the matrix metalloproteinases MMP-2 and MMP-9. In vivo, mice injected with PC-3M cell tumors were evaluated by SPECT/CT to determine the presence of bone metastases. Mice treated with attenuated Salmonella carrying the Neu3 siRNA developed fewer bone metastases than mice treated with attenuated Salmonella carrying a control Scramble siRNA, attenuated Salmonella alone or PBS. The results for bone metastasis detection by pathology were consistent with the data obtained by SPECT/CT. Tumor blocks were evaluated by histochemical, RT-PCR and Western blotting analyses. The results revealed decreased expressions of MMP-2 and MMP-9 at the mRNA and protein levels. Taken together, the present findings suggest that Neu3 is a promising molecular target for the prevention of prostate cancer metastasis.
Collapse
Affiliation(s)
- Xiaojie Li
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Centre, Norman Bethune Medical School, Jilin University, Changchun, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Yu H. Bacteria-mediated disease therapy. Appl Microbiol Biotechnol 2011; 92:1107-13. [DOI: 10.1007/s00253-011-3648-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 09/29/2011] [Accepted: 10/16/2011] [Indexed: 12/19/2022]
|
83
|
Walther W, Schlag PM, Stein U. Local Gene Delivery for Therapy of Solid Tumors. DRUG DELIVERY IN ONCOLOGY 2011:1391-1413. [DOI: 10.1002/9783527634057.ch43] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
84
|
Ji K, Wang B, Shao YT, Zhang L, Liu YN, Shao C, Li XJ, Li X, Hu JD, Zhao XJ, Xu DQ, Li Y, Cai L. Synergistic suppression of prostatic cancer cells by coexpression of both murine double minute 2 small interfering RNA and wild-type p53 gene in vitro and in vivo. J Pharmacol Exp Ther 2011; 338:173-183. [PMID: 21444629 DOI: 10.1124/jpet.111.180364] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2024] Open
Abstract
Our objective was to evaluate cell growth and death effects by inhibiting Murine Double Minute 2 (MDM2) expression in human prostate cancer cells overexpressing the wild-type (WT) p53 gene. Prostate PC-3 tumor cells were transfected with a plasmid containing either mdm2 small interfering (Si-mdm2) or the WT p53 gene (Pp53) alone, or both (Pmp53), using Lipofectamine in vitro and attenuated Salmonella enterica serovar Typhi vaccine strain Ty21a (Salmonella Typhi Ty21a) in vivo. Cell growth, apoptosis, and the expression of related genes and proteins were examined in vitro and in vivo by flow cytometry and Western blot assays. We demonstrated that human prostate tumors had increased expression of MDM2 and mutant p53 proteins. Transfection of the PC-3 cells with the Pmp53 plasmid in vitro offered significant inhibition of cell growth and an increase in apoptotic cell death compared with that of the Si-mdm2 or Pp53 group. These effects were associated with up-regulation of p21 and down-regulation of hypoxia-inducible factor 1α expression in Pmp53-transfected cells. To validate the in vitro findings, the nude mice implanted with PC-3 cells were treated with attenuated Salmonella Typhi Ty21a carrying the plasmids, which showed that the Pmp53 plasmid significantly inhibited the tumor growth rate in vivo compared with that of the Si-mdm2 or Pp53 plasmid alone. Tumor tissues from mice treated with the Pmp53 plasmid showed increased expression of p21 and decreased expression of hypoxia-inducible factor 1α proteins, with an increased apoptotic effect. These results suggest that knockdown of mdm2 expression by its specific small interfering RNA with overexpression of the WT p53 gene offers synergistic inhibition of prostate cancer cell growth in vitro and in vivo.
Collapse
Affiliation(s)
- Kun Ji
- Prostate Diseases Prevention and Treatment Research Center, Department of Pathophysiology, Norman Bethune College of Medicine, Jilin University, Changchun, People’s Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
|
86
|
Abstract
When one considers the organism Salmonella enterica serotype Typhimurium (S. Typhimurium), one usually thinks of the Gram-negative enteric pathogen that causes the severe food borne illness, gastroentertitis. In this context, the idea of Salmonella being exploited as a cancer therapeutic seems pretty remote. However, there has been an escalating interest in the development of tumor-therapeutic bacteria for use in the treatment of a variety of cancers. This strategy takes advantage of the remarkable ability of certain bacteria to preferentially replicate and accumulate within tumors. In the case of S. Typhimurium, this organism infects and selectively grows within implanted tumors, achieving tumor/normal tissue ratios of approximately 1,000:1. Salmonella also has some attractive properties well suited for the design of a chemotherapeutic agent. In particular, this pathogen can easily be manipulated to carry foreign genes, and since this species is a facultative anaerobe, it is able to survival in both oxygenated and hypoxic conditions, implying this organism could colonize both small metastatic lesions as well as larger tumors. These observations are the impetus to a burgeoning field focused on the development of Salmonella as a clinically useful anti-cancer agent. We will discuss three cutting edge technologies employing Salmonella to target tumors.
Collapse
|
87
|
Manuel ER, Blache CA, Paquette R, Kaltcheva TI, Ishizaki H, Ellenhorn JDI, Hensel M, Metelitsa L, Diamond DJ. Enhancement of cancer vaccine therapy by systemic delivery of a tumor-targeting Salmonella-based STAT3 shRNA suppresses the growth of established melanoma tumors. Cancer Res 2011; 71:4183-91. [PMID: 21527558 DOI: 10.1158/0008-5472.can-10-4676] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cancer vaccine therapies have only achieved limited success when focusing on effector immunity with the goal of eliciting robust tumor-specific T-cell responses. More recently, there is an emerging understanding that effective immunity can only be achieved by coordinate disruption of tumor-derived immunosuppression. Toward that goal, we have developed a potent Salmonella-based vaccine expressing codon-optimized survivin (CO-SVN), referred to as 3342Max. When used alone as a therapeutic vaccine, 3342Max can attenuate growth of aggressive murine melanomas overexpressing SVN. However, under more immunosuppressive conditions, such as those associated with larger tumor volumes, we found that the vaccine was ineffective. Vaccine efficacy could be rescued if tumor-bearing mice were treated initially with Salmonella encoding a short hairpin RNA (shRNA) targeting the tolerogenic molecule STAT3 (YS1646-shSTAT3). In vaccinated mice, silencing STAT3 increased the proliferation and granzyme B levels of intratumoral CD4(+) and CD8(+) T cells. The combined strategy also increased apoptosis in tumors of treated mice, enhancing tumor-specific killing of tumor targets. Interestingly, mice treated with YS1646-shSTAT3 or 3342Max alone were similarly unsuccessful in rejecting established tumors, whereas the combined regimen was highly potent. Our findings establish that a combined strategy of silencing immunosuppressive molecules followed by vaccination can act synergistically to attenuate tumor growth, and they offer a novel translational direction to improve tumor immunotherapy.
Collapse
Affiliation(s)
- Edwin R Manuel
- Division of Translational Vaccine Research, City of Hope, Duarte, California 91010, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Hoffman RM. Tumor-seeking Salmonella amino acid auxotrophs. Curr Opin Biotechnol 2011; 22:917-23. [PMID: 21498066 DOI: 10.1016/j.copbio.2011.03.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 03/22/2011] [Accepted: 03/23/2011] [Indexed: 12/17/2022]
Abstract
A paradigm change in the treatment of cancer is urgently needed. Bacteria offer many advantages, including natural cytotoxity, motility, chemotaxis and a relative large genome to manipulate for tumor targeting. Salmonella, Clostridium, Bifodobacterium and Escherichia coli have been shown to control tumor growth and promote survival in animal models. We have developed an effective bacterial cancer therapy by engineering Salmonella typhimurium amino acid auxotrophs which grow in viable as well as necrotic areas of tumors, but not normal tissue. The S. typhimurium A1-R mutant, which is auxotrophic for leu-arg, is tumor-seeking and has antitumor efficacy against the major types of cancer. The approach described here is a significant improvement over previous bacterial tumor-therapy strategies that require combination with toxic chemotherapy.
Collapse
Affiliation(s)
- Robert M Hoffman
- Department of Surgery, University of California, San Diego, CA 92111, USA.
| |
Collapse
|
89
|
Research Spotlight: Delivery of therapeutic RNA molecules to cancer cells by bacteria. Ther Deliv 2011; 2:441-9. [DOI: 10.4155/tde.11.22] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Delivery of RNA-based therapeutics, for example RNA interference (RNAi) effectors, to target cells is one of the major obstacles for the development of RNA-based therapies. Since it has been known for a long time that bacteria can mediate tumor shrinkage, it was obvious to use nonpathogenic bacteria to produce and deliver therapeutic RNA molecules into target cells to induce RNAi. During the last years, two bacteria-based concepts were developed for this strategy, transkingdom RNAi (tkRNAi) and bacteria-mediated RNAi (bmRNAi). The first concept, tkRNAi, delivers RNAi effectors into target cells by invasive bacteria, which themselves produce therapeutic shRNAs. The bmRNAi technology utilizes invasive bacteria conveying RNAi effector-encoding DNA constructs that will act as a matrix for transcription of these sequences in the target cell by the host cell’s transcription machinery.
Collapse
|
90
|
Zhang X, Wanda SY, Brenneman K, Kong W, Zhang X, Roland K, Curtiss R. Improving Salmonella vector with rec mutation to stabilize the DNA cargoes. BMC Microbiol 2011; 11:31. [PMID: 21303535 PMCID: PMC3047425 DOI: 10.1186/1471-2180-11-31] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 02/08/2011] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Salmonella has been employed to deliver therapeutic molecules against cancer and infectious diseases. As the carrier for target gene(s), the cargo plasmid should be stable in the bacterial vector. Plasmid recombination has been reduced in E. coli by mutating several genes including the recA, recE, recF and recJ. However, to our knowledge, there have been no published studies of the effect of these or any other genes that play a role in plasmid recombination in Salmonella enterica. RESULTS The effect of recA, recF and recJ deletions on DNA recombination was examined in three serotypes of Salmonella enterica. We found that (1) intraplasmid recombination between direct duplications was RecF-independent in Typhimurium and Paratyphi A, but could be significantly reduced in Typhi by a ΔrecA or ΔrecF mutation; (2) in all three Salmonella serotypes, both ΔrecA and ΔrecF mutations reduced intraplasmid recombination when a 1041 bp intervening sequence was present between the duplications; (3) ΔrecA and ΔrecF mutations resulted in lower frequencies of interplasmid recombination in Typhimurium and Paratyphi A, but not in Typhi; (4) in some cases, a ΔrecJ mutation could reduce plasmid recombination but was less effective than ΔrecA and ΔrecF mutations. We also examined chromosome-related recombination. The frequencies of intrachromosomal recombination and plasmid integration into the chromosome were 2 and 3 logs lower than plasmid recombination frequencies in Rec+ strains. A ΔrecA mutation reduced both intrachromosomal recombination and plasmid integration frequencies. CONCLUSIONS The ΔrecA and ΔrecF mutations can reduce plasmid recombination frequencies in Salmonella enterica, but the effect can vary between serovars. This information will be useful for developing Salmonella delivery vectors able to stably maintain plasmid cargoes for vaccine development and gene therapy.
Collapse
Affiliation(s)
- Xiangmin Zhang
- The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | | | | | | | | | | | | |
Collapse
|
91
|
Plasmid-based Stat3 siRNA delivered by hydroxyapatite nanoparticles suppresses mouse prostate tumour growth in vivo. Asian J Androl 2011; 13:481-6. [PMID: 21297658 DOI: 10.1038/aja.2010.167] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
DNA vector-based Stat3-specific RNA interference (si-Stat3) blocks Stat3 signalling and inhibits prostate tumour growth. However, the antitumour activity depends on the efficient delivery of si-Stat3. The effects on the growth of mouse prostate cancer cells of si-Stat3 delivered by hydroxyapatite were determined in this study. RM-1 tumour blocks were transplanted into C57BL/6 mice. CaCl₂-modified hydroxyapatite carrying si-Stat3 plasmids were injected into tumours, and tumour growth and histology were determined. The expression levels of Stat3, pTyr-Stat3, Bcl-2, Bax, Caspase3, VEGF and cyclin D1 were measured by western blot analysis. Amounts of apoptosis in cancer cells were analysed with immunohistochemistry and the terminal deoxyribonucleotidyl transferase-mediated dUTP-digoxigenin nick end-labelling (TUNEL) assay. The results showed that hydroxyapatite-delivered si-Stat3 significantly suppressed tumour growth up to 74% (P < 0.01). Stat3 expression was dramatically downregulated in the tumours. The immunohistochemistry and TUNEL results showed that si-Stat3-induced apoptosis (up to 42%, P < 0.01). The Stat3 downstream genes Bcl-2, VEGF and cyclin D1 were also strongly downregulated in the tumour tissues that also displayed significant increases in Bax expression and Caspase3 activity. These results suggest that hydroxyapatite can be used for the in vivo delivery of plasmid-based siRNAs into tumours.
Collapse
|
92
|
Abstract
Several bacterial species have inherent ability to colonize solid tumors in vivo. However, their natural anti-tumor activity can be enhanced by genetic engineering that enables these bacteria express or transfer therapeutic molecules into target cells. In this review, we summarize latest research on cancer therapy using genetically modified bacteria with particular emphasis on blocking tumor angiogenesis. Despite recent progress, only a few recent studies on bacterial tumor therapy have focused on anti-angiogenesis. Bacteria-mediated anti-angiogenesis therapy for cancer, however, is an attractive approach given that solid tumors are often characterized by increased vascularization. Here, we discuss four different approaches for using modified bacteria as anti-cancer therapeutics--bactofection, DNA vaccination, alternative gene therapy and transkingdom RNA interference--with a specific focus on angiogenesis suppression. Critical areas and future directions for this field are also outlined.
Collapse
|
93
|
Wall DM, Srikanth C, McCormick BA. Targeting tumors with salmonella Typhimurium- potential for therapy. Oncotarget 2010; 1:721-728. [PMID: 21321381 PMCID: PMC3157733 DOI: 10.18632/oncotarget.206] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 12/29/2010] [Indexed: 11/25/2022] Open
Abstract
When one considers the organism Salmonella enterica serotype Typhimurium (S. Typhimurium), one usually thinks of the Gram-negative enteric pathogen that causes the severe food borne illness, gastroentertitis. In this context, the idea of Salmonella being exploited as a cancer therapeutic seems pretty remote. However, there has been an escalating interest in the development of tumor-therapeutic bacteria for use in the treatment of a variety of cancers. This strategy takes advantage of the remarkable ability of certain bacteria to preferentially replicate and accumulate within tumors. In the case of S. Typhimurium, this organism infects and selectively grows within implanted tumors, achieving tumor/normal tissue ratios of approximately 1,000:1. Salmonella also has some attractive properties well suited for the design of a chemotherapeutic agent. In particular, this pathogen can easily be manipulated to carry foreign genes, and since this species is a facultative anaerobe, it is able to survival in both oxygenated and hypoxic conditions, implying this organism could colonize both small metastatic lesions as well as larger tumors. These observations are the impetus to a burgeoning field focused on the development of Salmonella as a clinically useful anti-cancer agent. We will discuss three cutting edge technologies employing Salmonella to target tumors.
Collapse
Affiliation(s)
- Daniel M. Wall
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8QQ, United Kingdom
| | - C.V. Srikanth
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, United States of America
| | - Beth A. McCormick
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, United States of America
| |
Collapse
|
94
|
Abstract
Bacterial therapies possess many unique mechanisms for treating cancer that are unachievable with standard methods. Bacteria can specifically target tumours, actively penetrate tissue, are easily detected and can controllably induce cytotoxicity. Over the past decade, Salmonella, Clostridium and other genera have been shown to control tumour growth and promote survival in animal models. In this Innovation article I propose that synthetic biology techniques can be used to solve many of the key challenges that are associated with bacterial therapies, such as toxicity, stability and efficiency, and can be used to tune their beneficial features, allowing the engineering of 'perfect' cancer therapies.
Collapse
Affiliation(s)
- Neil S Forbes
- University of Massachusetts, Amherst, Department of Chemical Engineering, 159 Goessmann Laboratory, Amherst, Massachusetts 01003-9303, USA.
| |
Collapse
|
95
|
Sun X, Wu S, Xing D. The reactive oxygen species-Src-Stat3 pathway provokes negative feedback inhibition of apoptosis induced by high-fluence low-power laser irradiation. FEBS J 2010; 277:4789-802. [PMID: 20977672 DOI: 10.1111/j.1742-4658.2010.07884.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
High-fluence low-power laser irradiation (HF-LPLI) can induce apoptosis by triggering mitochondrial oxidative stress. Signal transducer and activator of transcription 3 (Stat3) is an important transcription factor in the modulation of cell proliferation and apoptosis. Here, using real-time single-cell analysis and western blotting analysis, we investigated the changes in activities of Stat3 in COS-7 cells upon HF-LPLI (633 nm, 80 and 120 J·cm(-2)) and the underlying mechanisms involved. We found that Stat3 was significantly activated by HF-LPLI in a time-dependent and dose-dependent manner. Stat3 activation attenuated HF-LPLI-induced apoptosis, as shown by the fact that both dominant negative Stat3 (Y705F) and Stat3 small interfering RNA expression enhanced cellular apoptosis induced by HF-LPLI. Moreover, we also found that Src kinase was the major positive regulator of Stat3 activation induced by HF-LPLI. Reactive oxygen species (ROS) generation was essential for Stat3 and Src activation upon HF-LPLI, because scavenging of ROS by vitamin C or N-acetylcysteine totally abrogated the activation of Stat3 and Src. Taken together, these findings show that the ROS-Src-Stat3 pathway mediates a negative feedback inhibition of apoptosis induced by HF-LPLI in COS-7 cells. Our research will provide new insights into the mechanism of apoptosis caused by HF-LPLI, and also extend the functional study of Stat3.
Collapse
Affiliation(s)
- Xuegang Sun
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | | | | |
Collapse
|
96
|
Hofmann ER, Nallar SC, Lin L, D'Cunha J, Lindner DJ, Weihua X, Kalvakolanu DV. Identification and characterization of GRIM-1, a cell-death-associated gene product. J Cell Sci 2010; 123:2781-91. [PMID: 20663920 PMCID: PMC2915880 DOI: 10.1242/jcs.070250] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2010] [Indexed: 12/27/2022] Open
Abstract
Using a genome-wide technical knockout, we isolated a newly identified set of GRIM (genes associated with retinoid-interferon-induced mortality) genes; GRIM genes mediate IFN- and retinoic-acid (RA)-induced cell death. Here, we describe the isolation and characterization of one such gene, GRIM-1. Three proteins, with identical C-termini, were produced from the GRIM-1 open reading frame when this gene was transcribed and translated in vitro. These protein isoforms, designated GRIM-1alpha, GRIM-1beta and GRIM-1gamma, differentially suppressed growth via apoptosis in various cell lines. We also show that a caspase-dependent mechanism generates the proapoptotic GRIM-1 isoforms. Lastly, GRIM-1 isoforms differentially blocked maturation of 18S ribosomal RNA, consistent with their respective growth-suppressive ability. Together, these studies identified a novel protein involved in growth suppression and cell death.
Collapse
Affiliation(s)
- Edward R. Hofmann
- Greenebaum Cancer Center, Department of Microbiology and Immunology, Molecular and Cellular Cancer Biology Track, GPILS, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Shreeram C. Nallar
- Greenebaum Cancer Center, Department of Microbiology and Immunology, Molecular and Cellular Cancer Biology Track, GPILS, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Limei Lin
- Greenebaum Cancer Center, Department of Microbiology and Immunology, Molecular and Cellular Cancer Biology Track, GPILS, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jonathan D'Cunha
- Greenebaum Cancer Center, Department of Microbiology and Immunology, Molecular and Cellular Cancer Biology Track, GPILS, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Daniel J. Lindner
- Taussig Cancer Center, Lerner Research Institute, Cleveland, OH 44195, USA
| | - Xiao Weihua
- Hefei National Laboratory of Physical Sciences at Microscale, University of Science and Technology, Hefei, Anhui 230027, China
| | - Dhananjaya V. Kalvakolanu
- Greenebaum Cancer Center, Department of Microbiology and Immunology, Molecular and Cellular Cancer Biology Track, GPILS, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
97
|
Correction: Intratumoral Delivery and Suppression of Prostate Tumor Growth by Attenuated Salmonella enterica serovar typhimurium Carrying Plasmid-Based Small Interfering RNAs. Cancer Res 2010. [DOI: 10.1158/0008-5472.can-10-1688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
98
|
Leschner S, Weiss S. Salmonella—allies in the fight against cancer. J Mol Med (Berl) 2010; 88:763-73. [PMID: 20526574 DOI: 10.1007/s00109-010-0636-z] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 05/06/2010] [Accepted: 05/14/2010] [Indexed: 01/30/2023]
|
99
|
Enterobacterial tumor colonization in mice depends on bacterial metabolism and macrophages but is independent of chemotaxis and motility. Int J Med Microbiol 2010; 300:449-56. [PMID: 20547100 DOI: 10.1016/j.ijmm.2010.02.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Revised: 04/14/2010] [Accepted: 04/14/2010] [Indexed: 01/30/2023] Open
Abstract
Despite promising results and increasing attention in bacterial cancer therapy, surprisingly little is known about initial tumor colonization and the interaction between bacteria and surrounding tumor tissue. Here, we analyzed the role of chemotaxis, motility, and metabolism both in Escherichia coli and Salmonella enterica serovar Typhimurium strains upon intravenous injection into tumor-bearing mice. In contrast to previous models, we found that chemotaxis and motility do not play a significant role in tumor colonization and bacterial distribution within the tumor. Rather, the whole colonization and intratumoral migration process seems to be a passive mechanism that is influenced by the reticuloendothelial system of the host, by the tumor microenvironment and by the bacterial metabolism. These conclusions were supported by experimental data demonstrating that disruption of the basic branch of the aromatic amino acid biosynthetic pathway and depletion of macrophages, in contrast to flagellar mutations, led to significant changes in bacterial accumulation in tumors of live mice.
Collapse
|
100
|
Kalvakolanu DV, Nallar SC, Kalakonda S. Cytokine-induced tumor suppressors: a GRIM story. Cytokine 2010; 52:128-42. [PMID: 20382543 DOI: 10.1016/j.cyto.2010.03.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Accepted: 03/16/2010] [Indexed: 12/18/2022]
Abstract
Cytokines belonging to the IFN family are potent growth suppressors. In a number of clinical and preclinical studies, vitamin A and its derivatives like retinoic acid (RA) have been shown to exert synergistic growth-suppressive effects on several tumor cells. We have employed a genome-wide expression-knockout approach to identify the genes critical for IFN/RA-induced growth suppression. A number of novel genes associated with Retinoid-Interferon-induced Mortality (GRIM) were isolated. In this review, we will describe the molecular mechanisms of actions of one, GRIM-19, which participates in multiple pathways for exerting growth control and/or cell death. This protein is emerging as a new tumor suppressor. In addition, GRIM-19 appears to participate in innate immune responses as its activity is modulated by several viruses and bacteria. Thus, GRIMs seem to couple with multiple biological responses by acting at critical nodes.
Collapse
Affiliation(s)
- Dhan V Kalvakolanu
- Department of Microbiology & Immunology, Marlene & Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | | | |
Collapse
|