51
|
Hazar-Rethinam M, de Long LM, Gannon OM, Topkas E, Boros S, Vargas AC, Dzienis M, Mukhopadhyay P, Simpson F, Endo-Munoz L, Saunders NA. A novel E2F/sphingosine kinase 1 axis regulates anthracycline response in squamous cell carcinoma. Clin Cancer Res 2014; 21:417-27. [PMID: 25411162 DOI: 10.1158/1078-0432.ccr-14-1962] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Head and neck squamous cell carcinomas (HNSCC) are frequently drug resistant and have a mortality rate of 45%. We have previously shown that E2F7 may contribute to drug resistance in SCC cells. However, the mechanism and pathways involved remain unknown. EXPERIMENTAL DESIGN We used transcriptomic profiling to identify candidate pathways that may contribute to E2F7-dependent resistance to anthracyclines. We then manipulated the activity/expression of the candidate pathway using overexpression, knockdown, and pharmacological inhibitors in in vitro and in vivo models of SCC to demonstrate causality. In addition, we examined the expression of E2F7 and a downstream effector in a tissue microarray (TMA) generated from HNSCC patient samples. RESULTS E2F7-deficient keratinocytes were selectively sensitive to doxorubicin and this was reversed by overexpressing E2F7. Transcriptomic profiling identified Sphingosine kinase 1 (Sphk1) as a potential mediator of E2F7-dependent drug resistance. Knockdown and overexpression studies revealed that Sphk1 was a downstream target of E2F7. TMA studies showed that E2F7 overexpression correlated with Sphk1 overexpression in human HNSCC. Moreover, inhibition of Sphk1 by shRNA or the Sphk1-specific inhibitor, SK1-I (BML-EI411), enhanced the sensitivity of SCC cells to doxorubicin in vitro and in vivo. Furthermore, E2F7-induced doxorubicin resistance was mediated via Sphk1-dependent activation of AKT in vitro and in vivo. CONCLUSION We identify a novel drugable pathway in which E2F7 directly increases the transcription and activity of the Sphk1/S1P axis resulting in activation of AKT and subsequent drug resistance. Collectively, this novel combinatorial therapy can potentially be trialed in humans using existing agents.
Collapse
Affiliation(s)
- Mehlika Hazar-Rethinam
- Epithelial Pathobiology Group, University of Queensland Diamantina Institute, Princess Alexandra Hospital, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Lilia Merida de Long
- Epithelial Pathobiology Group, University of Queensland Diamantina Institute, Princess Alexandra Hospital, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Orla M Gannon
- Epithelial Pathobiology Group, University of Queensland Diamantina Institute, Princess Alexandra Hospital, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Eleni Topkas
- Epithelial Pathobiology Group, University of Queensland Diamantina Institute, Princess Alexandra Hospital, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Samuel Boros
- Department of Pathology, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Ana Cristina Vargas
- Department of Pathology, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Marcin Dzienis
- Department of Medical Oncology, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Pamela Mukhopadhyay
- Epithelial Pathobiology Group, University of Queensland Diamantina Institute, Princess Alexandra Hospital, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Fiona Simpson
- Epithelial Pathobiology Group, University of Queensland Diamantina Institute, Princess Alexandra Hospital, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Liliana Endo-Munoz
- Epithelial Pathobiology Group, University of Queensland Diamantina Institute, Princess Alexandra Hospital, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Nicholas A Saunders
- Epithelial Pathobiology Group, University of Queensland Diamantina Institute, Princess Alexandra Hospital, Translational Research Institute, Woolloongabba, Queensland, Australia.
| |
Collapse
|
52
|
|
53
|
Zhao LJ, Subramanian T, Vijayalingam S, Chinnadurai G. CtBP2 proteome: Role of CtBP in E2F7-mediated repression and cell proliferation. Genes Cancer 2014; 5:31-40. [PMID: 24955216 PMCID: PMC4063256 DOI: 10.18632/genesandcancer.2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 04/21/2014] [Indexed: 12/11/2022] Open
Abstract
C-terminal binding protein (CtBP) family transcriptional corepressors include CtBP1 and CtBP2. While CtBP1 and CtBP2 share significant amino acid sequence homology, CtBP2 possesses a unique N-terminal domain that is modified by acetylation and contributes to exclusive nuclear localization. Although CtBP1 and CtBP2 are functionally redundant for certain activities during vertebrate development, they also perform unique functions. Previous studies have identified several CtBP1-interacting proteins that included other transcriptional corepressors, DNA-binding repressors and histone modifying enzymatic components such as the histone deacetylases and the histone demethylase LSD-1. Here, we carried out an unbiased proteomic analysis of CtBP2-associated proteins and discovered the association of several components of the CtBP1 proteome as well as novel interactions. The CtBP2 proteome contained components of the NuRD complex and the E2F family member E2F7. E2F7 interacted with the hydrophobic cleft region of CtBP1 and CtBP2 through a prototypical CtBP binding motif, PIDLS. E2F7 repressed E2F1 transcription, inhibited cell proliferation in a CtBP-dependent fashion. Our study identified CtBP as a corepressor of E2F7 and as a regulator of DNA damage response.
Collapse
Affiliation(s)
- Ling-Jun Zhao
- Institute for Molecular Virology Saint Louis University Health Sciences Center Doisy Research Center 1100 South Grand Blvd St. Louis, Missouri 63104
| | - T Subramanian
- Institute for Molecular Virology Saint Louis University Health Sciences Center Doisy Research Center 1100 South Grand Blvd St. Louis, Missouri 63104
| | - S Vijayalingam
- Institute for Molecular Virology Saint Louis University Health Sciences Center Doisy Research Center 1100 South Grand Blvd St. Louis, Missouri 63104
| | - G Chinnadurai
- Institute for Molecular Virology Saint Louis University Health Sciences Center Doisy Research Center 1100 South Grand Blvd St. Louis, Missouri 63104
| |
Collapse
|
54
|
Cohen M, Vecsler M, Liberzon A, Noach M, Zlotorynski E, Tzur A. Unbiased transcriptome signature of in vivo cell proliferation reveals pro- and antiproliferative gene networks. Cell Cycle 2013; 12:2992-3000. [PMID: 23974109 PMCID: PMC3875674 DOI: 10.4161/cc.26030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Different types of mature B-cell lymphocytes are overall highly similar. Nevertheless, some B cells proliferate intensively, while others rarely do. Here, we demonstrate that a simple binary classification of gene expression in proliferating vs. resting B cells can identify, with remarkable selectivity, global in vivo regulators of the mammalian cell cycle, many of which are also post-translationally regulated by the APC/C E3 ligase. Consequently, we discover a novel regulatory network between the APC/C and the E2F transcription factors and discuss its potential impact on the G1-S transition of the cell cycle. In addition, by focusing on genes whose expression inversely correlates with proliferation, we demonstrate the inherent ability of our approach to also identify in vivo regulators of cell differentiation, cell survival, and other antiproliferative processes. Relying on data sets of wt, non-transgenic animals, our approach can be applied to other cell lineages and human data sets.
Collapse
Affiliation(s)
- Meital Cohen
- The Mina and Everard Goodman Faculty of Life Sciences; Bar-Ilan University; Ramat-Gan, Israel; Advanced Materials and Nanotechnology Institute; Bar-Ilan University; Ramat-Gan, Israel
| | | | | | | | | | | |
Collapse
|
55
|
Gannon OM, Merida de Long L, Endo-Munoz L, Hazar-Rethinam M, Saunders NA. Dysregulation of the repressive H3K27 trimethylation mark in head and neck squamous cell carcinoma contributes to dysregulated squamous differentiation. Clin Cancer Res 2012. [PMID: 23186778 DOI: 10.1158/1078-0432.ccr-12-2505] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE Head and neck squamous cell carcinoma (HNSCC) is one of the most prevalent cancers diagnosed worldwide and is associated with a 5-year survival rate of 55%. EZH2, a component of the polycomb repressor complex 2, trimethylates H3K27 (H3K27me3), which has been shown to drive squamous differentiation in normal keratinocytes. This study determined whether inhibition of EZH2-mediated epigenetic silencing could induce differentiation or provide therapeutic benefit in HNSCC. EXPERIMENTAL DESIGN We determined the effects of inhibiting EZH2, by either RNA interference or pharmacologically, on HNSCC growth, viability, and differentiation in vitro. Xenografts of HNSCC cell lines were used to assess efficacy of 3-deazaneplanocin A (DZNep), an inhibitor of H3K27 trimethylation, in vivo. RESULTS EZH2 was highly expressed in HNSCC cell lines in vitro and tissue microarray analysis revealed high expression in (n = 59) in situ relative to normal oral epithelium (n = 12). Inhibition of EZH2 with siRNA could induce expression of differentiation genes in differentiation-refractory squamous cell carcinoma cell lines. Differentiation-refractory HNSCC cell lines displayed persistent H3K27me3 on the promoters of differentiation genes. DZNep caused cancer-cell-specific apoptosis in addition to a profound reduction in colony-forming efficiency and induction of some squamous differentiation genes. Furthermore, in vivo, DZNep attenuated tumor growth in two different xenograft models, caused intratumor inhibition of EZH2, and induction of differentiation genes in situ. CONCLUSIONS Collectively, these data suggest that aberrant differentiation in HNSCC may be attributed to epigenetic dysregulation and suggest that inhibition of PRC2-mediated gene repression may represent a potential therapeutic target.
Collapse
Affiliation(s)
- Orla M Gannon
- University of Queensland Diamantina Institute, Princess Alexandra Hospital, Ipswich Road, Woolloongabba, Queensland, Australia
| | | | | | | | | |
Collapse
|
56
|
Halliday GM, Zhou Y, Sou PW, Huang XXJ, Rana S, Bugeja MJ, Painter N, Scolyer RA, Muchardt C, Di Girolamo N, Lyons JG. The absence of Brm exacerbates photocarcinogenesis. Exp Dermatol 2012; 21:599-604. [PMID: 22775994 DOI: 10.1111/j.1600-0625.2012.01522.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Brm is an ATPase subunit of the SWI/SNF chromatin-remodelling complex. Previously, we identified a novel hotspot mutation in Brm in human skin cancer, which is caused by exposure to ultraviolet radiation (UVR). As SWI/SNF is involved in DNA repair, we investigated whether Brm-/- mice had enhanced photocarcinogenesis. P53+/- and Brm-/-p53+/- mice were also examined as the p53 tumor suppressor gene is mutated early during human skin carcinogenesis. Mice were exposed to a low-dose irradiation protocol that caused few skin tumors in wild-type mice. Brm-/- mice with both p53 alleles intact had an increased incidence of skin and ocular tumors compared to Brm+/+p53+/+ controls. Brm loss in p53+/- mice did not further enhance skin or ocular cancer incidence beyond the increased photocarcinogenesis in p53+/- mice. However, the skin tumors that arose early in Brm-/- p53+/- mice had a higher growth rate. Brm-/- did not prevent UVR-induced apoptotic sunburn cell formation, which is a protective response. Unexpectedly, Brm-/- inhibited UVR-induced immunosuppression, which would be predicted to reduce rather than enhance photocarcinogenesis. In conclusion, the absence of Brm increased skin and ocular photocarcinogenesis. Even when one allele of p53 is lost, Brm has additional tumor suppressing capability.
Collapse
Affiliation(s)
- Gary M Halliday
- Discipline of Dermatology, Bosch Institute, Sydney Medical School, University of Sydney, Sydney, NSW, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Cameron S, de Long LM, Hazar-Rethinam M, Topkas E, Endo-Munoz L, Cumming A, Gannon O, Guminski A, Saunders N. Focal overexpression of CEACAM6 contributes to enhanced tumourigenesis in head and neck cancer via suppression of apoptosis. Mol Cancer 2012; 11:74. [PMID: 23021083 PMCID: PMC3515475 DOI: 10.1186/1476-4598-11-74] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 09/18/2012] [Indexed: 12/22/2022] Open
Abstract
Background Overexpression of CEACAM6 has been reported for a number of malignancies. However, the mechanism of how CEACAM6 contributes to cancer formation and its role in head and neck squamous cell carcinoma (HNSCC) remains unclear. Therefore, we examined the role of CEACAM6 in head and neck squamous cell carcinoma (HNSCC). Methods CEACAM6 expression was examined in normal squamous epithelia as well as a number of patient HNSCC samples and tumours derived from HNSCC cell lines injected into NOD/SCID mice. CEACAM6 expression was manipulated in HNSCC cell lines by shRNA-mediated CEACAM6 knockdown or virally-delivered overexpression of CEACAM6. The role of CEACAM6 in tumour growth and chemotherapeutic sensitivity was then assessed in vivo and in vitro respectively. Results CEACAM6 expression was significantly increased in highly tumourigenic HNSCC cell lines when compared to poorly tumourigenic HNSCC cell lines. Moreover, HNSCC patient tumours demonstrated focal expression of CEACAM6. Functional investigation of CEACAM6, involving over-expression and knock down studies, demonstrated that CEACAM6 over-expression could enhance tumour initiating activity and tumour growth via activation of AKT and suppression of caspase-3 mediated cell death. Conclusion We report that CEACAM6 is focally overexpressed in a large fraction of human HNSCCs in situ. We also show that over-expression of CEACAM6 increases tumour growth and tumour initiating activity by suppressing PI3K/AKT-dependent apoptosis of HNSCC in a xenotransplant model of HNSCC. Finally, our studies indicate that foci of CEACAM6 expressing cells are selectively ablated by treatment of xenotransplant tumours with pharmacological inhibitors of PI3K/AKT in vivo.
Collapse
Affiliation(s)
- Sarina Cameron
- University of Queensland Diamantina Institute, Epithelial Pathobiology Group, Princess Alexandra Hospital, Queensland, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Carvajal LA, Hamard PJ, Tonnessen C, Manfredi JJ. E2F7, a novel target, is up-regulated by p53 and mediates DNA damage-dependent transcriptional repression. Genes Dev 2012; 26:1533-45. [PMID: 22802528 DOI: 10.1101/gad.184911.111] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The p53 tumor suppressor protein is a transcription factor that exerts its effects on the cell cycle via regulation of gene expression. Although the mechanism of p53-dependent transcriptional activation has been well-studied, the molecular basis for p53-mediated repression has been elusive. The E2F family of transcription factors has been implicated in regulation of cell cycle-related genes, with E2F6, E2F7, and E2F8 playing key roles in repression. In response to cellular DNA damage, E2F7, but not E2F6 or E2F8, is up-regulated in a p53-dependent manner, with p53 being sufficient to increase expression of E2F7. Indeed, p53 occupies the promoter of the E2F7 gene after genotoxic stress, consistent with E2F7 being a novel p53 target. Ablation of E2F7 expression abrogates p53-dependent repression of a subset of its targets, including E2F1 and DHFR, in response to DNA damage. Furthermore, E2F7 occupancy of the E2F1 and DHFR promoters is detected, and expression of E2F7 is sufficient to inhibit cell proliferation. Taken together, these results show that p53-dependent transcriptional up-regulation of its target, E2F7, leads to repression of relevant gene expression. In turn, this E2F7-dependent mechanism contributes to p53-dependent cell cycle arrest in response to DNA damage.
Collapse
Affiliation(s)
- Luis A Carvajal
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | |
Collapse
|
59
|
The systems biology of neurofibromatosis type 1 — Critical roles for microRNA. Exp Neurol 2012; 235:464-8. [DOI: 10.1016/j.expneurol.2011.10.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 10/17/2011] [Accepted: 10/25/2011] [Indexed: 01/07/2023]
|
60
|
Carlsson E, Ranki A, Sipilä L, Karenko L, Abdel-Rahman WM, Ovaska K, Siggberg L, Aapola U, Ässämäki R, Häyry V, Niiranen K, Helle M, Knuutila S, Hautaniemi S, Peltomäki P, Krohn K. Potential role of a navigator gene NAV3 in colorectal cancer. Br J Cancer 2012; 106:517-524. [PMID: 22173670 PMCID: PMC3273355 DOI: 10.1038/bjc.2011.553] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 11/14/2011] [Accepted: 11/21/2011] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The recently described navigator proteins have a multifaceted role in cytoskeletal dynamics. We report here on the relevance of one of them, navigator 3 (NAV3), in colorectal cancer (CRC). METHODS We analysed changes in chromosome 12 and NAV3 copy number in CRC/adenoma samples of 59 patients and in 6 CRC cell lines, using fluorescence in situ hybridisation, loss of heterozygosity, and array-CGH. NAV3 target genes were identified by siRNA depletion, expression arrays, and immunohistochemistry. RESULTS NAV3 deletion and chromosome 12 polysomy were detected in 30 and 70% of microsatellite stability (MSS) carcinomas, in 23 and 30% of adenomas and in four of six CRC cell lines. NAV3 amplification was found in 25% of MSS samples. NAV3 alterations correlated with lymph node metastasis. In normal colon cells, NAV3 silencing induced upregulation of interleukin 23 receptor (IL23R) and gonadotropin releasing hormone receptor. In MSS and microsatellite instability tumours, IL23R immunoreactivity correlated with Dukes' staging and lymph node metastases, whereas nuclear beta-catenin correlated with lymph node metastases only. CONCLUSION NAV3 copy number changes are frequent in CRC and in adenomas, and upregulation of IL23R, following NAV3 silencing, strongly correlates with Dukes' staging and lymph node metastases. This suggests that NAV3 has a role in linking tissue inflammation to cancer development in the colon.
Collapse
MESH Headings
- Adenoma/genetics
- Adenoma/metabolism
- Adenoma/pathology
- Cell Line, Tumor
- Chromosomes, Human, Pair 12/genetics
- Colorectal Neoplasms/genetics
- Colorectal Neoplasms/metabolism
- Colorectal Neoplasms/pathology
- Gene Expression Regulation, Neoplastic
- Humans
- Immunohistochemistry
- In Situ Hybridization, Fluorescence
- Membrane Proteins/genetics
- Microsatellite Repeats
- Neoplasm Staging
- Nerve Tissue Proteins/genetics
- RNA, Small Interfering/analysis
- Receptors, Interleukin/genetics
- Receptors, Interleukin/metabolism
- Receptors, LHRH/genetics
- Receptors, LHRH/metabolism
- Up-Regulation/genetics
Collapse
Affiliation(s)
- E Carlsson
- Department of Dermatology and Allergology, University of Helsinki and Helsinki University Central Hospital, PO Box 160, FI-00029 Helsinki, Finland
| | - A Ranki
- Department of Dermatology and Allergology, University of Helsinki and Helsinki University Central Hospital, PO Box 160, FI-00029 Helsinki, Finland
| | - L Sipilä
- Dermagene Oy, Biokatu 8, FI-33520 Tampere, Finland
| | - L Karenko
- Department of Dermatology and Allergology, University of Helsinki and Helsinki University Central Hospital, PO Box 160, FI-00029 Helsinki, Finland
| | - W M Abdel-Rahman
- Department of Medical Genetics, Haartman Institute, University of Helsinki, PO Box 63, FI-00014 Helsinki, Finland
| | - K Ovaska
- Computational Systems Biology Laboratory, Institute of Biomedicine and Genome-Scale Biology Research Program, University of Helsinki, PO Box 63, FI-00014 Helsinki, Finland
| | - L Siggberg
- Laboratory of Cytomolecular Genetics, Department of Pathology, Haartman Institute, University of Helsinki, PO Box 63, FI-00014 Helsinki, Finland
| | - U Aapola
- Dermagene Oy, Biokatu 8, FI-33520 Tampere, Finland
| | - R Ässämäki
- Department of Dermatology and Allergology, University of Helsinki and Helsinki University Central Hospital, PO Box 160, FI-00029 Helsinki, Finland
| | - V Häyry
- Department of Otorhinolaryngology and Helsinki University Central Hospital, University of Helsinki, PO Box 700, FI-00029 Helsinki, Finland
| | - K Niiranen
- Department of Dermatology and Allergology, University of Helsinki and Helsinki University Central Hospital, PO Box 160, FI-00029 Helsinki, Finland
| | - M Helle
- Department of Pathology, Mikkeli Central Hospital, FI-50100 Mikkeli, Finland
| | - S Knuutila
- Laboratory of Cytomolecular Genetics, Department of Pathology, Haartman Institute, University of Helsinki, PO Box 63, FI-00014 Helsinki, Finland
| | - S Hautaniemi
- Computational Systems Biology Laboratory, Institute of Biomedicine and Genome-Scale Biology Research Program, University of Helsinki, PO Box 63, FI-00014 Helsinki, Finland
| | - P Peltomäki
- Department of Medical Genetics, Haartman Institute, University of Helsinki, PO Box 63, FI-00014 Helsinki, Finland
| | - K Krohn
- Department of Pathology, Centre for Laboratory Medicine, Pirkanmaa Hospital District, PO Box 2000, FI-33521 Tampere, Finland
| |
Collapse
|
61
|
Hazar-Rethinam M, Endo-Munoz L, Gannon O, Saunders N. The role of the E2F transcription factor family in UV-induced apoptosis. Int J Mol Sci 2011; 12:8947-60. [PMID: 22272113 PMCID: PMC3257110 DOI: 10.3390/ijms12128947] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 11/15/2011] [Accepted: 11/30/2011] [Indexed: 11/16/2022] Open
Abstract
The E2F transcription factor family is traditionally associated with cell cycle control. However, recent data has shown that activating E2Fs (E2F1-3a) are potent activators of apoptosis. In contrast, the recently cloned inhibitory E2Fs (E2F7 and 8) appear to antagonize E2F-induced cell death. In this review we will discuss (i) the potential role of E2Fs in UV-induced cell death and (ii) the implications of this to the development of UV-induced cutaneous malignancies.
Collapse
Affiliation(s)
- Mehlika Hazar-Rethinam
- Epithelial Pathobiology Group, University of Queensland Diamantina Institute, Princess Alexandra Hospital, Queensland 4102, Australia; E-Mails: (M.H.-R.); (L.E.-M.); (O.G.)
| | - Liliana Endo-Munoz
- Epithelial Pathobiology Group, University of Queensland Diamantina Institute, Princess Alexandra Hospital, Queensland 4102, Australia; E-Mails: (M.H.-R.); (L.E.-M.); (O.G.)
| | - Orla Gannon
- Epithelial Pathobiology Group, University of Queensland Diamantina Institute, Princess Alexandra Hospital, Queensland 4102, Australia; E-Mails: (M.H.-R.); (L.E.-M.); (O.G.)
| | - Nicholas Saunders
- Epithelial Pathobiology Group, University of Queensland Diamantina Institute, Princess Alexandra Hospital, Queensland 4102, Australia; E-Mails: (M.H.-R.); (L.E.-M.); (O.G.)
- School of Biomedical Sciences, University of Queensland, Queensland 4072, Australia
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +61-7-3176-5894; Fax: +61-7-3176-5946
| |
Collapse
|
62
|
Preclinical evaluation of dual PI3K-mTOR inhibitors and histone deacetylase inhibitors in head and neck squamous cell carcinoma. Br J Cancer 2011; 106:107-15. [PMID: 22116303 PMCID: PMC3251846 DOI: 10.1038/bjc.2011.495] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background: We examine the potential value of a series of clinically relevant PI3K-mTOR inhibitors alone, or in combination with histone deacetylase inhibitors, in a model of head and neck squamous cell carcinoma (HNSCC). Methods: Head and neck squamous cell carcinoma cell lines, human keratinocyte and HNSCC xenograft models were treated with histone deacetylase inhibitors (HDACIs) and new generation PI3K and dual PI3K-mTOR inhibitors either alone or in combination. Cell and tumour tissue viability and proliferation were then determined in vitro and in vivo. Results: Phosphatidylinositol-3-phosphate kinase, AKT and dual PI3K-mTOR inhibitors caused marked in vitro enhancement of cytotoxicity induced by HDACIs in HNSCC cancer cells. This effect correlates with AKT inhibition and is attenuated by expression of constitutively active AKT. Histone deacetylase inhibitor and phosphatidylinositol-3-phosphate kinase inhibitors (PI3KIs) inhibited tumour growth in xenograft models of HNSCC. Importantly, we observed intratumoural HDAC inhibition and PI3K inhibition as assessed by histone H3 acetylation status and phospho-AKT staining, respectively. However, we saw no evidence of improved efficacy with an HDACI/PI3KI combination. Interpretation: That PI3K and dual PI3K-mTOR inhibitors possess antitumour effect against HNSCC in vivo.
Collapse
|
63
|
Loss of E2F7 expression is an early event in squamous differentiation and causes derepression of the key differentiation activator Sp1. J Invest Dermatol 2011; 131:1077-84. [PMID: 21248772 DOI: 10.1038/jid.2010.430] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Squamous differentiation is controlled by key transcription factors such as Sp1 and E2F. We have previously shown that E2F1 can suppress transcription of the differentiation-specific gene, transglutaminase type 1 (TG1), by an indirect mechanism mediated by Sp1. Transient transfection of E2F1-E2F6 indicated that E2F-mediated reduction of Sp1 transcription was not responsible for E2F-mediated suppression of squamous differentiation. However, we found that E2F4 and E2F7, but not E2Fs 1, 2, 3, 5, or 6, could suppress the activation of the Sp1 promoter in differentiated keratinocytes (KCs). E2F4-mediated suppression could not be antagonized by E2Fs 1, 2, 3, 5, or 6 and was localized to a region of the human Sp1 promoter spanning -139 to + 35 bp. Chromatin immunoprecipitation analysis, as well as transient overexpression and short hairpin RNA knockdown experiments indicate that E2F7 binds to a unique binding site located between -139 and -119 bp of the Sp1 promoter, and knockdown of E2F7 in proliferating KCs leads to a derepression of Sp1 expression and the induction of TG1. In contrast, E2F4 knockdown in proliferating KCs did not alter Sp1 expression. These data indicate that loss of E2F7 during the initiation of differentiation leads to the derepression of Sp1 and subsequent transcription of differentiation-specific genes such as TG1.
Collapse
|
64
|
Park SR, Lee KD, Kim UK, Gil YG, Oh KS, Park BS, Kim GC. Pseudomonas aeruginosa exotoxin A reduces chemoresistance of oral squamous carcinoma cell via inhibition of heat shock proteins 70 (HSP70). Yonsei Med J 2010; 51:708-16. [PMID: 20635445 PMCID: PMC2908850 DOI: 10.3349/ymj.2010.51.5.708] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 12/24/2009] [Accepted: 12/24/2009] [Indexed: 12/04/2022] Open
Abstract
PURPOSE Oral squamous carcinoma (OSCC) cells exhibit resistance to chemotherapeutic agent-mediated apoptosis in the late stage of malignancy. Increased levels of heat shock proteins 70 (HSP70) in cancer cells are known to confer resistance to apoptosis. Since recent advances in the understanding of bacterial toxins have produced new strategies for the treatment of cancers, we investigated the effect of Pseudomonas aeruginosa exotoxin A (PEA) on HSP70 expression and induction of apoptosis in chemoresistant OSCC cell line (YD-9). MATERIALS AND METHODS The apoptotic effect of PEA on chemoresistant YD-9 cells was confirmed by MTT, Hoechst and TUNEL stains, DNA electrophoresis, and Western blot analysis. RESULTS While YD-9 cells showed high resistance to chemotherapeutic agents such as etoposide and 5-fluorouraci (5-FU), HSP70 antisense oligonucelotides sensitized chemoresistant YD-9 cells to etoposide and 5-FU. On the other hand, PEA significantly decreased the viability of YD-9 cells by deteriorating the HSP70-relating protecting system through inhibition of HSP70 expression and inducing apoptosis in YD-9 cells. Apoptotic manifestations were evidenced by changes in nuclear morphology, generation of DNA fragmentation, and activation of caspases. While p53, p21, and E2F-1 were upregulated, cdk2 and cyclin B were downregulated by PEA treatment, suggesting that PEA caused cell cycle arrest at the G2/M checkpoint. CONCLUSION Therefore, these results indicate that PEA reduced the chemoresistance through inhibition of HSP70 expression and also induced apoptosis in chemoresistant YD-9 cells.
Collapse
Affiliation(s)
- Sang Rye Park
- Department of Oral Anatomy, School of Dentistry, Research Institute for Oral Biotechnology, Pusan National University, Yangsan, Korea
| | - Kyoung Duk Lee
- Department of Oral Anatomy, School of Dentistry, Research Institute for Oral Biotechnology, Pusan National University, Yangsan, Korea
| | - Uk Kyu Kim
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Research Institute for Oral Biotechnology, Pusan National University, Yangsan, Korea
| | - Young Gi Gil
- Department of Anatomy, College of Medicine, Kosin University, Busan, Korea
| | - Kyu Seon Oh
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Bong Soo Park
- Department of Oral Anatomy, School of Dentistry, Research Institute for Oral Biotechnology, Pusan National University, Yangsan, Korea
| | - Gyoo Cheon Kim
- Department of Oral Anatomy, School of Dentistry, Research Institute for Oral Biotechnology, Pusan National University, Yangsan, Korea
| |
Collapse
|
65
|
Fox BC, Devonshire AS, Schutte ME, Foy CA, Minguez J, Przyborski S, Maltman D, Bokhari M, Marshall D. Validation of reference gene stability for APAP hepatotoxicity studies in different in vitro systems and identification of novel potential toxicity biomarkers. Toxicol In Vitro 2010; 24:1962-70. [PMID: 20732408 DOI: 10.1016/j.tiv.2010.08.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 07/09/2010] [Accepted: 08/16/2010] [Indexed: 12/20/2022]
Abstract
Liver cell lines and primary hepatocytes are becoming increasingly valuable for in vitro toxicogenomic studies, with RT-qPCR enabling the analysis of gene expression profiles following exposure to potential hepatotoxicants. Supporting the accurate normalisation of RT-qPCR data requires the identification of reference genes which have stable expression during in vitro toxicology studies. Therefore, we performed a comprehensive analysis of reference gene stability in two routinely used cell types, (HepG2 cells and primary rat hepatocytes), and two in vitro culture systems, (2D monolayer and 3D scaffolds). A robust reference gene validation strategy was performed, consisting of geNorm analysis, to test for pair wise variation in gene expression, and statistical analysis using analysis of variance. This strategy identified stable reference genes with respect to acetaminophen treatment and time in HepG2 cells (GAPDH and PPIA), and with respect to acetaminophen treatment and culture condition in primary hepatocytes (18S rRNA and α-tubulin). Following the selection of reference genes, the novel target genes E2F7 and IL-11RA were identified as potential toxicity biomarkers for acetaminophen treatment. We conclude that accurate quantification of gene expression requires the use of a validated normalisation strategy for each species and experimental system employed.
Collapse
Affiliation(s)
- Bridget C Fox
- LGC Limited, Queens Road, Teddington, Middlesex TW11 0LY, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
66
|
[What's new in dermatological research?]. Ann Dermatol Venereol 2010; 136 Suppl 7:S407-16. [PMID: 20110056 DOI: 10.1016/s0151-9638(09)73382-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Fundamental research in Dermatology has been once more very active during the past year and more specifically focused on immunological grounds of inflammatory diseases, the identification of risk loci associated with psoriasis and tumors, cutaneous lymphomas and on the genodermatosis where large international collaborative studies provided with a molecular understanding of an increasing amount of conditions especially affecting pigmentation and differentiation. In silico investigations become increasingly prominent especially with the rising power of new actor, China, the demographical and resulting epidemiological weight of which can hardly be challenged. Some of these fundamental breakthroughs might result in practical interventions although in an undefined future.
Collapse
|
67
|
Current World Literature. Curr Opin Support Palliat Care 2009; 3:305-12. [DOI: 10.1097/spc.0b013e3283339c93] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
68
|
Abstract
Mutations of the retinoblastoma tumour suppressor gene (RB1) or components regulating the RB pathway have been identified in almost every human malignancy. The E2F transcription factors function in cell cycle control and are intimately regulated by RB. Studies of model organisms have revealed conserved functions for E2Fs during development, suggesting that the cancer-related proliferative roles of E2F family members represent a recent evolutionary adaptation. However, given that some human tumours have concurrent RB1 inactivation and E2F amplification and overexpression, we propose that there are alternative tumour-promoting activities for the E2F family, which are independent of cell cycle regulation.
Collapse
Affiliation(s)
- Hui-Zi Chen
- Human Cancer Genetics Program, Department of Molecular Virology, Immunology and Medical Genetics and Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
69
|
|
70
|
Correction: Article on E2F7 in SCC. Cancer Res 2009. [DOI: 10.1158/0008-5472.can-69-17-cor2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|