51
|
Saintas E, Abrahams L, Ahmad GT, Ajakaiye AOM, AlHumaidi ASHAM, Ashmore-Harris C, Clark I, Dura UK, Fixmer CN, Ike-Morris C, Mato Prado M, Mccullough D, Mishra S, Schöler KMU, Timur H, Williamson MDC, Alatsatianos M, Bahsoun B, Blackburn E, Hogwood CE, Lithgow PE, Rowe M, Yiangou L, Rothweiler F, Cinatl J, Zehner R, Baines AJ, Garrett MD, Gourlay CW, Griffin DK, Gullick WJ, Hargreaves E, Howard MJ, Lloyd DR, Rossman JS, Smales CM, Tsaousis AD, von der Haar T, Wass MN, Michaelis M. Acquired resistance to oxaliplatin is not directly associated with increased resistance to DNA damage in SK-N-ASrOXALI4000, a newly established oxaliplatin-resistant sub-line of the neuroblastoma cell line SK-N-AS. PLoS One 2017; 12:e0172140. [PMID: 28192521 PMCID: PMC5305101 DOI: 10.1371/journal.pone.0172140] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/31/2017] [Indexed: 12/20/2022] Open
Abstract
The formation of acquired drug resistance is a major reason for the failure of anti-cancer therapies after initial response. Here, we introduce a novel model of acquired oxaliplatin resistance, a sub-line of the non-MYCN-amplified neuroblastoma cell line SK-N-AS that was adapted to growth in the presence of 4000 ng/mL oxaliplatin (SK-N-ASrOXALI4000). SK-N-ASrOXALI4000 cells displayed enhanced chromosomal aberrations compared to SK-N-AS, as indicated by 24-chromosome fluorescence in situ hybridisation. Moreover, SK-N-ASrOXALI4000 cells were resistant not only to oxaliplatin but also to the two other commonly used anti-cancer platinum agents cisplatin and carboplatin. SK-N-ASrOXALI4000 cells exhibited a stable resistance phenotype that was not affected by culturing the cells for 10 weeks in the absence of oxaliplatin. Interestingly, SK-N-ASrOXALI4000 cells showed no cross resistance to gemcitabine and increased sensitivity to doxorubicin and UVC radiation, alternative treatments that like platinum drugs target DNA integrity. Notably, UVC-induced DNA damage is thought to be predominantly repaired by nucleotide excision repair and nucleotide excision repair has been described as the main oxaliplatin-induced DNA damage repair system. SK-N-ASrOXALI4000 cells were also more sensitive to lysis by influenza A virus, a candidate for oncolytic therapy, than SK-N-AS cells. In conclusion, we introduce a novel oxaliplatin resistance model. The oxaliplatin resistance mechanisms in SK-N-ASrOXALI4000 cells appear to be complex and not to directly depend on enhanced DNA repair capacity. Models of oxaliplatin resistance are of particular relevance since research on platinum drugs has so far predominantly focused on cisplatin and carboplatin.
Collapse
Affiliation(s)
- Emily Saintas
- School of Biosciences, University of Kent, Canterbury, United Kingdom
- Industrial Biotechnology Centre, University of Kent, Canterbury, United Kingdom
| | - Liam Abrahams
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Gulshan T. Ahmad
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | | | | | | | - Iain Clark
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Usha K. Dura
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Carine N. Fixmer
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | | | - Mireia Mato Prado
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | | | - Shishir Mishra
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | | | - Husne Timur
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | | | | | - Basma Bahsoun
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Edith Blackburn
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Catherine E. Hogwood
- School of Biosciences, University of Kent, Canterbury, United Kingdom
- Industrial Biotechnology Centre, University of Kent, Canterbury, United Kingdom
| | - Pamela E. Lithgow
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Michelle Rowe
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Lyto Yiangou
- School of Biosciences, University of Kent, Canterbury, United Kingdom
- Industrial Biotechnology Centre, University of Kent, Canterbury, United Kingdom
| | - Florian Rothweiler
- Institut für Medizinische Virologie, Klinikum der Goethe-Universität, Frankfurt am Main, Germany
| | - Jindrich Cinatl
- Institut für Medizinische Virologie, Klinikum der Goethe-Universität, Frankfurt am Main, Germany
| | - Richard Zehner
- Institut für Rechtsmedizin, Klinikum der Goethe-Universität, Frankfurt am Main, Germany
| | - Anthony J. Baines
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | | | | | - Darren K. Griffin
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | | | - Emma Hargreaves
- School of Biosciences, University of Kent, Canterbury, United Kingdom
- Industrial Biotechnology Centre, University of Kent, Canterbury, United Kingdom
| | - Mark J. Howard
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Daniel R. Lloyd
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Jeremy S. Rossman
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - C. Mark Smales
- School of Biosciences, University of Kent, Canterbury, United Kingdom
- Industrial Biotechnology Centre, University of Kent, Canterbury, United Kingdom
| | | | | | - Mark N. Wass
- School of Biosciences, University of Kent, Canterbury, United Kingdom
- Industrial Biotechnology Centre, University of Kent, Canterbury, United Kingdom
| | - Martin Michaelis
- School of Biosciences, University of Kent, Canterbury, United Kingdom
- Industrial Biotechnology Centre, University of Kent, Canterbury, United Kingdom
- * E-mail:
| |
Collapse
|
52
|
Yunusova NV, Villert AB, Spirina LV, Frolova AE, Kolomiets LA, Kondakova IV. Insulin-Like Growth Factors and Their Binding Proteins in Tumors and Ascites of Ovarian Cancer Patients: Association With Response To Neoadjuvant Chemotherapy. Asian Pac J Cancer Prev 2016; 17:5315-5320. [PMID: 28125879 PMCID: PMC5454676 DOI: 10.22034/apjcp.2016.17.12.5315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Purpose: Tumor cell growth and sensitivity to chemotherapy depend on many factors, among which insulin-like growth factors (IGFs) may play important roles. The aim of the present study was to evaluate the levels of insulin-like growth factors (IGFs) and IGF binding proteins (IGFBPs) in primary tumors and ascites as predictors of response to neoadjuvant chemotherapy in ovarian cancer (OC) patients. Materials and Methods: Tumor tissue samples and ascitic fluid were obtained from 59 patients with advanced OC. The levels of IGF-I, IGF-II, IGFBP-3, IGFBP-4 and PAPP-A were determined using ELISA kits. Taking into account the data on expression of these IGF-related proteins and outcome, logistic regression was performed to identify predictors of response to neoajuvant chemotherapy. Results: Human ovarian tumors expressed IGFs, IGFBP-3, IGFBP-4 and PAPP-A and these proteins were also present in ascites fluid and associated with its volume. IGFs and IGFBPs in ascites and soluble PAPP-A might play a key role in ovarian cancer progression . However, levels of proteins of the IGF system in tumors were not significant predictors of objective clinical response (oCR). Univariate analysis showed that the level of IGF-I in ascites was the only independent predictor for oCR. Conclusion: The level of IGF-I in ascites was shown to be an independent predictor of objective clinical response to chemotherapy for OC patients treated with neoadjuvant chemotherapy and debulking surgery.
Collapse
Affiliation(s)
- Natalia V Yunusova
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia.
| | | | | | | | | | | |
Collapse
|
53
|
An active IGF-1R-AKT signaling imparts functional heterogeneity in ovarian CSC population. Sci Rep 2016; 6:36612. [PMID: 27819360 PMCID: PMC5098199 DOI: 10.1038/srep36612] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 10/17/2016] [Indexed: 02/06/2023] Open
Abstract
Deregulated IGF-1R-AKT signaling influences multiple nodes of cancer cell physiology and assists in migration, metastasis and acquirement of radio/chemoresistance. Enrichment of cancer stem cells (CSC) positively correlates with radio/chemoresistance development in various malignancies. It is unclear though, how IGF-1R-AKT signalling shapes CSC functionality especially in ovarian cancer. Previously we showed that upregulated IGF-1R expression is essential to initiate platinum-taxol resistance at early stage which declines with elevated levels of activated AKT at late resistant stage in ovarian cancer cells. Here, we investigated the effect of this oscillatory IGF-1R-AKT signalling upon CSC functionality during generation of chemoresistance. While gradual increase in CSC properties from early (ER) to late (LR) resistant stages was observed in three different (cisplatin/paclitaxel/cisplatin-paclitaxel) cellular models created in two ovarian cancer cell lines, the stemness gene expressions (oct4/sox2/nanog) reached a plateau at early resistant stages. Inhibition of IGF-1R only at ER and AKT inhibition only at LR stages significantly abrogated the CSC phenotype. Interestingly, real time bioluminescence imaging showed CSCs of ER stages possessed faster tumorigenic potential than CSCs belonging to LR stages. Together, our data suggest that IGF-1R-AKT signalling imparts functional heterogeneity in CSCs during acquirement of chemoresistance in ovarian carcinoma.
Collapse
|
54
|
Novel C6-substituted 1,3,4-oxadiazinones as potential anti-cancer agents. Oncotarget 2016; 6:40598-610. [PMID: 26515601 PMCID: PMC4747355 DOI: 10.18632/oncotarget.5839] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 09/24/2015] [Indexed: 02/06/2023] Open
Abstract
The insulin-like growth factor 1 receptor (IGF-1R) is a membrane receptor tyrosine kinase over-expressed in a number of tumors. However, combating resistance is one of the main challenges in the currently available IGF-1R inhibitor-based cancer therapies. Increased Src activation has been reported to confer resistance to anti-IGF-1R therapeutics in various tumor cells. An urgent unmet need for IGF-1R inhibitors is to suppress Src rephosphorylation induced by current anti-IGF-1R regimens. In efforts to develop effective anticancer agents targeting the IGF-1R signaling pathway, we explored 2-aryl-1,3,4-oxadiazin-5-ones as a novel scaffold that is structurally unrelated to current tyrosine kinase inhibitors (TKIs). The compound, LL-2003, exhibited promising antitumor effects in vitro and in vivo; it effectively suppressed IGF-1R and Src and induced apoptosis in various non-small cell lung cancer cells. Further optimizations for enhanced potency in cellular assays need to be followed, but our strategy to identify novel IGF-1R/Src inhibitors may open a new avenue to develop more efficient anticancer agents.
Collapse
|
55
|
Diedrich D, Moita AJR, Rüther A, Frieg B, Reiss GJ, Hoeppner A, Kurz T, Gohlke H, Lüdeke S, Kassack MU, Hansen FK. α-Aminoxy Oligopeptides: Synthesis, Secondary Structure, and Cytotoxicity of a New Class of Anticancer Foldamers. Chemistry 2016; 22:17600-17611. [PMID: 27573537 DOI: 10.1002/chem.201602521] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Indexed: 11/11/2022]
Abstract
α-Aminoxy peptides are peptidomimetic foldamers with high proteolytic and conformational stability. To gain an improved synthetic access to α-aminoxy oligopeptides we used a straightforward combination of solution- and solid-phase-supported methods and obtained oligomers that showed a remarkable anticancer activity against a panel of cancer cell lines. We solved the first X-ray crystal structure of an α-aminoxy peptide with multiple turns around the helical axis. The crystal structure revealed a right-handed 28 -helical conformation with precisely two residues per turn and a helical pitch of 5.8 Å. By 2D ROESY experiments, molecular dynamics simulations, and CD spectroscopy we were able to identify the 28 -helix as the predominant conformation in organic solvents. In aqueous solution, the α-aminoxy peptides exist in the 28 -helical conformation at acidic pH, but exhibit remarkable changes in the secondary structure with increasing pH. The most cytotoxic α-aminoxy peptides have an increased propensity to take up a 28 -helical conformation in the presence of a model membrane. This indicates a correlation between the 28 -helical conformation and the membranolytic activity observed in mode of action studies, thereby providing novel insights in the folding properties and the biological activity of α-aminoxy peptides.
Collapse
Affiliation(s)
- Daniela Diedrich
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Ana J Rodrigues Moita
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Anja Rüther
- Institut für Pharmazeutische Wissenschaften, Albert-Ludwigs-Universität Freiburg, 79104, Freiburg, Germany
| | - Benedikt Frieg
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Guido J Reiss
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Astrid Hoeppner
- X-Ray Facility and Crystal Farm, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Thomas Kurz
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Holger Gohlke
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Steffen Lüdeke
- Institut für Pharmazeutische Wissenschaften, Albert-Ludwigs-Universität Freiburg, 79104, Freiburg, Germany
| | - Matthias U Kassack
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Finn K Hansen
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| |
Collapse
|
56
|
Thomsen J, Hjortebjerg R, Espelund U, Ørtoft G, Vestergaard P, Magnusson NE, Conover CA, Tramm T, Hager H, Høgdall C, Høgdall E, Oxvig C, Frystyk J. PAPP-A proteolytic activity enhances IGF bioactivity in ascites from women with ovarian carcinoma. Oncotarget 2016; 6:32266-78. [PMID: 26336825 PMCID: PMC4741676 DOI: 10.18632/oncotarget.5010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 08/14/2015] [Indexed: 11/25/2022] Open
Abstract
Pregnancy-associated plasma protein-A (PAPP-A) stimulates insulin-like growth factor (IGF) action through proteolysis of IGF-binding protein (IGFBP)-4. In experimental animals, PAPP-A accelerates ovarian tumor growth by this mechanism. To investigate the effect of PAPP-A in humans, we compared serum and ascites from 22 women with ovarian carcinoma. We found that ascites contained 46-fold higher PAPP-A levels as compared to serum (P < 0.001). The majority (80%) of PAPP-A was enzymatically active. This is supported by the finding that ascites contained more cleaved than intact IGFBP-4 (P < 0.03). Ascites was more potent than serum in activating the IGF-I receptor (IGF-IR) in vitro (+31%, P < 0.05); in 8 of 22 patients by more than two-fold. In contrast, ascites contained similar levels of immunoreactive IGF-I, and lower levels of IGF-II (P < 0.001). Immunohistochemistry demonstrated the presence of IGF-IR in all but one tumor, whereas all tumors expressed PAPP-A, IGFBP-4, IGF-I and IGF-II. Addition of recombinant PAPP-A to ascites increased the cleavage of IGFBP-4 and enhanced IGF-IR activation (P < 0.05). In conclusion, human ovarian tumors express PAPP-A, IGFBP-4 and IGFs and these proteins are also present in ascites. We suggest that both soluble PAPP-A in ascites and tissue-associated PAPP-A serve to increase IGF bioactivity and, thereby, to stimulate IGF-IR-mediated tumor growth.
Collapse
Affiliation(s)
- Jacob Thomsen
- Medical Research Laboratory, Department of Clinical Medicine, Faculty of Health, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Rikke Hjortebjerg
- Medical Research Laboratory, Department of Clinical Medicine, Faculty of Health, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Ulrick Espelund
- Medical Research Laboratory, Department of Clinical Medicine, Faculty of Health, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Gitte Ørtoft
- Department of Gynecology, Aarhus University Hospital, DK-8200 Aarhus N, Denmark
| | - Poul Vestergaard
- Medical Research Laboratory, Department of Clinical Medicine, Faculty of Health, Aarhus University, DK-8000 Aarhus C, Denmark.,Department of Endocrinology and Internal Medicine, Aarhus University Hospital, DK-8000 Aarhus C, Denmark
| | - Nils E Magnusson
- Medical Research Laboratory, Department of Clinical Medicine, Faculty of Health, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Cheryl A Conover
- Division of Endocrinology and Metabolism, Endocrine Research Unit, Mayo Clinic, Rochester, MN 55905, USA
| | - Trine Tramm
- Department of Pathology, Aarhus University Hospital, DK-8000 Aarhus C, Denmark
| | - Henrik Hager
- Department of Pathology, Aarhus University Hospital, DK-8000 Aarhus C, Denmark
| | - Claus Høgdall
- Clinic of Gynecology, Juliane Marie Centret, Rigshospitalet, DK-2100 Copenhagen, Denmark
| | - Estrid Høgdall
- Department of Pathology, Herlev University Hospital, DK-2730 Herlev, Denmark
| | - Claus Oxvig
- Department of Molecular Biology and Genetics, Faculty of Science & Technology, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Jan Frystyk
- Medical Research Laboratory, Department of Clinical Medicine, Faculty of Health, Aarhus University, DK-8000 Aarhus C, Denmark.,Department of Endocrinology and Internal Medicine, Aarhus University Hospital, DK-8000 Aarhus C, Denmark
| |
Collapse
|
57
|
Overexpression of β-Catenin Induces Cisplatin Resistance in Oral Squamous Cell Carcinoma. BIOMED RESEARCH INTERNATIONAL 2016; 2016:5378567. [PMID: 27529071 PMCID: PMC4978817 DOI: 10.1155/2016/5378567] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 06/22/2016] [Indexed: 12/04/2022]
Abstract
Abnormal expression of β-catenin contributes to tumor development, progression, and metastasis in various cancers. However, little is known about the relationship between abnormal expression of β-catenin and cisplatin chemotherapy in oral squamous cell carcinoma (OSCC). The present study aimed to investigate the effect of β-catenin on OSCC cisplatin resistance and evaluated the drug susceptibility of stable cell lines with β-catenin knockin and knockdown. In this study, we found that higher expression level of β-catenin can be observed in CDDP-treated cell lines as compared with the control group. Furthermore, the expression levels of β-catenin increased in both a concentration- and time-dependent manner with the cisplatin treatment. More importantly, the nuclear translocation of β-catenin could also be observed by confocal microscope analysis. Stable cell lines with CTNNB1 knockin and knockdown were established to further investigate the potential role and mechanism of β-catenin in the chemoresistance of OSCC in vitro and in vivo. Our findings indicated that overexpression of β-catenin promoted cisplatin resistance in OSCC in vitro and in vivo. We confirmed that GSK-3β, C-myc, Bcl-2, P-gp, and MRP-1 were involved in β-catenin-mediated drug resistance. Our findings indicate that the Wnt/β-catenin signaling pathway may play important roles in cisplatin resistance in OSCC.
Collapse
|
58
|
Insulin-like growth factor-1 receptor regulates repair of ultraviolet B-induced DNA damage in human keratinocytes in vivo. Mol Oncol 2016; 10:1245-54. [PMID: 27373487 DOI: 10.1016/j.molonc.2016.06.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 05/24/2016] [Accepted: 06/07/2016] [Indexed: 11/23/2022] Open
Abstract
The activation status of the insulin-like growth factor-1 receptor (IGF-1R) regulates the cellular response of keratinocytes to ultraviolet B (UVB) exposure, both in vitro and in vivo. Geriatric skin is deficient in IGF-1 expression resulting in an aberrant IGF-1R-dependent UVB response which contributes to the development of aging-associated squamous cell carcinoma. Furthermore, our lab and others have reported that geriatric keratinocytes repair UVB-induced DNA damage less efficiently than young adult keratinocytes. Here, we show that IGF-1R activation influences DNA damage repair in UVB-irradiated keratinocytes. Specifically, in the absence of IGF-1R activation, the rate of DNA damage repair following UVB-irradiation was significantly slowed (using immortalized human keratinocytes) or inhibited (using primary human keratinocytes). Furthermore, inhibition of IGF-1R activity in human skin, using either ex vivo explant cultures or in vivo xenograft models, suppressed DNA damage repair. Primary keratinocytes with an inactivated IGF-1R also exhibited lower steady-state levels of nucleotide excision repair mRNAs. These results suggest that deficient UVB-induced DNA repair in geriatric keratinocytes is due in part to silenced IGF-1R activation in geriatric skin and provide a mechanism for how the IGF-1 pathway plays a role in the initiation of squamous cell carcinoma in geriatric patients.
Collapse
|
59
|
Zhao Z, Huang L, Gou X, Li Z, Chen J, Wen D, Jiang F, Lu G, Bi H, Huang M, Zhong G. Determination of a novel Aurora-A (AurA) kinase AKI603 by UPLC-MS/MS and its application to a bioavailability study in rat. J Pharm Biomed Anal 2016; 125:303-9. [DOI: 10.1016/j.jpba.2016.03.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 03/17/2016] [Accepted: 03/20/2016] [Indexed: 10/22/2022]
|
60
|
English DP, Menderes G, Black J, Schwab CL, Santin AD. Molecular diagnosis and molecular profiling to detect treatment-resistant ovarian cancer. Expert Rev Mol Diagn 2016; 16:769-82. [PMID: 27169329 DOI: 10.1080/14737159.2016.1188692] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Epithelial ovarian cancer remains the gynecologic tumor with the highest rate of recurrence after initial optimal cytoreductive surgery followed by adjuvant chemotherapy. Unfortunately, with the development of recurrent ovarian cancer often comes the discovery of chemo-resistant disease. The absence of improvement in long term survival, notwithstanding the use of newer agents as is seen in other cancers, emphasizes the need for improved understanding of the processes that lead to chemo-resistant disease. AREAS COVERED This review will cover the following topics: 1. Molecular and cellular mechanisms in platinum and paclitaxel resistance 2. Other molecular mediators of chemo-resistance 3. Expression of stem cell markers in ovarian cancer and relationship to chemo-resistance 4. MicroRNA and long non-coding RNA expression in chemo-resistant ovarian cancer 5. Determination of chromosomal aberrations as markers of chemo-resistance 6. Molecular profiling in chemo-resistant disease. A standard MEDLINE search was performed using the key words; ovarian cancer, chemo-resistant disease, molecular profiling, cancer stem cells and chemotherapy. Expert Commentary: Over the next few years the challenge remains to precisely determine the mechanisms responsible for the onset and maintenance of chemo-resistance and to effectively target these mechanisms.
Collapse
Affiliation(s)
- Diana P English
- a Department of Obstetrics and Gynecology, Division of Gynecologic Oncology , Stanford University , Stanford , CA , USA
| | - Gulden Menderes
- b Department of Obstetrics, Gynecology & Reproductive Sciences, Division of Gynecologic Oncology , Yale University School of Medicine , New Haven , CT , USA
| | - Jonathan Black
- a Department of Obstetrics and Gynecology, Division of Gynecologic Oncology , Stanford University , Stanford , CA , USA
| | - Carlton L Schwab
- b Department of Obstetrics, Gynecology & Reproductive Sciences, Division of Gynecologic Oncology , Yale University School of Medicine , New Haven , CT , USA
| | - Alessandro D Santin
- b Department of Obstetrics, Gynecology & Reproductive Sciences, Division of Gynecologic Oncology , Yale University School of Medicine , New Haven , CT , USA
| |
Collapse
|
61
|
Essential role of insulin-like growth factor 2 in resistance to histone deacetylase inhibitors. Oncogene 2016; 35:5515-5526. [PMID: 27086926 PMCID: PMC5069101 DOI: 10.1038/onc.2016.92] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 01/16/2016] [Accepted: 02/15/2016] [Indexed: 02/07/2023]
Abstract
Histone deacetylase (HDAC) inhibitors (HDIs) are promising anticancer therapies and have been clinically used for the treatment of hematological malignancy. However, their efficacy in solid tumors is marginal and drug resistance hampers their further clinical utility. To develop novel strategies for the HDI-based anticancer therapeutics in non-small cell lung cancer (NSCLC), in the present study, we investigated the mechanisms underlying resistance to HDI treatment in NSCLC cells. We show the STAT3-mediated IGF2/IGF-1R signaling cascade as a key modulator for both acquired and primary HDI resistance. The treatment with HDI upregulated IGF2 transcription in NSCLC cells carrying intrinsic or acquired drug resistance via direct binding of STAT3 in IGF2 P3 and P4 promoters. Acetylated STAT3 emerged upon HDAC inhibition was protected from the proteasome-mediated degradation of STAT3 and functioned as a direct transcription factor for IGF2 expression. Genomic or pharmacological strategies targeting STAT3 diminished the HDI-induced IGF2 mRNA expression and overcame the resistance to HDI treatment in HDI-resistant NSCLC- or patient-derived tumor xenograft models. These findings provide new insights into the role of acetylated STAT3-mediated activation of IGF2 transcription in HDI resistance, suggesting IGF2 or STAT3 as novel targets to overcome HDI resistance in NSCLC.
Collapse
|
62
|
Leung AWY, Hung SS, Backstrom I, Ricaurte D, Kwok B, Poon S, McKinney S, Segovia R, Rawji J, Qadir MA, Aparicio S, Stirling PC, Steidl C, Bally MB. Combined Use of Gene Expression Modeling and siRNA Screening Identifies Genes and Pathways Which Enhance the Activity of Cisplatin When Added at No Effect Levels to Non-Small Cell Lung Cancer Cells In Vitro. PLoS One 2016; 11:e0150675. [PMID: 26938915 PMCID: PMC4777418 DOI: 10.1371/journal.pone.0150675] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 02/16/2016] [Indexed: 01/22/2023] Open
Abstract
Platinum-based combination chemotherapy is the standard treatment for advanced non-small cell lung cancer (NSCLC). While cisplatin is effective, its use is not curative and resistance often emerges. As a consequence of microenvironmental heterogeneity, many tumour cells are exposed to sub-lethal doses of cisplatin. Further, genomic heterogeneity and unique tumor cell sub-populations with reduced sensitivities to cisplatin play a role in its effectiveness within a site of tumor growth. Being exposed to sub-lethal doses will induce changes in gene expression that contribute to the tumour cell’s ability to survive and eventually contribute to the selective pressures leading to cisplatin resistance. Such changes in gene expression, therefore, may contribute to cytoprotective mechanisms. Here, we report on studies designed to uncover how tumour cells respond to sub-lethal doses of cisplatin. A microarray study revealed changes in gene expressions that occurred when A549 cells were exposed to a no-observed-effect level (NOEL) of cisplatin (e.g. the IC10). These data were integrated with results from a genome-wide siRNA screen looking for novel therapeutic targets that when inhibited transformed a NOEL of cisplatin into one that induced significant increases in lethality. Pathway analyses were performed to identify pathways that could be targeted to enhance cisplatin activity. We found that over 100 genes were differentially expressed when A549 cells were exposed to a NOEL of cisplatin. Pathways associated with apoptosis and DNA repair were activated. The siRNA screen revealed the importance of the hedgehog, cell cycle regulation, and insulin action pathways in A549 cell survival and response to cisplatin treatment. Results from both datasets suggest that RRM2B, CABYR, ALDH3A1, and FHL2 could be further explored as cisplatin-enhancing gene targets. Finally, pathways involved in repairing double-strand DNA breaks and INO80 chromatin remodeling were enriched in both datasets, warranting further research into combinations of cisplatin and therapeutics targeting these pathways.
Collapse
Affiliation(s)
- Ada W. Y. Leung
- Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- * E-mail:
| | - Stacy S. Hung
- Centre for Lymphoid Cancers, BC Cancer Agency, Vancouver, BC, Canada
| | - Ian Backstrom
- Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Daniel Ricaurte
- Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Brian Kwok
- Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Steven Poon
- Molecular Oncology, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Steven McKinney
- Molecular Oncology, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Romulo Segovia
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC, Canada
| | - Jenna Rawji
- Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Mohammed A. Qadir
- Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Samuel Aparicio
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Molecular Oncology, BC Cancer Research Centre, Vancouver, BC, Canada
| | | | - Christian Steidl
- Centre for Lymphoid Cancers, BC Cancer Agency, Vancouver, BC, Canada
| | - Marcel B. Bally
- Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
- Centre for Drug Research and Development, Vancouver, BC, Canada
| |
Collapse
|
63
|
Engelke LH, Hamacher A, Proksch P, Kassack MU. Ellagic Acid and Resveratrol Prevent the Development of Cisplatin Resistance in the Epithelial Ovarian Cancer Cell Line A2780. J Cancer 2016; 7:353-63. [PMID: 26918049 PMCID: PMC4749356 DOI: 10.7150/jca.13754] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 12/08/2015] [Indexed: 11/20/2022] Open
Abstract
Purpose. Several studies have shown that natural compounds like resveratrol or ellagic acid have anticancer and antioxidant properties and can stimulate apoptosis in many cancer cell lines. The aim of this study was to elucidate if resveratrol or ellagic acid, respectively, could improve the efficacy of cisplatin in ovarian cancer. Methods. As a cellular resistance model, the epithelial ovarian cancer cell line A2780 and its cisplatin-resistant subclone A2780CisR were used. A2780CisR was obtained by intermittent treatment of A2780 with cisplatin for 26 weekly cycles and showed a 4-6-fold increased resistance towards cisplatin compared to A2780. Results. Pretreatment with resveratrol or ellagic acid 48 h prior to treatment with cisplatin showed a moderate enhancement of cisplatin cytotoxicity in A2780CisR cells (shift factors were 1.6 for ellagic acid and 2.5 for resveratrol). However, intermittent treatment of A2780 with cisplatin for 26 weekly cycles in permanent presence of resveratrol or ellagic acid, respectively, completely prevented the development of cisplatin resistance. The generated cell lines named A2780Resv and A2780Ellag displayed functional characteristics (migration, proliferation, apoptosis, activation of ErbB3, ROS generation) similar to the parental cell line A2780. Conclusion. In conclusion, weekly intermittent treatment cycles of cisplatin-sensitive ovarian cancer cells with cisplatin retain cisplatin chemosensitivity in permanent presence of ellagic acid or resveratrol, respectively, whereas clinically relevant cisplatin chemoresistance develops in the absence of ellagic acid or resveratrol. Use of natural phenolic compounds may thus be a promising approach to prevent cisplatin resistance in ovarian cancer.
Collapse
Affiliation(s)
- Laura H. Engelke
- 1. Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Germany
| | - Alexandra Hamacher
- 1. Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Germany
| | - Peter Proksch
- 2. Institut für Pharmazeutische Biologie und Biotechnologie, Heinrich-Heine-Universität Düsseldorf, Germany
| | - Matthias U. Kassack
- 1. Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Germany
| |
Collapse
|
64
|
Ramcharan R, Aleksic T, Kamdoum WP, Gao S, Pfister SX, Tanner J, Bridges E, Asher R, Watson AJ, Margison GP, Woodcock M, Repapi E, Li JL, Middleton MR, Macaulay VM. IGF-1R inhibition induces schedule-dependent sensitization of human melanoma to temozolomide. Oncotarget 2015; 6:39877-90. [PMID: 26497996 PMCID: PMC4741867 DOI: 10.18632/oncotarget.5631] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 10/03/2015] [Indexed: 12/21/2022] Open
Abstract
Prior studies implicate type 1 IGF receptor (IGF-1R) in mediating chemo-resistance. Here, we investigated whether IGF-1R influences response to temozolomide (TMZ), which generates DNA adducts that are removed by O6-methylguanine-DNA methyltransferase (MGMT), or persist causing replication-associated double-strand breaks (DSBs). Initial assessment in 10 melanoma cell lines revealed that TMZ resistance correlated with MGMT expression (r = 0.79, p = 0.009), and in MGMT-proficient cell lines, with phospho-IGF-1R (r = 0.81, p = 0.038), suggesting that TMZ resistance associates with IGF-1R activation. Next, effects of IGF-1R inhibitors (IGF-1Ri) AZ3801 and linsitinib (OSI-906) were tested on TMZ-sensitivity, cell cycle progression and DSB induction. IGF-1Ri sensitized BRAF wild-type and mutant melanoma cells to TMZ in vitro, an effect that was independent of MGMT. Cells harboring wild-type p53 were more sensitive to IGF-1Ri, and showed schedule-dependent chemo-sensitization that was most effective when IGF-1Ri followed TMZ. This sequence sensitized to clinically-achievable TMZ concentrations and enhanced TMZ-induced apoptosis. Simultaneous or prior IGF-1Ri caused less effective chemo-sensitization, associated with increased G1 population and reduced accumulation of TMZ-induced DSBs. Clinically relevant sequential (TMZ → IGF-1Ri) treatment was tested in mice bearing A375M (V600E BRAF, wild-type p53) melanoma xenografts, achieving peak plasma/tumor IGF-1Ri levels comparable to clinical Cmax, and inducing extensive intratumoral apoptosis. TMZ or IGF-1Ri caused minor inhibition of tumor growth (gradient reduction 13%, 25% respectively), while combination treatment caused supra-additive growth delay (72%) that was significantly different from control (p < 0.01), TMZ (p < 0.01) and IGF-1Ri (p < 0.05) groups. These data highlight the importance of scheduling when combining IGF-1Ri and other targeted agents with drugs that induce replication-associated DNA damage.
Collapse
Affiliation(s)
- Roger Ramcharan
- Department of Oncology, Old Road Campus Research Building, Oxford, UK
| | - Tamara Aleksic
- Department of Oncology, Old Road Campus Research Building, Oxford, UK
| | | | - Shan Gao
- Department of Oncology, Old Road Campus Research Building, Oxford, UK
| | - Sophia X. Pfister
- Department of Oncology, Old Road Campus Research Building, Oxford, UK
| | - Jordan Tanner
- Biomedical Services, John Radcliffe Hospital, Oxford, UK
| | - Esther Bridges
- Department of Oncology, Old Road Campus Research Building, Oxford, UK
| | - Ruth Asher
- Department of Pathology, John Radcliffe Hospital, Oxford, UK
| | - Amanda J. Watson
- Cancer Research UK Carcinogenesis Group, Paterson Institute for Cancer Research, Manchester, UK
| | - Geoffrey P. Margison
- Cancer Research UK Carcinogenesis Group, Paterson Institute for Cancer Research, Manchester, UK
| | - Mick Woodcock
- Department of Oncology, Old Road Campus Research Building, Oxford, UK
| | - Emmanouela Repapi
- Computational Biology Research Group, Weatherall Institute of Molecular Medicine, Oxford, UK
| | - Ji-Liang Li
- Department of Oncology, Old Road Campus Research Building, Oxford, UK
| | | | - Valentine M. Macaulay
- Department of Oncology, Old Road Campus Research Building, Oxford, UK
- Oxford Cancer Centre, Churchill Hospital, Oxford, UK
| |
Collapse
|
65
|
Bose RN, Moghaddas S, Belkacemi L, Tripathi S, Adams NR, Majmudar P, McCall K, Dezvareh H, Nislow C. Absence of Activation of DNA Repair Genes and Excellent Efficacy of Phosphaplatins against Human Ovarian Cancers: Implications To Treat Resistant Cancers. J Med Chem 2015; 58:8387-401. [PMID: 26455832 DOI: 10.1021/acs.jmedchem.5b00732] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Phosphaplatins, platinum(II) and platinum(IV) complexes coordinated to a pyrophosphate moiety, exhibit excellent antitumor activities against a variety of cancers. To determine whether phosphaplatins trigger resistance to treatment by engaging DNA damage repair genes, a yeast genome-wide fitness assay was used. Treatment of yeast cells with pyrodach-2 (D2) or pyrodach-4 (D4) revealed no particular sensitivity to nucleotide excision repair, homologous recombination repair, or postreplication repair when compared with platin control compounds. Also, TNF receptor superfamily member 6 (FAS) protein was overexpressed in phosphaplatin-treated ovarian tumor cells, and platinum colocalized with FAS protein in lipid rafts. An overactivation of sphingomyelinase (ASMase) was noted in the treated cells, indicating participation of an extrinsic apoptotic mechanism due to increased ceramide release. Our results indicate that DNA is not the target of phosphaplatins and accordingly, that phosphaplatins might not cause resistance to treatment. Activation of ASMase and FAS along with the colocalization of platinum with FAS in lipid rafts support an extrinsic apoptotic signaling mechanism that is mediated by phosphaplatins.
Collapse
Affiliation(s)
- Rathindra N Bose
- Departments of Biology and Biochemistry, University of Houston , Houston, Texas 77204, United States
| | - Shadi Moghaddas
- Departments of Biology and Biochemistry, University of Houston , Houston, Texas 77204, United States
| | - Louiza Belkacemi
- Departments of Biology and Biochemistry, University of Houston , Houston, Texas 77204, United States
| | - Swarnendu Tripathi
- Departments of Biology and Biochemistry, University of Houston , Houston, Texas 77204, United States
| | - Nyssa R Adams
- Department of Specialty Medicine, Ohio University Heritage College of Osteopathic Medicine, Ohio University , Athens, Ohio 45701, United States
| | - Pooja Majmudar
- Department of Specialty Medicine, Ohio University Heritage College of Osteopathic Medicine, Ohio University , Athens, Ohio 45701, United States
| | - Kelly McCall
- Department of Specialty Medicine, Ohio University Heritage College of Osteopathic Medicine, Ohio University , Athens, Ohio 45701, United States
| | - Homa Dezvareh
- Departments of Biology and Biochemistry, University of Houston , Houston, Texas 77204, United States
| | - Corey Nislow
- Department of Pharmaceutical Sciences, University of British Columbia , Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
66
|
Wan J, Shi F, Xu Z, Zhao M. Knockdown of eIF4E suppresses cell proliferation, invasion and enhances cisplatin cytotoxicity in human ovarian cancer cells. Int J Oncol 2015; 47:2217-25. [PMID: 26498997 DOI: 10.3892/ijo.2015.3201] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/17/2015] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic initiation factor 4E (eIF4E) plays an important role in cap-dependent translation. The overexpression of eIF4E gene has been found in a variety of human malignancies. In this study, we attempted to identify the potential effects of eIF4E and explore the possibility of eIF4E as a therapeutic target for the treatment of human ovarian cancer. First the activation of eIF4E protein was detected with m7-GTP cap binding assays in ovarian cancer and control cells. Next, the eIF4E-shRNA expression plasmids were used to specifically inhibit eIF4E activity in ovarian cancer cells line A2780 and C200. The effects of knockdown eIF4E gene on cell proliferation, migration and invasion were investigated in vitro. Moreover, the changes of cell cycle and apoptosis of ovarian cancer cells were detected by flow cytometry. Finally, we investigated the effect of knockdown of eIF4E on the chemosensitivity of ovarian cancer cells to cisplatin in vitro. Our results show there is elevated activation of eIF4E in ovarian cancer cells compared with normal human ovarian epithelial cell line. The results of BrdU incorporation and FCM assay indicate that knockdown of eIF4E efficiently suppressed cell growth and induce cell cycle arrest in G1 phase and subsequent apoptosis in ovarian cancer cells. From Transwell assay analysis, knockdown eIF4E significantly decrease cellular migration and invasion of ovarian cancer cells. We also confirmed that knockdown eIF4E could synergistically enhance the cytotoxicity effects of cisplatin to cancer cells and sensitized cisplatin-resistant C200 cells in vitro. This study demonstrates that the activation of eIF4E gene is an essential component of the malignant phenotype in ovarian cancer, and aberration of eIF4E expression is associated with proliferation, migration, invasion and chemosensitivity to cisplatin in ovarian cancer cells. Knockdown eIF4E gene can be used as a potential therapeutic target for the treatment of human ovarian cancer.
Collapse
Affiliation(s)
- Jing Wan
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Hubei 430071, P.R. China
| | - Fang Shi
- Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, Hubei 430071, P.R. China
| | - Zhanzhan Xu
- Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, Hubei 430071, P.R. China
| | - Min Zhao
- Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, Hubei 430071, P.R. China
| |
Collapse
|
67
|
Lippolis C, Refolo MG, D'Alessandro R, Carella N, Messa C, Cavallini A, Carr BI. Resistance to multikinase inhibitor actions mediated by insulin like growth factor-1. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2015; 34:90. [PMID: 26329608 PMCID: PMC4557596 DOI: 10.1186/s13046-015-0210-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 08/20/2015] [Indexed: 12/22/2022]
Abstract
Background Blood platelet numbers are correlated with growth and aggressiveness of several tumor types, including hepatocellular carcinoma (HCC). We previously found that platelet lysates (hPLs) both stimulated HCC cell growth and migration, and antagonized the growth-inhibitory and apoptotic effects of Regorafenib, multikinase growth inhibitor, on HCC cell lines. We evaluated the effects of human insulin-like growth factor-1 (IGF1), a mitogen contained in platelets, on the Regorafenib-mediated growth inhibition. Methods An Elisa kit was used to evaluate hPL IGF1 concentrations. The effects of IGF1 on cell proliferation were assessed with MTT assay and analysis of cell cycle progression. Apoptosis assays, scratch assay and Transwell assay were performed to measure apoptosis, cell migration and invasion respectively. Western blots were performed by standard protocols. Results IGF1 antagonized growth inhibition exerted by Regorafenib on HCC cell lines. Moreover the mitogen blocked Regorafenib-induced apoptosis and decreased the rate of cell migration and invasion. The IGF1 effects were in turn antagonized by actions of a potent IGF1 receptor inhibitor, GSK1838705A, showing that the IGF1 receptor was involved in the mechanisms of IGF1-mediated blocking of Regorafenib action. GSK1838705A also partially blocked the effects of hPLs in antagonizing Regorafenib-mediated growth inhibition, showing that IGF1 was an important component of hPL actions. Conclusions These results show that IGF1 antagonized Regorafenib-mediated growth, migration and invasion inhibition, as well as the drug-mediated induction of apoptosis in HCC cells and reinforce the idea that microenvironmental factors can influence cancer drug actions.
Collapse
Affiliation(s)
- Catia Lippolis
- Department Clinical Pathology, Laboratory of Cellular and Molecular Biology, National Institute for Digestive Diseases, IRCCS "Saverio de Bellis", Via Turi 27, 70013, Castellana Grotte, BA, Italy.
| | - Maria Grazia Refolo
- Department Clinical Pathology, Laboratory of Cellular and Molecular Biology, National Institute for Digestive Diseases, IRCCS "Saverio de Bellis", Via Turi 27, 70013, Castellana Grotte, BA, Italy.
| | - Rosalba D'Alessandro
- Department Clinical Pathology, Laboratory of Cellular and Molecular Biology, National Institute for Digestive Diseases, IRCCS "Saverio de Bellis", Via Turi 27, 70013, Castellana Grotte, BA, Italy.
| | - Nicola Carella
- Department Clinical Pathology, Laboratory of Cellular and Molecular Biology, National Institute for Digestive Diseases, IRCCS "Saverio de Bellis", Via Turi 27, 70013, Castellana Grotte, BA, Italy.
| | - Caterina Messa
- Department Clinical Pathology, Laboratory of Cellular and Molecular Biology, National Institute for Digestive Diseases, IRCCS "Saverio de Bellis", Via Turi 27, 70013, Castellana Grotte, BA, Italy.
| | - Aldo Cavallini
- Department Clinical Pathology, Laboratory of Cellular and Molecular Biology, National Institute for Digestive Diseases, IRCCS "Saverio de Bellis", Via Turi 27, 70013, Castellana Grotte, BA, Italy.
| | - Brian Irving Carr
- Izmir Biomedicine and Genome Center, Dokuz Eylul University, Izmir, Turkey.
| |
Collapse
|
68
|
Pfeffer SR, Yang CH, Pfeffer LM. The Role of miR-21 in Cancer. Drug Dev Res 2015; 76:270-7. [PMID: 26082192 DOI: 10.1002/ddr.21257] [Citation(s) in RCA: 246] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 06/01/2015] [Indexed: 12/14/2022]
Abstract
MicroRNAs (miRNAs) are small endogenous noncoding RNAs that suppress gene expression at the post-transcriptional level. In the past decade, miRNAs have been extensively studied in a number of different human cancers. MiRNAs have been identified to act both as oncogenes and as tumor suppressors. In addition, miRNAs are associated with the intrinsic resistance of cancer to various forms of therapy, and they are implicated in both tumor progression and metastasis. The characterization of the specific alterations in the patterns of miRNA expression in cancer has great potential for identifying biomarkers for early cancer detection, as well as for potential therapeutic intervention in cancer treatment. In this chapter, we describe the ever-expanding role of miR-21 and its target genes in different cancers, and provide insight into how this oncogenic miRNA regulates cancer cell proliferation, migration, and apoptosis by suppressing the expression of tumor suppressors.
Collapse
Affiliation(s)
- Susan R Pfeffer
- Department of Pathology and Laboratory Medicine and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Chuan He Yang
- Department of Pathology and Laboratory Medicine and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Lawrence M Pfeffer
- Department of Pathology and Laboratory Medicine and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
69
|
Seto KKY, Andrulis IL. Atypical protein kinase C zeta: potential player in cell survival and cell migration of ovarian cancer. PLoS One 2015; 10:e0123528. [PMID: 25874946 PMCID: PMC4397019 DOI: 10.1371/journal.pone.0123528] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 02/18/2015] [Indexed: 11/19/2022] Open
Abstract
Ovarian cancer is one of the most aggressive gynaecological cancers, thus understanding the different biological pathways involved in ovarian cancer progression is important in identifying potential therapeutic targets for the disease. The aim of this study was to investigate the potential roles of Protein Kinase C Zeta (PRKCZ) in ovarian cancer. The atypical protein kinase C isoform, PRKCZ, is involved in the control of various signalling processes including cell proliferation, cell survival, and cell motility, all of which are important for cancer development and progression. Herein, we observe a significant increase in cell survival upon PRKCZ over-expression in SKOV3 ovarian cancer cells; additionally, when the cells are treated with small interference RNA (siRNA) targeting PRKCZ, the motility of SKOV3 cells decreased. Furthermore, we demonstrate that over-expression of PRKCZ results in gene and/or protein expression alterations of insulin-like growth factor 1 receptor (IGF1R) and integrin beta 3 (ITGB3) in SKOV3 and OVCAR3 cells. Collectively, our study describes PRKCZ as a potential regulatory component of the IGF1R and ITGB3 pathways and suggests that it may play critical roles in ovarian tumourigenesis.
Collapse
Affiliation(s)
- Kelly K. Y. Seto
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Irene L. Andrulis
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
70
|
Lojkin I, Rubinek T, Orsulic S, Schwarzmann O, Karlan BY, Bose S, Wolf I. Reduced expression and growth inhibitory activity of the aging suppressor klotho in epithelial ovarian cancer. Cancer Lett 2015; 362:149-57. [PMID: 25827069 DOI: 10.1016/j.canlet.2015.03.035] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 03/16/2015] [Accepted: 03/17/2015] [Indexed: 12/22/2022]
Abstract
Klotho is an anti-aging transmembrane protein, which can be shed and function as a hormone. Accumulating data indicate klotho as a tumor suppressor in a wide array of malignancies, and we identified klotho as an inhibitor of the insulin-like growth factor (IGF-1) pathway in cancer cells. As this pathway is significant in the development of epithelial ovarian cancer (EOC) we studied klotho expression and activity in this tumor. Klotho mRNA levels were reduced in 16 of 19 EOC cell lines and immunohistochemistry analysis revealed high expression in normal ovaries, and reduced expression in 100 of 241 high grade papillary-serous adenocarcinoma of the ovaries, fallopian tubes and peritoneum. Reduced expression was associated with wild-type BRCA status. Klotho reduced EOC cell viability, enhanced cisplatin sensitivity, and reduced expression of mesenchymal markers. Finally, klotho inhibited IGF-1 pathway activation and inhibited transcriptional activity of the estrogen receptor. In conclusion, klotho is silenced in a substantial subset of the tumors and restoring its expression slows growth of EOC cells and inhibits major signaling pathways. As klotho is a hormone, treatment with klotho may serve as a novel treatment for EOC.
Collapse
Affiliation(s)
- Irina Lojkin
- Institute of Oncology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tami Rubinek
- Institute of Oncology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Sandra Orsulic
- Women's Cancer Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Omer Schwarzmann
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Beth Y Karlan
- Women's Cancer Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Shikha Bose
- Department of Pathology & Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ido Wolf
- Institute of Oncology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
71
|
Chen F, Zhuang X, Lin L, Yu P, Wang Y, Shi Y, Hu G, Sun Y. New horizons in tumor microenvironment biology: challenges and opportunities. BMC Med 2015; 13:45. [PMID: 25857315 PMCID: PMC4350882 DOI: 10.1186/s12916-015-0278-7] [Citation(s) in RCA: 522] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 01/16/2015] [Indexed: 02/07/2023] Open
Abstract
The tumor microenvironment (TME) is being increasingly recognized as a key factor in multiple stages of disease progression, particularly local resistance, immune-escaping, and distant metastasis, thereby substantially impacting the future development of frontline interventions in clinical oncology. An appropriate understanding of the TME promotes evaluation and selection of candidate agents to control malignancies at both the primary sites as well as the metastatic settings. This review presents a timely outline of research advances in TME biology and highlights the prospect of targeting the TME as a critical strategy to overcome acquired resistance, prevent metastasis, and improve therapeutic efficacy. As benign cells in TME niches actively modulate response of cancer cells to a broad range of standard chemotherapies and targeted agents, cancer-oriented therapeutics should be combined with TME-targeting treatments to achieve optimal clinical outcomes. Overall, a body of updated information is delivered to summarize recently emerging and rapidly progressing aspects of TME studies, and to provide a significant guideline for prospective development of personalized medicine, with the long term aim of providing a cure for cancer patients.
Collapse
Affiliation(s)
- Fei Chen
- />Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiaotong University School of Medicine, Shanghai, 200031 China
| | - Xueqian Zhuang
- />Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiaotong University School of Medicine, Shanghai, 200031 China
| | - Liangyu Lin
- />Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiaotong University School of Medicine, Shanghai, 200031 China
| | - Pengfei Yu
- />Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiaotong University School of Medicine, Shanghai, 200031 China
| | - Ying Wang
- />Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiaotong University School of Medicine, Shanghai, 200031 China
| | - Yufang Shi
- />Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiaotong University School of Medicine, Shanghai, 200031 China
- />Soochow Institutes for Translational Medicine, Soochow University, Suzhou, 215123 China
| | - Guohong Hu
- />Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiaotong University School of Medicine, Shanghai, 200031 China
| | - Yu Sun
- />Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiaotong University School of Medicine, Shanghai, 200031 China
- />VA Seattle Medical Center, Seattle, WA 98108 USA
- />Department of Medicine, University of Washington, Seattle, WA 98195 USA
- />Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) and Shanghai Jiaotong University School of Medicine (SJTUSM), 320 Yue Yang Road, Biological Research Building A, Shanghai, 200031 China
| |
Collapse
|
72
|
Kim JS, Lee SC, Min HY, Park KH, Hyun SY, Kwon SJ, Choi SP, Kim WY, Lee HJ, Lee HY. Activation of insulin-like growth factor receptor signaling mediates resistance to histone deacetylase inhibitors. Cancer Lett 2015; 361:197-206. [PMID: 25721083 DOI: 10.1016/j.canlet.2015.02.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 02/16/2015] [Accepted: 02/16/2015] [Indexed: 11/30/2022]
Abstract
Histone deacetylases (HDACs) are considered promising targets in the treatment of hematologic malignancies and several types of solid tumors, including non-small cell lung cancer (NSCLC). However, the efficacy of HDAC inhibitors in solid tumors is marginal, and the mechanisms underlying resistance to HDAC inhibitors are largely unknown. Here, we demonstrate the involvement of type 1 insulin-like growth factor receptor (IGF-1R) signaling in resistance to HDAC inhibitors in NSCLC. Using MTT and soft-agar colony formation assays, we selected NSCLC cell lines that exhibited intrinsic resistance to vorinostat. Treatment with vorinostat activated IGF-1R signaling in vorinostat-resistant but not vorinostat-sensitive NSCLC cells. Other HDAC inhibitors, including trichostatin A, sodium butyrate, and depsipeptide, also activated IGF-1R signaling in vorinostat-resistant NSCLC cells. Blockade of IGF-1R signaling via IGF-1R monoclonal antibodies (mAbs) or through knockdown of IGF-1R via RNA interference sensitized vorinostat-resistant cells to HDAC inhibition. Finally, IGF-1R mAbs sensitized xenograft tumors of vorinostat-resistant cells to vorinostat treatment in vivo. These findings suggest that IGF-1R activation is generally involved in resistance to HDAC inhibitors and that targeting IGF-1R is an effective strategy for overcoming resistance to HDAC inhibitors in NSCLC.
Collapse
Affiliation(s)
- Jin-Soo Kim
- Department of Thoracic Head & Neck Medical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Su-Chan Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Hye-Young Min
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Kwan Hee Park
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Seung Yeob Hyun
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - So Jung Kwon
- College of Pharmacy, Inje University, Gimhae, Gyungnam 621-749, Republic of Korea
| | - Sun Phil Choi
- Department of Thoracic Head & Neck Medical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Woo-Young Kim
- Department of Thoracic Head & Neck Medical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Hyo-Jong Lee
- College of Pharmacy, Inje University, Gimhae, Gyungnam 621-749, Republic of Korea
| | - Ho-Young Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea.
| |
Collapse
|
73
|
Becker MA, Haluska P, Bale LK, Oxvig C, Conover CA. A novel neutralizing antibody targeting pregnancy-associated plasma protein-a inhibits ovarian cancer growth and ascites accumulation in patient mouse tumorgrafts. Mol Cancer Ther 2015; 14:973-81. [PMID: 25695953 DOI: 10.1158/1535-7163.mct-14-0880] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 02/10/2015] [Indexed: 12/16/2022]
Abstract
The majority of ovarian cancer patients acquire resistance to standard platinum chemotherapy and novel therapies to reduce tumor burden and ascites accumulation are needed. Pregnancy-associated plasma protein-A (PAPP-A) plays a key role in promoting insulin-like growth factor (IGF) pathway activity, which directly correlates to ovarian cancer cell transformation, growth, and invasiveness. Herein, we evaluate PAPP-A expression in tumors and ascites of women with ovarian cancer, and determine the antitumor efficacy of a neutralizing monoclonal PAPP-A antibody (mAb-PA) in ovarian cancer using primary patient ovarian tumorgrafts ("Ovatars"). PAPP-A mRNA expression in patient ovarian tumors correlated with poor outcome and was validated as a prognostic surrogate in Ovatar tumors. Following confirmation of mAb-PA bioavailability and target efficacy in vivo, the antitumor efficacy of mAb-PA in multiple Ovatar tumor models was examined and the response was found to depend on PAPP-A expression. Strikingly, the addition of mAb-PA to standard platinum chemotherapy effectively sensitized platinum-resistant Ovatar tumors. PAPP-A protein in ascites was also assessed in a large cohort of patients and very high levels were evident across the entire sample set. Therefore, we evaluated targeted PAPP-A inhibition as a novel approach to managing ovarian ascites, and found that mAb-PA inhibited the development, attenuated the progression, and induced the regression of Ovatar ascites. Together, these data indicate PAPP-A as a potential palliative and adjunct therapeutic target for women with ovarian cancer.
Collapse
Affiliation(s)
- Marc A Becker
- Division of Medical Oncology, Mayo Clinic, Rochester, Minnesota
| | - Paul Haluska
- Division of Medical Oncology, Mayo Clinic, Rochester, Minnesota
| | - Laurie K Bale
- Division of Endocrinology, Mayo Clinic, Rochester, Minnesota
| | - Claus Oxvig
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
74
|
Upregulation of IGF-1R expression during neoadjuvant therapy predicts poor outcome in breast cancer patients. PLoS One 2015; 10:e0117745. [PMID: 25680198 PMCID: PMC4334229 DOI: 10.1371/journal.pone.0117745] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 01/01/2015] [Indexed: 12/02/2022] Open
Abstract
Introduction The insulin-like growth factor 1 receptor (IGF-1R) may be involved in the development of resistance against conventional cancer treatment. The aim of this study was to assess whether IGF-1R expression of breast tumors changes during neoadjuvant therapy and to study whether these changes were associated with survival. Methods Paraffin embedded tumor tissue was collected from pretreatment biopsies and surgical resections of 62 breast cancer patients who were treated with neoadjuvant chemotherapy or endocrine therapy. IGF-1R expression was determined immunohistochemically and compared before and after treatment. Results High membranous IGF-1R expression at diagnosis correlated significantly with ER positivity, low tumor stage (stage I/II) and longer overall survival (p < 0.05). After neoadjuvant treatment, membranous IGF-1R expression remained the same in 41 (65%) tumors, was upregulated in 11 (18%) tumors and downregulated in 11 (18%) tumors. Changes in membranous IGF-1R expression were associated with overall survival (log-rank test: p = 0.013, multivariate cox-regression: p = 0.086). Mean overall survival time for upregulation, no change, and downregulation in IGF-1R expression was 3.0 ± 0.5 years, 7.3 ± 1.0 years and 15.0 ± 1.8 years, respectively. Changes in other parameters were not significantly associated with survival. Conclusion Neoadjuvant therapy can induce changes in IGF-1R expression. Upregulation of IGF-1R expression after neoadjuvant treatment is a poor prognostic factor in breast cancer patients, providing a rationale for incorporating anti-IGF-1R drugs in the management of these patients.
Collapse
|
75
|
Zhang N, Liu H, Cui M, Du Y, Liu Z, Liu S. Direct determination of the binding sites of cisplatin on insulin-like growth factor-1 by top-down mass spectrometry. J Biol Inorg Chem 2015; 20:1-10. [PMID: 25344342 DOI: 10.1007/s00775-014-1202-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 09/26/2014] [Indexed: 01/12/2023]
Abstract
Cisplatin has been widely used in the chemotherapy of a variety of tumors, and the interactions of cisplatin with proteins play very important roles in its side effects and drug resistance, as well as its pharmacokinetics and the biodistribution. Insulin-like growth factor-1 (IGF-1) was found to be associated with the drug resistance of cisplatin. Here, the interaction between cisplatin and IGF-1 was investigated using electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. IGF-1-Pt(NH3)Cl was the main mono-adduct and the trans labilization was important to the reaction between IGF-1 and cisplatin, while another special mono-adduct IGF-1-Pt(NH3)Cl2 was observed. The rapid and sensitive top-down mass spectrometry-based approach in linear ion trap mass spectrometer has been developed to identify the binding sites of cisplatin in IGF-1 directly without tedious enzyme digestion. Three binding sites (Met59, Arg56 and Cys6) of cisplatin in IGF-1 were determined. The results not only provide a rapid and efficient way to identify the platinum binding sites in proteins, but also indicate that the binding of cisplatin could promote the fragmentation of IGF-1 and the rupture of disulfide bond.
Collapse
Affiliation(s)
- Ningbo Zhang
- Changchun Center of Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, People's Republic of China
- University of the Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Huan Liu
- Changchun Center of Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, People's Republic of China
- University of the Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Meng Cui
- Changchun Center of Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, People's Republic of China.
| | - Yonggang Du
- Changchun Center of Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, People's Republic of China
- University of the Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Zhiqiang Liu
- Changchun Center of Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, People's Republic of China
| | - Shuying Liu
- Changchun Center of Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, People's Republic of China
| |
Collapse
|
76
|
Zhuang M, Shi Q, Zhang X, Ding Y, Shan L, Shan X, Qian J, Zhou X, Huang Z, Zhu W, Ding Y, Cheng W, Liu P, Shu Y. Involvement of miR-143 in cisplatin resistance of gastric cancer cells via targeting IGF1R and BCL2. Tumour Biol 2014; 36:2737-45. [PMID: 25492481 DOI: 10.1007/s13277-014-2898-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 11/26/2014] [Indexed: 12/13/2022] Open
Abstract
We investigated the possible role of miR-143 in the development of cisplatin resistance in human gastric cancer cell line. miR-143 was detected by quantitative real-time PCR. Cisplatin resistance changes of cells was tested via MTT assay. Target genes of miR-143 were verified by dual-luciferase activity assay. Immunohistochemistry, immunofluorescence staining, Western blot, cell proliferation, and clonogenic and apoptosis assay were used to elucidate the mechanism of miR-143 in cisplatin resistance formation. miR-143 was downregulated in gastric cancer tissues and cell lines. It was also downregulated in cisplatin-resistant gastric cancer cell line SGC7901/cisplatin (DDP), which was concurrent with the upregulation of IGF1R and BCL2, compared with the parental SGC7901 cell line, respectively. Overexpressed miR-143 sensitized SGC7901/DDP cells to cisplatin. The luciferase activity suggested that IGF1R and BCL2 were both target genes of miR-143. Enforced miR-143 reduced its target proteins, inhibited SGC7901/DDP cells proliferation, and sensitized SGC7901/DDP cells to DDP-induced apoptosis. Our findings suggested that hsa-miR-143 could modulate cisplatin resistance of human gastric cancer cell line at least in part by targeting IGF1R and BCL2.
Collapse
Affiliation(s)
- Ming Zhuang
- Department of Oncology, Clinical Medical College of Yangzhou University, No. 98 Nantong Western Road, Yangzhou, 225001, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Uziel O, Yosef N, Sharan R, Ruppin E, Kupiec M, Kushnir M, Beery E, Cohen-Diker T, Nordenberg J, Lahav M. The effects of telomere shortening on cancer cells: a network model of proteomic and microRNA analysis. Genomics 2014; 105:5-16. [PMID: 25451739 DOI: 10.1016/j.ygeno.2014.10.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 10/08/2014] [Accepted: 10/27/2014] [Indexed: 12/21/2022]
Abstract
Previously, we have shown that shortening of telomeres by telomerase inhibition sensitized cancer cells to cisplatinum, slowed their migration, increased DNA damage and impaired DNA repair. The mechanism behind these effects is not fully characterized. Its clarification could facilitate novel therapeutics development and may obviate the time consuming process of telomere shortening achieved by telomerase inhibition. Here we aimed to decipher the microRNA and proteomic profiling of cancer cells with shortened telomeres and identify the key mediators in telomere shortening-induced damage to those cells. Of 870 identified proteins, 98 were differentially expressed in shortened-telomere cells. 47 microRNAs were differentially expressed in these cells; some are implicated in growth arrest or act as oncogene repressors. The obtained data was used for a network construction, which provided us with nodal candidates that may mediate the shortened-telomere dependent features. These proteins' expression was experimentally validated, supporting their potential central role in this system.
Collapse
Affiliation(s)
- O Uziel
- FMRC, RMC, Sackler School of Medicine, Tel Aviv University, Israel.
| | - N Yosef
- School of Computer Science, Tel Aviv University, Israel
| | - R Sharan
- School of Computer Science, Tel Aviv University, Israel
| | - E Ruppin
- School of Computer Science, Tel Aviv University, Israel
| | - M Kupiec
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Israel
| | | | - E Beery
- FMRC, RMC, Sackler School of Medicine, Tel Aviv University, Israel
| | - T Cohen-Diker
- FMRC, RMC, Sackler School of Medicine, Tel Aviv University, Israel
| | - J Nordenberg
- FMRC, RMC, Sackler School of Medicine, Tel Aviv University, Israel
| | - M Lahav
- FMRC, RMC, Sackler School of Medicine, Tel Aviv University, Israel
| |
Collapse
|
78
|
Telodendrimer nanocarrier for co-delivery of paclitaxel and cisplatin: A synergistic combination nanotherapy for ovarian cancer treatment. Biomaterials 2014; 37:456-468. [PMID: 25453973 DOI: 10.1016/j.biomaterials.2014.10.044] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 10/05/2014] [Indexed: 11/24/2022]
Abstract
Cisplatin (CDDP) and paclitaxel (PTX) are two established chemotherapeutic drugs used in combination for the treatment of many cancers, including ovarian cancer. We have recently developed a three-layered linear-dendritic telodendrimer micelles (TM) by introducing carboxylic acid groups in the adjacent layer via "thio-ene" click chemistry for CDDP complexation and conjugating cholic acids via peptide chemistry in the interior layer of telodendrimer for PTX encapsulation. We hypothesize that the co-delivery of low dosage PTX with CDDP could act synergistically to increase the treatment efficacy and reduce their toxic side effects. This design allowed us to co-deliver PTX and CDDP at various drug ratios to ovarian cancer cells. The in vitro cellular assays revealed strongest synergism in anti-tumor effects when delivered at a 1:2 PTX/CDDP loading ratio. Using the SKOV-3 ovarian cancer xenograft mouse model, we demonstrate that our co-encapsulation approach resulted in an efficient tumor-targeted drug delivery, decreased cytotoxic effects and stronger anti-tumor effect, when compared with free drug combination or the single loading TM formulations.
Collapse
|
79
|
Singh RK, Gaikwad SM, Jinager A, Chaudhury S, Maheshwari A, Ray P. IGF-1R inhibition potentiates cytotoxic effects of chemotherapeutic agents in early stages of chemoresistant ovarian cancer cells. Cancer Lett 2014; 354:254-62. [PMID: 25157649 DOI: 10.1016/j.canlet.2014.08.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 08/13/2014] [Accepted: 08/16/2014] [Indexed: 12/30/2022]
Abstract
The kinetics and effect of hyper activated IGF-1R signaling is not well investigated during acquirement of platinum and taxol resistance in ovarian cancer cells. Herein we reported an upregulated IGF-1R expression in early stages of cisplatin paclitaxel and cisplatin-taxol resistance. Picropodophyllin, an IGF-1R inhibitor, alone and in combination with cisplatin, paclitaxel or both at lowest possible doses could reverse the resistance at early stages. Upregulated IGF-1R was also found in primary tumors of ovarian cancer patients after three to four cycles of platinum-taxol treatment. These findings indicate that a combination of cytotoxic agents and IGF-1R inhibitor is more effective at early stages of chemoresistant ovarian cancer.
Collapse
Affiliation(s)
- Ram K Singh
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, Maharashtra, India
| | - Snehal M Gaikwad
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, Maharashtra, India
| | - Ankit Jinager
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, Maharashtra, India
| | - Smrita Chaudhury
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, Maharashtra, India
| | - Amita Maheshwari
- Gynecologic Oncology, Tata Memorial Hospital, Dr. E Borges Road, Parel, Mumbai, Maharashtra, India
| | - Pritha Ray
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, Maharashtra, India.
| |
Collapse
|
80
|
Yang CH, Yue J, Pfeffer SR, Fan M, Paulus E, Hosni-Ahmed A, Sims M, Qayyum S, Davidoff AM, Handorf CR, Pfeffer LM. MicroRNA-21 promotes glioblastoma tumorigenesis by down-regulating insulin-like growth factor-binding protein-3 (IGFBP3). J Biol Chem 2014; 289:25079-87. [PMID: 25059666 DOI: 10.1074/jbc.m114.593863] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Despite advances in surgery, imaging, chemotherapy, and radiation, patients with glioblastoma multiforme (GBM), the most common histological subtype of glioma, have an especially dismal prognosis; >70% of GBM patients die within 2 years of diagnosis. In many human cancers, the microRNA miR-21 is overexpressed, and accumulating evidence indicates that it functions as an oncogene. Here, we report that miR-21 is overexpressed in human GBM cell lines and tumor tissue. Moreover, miR-21 expression in GBM patient samples is inversely correlated with patient survival. Knockdown of miR-21 in GBM cells inhibited cell proliferation in vitro and markedly inhibited tumor formation in vivo. A number of known miR-21 targets have been identified previously. By microarray analysis, we identified and validated insulin-like growth factor (IGF)-binding protein-3 (IGFBP3) as a novel miR-21 target gene. Overexpression of IGFBP3 in glioma cells inhibited cell proliferation in vitro and inhibited tumor formation of glioma xenografts in vivo. The critical role that IGFBP3 plays in miR-21-mediated actions was demonstrated by a rescue experiment, in which IGFBP3 knockdown in miR-21KD glioblastoma cells restored tumorigenesis. Examination of tumors from GBM patients showed that there was an inverse relationship between IGFBP3 and miR-21 expression and that increased IGFBP3 expression correlated with better patient survival. Our results identify IGFBP3 as a novel miR-21 target gene in glioblastoma and suggest that the oncogenic miRNA miR-21 down-regulates the expression of IGFBP3, which acts as a tumor suppressor in human glioblastoma.
Collapse
Affiliation(s)
- Chuan He Yang
- From the Departments of Pathology and Laboratory Medicine and the Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee 38163 and
| | - Junming Yue
- From the Departments of Pathology and Laboratory Medicine and the Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee 38163 and
| | - Susan R Pfeffer
- From the Departments of Pathology and Laboratory Medicine and the Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee 38163 and
| | - Meiyun Fan
- From the Departments of Pathology and Laboratory Medicine and the Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee 38163 and
| | | | - Amira Hosni-Ahmed
- From the Departments of Pathology and Laboratory Medicine and the Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee 38163 and
| | - Michelle Sims
- From the Departments of Pathology and Laboratory Medicine and the Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee 38163 and
| | - Sohail Qayyum
- From the Departments of Pathology and Laboratory Medicine and
| | - Andrew M Davidoff
- From the Departments of Pathology and Laboratory Medicine and Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee 38103
| | - Charles R Handorf
- From the Departments of Pathology and Laboratory Medicine and the Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee 38163 and
| | - Lawrence M Pfeffer
- From the Departments of Pathology and Laboratory Medicine and the Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee 38163 and
| |
Collapse
|
81
|
IGFBP7 induces apoptosis of acute myeloid leukemia cells and synergizes with chemotherapy in suppression of leukemia cell survival. Cell Death Dis 2014; 5:e1300. [PMID: 24967962 PMCID: PMC4611740 DOI: 10.1038/cddis.2014.268] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 05/08/2014] [Accepted: 05/19/2014] [Indexed: 12/11/2022]
Abstract
Despite high remission rates after chemotherapy, only 30-40% of acute myeloid leukemia (AML) patients survive 5 years after diagnosis. This extremely poor prognosis of AML is mainly caused by treatment failure due to chemotherapy resistance. Chemotherapy resistance can be caused by various features including activation of alternative signaling pathways, evasion of cell death or activation of receptor tyrosine kinases such as the insulin growth factor-1 receptor (IGF-1R). Here we have studied the role of the insulin-like growth factor-binding protein-7 (IGFBP7), a tumor suppressor and part of the IGF-1R axis, in AML. We report that IGFBP7 sensitizes AML cells to chemotherapy-induced cell death. Moreover, overexpression of IGFBP7 as well as addition of recombinant human IGFBP7 is able to reduce the survival of AML cells by the induction of a G2 cell cycle arrest and apoptosis. This effect is mainly independent from IGF-1R activation, activated Akt and activated Erk. Importantly, AML patients with high IGFBP7 expression have a better outcome than patients with low IGFBP7 expression, indicating a positive role for IGFBP7 in treatment and outcome of AML. Together, this suggests that the combination of IGFBP7 and chemotherapy might potentially overcome conventional AML drug resistance and thus might improve AML patient survival.
Collapse
|
82
|
Brouwer-Visser J, Lee J, McCullagh K, Cossio MJ, Wang Y, Huang GS. Insulin-like growth factor 2 silencing restores taxol sensitivity in drug resistant ovarian cancer. PLoS One 2014; 9:e100165. [PMID: 24932685 PMCID: PMC4059749 DOI: 10.1371/journal.pone.0100165] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/22/2014] [Indexed: 11/18/2022] Open
Abstract
Drug resistance is an obstacle to the effective treatment of ovarian cancer. We and others have shown that the insulin-like growth factor (IGF) signaling pathway is a novel potential target to overcome drug resistance. The purpose of this study was to validate IGF2 as a potential therapeutic target in drug resistant ovarian cancer and to determine the efficacy of targeting IGF2 in vivo. An analysis of The Cancer Genome Atlas (TCGA) data in the serous ovarian cancer cohort showed that high IGF2 mRNA expression is significantly associated with shortened interval to disease progression and death, clinical indicators of drug resistance. In a genetically diverse panel of ovarian cancer cell lines, the IGF2 mRNA levels measured in cell lines resistant to various microtubule-stabilizing agents including Taxol were found to be significantly elevated compared to the drug sensitive cell lines. The effect of IGF2 knockdown on Taxol resistance was investigated in vitro and in vivo. Transient IGF2 knockdown significantly sensitized drug resistant cells to Taxol treatment. A Taxol-resistant ovarian cancer xenograft model, developed from HEY-T30 cells, exhibited extreme drug resistance, wherein the maximal tolerated dose of Taxol did not delay tumor growth in mice. Blocking the IGF1R (a transmembrane receptor that transmits signals from IGF1 and IGF2) using a monoclonal antibody did not alter the response to Taxol. However, stable IGF2 knockdown using short-hairpin RNA in HEY-T30 effectively restored Taxol sensitivity. These findings validate IGF2 as a potential therapeutic target in drug resistant ovarian cancer and show that directly targeting IGF2 may be a preferable strategy compared with targeting IGF1R alone.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Phytogenic/pharmacology
- Apoptosis/drug effects
- Blotting, Western
- Cell Cycle/drug effects
- Cell Proliferation/drug effects
- Cystadenocarcinoma, Serous/drug therapy
- Cystadenocarcinoma, Serous/genetics
- Cystadenocarcinoma, Serous/pathology
- Drug Resistance, Neoplasm/genetics
- Female
- Humans
- Insulin-Like Growth Factor I/genetics
- Insulin-Like Growth Factor I/metabolism
- Insulin-Like Growth Factor II/antagonists & inhibitors
- Insulin-Like Growth Factor II/genetics
- Insulin-Like Growth Factor II/metabolism
- Mice
- Mice, Nude
- Ovarian Neoplasms/drug therapy
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/pathology
- Paclitaxel/pharmacology
- Phosphorylation/drug effects
- RNA, Messenger/genetics
- RNA, Small Interfering/genetics
- Real-Time Polymerase Chain Reaction
- Receptor, IGF Type 1/genetics
- Receptor, IGF Type 1/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction/drug effects
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Jurriaan Brouwer-Visser
- Department of Obstetrics and Gynecology & Women’s Health (Division of Gynecologic Oncology), Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, United States of America
| | - Jiyeon Lee
- Department of Obstetrics and Gynecology & Women’s Health (Division of Gynecologic Oncology), Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, United States of America
| | - KellyAnne McCullagh
- Department of Obstetrics and Gynecology & Women’s Health (Division of Gynecologic Oncology), Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, United States of America
| | - Maria J. Cossio
- Department of Obstetrics and Gynecology & Women’s Health (Division of Gynecologic Oncology), Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, United States of America
| | - Yanhua Wang
- Department of Pathology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, United States of America
| | - Gloria S. Huang
- Department of Obstetrics and Gynecology & Women’s Health (Division of Gynecologic Oncology), Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, United States of America
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail:
| |
Collapse
|
83
|
Zheng FM, Long ZJ, Hou ZJ, Luo Y, Xu LZ, Xia JL, Lai XJ, Liu JW, Wang X, Kamran M, Yan M, Shao SJ, Lam EWF, Wang SW, Lu G, Liu Q. A novel small molecule aurora kinase inhibitor attenuates breast tumor-initiating cells and overcomes drug resistance. Mol Cancer Ther 2014; 13:1991-2003. [PMID: 24899685 DOI: 10.1158/1535-7163.mct-13-1029] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chemoresistance is a major cause of cancer treatment failure. Tumor-initiating cells (TIC) have attracted a considerable amount of attention due to their role in chemoresistance and tumor recurrence. Here, we evaluated the small molecule Aurora kinase inhibitor AKI603 as a novel agent against TICs in breast cancer. AKI603 significantly inhibited Aurora-A (AurA) kinase and induced cell-cycle arrest. In addition, the intragastric administration of AKI603 reduced xenograft tumor growth. Interestingly, we found that breast cancer cells that were resistant to epirubicin expressed a high level of activated AurA and also have a high CD24(Low)/CD44(High) TIC population. The inhibition of AurA kinase by AKI603 abolished the epirubicin-induced enrichment of TICs. Moreover, AKI603 suppressed the capacity of cells to form mammosphere and also suppressed the expression of self-renewal genes (β-catenin, c-Myc, Sox2, and Oct4). Thus, our work suggests the potential clinical use of the small molecule Aurora kinase inhibitor AKI603 to overcome drug resistance induced by conventional chemotherapeutics in breast cancer.
Collapse
Affiliation(s)
- Fei-Meng Zheng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine; Institute of Cancer Stem Cell, Dalian Medical University; Institute of Cancer Stem Cell, Institute of Cancer Stem Cell - First Affiliated Hospital Collaborative Innovation Center of Oncology
| | - Zi-Jie Long
- Department of Hematology, Third Affiliated Hospital, Sun Yat-sen University
| | - Zhi-Jie Hou
- Institute of Cancer Stem Cell, Institute of Cancer Stem Cell - First Affiliated Hospital Collaborative Innovation Center of Oncology
| | - Yu Luo
- Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou
| | - Ling-Zhi Xu
- Institute of Cancer Stem Cell, Institute of Cancer Stem Cell - First Affiliated Hospital Collaborative Innovation Center of Oncology
| | - Jiang-Long Xia
- Institute of Cancer Stem Cell, Institute of Cancer Stem Cell - First Affiliated Hospital Collaborative Innovation Center of Oncology
| | - Xiao-Ju Lai
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine; Institute of Cancer Stem Cell, Dalian Medical University
| | - Ji-Wei Liu
- Institute of Cancer Stem Cell, Institute of Cancer Stem Cell - First Affiliated Hospital Collaborative Innovation Center of Oncology
| | - Xi Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine; Institute of Cancer Stem Cell, Dalian Medical University
| | - Muhammad Kamran
- Institute of Cancer Stem Cell, Institute of Cancer Stem Cell - First Affiliated Hospital Collaborative Innovation Center of Oncology
| | - Min Yan
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine; Institute of Cancer Stem Cell, Dalian Medical University
| | - Shu-Juan Shao
- Department of Histology and Embryology, Dalian Medical University, Dalian, China; and
| | - Eric W-F Lam
- Department of Surgery and Cancer, Imperial Centre for Translational and Experimental Medicine (ICTEM), Imperial College London, London, United Kingdom
| | - Shao-Wu Wang
- Institute of Cancer Stem Cell, Institute of Cancer Stem Cell - First Affiliated Hospital Collaborative Innovation Center of Oncology
| | - Gui Lu
- Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou;
| | - Quentin Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine; Institute of Cancer Stem Cell, Dalian Medical University; Department of Hematology, Third Affiliated Hospital, Sun Yat-sen University; Institute of Cancer Stem Cell, Institute of Cancer Stem Cell - First Affiliated Hospital Collaborative Innovation Center of Oncology;
| |
Collapse
|
84
|
Beltran PJ, Calzone FJ, Mitchell P, Chung YA, Cajulis E, Moody G, Belmontes B, Li CM, Vonderfecht S, Velculescu VE, Yang G, Qi J, Slamon DJ, Konecny GE. Ganitumab (AMG 479) inhibits IGF-II-dependent ovarian cancer growth and potentiates platinum-based chemotherapy. Clin Cancer Res 2014; 20:2947-58. [PMID: 24727326 DOI: 10.1158/1078-0432.ccr-13-3448] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE Insulin-like growth factor 1 receptor (IGF-IR) has been implicated in the pathogenesis of ovarian cancer. Ganitumab is an investigational, fully human monoclonal antibody against IGF-IR. Here, we explore the therapeutic potential of ganitumab for the treatment of ovarian cancer. EXPERIMENTAL DESIGN The effects of ganitumab were tested in vitro against a panel of 23 established ovarian cancer cell lines. The ability of ganitumab to inhibit IGF-I-, IGF-II-, and insulin-mediated signaling was examined in vitro and in tumor xenografts using ovarian cancer models displaying IGF-IR/PI3K/AKT pathway activation by two distinct mechanisms, PTEN loss and IGF-II overexpression. Drug interactions between ganitumab and cisplatin, carboplatin, or paclitaxel were studied in vitro and in vivo. RESULTS In vitro, growth inhibition varied significantly among individual ovarian cancer cell lines. IGF-II mRNA and phospho-IGF-IR protein expression were quantitatively correlated with response to ganitumab, and PTEN mutations conferred resistance to ganitumab. Ganitumab potently inhibited baseline and IGF-I-, IGF-II-, and insulin-induced IGF-IR and IGF-IR/insulin hybrid receptor signaling in vitro and in vivo. Synergistic and additive drug interactions were seen for ganitumab and carboplatin or paclitaxel in vitro. Furthermore, ganitumab significantly increased the efficacy of cisplatin in ovarian cancer xenograft models in vivo. CONCLUSIONS These observations provide a biologic rationale to test ganitumab as a single agent or in combination with carboplatin/cisplatin and paclitaxel in patients with ovarian cancer. Moreover, assessment of tumor expression of IGF-II, phospho-IGF-IR, or PTEN status may help select patients with ovarian cancer who are most likely to benefit from ganitumab. Clin Cancer Res; 20(11); 2947-58. ©2014 AACR.
Collapse
Affiliation(s)
- Pedro J Beltran
- Authors' Affiliations: Oncology Research Therapeutic Area, Genomics Analysis Unit, Department of Pathology, Amgen Inc., Thousand Oaks; Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California; and The Ludwig Center and the Howard Hughes Medical Institute, Kimmel Cancer Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Frank J Calzone
- Authors' Affiliations: Oncology Research Therapeutic Area, Genomics Analysis Unit, Department of Pathology, Amgen Inc., Thousand Oaks; Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California; and The Ludwig Center and the Howard Hughes Medical Institute, Kimmel Cancer Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Petia Mitchell
- Authors' Affiliations: Oncology Research Therapeutic Area, Genomics Analysis Unit, Department of Pathology, Amgen Inc., Thousand Oaks; Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California; and The Ludwig Center and the Howard Hughes Medical Institute, Kimmel Cancer Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Young-Ah Chung
- Authors' Affiliations: Oncology Research Therapeutic Area, Genomics Analysis Unit, Department of Pathology, Amgen Inc., Thousand Oaks; Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California; and The Ludwig Center and the Howard Hughes Medical Institute, Kimmel Cancer Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Elaina Cajulis
- Authors' Affiliations: Oncology Research Therapeutic Area, Genomics Analysis Unit, Department of Pathology, Amgen Inc., Thousand Oaks; Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California; and The Ludwig Center and the Howard Hughes Medical Institute, Kimmel Cancer Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Gordon Moody
- Authors' Affiliations: Oncology Research Therapeutic Area, Genomics Analysis Unit, Department of Pathology, Amgen Inc., Thousand Oaks; Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California; and The Ludwig Center and the Howard Hughes Medical Institute, Kimmel Cancer Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Brian Belmontes
- Authors' Affiliations: Oncology Research Therapeutic Area, Genomics Analysis Unit, Department of Pathology, Amgen Inc., Thousand Oaks; Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California; and The Ludwig Center and the Howard Hughes Medical Institute, Kimmel Cancer Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Chi-Ming Li
- Authors' Affiliations: Oncology Research Therapeutic Area, Genomics Analysis Unit, Department of Pathology, Amgen Inc., Thousand Oaks; Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California; and The Ludwig Center and the Howard Hughes Medical Institute, Kimmel Cancer Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Steven Vonderfecht
- Authors' Affiliations: Oncology Research Therapeutic Area, Genomics Analysis Unit, Department of Pathology, Amgen Inc., Thousand Oaks; Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California; and The Ludwig Center and the Howard Hughes Medical Institute, Kimmel Cancer Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Victor E Velculescu
- Authors' Affiliations: Oncology Research Therapeutic Area, Genomics Analysis Unit, Department of Pathology, Amgen Inc., Thousand Oaks; Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California; and The Ludwig Center and the Howard Hughes Medical Institute, Kimmel Cancer Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Guorong Yang
- Authors' Affiliations: Oncology Research Therapeutic Area, Genomics Analysis Unit, Department of Pathology, Amgen Inc., Thousand Oaks; Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California; and The Ludwig Center and the Howard Hughes Medical Institute, Kimmel Cancer Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Jingwei Qi
- Authors' Affiliations: Oncology Research Therapeutic Area, Genomics Analysis Unit, Department of Pathology, Amgen Inc., Thousand Oaks; Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California; and The Ludwig Center and the Howard Hughes Medical Institute, Kimmel Cancer Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Dennis J Slamon
- Authors' Affiliations: Oncology Research Therapeutic Area, Genomics Analysis Unit, Department of Pathology, Amgen Inc., Thousand Oaks; Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California; and The Ludwig Center and the Howard Hughes Medical Institute, Kimmel Cancer Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Gottfried E Konecny
- Authors' Affiliations: Oncology Research Therapeutic Area, Genomics Analysis Unit, Department of Pathology, Amgen Inc., Thousand Oaks; Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California; and The Ludwig Center and the Howard Hughes Medical Institute, Kimmel Cancer Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| |
Collapse
|
85
|
Cui H, Goddard R, Pörschke KR, Hamacher A, Kassack MU. Bispidine Analogues of Cisplatin, Carboplatin, and Oxaliplatin. Synthesis, Structures, and Cytotoxicity. Inorg Chem 2014; 53:3371-84. [DOI: 10.1021/ic402737f] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Huiling Cui
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Richard Goddard
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Klaus-Richard Pörschke
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Alexandra Hamacher
- Institut für Pharmazeutische und Medizinische
Chemie der Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse
1, 40225 Düsseldorf, Germany
| | - Matthias U. Kassack
- Institut für Pharmazeutische und Medizinische
Chemie der Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse
1, 40225 Düsseldorf, Germany
| |
Collapse
|
86
|
Murakami A, Takahashi F, Nurwidya F, Kobayashi I, Minakata K, Hashimoto M, Nara T, Kato M, Tajima K, Shimada N, Iwakami SI, Moriyama M, Moriyama H, Koizumi F, Takahashi K. Hypoxia increases gefitinib-resistant lung cancer stem cells through the activation of insulin-like growth factor 1 receptor. PLoS One 2014; 9:e86459. [PMID: 24489728 PMCID: PMC3904884 DOI: 10.1371/journal.pone.0086459] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 12/13/2013] [Indexed: 01/10/2023] Open
Abstract
Accumulating evidence indicates that a small population of cancer stem cells (CSCs) is involved in intrinsic resistance to cancer treatment. The hypoxic microenvironment is an important stem cell niche that promotes the persistence of CSCs in tumors. Our aim here was to elucidate the role of hypoxia and CSCs in the resistance to gefitinib in non-small cell lung cancer (NSCLC) with activating epidermal growth factor receptor (EGFR) mutation. NSCLC cell lines, PC9 and HCC827, which express the EGFR exon 19 deletion mutations, were exposed to high concentration of gefitinib under normoxic or hypoxic conditions. Seven days after gefitinib exposure, a small fraction of viable cells were detected, and these were referred to as "gefitinib-resistant persisters" (GRPs). CD133, Oct4, Sox2, Nanog, CXCR4, and ALDH1A1-all genes involved in stemness-were highly expressed in GRPs in PC9 and HCC827 cells, and PC9 GRPs exhibited a high potential for tumorigenicity in vivo. The expression of insulin-like growth factor 1 (IGF1) was also upregulated and IGF1 receptor (IGF1R) was activated on GRPs. Importantly, hypoxic exposure significantly increased sphere formation, reflecting the self-renewal capability, and the population of CD133- and Oct4-positive GRPs. Additionally, hypoxia upregulated IGF1 expression through hypoxia-inducible factor 1α (HIF1α), and markedly promoted the activation of IGF1R on GRPs. Knockdown of IGF1 expression significantly reduced phosphorylated IGF1R-expressing GRPs under hypoxic conditions. Finally, inhibition of HIF1α or IGF1R by specific inhibitors significantly decreased the population of CD133- and Oct4-positive GRPs, which were increased by hypoxia in PC9 and HCC827 cells. Collectively, these findings suggest that hypoxia increased the population of lung CSCs resistant to gefitinib in EGFR mutation-positive NSCLC by activating IGF1R. Targeting the IGF1R pathway may be a promising strategy for overcoming gefitinib resistance in EGFR mutation-positive NSCLC induced by lung CSCs and microenvironment factors such as tumor hypoxia.
Collapse
MESH Headings
- AC133 Antigen
- Animals
- Antigens, CD/metabolism
- Carcinogenesis/drug effects
- Carcinogenesis/genetics
- Carcinogenesis/pathology
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Cell Hypoxia/drug effects
- Cell Hypoxia/genetics
- Cell Line, Tumor
- Cell Separation
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- ErbB Receptors/genetics
- Gefitinib
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Knockdown Techniques
- Glycoproteins/metabolism
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/antagonists & inhibitors
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Insulin-Like Growth Factor I/genetics
- Insulin-Like Growth Factor I/metabolism
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Mice, Inbred NOD
- Mutation/genetics
- Neoplasm Transplantation
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Octamer Transcription Factor-3/metabolism
- Peptides/metabolism
- Quinazolines/pharmacology
- Quinazolines/therapeutic use
- Receptor, IGF Type 1/antagonists & inhibitors
- Receptor, IGF Type 1/genetics
- Receptor, IGF Type 1/metabolism
- Spheroids, Cellular/drug effects
- Spheroids, Cellular/pathology
- Up-Regulation/drug effects
Collapse
Affiliation(s)
- Akiko Murakami
- Department of Respiratory Medicine, Juntendo University, Graduate School of Medicine, Tokyo, Japan
- Research Institute for Diseases of Old Ages, Juntendo University, Graduate School of Medicine, Tokyo, Japan
| | - Fumiyuki Takahashi
- Department of Respiratory Medicine, Juntendo University, Graduate School of Medicine, Tokyo, Japan
- Research Institute for Diseases of Old Ages, Juntendo University, Graduate School of Medicine, Tokyo, Japan
- * E-mail:
| | - Fariz Nurwidya
- Department of Respiratory Medicine, Juntendo University, Graduate School of Medicine, Tokyo, Japan
- Research Institute for Diseases of Old Ages, Juntendo University, Graduate School of Medicine, Tokyo, Japan
| | - Isao Kobayashi
- Department of Respiratory Medicine, Juntendo University, Graduate School of Medicine, Tokyo, Japan
- Research Institute for Diseases of Old Ages, Juntendo University, Graduate School of Medicine, Tokyo, Japan
| | - Kunihiko Minakata
- Department of Respiratory Medicine, Juntendo University, Graduate School of Medicine, Tokyo, Japan
- Research Institute for Diseases of Old Ages, Juntendo University, Graduate School of Medicine, Tokyo, Japan
| | - Muneaki Hashimoto
- Department of Molecular and Cellular Parasitology, Juntendo University, Graduate School of Medicine, Tokyo, Japan
| | - Takeshi Nara
- Department of Molecular and Cellular Parasitology, Juntendo University, Graduate School of Medicine, Tokyo, Japan
| | - Motoyasu Kato
- Department of Respiratory Medicine, Juntendo University, Graduate School of Medicine, Tokyo, Japan
- Research Institute for Diseases of Old Ages, Juntendo University, Graduate School of Medicine, Tokyo, Japan
| | - Ken Tajima
- Department of Respiratory Medicine, Juntendo University, Graduate School of Medicine, Tokyo, Japan
- Research Institute for Diseases of Old Ages, Juntendo University, Graduate School of Medicine, Tokyo, Japan
| | - Naoko Shimada
- Department of Respiratory Medicine, Juntendo University, Graduate School of Medicine, Tokyo, Japan
- Research Institute for Diseases of Old Ages, Juntendo University, Graduate School of Medicine, Tokyo, Japan
| | | | - Mariko Moriyama
- Pharmaceutical Research and technology institute, Kinki University, School of Medicine, Osaka, Japan
| | - Hiroyuki Moriyama
- Pharmaceutical Research and technology institute, Kinki University, School of Medicine, Osaka, Japan
| | | | - Kazuhisa Takahashi
- Department of Respiratory Medicine, Juntendo University, Graduate School of Medicine, Tokyo, Japan
- Research Institute for Diseases of Old Ages, Juntendo University, Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
87
|
Friedbichler K, Hofmann MH, Kroez M, Ostermann E, Lamche HR, Koessl C, Borges E, Pollak MN, Adolf G, Adam PJ. Pharmacodynamic and antineoplastic activity of BI 836845, a fully human IGF ligand-neutralizing antibody, and mechanistic rationale for combination with rapamycin. Mol Cancer Ther 2013; 13:399-409. [PMID: 24296829 DOI: 10.1158/1535-7163.mct-13-0598] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Insulin-like growth factor (IGF) signaling is thought to play a role in the development and progression of multiple cancer types. To date, therapeutic strategies aimed at disrupting IGF signaling have largely focused on antibodies that target the IGF-I receptor (IGF-IR). Here, we describe the pharmacologic profile of BI 836845, a fully human monoclonal antibody that utilizes an alternative approach to IGF signaling inhibition by selectively neutralizing the bioactivity of IGF ligands. Biochemical analyses of BI 836845 demonstrated high affinity to human IGF-I and IGF-II, resulting in effective inhibition of IGF-induced activation of both IGF-IR and IR-A in vitro. Cross-reactivity to rodent IGFs has enabled rigorous assessment of the pharmacologic activity of BI 836845 in preclinical models. Pharmacodynamic studies in rats showed potent reduction of serum IGF bioactivity in the absence of metabolic adverse effects, leading to growth inhibition as evidenced by reduced body weight gain and tail length. Moreover, BI 836845 reduced the proliferation of human cell lines derived from different cancer types and enhanced the antitumor efficacy of rapamycin by blocking a rapamycin-induced increase in upstream signaling in vitro as well as in human tumor xenograft models in nude mice. Our data suggest that BI 836845 represents a potentially more effective and tolerable approach to the inhibition of IGF signaling compared with agents that target the IGF-I receptor directly, with potential for rational combinations with other targeted agents in clinical studies.
Collapse
Affiliation(s)
- Katrin Friedbichler
- Corresponding Author: Paul J. Adam, Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer Gasse 5-11, A-1121, Vienna, Austria.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Koti M, Gooding RJ, Nuin P, Haslehurst A, Crane C, Weberpals J, Childs T, Bryson P, Dharsee M, Evans K, Feilotter HE, Park PC, Squire JA. Identification of the IGF1/PI3K/NF κB/ERK gene signalling networks associated with chemotherapy resistance and treatment response in high-grade serous epithelial ovarian cancer. BMC Cancer 2013; 13:549. [PMID: 24237932 PMCID: PMC3840597 DOI: 10.1186/1471-2407-13-549] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 10/31/2013] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Resistance to platinum-based chemotherapy remains a major impediment in the treatment of serous epithelial ovarian cancer. The objective of this study was to use gene expression profiling to delineate major deregulated pathways and biomarkers associated with the development of intrinsic chemotherapy resistance upon exposure to standard first-line therapy for ovarian cancer. METHODS The study cohort comprised 28 patients divided into two groups based on their varying sensitivity to first-line chemotherapy using progression free survival (PFS) as a surrogate of response. All 28 patients had advanced stage, high-grade serous ovarian cancer, and were treated with standard platinum-based chemotherapy. Twelve patient tumours demonstrating relative resistance to platinum chemotherapy corresponding to shorter PFS (< eight months) were compared to sixteen tumours from platinum-sensitive patients (PFS > eighteen months). Whole transcriptome profiling was performed using an Affymetrix high-resolution microarray platform to permit global comparisons of gene expression profiles between tumours from the resistant group and the sensitive group. RESULTS Microarray data analysis revealed a set of 204 discriminating genes possessing expression levels which could influence differential chemotherapy response between the two groups. Robust statistical testing was then performed which eliminated a dependence on the normalization algorithm employed, producing a restricted list of differentially regulated genes, and which found IGF1 to be the most strongly differentially expressed gene. Pathway analysis, based on the list of 204 genes, revealed enrichment in genes primarily involved in the IGF1/PI3K/NF κB/ERK gene signalling networks. CONCLUSIONS This study has identified pathway specific prognostic biomarkers possibly underlying a differential chemotherapy response in patients undergoing standard platinum-based treatment of serous epithelial ovarian cancer. In addition, our results provide a pathway context for further experimental validations, and the findings are a significant step towards future therapeutic interventions.
Collapse
Affiliation(s)
- Madhuri Koti
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON, Canada
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| | - Robert J Gooding
- Department of Physics, Engineering Physics and Astronomy, Queen’s University, Kingston, ON, Canada
| | - Paulo Nuin
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON, Canada
- Ontario Cancer Biomarker Network, Toronto, ON, Canada
| | - Alexandria Haslehurst
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON, Canada
| | - Colleen Crane
- Department of Pathology, The Ottawa Hospital, Ottawa, ON, Canada
| | - Johanne Weberpals
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Timothy Childs
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON, Canada
| | - Peter Bryson
- Department of Obstetrics and Gynecology, Queen’s University, Kingston, ON, Canada
| | - Moyez Dharsee
- Ontario Cancer Biomarker Network, Toronto, ON, Canada
| | - Kenneth Evans
- Ontario Cancer Biomarker Network, Toronto, ON, Canada
| | - Harriet E Feilotter
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON, Canada
| | - Paul C Park
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON, Canada
| | - Jeremy A Squire
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON, Canada
- Departments of Genetics and Pathology, Faculdade de Medicina de Ribeirão Preto, University of Sao Paulo, Brazil
| |
Collapse
|
89
|
Assessment of therapeutic efficacy of miR-126 with contrast-enhanced ultrasound in preeclampsia rats. Placenta 2013; 35:23-9. [PMID: 24239158 DOI: 10.1016/j.placenta.2013.10.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Revised: 10/20/2013] [Accepted: 10/28/2013] [Indexed: 12/31/2022]
Abstract
Preeclampsia is a pregnancy-specific syndrome characterized by high blood pressure and proteinuria, which has a pathophysiology of insufficient placental blood perfusion. MicroRNA-126 (miR-126), an angiogenesis-related miRNA, has been proved to play a significant role in endothelial cells response to ischemia in vitro and in vivo. However, whether miR-126 has therapeutic potential in vasculogenesis of preeclampsia placenta remains uncertain. In this study, we focused our attention on this unsolved problem. First, we established the preeclampsia animal model and over-expressed miR-126 in vivo using a specific agomir. Then we described the effects of miR-126 on placental vasculogenesis in preeclampsia rats, including the evaluation of placental blood perfusion using microbubbles-assisted contrast-enhanced ultrasonography (CEUS), placental histology, immunohistochemistry and pregnancy outcome. Finally, we investigated the possible target gene and pathway that miR-126 modulates. Together, our results showed that preeclampsia animal with over-expressed miR-126 had higher pup weight, placenta weight and proportion of live pups. Quantification of uteroplacental perfusion by CEUS and CD34 staining of placental tissue revealed that blood volume and microvessel density increased in miR-126 treated group. MiR-126 was related to PIK3R2 down-regulation and Akt activation within placenta, which had impacts on vascularization of placenta. Therefore, miR-126 may be an efficient gene therapy to promote angiogenesis and blood perfusion in preeclampsia placenta.
Collapse
|
90
|
Osuka S, Sampetrean O, Shimizu T, Saga I, Onishi N, Sugihara E, Okubo J, Fujita S, Takano S, Matsumura A, Saya H. IGF1 receptor signaling regulates adaptive radioprotection in glioma stem cells. Stem Cells 2013; 31:627-40. [PMID: 23335250 DOI: 10.1002/stem.1328] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 12/20/2012] [Indexed: 01/07/2023]
Abstract
Cancer stem cells (CSCs) play an important role in disease recurrence after radiation treatment as a result of intrinsic properties such as high DNA repair capability and antioxidative capacity. It is unclear, however, how CSCs further adapt to escape the toxicity of the repeated irradiation regimens used in clinical practice. Here, we have exposed a population of murine glioma stem cells (GSCs) to fractionated radiation in order to investigate the associated adaptive changes, with the ultimate goal of identifying a targetable factor that regulates acquired radioresistance. We have shown that fractionated radiation induces an increase in IGF1 secretion and a gradual upregulation of the IGF type 1 receptor (IGF1R) in GSCs. Interestingly, IGF1R upregulation exerts a dual radioprotective effect. In the resting state, continuous IGF1 stimulation ultimately induces downregulation of Akt/extracellular-signal-regulated kinases (ERK) and FoxO3a activation, which results in slower proliferation and enhanced self-renewal. In contrast, after acute radiation, the abundance of IGF1R and increased secretion of IGF1 promote a rapid shift from a latent state toward activation of Akt survival signaling, protecting GSCs from radiation toxicity. Treatment of tumors formed by the radioresistant GSCs with an IGF1R inhibitor resulted in a marked increase in radiosensitivity, suggesting that blockade of IGF1R signaling is an effective strategy to reverse radioresistance. Together, our results show that GSCs evade the damage of repeated radiation not only through innate properties but also through gradual inducement of resistance pathways and identify the dynamic regulation of GSCs by IGF1R signaling as a novel mechanism of adaptive radioprotection.
Collapse
Affiliation(s)
- Satoru Osuka
- Department of Neurosurgery, Graduate School of Comprehensive Human Sciences, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
King B, Jiang Y, Su X, Xu J, Xie L, Standard J, Wang W. Weight control, endocrine hormones and cancer prevention. Exp Biol Med (Maywood) 2013; 238:502-8. [PMID: 23856901 DOI: 10.1177/1535370213480695] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The prevalence of obesity is increasing which becomes worrisome due to its association with several diseases and certain types of cancers. While weight control through dietary caloric restriction and/or physical activity protects against cancer in animal models, the underlying mechanisms are not fully defined. Weight loss due to negative energy balance is associated with alterations of multiple growth factors and endocrine hormones. The altered hormones and hormone-related functions appear to be responsible for anti-cancer mechanisms. In this review, we summarize the recent studies related to weight loss and the altered endocrine hormones, focusing on the reduced levels of the mitogenic insulin-like growth factor 1 (IGF-1) and adipokine leptin as well as the raised levels of adiponectin and glucocorticoids. The potential molecular targets of these hormone-dependent signalling pathways are also discussed. Considering the increasing trends of obesity throughout the world, a better understanding of the underlying mechanisms between body weight, endocrine hormones and cancer risk may lead to novel approaches to cancer prevention and treatment.
Collapse
Affiliation(s)
- Brenee King
- Department of Human Nutrition, Kansas State University, Manhattan, KS 66506, USA
| | | | | | | | | | | | | |
Collapse
|
92
|
Maxwell SA, Mousavi-Fard S. Non-Hodgkin's B-cell lymphoma: advances in molecular strategies targeting drug resistance. Exp Biol Med (Maywood) 2013; 238:971-90. [PMID: 23986223 DOI: 10.1177/1535370213498985] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Non-Hodgkin's lymphoma (NHL) is a heterogeneous class of cancers displaying a diverse range of biological phenotypes, clinical behaviours and prognoses. Standard treatments for B-cell NHL are anthracycline-based combinatorial chemotherapy regimens composed of cyclophosphamide, doxorubicin, vincristine and prednisolone. Even though complete response rates of 40-50% with chemotherapy can be attained, a substantial proportion of patients relapse, resulting in 3-year overall survival rates of about 30%. Relapsed lymphomas are refractory to subsequent treatments with the initial chemotherapy regimen and can exhibit cross-resistance to a wide variety of anticancer drugs. The emergence of acquired chemoresistance thus poses a challenge in the clinic preventing the successful treatment and cure of disseminated B-cell lymphomas. Gene-expression analyses have increased our understanding of the molecular basis of chemotherapy resistance and identified rational targets for drug interventions to prevent and treat relapsed/refractory diffuse large B-cell lymphoma. Acquisition of drug resistance in lymphoma is in part driven by the inherent genetic heterogeneity and instability of the tumour cells. Due to the genetic heterogeneity of B-cell NHL, many different pathways leading to drug resistance have been identified. Successful treatment of chemoresistant NHL will thus require the rational design of combinatorial drugs targeting multiple pathways specific to different subtypes of B-cell NHL as well as the development of personalized approaches to address patient-to-patient genetic heterogeneity. This review highlights the new insights into the molecular basis of chemorefractory B-cell NHL that are facilitating the rational design of novel strategies to overcome drug resistance.
Collapse
Affiliation(s)
- Steve A Maxwell
- Texas A&M Health Science Center, College Station, TX 77843-1114, USA
| | | |
Collapse
|
93
|
Chen B, Xiao F, Li B, Xie B, Zhou J, Zheng J, Zhang W. The Role of Epithelial–Mesenchymal Transition and IGF-1R Expression in Prediction of Gefitinib Activity as the Second-Line Treatment for Advanced Nonsmall-Cell Lung Cancer. Cancer Invest 2013; 31:454-60. [DOI: 10.3109/07357907.2013.820315] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
94
|
Ferté C, Loriot Y, Clémenson C, Commo F, Gombos A, Bibault JE, Fumagalli I, Hamama S, Auger N, Lahon B, Chargari C, Calderaro J, Soria JC, Deutsch E. IGF-1R targeting increases the antitumor effects of DNA-damaging agents in SCLC model: an opportunity to increase the efficacy of standard therapy. Mol Cancer Ther 2013; 12:1213-22. [PMID: 23640142 PMCID: PMC3707930 DOI: 10.1158/1535-7163.mct-12-1067] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Insulin-like growth factor receptor-1 (IGF-1R) inhibition could be a relevant therapeutic approach in small cell lung cancer (SCLC) given the importance of an IGF-1R autocrine loop and its role in DNA damage repair processes. We assessed IGF-1R and pAkt protein expression in 83 SCLC human specimens. The efficacy of R1507 (a monoclonal antibody directed against IGF-1R) alone or combined with cisplatin or ionizing radiation (IR) was evaluated in H69, H146, and H526 cells in vitro and in vivo. Innovative genomic and functional approaches were conducted to analyze the molecular behavior under the different treatment conditions. A total of 53% and 37% of human specimens expressed IGF-1R and pAkt, respectively. R1507 showed single-agent activity in H146 and H526 cells but not in H69 cells. R1507 exhibited synergistic effects with both cisplatin and IR in vitro. The triple combination R1507-cisplatin-IR led to a dramatic delay in tumor growth compared with cisplatin-IR in H526 cells. Analyzing the apparent absence of antitumoral effect of R1507 alone in vivo, we observed a transient reduction of IGF-1R staining intensity in vivo, concomitant to the activation of multiple cell surface receptors and intracellular proteins involved in proliferation, angiogenesis, and survival. Finally, we identified that the nucleotide excision repair pathway was mediated after exposure to R1507-CDDP and R1507-IR in vitro and in vivo. In conclusion, adding R1507 to the current standard cisplatin-IR doublet reveals remarkable chemo- and radiosensitizing effects in selected SCLC models and warrants to be investigated in the clinical setting.
Collapse
Affiliation(s)
- Charles Ferté
- INSERM U1030, Paris XI University, Institut Gustave Roussy, Villejuif, France
- Department of Medicine, Institut Gustave Roussy, Villejuif, France
- Innovative Therapeutics and Early Phase Clinical Trials Unit (SITEP), Department of Medicine, Institut Gustave Roussy, Villejuif, France
- INSERM U981, Paris XI University, Institut Gustave Roussy, Villejuif, France
- Sage Bionetworks, Seattle, WA, USA
| | - Yohann Loriot
- INSERM U1030, Paris XI University, Institut Gustave Roussy, Villejuif, France
- Department of Medicine, Institut Gustave Roussy, Villejuif, France
- Innovative Therapeutics and Early Phase Clinical Trials Unit (SITEP), Department of Medicine, Institut Gustave Roussy, Villejuif, France
| | - Céline Clémenson
- INSERM U1030, Paris XI University, Institut Gustave Roussy, Villejuif, France
| | - Frederic Commo
- INSERM U981, Paris XI University, Institut Gustave Roussy, Villejuif, France
- Sage Bionetworks, Seattle, WA, USA
| | - Andrea Gombos
- INSERM U1030, Paris XI University, Institut Gustave Roussy, Villejuif, France
| | | | - Ingrid Fumagalli
- INSERM U1030, Paris XI University, Institut Gustave Roussy, Villejuif, France
| | - Saad Hamama
- INSERM U1030, Paris XI University, Institut Gustave Roussy, Villejuif, France
| | - Nathalie Auger
- Department of Pathology, Institut Gustave Roussy, Villejuif, France
| | - Benoit Lahon
- INSERM U1030, Paris XI University, Institut Gustave Roussy, Villejuif, France
| | - Cyrus Chargari
- INSERM U1030, Paris XI University, Institut Gustave Roussy, Villejuif, France
| | - Julien Calderaro
- Department of Pathology, Institut Gustave Roussy, Villejuif, France
| | - Jean-Charles Soria
- Department of Medicine, Institut Gustave Roussy, Villejuif, France
- Innovative Therapeutics and Early Phase Clinical Trials Unit (SITEP), Department of Medicine, Institut Gustave Roussy, Villejuif, France
- INSERM U981, Paris XI University, Institut Gustave Roussy, Villejuif, France
| | - Eric Deutsch
- INSERM U1030, Paris XI University, Institut Gustave Roussy, Villejuif, France
- Department of Radiotherapy, Institut Gustave Roussy, Villejuif, France
- Innovative Therapeutics and Early Phase Clinical Trials Unit (SITEP), Department of Medicine, Institut Gustave Roussy, Villejuif, France
| |
Collapse
|
95
|
Fan G, Lin G, Lucito R, Tonks NK. Protein-tyrosine phosphatase 1B antagonized signaling by insulin-like growth factor-1 receptor and kinase BRK/PTK6 in ovarian cancer cells. J Biol Chem 2013; 288:24923-34. [PMID: 23814047 DOI: 10.1074/jbc.m113.482737] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ovarian cancer, which is the leading cause of death from gynecological malignancies, is a heterogeneous disease known to be associated with disruption of multiple signaling pathways. Nevertheless, little is known regarding the role of protein phosphatases in the signaling events that underlie the disease; such knowledge will be essential to gain a complete understanding of the etiology of the disease and how to treat it. We have demonstrated that protein-tyrosine phosphatase 1B (PTP1B) was underexpressed in a panel of ovarian carcinoma-derived cell lines, compared with immortalized human ovarian surface epithelial cell lines. Stable restoration of PTP1B in those cancer cell lines substantially decreased cell migration and invasion, as well as proliferation and anchorage-independent survival. Mechanistically, the pro-survival IGF-1R signaling pathway was attenuated upon ectopic expression of PTP1B. This was due to dephosphorylation by PTP1B of IGF-1R β-subunit and BRK/PTK6, an SRC-like protein-tyrosine kinase that physically and functionally interacts with the IGF-1R β-subunit. Restoration of PTP1B expression led to enhanced activation of BAD, one of the major pro-death members of the BCL-2 family, which triggered cell death through apoptosis. Conversely, inhibition of PTP1B with a small molecular inhibitor, MSI-1436, increased proliferation and migration of immortalized HOSE cell lines. These data reveal an important role for PTP1B as a negative regulator of BRK and IGF-1Rβ signaling in ovarian cancer cells.
Collapse
Affiliation(s)
- Gaofeng Fan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | | | | | |
Collapse
|
96
|
Lu X, Wang L, Mei J, Wang X, Zhu X, Zhang Q, Lv J. Picropodophyllin inhibits epithelial ovarian cancer cells in vitro and in vivo. Biochem Biophys Res Commun 2013; 435:385-90. [DOI: 10.1016/j.bbrc.2013.04.097] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 04/29/2013] [Indexed: 10/26/2022]
|
97
|
Expression of steroid receptor coactivator 3 in ovarian epithelial cancer is a poor prognostic factor and a marker for platinum resistance. Br J Cancer 2013; 108:2039-44. [PMID: 23652306 PMCID: PMC3670494 DOI: 10.1038/bjc.2013.199] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Steroid receptor coactivator 3 (SRC3) is an important coactivator of a number of transcription factors and is associated with a poor outcome in numerous tumours. Steroid receptor coactivator 3 is amplified in 25% of epithelial ovarian cancers (EOCs) and its expression is higher in EOCs compared with non-malignant tissue. No data is currently available with regard to the expression of SRC-3 in EOC and its influence on outcome or the efficacy of treatment. METHODS Immunohistochemistry was performed for SRC3, oestrogen receptor-α, HER2, PAX2 and PAR6, and protein expression was quantified using automated quantitative immunofluorescence (AQUA) in 471 EOCs treated between 1991 and 2006 with cytoreductive surgery followed by first-line treatment platinum-based therapy, with or without a taxane. RESULTS Steroid receptor coactivator 3 expression was significantly associated with advanced stage and was an independent prognostic marker. High expression of SRC3 identified patients who have a significantly poorer survival with single-agent carboplatin chemotherapy, while with carboplatin/paclitaxel treatment such a difference was not seen. CONCLUSION Steroid receptor coactivator 3 is a poor prognostic factor in EOCs and appears to identify a population of patients who would benefit from the addition of taxanes to their chemotherapy regimen, due to intrinsic resistance to platinum therapy.
Collapse
|
98
|
Muendlein A, Lang AH, Geller-Rhomberg S, Winder T, Gasser K, Drexel H, Decker T, Mueller-Holzner E, Chamson M, Marth C, Hubalek M. Association of a common genetic variant of the IGF-1 gene with event-free survival in patients with HER2-positive breast cancer. J Cancer Res Clin Oncol 2013; 139:491-8. [PMID: 23180020 DOI: 10.1007/s00432-012-1355-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 11/13/2012] [Indexed: 10/27/2022]
Abstract
PURPOSE Insulin-like growth factor 1 (IGF-1) stimulates mitosis and inhibits apoptosis. High circulating IGF-1 levels are linked with an increased risk of colorectal and breast cancer. Recently, IGF-1 single nucleotide polymorphisms (SNPs), especially variant rs2946834, have been associated with poor clinical outcome in patients with colorectal cancer. In the present study, we aimed to investigate the influence of IGF1 polymorphisms associated with IGF-1 plasma levels on event-free survival in patients with HER2-positive breast cancer. METHODS The present study included 161 consecutive white patients with HER2-positive breast cancer. Event-free survival was calculated as the time from cancer diagnosis to either relapse or death from any cause. Genomic DNA was extracted from archived formalin-fixed paraffin-embedded tumor tissue samples; five IGF-1 polymorphisms (rs2946834, rs6220, rs1520220, rs5742694, and rs5742678), all associated with IGF-1 levels, were genotyped by SNaPshot assays. RESULTS Kaplan-Meier analysis showed a poorer clinical outcome for carriers of the rare allele of SNP rs2946834 (log-rank test, p = 0.020). Concordantly, in univariate Cox regression analyses, the rare allele of SNP rs2946834 was significantly associated with a decreased event-free survival (HR = 3.06 [1.14-8.22]; p = 0.027). Multivariate analysis adjusted for age and tumor stage confirmed this result (HR = 4.02 [1.36-11.90]; p = 0.012). Other investigated polymorphisms of the IGF1 gene were not significantly associated with event-free survival (all p values >0.05). CONCLUSIONS This study provides first evidence that IGF1 rs2946834 polymorphism is associated with clinical outcome of HER2-positive breast cancer patients. Further studies are warranted to validate these findings.
Collapse
Affiliation(s)
- Axel Muendlein
- Vorarlberg Institute for Vascular Investigation and Treatment, Carinagasse 47, 6800 Feldkirch, Austria.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
King SM, Modi DA, Eddie SL, Burdette JE. Insulin and insulin-like growth factor signaling increases proliferation and hyperplasia of the ovarian surface epithelium and decreases follicular integrity through upregulation of the PI3-kinase pathway. J Ovarian Res 2013; 6:12. [PMID: 23388061 PMCID: PMC3724505 DOI: 10.1186/1757-2215-6-12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 02/01/2013] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The ovarian surface epithelium responds to cytokines and hormonal cues to initiate proliferation and migration following ovulation. Although insulin and IGF are potent proliferative factors for the ovarian surface epithelium and IGF is required for follicle development, increased insulin and IGF activity are correlated with at least two gynecologic conditions: polycystic ovary syndrome and epithelial ovarian cancer. Although insulin and IGF are often components of in vitro culture media, little is known about the effects that these growth factors may have on the ovarian surface epithelium morphology or how signaling in the ovarian surface may affect follicular health and development. METHODS Ovaries from CD1 mice were cultured in alginate hydrogels in the presence or absence of 5 μg/ml insulin or IGF-I, as well as small molecule inhibitors of IR/IGF1R, PI 3-kinase signaling, or MAPK signaling. Tissues were analyzed by immunohistochemistry for expression of cytokeratin 8 to mark the ovarian surface epithelium, Müllerian inhibiting substance to mark secondary follicles, and BrdU incorporation to assess proliferation. Changes in gene expression in the ovarian surface epithelium in response to insulin or IGF-I were analyzed by transcription array. Extracellular matrix organization was evaluated by expression and localization of collagen IV. RESULTS Culture of ovarian organoids with insulin or IGF-I resulted in formation of hyperplastic OSE approximately 4-6 cell layers thick with a high rate of proliferation, as well as decreased MIS expression in secondary follicles. Inhibition of the MAPK pathway restored MIS expression reduced by insulin but only partially restored normal OSE growth and morphology. Inhibition of the PI 3-kinase pathway restored MIS expression reduced by IGF-I and restored OSE growth to a single cell layer. Insulin and IGF-I altered organization of collagen IV, which was restored by inhibition of PI 3-kinase signaling. CONCLUSIONS While insulin and IGF are often required for propagation of primary cells, these cytokines may act as potent mitogens to disrupt cell growth, resulting in formation of hyperplastic OSE and decreased follicular integrity as measured by MIS expression and collagen deposition. This may be due partly to altered collagen IV deposition and organization in the ovary in response to insulin and IGF signaling mediated by PI 3-kinase.
Collapse
Affiliation(s)
- Shelby M King
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois, 900 S, Ashland Room 3202, Chicago, IL, 60607, USA.
| | | | | | | |
Collapse
|
100
|
Bruchim I, Werner H. Targeting IGF-1 signaling pathways in gynecologic malignancies. Expert Opin Ther Targets 2013; 17:307-20. [PMID: 23294364 DOI: 10.1517/14728222.2013.749863] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION The signaling pathways of the insulin-like growth factors (IGF) have been implicated in the etiology of a number of epithelial neoplasms including prostate, breast, colon and more recently, gynecologic cancers. The insulin-like growth factor-1 receptor (IGF-1R) is expressed in most transformed cells, where it displays potent anti-apoptotic, cell-survival and potentially, transforming activities. IGF-1R expression and activation are typical hallmarks associated with tumor initiation and progression. Multiple approaches have been used to abrogate IGF-1R signaling for targeted cancer therapy including antibodies and small molecule tyrosine kinase inhibitors. These novel IGF-1R targeting agents have produced significant experimental and clinical results in many cancers and generated considerable optimism in the field of cancer therapy. AREAS COVERED The authors will review important research advances regarding the role of the IGF axis in cancer, particularly preclinical and clinical studies in cervical, uterine and ovarian cancers. The significance of tumor expression and circulating levels of the IGF pathway as well as targeting therapies of the IGF axis in the gynecologic cancers will be discussed. EXPERT OPINION Accumulating data confirm that the IGF-1R pathway has an important role in gynecologic cancers and in vivo and in vitro studies have shown a significant impact of IGF-1R targeted therapies in these malignancies, mainly ovarian and endometrial cancers. Currently, ongoing preclinical and clinical trials are evaluating the efficacy of IGF-1R targeting. A better understanding of the complex mechanisms underlying the regulation of the IGF system will improve the ability to develop effective treatment modalities for these malignancies.
Collapse
Affiliation(s)
- Ilan Bruchim
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | |
Collapse
|