51
|
Guan W, Nakata K, Sagara A, Iwamoto C, Endo S, Matsuda R, Matsumoto S, Ikenaga N, Shindo K, Moriyama T, Onishi H, Ohuchida K, Oda Y, Nakamura M. ERAP2 is a novel target involved in autophagy and activation of pancreatic stellate cells via UPR signaling pathway. Pancreatology 2022; 22:9-19. [PMID: 34642112 DOI: 10.1016/j.pan.2021.09.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND/OBJECTIVES Pancreatic ductal adenocarcinoma (PDAC) is characterized by excessive desmoplasia and autophagy-dependent tumorigenic growth. Pancreatic stellate cells (PSCs) as a predominant stromal cell type play a critical role in PDAC biology. We have previously reported that autophagy facilitates PSC activation, however, the mechanism remains unknown. We investigated the mechanism of autophagy in PSC activation. METHODS We compared gene expression profiles between patient-derived PSCs from pancreatic cancer and chronic pancreatitis using a microarray. The stromal expression of target gene in specimen of PDAC patients (n = 63) was analyzed. The effect of target gene on autophagy and activation of PSCs was investigated by small interfering RNAs transfection, and the relationship between autophagy and ER stress was investigated. We analyzed the growth and fibrosis of xenografted tumor by orthotopic models. RESULTS In analysis of gene expression microarray, endoplasmic reticulum aminopeptidase 2 (ERAP2) upregulated in cancer-associated PSCs was identified as the target gene. High stromal ERAP2 expression is associated with a poor prognosis of PDAC patients. Knockdown of ERAP2 inhibited unfolded protein response mediated autophagy, and led to inactivation of PSCs, thereby attenuating tumor-stromal interactions by inhibiting production of IL-6 and fibronectin. In vivo, the promoting effect of PSCs on xenografted tumor growth and fibrosis was inhibited by ERAP2 knockdown. CONCLUSIONS Our findings demonstrate a novel mechanism of PSCs activation regulated by autophagy. ERAP2 as a promising therapeutic target may provide a novel strategy for the treatment of PDAC.
Collapse
Affiliation(s)
- Weiyu Guan
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kohei Nakata
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Akiko Sagara
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Chika Iwamoto
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Sho Endo
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryota Matsuda
- Department of Anatomical Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Sokichi Matsumoto
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Naoki Ikenaga
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koji Shindo
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Taiki Moriyama
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hideya Onishi
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kenoki Ohuchida
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomical Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
52
|
Zhang Z, Zhang H, Liu T, Chen T, Wang D, Tang D. Heterogeneous Pancreatic Stellate Cells Are Powerful Contributors to the Malignant Progression of Pancreatic Cancer. Front Cell Dev Biol 2021; 9:783617. [PMID: 34988078 PMCID: PMC8722736 DOI: 10.3389/fcell.2021.783617] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/24/2021] [Indexed: 02/05/2023] Open
Abstract
Pancreatic cancer is associated with highly malignant tumors and poor prognosis due to strong therapeutic resistance. Accumulating evidence shows that activated pancreatic stellate cells (PSC) play an important role in the malignant progression of pancreatic cancer. In recent years, the rapid development of single-cell sequencing technology has facilitated the analysis of PSC population heterogeneity, allowing for the elucidation of the relationship between different subsets of cells with tumor development and therapeutic resistance. Researchers have identified two spatially separated, functionally complementary, and reversible subtypes, namely myofibroblastic and inflammatory PSC. Myofibroblastic PSC produce large amounts of pro-fibroproliferative collagen fibers, whereas inflammatory PSC express large amounts of inflammatory cytokines. These distinct cell subtypes cooperate to create a microenvironment suitable for cancer cell survival. Therefore, further understanding of the differentiation of PSC and their distinct functions will provide insight into more effective treatment options for pancreatic cancer patients.
Collapse
Affiliation(s)
- Zhilin Zhang
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Huan Zhang
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Tian Liu
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Tian Chen
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Daorong Wang
- Department of General Surgery, Northern Jiangsu People’s Hospital, Clinical Medical College, Institute of General Surgery, Yangzhou University, Yangzhou, China
| | - Dong Tang
- Department of General Surgery, Northern Jiangsu People’s Hospital, Clinical Medical College, Institute of General Surgery, Yangzhou University, Yangzhou, China
| |
Collapse
|
53
|
Ray A, Callaway MK, Rodríguez-Merced NJ, Crampton AL, Carlson M, Emme KB, Ensminger EA, Kinne AA, Schrope JH, Rasmussen HR, Jiang H, DeNardo DG, Wood DK, Provenzano PP. Stromal architecture directs early dissemination in pancreatic ductal adenocarcinoma. JCI Insight 2021; 7:150330. [PMID: 34914633 PMCID: PMC8855836 DOI: 10.1172/jci.insight.150330] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 12/10/2021] [Indexed: 12/02/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is an extremely metastatic and lethal disease. Here, in both murine and human PDA, we demonstrate that extracellular matrix architecture regulates cell extrusion and subsequent invasion from intact ductal structures through tumor-associated collagen signatures (TACS). This results in early dissemination from histologically premalignant lesions and continual invasion from well-differentiated disease, and it suggests TACS as a biomarker to aid in the pathologic assessment of early disease. Furthermore, we show that pancreatitis results in invasion-conducive architectures, thus priming the stroma prior to malignant disease. Analysis in potentially novel microfluidic-derived microtissues and in vivo demonstrates decreased extrusion and invasion following focal adhesion kinase (FAK) inhibition, consistent with decreased metastasis. Thus, data suggest that targeting FAK or strategies to reengineer and normalize tumor microenvironments may have roles not only in very early disease, but also for limiting continued dissemination from unresectable disease. Likewise, it may be beneficial to employ stroma-targeting strategies to resolve precursor diseases such as pancreatitis in order to remove stromal architectures that increase risk for early dissemination.
Collapse
Affiliation(s)
- Arja Ray
- Department of Biomedical Engineeirng, University of Minnesota, Minneapolis, United States of America
| | - Mackenzie K Callaway
- Department of Biomedical Engineeirng, University of Minnesota, Minneapolis, United States of America
| | - Nelson J Rodríguez-Merced
- Department of Biomedical Engineeirng, University of Minnesota, Minneapolis, United States of America
| | - Alexandra L Crampton
- Department of Biomedical Engineeirng, University of Minnesota, Minneapolis, United States of America
| | - Marjorie Carlson
- Department of Biomedical Engineeirng, University of Minnesota, Minneapolis, United States of America
| | - Kenneth B Emme
- Department of Biomedical Engineeirng, University of Minnesota, Minneapolis, United States of America
| | - Ethan A Ensminger
- Department of Biomedical Engineeirng, University of Minnesota, Minneapolis, United States of America
| | - Alexander A Kinne
- Department of Biomedical Engineeirng, University of Minnesota, Minneapolis, United States of America
| | - Jonathan H Schrope
- Department of Biomedical Engineeirng, University of Minnesota, Minneapolis, United States of America
| | - Haley R Rasmussen
- Department of Biomedical Engineeirng, University of Minnesota, Minneapolis, United States of America
| | - Hong Jiang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States of America
| | - David G DeNardo
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States of America
| | - David K Wood
- Department of Biomedical Engineeirng, University of Minnesota, Minneapolis, United States of America
| | - Paolo P Provenzano
- Department of Biomedical Engineeirng, University of Minnesota, Minneapolis, United States of America
| |
Collapse
|
54
|
Carvalho TMA, Di Molfetta D, Greco MR, Koltai T, Alfarouk KO, Reshkin SJ, Cardone RA. Tumor Microenvironment Features and Chemoresistance in Pancreatic Ductal Adenocarcinoma: Insights into Targeting Physicochemical Barriers and Metabolism as Therapeutic Approaches. Cancers (Basel) 2021; 13:6135. [PMID: 34885243 PMCID: PMC8657427 DOI: 10.3390/cancers13236135] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/26/2021] [Accepted: 12/01/2021] [Indexed: 12/14/2022] Open
Abstract
Currently, the median overall survival of PDAC patients rarely exceeds 1 year and has an overall 5-year survival rate of about 9%. These numbers are anticipated to worsen in the future due to the lack of understanding of the factors involved in its strong chemoresistance. Chemotherapy remains the only treatment option for most PDAC patients; however, the available therapeutic strategies are insufficient. The factors involved in chemoresistance include the development of a desmoplastic stroma which reprograms cellular metabolism, and both contribute to an impaired response to therapy. PDAC stroma is composed of immune cells, endothelial cells, and cancer-associated fibroblasts embedded in a prominent, dense extracellular matrix associated with areas of hypoxia and acidic extracellular pH. While multiple gene mutations are involved in PDAC initiation, this desmoplastic stroma plays an important role in driving progression, metastasis, and chemoresistance. Elucidating the mechanisms underlying PDAC resistance are a prerequisite for designing novel approaches to increase patient survival. In this review, we provide an overview of the stromal features and how they contribute to the chemoresistance in PDAC treatment. By highlighting new paradigms in the role of the stromal compartment in PDAC therapy, we hope to stimulate new concepts aimed at improving patient outcomes.
Collapse
Affiliation(s)
- Tiago M. A. Carvalho
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (D.D.M.); (M.R.G.); (S.J.R.); (R.A.C.)
| | - Daria Di Molfetta
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (D.D.M.); (M.R.G.); (S.J.R.); (R.A.C.)
| | - Maria Raffaella Greco
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (D.D.M.); (M.R.G.); (S.J.R.); (R.A.C.)
| | | | - Khalid O. Alfarouk
- Al-Ghad International College for Applied Medical Sciences, Al-Madinah Al-Munwarah 42316, Saudi Arabia;
| | - Stephan J. Reshkin
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (D.D.M.); (M.R.G.); (S.J.R.); (R.A.C.)
| | - Rosa A. Cardone
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (D.D.M.); (M.R.G.); (S.J.R.); (R.A.C.)
| |
Collapse
|
55
|
Tang R, Dang M, Zhang X, Tao J, Shi W, Lu W, Yu R, Su X, Tang Y, Teng Z. Disrupting stromal barriers to enhance photothermal-chemo therapy using a halofuginone-loaded Janus mesoporous nanoplatform. J Colloid Interface Sci 2021; 610:313-320. [PMID: 34923269 DOI: 10.1016/j.jcis.2021.11.190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 12/23/2022]
Abstract
Dense tumor stroma is the physiological barrier in drug delivery that prevents anticancer drugs from entering the tumor, thereby seriously limiting the drugs' therapeutic effect. In this study, a Janus nanoplatform consisting of periodic mesoporous organosilica-coated platinum nanoplatforms (JPMO-Pt) and anti-stroma drug halofuginone (HF) (denoted as JPMO-Pt-HF), was developed to deplete the tumor stroma and synergistically treat breast cancer in BALB/c mice. The prepared JPMO-Pt had a uniform size of 245 nm, a good dispersion, an excellent in vitro and in vivo biocompatibility, and a high loading capacity for HF (up to 50 μg/mg). The antitumor experiments showed that the survival rate of 4 T1 cells exhibited an obvious downward trend when the cells were incubated with the JPMO-Pt-HF and irradiated with 808 nm laser. Moreover, the cell survival rate was only about 10% at 48 h when the HF concentration was 2.0 μg/mL. Notably, JPMO-Pt-HF under irradiation had an excellent synergistic therapeutic effect on tumor cells. In vivo antitumor experiment further showed that the JPMO-Pt-HF, in combination with laser irradiation, could minimize tumor growth, showing significantly better effects than those observed for the case of monotherapy involving photothermal therapy (PTT) (152 vs. 670 mm3, p < 0.0001) and HF (152 vs. 419 mm3, p = 0.0208). In addition, immunohistochemistry of tumor tissues indicated that JPMO-Pt-HF obviously reduced the relative collagen and α-smooth muscle actin (α-SMA) area fraction. Taken together, this research designs a new platform that not only possesses the ability to degrade the tumor matrix but also combines PTT and chemotherapeutic effects, and holds promise for effective tumor treatment.
Collapse
Affiliation(s)
- Rui Tang
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials, Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, 210046 Jiangsu, PR China
| | - Meng Dang
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials, Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, 210046 Jiangsu, PR China
| | - Xiaojun Zhang
- Department of Medical Imaging, Children's hospital of Nanjing Medical University, 210008 Jiangsu, PR China
| | - Jun Tao
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials, Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, 210046 Jiangsu, PR China
| | - Wenhui Shi
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials, Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, 210046 Jiangsu, PR China
| | - Wei Lu
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials, Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, 210046 Jiangsu, PR China
| | - Ruifa Yu
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials, Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, 210046 Jiangsu, PR China
| | - Xiaodan Su
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials, Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, 210046 Jiangsu, PR China
| | - Yuxia Tang
- Department of Medical Imaging, Jinling Hospital, School of Medicine, Nanjing University, 210002 Jiangsu, PR China.
| | - Zhaogang Teng
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials, Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, 210046 Jiangsu, PR China; State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, PR China.
| |
Collapse
|
56
|
Huang S, Huang X, Yan H. Peptide dendrimers as potentiators of conventional chemotherapy in the treatment of pancreatic cancer in a mouse model. Eur J Pharm Biopharm 2021; 170:121-132. [PMID: 34801706 DOI: 10.1016/j.ejpb.2021.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/26/2021] [Accepted: 11/16/2021] [Indexed: 12/23/2022]
Abstract
Chemotherapy is the recommended treatment for patients with advanced pancreatic ductal adenocarcinoma (PDAC). However, efficacy of traditional chemotherapy is not satisfactory due to the presence of a dense dysplastic tumor stroma which prevents drug accumulation in and deep penetration into tumors. To overcome these obstacles, we designed and synthesized peptide dendrimers as potentiators of conventional chemotherapy. The dendrimers markedly promoted free doxorubicin accumulation and penetration deeply into 3D multicellular PDAC tumor cultures upon co-incubation. Co-administration of the dendrimer and doxorubicin into PDAC tumor xenograft-bearing mice greatly increased the doxorubicin concentration in the tumor. In addition, the dendrimer also promoted free doxorubicin internalization into PDAC cells upon co-incubation in media mimicking tumor microenvironment. Finally, a significant enhancement in the anticancer efficacy of doxorubicin and gemcitabine when either of the drugs was individually co-administered with the dendrimer into PDAC tumor xenograft-bearing mice was observed. This was especially pronounced for the combination treatment with the dendrimer and gemcitabine, resulting in a tumor weight decrease to 12.9% compared to the treatment with gemcitabine alone. This can be attributed to the combination of the multi-functionalities of the dendrimer, i.e., promoting free drug accumulation and penetration deeply into tumors and internalization into cancer cells.
Collapse
Affiliation(s)
- Sijin Huang
- Key Laboratory of Functional Polymer Materials (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xin Huang
- Key Laboratory of Functional Polymer Materials (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Husheng Yan
- Key Laboratory of Functional Polymer Materials (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China.
| |
Collapse
|
57
|
Sükei T, Palma E, Urbani L. Interplay between Cellular and Non-Cellular Components of the Tumour Microenvironment in Hepatocellular Carcinoma. Cancers (Basel) 2021; 13:5586. [PMID: 34771746 PMCID: PMC8583132 DOI: 10.3390/cancers13215586] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common and lethal cancers worldwide. Currently, treatments available for advanced HCC provide dismal chances of survival, thus there is an urgent need to develop more effective therapeutic strategies. While much of the focus of recent decades has been on targeting malignant cells, promising results have emerged from targeting the tumour microenvironment (TME). The extracellular matrix (ECM) is the main non-cellular component of the TME and it profoundly changes during tumorigenesis to promote the growth and survival of malignant cells. Despite this, many in vitro models for drug testing fail to consider the TME leading to a high failure rate in clinical trials. Here, we present an overview of the function and properties of the ECM in the liver and how these change during malignant transformation. We also discuss the relationship between immune cells and ECM in the TME in HCC. Lastly, we present advanced, 3D culture techniques of cancer modelling and argue that the incorporation of TME components into these is essential to better recapitulate the complex interactions within the TME.
Collapse
Affiliation(s)
- Tamás Sükei
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London SE5 9NT, UK; (T.S.); (E.P.)
- Faculty of Life Sciences and Medicine, King’s College London, London WC2R 2LS, UK
| | - Elena Palma
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London SE5 9NT, UK; (T.S.); (E.P.)
- Faculty of Life Sciences and Medicine, King’s College London, London WC2R 2LS, UK
| | - Luca Urbani
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London SE5 9NT, UK; (T.S.); (E.P.)
- Faculty of Life Sciences and Medicine, King’s College London, London WC2R 2LS, UK
| |
Collapse
|
58
|
Perez VM, Kearney JF, Yeh JJ. The PDAC Extracellular Matrix: A Review of the ECM Protein Composition, Tumor Cell Interaction, and Therapeutic Strategies. Front Oncol 2021; 11:751311. [PMID: 34692532 PMCID: PMC8526858 DOI: 10.3389/fonc.2021.751311] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/21/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is notorious for a dense fibrotic stroma that is interlaced with a collagen-based extracellular matrix (ECM) that plays an important role in tumor biology. Traditionally thought to only provide a physical barrier from host responses and systemic chemotherapy, new studies have demonstrated that the ECM maintains biomechanical and biochemical properties of the tumor microenvironment (TME) and restrains tumor growth. Recent studies have shown that the ECM augments tumor stiffness, interstitial fluid pressure, cell-to-cell junctions, and microvascularity using a mix of biomechanical and biochemical signals to influence tumor fate for better or worse. In addition, PDAC tumors have been shown to use ECM-derived peptide fragments as a nutrient source in nutrient-poor conditions. While collagens are the most abundant proteins found in the ECM, several studies have identified growth factors, integrins, glycoproteins, and proteoglycans in the ECM. This review focuses on the dichotomous nature of the PDAC ECM, the types of collagens and other proteins found in the ECM, and therapeutic strategies targeting the PDAC ECM.
Collapse
Affiliation(s)
- Vincent M Perez
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Joseph F Kearney
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jen Jen Yeh
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
59
|
Chen Y, Hu S, Shu Y, Qi Z, Zhang B, Kuang Y, Ma J, Cheng P. Antifibrotic Therapy Augments the Antitumor Effects of Vesicular Stomatitis Virus Via Reprogramming Tumor Microenvironment. Hum Gene Ther 2021; 33:237-249. [PMID: 34405694 DOI: 10.1089/hum.2021.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Solid tumors are characterized by abundant extracellular matrix originating from cancer-associated fibroblasts (CAFs). High collagen content can trigger the collapse of vascular system in the tumor and form physical barrier that eventually impedes the penetration of drug particles and cytotoxic immune cells. Moreover, CAFs is able to promote the enrichment of tumor-associated macrophages (TAMs) and differentiation of myeloid-derived suppressor cells (MDSCs) that work in concert to develop a highly immunosuppressive tumor microenvironment (TME). In this study, we investigated if halofuginone, an antifibrotic drug, can augment the therapeutic effects of oncolytic vesicular stomatitis virus (VSV). The results revealed that halofuginone significantly disrupts the collagen network in tumors and promotes the distribution of VSV and infiltration of CD8+ T cells (p < 0.0001). Combined treatment of VSV and halofuginone also modulates the immunosuppressive TME via deletion of TAM, MDSCs, and regulatory T cells (Tregs). Collectively, the combination therapy remarkably inhibits the tumor growth in multiple murine models and prolongs survival of mice. The results demonstrate the clinical potential of halofuginone in combination with oncolytic virus.
Collapse
Affiliation(s)
- Yanwei Chen
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Shichuan Hu
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Yongheng Shu
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Zhongbing Qi
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Bin Zhang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Yueting Kuang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Jinhu Ma
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Ping Cheng
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
60
|
Hellevik T, Berzaghi R, Lode K, Islam A, Martinez-Zubiaurre I. Immunobiology of cancer-associated fibroblasts in the context of radiotherapy. J Transl Med 2021; 19:437. [PMID: 34663337 PMCID: PMC8524905 DOI: 10.1186/s12967-021-03112-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022] Open
Abstract
Radiotherapy (RT) still represents a mainstay of treatment in clinical oncology. Traditionally, the effectiveness of radiotherapy has been attributed to the killing potential of ionizing radiation (IR) over malignant cells, however, it has become clear that therapeutic efficacy of RT also involves activation of innate and adaptive anti-tumor immune responses. Therapeutic irradiation of the tumor microenvironment (TME) provokes profound cellular and biological reconfigurations which ultimately may influence immune recognition. As one of the major constituents of the TME, cancer-associated fibroblasts (CAFs) play central roles in cancer development at all stages and are recognized contributors of tumor immune evasion. While some studies argue that RT affects CAFs negatively through growth arrest and impaired motility, others claim that exposure of fibroblasts to RT promotes their conversion into a more activated phenotype. Nevertheless, despite the well-described immunoregulatory functions assigned to CAFs, little is known about the interplay between CAFs and immune cells in the context of RT. In this review, we go over current literature on the effects of radiation on CAFs and the influence that CAFs have on radiotherapy outcomes, and we summarize present knowledge on the transformed cellular crosstalk between CAFs and immune cells after radiation.
Collapse
Affiliation(s)
- Turid Hellevik
- Department of Radiation Oncology, University Hospital of Northern Norway, Tromsø, Norway
| | - Rodrigo Berzaghi
- Department of Clinical Medicine, Faculty of Health Sciences, UiT-the Arctic University of Norway, Tromsø, Norway
| | - Kristin Lode
- Department of Clinical Medicine, Faculty of Health Sciences, UiT-the Arctic University of Norway, Tromsø, Norway
| | - Ashraful Islam
- Department of Clinical Medicine, Faculty of Health Sciences, UiT-the Arctic University of Norway, Tromsø, Norway
| | - Inigo Martinez-Zubiaurre
- Department of Clinical Medicine, Faculty of Health Sciences, UiT-the Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
61
|
Manoukian P, Bijlsma M, van Laarhoven H. The Cellular Origins of Cancer-Associated Fibroblasts and Their Opposing Contributions to Pancreatic Cancer Growth. Front Cell Dev Biol 2021; 9:743907. [PMID: 34646829 PMCID: PMC8502878 DOI: 10.3389/fcell.2021.743907] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/30/2021] [Indexed: 12/17/2022] Open
Abstract
Pancreatic tumors are known to harbor an abundant and highly desmoplastic stroma. Among the various cell types that reside within tumor stroma, cancer-associated fibroblasts (CAFs) have gained a lot of attention in the cancer field due to their contributions to carcinogenesis and tumor architecture. These cells are not a homogeneous population, but have been shown to have different origins, phenotypes, and contributions. In pancreatic tumors, CAFs generally emerge through the activation and/or recruitment of various cell types, most notably resident fibroblasts, pancreatic stellate cells (PSCs), and tumor-infiltrating mesenchymal stem cells (MSCs). In recent years, single cell transcriptomic studies allowed the identification of distinct CAF populations in pancreatic tumors. Nonetheless, the exact sources and functions of those different CAF phenotypes remain to be fully understood. Considering the importance of stromal cells in pancreatic cancer, many novel approaches have aimed at targeting the stroma but current stroma-targeting therapies have yielded subpar results, which may be attributed to heterogeneity in the fibroblast population. Thus, fully understanding the roles of different subsets of CAFs within the stroma, and the cellular dynamics at play that contribute to heterogeneity in CAF subsets may be essential for the design of novel therapies and improving clinical outcomes. Fortunately, recent advances in technologies such as microfluidics and bio-printing have made it possible to establish more advanced ex vivo models that will likely prove useful. In this review, we will present the different roles of stromal cells in pancreatic cancer, focusing on CAF origin as a source of heterogeneity, and the role this may play in therapy failure. We will discuss preclinical models that could be of benefit to the field and that may contribute to further clinical development.
Collapse
Affiliation(s)
- Paul Manoukian
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Maarten Bijlsma
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Hanneke van Laarhoven
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
62
|
Ray A, Provenzano PP. Aligned forces: Origins and mechanisms of cancer dissemination guided by extracellular matrix architecture. Curr Opin Cell Biol 2021; 72:63-71. [PMID: 34186415 PMCID: PMC8530881 DOI: 10.1016/j.ceb.2021.05.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/14/2022]
Abstract
Organized extracellular matrix (ECM), in the form of aligned architectures, is a critical mediator of directed cancer cell migration by contact guidance, leading to metastasis in solid tumors. Current models suggest anisotropic force generation through the engagement of key adhesion and cytoskeletal complexes drives contact-guided migration. Likewise, disrupting the balance between cell-cell and cell-ECM forces, driven by ECM engagement for cells at the tumor-stromal interface, initiates and drives local invasion. Furthermore, processes such as traction forces exerted by cancer and stromal cells, spontaneous reorientation of matrix-producing fibroblasts, and direct binding of ECM modifying proteins lead to the emergence of collagen alignment in tumors. Thus, as we obtain a deeper understanding of the origins of ECM alignment and the mechanisms by which it is maintained to direct invasion, we are poised to use the new paradigm of stroma-targeted therapies to disrupt this vital axis of disease progression in solid tumors.
Collapse
Affiliation(s)
- Arja Ray
- Department of Pathology, University of California, San Francisco, USA.
| | - Paolo P Provenzano
- Department of Biomedical Engineering, University of Minnesota, USA; University of Minnesota Physical Sciences in Oncology Center, USA; Masonic Cancer Center, University of Minnesota, USA; Institute for Engineering in Medicine, University of Minnesota, USA; Stem Cell Institute, University of Minnesota, USA.
| |
Collapse
|
63
|
Zhao X, Yang X, Wang X, Zhao X, Zhang Y, Liu S, Anderson GJ, Kim SJ, Li Y, Nie G. Penetration Cascade of Size Switchable Nanosystem in Desmoplastic Stroma for Improved Pancreatic Cancer Therapy. ACS NANO 2021; 15:14149-14161. [PMID: 34478262 DOI: 10.1021/acsnano.0c08860] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) cells are surrounded by a dense extracellular matrix (ECM), which greatly restricts the access of therapeutic agents, resulting in poor clinical response to chemotherapy. Transforming growth factor-β1 (TGF-β1) signaling plays a crucial role in construction of the desmoplastic stroma and provides potential targets for PDAC therapy. To surmount the pathological obstacle, we developed a size switchable nanosystem based on PEG-PLGA nanospheres encapsulated within liposomes for the combined delivery of vactosertib (VAC), a TGF-β1 receptor kinase inhibitor, and the cytotoxic drug paclitaxel (TAX). By surface modification of the liposomes with a peptide, APTEDB, the nanosystem can be anchored to abundant tumor-associated fibronectin in PDAC stroma and decreases its size by releasing encapsulated TAX-loaded nanospheres, as well as VAC after collapse of the liposomes. The inhibition of ECM hyperplasia by VAC allows TAX more ready access to the cancer cells in addition to its small size, thereby shrinking pancreatic tumor xenografts more effectively than a combination of the free drugs. This size switchable nanosystem enables sequential delivery of drugs at a fixed dose combination with simplified administration and provides an encouraging cascade approach of drug penetration for enhanced chemotherapy in cancers with a dense desmoplastic stroma.
Collapse
Affiliation(s)
- Xiaozheng Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiao Yang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Xudong Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Xiao Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Yinlong Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Shaoli Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Gregory J Anderson
- QIMR Berghofer Medical Research Institute, Royal Brisbane Hospital, Brisbane, Queensland 4029, Australia
| | - Seong-Jin Kim
- GILO Institute, GILO Foundation, Seoul 06668, Republic of Korea
- Medpacto Inc., 92 Myeongdal-ro, Seocho-gu, Seoul 06668, Republic of Korea
| | - Yiye Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- GBA Research Innovation Institute for Nanotechnology, Guangdong 510700, China
| |
Collapse
|
64
|
Kato H, Naiki-Ito A, Suzuki S, Inaguma S, Komura M, Nakao K, Naiki T, Kachi K, Kato A, Matsuo Y, Takahashi S. DPYD, down-regulated by the potentially chemopreventive agent luteolin, interacts with STAT3 in pancreatic cancer. Carcinogenesis 2021; 42:940-950. [PMID: 33640964 PMCID: PMC8283735 DOI: 10.1093/carcin/bgab017] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 01/30/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023] Open
Abstract
The 5-year survival rate of pancreatic ductal carcinoma (PDAC) patients is <10% despite progress in clinical medicine. Strategies to prevent the development of PDAC are urgently required. The flavonoids Luteolin (Lut) and hesperetin (Hes) may be cancer-chemopreventive, but effects on pancreatic carcinogenesis in vivo have not been studied. Here, the chemopreventive effects of Lut and Hes on pancreatic carcinogenesis are assessed in the BOP-induced hamster PDAC model. Lut but not Hes suppressed proliferation of pancreatic intraepithelial neoplasia (PanIN) and reduced the incidence and multiplicity of PDAC in this model. Lut also inhibited the proliferation of hamster and human pancreatic cancer cells in vitro. Multi-blot and microarray assays revealed decreased phosphorylated STAT3 (pSTAT3) and dihydropyrimidine dehydrogenase (DPYD) on Lut exposure. To explore the relationship between DPYD and STAT3 activity, the former was silenced by RNAi or overexpressed using expression vectors, and the latter was inactivated by small molecule inhibitors or stimulated by IL6 in human PDAC cells. DPYD knock-down decreased, and overexpression increased, pSTAT3 and cell proliferation. DPYD expression was decreased by inactivation of STAT3 and increased by its activation. The frequency of pSTAT3-positive cells and DPYD expression was significantly correlated and was decreased in parallel by Lut in the hamster PDAC model. Finally, immunohistochemical analysis in 73 cases of human PDAC demonstrated that DPYD expression was positively correlated with the Ki-67 labeling index, and high expression was associated with poor prognosis. These results indicate that Lut is a promising chemopreventive agent for PDAC, targeting a novel STAT3-DPYD pathway.
Collapse
Affiliation(s)
- Hiroyuki Kato
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya,Japan
| | - Aya Naiki-Ito
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya,Japan
| | - Shugo Suzuki
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya,Japan
| | - Shingo Inaguma
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya,Japan
| | - Masayuki Komura
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya,Japan
| | - Kenju Nakao
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya,Japan
| | - Taku Naiki
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya,Japan
| | - Kenta Kachi
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya,Japan
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya,Japan
| | - Akihisa Kato
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya,Japan
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya,Japan
| | - Yoichi Matsuo
- Department of Gastroenterology Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya,Japan
| | - Satoru Takahashi
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya,Japan
| |
Collapse
|
65
|
Murphy KJ, Chambers CR, Herrmann D, Timpson P, Pereira BA. Dynamic Stromal Alterations Influence Tumor-Stroma Crosstalk to Promote Pancreatic Cancer and Treatment Resistance. Cancers (Basel) 2021; 13:3481. [PMID: 34298706 PMCID: PMC8305001 DOI: 10.3390/cancers13143481] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/03/2021] [Accepted: 07/07/2021] [Indexed: 12/18/2022] Open
Abstract
Many cancer studies now recognize that disease initiation, progression, and response to treatment are strongly influenced by the microenvironmental niche. Widespread desmoplasia, or fibrosis, is fundamental to pancreatic cancer development, growth, metastasis, and treatment resistance. This fibrotic landscape is largely regulated by cancer-associated fibroblasts (CAFs), which deposit and remodel extracellular matrix (ECM) in the tumor microenvironment (TME). This review will explore the prognostic and functional value of the stromal compartment in predicting outcomes and clinical prognosis in pancreatic ductal adenocarcinoma (PDAC). We will also discuss the major dynamic stromal alterations that occur in the pancreatic TME during tumor development and progression, and how the stromal ECM can influence cancer cell phenotype, metabolism, and immune response from a biochemical and biomechanical viewpoint. Lastly, we will provide an outlook on the latest clinical advances in the field of anti-fibrotic co-targeting in combination with chemotherapy or immunotherapy in PDAC, providing insight into the current challenges in treating this highly aggressive, fibrotic malignancy.
Collapse
Affiliation(s)
- Kendelle J. Murphy
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; (K.J.M.); (C.R.C.); (D.H.)
- St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Cecilia R. Chambers
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; (K.J.M.); (C.R.C.); (D.H.)
- St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - David Herrmann
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; (K.J.M.); (C.R.C.); (D.H.)
- St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Paul Timpson
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; (K.J.M.); (C.R.C.); (D.H.)
- St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Brooke A. Pereira
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; (K.J.M.); (C.R.C.); (D.H.)
- St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| |
Collapse
|
66
|
Nissen NI, Kehlet S, Johansen AZ, Chen IM, Karsdal M, Johansen JS, Diab HMH, Jørgensen LN, Sun S, Manon-Jensen T, He Y, Langholm L, Willumsen N. Noninvasive prognostic biomarker potential of quantifying the propeptides of Type XI collagen alpha-1 chain (PRO-C11) in patients with pancreatic ductal adenocarcinoma. Int J Cancer 2021; 149:228-238. [PMID: 33687786 DOI: 10.1002/ijc.33551] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/08/2021] [Accepted: 02/18/2021] [Indexed: 01/22/2023]
Abstract
Type XI collagen has been associated with tumor fibrosis and aggressiveness in patients with pancreatic ductal adenocarcinoma (PDAC). The propeptide on Type XI collagen is released into the circulation after proteolytic processing at either amino acid 253 or 511. This allows for a noninvasive biomarker approach to quantify Type XI collagen production. We developed two ELISA-based biomarkers, targeting the two enzymatic cleavage sites (PRO-C11-253 and PRO-C11-511). In a discovery cohort including serum from patients with PDAC (n = 39, Stages 1-4), chronic pancreatitis (CP, n = 12) and healthy controls (n = 20), PRO-C11-511, but not PRO-C11-253, was significantly upregulated in patients with PDAC and CP compared to healthy controls. Furthermore, PRO-C11-511 levels >75th percentile were associated with poor overall survival (OS) (HR, 95% CI: 3.40, 1.48-7.83). The PRO-C11-511 biomarker potential was validated in serum from 686 patients with PDAC. Again, high levels of PRO-C11-511 (>75th percentile) were associated with poor OS (HR, 95% CI: 1.68, 1.40-2.02). Furthermore, PRO-C11-511 remained significant after adjusting for clinical risk factors (HR, 95% CI: 1.50, 1.22-1.86). In conclusion, quantifying serum levels of Type XI collagen with PRO-C11-511 predicts poor OS in patients with PDAC. This supports that Type XI collagen is important for PDAC biology and that PRO-C11-511 has prognostic noninvasive biomarker potential for patients with PDAC.
Collapse
Affiliation(s)
- Neel Ingemann Nissen
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen (UCPH), Copenhagen, Denmark
- Biomarkers & Research, Nordic Bioscience, Herlev, Denmark
| | | | - Astrid Z Johansen
- Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Inna M Chen
- Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Morten Karsdal
- Biomarkers & Research, Nordic Bioscience, Herlev, Denmark
| | - Julia S Johansen
- Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Medicine, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hadi M H Diab
- Digestive Disease Center, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Lars N Jørgensen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Digestive Disease Center, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Shu Sun
- Biomarkers & Research, Nordic Bioscience, Herlev, Denmark
| | | | - Yi He
- Biomarkers & Research, Nordic Bioscience, Herlev, Denmark
| | - Lasse Langholm
- Biomarkers & Research, Nordic Bioscience, Herlev, Denmark
| | | |
Collapse
|
67
|
Gorbet MJ, Singh A, Mao C, Fiering S, Ranjan A. Using nanoparticles for in situ vaccination against cancer: mechanisms and immunotherapy benefits. Int J Hyperthermia 2021; 37:18-33. [PMID: 33426995 DOI: 10.1080/02656736.2020.1802519] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Immunotherapy to treat cancer is now an established clinical approach. Immunotherapy can be applied systemically, as done with checkpoint blockade antibodies, but it can also be injected directly into identified tumors, in a strategy of in situ vaccination (ISV). ISV is designed to stimulate a strong local antitumor immune response involving both innate and adaptive immune cells, and through this generate a systemic antitumor immune response against metastatic tumors. A variety of ISVs have been utilized to generate an immunostimulatory tumor microenvironment (TME). These include attenuated microorganisms, recombinant proteins, small molecules, physical disruptors of TME (alternating magnetic and focused ultrasound heating, photothermal therapy, and radiotherapy), and more recently nanoparticles (NPs). NPs are attractive and unique since they can load multiple drugs or other reagents to influence immune and cancer cell functions in the TME, affording a unique opportunity to stimulate antitumor immunity. Here, we describe the NP-ISV therapeutic mechanisms, review chemically synthesized NPs (i.e., liposomes, polymeric, chitosan-based, inorganic NPs, etc.), biologically derived NPs (virus and bacteria-based NPs), and energy-activated NP-ISVs in the context of their use as local ISV. Data suggests that NP-ISVs can enhance outcomes of immunotherapeutic regimens including those utilizing tumor hyperthermia and checkpoint blockade therapies.
Collapse
Affiliation(s)
| | - Akansha Singh
- College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, USA
| | - Chenkai Mao
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Steven Fiering
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.,Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center at Dartmouth and Dartmouth Hitchcock, Lebanon, NH, USA
| | - Ashish Ranjan
- College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
68
|
Nicolas-Boluda A, Vaquero J, Vimeux L, Guilbert T, Barrin S, Kantari-Mimoun C, Ponzo M, Renault G, Deptula P, Pogoda K, Bucki R, Cascone I, Courty J, Fouassier L, Gazeau F, Donnadieu E. Tumor stiffening reversion through collagen crosslinking inhibition improves T cell migration and anti-PD-1 treatment. eLife 2021; 10:58688. [PMID: 34106045 PMCID: PMC8203293 DOI: 10.7554/elife.58688] [Citation(s) in RCA: 164] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/05/2021] [Indexed: 12/17/2022] Open
Abstract
Only a fraction of cancer patients benefits from immune checkpoint inhibitors. This may be partly due to the dense extracellular matrix (ECM) that forms a barrier for T cells. Comparing five preclinical mouse tumor models with heterogeneous tumor microenvironments, we aimed to relate the rate of tumor stiffening with the remodeling of ECM architecture and to determine how these features affect intratumoral T cell migration. An ECM-targeted strategy, based on the inhibition of lysyl oxidase, was used. In vivo stiffness measurements were found to be strongly correlated with tumor growth and ECM crosslinking but negatively correlated with T cell migration. Interfering with collagen stabilization reduces ECM content and tumor stiffness leading to improved T cell migration and increased efficacy of anti-PD-1 blockade. This study highlights the rationale of mechanical characterizations in solid tumors to understand resistance to immunotherapy and of combining treatment strategies targeting the ECM with anti-PD-1 therapy.
Collapse
Affiliation(s)
- Alba Nicolas-Boluda
- Institut Cochin, INSERM U1016/CNRS UMR 8104, Université de Paris, Paris, France.,Equipe Labellisée Ligue Contre le Cancer, Paris, France.,Laboratoire Matière et Systèmes Complexes (MSC), CNRS, Université de Paris, Paris, France
| | - Javier Vaquero
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Paris, France.,TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain.,LPP (Laboratoire de physique des plasmas, UMR 7648), Sorbonne Université, Centre national de la recherche scientifique (CNRS), Ecole Polytechnique, Paris, France.,Oncology Program, CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, Barcelona, Spain
| | - Lene Vimeux
- Institut Cochin, INSERM U1016/CNRS UMR 8104, Université de Paris, Paris, France.,Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Thomas Guilbert
- Institut Cochin, INSERM U1016/CNRS UMR 8104, Université de Paris, Paris, France
| | - Sarah Barrin
- Institut Cochin, INSERM U1016/CNRS UMR 8104, Université de Paris, Paris, France.,Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Chahrazade Kantari-Mimoun
- Institut Cochin, INSERM U1016/CNRS UMR 8104, Université de Paris, Paris, France.,Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Matteo Ponzo
- CNRS ERL 9215, CRRET laboratory, University of Paris-Est Créteil (UPEC), Paris, France
| | - Gilles Renault
- Institut Cochin, INSERM U1016/CNRS UMR 8104, Université de Paris, Paris, France
| | - Piotr Deptula
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
| | - Katarzyna Pogoda
- Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
| | - Ilaria Cascone
- CNRS ERL 9215, CRRET laboratory, University of Paris-Est Créteil (UPEC), Paris, France
| | - José Courty
- CNRS ERL 9215, CRRET laboratory, University of Paris-Est Créteil (UPEC), Paris, France
| | - Laura Fouassier
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Paris, France
| | - Florence Gazeau
- Laboratoire Matière et Systèmes Complexes (MSC), CNRS, Université de Paris, Paris, France
| | - Emmanuel Donnadieu
- Institut Cochin, INSERM U1016/CNRS UMR 8104, Université de Paris, Paris, France.,Equipe Labellisée Ligue Contre le Cancer, Paris, France
| |
Collapse
|
69
|
Maddalena M, Mallel G, Nataraj NB, Shreberk-Shaked M, Hassin O, Mukherjee S, Arandkar S, Rotkopf R, Kapsack A, Lambiase G, Pellegrino B, Ben-Isaac E, Golani O, Addadi Y, Hajaj E, Eilam R, Straussman R, Yarden Y, Lotem M, Oren M. TP53 missense mutations in PDAC are associated with enhanced fibrosis and an immunosuppressive microenvironment. Proc Natl Acad Sci U S A 2021; 118:e2025631118. [PMID: 34088837 PMCID: PMC8201917 DOI: 10.1073/pnas.2025631118] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal cancer, which is refractory to all currently available treatments and bears dismal prognosis. About 70% of all PDAC cases harbor mutations in the TP53 tumor suppressor gene. Many of those are missense mutations, resulting in abundant production of mutant p53 (mutp53) protein in the cancer cells. Analysis of human PDAC patient data from The Cancer Genome Atlas (TCGA) revealed a negative association between the presence of missense mutp53 and infiltration of CD8+ T cells into the tumor. Moreover, CD8+ T cell infiltration was negatively correlated with the expression of fibrosis-associated genes. Importantly, silencing of endogenous mutp53 in KPC cells, derived from mouse PDAC tumors driven by mutant Kras and mutp53, down-regulated fibrosis and elevated CD8+ T cell infiltration in the tumors arising upon orthotopic injection of these cells into the pancreas of syngeneic mice. Moreover, the tumors generated by mutp53-silenced KPC cells were markedly smaller than those elicited by mutp53-proficient control KPC cells. Altogether, our findings suggest that missense p53 mutations may contribute to worse PDAC prognosis by promoting a more vigorous fibrotic tumor microenvironment and impeding the ability of the immune system to eliminate the cancer cells.
Collapse
Affiliation(s)
- Martino Maddalena
- Department of Molecular Cell Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Giuseppe Mallel
- Department of Molecular Cell Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | | | - Michal Shreberk-Shaked
- Department of Molecular Cell Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Ori Hassin
- Department of Molecular Cell Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Saptaparna Mukherjee
- Department of Molecular Cell Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Sharathchandra Arandkar
- Department of Molecular Cell Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
- Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, 410210 Kharghar, India
| | - Ron Rotkopf
- Department of Life Sciences Core Facilities, Faculty of Biochemistry, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Abby Kapsack
- Department of Molecular Cell Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Giuseppina Lambiase
- Department of Molecular Cell Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Bianca Pellegrino
- Department of Molecular Cell Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Eyal Ben-Isaac
- Department of Life Sciences Core Facilities, Faculty of Biochemistry, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Ofra Golani
- Department of Life Sciences Core Facilities, Faculty of Biochemistry, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Yoseph Addadi
- Department of Life Sciences Core Facilities, Faculty of Biochemistry, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Emma Hajaj
- Sharett Institute of Oncology, Hadassah Hebrew University Hospital, 91120 Jerusalem, Israel
| | - Raya Eilam
- Department of Veterinary Resources, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Ravid Straussman
- Department of Molecular Cell Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Yosef Yarden
- Department of Biological Regulation, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Michal Lotem
- Sharett Institute of Oncology, Hadassah Hebrew University Hospital, 91120 Jerusalem, Israel
| | - Moshe Oren
- Department of Molecular Cell Biology, Weizmann Institute of Science, 76100 Rehovot, Israel;
| |
Collapse
|
70
|
Kokkinos J, Jensen A, Sharbeen G, McCarroll JA, Goldstein D, Haghighi KS, Phillips PA. Does the Microenvironment Hold the Hidden Key for Functional Precision Medicine in Pancreatic Cancer? Cancers (Basel) 2021; 13:cancers13102427. [PMID: 34067833 PMCID: PMC8156664 DOI: 10.3390/cancers13102427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 01/18/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers and no significant improvement in patient survival has been seen in the past three decades. Treatment options are limited and selection of chemotherapy in the clinic is usually based on the performance status of a patient rather than the biology of their disease. In recent years, research has attempted to unlock a personalised treatment strategy by identifying actionable molecular targets in tumour cells or using preclinical models to predict the effectiveness of chemotherapy. However, these approaches rely on the biology of PDAC tumour cells only and ignore the importance of the microenvironment and fibrotic stroma. In this review, we highlight the importance of the microenvironment in driving the chemoresistant nature of PDAC and the need for preclinical models to mimic the complex multi-cellular microenvironment of PDAC in the precision medicine pipeline. We discuss the potential for ex vivo whole-tissue culture models to inform precision medicine and their role in developing novel therapeutic strategies that hit both tumour and stromal compartments in PDAC. Thus, we highlight the critical role of the tumour microenvironment that needs to be addressed before a precision medicine program for PDAC can be implemented.
Collapse
Affiliation(s)
- John Kokkinos
- Pancreatic Cancer Translational Research Group, School of Medical Sciences, Faculty of Medicine & Health, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2052, Australia; (J.K.); (G.S.); (D.G.)
- Australian Centre for Nanomedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, UNSW Sydney, Sydney, NSW 2052, Australia;
| | - Anya Jensen
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2052, Australia;
- School of Women’s and Children’s Health, Faculty of Medicine & Health, UNSW Sydney, Sydney, NSW 2052, Australia
| | - George Sharbeen
- Pancreatic Cancer Translational Research Group, School of Medical Sciences, Faculty of Medicine & Health, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2052, Australia; (J.K.); (G.S.); (D.G.)
| | - Joshua A. McCarroll
- Australian Centre for Nanomedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, UNSW Sydney, Sydney, NSW 2052, Australia;
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2052, Australia;
- School of Women’s and Children’s Health, Faculty of Medicine & Health, UNSW Sydney, Sydney, NSW 2052, Australia
| | - David Goldstein
- Pancreatic Cancer Translational Research Group, School of Medical Sciences, Faculty of Medicine & Health, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2052, Australia; (J.K.); (G.S.); (D.G.)
- Prince of Wales Clinical School, Prince of Wales Hospital, UNSW Sydney, Sydney, NSW 2052, Australia;
| | - Koroush S. Haghighi
- Prince of Wales Clinical School, Prince of Wales Hospital, UNSW Sydney, Sydney, NSW 2052, Australia;
| | - Phoebe A. Phillips
- Pancreatic Cancer Translational Research Group, School of Medical Sciences, Faculty of Medicine & Health, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2052, Australia; (J.K.); (G.S.); (D.G.)
- Australian Centre for Nanomedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, UNSW Sydney, Sydney, NSW 2052, Australia;
- Correspondence:
| |
Collapse
|
71
|
Engineering T cells to enhance 3D migration through structurally and mechanically complex tumor microenvironments. Nat Commun 2021; 12:2815. [PMID: 33990566 PMCID: PMC8121808 DOI: 10.1038/s41467-021-22985-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 04/07/2021] [Indexed: 12/18/2022] Open
Abstract
Defining the principles of T cell migration in structurally and mechanically complex tumor microenvironments is critical to understanding escape from antitumor immunity and optimizing T cell-related therapeutic strategies. Here, we engineered nanotextured elastic platforms to study and enhance T cell migration through complex microenvironments and define how the balance between contractility localization-dependent T cell phenotypes influences migration in response to tumor-mimetic structural and mechanical cues. Using these platforms, we characterize a mechanical optimum for migration that can be perturbed by manipulating an axis between microtubule stability and force generation. In 3D environments and live tumors, we demonstrate that microtubule instability, leading to increased Rho pathway-dependent cortical contractility, promotes migration whereas clinically used microtubule-stabilizing chemotherapies profoundly decrease effective migration. We show that rational manipulation of the microtubule-contractility axis, either pharmacologically or through genome engineering, results in engineered T cells that more effectively move through and interrogate 3D matrix and tumor volumes. Thus, engineering cells to better navigate through 3D microenvironments could be part of an effective strategy to enhance efficacy of immune therapeutics. The mechanics of the migration of T cells into tumours is an important aspect of tumour immunity. Here the authors engineer complex 3D environments to explore functions of microtubules and cell contractility as strategies to enhance T cell migration in tumour microenvironments.
Collapse
|
72
|
Polani F, Grierson PM, Lim KH. Stroma-targeting strategies in pancreatic cancer: Past lessons, challenges and prospects. World J Gastroenterol 2021; 27:2105-2121. [PMID: 34025067 PMCID: PMC8117738 DOI: 10.3748/wjg.v27.i18.2105] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/09/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is projected to emerge as the second leading cause of cancer-related death after 2030. Extreme treatment resistance is perhaps the most significant factor that underlies the poor prognosis of PDAC. To date, combination chemotherapy remains the mainstay of treatment for most PDAC patients. Compared to other cancer types, treatment response of PDAC tumors to similar chemotherapy regimens is clearly much lower and shorter-lived. Aside from typically harboring genetic alterations that to date remain un-druggable and are drivers of treatment resistance, PDAC tumors are uniquely characterized by a densely fibrotic stroma that has well-established roles in promoting cancer progression and treatment resistance. However, emerging evidence also suggests that indiscriminate targeting and near complete depletion of stroma may promote PDAC aggressiveness and lead to detrimental outcomes. These conflicting results undoubtedly warrant the need for a more in-depth understanding of the heterogeneity of tumor stroma in order to develop modulatory strategies in favor of tumor suppression. The advent of novel techniques including single cell RNA sequencing and multiplex immunohistochemistry have further illuminated the complex heterogeneity of tumor cells, stromal fibroblasts, and immune cells. This new knowledge is instrumental for development of more refined therapeutic strategies that can ultimately defeat this disease. Here, we provide a concise review on lessons learned from past stroma-targeting strategies, new challenges revealed from recent preclinical and clinical studies, as well as new prospects in the treatment of PDAC.
Collapse
Affiliation(s)
- Faran Polani
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, Saint Louis, MO 63110, United States
| | - Patrick M Grierson
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, Saint Louis, MO 63110, United States
| | - Kian-Huat Lim
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, Saint Louis, MO 63110, United States
| |
Collapse
|
73
|
Liu Y, Zhou J, Li Q, Li L, Jia Y, Geng F, Zhou J, Yin T. Tumor microenvironment remodeling-based penetration strategies to amplify nanodrug accessibility to tumor parenchyma. Adv Drug Deliv Rev 2021; 172:80-103. [PMID: 33705874 DOI: 10.1016/j.addr.2021.02.019] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/05/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022]
Abstract
Remarkable advances in nano delivery systems have provided new hope for tumor prevention, diagnosis and treatment. However, only limited clinical therapeutic effects against solid tumors were achieved. One of the main reasons is the presence of abundant physiological and pathological barriers in vivo that impair tumoral penetration and distribution of the nanodrugs. These barriers are related to the components of tumor microenvironment (TME) including abnormal tumor vasculature, rich composition of the extracellular matrix (ECM), and abundant stroma cells. Herein, we review the advanced strategies of TME remodeling to overcome these biological obstacles against nanodrug delivery. This review aims to offer a perspective guideline for the implementation of promising approaches to facilitate intratumoral permeation of nanodrugs through alleviation of biological barriers. At the same time, we analyze the advantages and disadvantages of the corresponding methods and put forward possible directions for the future researches.
Collapse
Affiliation(s)
- Yanhong Liu
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Jiyuan Zhou
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Qiang Li
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Lingchao Li
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Yue Jia
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Feiyang Geng
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Jianping Zhou
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China.
| | - Tingjie Yin
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China.
| |
Collapse
|
74
|
Joiner JB, Pylayeva-Gupta Y, Dayton PA. Focused Ultrasound for Immunomodulation of the Tumor Microenvironment. THE JOURNAL OF IMMUNOLOGY 2021; 205:2327-2341. [PMID: 33077668 DOI: 10.4049/jimmunol.1901430] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 07/10/2020] [Indexed: 02/06/2023]
Abstract
Focused ultrasound (FUS) has recently emerged as a modulator of the tumor microenvironment, paving the way for FUS to become a safe yet formidable cancer treatment option. Several mechanisms have been proposed for the role of FUS in facilitating immune responses and overcoming drug delivery barriers. However, with the wide variety of FUS parameters used in diverse tumor types, it is challenging to pinpoint FUS specifications that may elicit the desired antitumor response. To clarify FUS bioeffects, we summarize four mechanisms of action, including thermal ablation, hyperthermia/thermal stress, mechanical perturbation, and histotripsy, each inducing unique vascular and immunological effects. Notable tumor responses to FUS include enhanced vascular permeability, increased T cell infiltration, and tumor growth suppression. In this review, we have categorized and reviewed recent methods of using therapeutic ultrasound to elicit an antitumor immune response with examples that reveal specific solutions and challenges in this new research area.
Collapse
Affiliation(s)
- Jordan B Joiner
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Yuliya Pylayeva-Gupta
- Department of Genetics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; .,Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; and
| | - Paul A Dayton
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; .,Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; and.,Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27599
| |
Collapse
|
75
|
Beola L, Grazú V, Fernández-Afonso Y, Fratila RM, de las Heras M, de la Fuente JM, Gutiérrez L, Asín L. Critical Parameters to Improve Pancreatic Cancer Treatment Using Magnetic Hyperthermia: Field Conditions, Immune Response, and Particle Biodistribution. ACS APPLIED MATERIALS & INTERFACES 2021; 13:12982-12996. [PMID: 33709682 PMCID: PMC8892434 DOI: 10.1021/acsami.1c02338] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/03/2021] [Indexed: 05/06/2023]
Abstract
Magnetic hyperthermia (MH) was used to treat a murine model of pancreatic cancer. This type of cancer is generally characterized by the presence of dense stroma that acts as a barrier for chemotherapeutic treatments. Several alternating magnetic field (AMF) conditions were evaluated using three-dimensional (3D) cell culture models loaded with magnetic nanoparticles (MNPs) to determine which conditions were producing a strong effect on the cell viability. Once the optimal AMF conditions were selected, in vivo experiments were carried out using similar frequency and field amplitude parameters. A marker of the immune response activation, calreticulin (CALR), was evaluated in cells from a xenograft tumor model after the MH treatment. Moreover, the distribution of nanoparticles within the tumor tissue was assessed by histological analysis of tumor sections, observing that the exposure to the alternating magnetic field resulted in the migration of particles toward the inner parts of the tumor. Finally, a relationship between an inadequate body biodistribution of the particles after their intratumoral injection and a significant decrease in the effectiveness of the MH treatment was found. Animals in which most of the particles remained in the tumor area after injection showed higher reductions in the tumor volume growth in comparison with those animals in which part of the particles were found also in the liver and spleen. Therefore, our results point out several factors that should be considered to improve the treatment effectiveness of pancreatic cancer by magnetic hyperthermia.
Collapse
Affiliation(s)
- Lilianne Beola
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC—Universidad de Zaragoza, 50018 Zaragoza, Spain
- Department
of Analytical Chemistry, Universidad de
Zaragoza, 50018 Zaragoza, Spain
| | - Valeria Grazú
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC—Universidad de Zaragoza, 50018 Zaragoza, Spain
- Centro
de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 50018 Zaragoza, Spain
| | - Yilian Fernández-Afonso
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC—Universidad de Zaragoza, 50018 Zaragoza, Spain
- Department
of Analytical Chemistry, Universidad de
Zaragoza, 50018 Zaragoza, Spain
| | - Raluca M. Fratila
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC—Universidad de Zaragoza, 50018 Zaragoza, Spain
- Centro
de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 50018 Zaragoza, Spain
| | | | - Jesús M. de la Fuente
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC—Universidad de Zaragoza, 50018 Zaragoza, Spain
- Centro
de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 50018 Zaragoza, Spain
| | - Lucía Gutiérrez
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC—Universidad de Zaragoza, 50018 Zaragoza, Spain
- Department
of Analytical Chemistry, Universidad de
Zaragoza, 50018 Zaragoza, Spain
- Centro
de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 50018 Zaragoza, Spain
| | - Laura Asín
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC—Universidad de Zaragoza, 50018 Zaragoza, Spain
- Centro
de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 50018 Zaragoza, Spain
| |
Collapse
|
76
|
Phenotypic screening with target identification and validation in the discovery and development of E3 ligase modulators. Cell Chem Biol 2021; 28:283-299. [PMID: 33740433 DOI: 10.1016/j.chembiol.2021.02.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/17/2020] [Accepted: 02/12/2021] [Indexed: 02/07/2023]
Abstract
The use of phenotypic screening was central to the discovery and development of novel thalidomide analogs, the IMiDs (immunomodulatory drugs) agents. With the discovery that these agents bind the E3 ligase, CRL4CRBN, and alter its substrate specificity, there has been a great deal of endeavor to discover other small molecules that can modulate alternative E3 ligases. Furthermore, the chemical properties necessary for drug discovery and the rules by which neo-substrates are selected for degradation are being defined in the context of phenotypic alterations in specific cellular systems. This review gives a detailed summary of these recent advances and the methodologies being exploited to understand the mechanism of action of emerging protein degradation therapies.
Collapse
|
77
|
Sadozai H, Acharjee A, Eppenberger-Castori S, Gloor B, Gruber T, Schenk M, Karamitopoulou E. Distinct Stromal and Immune Features Collectively Contribute to Long-Term Survival in Pancreatic Cancer. Front Immunol 2021; 12:643529. [PMID: 33679807 PMCID: PMC7933000 DOI: 10.3389/fimmu.2021.643529] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 01/25/2021] [Indexed: 01/05/2023] Open
Abstract
Background: The aggressive biology and treatment refractory nature of pancreatic ductal adenocarcinoma (PDAC) significantly limits long-term survival. Examining the tumor microenvironment (TME) of long-term survivors (LTS) of PDAC offers the potential of unveiling novel biological insights and therapeutic targets. Methods: We performed an integrated approach involving immunophenotyping, stromal scoring and histomorphological profiling of a cohort of 112 PDAC-cases, including 25 long-term survivors (LTSs, OS ≥ 60 months). Mutational frequencies were assessed using targeted next generation sequencing. Finally, we validated our findings in silico using an external cohort of microarray data from PDAC patients. Results: LTS cases exhibit a largely quiescent population of cancer-associated fibroblasts (CAFs). Immune profiling revealed key differences between LTS and NON-LTS cases in the intratumoral and stromal compartments. In both compartments, LTS cases exhibit a T cell inflamed profile with higher density of CD3+ T cells, CD4+ T cells, iNOS+ leukocytes and strikingly diminished numbers of CD68+ total macrophages, CD163+ (M2) macrophages and FOXP3+ Tregs. A large proportion of LTS cases exhibited tertiary lymphoid tissue (TLT) formation, which has been observed to be a positive prognostic marker in a number of tumor types. Using a Random-Forest variable selection approach, we identified the density of stromal iNOS+ cells and CD68+ cells as strong positive and negative prognostic variables, respectively. In an external cohort, computational cell-type deconvolution revealed a higher abundance of T cells, B lymphocytes and dendritic cells (DCs) in patients with long-term OS compared to short-term survivors. Thus, in silico profiling of long-term survivors in an external cohort, strongly corroborated the T cell-inflamed TME observed in our LTS group. Conclusions: Collectively, our findings highlight the prognostic importance of TME profiles in PDAC, underlining the crucial role of tumor associated macrophages (TAMs) and the potential interdependence between immunosuppressive TAMs and activated CAFs in pancreatic cancer. Additionally, our data has potential for precision medicine and patient stratification. Patients with a T cell inflamed TME might derive benefit from agonistic T cell antibodies (e.g., OX40 or CD137 agonists). Alternately, patients with activated CAFs and high infiltration of immunosuppressive TAMs are highly likely to exhibit therapeutic responses to macrophage targeted drugs (e.g., anti-CSF1R) and anti-CAF agents.
Collapse
Affiliation(s)
- Hassan Sadozai
- Center for Sport, Exercise and Life Sciences, Coventry University, Coventry, United Kingdom
| | - Animesh Acharjee
- College of Medical and Dental Sciences, Centre for Computational Biology, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom.,Institute of Translational Medicine, University Hospitals Birmingham National Health Service, Foundation Trust, Birmingham, United Kingdom.,National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, University Hospital Birmingham, Birmingham, United Kingdom
| | | | - Beat Gloor
- Department of Visceral Surgery, Insel University Hospital, University of Bern, Bern, Switzerland
| | - Thomas Gruber
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Mirjam Schenk
- Institute of Pathology, University of Bern, Bern, Switzerland
| | | |
Collapse
|
78
|
Zhou X, Liu Y, Hu M, Wang M, Liu X, Huang L. Relaxin gene delivery modulates macrophages to resolve cancer fibrosis and synergizes with immune checkpoint blockade therapy. SCIENCE ADVANCES 2021; 7:7/8/eabb6596. [PMID: 33597232 PMCID: PMC7888957 DOI: 10.1126/sciadv.abb6596] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 01/04/2021] [Indexed: 05/12/2023]
Abstract
Cancer fibrosis serves as a major therapeutic barrier in desmoplastic tumors. Relaxin (RLN; a systemic hormone) is efficacious to decrease fibrosis, but the in vivo mechanism of action is not clear. Considering the localization of relaxin family peptide receptor type 1 (RXFP1), the receptor for RLN, on macrophages, we hypothesize that macrophages can be modulated by RLN to ameliorate cancer fibrosis. Using KPC mouse model of pancreatic ductal adenocarcinoma (PDAC), here, we report locally expressed RLN with targeted gene delivery induces increased F4/80+CD206+ macrophages originating from Ly6C+ monocytes, promoting fibrosis depletion and cytotoxic T cell infiltration. Moreover, RLN gene delivery synergizes with PD-L1 blockade for tumor inhibition by enhancing T cell-mediated tumor cell killing and macrophage phagocytosis. Collectively, our results reveal previously unidentified insights into the modulation of macrophages to regulate tumor-associated fibrosis, providing a feasible strategy to reverse the immunosuppressive environment and improve the therapeutic outcome of checkpoint immunotherapies.
Collapse
Affiliation(s)
- Xuefei Zhou
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Pharmacology and Department of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, 322000, China
| | - Yun Liu
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Mengying Hu
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Menglin Wang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Xiangrui Liu
- Department of Pharmacology and Department of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
79
|
Hu-Lieskovan S, Malouf GG, Jacobs I, Chou J, Liu L, Johnson ML. Addressing resistance to immune checkpoint inhibitor therapy: an urgent unmet need. Future Oncol 2021; 17:1401-1439. [PMID: 33475012 DOI: 10.2217/fon-2020-0967] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized the treatment of various cancers by reversing the immunosuppressive mechanisms employed by tumors to restore anticancer immunity. Although ICIs have demonstrated substantial clinical efficacy, patient response can vary in depth and duration, and many do not respond at all or eventually develop resistance. ICI resistance mechanisms can be tumor-intrinsic, related to the tumor microenvironment or patient-specific factors. Multiple resistance mechanisms may be present within one tumor subtype, or heterogeneity exists among patients with the same tumor type. Consequently, designing effective combination treatment strategies is challenging. This review will discuss ICI resistance mechanisms, and summarize findings from key preclinical and clinical trials of ICIs, to identify potential treatment strategies or pathways to overcome ICI resistance.
Collapse
Affiliation(s)
- Siwen Hu-Lieskovan
- Department of Medicine, Division of Oncology, Huntsman Cancer Institute / University of Utah, Salt Lake City, UT 84112, USA
| | - Gabriel G Malouf
- Department of Medical Oncology, Institut de Cancérologie de Strasbourg & Department of Functional Genomics & Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/UNISTRA, Illkirch Cedex, Strasbourg, France
| | | | | | - Li Liu
- Pfizer Inc, San Diego, CA 92121, USA
| | - Melissa L Johnson
- Sarah Cannon Research Institute/Tennessee Oncology, PLLC, Nashville, TN 37203, USA
| |
Collapse
|
80
|
Stromal Protein-Mediated Immune Regulation in Digestive Cancers. Cancers (Basel) 2021; 13:cancers13010146. [PMID: 33466303 PMCID: PMC7795083 DOI: 10.3390/cancers13010146] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Solid cancers are surrounded by a network of non-cancerous cells comprising different cell types, including fibroblasts, and acellular protein structures. This entire network is called the tumor microenvironment (TME) and it provides a physical barrier to the tumor shielding it from infiltrating immune cells, such as lymphocytes, or therapeutic agents. In addition, the TME has been shown to dampen efficient immune responses of infiltrated immune cells, which are key in eliminating cancer cells from the organism. In this review, we will discuss how TME proteins in particular are involved in this dampening effect, known as immunosuppression. We will focus on three different types of digestive cancers: pancreatic cancer, colorectal cancer, and gastric cancer. Moreover, we will discuss current therapeutic approaches using TME proteins as targets to reverse their immunosuppressive effects. Abstract The stromal tumor microenvironment (TME) consists of immune cells, vascular and neural structures, cancer-associated fibroblasts (CAFs), as well as extracellular matrix (ECM), and favors immune escape mechanisms promoting the initiation and progression of digestive cancers. Numerous ECM proteins released by stromal and tumor cells are crucial in providing physical rigidity to the TME, though they are also key regulators of the immune response against cancer cells by interacting directly with immune cells or engaging with immune regulatory molecules. Here, we discuss current knowledge of stromal proteins in digestive cancers including pancreatic cancer, colorectal cancer, and gastric cancer, focusing on their functions in inhibiting tumor immunity and enabling drug resistance. Moreover, we will discuss the implication of stromal proteins as therapeutic targets to unleash efficient immunotherapy-based treatments.
Collapse
|
81
|
Biffi G, Tuveson DA. Diversity and Biology of Cancer-Associated Fibroblasts. Physiol Rev 2021; 101:147-176. [PMID: 32466724 PMCID: PMC7864232 DOI: 10.1152/physrev.00048.2019] [Citation(s) in RCA: 718] [Impact Index Per Article: 179.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 02/08/2023] Open
Abstract
Efforts to develop anti-cancer therapies have largely focused on targeting the epithelial compartment, despite the presence of non-neoplastic stromal components that substantially contribute to the progression of the tumor. Indeed, cancer cell survival, growth, migration, and even dormancy are influenced by the surrounding tumor microenvironment (TME). Within the TME, cancer-associated fibroblasts (CAFs) have been shown to play several roles in the development of a tumor. They secrete growth factors, inflammatory ligands, and extracellular matrix proteins that promote cancer cell proliferation, therapy resistance, and immune exclusion. However, recent work indicates that CAFs may also restrain tumor progression in some circumstances. In this review, we summarize the body of work on CAFs, with a particular focus on the most recent discoveries about fibroblast heterogeneity, plasticity, and functions. We also highlight the commonalities of fibroblasts present across different cancer types, and in normal and inflammatory states. Finally, we present the latest advances regarding therapeutic strategies targeting CAFs that are undergoing preclinical and clinical evaluation.
Collapse
Affiliation(s)
- Giulia Biffi
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York; Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York; and Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - David A Tuveson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York; Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York; and Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
82
|
Jiang B, Zhou L, Lu J, Wang Y, Liu C, You L, Guo J. Stroma-Targeting Therapy in Pancreatic Cancer: One Coin With Two Sides? Front Oncol 2020; 10:576399. [PMID: 33178608 PMCID: PMC7593693 DOI: 10.3389/fonc.2020.576399] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/25/2020] [Indexed: 12/15/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a malignancy with one of the worst prognoses worldwide and has an overall 5-year survival rate of only 9%. Although chemotherapy is the recommended treatment for patients with advanced PDAC, its efficacy is not satisfactory. The dense dysplastic stroma of PDAC is a major obstacle to the delivery of chemotherapy drugs and plays an important role in the progression of PDAC. Therefore, stroma-targeting therapy is considered a potential treatment strategy to improve the efficacy of chemotherapy and patient survival. While several preclinical studies have shown encouraging results, the anti-tumor potential of the PDAC stroma has also been revealed, and the extreme depletion might promote tumor progression and undermine patient survival. Therefore, achieving a balance between stromal abundance and depletion might be the further of stroma-targeting therapy. This review summarized the current progress of stroma-targeting therapy in PDAC and discussed the double-edged sword of its therapeutic effects.
Collapse
Affiliation(s)
- Bolun Jiang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Zhou
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun Lu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yizhi Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chengxi Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junchao Guo
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
83
|
Torphy RJ, Fujiwara Y, Schulick RD. Pancreatic cancer treatment: better, but a long way to go. Surg Today 2020; 50:1117-1125. [PMID: 32474642 PMCID: PMC7837389 DOI: 10.1007/s00595-020-02028-0] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 04/10/2020] [Indexed: 12/24/2022]
Abstract
Remarkable progress has been made in treating pancreatic cancer over the past century, including refinement of our surgical techniques and improvements in adjuvant and neoadjuvant therapies. Despite these advances, the incidence of pancreatic cancer is rising globally, and it remains a deadly disease. In this review, we highlight the historical perspectives of pancreatic cancer treatment and outline the areas of future advancement that will assist progression towards better outcomes. Areas of future advancement include improving prevention strategies and early detection, refining our molecular understanding of pancreatic cancer, identifying more effective systemic therapies, and improving quality of life and surgical outcomes. Furthermore, systems need to be put in place to ensure all patients with pancreatic cancer receive high quality care and are given the appropriate options and sequence of therapy. This is best achieved through multidisciplinary care.
Collapse
Affiliation(s)
- Robert J Torphy
- Department of Surgery, School of Medicine, Cancer Center, University of Colorado, Anschutz Medical Campus, 12631 E. 17th Avenue, C-305, Aurora, CO, 80045, USA
| | - Yuki Fujiwara
- Department of Surgery, School of Medicine, Cancer Center, University of Colorado, Anschutz Medical Campus, 12631 E. 17th Avenue, C-305, Aurora, CO, 80045, USA
| | - Richard D Schulick
- Department of Surgery, School of Medicine, Cancer Center, University of Colorado, Anschutz Medical Campus, 12631 E. 17th Avenue, C-305, Aurora, CO, 80045, USA.
| |
Collapse
|
84
|
Ebelt ND, Zamloot V, Manuel ER. Targeting desmoplasia in pancreatic cancer as an essential first step to effective therapy. Oncotarget 2020; 11:3486-3488. [PMID: 33014284 PMCID: PMC7517960 DOI: 10.18632/oncotarget.27745] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/26/2020] [Indexed: 01/04/2023] Open
Abstract
Pancreatic cancer is considered one of the most lethal cancers in the US. It contributes to an estimated 47,000 deaths annually and is predicted to surpass prostate, breast and colorectal cancers as the leading cause of cancer-related death. Although major advancements in cancer treatment have improved outcomes for many cancer types, survival rate for pancreatic cancer has not improved in nearly four decades despite tremendous effort. One attribute of pancreatic cancer that is considered a major barrier to effective treatment is the formation of fibrotic tissue around tumor cells known as desmoplasia. A number of promising approaches have been developed to deplete fibrotic components in pancreatic tumors to enhance drug delivery, some of which have been tested in clinical trials of advanced, unresectable pancreatic cancer. Here, we discuss previous efforts, shortcomings and new considerations for developing more effective agents to eliminate desmoplasia.
Collapse
Affiliation(s)
- Nancy D Ebelt
- Department of Immuno-Oncology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Vic Zamloot
- Department of Immuno-Oncology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Edwin R Manuel
- Department of Immuno-Oncology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
85
|
Li B, Wang Y, Jiang H, Li B, Shi X, Gao S, Ni C, Zhang Z, Guo S, Xu J, Jin G. Pros and Cons: High Proportion of Stromal Component Indicates Better Prognosis in Patients With Pancreatic Ductal Adenocarcinoma-A Research Based on the Evaluation of Whole-Mount Histological Slides. Front Oncol 2020; 10:1472. [PMID: 32974173 PMCID: PMC7471248 DOI: 10.3389/fonc.2020.01472] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/10/2020] [Indexed: 12/13/2022] Open
Abstract
The study aimed to investigate the potential of tumor–stroma ratio (TSR) on digitalized whole-mount histopathology to predict prognosis in patients with pancreatic ductal adenocarcinoma (PDAC). The effectiveness were evaluated through internal validation. Data were retrospectively collected from consecutive patients who underwent primary pancreatic resection from December 2016 to August 2017 (developing cohort) and from September 2017 to April 2018 (validation cohort). Digitalized whole-mount slide images were used to evaluate TSR by both pathologists and a computerized model based on Conditional Generative Adversarial Model (cGAN), respectively. TSR>1 and ≤ 1 denoted low and high stromal component. Logistic regression analysis revealed intratumoral necrosis and R1 independently associated with low stromal component in the developing cohort. Cox regression analysis revealed tumor–node–metastasis (TNM) stage [II vs. I: hazard ratio (HR), 2.584; 95% CI, 1.386–4.819; P = 0.003; III vs. I: HR, 4.384; 95% CI, 2.285–8.411; P < 0.001], stromal component (low vs. high: HR, 1.876; 95% CI, 1.227–2.870; P = 0.004), tumor grade (G3 vs. G1/2: HR, 2.124; 95% CI, 1.419–3.179; P < 0.001), and perineural invasion (with vs. without: HR, 2.147; 95% CI, 1.187–3.883; P = 0.011) were independent prognostic factors in the developing cohort. Stromal component categories could classify patients into subgroups within TNM stages I, II, and III based on over survival. All results were validated in the validation cohort. The weighted kappa value for categorical assessments between pathologists' evaluation and computer-aided evaluation was 0.804 (95% CI, 0.573–0.951). TSR represents a simple and reliable metric for combining the prognostic value of TNM stage in patients with PDAC.
Collapse
Affiliation(s)
- Bo Li
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital Affiliated to Navy Medical University (Second Military Medical University), Shanghai, China.,Department of General Surgery, Beidaihe Rehabilitation and Recuperation Center of Joint Logistics Support Force, Qinhuangdao, China
| | - Yang Wang
- Department of Pathology, Shuguang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Hui Jiang
- Department of Pathology, Changhai Hospital Affiliated to Navy Medical University (Second Military Medical University), Shanghai, China
| | - Baoming Li
- Jiangsu Key Laboratory of Big Data Analysis Technique and CICAEET, Nanjing University of Information Science and Technology, Nanjing, China
| | - Xiaohan Shi
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital Affiliated to Navy Medical University (Second Military Medical University), Shanghai, China
| | - Suizhi Gao
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital Affiliated to Navy Medical University (Second Military Medical University), Shanghai, China
| | - Canrong Ni
- Department of Pathology, Changhai Hospital Affiliated to Navy Medical University (Second Military Medical University), Shanghai, China
| | - Zelin Zhang
- Jiangsu Key Laboratory of Big Data Analysis Technique and CICAEET, Nanjing University of Information Science and Technology, Nanjing, China
| | - Shiwei Guo
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital Affiliated to Navy Medical University (Second Military Medical University), Shanghai, China
| | - Jun Xu
- Jiangsu Key Laboratory of Big Data Analysis Technique and CICAEET, Nanjing University of Information Science and Technology, Nanjing, China
| | - Gang Jin
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital Affiliated to Navy Medical University (Second Military Medical University), Shanghai, China
| |
Collapse
|
86
|
Chen D, Zhu X, Tao W, Kong Y, Huag Y, Zhang Y, Liu R, Jiang L, Tang Y, Yu H, Hao Q, Yang X, Zou H, Chen J, Lu Y, Zhang H, Li W. Regulation of pancreatic cancer microenvironment by an intelligent gemcitabine@nanogel system via in vitro 3D model for promoting therapeutic efficiency. J Control Release 2020; 324:545-559. [DOI: 10.1016/j.jconrel.2020.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 05/26/2020] [Accepted: 06/01/2020] [Indexed: 01/04/2023]
|
87
|
Sharma NS, Gupta VK, Garrido VT, Hadad R, Durden BC, Kesh K, Giri B, Ferrantella A, Dudeja V, Saluja A, Banerjee S. Targeting tumor-intrinsic hexosamine biosynthesis sensitizes pancreatic cancer to anti-PD1 therapy. J Clin Invest 2020; 130:451-465. [PMID: 31613799 DOI: 10.1172/jci127515] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 10/08/2019] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is considered to be a highly immunosuppressive and heterogenous neoplasm. Despite improved knowledge regarding the genetic background of the tumor and better understanding of the tumor microenvironment, immune checkpoint inhibitor therapy (targeting CTLA4, PD1, PDL1) has not been very successful against PDAC. The robust desmoplastic stroma, along with an extensive extracellular matrix (ECM) that is rich in hyaluronan, plays an integral role in this immune evasion. Hexosamine biosynthesis pathway (HBP), a shunt pathway of glycolysis, is a metabolic node in cancer cells that can promote survival pathways on the one hand and influence the hyaluronan synthesis in the ECM on the other. The rate-limiting enzyme of the pathway, glutamine-fructose amidotransferase 1 (GFAT1), uses glutamine and fructose 6-phosphate to eventually synthesize uridine diphosphate N-acetylglucosamine (UDP-GlcNAc). In the current manuscript, we targeted this glutamine-utilizing enzyme by a small molecule glutamine analog (6-diazo-5-oxo-l-norleucine [DON]). Our results showed that DON decreased the self-renewal potential and metastatic ability of tumor cells. Further, treatment with DON decreased hyaluronan and collagen in the tumor microenvironment, leading to an extensive remodeling of the ECM and an increased infiltration of CD8+ T cells. Additionally, treatment with DON sensitized pancreatic tumors to anti-PD1 therapy, resulting in tumor regression and prolonged survival.
Collapse
|
88
|
Demiroglu-Zergeroglu A, Turhal G, Topal H, Ceylan H, Donbaloglu F, Karadeniz Cerit K, Odongo RR. Anticarcinogenic effects of halofuginone on lung-derived cancer cells. Cell Biol Int 2020; 44:1934-1944. [PMID: 32437065 DOI: 10.1002/cbin.11399] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/04/2020] [Accepted: 05/18/2020] [Indexed: 02/06/2023]
Abstract
Malignant mesothelioma is a rare but aggressive form of malignancy, which is difficult to diagnose and is resistant to current chemotherapeutic treatment options. Molecular techniques have been used to investigate the mechanisms of action and the beneficial therapeutic effects of halofuginone (HF) in several cancers but not malignant mesotheliomas. In this study, the antiproliferative and apoptotic effects of HF were investigated through its ability to deregulate EGFR downstream signalling cascade proteins in the pathologically aggressive malignant mesothelioma and non-small-cell lung cancer cells. We showed that administration of HF at nanomolar concentrations induced a dose-dependent reduction in the viability of cancer cells, made cell cycle arrest, inhibited proliferation of cancer cells via STAT3 and ERK1/2 pathways and triggered the apoptotic cascade via p38MAPK. We demonstrated that the apoptotic cell death mechanism was mediated by enhanced activation of caspase-3 and concomitant PARP cleavage, downregulation of Bcl-2 and upregulation of Bax in both malignant mesothelioma and lung cancer cells. In particular, we demonstrated that cancer cells were more sensitive to HF treatment than normal mesothelial cells. Taken together, this study suggests that HF exerts its anticancer effects in lung-derived cancers by targeting signal transduction pathways mainly through deregulation of ERK1/2, STAT3 and p38MAPK to reduce cancer cell viability, induce cell cycle arrest and apoptotic cell death. Thus, HF might be considered as a potential agent against malignant mesothelioma and/or lung cancer cells.
Collapse
Affiliation(s)
- Asuman Demiroglu-Zergeroglu
- Department of Molecular Biology & Genetics, Faculty of Science, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Gulseren Turhal
- Department of Molecular Biology & Genetics, Faculty of Science, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Halime Topal
- Department of Molecular Biology & Genetics, Faculty of Science, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Hurmuz Ceylan
- Department of Molecular Biology & Genetics, Faculty of Science, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Fadime Donbaloglu
- Department of Molecular Biology & Genetics, Faculty of Science, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Kivilcim Karadeniz Cerit
- Department of Pediatric Surgery, School of Medicine, Marmara University, Pendik, Istanbul, Turkey
| | - Ronald R Odongo
- Department of Molecular Biology & Genetics, Faculty of Science, Gebze Technical University, Gebze, Kocaeli, Turkey
| |
Collapse
|
89
|
Gillson J, Ramaswamy Y, Singh G, Gorfe AA, Pavlakis N, Samra J, Mittal A, Sahni S. Small Molecule KRAS Inhibitors: The Future for Targeted Pancreatic Cancer Therapy? Cancers (Basel) 2020; 12:cancers12051341. [PMID: 32456277 PMCID: PMC7281596 DOI: 10.3390/cancers12051341] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/21/2020] [Accepted: 05/21/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest solid tumors in the world. Currently, there are no approved targeted therapies for PDAC. Mutations in Kirsten rat sarcoma viral oncogene homologue (KRAS) are known to be a major driver of PDAC progression, but it was considered an undruggable target until recently. Moreover, PDAC also suffers from drug delivery issues due to the highly fibrotic tumor microenvironment. In this perspective, we provide an overview of recent developments in targeting mutant KRAS and strategies to overcome drug delivery issues (e.g., nanoparticle delivery). Overall, we propose that the antitumor effects from novel KRAS inhibitors along with strategies to overcome drug delivery issues could be a new therapeutic way forward in PDAC.
Collapse
Affiliation(s)
- Josef Gillson
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, St Leonards 2065, NSW, Australia; (J.G.); (N.P.); (J.S.); (A.M.)
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, University of Sydney, St Leonards 2065, NSW, Australia
- Australian Pancreatic Centre, St Leonards 2065, NSW, Australia
| | - Yogambha Ramaswamy
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney 2006, Sydney, Australia; (Y.R.); (G.S.)
| | - Gurvinder Singh
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney 2006, Sydney, Australia; (Y.R.); (G.S.)
| | - Alemayehu A. Gorfe
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center Houston, Houston, TX 77030, USA;
| | - Nick Pavlakis
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, St Leonards 2065, NSW, Australia; (J.G.); (N.P.); (J.S.); (A.M.)
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, University of Sydney, St Leonards 2065, NSW, Australia
- Northern Sydney Cancer Center, Royal North Shore Hospital, St Leonards 2065, NSW, Australia
- Genesis Care, St Leonards and Frenchs Forest 2065, NSW, Australia
| | - Jaswinder Samra
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, St Leonards 2065, NSW, Australia; (J.G.); (N.P.); (J.S.); (A.M.)
- Australian Pancreatic Centre, St Leonards 2065, NSW, Australia
- Upper GI Surgical Unit, Royal North Shore Hospital and North Shore Private Hospital, St Leonards 2065, NSW, Australia
| | - Anubhav Mittal
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, St Leonards 2065, NSW, Australia; (J.G.); (N.P.); (J.S.); (A.M.)
- Australian Pancreatic Centre, St Leonards 2065, NSW, Australia
- Upper GI Surgical Unit, Royal North Shore Hospital and North Shore Private Hospital, St Leonards 2065, NSW, Australia
| | - Sumit Sahni
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, St Leonards 2065, NSW, Australia; (J.G.); (N.P.); (J.S.); (A.M.)
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, University of Sydney, St Leonards 2065, NSW, Australia
- Australian Pancreatic Centre, St Leonards 2065, NSW, Australia
- Correspondence: ; Tel.: +61-2-9926-7829
| |
Collapse
|
90
|
Hauge A, Rofstad EK. Antifibrotic therapy to normalize the tumor microenvironment. J Transl Med 2020; 18:207. [PMID: 32434573 PMCID: PMC7240990 DOI: 10.1186/s12967-020-02376-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023] Open
Abstract
Most tumors develop abnormal fibrotic regions consisting of fibroblasts, immune cells, and a dense extracellular matrix (ECM) immersed in a viscous interstitial fluid, and an abundant fibrotic tumor microenvironment (TME) is associated with poor outcome of treatment. It has been hypothesized that the treatment of cancer may be improved by interventions aiming to normalize this TME. The approaches used in attempts to normalize the fibrotic TME can be categorized into three strategies of targeted antifibrotic therapy: targeting of components of the ECM, targeting of the producers of the ECM components-the activated cancer-associated fibroblasts (CAFs), and targeting of the signaling pathways activating CAFs. To target the ECM, enzymes against components of the ECM have been used, including collagenase, relaxin, hyaluronidase, and lyxyl oxidase. Targeting of CAFs have been investigated by using agents aiming to eliminate or reprogram CAFs. CAFs are activated primarily by transforming growth factor-β (TGF-β), hedgehog, or focal adhesion kinase signaling, and several agents have been used to target these signaling pathways, including angiotensin II receptor I blockers (e.g., losartan) to inhibit the TGF-β pathway. Taken together, these studies have revealed that antifibrotic therapy is a two-edged sword: while some studies suggest enhanced response to treatment after antifibrotic therapy, others suggest that antifibrotic therapy may lead to increased tumor growth, metastasis, and impaired outcome of treatment. There are several possible explanations of these conflicting observations. Most importantly, tumors contain different subpopulations of CAFs, and while some subpopulations may promote tumor growth and metastasis, others may inhibit malignant progression. Furthermore, the outcome of antifibrotic therapy may depend on stage of disease, duration of treatment, treatment-induced activation of alternative profibrotic signaling pathways, and treatment-induced recruitment of tumor-supporting immune cells. Nevertheless, losartan-induced suppression of TGF-β signaling appears to be a particularly promising strategy. Losartan is a widely prescribed antihypertensive drug and highly advantageous therapeutic effects have been observed after losartan treatment of pancreatic cancer. However, improved understanding of the mechanisms governing the development of fibrosis in tumors is needed before safe antifibrotic treatments can be established.
Collapse
Affiliation(s)
- Anette Hauge
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Einar K Rofstad
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
91
|
D'Aniello C, Patriarca EJ, Phang JM, Minchiotti G. Proline Metabolism in Tumor Growth and Metastatic Progression. Front Oncol 2020; 10:776. [PMID: 32500033 PMCID: PMC7243120 DOI: 10.3389/fonc.2020.00776] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 04/21/2020] [Indexed: 12/15/2022] Open
Abstract
Cancer cells show a formidable capacity to survive under stringent conditions, to elude mechanisms of control, such as apoptosis, and to resist therapy. Cancer cells reprogram their metabolism to support uncontrolled proliferation and metastatic progression. Phenotypic and functional heterogeneity are hallmarks of cancer cells, which endow them with aggressiveness, metastatic capacity, and resistance to therapy. This heterogeneity is regulated by a variety of intrinsic and extrinsic stimuli including those from the tumor microenvironment. Increasing evidence points to a key role for the metabolism of non-essential amino acids in this complex scenario. Here we discuss the impact of proline metabolism in cancer development and progression, with particular emphasis on the enzymes involved in proline synthesis and catabolism, which are linked to pathways of energy, redox, and anaplerosis. In particular, we emphasize how proline availability influences collagen synthesis and maturation and the acquisition of cancer cell plasticity and heterogeneity. Specifically, we propose a model whereby proline availability generates a cycle based on collagen synthesis and degradation, which, in turn, influences the epigenetic landscape and tumor heterogeneity. Therapeutic strategies targeting this metabolic-epigenetic axis hold great promise for the treatment of metastatic cancers.
Collapse
Affiliation(s)
- Cristina D'Aniello
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics “Adriano Buzzati-Traverso”, CNR, Naples, Italy
| | - Eduardo J. Patriarca
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics “Adriano Buzzati-Traverso”, CNR, Naples, Italy
| | - James M. Phang
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute at Frederick, NIH, Frederick, MD, United States
| | - Gabriella Minchiotti
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics “Adriano Buzzati-Traverso”, CNR, Naples, Italy
| |
Collapse
|
92
|
Tschumperlin DJ, Lagares D. Mechano-therapeutics: Targeting Mechanical Signaling in Fibrosis and Tumor Stroma. Pharmacol Ther 2020; 212:107575. [PMID: 32437826 DOI: 10.1016/j.pharmthera.2020.107575] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/30/2020] [Indexed: 12/12/2022]
Abstract
Pathological remodeling of the extracellular matrix (ECM) by activated myofibroblasts is a hallmark of fibrotic diseases and desmoplastic tumors. Activation of myofibroblasts occurs in response to fibrogenic tissue injury as well as in tumor-associated fibrotic reactions. The molecular determinants of myofibroblast activation in fibrosis and tumor stroma have traditionally been viewed to include biochemical agents, such as dysregulated growth factor and cytokine signaling, which profoundly alter the biology of fibroblasts, ultimately leading to overexuberant matrix deposition and fibrosis. More recently, compelling evidence has shown that altered mechanical properties of the ECM such as matrix stiffness are major drivers of tissue fibrogenesis by promoting mechano-activation of fibroblasts. In this Review, we discuss new insights into the role of the biophysical microenvironment in the amplified activation of fibrogenic myofibroblasts during the development and progression of fibrotic diseases and desmoplastic tumors. We also summarize novel therapeutic targets for anti-fibrotic therapy based on the mechanobiology of tissue fibrosis and tumor stroma, a class of drugs known as "mechano-therapeutics".
Collapse
Affiliation(s)
- Daniel J Tschumperlin
- Tissue Repair and Mechanobiology Laboratory, Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 1(st) St SW, Rochester, MN 55905, USA.
| | - David Lagares
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, USA; Department of Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Fibrosis Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
93
|
Madamsetty VS, Pal K, Dutta SK, Wang E, Mukhopadhyay D. Targeted Dual Intervention-Oriented Drug-Encapsulated (DIODE) Nanoformulations for Improved Treatment of Pancreatic Cancer. Cancers (Basel) 2020; 12:cancers12051189. [PMID: 32397114 PMCID: PMC7281578 DOI: 10.3390/cancers12051189] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/24/2020] [Accepted: 05/06/2020] [Indexed: 12/14/2022] Open
Abstract
Despite recent advancements, effective treatment for pancreatic ductal adenocarcinoma (PDAC) has remained elusive. The overall survival rate in PDAC patients has been dismally low due to resistance to standard therapies. In fact, the failure of monotherapies to provide long-term survival benefits in patients led to ascension of several combination therapies for PDAC treatment. However, these combination therapies provided modest survival improvements while increasing treatment-related adverse side effects. Hence, recent developments in drug delivery methods hold the potential for enhancing therapeutic benefits by offering cocktail drug loading and minimizing chemotherapy-associated side effects. Nanoformulations-aided deliveries of anticancer agents have been a success in recent years. Yet, improving the tumor-targeted delivery of drugs to PDAC remains a major hurdle. In the present paper, we developed several new tumor-targeted dual intervention-oriented drug-encapsulated (DIODE) liposomes. We successfully formulated liposomes loaded with gemcitabine (G), paclitaxel (P), erlotinib (E), XL-184 (c-Met inhibitor, X), and their combinations (GP, GE, and GX) and evaluated their in vitro and in vivo efficacies. Our novel DIODE liposomal formulations improved median survival in comparison with gemcitabine-loaded liposomes or vehicle. Our findings are suggestive of the importance of the targeted delivery for combination therapies in improving pancreatic cancer treatment.
Collapse
|
94
|
Kozlova N, Grossman JE, Iwanicki MP, Muranen T. The Interplay of the Extracellular Matrix and Stromal Cells as a Drug Target in Stroma-Rich Cancers. Trends Pharmacol Sci 2020; 41:183-198. [DOI: 10.1016/j.tips.2020.01.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/21/2019] [Accepted: 01/02/2020] [Indexed: 12/12/2022]
|
95
|
Potential Applications of NRF2 Modulators in Cancer Therapy. Antioxidants (Basel) 2020; 9:antiox9030193. [PMID: 32106613 PMCID: PMC7139512 DOI: 10.3390/antiox9030193] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/21/2020] [Accepted: 02/21/2020] [Indexed: 01/17/2023] Open
Abstract
The nuclear factor erythroid 2-related factor 2 (NRF2)-Kelch-like ECH-associated protein 1 (KEAP1) regulatory pathway plays an essential role in protecting cells and tissues from oxidative, electrophilic, and xenobiotic stress. By controlling the transactivation of over 500 cytoprotective genes, the NRF2 transcription factor has been implicated in the physiopathology of several human diseases, including cancer. In this respect, accumulating evidence indicates that NRF2 can act as a double-edged sword, being able to mediate tumor suppressive or pro-oncogenic functions, depending on the specific biological context of its activation. Thus, a better understanding of the mechanisms that control NRF2 functions and the most appropriate context of its activation is a prerequisite for the development of effective therapeutic strategies based on NRF2 modulation. In line of principle, the controlled activation of NRF2 might reduce the risk of cancer initiation and development in normal cells by scavenging reactive-oxygen species (ROS) and by preventing genomic instability through decreased DNA damage. In contrast however, already transformed cells with constitutive or prolonged activation of NRF2 signaling might represent a major clinical hurdle and exhibit an aggressive phenotype characterized by therapy resistance and unfavorable prognosis, requiring the use of NRF2 inhibitors. In this review, we will focus on the dual roles of the NRF2-KEAP1 pathway in cancer promotion and inhibition, describing the mechanisms of its activation and potential therapeutic strategies based on the use of context-specific modulation of NRF2.
Collapse
|
96
|
Han X, Xu Y, Geranpayehvaghei M, Anderson GJ, Li Y, Nie G. Emerging nanomedicines for anti-stromal therapy against desmoplastic tumors. Biomaterials 2020; 232:119745. [DOI: 10.1016/j.biomaterials.2019.119745] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/29/2019] [Accepted: 12/25/2019] [Indexed: 02/09/2023]
|
97
|
Dosch AR, Dai X, Reyzer ML, Mehra S, Srinivasan S, Willobee BA, Kwon D, Kashikar N, Caprioli R, Merchant NB, Nagathihalli NS. Combined Src/EGFR Inhibition Targets STAT3 Signaling and Induces Stromal Remodeling to Improve Survival in Pancreatic Cancer. Mol Cancer Res 2020; 18:623-631. [PMID: 31949002 DOI: 10.1158/1541-7786.mcr-19-0741] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/26/2019] [Accepted: 01/10/2020] [Indexed: 02/07/2023]
Abstract
Lack of durable response to cytotoxic chemotherapy is a major contributor to the dismal outcomes seen in pancreatic ductal adenocarcinoma (PDAC). Extensive tumor desmoplasia and poor vascular supply are two predominant characteristics which hinder the delivery of chemotherapeutic drugs into PDAC tumors and mediate resistance to therapy. Previously, we have shown that STAT3 is a key biomarker of therapeutic resistance to gemcitabine treatment in PDAC, which can be overcome by combined inhibition of the Src and EGFR pathways. Although it is well-established that concurrent EGFR and Src inhibition exert these antineoplastic properties through direct inhibition of mitogenic pathways in tumor cells, the influence of this combined therapy on stromal constituents in PDAC tumors remains unknown. In this study, we demonstrate in both orthotopic tumor xenograft and Ptf1acre/+;LSL-KrasG12D/+;Tgfbr2flox/flox (PKT) mouse models that concurrent EGFR and Src inhibition abrogates STAT3 activation, increases microvessel density, and prevents tissue fibrosis in vivo. Furthermore, the stromal changes induced by parallel EGFR and Src pathway inhibition resulted in improved overall survival in PKT mice when combined with gemcitabine. As a phase I clinical trial utilizing concurrent EGFR and Src inhibition with gemcitabine has recently concluded, these data provide timely translational insight into the novel mechanism of action of this regimen and expand our understanding into the phenomenon of stromal-mediated therapeutic resistance. IMPLICATIONS: These findings demonstrate that Src/EGFR inhibition targets STAT3, remodels the tumor stroma, and results in enhanced delivery of gemcitabine to improve overall survival in a mouse model of PDAC.
Collapse
Affiliation(s)
- Austin R Dosch
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida.,Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Xizi Dai
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida.,Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Michelle L Reyzer
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee
| | - Siddharth Mehra
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida.,Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Supriya Srinivasan
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida.,Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Brent A Willobee
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida.,Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Deukwoo Kwon
- Department of Public Health, University of Miami Miller School of Medicine, Miami, Florida
| | - Nilesh Kashikar
- Department of Pathology, University of Colorado, Denver, Colorado
| | - Richard Caprioli
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee
| | - Nipun B Merchant
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida. .,Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Nagaraj S Nagathihalli
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida. .,Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| |
Collapse
|
98
|
Kokkinos J, Ignacio RMC, Sharbeen G, Boyer C, Gonzales-Aloy E, Goldstein D, Australian Pancreatic Cancer Genome Initiative Apgi, McCarroll JA, Phillips PA. Targeting the undruggable in pancreatic cancer using nano-based gene silencing drugs. Biomaterials 2020; 240:119742. [PMID: 32088410 DOI: 10.1016/j.biomaterials.2019.119742] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/03/2019] [Accepted: 12/25/2019] [Indexed: 12/20/2022]
Abstract
Pancreatic cancer is predicted to be the second leading cause of cancer-related death by 2025. The best chemotherapy only extends survival by an average of 18 weeks. The extensive fibrotic stroma surrounding the tumor curbs therapeutic options as chemotherapy drugs cannot freely penetrate the tumor. RNA interference (RNAi) has emerged as a promising approach to revolutionize cancer treatment. Small interfering RNA (siRNA) can be designed to inhibit the expression of any gene which is important given the high degree of genetic heterogeneity present in pancreatic tumors. Despite the potential of siRNA therapies, there are hurdles limiting their clinical application such as poor transport across biological barriers, limited cellular uptake, degradation, and rapid clearance. Nanotechnology can address these challenges. In fact, the past few decades have seen the conceptualization, design, pre-clinical testing and recent clinical approval of a RNAi nanodrug to treat disease. In this review, we comment on the current state of play of clinical trials evaluating siRNA nanodrugs and review pre-clinical studies investigating the efficacy of siRNA therapeutics in pancreatic cancer. We assess the physiological barriers unique to pancreatic cancer that need to be considered when designing and testing new nanomedicines for this disease.
Collapse
Affiliation(s)
- John Kokkinos
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, School of Medical Sciences, UNSW, Sydney, NSW, 2052, Australia; Australian Centre for Nanomedicine, UNSW, Sydney, NSW, 2052, Australia
| | - Rosa Mistica C Ignacio
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, School of Medical Sciences, UNSW, Sydney, NSW, 2052, Australia
| | - George Sharbeen
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, School of Medical Sciences, UNSW, Sydney, NSW, 2052, Australia
| | - Cyrille Boyer
- Australian Centre for Nanomedicine, UNSW, Sydney, NSW, 2052, Australia; Centre for Advanced Macromolecular Design, School of Chemical Engineering, UNSW, Sydney, NSW, 2052, Australia
| | - Estrella Gonzales-Aloy
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, School of Medical Sciences, UNSW, Sydney, NSW, 2052, Australia
| | - David Goldstein
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, School of Medical Sciences, UNSW, Sydney, NSW, 2052, Australia; Prince of Wales Hospital, Prince of Wales Clinical School, Sydney, NSW, 2052, Australia
| | | | - Joshua A McCarroll
- Australian Centre for Nanomedicine, UNSW, Sydney, NSW, 2052, Australia; Tumour Biology & Targeting Program, Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, NSW, Australia, 2031; School of Women's and Children's Health, Faculty of Medicine, UNSW, Sydney, NSW, 2052, Australia.
| | - Phoebe A Phillips
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, School of Medical Sciences, UNSW, Sydney, NSW, 2052, Australia; Australian Centre for Nanomedicine, UNSW, Sydney, NSW, 2052, Australia.
| |
Collapse
|
99
|
Hasselluhn MC, Klein L, Patzak MS, Buchholz SM, Ströbel P, Ellenrieder V, Maisonneuve P, Neesse A. Stromal Features of the Primary Tumor Are Not Prognostic in Genetically Engineered Mice of Pancreatic Cancer. Cells 2019; 9:cells9010058. [PMID: 31878349 PMCID: PMC7017324 DOI: 10.3390/cells9010058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022] Open
Abstract
The KrasG12D/+;LSL-Trp53R172H/+;Pdx-1-Cre (KPC) mouse model is frequently employed for preclinical therapeutic testing, in particular in regard to antistromal therapies. Here, we investigate the prognostic implications of histopathological features that may guide preclinical trial design. Pancreatic tumor tissue from n = 46 KPC mice was quantitatively analyzed using immunohistochemistry and co-immunofluorescence for proliferation (Ki67), mitotic rate (phospho-Histone 3, PHH3), apoptosis (cleaved caspase-3, CC3), collagen content, secreted protein acidic and rich in cysteine (SPARC), hyaluronic acid (HA), and α-smooth muscle actin (α-SMA). Furthermore, mean vessel density (MVD), mean lumen area (MLA), grading, activated stroma index (ASI), and fibroblast-proliferation rate (α-SMA/Ki67) were assessed. Univariate analysis using the Kaplan–Meier estimator and Cox regression model for continuous variables did not show association between survival and any of the analyzed parameters. Spearman correlation demonstrated that desmoplasia was inversely correlated with differentiated tumor grade (ρ = −0.84). Ki67 and PHH3 synergized as proliferation markers (ρ = 0.54), while SPARC expression was positively correlated with HA content (ρ = 0.37). MVD and MLA were correlated with each other (ρ = 0.31), while MLA positively correlated with CC3 (ρ = 0.45). Additionally, increased MVD was correlated with increased fibroblast proliferation rate (α-SMA + Ki67; ρ = 0.36). Our pilot study provides evidence that individual histopathological parameters of the primary tumor of KPC mice are not associated with survival, and may hint at the importance of systemic tumor-related effects such as cachexia.
Collapse
Affiliation(s)
- Marie C. Hasselluhn
- Department of Gastroenterology and Gastrointestinal Oncology, University Medical Center, 37075 Göttingen, Germany; (M.C.H.); (L.K.); (V.E.)
| | - Lukas Klein
- Department of Gastroenterology and Gastrointestinal Oncology, University Medical Center, 37075 Göttingen, Germany; (M.C.H.); (L.K.); (V.E.)
| | - Melanie S. Patzak
- Department of Gastroenterology and Gastrointestinal Oncology, University Medical Center, 37075 Göttingen, Germany; (M.C.H.); (L.K.); (V.E.)
| | - Sören M. Buchholz
- Department of Gastroenterology and Gastrointestinal Oncology, University Medical Center, 37075 Göttingen, Germany; (M.C.H.); (L.K.); (V.E.)
| | - Philipp Ströbel
- Institute of Pathology, University Medical Center, 37075 Göttingen, Germany;
| | - Volker Ellenrieder
- Department of Gastroenterology and Gastrointestinal Oncology, University Medical Center, 37075 Göttingen, Germany; (M.C.H.); (L.K.); (V.E.)
| | - Patrick Maisonneuve
- Division of Epidemiology and Biostatistics, IEO Istituto Europeo di Oncologia IRCCS, P.I. 08691440153 Milan, Italy;
| | - Albrecht Neesse
- Department of Gastroenterology and Gastrointestinal Oncology, University Medical Center, 37075 Göttingen, Germany; (M.C.H.); (L.K.); (V.E.)
- Correspondence: ; Tel.: +49-551-39-63201
| |
Collapse
|
100
|
Willumsen N, Ali SM, Leitzel K, Drabick JJ, Yee N, Polimera HV, Nagabhairu V, Krecko L, Ali A, Maddukuri A, Moku P, Ali A, Poulose J, Menon H, Pancholy N, Costa L, Karsdal MA, Lipton A. Collagen fragments quantified in serum as measures of desmoplasia associate with survival outcome in patients with advanced pancreatic cancer. Sci Rep 2019; 9:19761. [PMID: 31875000 PMCID: PMC6930304 DOI: 10.1038/s41598-019-56268-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/08/2019] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) patients have poor prognosis and poor response to treatment. This is largely due to PDAC being associated with a dense and active stroma and tumor fibrosis (desmoplasia). Desmoplasia is characterized by excessive degradation and formation of the extracellular matrix (ECM) generating collagen fragments that are released into circulation. We evaluated the association of specific collagen fragments measured in pre-treatment serum with outcome in patients with PDAC. Matrix metalloprotease (MMP)-degraded type I collagen (C1M), type III collagen (C3M), type IV collagen (C4M) and a pro-peptide of type III collagen (PRO-C3) were measured by ELISA in pre-treatment serum from a randomized phase 3 clinical trial of patients with stage III/IV PDAC treated with 5-fluorouracil based therapy (n = 176). The collagen fragments were evaluated for their correlation (r, Spearman) with serum CA19-9 and for their association with overall survival (OS) based on Cox-regression analyses. In this phase 3 PDAC trial, pre-treatment serum collagen fragment levels were above the reference range for 67%-98% of patients, with median values in PDAC approximately two-fold higher than reference levels. Collagen fragment levels did not correlate with CA19-9 (r = 0.049-0.141, p = ns). On a continuous basis, higher levels of all collagen fragments were associated with significantly shorter OS. When evaluating degradation (C3M) and formation (PRO-C3) of type III collagen further, higher PRO-C3 was associated with poor OS (>25th percentile cut-point, HR = 2.01, 95%CI = 1.33-3.05) and higher C3M/PRO-C3 ratio was associated with improved OS (>25th percentile cut-point, HR = 0.53, 95%CI = 0.34-0.80). When adjusting for CA19-9 and clinical covariates, PRO-C3 remained significant (HR = 1.65, 95%CI = 1.09-2.48). In conclusion, collagen remodeling quantified in pre-treatment serum as a surrogate measure of desmoplasia was significantly associated with OS in a phase 3 clinical PDAC trial, supporting the link between desmoplasia, tumorigenesis, and response to treatment. If validated, these biomarkers may have prognostic and/or predictive potential in future PDAC trials.
Collapse
Affiliation(s)
| | - Suhail M Ali
- Division of Hematology/Oncology, Penn State Health Milton S Hershey Medical Center, Hershey, PA, USA
- Lebanon VA Medical Center, Lebanon, PA, USA
| | - Kim Leitzel
- Division of Hematology/Oncology, Penn State Health Milton S Hershey Medical Center, Hershey, PA, USA
| | - Joseph J Drabick
- Division of Hematology/Oncology, Penn State Health Milton S Hershey Medical Center, Hershey, PA, USA
| | - Nelson Yee
- Division of Hematology/Oncology, Penn State Health Milton S Hershey Medical Center, Hershey, PA, USA
| | - Hyma V Polimera
- Division of Hematology/Oncology, Penn State Health Milton S Hershey Medical Center, Hershey, PA, USA
| | - Vinod Nagabhairu
- Pinnacle Health System, University of Pittsburgh Medical Center, Harrisburg, PA, USA
| | - Laura Krecko
- Division of Hematology/Oncology, Penn State Health Milton S Hershey Medical Center, Hershey, PA, USA
| | - Ayesha Ali
- Division of Hematology/Oncology, Penn State Health Milton S Hershey Medical Center, Hershey, PA, USA
| | - Ashok Maddukuri
- Division of Hematology/Oncology, Penn State Health Milton S Hershey Medical Center, Hershey, PA, USA
| | - Prashanth Moku
- Division of Hematology/Oncology, Penn State Health Milton S Hershey Medical Center, Hershey, PA, USA
| | - Aamnah Ali
- Division of Hematology/Oncology, Penn State Health Milton S Hershey Medical Center, Hershey, PA, USA
| | - Joyson Poulose
- Division of Hematology/Oncology, Penn State Health Milton S Hershey Medical Center, Hershey, PA, USA
| | - Harry Menon
- Division of Hematology/Oncology, Penn State Health Milton S Hershey Medical Center, Hershey, PA, USA
| | - Neha Pancholy
- Division of Hematology/Oncology, Penn State Health Milton S Hershey Medical Center, Hershey, PA, USA
| | - Luis Costa
- Oncology division, Hospital de Santa Maria, Lisboa, Portugal
- Clinical Translational Oncology Research Unit, Institute of Molecular Medicine, Lisboa, Portugal
| | | | - Allan Lipton
- Division of Hematology/Oncology, Penn State Health Milton S Hershey Medical Center, Hershey, PA, USA
| |
Collapse
|